diff options
author | dos-reis <gdr@axiomatics.org> | 2009-02-02 13:16:02 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2009-02-02 13:16:02 +0000 |
commit | c0ab2c253aed35314d7cab2d68165268840dcb83 (patch) | |
tree | eb11ffbb1141209f6ec6732b027d623f7eebce57 /src/share/algebra | |
parent | 472141e074a2028f72b59ec1fb18c64da2b7cb36 (diff) | |
download | open-axiom-c0ab2c253aed35314d7cab2d68165268840dcb83.tar.gz |
* algebra/domain.spad.pamphlet (FunctionDescriptor): New.
(OverloadSet): Likewise.
(operations$ConstructorCategory): Likewise.
* share/algebra: Update databases.
Diffstat (limited to 'src/share/algebra')
-rw-r--r-- | src/share/algebra/browse.daase | 3438 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6012 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1988 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10332 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32583 |
5 files changed, 28193 insertions, 26160 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 17316efd..d717bbcd 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2279501 . 3442118607) +(2281924 . 3442535947) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4397 . T) (-4395 . T) (-4394 . T) ((-4402 "*") . T) (-4393 . T) (-4398 . T) (-4392 . T)) +((-4399 . T) (-4397 . T) (-4396 . T) ((-4404 "*") . T) (-4395 . T) (-4400 . T) (-4394 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3478) +(-32 R -3197) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) +((|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4400))) +((|HasAttribute| |#1| (QUOTE -4402))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4400 . T) (-4401 . T)) +((-4402 . T) (-4403 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4394 . T) (-4395 . T) (-4397 . T)) +((-4396 . T) (-4397 . T) (-4399 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3478 UP UPUP -2992) +(-40 -3197 UP UPUP -3518) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4393 |has| (-406 |#2|) (-362)) (-4398 |has| (-406 |#2|) (-362)) (-4392 |has| (-406 |#2|) (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-349))) (-3936 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-349)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3936 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-349)))) (-3936 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-349))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362))))) -(-41 R -3478) +((-4395 |has| (-406 |#2|) (-362)) (-4400 |has| (-406 |#2|) (-362)) (-4394 |has| (-406 |#2|) (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4037 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4037 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4037 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362))))) +(-41 R -3197) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,45 +106,45 @@ NIL ((|HasCategory| |#1| (QUOTE (-306)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4397 |has| |#1| (-554)) (-4395 . T) (-4394 . T)) +((-4399 |has| |#1| (-554)) (-4397 . T) (-4396 . T)) ((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4400 . T) (-4401 . T)) -((-3936 (-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-844)))) (-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-844))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))))) +((-4402 . T) (-4403 . T)) +((-4037 (-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|))))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-544))))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4397 . T)) +((-4399 . T)) NIL -(-51) -((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) +(-51 S) +((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) NIL NIL -(-52 S) -((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) +(-52) +((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) NIL NIL (-53 R M P) ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3478) +(-54 |Base| R -3197) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,133 +158,133 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4400 . T) (-4401 . T)) +((-4402 . T) (-4403 . T)) NIL -(-58 S) -((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-59 A B) +(-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL +(-59 S) +((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-61 -3949) -((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-62 -3949) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-61 -3254) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -3949) +(-62 -3254) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-64 -3949) +(-63 -3254) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -3949) +(-64 -3254) +((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-65 -3254) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3949) +(-66 -3254) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3949) +(-67 -3254) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3949) +(-68 -3254) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3949) +(-69 -3254) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3949) +(-70 -3254) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3949) +(-71 -3254) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3949) +(-72 -3254) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3949) +(-73 -3254) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3949) +(-74 -3254) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3949) -((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-76 |nameOne| |nameTwo| |nameThree|) +(-75 |nameOne| |nameTwo| |nameThree|) ((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 |nameOne| |nameTwo| |nameThree|) +(-76 |nameOne| |nameTwo| |nameThree|) ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3949) +(-77 -3254) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3949) +(-78 -3254) +((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-79 -3254) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3949) +(-80 -3254) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3949) +(-81 -3254) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3949) -((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-83 -3949) +(-82 -3254) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3949) +(-83 -3254) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3949) +(-84 -3254) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3949) +(-85 -3254) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3949) -((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) +(-86 -3254) +((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -3949) +(-87 -3254) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-89 -3949) +(-88 -3254) +((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) +NIL +NIL +(-89 -3254) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-362)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4400 . T)) +((-4402 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4400 . T) ((-4402 "*") . T) (-4401 . T) (-4397 . T) (-4395 . T) (-4394 . T) (-4393 . T) (-4398 . T) (-4392 . T) (-4391 . T) (-4390 . T) (-4389 . T) (-4388 . T) (-4396 . T) (-4399 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4387 . T)) +((-4402 . T) ((-4404 "*") . T) (-4403 . T) (-4399 . T) (-4397 . T) (-4396 . T) (-4395 . T) (-4400 . T) (-4394 . T) (-4393 . T) (-4392 . T) (-4391 . T) (-4390 . T) (-4398 . T) (-4401 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4389 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4397 . T)) +((-4399 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4402 "*")))) +((|HasAttribute| |#1| (QUOTE (-4404 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4400 . T)) +((-4402 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,52 +358,52 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4401 . T)) +((-4403 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-544) (QUOTE (-903))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-544) (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-146))) (|HasCategory| (-544) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-1013))) (|HasCategory| (-544) (QUOTE (-814))) (-3936 (|HasCategory| (-544) (QUOTE (-814))) (|HasCategory| (-544) (QUOTE (-844)))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-1141))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-544) (QUOTE (-232))) (|HasCategory| (-544) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-544) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -308) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -285) (QUOTE (-544)) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-306))) (|HasCategory| (-544) (QUOTE (-543))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-544) (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (|HasCategory| (-544) (QUOTE (-144))))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4401 . T) (-4400 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1091))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-112) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-112) (QUOTE (-1091))) (|HasCategory| (-112) (LIST (QUOTE -608) (QUOTE (-857))))) +((-4403 . T) (-4402 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-112) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-857))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4395 . T) (-4394 . T)) +((-4397 . T) (-4396 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-113) -((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) +(-113 A) +((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL +((|HasCategory| |#1| (QUOTE (-845)))) +(-114) +((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL -(-114 A) -((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-844)))) -(-115 -3478 UP) +(-115 -3197 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-903))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-116 |#1|) (QUOTE (-1013))) (|HasCategory| (-116 |#1|) (QUOTE (-814))) (-3936 (|HasCategory| (-116 |#1|) (QUOTE (-814))) (|HasCategory| (-116 |#1|) (QUOTE (-844)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-116 |#1|) (QUOTE (-1141))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-543))) (|HasCategory| (-116 |#1|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-903)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-904))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (QUOTE (-1017))) (|HasCategory| (-116 |#1|) (QUOTE (-815))) (-4037 (|HasCategory| (-116 |#1|) (QUOTE (-815))) (|HasCategory| (-116 |#1|) (QUOTE (-845)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-116 |#1|) (QUOTE (-1143))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-544))) (|HasCategory| (-116 |#1|) (QUOTE (-845))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-904)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4401))) +((|HasAttribute| |#1| (QUOTE -4403))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,24 +430,24 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4400 . T) (-4401 . T)) +((-4402 . T) (-4403 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-128) +((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| (-129) (QUOTE (-845))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-4037 (-12 (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| (-129) (QUOTE (-845))) (|HasCategory| (-129) (QUOTE (-1092)))) (|HasCategory| (-129) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) +(-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL -(-129) -((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| (-128) (QUOTE (-844))) (|HasCategory| (-128) (LIST (QUOTE -308) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1091))) (|HasCategory| (-128) (LIST (QUOTE -308) (QUOTE (-128)))))) (-3936 (-12 (|HasCategory| (-128) (QUOTE (-1091))) (|HasCategory| (-128) (LIST (QUOTE -308) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-128) (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| (-128) (QUOTE (-844))) (|HasCategory| (-128) (QUOTE (-1091)))) (|HasCategory| (-128) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-128) (QUOTE (-1091))) (|HasCategory| (-128) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-128) (QUOTE (-1091))) (|HasCategory| (-128) (LIST (QUOTE -308) (QUOTE (-128)))))) (-130) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL @@ -462,14 +462,14 @@ NIL NIL (-133) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4402 "*") . T)) +(((-4404 "*") . T)) NIL -(-134 |minix| -2999 R) -((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) +(-134 |minix| -2241 S T$) +((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-135 |minix| -2999 S T$) -((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) +(-135 |minix| -2241 R) +((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL (-136) @@ -490,8 +490,8 @@ NIL NIL (-140) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4400 . T) (-4390 . T) (-4401 . T)) -((-3936 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) +((-4402 . T) (-4392 . T) (-4403 . T)) +((-4037 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-141 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -506,7 +506,7 @@ NIL NIL (-144) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4397 . T)) +((-4399 . T)) NIL (-145 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -514,9 +514,9 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4397 . T)) +((-4399 . T)) NIL -(-147 -3478 UP UPUP) +(-147 -3197 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -527,14 +527,14 @@ NIL (-149 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasAttribute| |#1| (QUOTE -4400))) +((|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasAttribute| |#1| (QUOTE -4402))) (-150 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-151 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4395 . T) (-4394 . T) (-4397 . T)) +((-4397 . T) (-4396 . T) (-4399 . T)) NIL (-152) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -556,7 +556,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-157 R -3478) +(-157 R -3197) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -569,11 +569,11 @@ NIL NIL NIL (-160) -((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) +((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL (-161) -((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) +((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL (-162) @@ -587,23 +587,23 @@ NIL (-164 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) NIL -((|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-1190))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4396)) (|HasAttribute| |#2| (QUOTE -4399)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-844)))) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-997))) (|HasCategory| |#2| (QUOTE (-1192))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-845)))) (-165 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) -((-4393 -3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4396 |has| |#1| (-6 -4396)) (-4399 |has| |#1| (-6 -4399)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 -4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4401 |has| |#1| (-6 -4401)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-166 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-167 R) -((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4393 -3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4396 |has| |#1| (-6 -4396)) (-4399 |has| |#1| (-6 -4399)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-349))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1190)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1013))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-903))))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasAttribute| |#1| (QUOTE -4396)) (|HasAttribute| |#1| (QUOTE -4399)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-349))))) -(-168 R S) +(-167 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL +(-168 R) +((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) +((-4395 -4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4401 |has| |#1| (-6 -4401)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1192)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-904))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-904))))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1053))) (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasAttribute| |#1| (QUOTE -4401)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-348))))) (-169 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -614,7 +614,7 @@ NIL NIL (-171) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-172) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -622,7 +622,7 @@ NIL NIL (-173 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4402 "*") . T) (-4393 . T) (-4398 . T) (-4392 . T) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") . T) (-4395 . T) (-4400 . T) (-4394 . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-174) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -639,7 +639,7 @@ NIL (-177 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-939 |#2|) (LIST (QUOTE -879) (|devaluate| |#1|)))) +((|HasCategory| (-947 |#2|) (LIST (QUOTE -881) (|devaluate| |#1|)))) (-178 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL @@ -657,26 +657,26 @@ NIL NIL NIL (-182) -((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) +((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") (((|Constructor|) $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-183) -((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") (((|Constructor|) $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) +(-183 S) +((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-184 S) +(-184) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL (-185) -((|constructor| (NIL "This category declares basic operations on all constructors.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) +((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL (-186) -((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) +((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-187 R -3478) +(-187 R -3197) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -784,28 +784,28 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-214 -3478 UP UPUP R) +(-214 -3197 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-215 -3478 FP) +(-215 -3197 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-216) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-544) (QUOTE (-903))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-544) (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-146))) (|HasCategory| (-544) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-1013))) (|HasCategory| (-544) (QUOTE (-814))) (-3936 (|HasCategory| (-544) (QUOTE (-814))) (|HasCategory| (-544) (QUOTE (-844)))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-1141))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-544) (QUOTE (-232))) (|HasCategory| (-544) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-544) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -308) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -285) (QUOTE (-544)) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-306))) (|HasCategory| (-544) (QUOTE (-543))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-544) (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (|HasCategory| (-544) (QUOTE (-144))))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) (-217) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-218 R -3478) -((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +(-218 R -3197) +((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-219 R) -((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-220 R1 R2) @@ -814,19 +814,19 @@ NIL NIL (-221 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-222 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4397 . T)) +((-4399 . T)) NIL -(-223 R -3478) +(-223 R -3197) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-224) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4176 . T) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-1406 . T) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-225) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -834,23 +834,23 @@ NIL NIL (-226 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4402 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4404 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-227 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-228 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4401 . T)) +((-4403 . T)) NIL (-229 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232)))) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (-230 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4397 . T)) +((-4399 . T)) NIL (-231 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -858,36 +858,36 @@ NIL NIL (-232) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4397 . T)) +((-4399 . T)) NIL (-233 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4400))) +((|HasAttribute| |#1| (QUOTE -4402))) (-234 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4401 . T)) +((-4403 . T)) NIL (-235) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-236 S -2999 R) +(-236 S -2241 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842))) (|HasAttribute| |#3| (QUOTE -4397)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-1091)))) -(-237 -2999 R) +((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843))) (|HasAttribute| |#3| (QUOTE -4399)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-1092)))) +(-237 -2241 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4394 |has| |#2| (-1042)) (-4395 |has| |#2| (-1042)) (-4397 |has| |#2| (-6 -4397)) ((-4402 "*") |has| |#2| (-171)) (-4400 . T)) +((-4396 |has| |#2| (-1044)) (-4397 |has| |#2| (-1044)) (-4399 |has| |#2| (-6 -4399)) ((-4404 "*") |has| |#2| (-171)) (-4402 . T)) NIL -(-238 -2999 R) -((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4394 |has| |#2| (-1042)) (-4395 |has| |#2| (-1042)) (-4397 |has| |#2| (-6 -4397)) ((-4402 "*") |has| |#2| (-171)) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-3936 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) -(-239 -2999 A B) +(-238 -2241 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL +(-239 -2241 R) +((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) +((-4396 |has| |#2| (-1044)) (-4397 |has| |#2| (-1044)) (-4399 |has| |#2| (-6 -4399)) ((-4404 "*") |has| |#2| (-171)) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4399)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-240) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -898,7 +898,7 @@ NIL NIL (-242) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4393 . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-243 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -906,16 +906,16 @@ NIL NIL (-244 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-245 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-246 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-903))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144))))) +(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) (-247) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -926,64 +926,64 @@ NIL NIL (-249 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4397 -3936 (-3240 (|has| |#4| (-1042)) (|has| |#4| (-232))) (-3240 (|has| |#4| (-1042)) (|has| |#4| (-893 (-1166)))) (|has| |#4| (-6 -4397)) (-3240 (|has| |#4| (-1042)) (|has| |#4| (-634 (-544))))) (-4394 |has| |#4| (-1042)) (-4395 |has| |#4| (-1042)) ((-4402 "*") |has| |#4| (-171)) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-362))) (-3936 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1042)))) (-3936 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (QUOTE (-787))) (-3936 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-842)))) (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (QUOTE (-171))) (-3936 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#4| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-720))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-842))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042)))) (|HasCategory| |#4| (QUOTE (-720)))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#4| (QUOTE (-1042)))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#4| (QUOTE (-1042))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasAttribute| |#4| (QUOTE -4397)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1042))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))))) +((-4399 -4037 (-2246 (|has| |#4| (-1044)) (|has| |#4| (-232))) (-2246 (|has| |#4| (-1044)) (|has| |#4| (-895 (-1168)))) (|has| |#4| (-6 -4399)) (-2246 (|has| |#4| (-1044)) (|has| |#4| (-635 (-562))))) (-4396 |has| |#4| (-1044)) (-4397 |has| |#4| (-1044)) ((-4404 "*") |has| |#4| (-171)) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#4| (QUOTE (-362))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1044)))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (QUOTE (-788))) (-4037 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (QUOTE (-843)))) (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (QUOTE (-171))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-721)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-788)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-843)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1044)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1044))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-721))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#4| (QUOTE (-1044))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1092)))) (-4037 (|HasAttribute| |#4| (QUOTE -4399)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))))) (-250 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4397 -3936 (-3240 (|has| |#3| (-1042)) (|has| |#3| (-232))) (-3240 (|has| |#3| (-1042)) (|has| |#3| (-893 (-1166)))) (|has| |#3| (-6 -4397)) (-3240 (|has| |#3| (-1042)) (|has| |#3| (-634 (-544))))) (-4394 |has| |#3| (-1042)) (-4395 |has| |#3| (-1042)) ((-4402 "*") |has| |#3| (-171)) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-362))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-787))) (-3936 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842)))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-171))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-720)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasAttribute| |#3| (QUOTE -4397)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) +((-4399 -4037 (-2246 (|has| |#3| (-1044)) (|has| |#3| (-232))) (-2246 (|has| |#3| (-1044)) (|has| |#3| (-895 (-1168)))) (|has| |#3| (-6 -4399)) (-2246 (|has| |#3| (-1044)) (|has| |#3| (-635 (-562))))) (-4396 |has| |#3| (-1044)) (-4397 |has| |#3| (-1044)) ((-4404 "*") |has| |#3| (-171)) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#3| (QUOTE (-362))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-788))) (-4037 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843)))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-171))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-721)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-843)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-721))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (-4037 (|HasAttribute| |#3| (QUOTE -4399)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (-251 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-232)))) (-252 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) NIL (-253 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4400 . T) (-4401 . T)) -NIL -(-254 |Ex|) -((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) -NIL +((-4402 . T) (-4403 . T)) NIL -(-255) +(-254) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-256 R |Ex|) +(-255 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-257) +(-256) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-258 R) +(-257 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL +(-258 |Ex|) +((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) +NIL +NIL (-259) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL (-260) -((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) -NIL -NIL -(-261) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-262 S) +(-261 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL +(-262) +((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) +NIL +NIL (-263 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-264 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1028,11 +1028,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-275 R -3478) +(-275 R -3197) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-276 R -3478) +(-276 R -3197) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1051,10 +1051,10 @@ NIL (-280 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091)))) +((|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092)))) (-281 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4401 . T)) +((-4403 . T)) NIL (-282 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1075,18 +1075,18 @@ NIL (-286 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4401))) +((|HasAttribute| |#1| (QUOTE -4403))) (-287 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-288 S R |Mod| -2187 -3917 |exactQuo|) +(-288 S R |Mod| -2925 -1610 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-289) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4393 . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-290) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1096,65 +1096,65 @@ NIL ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-292 S) -((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4397 -3936 (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4394 |has| |#1| (-1042)) (-4395 |has| |#1| (-1042))) -((|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042)))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720)))) (|HasCategory| |#1| (QUOTE (-471))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-297))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471)))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720)))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-171)))) -(-293 S R) +(-292 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL +(-293 S) +((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) +((-4399 -4037 (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4396 |has| |#1| (-1044)) (-4397 |has| |#1| (-1044))) +((|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-721)))) (|HasCategory| |#1| (QUOTE (-472))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-1092)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-301))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-472)))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-171)))) (-294 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857))))) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) (-295) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-296 S) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) -NIL -((|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-1042)))) -(-297) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) -NIL -NIL -(-298 -3478 S) +(-296 -3197 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-299 E -3478) +(-297 E -3197) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-300) -((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) +(-298 A B) +((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-301 A B) -((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) +(-299) +((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-302) -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) +(-300 S) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +NIL +((|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-1044)))) +(-301) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-303 R1) +(-302 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-304 R1 R2) +(-303 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL +(-304) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) +NIL +NIL (-305 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL (-306) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-307 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1164,35 +1164,35 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-309 -3478) +(-309 -3197) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL (-310) -((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) +((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL (-311) -((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) +((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL (-312 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-903))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-1013))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (-3936 (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-844)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-1141))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1240) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-543))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-903)))) (|HasCategory| (-1240 |#1| |#2| |#3| |#4|) (QUOTE (-144))))) -(-313 R) -((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4397 -3936 (-3240 (|has| |#1| (-1042)) (|has| |#1| (-634 (-544)))) (-12 (|has| |#1| (-554)) (-3936 (-3240 (|has| |#1| (-1042)) (|has| |#1| (-634 (-544)))) (|has| |#1| (-1042)) (|has| |#1| (-471)))) (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) ((-4402 "*") |has| |#1| (-554)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-554)) (-4392 |has| |#1| (-554))) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042)))) (-3936 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-1102)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1102)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3936 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-544))))) -(-314 R S) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-1017))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-815))) (-4037 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-815))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-845)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-1143))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-544))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-845))) (-12 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| $ (QUOTE (-144)))) (-4037 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (-12 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| $ (QUOTE (-144)))))) +(-313 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-315 R FE) +(-314 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-316 R -3478) +(-315 R) +((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) +((-4399 -4037 (-2246 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (-12 (|has| |#1| (-554)) (-4037 (-2246 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (|has| |#1| (-1044)) (|has| |#1| (-472)))) (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) ((-4404 "*") |has| |#1| (-554)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-554)) (-4394 |has| |#1| (-554))) +((-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-12 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1104)))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))))) (-4037 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1104)))) (-4037 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) +(-316 R -3197) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1202,8 +1202,8 @@ NIL NIL (-318 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|))))))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) (-319 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1214,8 +1214,8 @@ NIL NIL (-321 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4395 . T) (-4394 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-786)))) +((-4397 . T) (-4396 . T)) +((|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-787)))) (-322 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1223,26 +1223,26 @@ NIL (-323 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-765) (QUOTE (-786)))) +((|HasCategory| (-766) (QUOTE (-787)))) (-324 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171)))) +((|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171)))) (-325 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-326 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-327 S -3478) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-327 S -3197) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-367)))) -(-328 -3478) +(-328 -3197) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-329) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1256,121 +1256,121 @@ NIL ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-332 -3478 UP UPUP R) -((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) -NIL -NIL -(-333 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-332 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-334 S -3478 UP UPUP R) +(-333 S -3197 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-335 -3478 UP UPUP R) +(-334 -3197 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL +(-335 -3197 UP UPUP R) +((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) +NIL +NIL (-336 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-337 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-338 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-377)))) (|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-544))))) -(-339 |p| |n|) -((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| (-899 |#1|) (QUOTE (-144))) (|HasCategory| (-899 |#1|) (QUOTE (-367)))) (|HasCategory| (-899 |#1|) (QUOTE (-146))) (|HasCategory| (-899 |#1|) (QUOTE (-367))) (|HasCategory| (-899 |#1|) (QUOTE (-144)))) -(-340 S -3478 UP UPUP) +((-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-378)))) (|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) +(-339 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) +NIL +NIL +(-340 S -3197 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-362)))) -(-341 -3478 UP UPUP) +(-341 -3197 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4393 |has| (-406 |#2|) (-362)) (-4398 |has| (-406 |#2|) (-362)) (-4392 |has| (-406 |#2|) (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -NIL -(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) -((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) -NIL +((-4395 |has| (-406 |#2|) (-362)) (-4400 |has| (-406 |#2|) (-362)) (-4394 |has| (-406 |#2|) (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-343 |p| |extdeg|) +(-342 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| (-899 |#1|) (QUOTE (-144))) (|HasCategory| (-899 |#1|) (QUOTE (-367)))) (|HasCategory| (-899 |#1|) (QUOTE (-146))) (|HasCategory| (-899 |#1|) (QUOTE (-367))) (|HasCategory| (-899 |#1|) (QUOTE (-144)))) -(-344 GF |defpol|) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| (-905 |#1|) (QUOTE (-144))) (|HasCategory| (-905 |#1|) (QUOTE (-367)))) (|HasCategory| (-905 |#1|) (QUOTE (-146))) (|HasCategory| (-905 |#1|) (QUOTE (-367))) (|HasCategory| (-905 |#1|) (QUOTE (-144)))) +(-343 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-345 GF |extdeg|) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) +(-344 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-346 GF) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) +(-345 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-347 F1 GF F2) +(-346 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-348 S) +(-347 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-349) +(-348) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-350 R UP -3478) +(-349 R UP -3197) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-351 |p| |extdeg|) +(-350 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| (-899 |#1|) (QUOTE (-144))) (|HasCategory| (-899 |#1|) (QUOTE (-367)))) (|HasCategory| (-899 |#1|) (QUOTE (-146))) (|HasCategory| (-899 |#1|) (QUOTE (-367))) (|HasCategory| (-899 |#1|) (QUOTE (-144)))) -(-352 GF |uni|) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| (-905 |#1|) (QUOTE (-144))) (|HasCategory| (-905 |#1|) (QUOTE (-367)))) (|HasCategory| (-905 |#1|) (QUOTE (-146))) (|HasCategory| (-905 |#1|) (QUOTE (-367))) (|HasCategory| (-905 |#1|) (QUOTE (-144)))) +(-351 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-353 GF |extdeg|) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) +(-352 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) +(-353 |p| |n|) +((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| (-905 |#1|) (QUOTE (-144))) (|HasCategory| (-905 |#1|) (QUOTE (-367)))) (|HasCategory| (-905 |#1|) (QUOTE (-146))) (|HasCategory| (-905 |#1|) (QUOTE (-367))) (|HasCategory| (-905 |#1|) (QUOTE (-144)))) (-354 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-355 GF) -((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) +(-355 -3197 GF) +((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-356 -3478 GF) -((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) +(-356 GF) +((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-357 -3478 FP FPP) +(-357 -3197 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-358 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) (-359 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-360 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4397 . T)) +((-4399 . T)) NIL (-361 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1378,14 +1378,14 @@ NIL NIL (-362) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-363 S) -((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) +(-363 |Name| S) +((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-364 |Name| S) -((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) +(-364 S) +((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL (-365 S R) @@ -1394,7 +1394,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-554)))) (-366 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4397 |has| |#1| (-554)) (-4395 . T) (-4394 . T)) +((-4399 |has| |#1| (-554)) (-4397 . T) (-4396 . T)) NIL (-367) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1406,23 +1406,23 @@ NIL ((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-362)))) (-369 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4394 . T) (-4395 . T) (-4397 . T)) +((-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-370 A S) -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +(-370 S A R B) +((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL -((|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091)))) -(-371 S) -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4400 . T)) NIL -(-372 S A R B) -((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) +(-371 A S) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL +((|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092)))) +(-372 S) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +((-4402 . T)) NIL (-373 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4395 . T) (-4394 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4397 . T) (-4396 . T)) NIL (-374 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1431,50 +1431,50 @@ NIL (-375 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) +((|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-376 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4397 . T)) -NIL -(-377) -((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4383 . T) (-4391 . T) (-4176 . T) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4399 . T)) NIL -(-378 |Par|) +(-377 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL +(-378) +((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-4385 . T) (-4393 . T) (-1406 . T) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +NIL (-379 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL (-380 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4395 . T) (-4394 . T)) -((|HasCategory| |#1| (QUOTE (-171)))) -(-381 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4395 . T) (-4394 . T)) +((-4397 . T) (-4396 . T)) ((|HasCategory| |#1| (QUOTE (-171)))) +(-381 R |Basis|) +((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) +((-4397 . T) (-4396 . T)) +NIL (-382) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-383 R |Basis|) -((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4395 . T) (-4394 . T)) -NIL -(-384) +(-383) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL +(-384 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-4397 . T) (-4396 . T)) +((|HasCategory| |#1| (QUOTE (-171)))) (-385 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-844)))) +((|HasCategory| |#1| (QUOTE (-845)))) (-386) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-387) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1486,41 +1486,41 @@ NIL NIL (-389 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4395 . T) (-4394 . T)) +((-4397 . T) (-4396 . T)) NIL (-390) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-391 -3478 UP UPUP R) +(-391 -3197 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-392) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) +(-392 S) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-393 S) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) +(-393) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL (-394) -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) +((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL (-395) -((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) +((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL (-396) -((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) +((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-397 -3949 |returnType| -1491 |symbols|) +(-397 -3254 |returnType| -3433 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-398 -3478 UP) +(-398 -3197 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1534,129 +1534,129 @@ NIL NIL (-401) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-402 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4383)) (|HasAttribute| |#1| (QUOTE -4391))) +((|HasAttribute| |#1| (QUOTE -4385)) (|HasAttribute| |#1| (QUOTE -4393))) (-403) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4176 . T) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-1406 . T) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-404 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-1209))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1209)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-450)))) -(-405 R S) +(-404 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-406 S) -((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4387 -12 (|has| |#1| (-6 -4398)) (|has| |#1| (-450)) (|has| |#1| (-6 -4387))) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-814))) (-3936 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-844)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-543))) (-12 (|HasAttribute| |#1| (QUOTE -4387)) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-407 A B) +(-405 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-408 S R UP) +(-406 S) +((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) +((-4389 -12 (|has| |#1| (-6 -4400)) (|has| |#1| (-451)) (|has| |#1| (-6 -4389))) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-815))) (-4037 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-845)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-544))) (-12 (|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4389)) (|HasCategory| |#1| (QUOTE (-451)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-407 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-409 R UP) +(-408 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4394 . T) (-4395 . T) (-4397 . T)) +((-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-410 A S) +(-409 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) -(-411 S) +((|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) +(-410 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-412 R -3478 UP A) -((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4397 . T)) -NIL -(-413 R1 F1 U1 A1 R2 F2 U2 A2) +(-411 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-414 R -3478 UP A |ibasis|) +(-412 R -3197 UP A) +((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) +((-4399 . T)) +NIL +(-413 R -3197 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1031) (|devaluate| |#2|)))) -(-415 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1033) (|devaluate| |#2|)))) +(-414 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-416 S R) +(-415 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-362)))) -(-417 R) +(-416 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4397 |has| |#1| (-554)) (-4395 . T) (-4394 . T)) +((-4399 |has| |#1| (-554)) (-4397 . T) (-4396 . T)) NIL +(-417 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1211))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-1211)))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-451)))) (-418 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-419 S R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +(-419 R FE |x| |cen|) +((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) -(-420 R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4397 -3936 (|has| |#1| (-1042)) (|has| |#1| (-471))) (-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) ((-4402 "*") |has| |#1| (-554)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-554)) (-4392 |has| |#1| (-554))) NIL -(-421 R A S B) +(-420 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-422 R FE |x| |cen|) -((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) +(-421 R FE |Expon| UPS TRAN |x|) +((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-423 R FE |Expon| UPS TRAN |x|) -((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) +(-422 S A R B) +((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-424 A S) +(-423 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-367)))) -(-425 S) +((|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-367)))) +(-424 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4400 . T) (-4390 . T) (-4401 . T)) -NIL -(-426 S A R B) -((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) -NIL +((-4402 . T) (-4392 . T) (-4403 . T)) NIL -(-427 R -3478) +(-425 R -3197) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-428 R E) +(-426 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4387 -12 (|has| |#1| (-6 -4387)) (|has| |#2| (-6 -4387))) (-4394 . T) (-4395 . T) (-4397 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4387)) (|HasAttribute| |#2| (QUOTE -4387)))) -(-429 R -3478) +((-4389 -12 (|has| |#1| (-6 -4389)) (|has| |#2| (-6 -4389))) (-4396 . T) (-4397 . T) (-4399 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4389)) (|HasAttribute| |#2| (QUOTE -4389)))) +(-427 R -3197) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-430 R -3478) +(-428 S R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +NIL +((|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) +(-429 R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +((-4399 -4037 (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) ((-4404 "*") |has| |#1| (-554)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-554)) (-4394 |has| |#1| (-554))) +NIL +(-430 R -3197) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-431 R -3478) +(-431 R -3197) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-432 R -3478) +(-432 R -3197) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1664,16 +1664,16 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-434 R -3478 UP) +(-434 R -3197 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-48))))) (-435) -((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) +((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL (-436) -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) +((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL (-437 |f|) @@ -1681,37 +1681,37 @@ NIL NIL NIL (-438) -((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) +((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL (-439) +((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) +NIL +NIL +(-440) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-440 UP) +(-441 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-441 R UP -3478) +(-442 R UP -3197) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-442 R UP) +(-443 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-443 R) +(-444 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL ((|HasCategory| |#1| (QUOTE (-403)))) -(-444) +(-445) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-445 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) -NIL -((|HasCategory| |#1| (QUOTE (-362)))) (-446 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL @@ -1724,244 +1724,244 @@ NIL ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-449 S) +(-449 |Dom| |Expon| |VarSet| |Dpol|) +((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) +NIL +((|HasCategory| |#1| (QUOTE (-362)))) +(-450 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-450) +(-451) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-451 R |n| |ls| |gamma|) +(-452 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4397 |has| (-406 (-939 |#1|)) (-554)) (-4395 . T) (-4394 . T)) -((|HasCategory| (-406 (-939 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-406 (-939 |#1|)) (QUOTE (-554)))) -(-452 |vl| R E) +((-4399 |has| (-406 (-947 |#1|)) (-554)) (-4397 . T) (-4396 . T)) +((|HasCategory| (-406 (-947 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-406 (-947 |#1|)) (QUOTE (-554)))) +(-453 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-903))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-453 R BP) +(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) +(-454 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-454 OV E S R P) +(-455 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-455 E OV R P) +(-456 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-456 R) +(-457 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-457 R FE) +(-458 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-458 RP TP) +(-459 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-459 |vl| R IS E |ff| P) +(-460 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4395 . T) (-4394 . T)) +((-4397 . T) (-4396 . T)) NIL -(-460 E V R P Q) +(-461 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-461 R E |VarSet| P) +(-462 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4401 . T) (-4400 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857))))) -(-462 S R E) +((-4403 . T) (-4402 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) +(-463 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-463 R E) +(-464 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-464) +(-465) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-465) +(-466) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-466) +(-467) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-467 S R E) +(-468 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-468 R E) +(-469 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-469 |lv| -3478 R) +(-470 |lv| -3197 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-470 S) +(-471 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-471) +(-472) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4397 . T)) +((-4399 . T)) NIL -(-472 |Coef| |var| |cen|) +(-473 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|))))))) -(-473 |Key| |Entry| |Tbl| |dent|) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(-474 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-844))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) -(-474 R E V P) +((-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092)))) +(-475 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4401 . T) (-4400 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857))))) -(-475) +((-4403 . T) (-4402 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) +(-476) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-476) +(-477) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-477 |Key| |Entry| |hashfn|) +(-478 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857))))) -(-478) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) +(-479) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-479 |vl| R) +(-480 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-903))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-480 -2999 S) +(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) +(-481 -2241 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4394 |has| |#2| (-1042)) (-4395 |has| |#2| (-1042)) (-4397 |has| |#2| (-6 -4397)) ((-4402 "*") |has| |#2| (-171)) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-3936 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) -(-481) +((-4396 |has| |#2| (-1044)) (-4397 |has| |#2| (-1044)) (-4399 |has| |#2| (-6 -4399)) ((-4404 "*") |has| |#2| (-171)) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4399)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) +(-482) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-482 S) +(-483 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-483 -3478 UP UPUP R) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-484 -3197 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-484 BP) +(-485 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-485) +(-486) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-544) (QUOTE (-903))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-544) (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-146))) (|HasCategory| (-544) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-1013))) (|HasCategory| (-544) (QUOTE (-814))) (-3936 (|HasCategory| (-544) (QUOTE (-814))) (|HasCategory| (-544) (QUOTE (-844)))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-1141))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-544) (QUOTE (-232))) (|HasCategory| (-544) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-544) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -308) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -285) (QUOTE (-544)) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-306))) (|HasCategory| (-544) (QUOTE (-543))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-544) (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (|HasCategory| (-544) (QUOTE (-144))))) -(-486 A S) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) +(-487 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) -(-487 S) +((|HasAttribute| |#1| (QUOTE -4402)) (|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) +(-488 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-488 S) +(-489 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-489) +(-490) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-490 S) +(-491 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-491) +(-492) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-492 -3478 UP |AlExt| |AlPol|) +(-493 -3197 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-493) +(-494) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| $ (QUOTE (-1042))) (|HasCategory| $ (LIST (QUOTE -1031) (QUOTE (-544))))) -(-494 S |mn|) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) +(-495 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-495 R |mnRow| |mnCol|) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-496 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-496 K R UP) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-497 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-497 R UP -3478) +(-498 R UP -3197) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-498 |mn|) +(-499 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4401 . T) (-4400 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1091))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-112) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-112) (QUOTE (-1091))) (|HasCategory| (-112) (LIST (QUOTE -608) (QUOTE (-857))))) -(-499 K R UP L) +((-4403 . T) (-4402 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-112) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-857))))) +(-500 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-500) +(-501) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-501 R Q A B) +(-502 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-502 -3478 |Expon| |VarSet| |DPoly|) +(-503 -3197 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-1166))))) -(-503 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-1168))))) +(-504 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-504) +(-505) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline"))) NIL NIL -(-505 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) -NIL -NIL (-506 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL (-507 A S) -((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL (-508 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) +((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL (-509 A S) @@ -1972,141 +1972,141 @@ NIL ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-511 S A B) +(-511 A S) +((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) +NIL +NIL +(-512 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-512 A B) +(-513 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-513 S E |un|) +(-514 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-786)))) -(-514 S |mn|) +((|HasCategory| |#2| (QUOTE (-787)))) +(-515 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-515) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-516) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-516 |p| |n|) +(-517 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (|HasCategory| (-578 |#1|) (QUOTE (-144))) (|HasCategory| (-578 |#1|) (QUOTE (-367)))) (|HasCategory| (-578 |#1|) (QUOTE (-146))) (|HasCategory| (-578 |#1|) (QUOTE (-367))) (|HasCategory| (-578 |#1|) (QUOTE (-144)))) -(-517 R |mnRow| |mnCol| |Row| |Col|) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| (-579 |#1|) (QUOTE (-144))) (|HasCategory| (-579 |#1|) (QUOTE (-367)))) (|HasCategory| (-579 |#1|) (QUOTE (-146))) (|HasCategory| (-579 |#1|) (QUOTE (-367))) (|HasCategory| (-579 |#1|) (QUOTE (-144)))) +(-518 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-518 S |mn|) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-519 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-519 R |Row| |Col| M) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-520 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4401))) -(-520 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4403))) +(-521 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4401))) -(-521 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4403))) +(-522 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4402 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-522) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4404 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-523) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-523) +(-524) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-524 S) +(-525 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-525) +(-526) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-526 GF) +(-527 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-527) +(-528) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-528 R) +(-529 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-529 |Varset|) +(-530 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-530 K -3478 |Par|) +(-531 K -3197 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-531) -NIL -NIL -NIL (-532) -((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) +NIL NIL NIL (-533) -((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL (-534 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-535 |Coef| UTS) +(-535) +((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +NIL +NIL +(-536 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-536 K -3478 |Par|) +(-537 K -3197 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-537 R BP |pMod| |nextMod|) +(-538 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-538 OV E R P) +(-539 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-539 K UP |Coef| UTS) +(-540 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-540 |Coef| UTS) +(-541 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-541 R UP) -((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) +(-542 R UP) +((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-542 S) +(-543 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-543) -((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4398 . T) (-4399 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -NIL (-544) -((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4382 . T) (-4388 . T) (-4392 . T) (-4387 . T) (-4398 . T) (-4399 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) +((-4400 . T) (-4401 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-545) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2122,13 +2122,13 @@ NIL NIL (-548 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857))))) -(-549 R -3478) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) +(-549 R -3197) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-550 R0 -3478 UP UPUP R) +(-550 R0 -3197 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2138,7 +2138,7 @@ NIL NIL (-552 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4176 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-1406 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-553 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2146,10 +2146,10 @@ NIL NIL (-554) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-555 R -3478) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) +(-555 R -3197) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL (-556 I) @@ -2157,389 +2157,389 @@ NIL NIL NIL (-557) -((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) +((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-558 R -3478 L) -((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) +(-558 R -3197 L) +((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|)))) +((|HasCategory| |#3| (LIST (QUOTE -650) (|devaluate| |#2|)))) (-559) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-560 -3478 UP UPUP R) +(-560 -3197 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-561 -3478 UP) +(-561 -3197 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-562) +((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) +((-4384 . T) (-4390 . T) (-4394 . T) (-4389 . T) (-4400 . T) (-4401 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +NIL +(-563) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-563 R -3478 L) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) +(-564 R -3197 L) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|)))) -(-564 R -3478) +((|HasCategory| |#3| (LIST (QUOTE -650) (|devaluate| |#2|)))) +(-565 R -3197) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1129)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-625))))) -(-565 -3478 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-625))))) +(-566 -3197 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-566 S) +(-567 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-567 -3478) +(-568 -3197) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-568 R) +(-569 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4176 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-1406 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-569) +(-570) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-570 R -3478) +(-571 R -3197) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-625))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-554)))) -(-571 -3478 UP) -((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) +((-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-625))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-554)))) +(-572 -3197 UP) +((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-572 R -3478) +(-573 R -3197) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-573) +(-574) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-574) +(-575) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-575) +(-576) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input."))) NIL NIL -(-576) +(-577) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-577 |p| |unBalanced?|) +(-578 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-578 |p|) +(-579 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) ((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367)))) -(-579) +(-580) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-580 -3478) -((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4395 . T) (-4394 . T)) -((|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-1166))))) -(-581 E -3478) -((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) +(-581 R -3197) +((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-582 R -3478) -((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) +(-582 E -3197) +((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-583 I) +(-583 -3197) +((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) +((-4397 . T) (-4396 . T)) +((|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-1168))))) +(-584 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-584 GF) +(-585 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-585 R) +(-586 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-146)))) -(-586) +(-587) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-587 R E V P TS) +(-588 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-588) +(-589) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-589 |mn|) +(-590 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-3936 (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1091)))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) -(-590 E V R P) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-4037 (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092)))) (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) +(-591 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-591 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))) (|HasCategory| (-544) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544)))))) (-592 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))) (|HasCategory| (-562) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562)))))) +(-593 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4395 |has| |#1| (-554)) (-4394 |has| |#1| (-554)) ((-4402 "*") |has| |#1| (-554)) (-4393 |has| |#1| (-554)) (-4397 . T)) +((-4397 |has| |#1| (-554)) (-4396 |has| |#1| (-554)) ((-4404 "*") |has| |#1| (-554)) (-4395 |has| |#1| (-554)) (-4399 . T)) ((|HasCategory| |#1| (QUOTE (-554)))) -(-593 A B) +(-594 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-594 A B C) +(-595 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-595 R -3478 FG) +(-596 R -3197 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-596 S) +(-597 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-597 R |mn|) +(-598 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-598 S |Index| |Entry|) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-599 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-844))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#3| (QUOTE (-1091)))) -(-599 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-845))) (|HasAttribute| |#1| (QUOTE -4402)) (|HasCategory| |#3| (QUOTE (-1092)))) +(-600 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-600) +(-601) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-601) +(-602) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-602 R A) +(-603 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4397 -3936 (-3240 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))) (-4395 . T) (-4394 . T)) -((-3936 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) -(-603 |Entry|) +((-4399 -4037 (-2246 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))) (-4397 . T) (-4396 . T)) +((-4037 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) +(-604 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| (-1148) (QUOTE (-844))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -608) (QUOTE (-857))))) -(-604 S |Key| |Entry|) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| (-1150) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -609) (QUOTE (-857))))) +(-605 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-605 |Key| |Entry|) +(-606 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4401 . T)) +((-4403 . T)) NIL -(-606 S) -((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) -NIL -((|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-607 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL (-608 S) +((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) +NIL +((|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) +(-609 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-609 S) +(-610 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-610 -3478 UP) +(-611 -3197 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-611 S) +(-612 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-612) +(-613) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value"))) NIL NIL -(-613 S) +(-614 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-614 A R S) -((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-842)))) (-615 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL (-616 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4397 . T)) +((-4399 . T)) NIL -(-617 R -3478) +(-617 A R S) +((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-843)))) +(-618 R -3197) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-618 R UP) +(-619 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4395 . T) (-4394 . T) ((-4402 "*") . T) (-4393 . T) (-4397 . T)) -((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) -(-619 R E V P TS ST) +((-4397 . T) (-4396 . T) ((-4404 "*") . T) (-4395 . T) (-4399 . T)) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) +(-620 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-620 OV E Z P) +(-621 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-621) +(-622) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-622 |VarSet| R |Order|) +(-623 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4397 . T)) +((-4399 . T)) NIL -(-623 R |ls|) +(-624 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-624 R -3478) -((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) -NIL -NIL (-625) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-626 |lv| -3478) +(-626 R -3197) +((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) +NIL +NIL +(-627 |lv| -3197) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-627) +(-628) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2226) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -308) (QUOTE (-51))))) (|HasCategory| (-1148) (QUOTE (-844))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (QUOTE (-1091)))) -(-628 R A) -((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4397 -3936 (-3240 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))) (-4395 . T) (-4394 . T)) -((-3936 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) +((-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2694) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1150) (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (QUOTE (-1092)))) (-629 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-362)))) (-630 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4395 . T) (-4394 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4397 . T) (-4396 . T)) NIL -(-631 R FE) -((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) +(-631 R A) +((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) +((-4399 -4037 (-2246 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))) (-4397 . T) (-4396 . T)) +((-4037 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) +(-632 R FE) +((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-632 R) -((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) +(-633 R) +((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-633 S R) +(-634 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3726 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362)))) -(-634 R) +((-2236 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362)))) +(-635 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4397 . T)) +((-4399 . T)) NIL -(-635 S) -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-636 A B) -((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) +((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL (-637 A B) -((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) +((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL (-638 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-639 T$) +(-639 S) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-640 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-640 S) +(-641 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-641 R) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-642 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-642 S E |un|) +(-643 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-643 A S) +(-644 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4401))) -(-644 S) +((|HasAttribute| |#1| (QUOTE -4403))) +(-645 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-645 M R S) -((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4395 . T) (-4394 . T)) -((|HasCategory| |#1| (QUOTE (-785)))) -(-646 R -3478 L) +(-646 R -3197 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-647 A -2793) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362)))) -(-648 A) +(-647 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362)))) -(-649 A M) +((-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) +(-648 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362)))) -(-650 S A) +((-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) +(-649 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-362)))) -(-651 A) +(-650 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4394 . T) (-4395 . T) (-4397 . T)) +((-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-652 -3478 UP) +(-651 -3197 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) +(-652 A -4330) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) +((-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) (-653 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL @@ -2552,645 +2552,645 @@ NIL ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-656 R) +(-656 M R S) +((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4397 . T) (-4396 . T)) +((|HasCategory| |#1| (QUOTE (-786)))) +(-657 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-657 |VarSet| R) +(-658 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4395 . T) (-4394 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4397 . T) (-4396 . T)) ((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-171)))) -(-658 A S) +(-659 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-659 S) +(-660 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-660 -3478 |Row| |Col| M) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-661 -3197) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-661 -3478) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-662 -3197 |Row| |Col| M) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-662 R E OV P) +(-663 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-663 |n| R) +(-664 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4397 . T) (-4400 . T) (-4394 . T) (-4395 . T)) -((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4402 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554))) (-3936 (|HasAttribute| |#2| (QUOTE (-4402 #1#))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) -(-664) +((-4399 . T) (-4402 . T) (-4396 . T) (-4397 . T)) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554))) (-4037 (|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) +(-665) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-665 |VarSet|) +(-666 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-666 A S) +(-667 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-667 S) +(-668 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-668 R) +(-669 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-669) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-670) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-670 |VarSet|) +(-671 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-671 A) +(-672 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-672 A C) +(-673 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-673 A B C) +(-674 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-674) +(-675) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-675 A) +(-676 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-676 A C) +(-677 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-677 A B C) +(-678 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-678 S R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +(-679 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#2| (QUOTE (-4402 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554)))) -(-679 R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4400 . T) (-4401 . T)) NIL -(-680 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) -((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) +(-680 S R |Row| |Col|) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL +((|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554)))) +(-681 R |Row| |Col|) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +((-4402 . T) (-4403 . T)) NIL -(-681 R |Row| |Col| M) +(-682 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL ((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554)))) -(-682 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4400 . T) (-4401 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4402 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-683 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4402 . T) (-4403 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4404 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-684 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-684 T$) +(-685 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-685 S -3478 FLAF FLAS) +(-686 S -3197 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-686 R Q) +(-687 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-687) +(-688) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4393 . T) (-4398 |has| (-692) (-362)) (-4392 |has| (-692) (-362)) (-4399 |has| (-692) (-6 -4399)) (-4396 |has| (-692) (-6 -4396)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-692) (QUOTE (-146))) (|HasCategory| (-692) (QUOTE (-144))) (|HasCategory| (-692) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-692) (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| (-692) (QUOTE (-367))) (|HasCategory| (-692) (QUOTE (-362))) (-3936 (|HasCategory| (-692) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-692) (QUOTE (-362)))) (|HasCategory| (-692) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-692) (QUOTE (-232))) (-3936 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-349)))) (|HasCategory| (-692) (QUOTE (-349))) (|HasCategory| (-692) (LIST (QUOTE -285) (QUOTE (-692)) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -308) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-692)))) (|HasCategory| (-692) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-692) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-692) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-692) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (-3936 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-349)))) (|HasCategory| (-692) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-692) (QUOTE (-1013))) (|HasCategory| (-692) (QUOTE (-1190))) (-12 (|HasCategory| (-692) (QUOTE (-995))) (|HasCategory| (-692) (QUOTE (-1190)))) (-3936 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (-12 (|HasCategory| (-692) (QUOTE (-349))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-362)))) (-3936 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (-12 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (QUOTE (-903)))) (-12 (|HasCategory| (-692) (QUOTE (-349))) (|HasCategory| (-692) (QUOTE (-903))))) (|HasCategory| (-692) (QUOTE (-543))) (-12 (|HasCategory| (-692) (QUOTE (-1051))) (|HasCategory| (-692) (QUOTE (-1190)))) (|HasCategory| (-692) (QUOTE (-1051))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903))) (-3936 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-362)))) (-3936 (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-554)))) (-12 (|HasCategory| (-692) (QUOTE (-232))) (|HasCategory| (-692) (QUOTE (-362)))) (-12 (|HasCategory| (-692) (QUOTE (-362))) (|HasCategory| (-692) (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| (-692) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-692) (QUOTE (-844))) (|HasCategory| (-692) (QUOTE (-554))) (|HasAttribute| (-692) (QUOTE -4399)) (|HasAttribute| (-692) (QUOTE -4396)) (-12 (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-144)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-692) (QUOTE (-306))) (|HasCategory| (-692) (QUOTE (-903)))) (|HasCategory| (-692) (QUOTE (-349))))) -(-688 S) +((-4395 . T) (-4400 |has| (-693) (-362)) (-4394 |has| (-693) (-362)) (-4401 |has| (-693) (-6 -4401)) (-4398 |has| (-693) (-6 -4398)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-693) (QUOTE (-146))) (|HasCategory| (-693) (QUOTE (-144))) (|HasCategory| (-693) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-693) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-693) (QUOTE (-367))) (|HasCategory| (-693) (QUOTE (-362))) (-4037 (|HasCategory| (-693) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-693) (QUOTE (-362)))) (|HasCategory| (-693) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-693) (QUOTE (-232))) (-4037 (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-348)))) (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (LIST (QUOTE -285) (QUOTE (-693)) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -308) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-693) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-693) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-693) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (-4037 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-348)))) (|HasCategory| (-693) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-693) (QUOTE (-1017))) (|HasCategory| (-693) (QUOTE (-1192))) (-12 (|HasCategory| (-693) (QUOTE (-997))) (|HasCategory| (-693) (QUOTE (-1192)))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-362))) (-12 (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (QUOTE (-904))))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (-12 (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-904)))) (-12 (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (QUOTE (-904))))) (|HasCategory| (-693) (QUOTE (-544))) (-12 (|HasCategory| (-693) (QUOTE (-1053))) (|HasCategory| (-693) (QUOTE (-1192)))) (|HasCategory| (-693) (QUOTE (-1053))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-554)))) (-12 (|HasCategory| (-693) (QUOTE (-232))) (|HasCategory| (-693) (QUOTE (-362)))) (-12 (|HasCategory| (-693) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-693) (QUOTE (-362)))) (|HasCategory| (-693) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-693) (QUOTE (-845))) (|HasCategory| (-693) (QUOTE (-554))) (|HasAttribute| (-693) (QUOTE -4401)) (|HasAttribute| (-693) (QUOTE -4398)) (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-144)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-348))))) +(-689 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4401 . T)) +((-4403 . T)) NIL -(-689 U) +(-690 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-690) -((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) +(-691) +((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-691 OV E -3478 PG) +(-692 OV E -3197 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-692) +(-693) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4176 . T) (-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-1406 . T) (-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-693 R) +(-694 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-694) +(-695) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4399 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4401 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-695 S D1 D2 I) +(-696 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-696 S) +(-697 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set."))) NIL NIL -(-697 S) +(-698 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-698 S) +(-699 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-699 S T$) +(-700 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-700 S -3051 I) +(-701 S -3114 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-701 E OV R P) +(-702 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-702 R) +(-703 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4394 . T) (-4395 . T) (-4397 . T)) +((-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-703 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-704 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-704) +(-705) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-705 R |Mod| -2187 -3917 |exactQuo|) +(-706 R |Mod| -2925 -1610 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-706 R |Rep|) +(-707 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4396 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-707 IS E |ff|) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-708 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-708 R M) +(-709 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T)) +((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146)))) -(-709 R |Mod| -2187 -3917 |exactQuo|) +(-710 R |Mod| -2925 -1610 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4397 . T)) +((-4399 . T)) NIL -(-710 S R) +(-711 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-711 R) +(-712 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4395 . T) (-4394 . T)) +((-4397 . T) (-4396 . T)) NIL -(-712 -3478) +(-713 -3197) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4397 . T)) +((-4399 . T)) NIL -(-713 S) +(-714 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-714) +(-715) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-715 S) +(-716 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-716) +(-717) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-717 S R UP) +(-718 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367)))) -(-718 R UP) +((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367)))) +(-719 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4393 |has| |#1| (-362)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 |has| |#1| (-362)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-719 S) +(-720 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-720) +(-721) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-721 -3478 UP) +(-722 -3197 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-722 |VarSet| E1 E2 R S PR PS) +(-723 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-723 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-724 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-724 E OV R PPR) +(-725 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-725 |vl| R) +(-726 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-903))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-858 |#1|) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-726 E OV R PRF) +(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) +(-727 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-727 E OV R P) +(-728 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-728 R S M) +(-729 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-729 R M) +(-730 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-844)))) -(-730 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4400 . T) (-4390 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) +((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-845)))) (-731 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4390 . T) (-4401 . T)) +((-4392 . T) (-4403 . T)) NIL -(-732) +(-732 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-4402 . T) (-4392 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-733) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-733 S) +(-734 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-734 |Coef| |Var|) +(-735 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4395 . T) (-4394 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4397 . T) (-4396 . T) (-4399 . T)) NIL -(-735 OV E R P) +(-736 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-736 E OV R P) +(-737 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-737 S R) +(-738 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-738 R) +(-739 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4395 . T) (-4394 . T)) +((-4397 . T) (-4396 . T)) NIL -(-739) +(-740) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-740) +(-741) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-741) +(-742) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-742) +(-743) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-743) +(-744) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-744) +(-745) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-745) +(-746) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-746) +(-747) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-747) +(-748) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-748) +(-749) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-749) +(-750) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-750) +(-751) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-751) +(-752) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-752) +(-753) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-753) +(-754) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-754 S) +(-755 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-755) +(-756) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-756 S) +(-757 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-757) +(-758) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-758 |Par|) +(-759 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-759 -3478) +(-760 -3197) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-760 P -3478) +(-761 P -3197) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-761 T$) +(-762 T$) NIL NIL NIL -(-762 UP -3478) +(-763 UP -3197) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-763) +(-764) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-764 R) +(-765 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-765) +(-766) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4402 "*") . T)) +(((-4404 "*") . T)) NIL -(-766 R -3478) +(-767 R -3197) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-767) -((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) -NIL -NIL (-768 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-769 R |PolR| E |PolE|) +(-769) +((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) +NIL +NIL +(-770 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-770 R E V P TS) +(-771 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-771 -3478 |ExtF| |SUEx| |ExtP| |n|) +(-772 -3197 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-772 BP E OV R P) +(-773 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-773 |Par|) +(-774 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-774 R |VarSet|) +(-775 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))))) (-3936 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-3726 (|HasCategory| |#1| (QUOTE (-543)))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-544))))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1166)))) (-3726 (|HasCategory| |#1| (LIST (QUOTE -984) (QUOTE (-544))))))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-775 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4396 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2236 (|HasCategory| |#1| (QUOTE (-544)))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562))))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2236 (|HasCategory| |#1| (LIST (QUOTE -987) (QUOTE (-562))))))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-776 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL (-777 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-778 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) -(-778 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) +(-779 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-779 S) +(-780 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-171)))) -(-780) +((-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-171)))) +(-781) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-781) +(-782) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-782) +(-783) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-783) +(-784) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-784 |Curve|) +(-785 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-785) +(-786) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-786) +(-787) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-787) +(-788) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-788) +(-789) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-789 S R) -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -NIL -((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-367)))) -(-790 R) -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4394 . T) (-4395 . T) (-4397 . T)) -NIL -(-791) +(-790) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL +(-791 S R) +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) +NIL +((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-367)))) (-792 R) -((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-3936 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) -(-793 -3936 R OS S) +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) +((-4396 . T) (-4397 . T) (-4399 . T)) +NIL +(-793 -4037 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-794) +(-794 R) +((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) +((-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-4037 (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) +(-795) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-795 R -3478 L) +(-796 R -3197 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-796 R -3478) -((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) +(-797 R -3197) +((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-797) +(-798) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-798 R -3478) +(-799 R -3197) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-799) +(-800) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-800 -3478 UP UPUP R) +(-801 -3197 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-801 -3478 UP L LQ) +(-802 -3197 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-802) +(-803) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-803 -3478 UP L LQ) +(-804 -3197 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-804 -3478 UP) -((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) +(-805 -3197 UP) +((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-805 -3478 L UP A LO) +(-806 -3197 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-806 -3478 UP) +(-807 -3197 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-807 -3478 LO) +(-808 -3197 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-808 -3478 LODO) +(-809 -3197 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-809 -2999 S |f|) +(-810 -2241 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4394 |has| |#2| (-1042)) (-4395 |has| |#2| (-1042)) (-4397 |has| |#2| (-6 -4397)) ((-4402 "*") |has| |#2| (-171)) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-787))) (-3936 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1042)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-1042)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasAttribute| |#2| (QUOTE -4397)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) -(-810 R) +((-4396 |has| |#2| (-1044)) (-4397 |has| |#2| (-1044)) (-4399 |has| |#2| (-6 -4399)) ((-4404 "*") |has| |#2| (-171)) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4399)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) +(-811 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-812 (-1166)) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-811 |Kernels| R |var|) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-812 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4402 "*") |has| |#2| (-362)) (-4393 |has| |#2| (-362)) (-4398 |has| |#2| (-362)) (-4392 |has| |#2| (-362)) (-4397 . T) (-4395 . T) (-4394 . T)) +(((-4404 "*") |has| |#2| (-362)) (-4395 |has| |#2| (-362)) (-4400 |has| |#2| (-362)) (-4394 |has| |#2| (-362)) (-4399 . T) (-4397 . T) (-4396 . T)) ((|HasCategory| |#2| (QUOTE (-362)))) -(-812 S) +(-813 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-813 S) +(-814 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-814) -((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -NIL (-815) -((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) -NIL +((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL (-816) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) @@ -3205,11 +3205,11 @@ NIL NIL NIL (-819) -((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) +((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL (-820) -((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) +((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL (-821 R) @@ -3218,32 +3218,32 @@ NIL NIL (-822 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4394 . T) (-4395 . T) (-4397 . T)) +((-4396 . T) (-4397 . T) (-4399 . T)) ((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-232)))) (-823) +((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) +NIL +NIL +(-824) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-824 S) +(-825 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4400 . T) (-4390 . T) (-4401 . T)) +((-4402 . T) (-4392 . T) (-4403 . T)) NIL -(-825) +(-826) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-826 R) -((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4397 |has| |#1| (-842))) -((|HasCategory| |#1| (QUOTE (-842))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21)))) (-827 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL (-828 R) -((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146)))) +((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) +((-4399 |has| |#1| (-843))) +((|HasCategory| |#1| (QUOTE (-843))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-21)))) (-829 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'."))) NIL @@ -3252,96 +3252,96 @@ NIL ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'."))) NIL NIL -(-831) +(-831 R) +((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) +((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146)))) +(-832) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-832) +(-833) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,{}sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-833) +(-834) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-834) +(-835) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-835) +(-836) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-836 R) -((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4397 |has| |#1| (-842))) -((|HasCategory| |#1| (QUOTE (-842))) (-3936 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21)))) (-837 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-838) +(-838 R) +((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) +((-4399 |has| |#1| (-843))) +((|HasCategory| |#1| (QUOTE (-843))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-21)))) +(-839) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-839 -2999 S) +(-840 -2241 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-840) +(-841) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-841 S) +(-842 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-842) +(-843) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4397 . T)) +((-4399 . T)) NIL -(-843 S) +(-844 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-844) +(-845) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-845 S R) +(-846 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171)))) -(-846 R) +((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171)))) +(-847 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4394 . T) (-4395 . T) (-4397 . T)) +((-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-847 R C) +(-848 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) -(-848 R |sigma| -3645) +(-849 R |sigma| -3756) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362)))) -(-849 |x| R |sigma| -3645) +((-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) +(-850 |x| R |sigma| -3756) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-362)))) -(-850 R) +((-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-362)))) +(-851 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) -(-851) -((|constructor| (NIL "Semigroups with compatible ordering."))) -NIL -NIL +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-852) -((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) +((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL (-853) -((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) +((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL (-854 S) @@ -3360,1705 +3360,1713 @@ NIL ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-858 |VariableList|) +(-858) +((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) +NIL +NIL +(-859 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-859 R |vl| |wl| |wtlevel|) +(-860) +((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) +NIL +NIL +(-861 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T)) +((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) -(-860 R PS UP) +(-862 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-861 R |x| |pt|) +(-863 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-862 |p|) -((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -NIL -(-863 |p|) +(-864 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-864 |p|) +(-865 |p|) +((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +NIL +(-866 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-862 |#1|) (QUOTE (-903))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-862 |#1|) (QUOTE (-144))) (|HasCategory| (-862 |#1|) (QUOTE (-146))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-862 |#1|) (QUOTE (-1013))) (|HasCategory| (-862 |#1|) (QUOTE (-814))) (-3936 (|HasCategory| (-862 |#1|) (QUOTE (-814))) (|HasCategory| (-862 |#1|) (QUOTE (-844)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-862 |#1|) (QUOTE (-1141))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| (-862 |#1|) (QUOTE (-232))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -862) (|devaluate| |#1|)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -862) (|devaluate| |#1|)))) (|HasCategory| (-862 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -862) (|devaluate| |#1|)) (LIST (QUOTE -862) (|devaluate| |#1|)))) (|HasCategory| (-862 |#1|) (QUOTE (-306))) (|HasCategory| (-862 |#1|) (QUOTE (-543))) (|HasCategory| (-862 |#1|) (QUOTE (-844))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-862 |#1|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-862 |#1|) (QUOTE (-903)))) (|HasCategory| (-862 |#1|) (QUOTE (-144))))) -(-865 |p| PADIC) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-865 |#1|) (QUOTE (-904))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-865 |#1|) (QUOTE (-144))) (|HasCategory| (-865 |#1|) (QUOTE (-146))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-865 |#1|) (QUOTE (-1017))) (|HasCategory| (-865 |#1|) (QUOTE (-815))) (-4037 (|HasCategory| (-865 |#1|) (QUOTE (-815))) (|HasCategory| (-865 |#1|) (QUOTE (-845)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-865 |#1|) (QUOTE (-1143))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-865 |#1|) (QUOTE (-232))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -865) (|devaluate| |#1|)) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (QUOTE (-306))) (|HasCategory| (-865 |#1|) (QUOTE (-544))) (|HasCategory| (-865 |#1|) (QUOTE (-845))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-865 |#1|) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-865 |#1|) (QUOTE (-904)))) (|HasCategory| (-865 |#1|) (QUOTE (-144))))) +(-867 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-814))) (-3936 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1141))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-844))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-866 S T$) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-815))) (-4037 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-845))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) +(-868 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1091)))) (-3936 (-12 (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))))) -(-867) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))))) +(-869) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-868) +(-870) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-869 CF1 CF2) +(-871 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-870 |ComponentFunction|) +(-872 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-871 CF1 CF2) +(-873 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-872 |ComponentFunction|) +(-874 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-873) +(-875) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-874 CF1 CF2) +(-876 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-875 |ComponentFunction|) +(-877 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-876) +(-878) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-877 R) +(-879 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-878 R S L) +(-880 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-879 S) +(-881 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-880 |Base| |Subject| |Pat|) +(-882 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3726 (|HasCategory| |#2| (QUOTE (-1042)))) (-3726 (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (-12 (|HasCategory| |#2| (QUOTE (-1042))) (-3726 (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) -(-881 R S) -((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) -NIL -NIL -(-882 R A B) +((-12 (-2236 (|HasCategory| |#2| (QUOTE (-1044)))) (-2236 (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (-2236 (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) +(-883 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-883 R) -((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) +(-884 R S) +((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-884 R -3051) +(-885 R -3114) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-885 R S) +(-886 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-886 |VarSet|) +(-887 R) +((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) +NIL +NIL +(-888 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-887 UP R) +(-889 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-888) +(-890) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-889 UP -3478) +(-891 UP -3197) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-890) +(-892) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-891) +(-893) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-892 A S) +(-894 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-893 S) +(-895 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4397 . T)) +((-4399 . T)) NIL -(-894 S) +(-896 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-895 S) -((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4397 . T)) -((-3936 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-844)))) -(-896 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-897 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-897 S) +(-898 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4397 . T)) +((-4399 . T)) NIL -(-898 S) +(-899 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-899 |p|) -((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367)))) -(-900 R E |VarSet| S) +(-900 S) +((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) +((-4399 . T)) +((-4037 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-845)))) +(-901 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-901 R S) +(-902 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-902 S) +(-903 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-144)))) -(-903) +(-904) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-904 R0 -3478 UP UPUP R) +(-905 |p|) +((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367)))) +(-906 R0 -3197 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-905 UP UPUP R) +(-907 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-906 UP UPUP) +(-908 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-907 R) +(-909 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-908 R) +(-910 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-909 E OV R P) +(-911 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-910) +(-912) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-911 -3478) +(-913 -3197) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-912) -((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4402 "*") . T)) -NIL -(-913 R) +(-914 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-914) +(-915) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -NIL -(-915 |xx| -3478) -((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL +(-916) +((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) +(((-4404 "*") . T)) NIL -(-916 -3478 P) +(-917 -3197 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-917 R |Var| |Expon| GR) -((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) +(-918 |xx| -3197) +((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-918) -((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) +(-919 R |Var| |Expon| GR) +((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-919 S) +(-920 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-920) +(-921) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-921) -((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) +(-922) +((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-922) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +(-923) +((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-923 R -3478) +(-924 R -3197) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-924 S A B) +(-925) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +NIL +NIL +(-926 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-925 S R -3478) +(-927 S R -3197) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-926 I) +(-928 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-927 S E) +(-929 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-928 S R L) +(-930 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-929 S E V R P) +(-931 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -879) (|devaluate| |#1|)))) -(-930 -3051) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) +((|HasCategory| |#3| (LIST (QUOTE -881) (|devaluate| |#1|)))) +(-932 R -3197 -3114) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-931 R -3478 -3051) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) +(-933 -3114) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-932 S R Q) +(-934 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-933 S) +(-935 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-934 S R P) +(-936 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-935) +(-937) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-936 R) +(-938 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-937 |lv| R) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-939 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-938 |TheField| |ThePols|) +(-940 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-842)))) -(-939 R) -((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1166) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1166) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1166) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1166) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1166) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-940 R S) +((|HasCategory| |#1| (QUOTE (-843)))) +(-941 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-941 |x| R) +(-942 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-942 S R E |VarSet|) +(-943 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-903))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-844)))) -(-943 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-904))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-845)))) +(-944 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) NIL -(-944 E V R P -3478) +(-945 E V R P -3197) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-945 E |Vars| R P S) +(-946 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-946 E V R P -3478) +(-947 R) +((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-948 E V R P -3197) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-450)))) -(-947) +((|HasCategory| |#3| (QUOTE (-451)))) +(-949) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-948) +(-950) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-949 R E) -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4398))) -(-950 R L) +(-951 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-951 S) -((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-952 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-953) +(-953 S) +((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-954) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-954 -3478) +(-955 -3197) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-955 I) +(-956 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-956) +(-957) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-957 A B) +(-958 R E) +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4400))) +(-959 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4397 -12 (|has| |#2| (-471)) (|has| |#1| (-471)))) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-844))))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720))))) (-12 (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-720)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-844))))) -(-958) +((-4399 -12 (|has| |#2| (-472)) (|has| |#1| (-472)))) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-845))))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-472)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-845))))) +(-960) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-959 T$) +(-961 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL NIL -(-960) +(-962) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-961 S) +(-963 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4400 . T) (-4401 . T)) +((-4402 . T) (-4403 . T)) NIL -(-962 R |polR|) +(-964 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-450)))) -(-963) +((|HasCategory| |#1| (QUOTE (-451)))) +(-965) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-964) +(-966) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-965 S |Coef| |Expon| |Var|) +(-967 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-966 |Coef| |Expon| |Var|) +(-968 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-967) +(-969) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-968 S R E |VarSet| P) +(-970 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-554)))) -(-969 R E |VarSet| P) +(-971 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4400 . T)) +((-4402 . T)) NIL -(-970 R E V P) +(-972 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-450)))) -(-971 K) +((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-451)))) +(-973 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-972 |VarSet| E RC P) +(-974 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-973 R) +(-975 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-974 R1 R2) +(-976 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-975 R) +(-977 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-976 K) +(-978 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-977 R E OV PPR) +(-979 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-978 K R UP -3478) +(-980 K R UP -3197) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-979 R |Var| |Expon| |Dpoly|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) -NIL -((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306))))) -(-980 |vl| |nv|) +(-981 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-981 R E V P TS) +(-982 R |Var| |Expon| |Dpoly|) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) +NIL +((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306))))) +(-983 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-982) +(-984) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-983 A S) -((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -NIL -((|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1141)))) -(-984 S) -((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -NIL (-985 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-986 |n| K) +(-986 A S) +((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) +NIL +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-1143)))) +(-987 S) +((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +NIL +(-988 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-987) +(-989) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-988 S) +(-990 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4400 . T) (-4401 . T)) +((-4402 . T) (-4403 . T)) NIL -(-989 R) -((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4393 |has| |#1| (-289)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-543)))) -(-990 S R) +(-991 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-289)))) -(-991 R) +((|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-289)))) +(-992 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4393 |has| |#1| (-289)) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 |has| |#1| (-289)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-992 QR R QS S) +(-993 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-993 S) +(-994 R) +((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) +((-4395 |has| |#1| (-289)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-544)))) +(-995 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-994 S) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-996 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-995) +(-997) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-996 -3478 UP UPUP |radicnd| |n|) +(-998 -3197 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4393 |has| (-406 |#2|) (-362)) (-4398 |has| (-406 |#2|) (-362)) (-4392 |has| (-406 |#2|) (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-349))) (-3936 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-349)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3936 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-349)))) (-3936 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-349))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362))))) -(-997 |bb|) +((-4395 |has| (-406 |#2|) (-362)) (-4400 |has| (-406 |#2|) (-362)) (-4394 |has| (-406 |#2|) (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4037 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4037 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4037 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362))))) +(-999 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-544) (QUOTE (-903))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-1166)))) (|HasCategory| (-544) (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-146))) (|HasCategory| (-544) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-1013))) (|HasCategory| (-544) (QUOTE (-814))) (-3936 (|HasCategory| (-544) (QUOTE (-814))) (|HasCategory| (-544) (QUOTE (-844)))) (|HasCategory| (-544) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-1141))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-544) (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-544) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-544) (QUOTE (-232))) (|HasCategory| (-544) (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| (-544) (LIST (QUOTE -512) (QUOTE (-1166)) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -308) (QUOTE (-544)))) (|HasCategory| (-544) (LIST (QUOTE -285) (QUOTE (-544)) (QUOTE (-544)))) (|HasCategory| (-544) (QUOTE (-306))) (|HasCategory| (-544) (QUOTE (-543))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-544) (LIST (QUOTE -634) (QUOTE (-544)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-544) (QUOTE (-903)))) (|HasCategory| (-544) (QUOTE (-144))))) -(-998) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) +(-1000) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-999) +(-1001) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1000 RP) +(-1002 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1001 S) +(-1003 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1002 A S) +(-1004 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-1091)))) -(-1003 S) +((|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#2| (QUOTE (-1092)))) +(-1005 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1004 S) +(-1006 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1005) +(-1007) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4393 . T) (-4398 . T) (-4392 . T) (-4395 . T) (-4394 . T) ((-4402 "*") . T) (-4397 . T)) +((-4395 . T) (-4400 . T) (-4394 . T) (-4397 . T) (-4396 . T) ((-4404 "*") . T) (-4399 . T)) NIL -(-1006 R -3478) +(-1008 R -3197) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1007 R -3478) +(-1009 R -3197) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1008 -3478 UP) +(-1010 -3197 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1009 -3478 UP) +(-1011 -3197 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1010 S) +(-1012 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1011 F1 UP UPUP R F2) +(-1013 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-1012) +(-1014) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1013) -((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) -NIL -NIL -(-1014 |Pol|) +(-1015 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1015 |Pol|) +(-1016 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1016) +(-1017) +((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) +NIL +NIL +(-1018) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1017 |TheField|) +(-1019 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4393 . T) (-4398 . T) (-4392 . T) (-4395 . T) (-4394 . T) ((-4402 "*") . T) (-4397 . T)) -((-3936 (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-406 (-544)) (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-406 (-544)) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-406 (-544)) (LIST (QUOTE -1031) (QUOTE (-544))))) -(-1018 -3478 L) +((-4395 . T) (-4400 . T) (-4394 . T) (-4397 . T) (-4396 . T) ((-4404 "*") . T) (-4399 . T)) +((-4037 (|HasCategory| (-406 (-562)) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-406 (-562)) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 (-562)) (LIST (QUOTE -1033) (QUOTE (-562))))) +(-1020 -3197 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1019 S) +(-1021 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1091)))) -(-1020 R E V P) +((|HasCategory| |#1| (QUOTE (-1092)))) +(-1022 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4401 . T) (-4400 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857))))) -(-1021) -((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) -NIL -NIL -(-1022 R) +((-4403 . T) (-4402 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) +(-1023 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4402 "*")))) -(-1023 R) +((|HasAttribute| |#1| (QUOTE (-4404 "*")))) +(-1024 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306)))) -(-1024 S) +(-1025 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1025 S) +(-1026) +((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) +NIL +NIL +(-1027 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1026 S) +(-1028 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1027 -3478 |Expon| |VarSet| |FPol| |LFPol|) +(-1029 -3197 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1028) +(-1030) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1166))) (LIST (QUOTE |:|) (QUOTE -2226) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -308) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091))) (|HasCategory| (-1166) (QUOTE (-844))) (|HasCategory| (-51) (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857))))) -(-1029) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2694) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-1168) (QUOTE (-845))) (|HasCategory| (-52) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857))))) +(-1031) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1030 A S) +(-1032 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1031 S) +(-1033 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1032 Q R) +(-1034 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1033 R) -((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) -NIL -NIL -(-1034) +(-1035) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1035 UP) +(-1036 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1036 R) +(-1037 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1037 T$) +(-1038 R) +((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +NIL +NIL +(-1039 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1038 T$) +(-1040 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1039 R |ls|) +(-1041 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4401 . T) (-4400 . T)) -((-12 (|HasCategory| (-774 |#1| (-858 |#2|)) (QUOTE (-1091))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -774) (|devaluate| |#1|) (LIST (QUOTE -858) (|devaluate| |#2|)))))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-774 |#1| (-858 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-858 |#2|) (QUOTE (-367))) (|HasCategory| (-774 |#1| (-858 |#2|)) (LIST (QUOTE -608) (QUOTE (-857))))) -(-1040) +((-4403 . T) (-4402 . T)) +((-12 (|HasCategory| (-775 |#1| (-859 |#2|)) (QUOTE (-1092))) (|HasCategory| (-775 |#1| (-859 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -775) (|devaluate| |#1|) (LIST (QUOTE -859) (|devaluate| |#2|)))))) (|HasCategory| (-775 |#1| (-859 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-775 |#1| (-859 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-859 |#2|) (QUOTE (-367))) (|HasCategory| (-775 |#1| (-859 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) +(-1042) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1041 S) +(-1043 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1042) +(-1044) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4397 . T)) +((-4399 . T)) NIL -(-1043 |xx| -3478) +(-1045 |xx| -3197) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1044 S |m| |n| R |Row| |Col|) +(-1046 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-306))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-554))) (|HasCategory| |#4| (QUOTE (-171)))) -(-1045 |m| |n| R |Row| |Col|) +(-1047 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4400 . T) (-4395 . T) (-4394 . T)) +((-4402 . T) (-4397 . T) (-4396 . T)) NIL -(-1046 |m| |n| R) +(-1048 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4400 . T) (-4395 . T) (-4394 . T)) -((-3936 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-857))))) -(-1047 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4402 . T) (-4397 . T) (-4396 . T)) +((-4037 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857))))) +(-1049 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1048 R) +(-1050 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1049) +(-1051) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1050 S) +(-1052 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1051) +(-1053) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1052 |TheField| |ThePolDom|) +(-1054 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1053) +(-1055) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4388 . T) (-4392 . T) (-4387 . T) (-4398 . T) (-4399 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4390 . T) (-4394 . T) (-4389 . T) (-4400 . T) (-4401 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1054) +(-1056) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1166))) (LIST (QUOTE |:|) (QUOTE -2226) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| (-51) (QUOTE (-1091))) (|HasCategory| (-51) (LIST (QUOTE -308) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (QUOTE (-1091))) (|HasCategory| (-1166) (QUOTE (-844))) (|HasCategory| (-51) (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-51) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (LIST (QUOTE -608) (QUOTE (-857))))) -(-1055 S R E V) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2694) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (QUOTE (-1092))) (|HasCategory| (-1168) (QUOTE (-845))) (|HasCategory| (-52) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (LIST (QUOTE -609) (QUOTE (-857))))) +(-1057 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -984) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-1166))))) -(-1056 R E V) +((|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -987) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-1168))))) +(-1058 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) NIL -(-1057) +(-1059) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1058 S |TheField| |ThePols|) +(-1060 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1059 |TheField| |ThePols|) +(-1061 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1060 R E V P TS) +(-1062 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1061 S R E V P) +(-1063 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1062 R E V P) +(-1064 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-1063 R E V P TS) +(-1065 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1064) +(-1066) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1065 |Base| R -3478) -((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) +(-1067 |f|) +((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1066 |f|) -((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) +(-1068 |Base| R -3197) +((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1067 |Base| R -3478) +(-1069 |Base| R -3197) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1068 R |ls|) +(-1070 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1069 R UP M) -((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4393 |has| |#1| (-362)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-349))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-349)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))))) -(-1070 UP SAE UPA) +(-1071 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1071 UP SAE UPA) +(-1072 R UP M) +((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) +((-4395 |has| |#1| (-362)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-348)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))))) +(-1073 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1072) +(-1074) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1073) +(-1075) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1074 S) +(-1076 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1075) +(-1077) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1076 R) +(-1078 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1077 R) +(-1079 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1078 (-1166)) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1078 S) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-1080 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1079 S) -((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) -NIL -((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1091)))) -(-1080 R S) +(-1081 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-842)))) -(-1081) +((|HasCategory| |#1| (QUOTE (-843)))) +(-1082) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1082 S) -((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) -NIL -((|HasCategory| |#1| (QUOTE (-1091)))) (-1083 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL (-1084 S) +((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) +NIL +((|HasCategory| |#1| (QUOTE (-1092)))) +(-1085 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1085 S L) +(-1086 S) +((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) +NIL +((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1092)))) +(-1087 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) NIL NIL -(-1086) +(-1088) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1087 S) -((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4400 . T) (-4390 . T) (-4401 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-1088 A S) +(-1089 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1089 S) +(-1090 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4390 . T)) +((-4392 . T)) NIL -(-1090 S) +(-1091 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1091) +(-1092) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1092 |m| |n|) -((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) +(-1093 |m| |n|) +((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1093) -((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) +(-1094 S) +((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) +((-4402 . T) (-4392 . T) (-4403 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-1095 |Str| |Sym| |Int| |Flt| |Expr|) +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1094 |Str| |Sym| |Int| |Flt| |Expr|) -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +(-1096) +((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1095 |Str| |Sym| |Int| |Flt| |Expr|) +(-1097 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1096 R FS) +(-1098 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1097 R E V P TS) +(-1099 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1098 R E V P TS) +(-1100 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1099 R E V P) +(-1101 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-1100) +(-1102) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1101 S) +(-1103 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1102) +(-1104) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1103 |dimtot| |dim1| S) +(-1105 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4394 |has| |#3| (-1042)) (-4395 |has| |#3| (-1042)) (-4397 |has| |#3| (-6 -4397)) ((-4402 "*") |has| |#3| (-171)) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#3| (QUOTE (-362))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-787))) (-3936 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842)))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-171))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1042)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (-3936 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-720))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-842))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544)))))) (|HasCategory| (-544) (QUOTE (-844))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1042))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-1166))))) (-3936 (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#3| (QUOTE (-1042)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasAttribute| |#3| (QUOTE -4397)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1091))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) -(-1104 R |x|) +((-4396 |has| |#3| (-1044)) (-4397 |has| |#3| (-1044)) (-4399 |has| |#3| (-6 -4399)) ((-4404 "*") |has| |#3| (-171)) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#3| (QUOTE (-362))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-788))) (-4037 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843)))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-171))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-1092)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-721)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-843)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (|HasAttribute| |#3| (QUOTE -4399)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) +(-1106 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-450)))) -(-1105) -((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) +((|HasCategory| |#1| (QUOTE (-451)))) +(-1107) +((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1106) -((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) +(-1108 R -3197) +((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1107 R -3478) -((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1109 R) +((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1108 R) -((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1110) +((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1109) +(-1111) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1110) +(-1112) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4388 . T) (-4392 . T) (-4387 . T) (-4398 . T) (-4399 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4390 . T) (-4394 . T) (-4389 . T) (-4400 . T) (-4401 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1111 S) +(-1113 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4400 . T) (-4401 . T)) +((-4402 . T) (-4403 . T)) NIL -(-1112 S |ndim| R |Row| |Col|) +(-1114 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4402 "*"))) (|HasCategory| |#3| (QUOTE (-171)))) -(-1113 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4404 "*"))) (|HasCategory| |#3| (QUOTE (-171)))) +(-1115 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4400 . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4402 . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1114 R |Row| |Col| M) +(-1116 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1115 R |VarSet|) +(-1117 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1116 |Coef| |Var| SMP) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-1118 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362)))) -(-1117 R E V P) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362)))) +(-1119 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-1118 UP -3478) +(-1120 UP -3197) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1119 R) +(-1121 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1120 R) +(-1122 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1121 R) +(-1123 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1122 S A) +(-1124 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-844)))) -(-1123 R) +((|HasCategory| |#1| (QUOTE (-845)))) +(-1125 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1124 R) +(-1126 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1125) +(-1127) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1126) +(-1128) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1127) +(-1129) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1128) +(-1130) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1129) +(-1131) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1130 V C) +(-1132 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1131 V C) +(-1133 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1130) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1091)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1091))) (-3936 (-12 (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1130) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1130 |#1| |#2|) (QUOTE (-1091)))) (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| (-1130 |#1| |#2|) (LIST (QUOTE -608) (QUOTE (-857))))) -(-1132 |ndim| R) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1132) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1132 |#1| |#2|) (QUOTE (-1092)))) (|HasCategory| (-1132 |#1| |#2|) (QUOTE (-1092))) (-4037 (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1132) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1132 |#1| |#2|) (QUOTE (-1092))))) (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -609) (QUOTE (-857))))) +(-1134 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4397 . T) (-4389 |has| |#2| (-6 (-4402 "*"))) (-4400 . T) (-4394 . T) (-4395 . T)) -((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4402 "*"))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-362))) (-3936 (|HasAttribute| |#2| (QUOTE (-4402 "*"))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) -(-1133 S) +((-4399 . T) (-4391 |has| |#2| (-6 (-4404 "*"))) (-4402 . T) (-4396 . T) (-4397 . T)) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasAttribute| |#2| (QUOTE (-4404 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) +(-1135 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1134) +(-1136) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-1135 R E V P TS) +(-1137 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1136 R E V P) +(-1138 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4401 . T) (-4400 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857))))) -(-1137 S) +((-4403 . T) (-4402 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) +(-1139 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-1138 A S) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-1140 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1139 S) +(-1141 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1140 |Key| |Ent| |dent|) +(-1142 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-844))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) -(-1141) +((-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092)))) +(-1143) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1142 |Coef|) +(-1144 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1143 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4401 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-1144 S) +(-1145 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1145 A B) +(-1146 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1146 A B C) +(-1147 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1147) +(-1148 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-4403 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-1149) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-1148) +(-1150) NIL -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-143) (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1091))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) -(-1149 |Entry|) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) +(-1151 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (QUOTE (-1148))) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (QUOTE (-1091))) (|HasCategory| (-1148) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (LIST (QUOTE -608) (QUOTE (-857))))) -(-1150 A) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#1|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (QUOTE (-1092))) (|HasCategory| (-1150) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (LIST (QUOTE -609) (QUOTE (-857))))) +(-1152 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) -(-1151 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) +(-1153 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1152 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +(-1154 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1153 R UP) +(-1155 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-306)))) -(-1154 |n| R) +(-1156 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1155 S1 S2) +(-1157 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1156) +(-1158) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1157 |Coef| |var| |cen|) +(-1159 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4402 "*") -3936 (-3240 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-814))) (|has| |#1| (-171)) (-3240 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-903)))) (-4393 -3936 (-3240 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-814))) (|has| |#1| (-554)) (-3240 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-903)))) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1141)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-146)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|))))) (|HasCategory| (-544) (QUOTE (-1102))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1013)))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-306)))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1158 R -3478) +(((-4404 "*") -4037 (-2246 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-815))) (|has| |#1| (-171)) (-2246 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-904)))) (-4395 -4037 (-2246 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-815))) (|has| |#1| (-554)) (-2246 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-904)))) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-1160 R -3197) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1159 R) +(-1161 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1160 R) -((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4396 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-903)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1161 R S) +(-1162 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1162 E OV R P) +(-1163 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1163 |Coef| |var| |cen|) +(-1164 R) +((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-1165 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|))))))) -(-1164 |Coef| |var| |cen|) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(-1166 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|)))) (|HasCategory| (-765) (QUOTE (-1102))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|))))))) -(-1165) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|)))) (|HasCategory| (-766) (QUOTE (-1104))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(-1167) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1166) +(-1168) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1167 R) +(-1169 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1168 R) +(-1170 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-6 -4398)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3936 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-964) (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4398))) -(-1169) -((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-6 -4400)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| (-966) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasAttribute| |#1| (QUOTE -4400))) +(-1171) +((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1170) +(-1172) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1171) +(-1173) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{symbols,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: Integer,{} DoubleFloat,{} Symbol,{} String,{} SExpression. See Also: SExpression. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1172 N) +(-1174 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files."))) NIL NIL -(-1173 N) +(-1175 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1174 R) +(-1176 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1175) +(-1177) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1176 S) +(-1178 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1177 |Key| |Entry|) -((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4400 . T) (-4401 . T)) -((-12 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4267) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2226) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -609) (QUOTE (-533)))) (-12 (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1091))) (-3936 (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -608) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (LIST (QUOTE -608) (QUOTE (-857))))) -(-1178 S) +(-1179 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1179 R) +(-1180 |Key| |Entry|) +((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) +((-4402 . T) (-4403 . T)) +((-12 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2694) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) +(-1181 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1180 S |Key| |Entry|) +(-1182 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1181 |Key| |Entry|) +(-1183 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4401 . T)) +((-4403 . T)) NIL -(-1182 |Key| |Entry|) +(-1184 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1183) +(-1185) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1184) -((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) +(-1186 S) +((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1185 S) -((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) +(-1187) +((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1186) +(-1188) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1187 R) +(-1189 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1188) +(-1190) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1189 S) +(-1191 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1190) +(-1192) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1191 S) +(-1193 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4401 . T) (-4400 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1091))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-1192 S) +((-4403 . T) (-4402 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-1194 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1193) +(-1195) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1194 R -3478) +(-1196 R -3197) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1195 R |Row| |Col| M) +(-1197 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1196 R -3478) +(-1198 R -3197) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -879) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -879) (|devaluate| |#1|))))) -(-1197 |Coef|) -((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362)))) -(-1198 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -881) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -881) (|devaluate| |#1|))))) +(-1199 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-367)))) -(-1199 R E V P) +(-1200 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-1200 |Curve|) +(-1201 |Coef|) +((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362)))) +(-1202 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1201) +(-1203) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1202 S) +(-1204 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) -(-1203 -3478) +((|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +(-1205 -3197) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1204) -((|constructor| (NIL "The fundamental Type."))) +(-1206) +((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1205) -((|constructor| (NIL "This domain represents a type AST."))) +(-1207) +((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1206 S) +(-1208 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-844)))) -(-1207) +((|HasCategory| |#1| (QUOTE (-845)))) +(-1209) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1208 S) +(-1210 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1209) +(-1211) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1210) +(-1212) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1211) +(-1213) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1212) +(-1214) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1213 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4402 "*") -3936 (-3240 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-814))) (|has| |#1| (-171)) (-3240 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-903)))) (-4393 -3936 (-3240 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-814))) (|has| |#1| (-554)) (-3240 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-903)))) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-1141)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-146)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|))))) (|HasCategory| (-544) (QUOTE (-1102))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-1013)))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-844))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1166)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-306)))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (LIST (QUOTE -1031) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1243 |#1| |#2| |#3|) (QUOTE (-903)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1214 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1215 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1215 |Coef|) +(-1216 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1216 S |Coef| UTS) +(-1217 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-362)))) -(-1217 |Coef| UTS) +(-1218 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1218 |Coef| UTS) +(-1219 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-3936 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))))) (-3936 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-544)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232))))) (|HasCategory| (-544) (QUOTE (-1102))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-1166))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1166)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-544))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-903))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144)))))) -(-1219 ZP) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-4037 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-904))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144)))))) +(-1220 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) +(((-4404 "*") -4037 (-2246 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-815))) (|has| |#1| (-171)) (-2246 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-904)))) (-4395 -4037 (-2246 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-815))) (|has| |#1| (-554)) (-2246 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-904)))) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +((-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))))) +(-1221 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1220 S) -((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) -NIL -((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1091)))) -(-1221 R S) +(-1222 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-842)))) -(-1222 |x| R) -((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4402 "*") |has| |#2| (-171)) (-4393 |has| |#2| (-554)) (-4396 |has| |#2| (-362)) (-4398 |has| |#2| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-377)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-377))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-544)))) (|HasCategory| (-1072) (LIST (QUOTE -879) (QUOTE (-544))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-377)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544))))) (|HasCategory| (-1072) (LIST (QUOTE -609) (LIST (QUOTE -883) (QUOTE (-544)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| (-1072) (LIST (QUOTE -609) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -634) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (QUOTE (-544)))) (-3936 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| |#2| (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (-3936 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-903)))) (-3936 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-903)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1141))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4398)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (-3936 (-12 (|HasCategory| |#2| (QUOTE (-903))) (|HasCategory| $ (QUOTE (-144)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-1223 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-843)))) +(-1223 S) +((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) +NIL +((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1092)))) +(-1224 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1224 R Q UP) +(-1225 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1225 R UP) +(-1226 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1226 R UP) +(-1227 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1227 R U) +(-1228 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1228 S R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1141)))) -(-1229 R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4396 |has| |#1| (-362)) (-4398 |has| |#1| (-6 -4398)) (-4395 . T) (-4394 . T) (-4397 . T)) -NIL +(-1229 |x| R) +((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +(((-4404 "*") |has| |#2| (-171)) (-4395 |has| |#2| (-554)) (-4398 |has| |#2| (-362)) (-4400 |has| |#2| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) (-1230 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1231 S |Coef| |Expon|) +(-1231 S R) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +NIL +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1143)))) +(-1232 R) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4400 |has| |#1| (-6 -4400)) (-4397 . T) (-4396 . T) (-4399 . T)) +NIL +(-1233 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1102))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4353) (LIST (|devaluate| |#2|) (QUOTE (-1166)))))) -(-1232 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1104))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4054) (LIST (|devaluate| |#2|) (QUOTE (-1168)))))) +(-1234 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1233 RC P) -((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) +(-1235 RC P) +((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1234 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|))))))) -(-1235 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1236 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1236 |Coef|) +(-1237 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1237 S |Coef| ULS) +(-1238 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1238 |Coef| ULS) +(-1239 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1239 |Coef| ULS) +(-1240 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4398 |has| |#1| (-362)) (-4392 |has| |#1| (-362)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-544)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-3936 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-544)))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544)))))) -(-1240 R FE |var| |cen|) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) +(-1241 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4400 |has| |#1| (-362)) (-4394 |has| |#1| (-362)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(-1242 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4402 "*") |has| (-1234 |#2| |#3| |#4|) (-171)) (-4393 |has| (-1234 |#2| |#3| |#4|) (-554)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-171))) (-3936 (|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544)))))) (|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -1031) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| (-1234 |#2| |#3| |#4|) (LIST (QUOTE -1031) (QUOTE (-544)))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-450))) (|HasCategory| (-1234 |#2| |#3| |#4|) (QUOTE (-554)))) -(-1241 A S) +(((-4404 "*") |has| (-1241 |#2| |#3| |#4|) (-171)) (-4395 |has| (-1241 |#2| |#3| |#4|) (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-171))) (-4037 (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-451))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-554)))) +(-1243 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4401))) -(-1242 S) +((|HasAttribute| |#1| (QUOTE -4403))) +(-1244 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1243 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-554))) (-3936 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-1166)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-765)) (|devaluate| |#1|)))) (|HasCategory| (-765) (QUOTE (-1102))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasSignature| |#1| (LIST (QUOTE -4353) (LIST (|devaluate| |#1|) (QUOTE (-1166)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-765))))) (|HasCategory| |#1| (QUOTE (-362))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-1190))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasSignature| |#1| (LIST (QUOTE -4219) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1166))))) (|HasSignature| |#1| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#1|))))))) -(-1244 |Coef1| |Coef2| UTS1 UTS2) +(-1245 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1245 S |Coef|) +(-1246 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-1190))) (|HasSignature| |#2| (LIST (QUOTE -3467) (LIST (LIST (QUOTE -635) (QUOTE (-1166))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4219) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1166))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasCategory| |#2| (QUOTE (-362)))) -(-1246 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1192))) (|HasSignature| |#2| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2667) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1168))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) +(-1247 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4402 "*") |has| |#1| (-171)) (-4393 |has| |#1| (-554)) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1247 |Coef| UTS) +(-1248 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) +(((-4404 "*") |has| |#1| (-171)) (-4395 |has| |#1| (-554)) (-4396 . T) (-4397 . T) (-4399 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|)))) (|HasCategory| (-766) (QUOTE (-1104))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasSignature| |#1| (LIST (QUOTE -4054) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -2667) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1402) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(-1249 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1248 -3478 UP L UTS) +(-1250 -3197 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-554)))) -(-1249) +(-1251) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1250 |sym|) +(-1252 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1251 S R) +(-1253 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (QUOTE (-720))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1252 R) +((|HasCategory| |#2| (QUOTE (-997))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1254 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4401 . T) (-4400 . T)) +((-4403 . T) (-4402 . T)) NIL -(-1253 R) -((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4401 . T) (-4400 . T)) -((-3936 (-12 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3936 (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-533)))) (-3936 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-544) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-720))) (|HasCategory| |#1| (QUOTE (-1042))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -608) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-1254 A B) +(-1255 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1255) -((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) -NIL -NIL -(-1256) +(-1256 R) +((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) +((-4403 . T) (-4402 . T)) +((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +(-1257) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1257) +(-1258) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1258) +(-1259) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1259) +(-1260) +((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) +NIL +NIL +(-1261) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1260 A S) +(-1262 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1261 S) +(-1263 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4395 . T) (-4394 . T)) +((-4397 . T) (-4396 . T)) NIL -(-1262 R) +(-1264 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1263 K R UP -3478) +(-1265 K R UP -3197) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1264) +(-1266) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1265) +(-1267) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1266 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1268 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4395 |has| |#1| (-171)) (-4394 |has| |#1| (-171)) (-4397 . T)) +((-4397 |has| |#1| (-171)) (-4396 |has| |#1| (-171)) (-4399 . T)) ((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) -(-1267 R E V P) +(-1269 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4401 . T) (-4400 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -608) (QUOTE (-857))))) -(-1268 R) +((-4403 . T) (-4402 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) +(-1270 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4394 . T) (-4395 . T) (-4397 . T)) +((-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1269 |vl| R) +(-1271 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4397 . T) (-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4393))) -(-1270 R |VarSet| XPOLY) +((-4399 . T) (-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T)) +((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4395))) +(-1272 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1271 S -3478) +(-1273 |vl| R) +((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) +((-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) +NIL +(-1274 S -3197) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146)))) -(-1272 -3478) +(-1275 -3197) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4392 . T) (-4398 . T) (-4393 . T) ((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +((-4394 . T) (-4400 . T) (-4395 . T) ((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL -(-1273 |vl| R) -((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T)) -NIL -(-1274 |VarSet| R) +(-1276 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -711) (LIST (QUOTE -406) (QUOTE (-544))))) (|HasAttribute| |#2| (QUOTE -4393))) -(-1275 R) -((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4393 |has| |#1| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4393))) -(-1276 |vl| R) +((-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -712) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasAttribute| |#2| (QUOTE -4395))) +(-1277 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T)) +((-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) NIL -(-1277 R E) +(-1278 R) +((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) +((-4395 |has| |#1| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4395))) +(-1279 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4397 . T) (-4398 |has| |#1| (-6 -4398)) (-4393 |has| |#1| (-6 -4393)) (-4395 . T) (-4394 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4397)) (|HasAttribute| |#1| (QUOTE -4398)) (|HasAttribute| |#1| (QUOTE -4393))) -(-1278 |VarSet| R) +((-4399 . T) (-4400 |has| |#1| (-6 -4400)) (-4395 |has| |#1| (-6 -4395)) (-4397 . T) (-4396 . T)) +((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4399)) (|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4395))) +(-1280 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4393 |has| |#2| (-6 -4393)) (-4395 . T) (-4394 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4393))) -(-1279 A) +((-4395 |has| |#2| (-6 -4395)) (-4397 . T) (-4396 . T) (-4399 . T)) +((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4395))) +(-1281 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1280 R |ls| |ls2|) +(-1282 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1281 R) +(-1283 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1282 |p|) +(-1284 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4402 "*") . T) (-4394 . T) (-4395 . T) (-4397 . T)) +(((-4404 "*") . T) (-4396 . T) (-4397 . T) (-4399 . T)) NIL NIL NIL @@ -5076,4 +5084,4 @@ NIL NIL NIL NIL -((-3 NIL 2279481 2279486 2279491 2279496) (-2 NIL 2279461 2279466 2279471 2279476) (-1 NIL 2279441 2279446 2279451 2279456) (0 NIL 2279421 2279426 2279431 2279436) (-1282 "ZMOD.spad" 2279230 2279243 2279359 2279416) (-1281 "ZLINDEP.spad" 2278274 2278285 2279220 2279225) (-1280 "ZDSOLVE.spad" 2268123 2268145 2278264 2278269) (-1279 "YSTREAM.spad" 2267616 2267627 2268113 2268118) (-1278 "XRPOLY.spad" 2266836 2266856 2267472 2267541) (-1277 "XPR.spad" 2264627 2264640 2266554 2266653) (-1276 "XPOLYC.spad" 2263944 2263960 2264553 2264622) (-1275 "XPOLY.spad" 2263499 2263510 2263800 2263869) (-1274 "XPBWPOLY.spad" 2261936 2261956 2263279 2263348) (-1273 "XFALG.spad" 2258960 2258976 2261862 2261931) (-1272 "XF.spad" 2257421 2257436 2258862 2258955) (-1271 "XF.spad" 2255862 2255879 2257305 2257310) (-1270 "XEXPPKG.spad" 2255113 2255139 2255852 2255857) (-1269 "XDPOLY.spad" 2254727 2254743 2254969 2255038) (-1268 "XALG.spad" 2254387 2254398 2254683 2254722) (-1267 "WUTSET.spad" 2250226 2250243 2254033 2254060) (-1266 "WP.spad" 2249425 2249469 2250084 2250151) (-1265 "WHILEAST.spad" 2249223 2249232 2249415 2249420) (-1264 "WHEREAST.spad" 2248894 2248903 2249213 2249218) (-1263 "WFFINTBS.spad" 2246457 2246479 2248884 2248889) (-1262 "WEIER.spad" 2244671 2244682 2246447 2246452) (-1261 "VSPACE.spad" 2244344 2244355 2244639 2244666) (-1260 "VSPACE.spad" 2244037 2244050 2244334 2244339) (-1259 "VOID.spad" 2243714 2243723 2244027 2244032) (-1258 "VIEWDEF.spad" 2238911 2238920 2243704 2243709) (-1257 "VIEW3D.spad" 2222746 2222755 2238901 2238906) (-1256 "VIEW2D.spad" 2210483 2210492 2222736 2222741) (-1255 "VIEW.spad" 2208105 2208114 2210473 2210478) (-1254 "VECTOR2.spad" 2206732 2206745 2208095 2208100) (-1253 "VECTOR.spad" 2205407 2205418 2205658 2205685) (-1252 "VECTCAT.spad" 2203307 2203318 2205375 2205402) (-1251 "VECTCAT.spad" 2201015 2201028 2203085 2203090) (-1250 "VARIABLE.spad" 2200795 2200810 2201005 2201010) (-1249 "UTYPE.spad" 2200439 2200448 2200785 2200790) (-1248 "UTSODETL.spad" 2199732 2199756 2200395 2200400) (-1247 "UTSODE.spad" 2197920 2197940 2199722 2199727) (-1246 "UTSCAT.spad" 2195371 2195387 2197818 2197915) (-1245 "UTSCAT.spad" 2192466 2192484 2194915 2194920) (-1244 "UTS2.spad" 2192059 2192094 2192456 2192461) (-1243 "UTS.spad" 2186848 2186876 2190526 2190623) (-1242 "URAGG.spad" 2181480 2181491 2186838 2186843) (-1241 "URAGG.spad" 2176076 2176089 2181436 2181441) (-1240 "UPXSSING.spad" 2173719 2173745 2175157 2175290) (-1239 "UPXSCONS.spad" 2171476 2171496 2171851 2172000) (-1238 "UPXSCCA.spad" 2170041 2170061 2171322 2171471) (-1237 "UPXSCCA.spad" 2168748 2168770 2170031 2170036) (-1236 "UPXSCAT.spad" 2167329 2167345 2168594 2168743) (-1235 "UPXS2.spad" 2166870 2166923 2167319 2167324) (-1234 "UPXS.spad" 2164018 2164046 2165002 2165151) (-1233 "UPSQFREE.spad" 2162431 2162445 2164008 2164013) (-1232 "UPSCAT.spad" 2160024 2160048 2162329 2162426) (-1231 "UPSCAT.spad" 2157323 2157349 2159630 2159635) (-1230 "UPOLYC2.spad" 2156792 2156811 2157313 2157318) (-1229 "UPOLYC.spad" 2151770 2151781 2156634 2156787) (-1228 "UPOLYC.spad" 2146640 2146653 2151506 2151511) (-1227 "UPMP.spad" 2145530 2145543 2146630 2146635) (-1226 "UPDIVP.spad" 2145093 2145107 2145520 2145525) (-1225 "UPDECOMP.spad" 2143330 2143344 2145083 2145088) (-1224 "UPCDEN.spad" 2142537 2142553 2143320 2143325) (-1223 "UP2.spad" 2141899 2141920 2142527 2142532) (-1222 "UP.spad" 2139056 2139071 2139449 2139602) (-1221 "UNISEG2.spad" 2138549 2138562 2139012 2139017) (-1220 "UNISEG.spad" 2137902 2137913 2138468 2138473) (-1219 "UNIFACT.spad" 2137003 2137015 2137892 2137897) (-1218 "ULSCONS.spad" 2129397 2129417 2129769 2129918) (-1217 "ULSCCAT.spad" 2127126 2127146 2129243 2129392) (-1216 "ULSCCAT.spad" 2124963 2124985 2127082 2127087) (-1215 "ULSCAT.spad" 2123179 2123195 2124809 2124958) (-1214 "ULS2.spad" 2122691 2122744 2123169 2123174) (-1213 "ULS.spad" 2113243 2113271 2114336 2114765) (-1212 "UINT8.spad" 2113120 2113129 2113233 2113238) (-1211 "UINT32.spad" 2112996 2113005 2113110 2113115) (-1210 "UINT16.spad" 2112872 2112881 2112986 2112991) (-1209 "UFD.spad" 2111937 2111946 2112798 2112867) (-1208 "UFD.spad" 2111064 2111075 2111927 2111932) (-1207 "UDVO.spad" 2109911 2109920 2111054 2111059) (-1206 "UDPO.spad" 2107338 2107349 2109867 2109872) (-1205 "TYPEAST.spad" 2107257 2107266 2107328 2107333) (-1204 "TYPE.spad" 2107189 2107198 2107247 2107252) (-1203 "TWOFACT.spad" 2105839 2105854 2107179 2107184) (-1202 "TUPLE.spad" 2105323 2105334 2105738 2105743) (-1201 "TUBETOOL.spad" 2102160 2102169 2105313 2105318) (-1200 "TUBE.spad" 2100801 2100818 2102150 2102155) (-1199 "TSETCAT.spad" 2087928 2087945 2100769 2100796) (-1198 "TSETCAT.spad" 2075041 2075060 2087884 2087889) (-1197 "TS.spad" 2073630 2073646 2074606 2074703) (-1196 "TRMANIP.spad" 2067996 2068013 2073336 2073341) (-1195 "TRIMAT.spad" 2066955 2066980 2067986 2067991) (-1194 "TRIGMNIP.spad" 2065472 2065489 2066945 2066950) (-1193 "TRIGCAT.spad" 2064984 2064993 2065462 2065467) (-1192 "TRIGCAT.spad" 2064494 2064505 2064974 2064979) (-1191 "TREE.spad" 2063065 2063076 2064101 2064128) (-1190 "TRANFUN.spad" 2062896 2062905 2063055 2063060) (-1189 "TRANFUN.spad" 2062725 2062736 2062886 2062891) (-1188 "TOPSP.spad" 2062399 2062408 2062715 2062720) (-1187 "TOOLSIGN.spad" 2062062 2062073 2062389 2062394) (-1186 "TEXTFILE.spad" 2060619 2060628 2062052 2062057) (-1185 "TEX1.spad" 2060175 2060186 2060609 2060614) (-1184 "TEX.spad" 2057307 2057316 2060165 2060170) (-1183 "TEMUTL.spad" 2056862 2056871 2057297 2057302) (-1182 "TBCMPPK.spad" 2054955 2054978 2056852 2056857) (-1181 "TBAGG.spad" 2053991 2054014 2054935 2054950) (-1180 "TBAGG.spad" 2053035 2053060 2053981 2053986) (-1179 "TANEXP.spad" 2052411 2052422 2053025 2053030) (-1178 "TABLEAU.spad" 2051892 2051903 2052401 2052406) (-1177 "TABLE.spad" 2050303 2050326 2050573 2050600) (-1176 "TABLBUMP.spad" 2047086 2047097 2050293 2050298) (-1175 "SYSTEM.spad" 2046360 2046369 2047076 2047081) (-1174 "SYSSOLP.spad" 2043833 2043844 2046350 2046355) (-1173 "SYSNNI.spad" 2043009 2043020 2043823 2043828) (-1172 "SYSINT.spad" 2042482 2042493 2042999 2043004) (-1171 "SYNTAX.spad" 2038752 2038761 2042472 2042477) (-1170 "SYMTAB.spad" 2036808 2036817 2038742 2038747) (-1169 "SYMS.spad" 2032799 2032808 2036798 2036803) (-1168 "SYMPOLY.spad" 2031806 2031817 2031888 2032015) (-1167 "SYMFUNC.spad" 2031281 2031292 2031796 2031801) (-1166 "SYMBOL.spad" 2028708 2028717 2031271 2031276) (-1165 "SWITCH.spad" 2025465 2025474 2028698 2028703) (-1164 "SUTS.spad" 2022364 2022392 2023932 2024029) (-1163 "SUPXS.spad" 2019499 2019527 2020496 2020645) (-1162 "SUPFRACF.spad" 2018604 2018622 2019489 2019494) (-1161 "SUP2.spad" 2017994 2018007 2018594 2018599) (-1160 "SUP.spad" 2014763 2014774 2015544 2015697) (-1159 "SUMRF.spad" 2013729 2013740 2014753 2014758) (-1158 "SUMFS.spad" 2013362 2013379 2013719 2013724) (-1157 "SULS.spad" 2003901 2003929 2005007 2005436) (-1156 "SUCHTAST.spad" 2003670 2003679 2003891 2003896) (-1155 "SUCH.spad" 2003350 2003365 2003660 2003665) (-1154 "SUBSPACE.spad" 1995357 1995372 2003340 2003345) (-1153 "SUBRESP.spad" 1994517 1994531 1995313 1995318) (-1152 "STTFNC.spad" 1990985 1991001 1994507 1994512) (-1151 "STTF.spad" 1987084 1987100 1990975 1990980) (-1150 "STTAYLOR.spad" 1979482 1979493 1986965 1986970) (-1149 "STRTBL.spad" 1977987 1978004 1978136 1978163) (-1148 "STRING.spad" 1977396 1977405 1977410 1977437) (-1147 "STRICAT.spad" 1977184 1977193 1977364 1977391) (-1146 "STREAM3.spad" 1976729 1976744 1977174 1977179) (-1145 "STREAM2.spad" 1975797 1975810 1976719 1976724) (-1144 "STREAM1.spad" 1975501 1975512 1975787 1975792) (-1143 "STREAM.spad" 1972359 1972370 1975026 1975041) (-1142 "STINPROD.spad" 1971265 1971281 1972349 1972354) (-1141 "STEP.spad" 1970466 1970475 1971255 1971260) (-1140 "STBL.spad" 1968992 1969020 1969159 1969174) (-1139 "STAGG.spad" 1968067 1968078 1968982 1968987) (-1138 "STAGG.spad" 1967140 1967153 1968057 1968062) (-1137 "STACK.spad" 1966491 1966502 1966747 1966774) (-1136 "SREGSET.spad" 1964195 1964212 1966137 1966164) (-1135 "SRDCMPK.spad" 1962740 1962760 1964185 1964190) (-1134 "SRAGG.spad" 1957837 1957846 1962708 1962735) (-1133 "SRAGG.spad" 1952954 1952965 1957827 1957832) (-1132 "SQMATRIX.spad" 1950570 1950588 1951486 1951573) (-1131 "SPLTREE.spad" 1945122 1945135 1950006 1950033) (-1130 "SPLNODE.spad" 1941710 1941723 1945112 1945117) (-1129 "SPFCAT.spad" 1940487 1940496 1941700 1941705) (-1128 "SPECOUT.spad" 1939037 1939046 1940477 1940482) (-1127 "SPADXPT.spad" 1931176 1931185 1939027 1939032) (-1126 "spad-parser.spad" 1930641 1930650 1931166 1931171) (-1125 "SPADAST.spad" 1930342 1930351 1930631 1930636) (-1124 "SPACEC.spad" 1914355 1914366 1930332 1930337) (-1123 "SPACE3.spad" 1914131 1914142 1914345 1914350) (-1122 "SORTPAK.spad" 1913676 1913689 1914087 1914092) (-1121 "SOLVETRA.spad" 1911433 1911444 1913666 1913671) (-1120 "SOLVESER.spad" 1909953 1909964 1911423 1911428) (-1119 "SOLVERAD.spad" 1905963 1905974 1909943 1909948) (-1118 "SOLVEFOR.spad" 1904383 1904401 1905953 1905958) (-1117 "SNTSCAT.spad" 1903983 1904000 1904351 1904378) (-1116 "SMTS.spad" 1902243 1902269 1903548 1903645) (-1115 "SMP.spad" 1899682 1899702 1900072 1900199) (-1114 "SMITH.spad" 1898525 1898550 1899672 1899677) (-1113 "SMATCAT.spad" 1896635 1896665 1898469 1898520) (-1112 "SMATCAT.spad" 1894677 1894709 1896513 1896518) (-1111 "SKAGG.spad" 1893638 1893649 1894645 1894672) (-1110 "SINT.spad" 1892464 1892473 1893504 1893633) (-1109 "SIMPAN.spad" 1892192 1892201 1892454 1892459) (-1108 "SIGNRF.spad" 1891307 1891318 1892182 1892187) (-1107 "SIGNEF.spad" 1890583 1890600 1891297 1891302) (-1106 "SIGAST.spad" 1889964 1889973 1890573 1890578) (-1105 "SIG.spad" 1889292 1889301 1889954 1889959) (-1104 "SHP.spad" 1887210 1887225 1889248 1889253) (-1103 "SHDP.spad" 1876921 1876948 1877430 1877561) (-1102 "SGROUP.spad" 1876529 1876538 1876911 1876916) (-1101 "SGROUP.spad" 1876135 1876146 1876519 1876524) (-1100 "SGCF.spad" 1869016 1869025 1876125 1876130) (-1099 "SFRTCAT.spad" 1867944 1867961 1868984 1869011) (-1098 "SFRGCD.spad" 1867007 1867027 1867934 1867939) (-1097 "SFQCMPK.spad" 1861644 1861664 1866997 1867002) (-1096 "SFORT.spad" 1861079 1861093 1861634 1861639) (-1095 "SEXOF.spad" 1860922 1860962 1861069 1861074) (-1094 "SEXCAT.spad" 1858473 1858513 1860912 1860917) (-1093 "SEX.spad" 1858365 1858374 1858463 1858468) (-1092 "SETMN.spad" 1856801 1856818 1858355 1858360) (-1091 "SETCAT.spad" 1856286 1856295 1856791 1856796) (-1090 "SETCAT.spad" 1855769 1855780 1856276 1856281) (-1089 "SETAGG.spad" 1852290 1852301 1855749 1855764) (-1088 "SETAGG.spad" 1848819 1848832 1852280 1852285) (-1087 "SET.spad" 1847119 1847130 1848240 1848279) (-1086 "SEQAST.spad" 1846822 1846831 1847109 1847114) (-1085 "SEGXCAT.spad" 1845944 1845957 1846812 1846817) (-1084 "SEGCAT.spad" 1844851 1844862 1845934 1845939) (-1083 "SEGBIND2.spad" 1844547 1844560 1844841 1844846) (-1082 "SEGBIND.spad" 1843619 1843630 1844502 1844507) (-1081 "SEGAST.spad" 1843333 1843342 1843609 1843614) (-1080 "SEG2.spad" 1842758 1842771 1843289 1843294) (-1079 "SEG.spad" 1842571 1842582 1842677 1842682) (-1078 "SDVAR.spad" 1841847 1841858 1842561 1842566) (-1077 "SDPOL.spad" 1839237 1839248 1839528 1839655) (-1076 "SCPKG.spad" 1837316 1837327 1839227 1839232) (-1075 "SCOPE.spad" 1836461 1836470 1837306 1837311) (-1074 "SCACHE.spad" 1835143 1835154 1836451 1836456) (-1073 "SASTCAT.spad" 1835052 1835061 1835133 1835138) (-1072 "SAOS.spad" 1834924 1834933 1835042 1835047) (-1071 "SAERFFC.spad" 1834637 1834657 1834914 1834919) (-1070 "SAEFACT.spad" 1834338 1834358 1834627 1834632) (-1069 "SAE.spad" 1832513 1832529 1833124 1833259) (-1068 "RURPK.spad" 1830154 1830170 1832503 1832508) (-1067 "RULESET.spad" 1829595 1829619 1830144 1830149) (-1066 "RULECOLD.spad" 1829447 1829460 1829585 1829590) (-1065 "RULE.spad" 1827651 1827675 1829437 1829442) (-1064 "RSTRCAST.spad" 1827368 1827377 1827641 1827646) (-1063 "RSETGCD.spad" 1823746 1823766 1827358 1827363) (-1062 "RSETCAT.spad" 1813530 1813547 1823714 1823741) (-1061 "RSETCAT.spad" 1803334 1803353 1813520 1813525) (-1060 "RSDCMPK.spad" 1801786 1801806 1803324 1803329) (-1059 "RRCC.spad" 1800170 1800200 1801776 1801781) (-1058 "RRCC.spad" 1798552 1798584 1800160 1800165) (-1057 "RPTAST.spad" 1798254 1798263 1798542 1798547) (-1056 "RPOLCAT.spad" 1777614 1777629 1798122 1798249) (-1055 "RPOLCAT.spad" 1756688 1756705 1777198 1777203) (-1054 "ROUTINE.spad" 1752551 1752560 1755335 1755362) (-1053 "ROMAN.spad" 1751879 1751888 1752417 1752546) (-1052 "ROIRC.spad" 1750959 1750991 1751869 1751874) (-1051 "RNS.spad" 1749862 1749871 1750861 1750954) (-1050 "RNS.spad" 1748851 1748862 1749852 1749857) (-1049 "RNG.spad" 1748586 1748595 1748841 1748846) (-1048 "RMODULE.spad" 1748224 1748235 1748576 1748581) (-1047 "RMCAT2.spad" 1747632 1747689 1748214 1748219) (-1046 "RMATRIX.spad" 1746456 1746475 1746799 1746838) (-1045 "RMATCAT.spad" 1741989 1742020 1746412 1746451) (-1044 "RMATCAT.spad" 1737412 1737445 1741837 1741842) (-1043 "RINTERP.spad" 1737300 1737320 1737402 1737407) (-1042 "RING.spad" 1736770 1736779 1737280 1737295) (-1041 "RING.spad" 1736248 1736259 1736760 1736765) (-1040 "RIDIST.spad" 1735632 1735641 1736238 1736243) (-1039 "RGCHAIN.spad" 1734211 1734227 1735117 1735144) (-1038 "RGBCSPC.spad" 1733992 1734004 1734201 1734206) (-1037 "RGBCMDL.spad" 1733522 1733534 1733982 1733987) (-1036 "RFFACTOR.spad" 1732984 1732995 1733512 1733517) (-1035 "RFFACT.spad" 1732719 1732731 1732974 1732979) (-1034 "RFDIST.spad" 1731707 1731716 1732709 1732714) (-1033 "RF.spad" 1729321 1729332 1731697 1731702) (-1032 "RETSOL.spad" 1728738 1728751 1729311 1729316) (-1031 "RETRACT.spad" 1728166 1728177 1728728 1728733) (-1030 "RETRACT.spad" 1727592 1727605 1728156 1728161) (-1029 "RETAST.spad" 1727404 1727413 1727582 1727587) (-1028 "RESULT.spad" 1725464 1725473 1726051 1726078) (-1027 "RESRING.spad" 1724811 1724858 1725402 1725459) (-1026 "RESLATC.spad" 1724135 1724146 1724801 1724806) (-1025 "REPSQ.spad" 1723864 1723875 1724125 1724130) (-1024 "REPDB.spad" 1723569 1723580 1723854 1723859) (-1023 "REP2.spad" 1713141 1713152 1723411 1723416) (-1022 "REP1.spad" 1707131 1707142 1713091 1713096) (-1021 "REP.spad" 1704683 1704692 1707121 1707126) (-1020 "REGSET.spad" 1702480 1702497 1704329 1704356) (-1019 "REF.spad" 1701809 1701820 1702435 1702440) (-1018 "REDORDER.spad" 1700985 1701002 1701799 1701804) (-1017 "RECLOS.spad" 1699768 1699788 1700472 1700565) (-1016 "REALSOLV.spad" 1698900 1698909 1699758 1699763) (-1015 "REAL0Q.spad" 1696182 1696197 1698890 1698895) (-1014 "REAL0.spad" 1693010 1693025 1696172 1696177) (-1013 "REAL.spad" 1692882 1692891 1693000 1693005) (-1012 "RDUCEAST.spad" 1692603 1692612 1692872 1692877) (-1011 "RDIV.spad" 1692254 1692279 1692593 1692598) (-1010 "RDIST.spad" 1691817 1691828 1692244 1692249) (-1009 "RDETRS.spad" 1690613 1690631 1691807 1691812) (-1008 "RDETR.spad" 1688720 1688738 1690603 1690608) (-1007 "RDEEFS.spad" 1687793 1687810 1688710 1688715) (-1006 "RDEEF.spad" 1686789 1686806 1687783 1687788) (-1005 "RCFIELD.spad" 1683975 1683984 1686691 1686784) (-1004 "RCFIELD.spad" 1681247 1681258 1683965 1683970) (-1003 "RCAGG.spad" 1679159 1679170 1681237 1681242) (-1002 "RCAGG.spad" 1676998 1677011 1679078 1679083) (-1001 "RATRET.spad" 1676358 1676369 1676988 1676993) (-1000 "RATFACT.spad" 1676050 1676062 1676348 1676353) (-999 "RANDSRC.spad" 1675370 1675378 1676040 1676045) (-998 "RADUTIL.spad" 1675125 1675133 1675360 1675365) (-997 "RADIX.spad" 1672027 1672040 1673592 1673685) (-996 "RADFF.spad" 1670441 1670477 1670559 1670715) (-995 "RADCAT.spad" 1670035 1670043 1670431 1670436) (-994 "RADCAT.spad" 1669627 1669637 1670025 1670030) (-993 "QUEUE.spad" 1668970 1668980 1669234 1669261) (-992 "QUATCT2.spad" 1668589 1668607 1668960 1668965) (-991 "QUATCAT.spad" 1666754 1666764 1668519 1668584) (-990 "QUATCAT.spad" 1664670 1664682 1666437 1666442) (-989 "QUAT.spad" 1663252 1663262 1663594 1663659) (-988 "QUAGG.spad" 1662078 1662088 1663220 1663247) (-987 "QQUTAST.spad" 1661847 1661855 1662068 1662073) (-986 "QFORM.spad" 1661310 1661324 1661837 1661842) (-985 "QFCAT2.spad" 1661001 1661017 1661300 1661305) (-984 "QFCAT.spad" 1659704 1659714 1660903 1660996) (-983 "QFCAT.spad" 1657998 1658010 1659199 1659204) (-982 "QEQUAT.spad" 1657555 1657563 1657988 1657993) (-981 "QCMPACK.spad" 1652302 1652321 1657545 1657550) (-980 "QALGSET2.spad" 1650298 1650316 1652292 1652297) (-979 "QALGSET.spad" 1646375 1646407 1650212 1650217) (-978 "PWFFINTB.spad" 1643685 1643706 1646365 1646370) (-977 "PUSHVAR.spad" 1643014 1643033 1643675 1643680) (-976 "PTRANFN.spad" 1639140 1639150 1643004 1643009) (-975 "PTPACK.spad" 1636228 1636238 1639130 1639135) (-974 "PTFUNC2.spad" 1636049 1636063 1636218 1636223) (-973 "PTCAT.spad" 1635298 1635308 1636017 1636044) (-972 "PSQFR.spad" 1634605 1634629 1635288 1635293) (-971 "PSEUDLIN.spad" 1633463 1633473 1634595 1634600) (-970 "PSETPK.spad" 1618896 1618912 1633341 1633346) (-969 "PSETCAT.spad" 1612816 1612839 1618876 1618891) (-968 "PSETCAT.spad" 1606710 1606735 1612772 1612777) (-967 "PSCURVE.spad" 1605693 1605701 1606700 1606705) (-966 "PSCAT.spad" 1604460 1604489 1605591 1605688) (-965 "PSCAT.spad" 1603317 1603348 1604450 1604455) (-964 "PRTITION.spad" 1602262 1602270 1603307 1603312) (-963 "PRTDAST.spad" 1601981 1601989 1602252 1602257) (-962 "PRS.spad" 1591543 1591560 1601937 1601942) (-961 "PRQAGG.spad" 1590974 1590984 1591511 1591538) (-960 "PROPLOG.spad" 1590377 1590385 1590964 1590969) (-959 "PROPFRML.spad" 1588295 1588306 1590367 1590372) (-958 "PROPERTY.spad" 1587789 1587797 1588285 1588290) (-957 "PRODUCT.spad" 1585469 1585481 1585755 1585810) (-956 "PRINT.spad" 1585221 1585229 1585459 1585464) (-955 "PRIMES.spad" 1583472 1583482 1585211 1585216) (-954 "PRIMELT.spad" 1581453 1581467 1583462 1583467) (-953 "PRIMCAT.spad" 1581076 1581084 1581443 1581448) (-952 "PRIMARR2.spad" 1579799 1579811 1581066 1581071) (-951 "PRIMARR.spad" 1578804 1578814 1578982 1579009) (-950 "PREASSOC.spad" 1578176 1578188 1578794 1578799) (-949 "PR.spad" 1576562 1576574 1577267 1577394) (-948 "PPCURVE.spad" 1575699 1575707 1576552 1576557) (-947 "PORTNUM.spad" 1575474 1575482 1575689 1575694) (-946 "POLYROOT.spad" 1574303 1574325 1575430 1575435) (-945 "POLYLIFT.spad" 1573564 1573587 1574293 1574298) (-944 "POLYCATQ.spad" 1571666 1571688 1573554 1573559) (-943 "POLYCAT.spad" 1565072 1565093 1571534 1571661) (-942 "POLYCAT.spad" 1557780 1557803 1564244 1564249) (-941 "POLY2UP.spad" 1557228 1557242 1557770 1557775) (-940 "POLY2.spad" 1556823 1556835 1557218 1557223) (-939 "POLY.spad" 1554120 1554130 1554637 1554764) (-938 "POLUTIL.spad" 1553061 1553090 1554076 1554081) (-937 "POLTOPOL.spad" 1551809 1551824 1553051 1553056) (-936 "POINT.spad" 1550648 1550658 1550735 1550762) (-935 "PNTHEORY.spad" 1547314 1547322 1550638 1550643) (-934 "PMTOOLS.spad" 1546071 1546085 1547304 1547309) (-933 "PMSYM.spad" 1545616 1545626 1546061 1546066) (-932 "PMQFCAT.spad" 1545203 1545217 1545606 1545611) (-931 "PMPREDFS.spad" 1544647 1544669 1545193 1545198) (-930 "PMPRED.spad" 1544116 1544130 1544637 1544642) (-929 "PMPLCAT.spad" 1543186 1543204 1544048 1544053) (-928 "PMLSAGG.spad" 1542767 1542781 1543176 1543181) (-927 "PMKERNEL.spad" 1542334 1542346 1542757 1542762) (-926 "PMINS.spad" 1541910 1541920 1542324 1542329) (-925 "PMFS.spad" 1541483 1541501 1541900 1541905) (-924 "PMDOWN.spad" 1540769 1540783 1541473 1541478) (-923 "PMASSFS.spad" 1539738 1539754 1540759 1540764) (-922 "PMASS.spad" 1538750 1538758 1539728 1539733) (-921 "PLOTTOOL.spad" 1538530 1538538 1538740 1538745) (-920 "PLOT3D.spad" 1534950 1534958 1538520 1538525) (-919 "PLOT1.spad" 1534091 1534101 1534940 1534945) (-918 "PLOT.spad" 1528922 1528930 1534081 1534086) (-917 "PLEQN.spad" 1516138 1516165 1528912 1528917) (-916 "PINTERPA.spad" 1515920 1515936 1516128 1516133) (-915 "PINTERP.spad" 1515536 1515555 1515910 1515915) (-914 "PID.spad" 1514492 1514500 1515462 1515531) (-913 "PICOERCE.spad" 1514149 1514159 1514482 1514487) (-912 "PI.spad" 1513756 1513764 1514123 1514144) (-911 "PGROEB.spad" 1512353 1512367 1513746 1513751) (-910 "PGE.spad" 1503606 1503614 1512343 1512348) (-909 "PGCD.spad" 1502488 1502505 1503596 1503601) (-908 "PFRPAC.spad" 1501631 1501641 1502478 1502483) (-907 "PFR.spad" 1498288 1498298 1501533 1501626) (-906 "PFOTOOLS.spad" 1497546 1497562 1498278 1498283) (-905 "PFOQ.spad" 1496916 1496934 1497536 1497541) (-904 "PFO.spad" 1496335 1496362 1496906 1496911) (-903 "PFECAT.spad" 1494001 1494009 1496261 1496330) (-902 "PFECAT.spad" 1491695 1491705 1493957 1493962) (-901 "PFBRU.spad" 1489565 1489577 1491685 1491690) (-900 "PFBR.spad" 1487103 1487126 1489555 1489560) (-899 "PF.spad" 1486677 1486689 1486908 1487001) (-898 "PERMGRP.spad" 1481413 1481423 1486667 1486672) (-897 "PERMCAT.spad" 1479965 1479975 1481393 1481408) (-896 "PERMAN.spad" 1478497 1478511 1479955 1479960) (-895 "PERM.spad" 1474178 1474188 1478327 1478342) (-894 "PENDTREE.spad" 1473517 1473527 1473807 1473812) (-893 "PDRING.spad" 1472008 1472018 1473497 1473512) (-892 "PDRING.spad" 1470507 1470519 1471998 1472003) (-891 "PDEPROB.spad" 1469522 1469530 1470497 1470502) (-890 "PDEPACK.spad" 1463524 1463532 1469512 1469517) (-889 "PDECOMP.spad" 1462986 1463003 1463514 1463519) (-888 "PDECAT.spad" 1461340 1461348 1462976 1462981) (-887 "PCOMP.spad" 1461191 1461204 1461330 1461335) (-886 "PBWLB.spad" 1459773 1459790 1461181 1461186) (-885 "PATTERN2.spad" 1459509 1459521 1459763 1459768) (-884 "PATTERN1.spad" 1457811 1457827 1459499 1459504) (-883 "PATTERN.spad" 1452242 1452252 1457801 1457806) (-882 "PATRES2.spad" 1451904 1451918 1452232 1452237) (-881 "PATRES.spad" 1449451 1449463 1451894 1451899) (-880 "PATMATCH.spad" 1447608 1447639 1449159 1449164) (-879 "PATMAB.spad" 1447033 1447043 1447598 1447603) (-878 "PATLRES.spad" 1446117 1446131 1447023 1447028) (-877 "PATAB.spad" 1445881 1445891 1446107 1446112) (-876 "PARTPERM.spad" 1443243 1443251 1445871 1445876) (-875 "PARSURF.spad" 1442671 1442699 1443233 1443238) (-874 "PARSU2.spad" 1442466 1442482 1442661 1442666) (-873 "script-parser.spad" 1441986 1441994 1442456 1442461) (-872 "PARSCURV.spad" 1441414 1441442 1441976 1441981) (-871 "PARSC2.spad" 1441203 1441219 1441404 1441409) (-870 "PARPCURV.spad" 1440661 1440689 1441193 1441198) (-869 "PARPC2.spad" 1440450 1440466 1440651 1440656) (-868 "PAN2EXPR.spad" 1439862 1439870 1440440 1440445) (-867 "PALETTE.spad" 1438832 1438840 1439852 1439857) (-866 "PAIR.spad" 1437815 1437828 1438420 1438425) (-865 "PADICRC.spad" 1435145 1435163 1436320 1436413) (-864 "PADICRAT.spad" 1433160 1433172 1433381 1433474) (-863 "PADICCT.spad" 1431701 1431713 1433086 1433155) (-862 "PADIC.spad" 1431396 1431408 1431627 1431696) (-861 "PADEPAC.spad" 1430075 1430094 1431386 1431391) (-860 "PADE.spad" 1428815 1428831 1430065 1430070) (-859 "OWP.spad" 1428055 1428085 1428673 1428740) (-858 "OVAR.spad" 1427836 1427859 1428045 1428050) (-857 "OUTFORM.spad" 1417132 1417140 1427826 1427831) (-856 "OUTBFILE.spad" 1416550 1416558 1417122 1417127) (-855 "OUTBCON.spad" 1415548 1415556 1416540 1416545) (-854 "OUTBCON.spad" 1414544 1414554 1415538 1415543) (-853 "OUT.spad" 1413628 1413636 1414534 1414539) (-852 "OSI.spad" 1413103 1413111 1413618 1413623) (-851 "OSGROUP.spad" 1413021 1413029 1413093 1413098) (-850 "ORTHPOL.spad" 1411482 1411492 1412938 1412943) (-849 "OREUP.spad" 1410935 1410963 1411162 1411201) (-848 "ORESUP.spad" 1410234 1410258 1410615 1410654) (-847 "OREPCTO.spad" 1408053 1408065 1410154 1410159) (-846 "OREPCAT.spad" 1402110 1402120 1408009 1408048) (-845 "OREPCAT.spad" 1396057 1396069 1401958 1401963) (-844 "ORDSET.spad" 1395223 1395231 1396047 1396052) (-843 "ORDSET.spad" 1394387 1394397 1395213 1395218) (-842 "ORDRING.spad" 1393777 1393785 1394367 1394382) (-841 "ORDRING.spad" 1393175 1393185 1393767 1393772) (-840 "ORDMON.spad" 1393030 1393038 1393165 1393170) (-839 "ORDFUNS.spad" 1392156 1392172 1393020 1393025) (-838 "ORDFIN.spad" 1391976 1391984 1392146 1392151) (-837 "ORDCOMP2.spad" 1391261 1391273 1391966 1391971) (-836 "ORDCOMP.spad" 1389726 1389736 1390808 1390837) (-835 "OPTPROB.spad" 1388364 1388372 1389716 1389721) (-834 "OPTPACK.spad" 1380749 1380757 1388354 1388359) (-833 "OPTCAT.spad" 1378424 1378432 1380739 1380744) (-832 "OPSIG.spad" 1378076 1378084 1378414 1378419) (-831 "OPQUERY.spad" 1377625 1377633 1378066 1378071) (-830 "OPERCAT.spad" 1377213 1377223 1377615 1377620) (-829 "OPERCAT.spad" 1376799 1376811 1377203 1377208) (-828 "OP.spad" 1376541 1376551 1376621 1376688) (-827 "ONECOMP2.spad" 1375959 1375971 1376531 1376536) (-826 "ONECOMP.spad" 1374704 1374714 1375506 1375535) (-825 "OMSERVER.spad" 1373706 1373714 1374694 1374699) (-824 "OMSAGG.spad" 1373494 1373504 1373662 1373701) (-823 "OMPKG.spad" 1372106 1372114 1373484 1373489) (-822 "OMLO.spad" 1371531 1371543 1371992 1372031) (-821 "OMEXPR.spad" 1371365 1371375 1371521 1371526) (-820 "OMERRK.spad" 1370399 1370407 1371355 1371360) (-819 "OMERR.spad" 1369942 1369950 1370389 1370394) (-818 "OMENC.spad" 1369286 1369294 1369932 1369937) (-817 "OMDEV.spad" 1363575 1363583 1369276 1369281) (-816 "OMCONN.spad" 1362984 1362992 1363565 1363570) (-815 "OM.spad" 1361949 1361957 1362974 1362979) (-814 "OINTDOM.spad" 1361712 1361720 1361875 1361944) (-813 "OFMONOID.spad" 1357899 1357909 1361702 1361707) (-812 "ODVAR.spad" 1357160 1357170 1357889 1357894) (-811 "ODR.spad" 1356804 1356830 1356972 1357121) (-810 "ODPOL.spad" 1354150 1354160 1354490 1354617) (-809 "ODP.spad" 1343997 1344017 1344370 1344501) (-808 "ODETOOLS.spad" 1342580 1342599 1343987 1343992) (-807 "ODESYS.spad" 1340230 1340247 1342570 1342575) (-806 "ODERTRIC.spad" 1336171 1336188 1340187 1340192) (-805 "ODERED.spad" 1335558 1335582 1336161 1336166) (-804 "ODERAT.spad" 1333111 1333128 1335548 1335553) (-803 "ODEPRRIC.spad" 1330002 1330024 1333101 1333106) (-802 "ODEPROB.spad" 1329259 1329267 1329992 1329997) (-801 "ODEPRIM.spad" 1326533 1326555 1329249 1329254) (-800 "ODEPAL.spad" 1325909 1325933 1326523 1326528) (-799 "ODEPACK.spad" 1312511 1312519 1325899 1325904) (-798 "ODEINT.spad" 1311942 1311958 1312501 1312506) (-797 "ODEIFTBL.spad" 1309337 1309345 1311932 1311937) (-796 "ODEEF.spad" 1304708 1304724 1309327 1309332) (-795 "ODECONST.spad" 1304227 1304245 1304698 1304703) (-794 "ODECAT.spad" 1302823 1302831 1304217 1304222) (-793 "OCTCT2.spad" 1302467 1302488 1302813 1302818) (-792 "OCT.spad" 1300605 1300615 1301321 1301360) (-791 "OCAMON.spad" 1300453 1300461 1300595 1300600) (-790 "OC.spad" 1298227 1298237 1300409 1300448) (-789 "OC.spad" 1295726 1295738 1297910 1297915) (-788 "OASGP.spad" 1295541 1295549 1295716 1295721) (-787 "OAMONS.spad" 1295061 1295069 1295531 1295536) (-786 "OAMON.spad" 1294922 1294930 1295051 1295056) (-785 "OAGROUP.spad" 1294784 1294792 1294912 1294917) (-784 "NUMTUBE.spad" 1294371 1294387 1294774 1294779) (-783 "NUMQUAD.spad" 1282233 1282241 1294361 1294366) (-782 "NUMODE.spad" 1273369 1273377 1282223 1282228) (-781 "NUMINT.spad" 1270927 1270935 1273359 1273364) (-780 "NUMFMT.spad" 1269767 1269775 1270917 1270922) (-779 "NUMERIC.spad" 1261839 1261849 1269572 1269577) (-778 "NTSCAT.spad" 1260341 1260357 1261807 1261834) (-777 "NTPOLFN.spad" 1259886 1259896 1260258 1260263) (-776 "NSUP2.spad" 1259278 1259290 1259876 1259881) (-775 "NSUP.spad" 1252288 1252298 1256828 1256981) (-774 "NSMP.spad" 1248483 1248502 1248791 1248918) (-773 "NREP.spad" 1246855 1246869 1248473 1248478) (-772 "NPCOEF.spad" 1246101 1246121 1246845 1246850) (-771 "NORMRETR.spad" 1245699 1245738 1246091 1246096) (-770 "NORMPK.spad" 1243601 1243620 1245689 1245694) (-769 "NORMMA.spad" 1243289 1243315 1243591 1243596) (-768 "NONE1.spad" 1242965 1242975 1243279 1243284) (-767 "NONE.spad" 1242706 1242714 1242955 1242960) (-766 "NODE1.spad" 1242175 1242191 1242696 1242701) (-765 "NNI.spad" 1241062 1241070 1242149 1242170) (-764 "NLINSOL.spad" 1239684 1239694 1241052 1241057) (-763 "NIPROB.spad" 1238225 1238233 1239674 1239679) (-762 "NFINTBAS.spad" 1235685 1235702 1238215 1238220) (-761 "NETCLT.spad" 1235659 1235670 1235675 1235680) (-760 "NCODIV.spad" 1233857 1233873 1235649 1235654) (-759 "NCNTFRAC.spad" 1233499 1233513 1233847 1233852) (-758 "NCEP.spad" 1231659 1231673 1233489 1233494) (-757 "NASRING.spad" 1231255 1231263 1231649 1231654) (-756 "NASRING.spad" 1230849 1230859 1231245 1231250) (-755 "NARNG.spad" 1230193 1230201 1230839 1230844) (-754 "NARNG.spad" 1229535 1229545 1230183 1230188) (-753 "NAGSP.spad" 1228608 1228616 1229525 1229530) (-752 "NAGS.spad" 1218133 1218141 1228598 1228603) (-751 "NAGF07.spad" 1216526 1216534 1218123 1218128) (-750 "NAGF04.spad" 1210758 1210766 1216516 1216521) (-749 "NAGF02.spad" 1204567 1204575 1210748 1210753) (-748 "NAGF01.spad" 1200170 1200178 1204557 1204562) (-747 "NAGE04.spad" 1193630 1193638 1200160 1200165) (-746 "NAGE02.spad" 1183972 1183980 1193620 1193625) (-745 "NAGE01.spad" 1179856 1179864 1183962 1183967) (-744 "NAGD03.spad" 1177776 1177784 1179846 1179851) (-743 "NAGD02.spad" 1170307 1170315 1177766 1177771) (-742 "NAGD01.spad" 1164420 1164428 1170297 1170302) (-741 "NAGC06.spad" 1160207 1160215 1164410 1164415) (-740 "NAGC05.spad" 1158676 1158684 1160197 1160202) (-739 "NAGC02.spad" 1157931 1157939 1158666 1158671) (-738 "NAALG.spad" 1157466 1157476 1157899 1157926) (-737 "NAALG.spad" 1157021 1157033 1157456 1157461) (-736 "MULTSQFR.spad" 1153979 1153996 1157011 1157016) (-735 "MULTFACT.spad" 1153362 1153379 1153969 1153974) (-734 "MTSCAT.spad" 1151396 1151417 1153260 1153357) (-733 "MTHING.spad" 1151053 1151063 1151386 1151391) (-732 "MSYSCMD.spad" 1150487 1150495 1151043 1151048) (-731 "MSETAGG.spad" 1150332 1150342 1150455 1150482) (-730 "MSET.spad" 1148274 1148284 1150038 1150077) (-729 "MRING.spad" 1145245 1145257 1147982 1148049) (-728 "MRF2.spad" 1144813 1144827 1145235 1145240) (-727 "MRATFAC.spad" 1144359 1144376 1144803 1144808) (-726 "MPRFF.spad" 1142389 1142408 1144349 1144354) (-725 "MPOLY.spad" 1139824 1139839 1140183 1140310) (-724 "MPCPF.spad" 1139088 1139107 1139814 1139819) (-723 "MPC3.spad" 1138903 1138943 1139078 1139083) (-722 "MPC2.spad" 1138545 1138578 1138893 1138898) (-721 "MONOTOOL.spad" 1136880 1136897 1138535 1138540) (-720 "MONOID.spad" 1136199 1136207 1136870 1136875) (-719 "MONOID.spad" 1135516 1135526 1136189 1136194) (-718 "MONOGEN.spad" 1134262 1134275 1135376 1135511) (-717 "MONOGEN.spad" 1133030 1133045 1134146 1134151) (-716 "MONADWU.spad" 1131044 1131052 1133020 1133025) (-715 "MONADWU.spad" 1129056 1129066 1131034 1131039) (-714 "MONAD.spad" 1128200 1128208 1129046 1129051) (-713 "MONAD.spad" 1127342 1127352 1128190 1128195) (-712 "MOEBIUS.spad" 1126028 1126042 1127322 1127337) (-711 "MODULE.spad" 1125898 1125908 1125996 1126023) (-710 "MODULE.spad" 1125788 1125800 1125888 1125893) (-709 "MODRING.spad" 1125119 1125158 1125768 1125783) (-708 "MODOP.spad" 1123778 1123790 1124941 1125008) (-707 "MODMONOM.spad" 1123507 1123525 1123768 1123773) (-706 "MODMON.spad" 1120266 1120282 1120985 1121138) (-705 "MODFIELD.spad" 1119624 1119663 1120168 1120261) (-704 "MMLFORM.spad" 1118484 1118492 1119614 1119619) (-703 "MMAP.spad" 1118224 1118258 1118474 1118479) (-702 "MLO.spad" 1116651 1116661 1118180 1118219) (-701 "MLIFT.spad" 1115223 1115240 1116641 1116646) (-700 "MKUCFUNC.spad" 1114756 1114774 1115213 1115218) (-699 "MKRECORD.spad" 1114358 1114371 1114746 1114751) (-698 "MKFUNC.spad" 1113739 1113749 1114348 1114353) (-697 "MKFLCFN.spad" 1112695 1112705 1113729 1113734) (-696 "MKCHSET.spad" 1112560 1112570 1112685 1112690) (-695 "MKBCFUNC.spad" 1112045 1112063 1112550 1112555) (-694 "MINT.spad" 1111484 1111492 1111947 1112040) (-693 "MHROWRED.spad" 1109985 1109995 1111474 1111479) (-692 "MFLOAT.spad" 1108501 1108509 1109875 1109980) (-691 "MFINFACT.spad" 1107901 1107923 1108491 1108496) (-690 "MESH.spad" 1105638 1105646 1107891 1107896) (-689 "MDDFACT.spad" 1103831 1103841 1105628 1105633) (-688 "MDAGG.spad" 1103118 1103128 1103811 1103826) (-687 "MCMPLX.spad" 1099104 1099112 1099718 1099907) (-686 "MCDEN.spad" 1098312 1098324 1099094 1099099) (-685 "MCALCFN.spad" 1095414 1095440 1098302 1098307) (-684 "MAYBE.spad" 1094698 1094709 1095404 1095409) (-683 "MATSTOR.spad" 1091974 1091984 1094688 1094693) (-682 "MATRIX.spad" 1090678 1090688 1091162 1091189) (-681 "MATLIN.spad" 1088004 1088028 1090562 1090567) (-680 "MATCAT2.spad" 1087272 1087320 1087994 1087999) (-679 "MATCAT.spad" 1078857 1078879 1087240 1087267) (-678 "MATCAT.spad" 1070314 1070338 1078699 1078704) (-677 "MAPPKG3.spad" 1069213 1069227 1070304 1070309) (-676 "MAPPKG2.spad" 1068547 1068559 1069203 1069208) (-675 "MAPPKG1.spad" 1067365 1067375 1068537 1068542) (-674 "MAPPAST.spad" 1066678 1066686 1067355 1067360) (-673 "MAPHACK3.spad" 1066486 1066500 1066668 1066673) (-672 "MAPHACK2.spad" 1066251 1066263 1066476 1066481) (-671 "MAPHACK1.spad" 1065881 1065891 1066241 1066246) (-670 "MAGMA.spad" 1063671 1063688 1065871 1065876) (-669 "MACROAST.spad" 1063250 1063258 1063661 1063666) (-668 "M3D.spad" 1060946 1060956 1062628 1062633) (-667 "LZSTAGG.spad" 1058174 1058184 1060936 1060941) (-666 "LZSTAGG.spad" 1055400 1055412 1058164 1058169) (-665 "LWORD.spad" 1052105 1052122 1055390 1055395) (-664 "LSTAST.spad" 1051889 1051897 1052095 1052100) (-663 "LSQM.spad" 1050112 1050126 1050510 1050561) (-662 "LSPP.spad" 1049645 1049662 1050102 1050107) (-661 "LSMP1.spad" 1047466 1047480 1049635 1049640) (-660 "LSMP.spad" 1046313 1046341 1047456 1047461) (-659 "LSAGG.spad" 1045982 1045992 1046281 1046308) (-658 "LSAGG.spad" 1045671 1045683 1045972 1045977) (-657 "LPOLY.spad" 1044625 1044644 1045527 1045596) (-656 "LPEFRAC.spad" 1043882 1043892 1044615 1044620) (-655 "LOGIC.spad" 1043484 1043492 1043872 1043877) (-654 "LOGIC.spad" 1043084 1043094 1043474 1043479) (-653 "LODOOPS.spad" 1042002 1042014 1043074 1043079) (-652 "LODOF.spad" 1041046 1041063 1041959 1041964) (-651 "LODOCAT.spad" 1039704 1039714 1041002 1041041) (-650 "LODOCAT.spad" 1038360 1038372 1039660 1039665) (-649 "LODO2.spad" 1037633 1037645 1038040 1038079) (-648 "LODO1.spad" 1037033 1037043 1037313 1037352) (-647 "LODO.spad" 1036417 1036433 1036713 1036752) (-646 "LODEEF.spad" 1035189 1035207 1036407 1036412) (-645 "LO.spad" 1034590 1034604 1035123 1035150) (-644 "LNAGG.spad" 1030392 1030402 1034580 1034585) (-643 "LNAGG.spad" 1026158 1026170 1030348 1030353) (-642 "LMOPS.spad" 1022894 1022911 1026148 1026153) (-641 "LMODULE.spad" 1022536 1022546 1022884 1022889) (-640 "LMDICT.spad" 1021819 1021829 1022087 1022114) (-639 "LITERAL.spad" 1021725 1021736 1021809 1021814) (-638 "LIST3.spad" 1021016 1021030 1021715 1021720) (-637 "LIST2MAP.spad" 1017893 1017905 1021006 1021011) (-636 "LIST2.spad" 1016533 1016545 1017883 1017888) (-635 "LIST.spad" 1014251 1014261 1015680 1015707) (-634 "LINEXP.spad" 1013683 1013693 1014231 1014246) (-633 "LINDEP.spad" 1012460 1012472 1013595 1013600) (-632 "LIMITRF.spad" 1010393 1010403 1012450 1012455) (-631 "LIMITPS.spad" 1009283 1009296 1010383 1010388) (-630 "LIECAT.spad" 1008759 1008769 1009209 1009278) (-629 "LIECAT.spad" 1008263 1008275 1008715 1008720) (-628 "LIE.spad" 1006277 1006289 1007553 1007698) (-627 "LIB.spad" 1004325 1004333 1004936 1004951) (-626 "LGROBP.spad" 1001678 1001697 1004315 1004320) (-625 "LFCAT.spad" 1000697 1000705 1001668 1001673) (-624 "LF.spad" 999616 999632 1000687 1000692) (-623 "LEXTRIPK.spad" 995119 995134 999606 999611) (-622 "LEXP.spad" 993122 993149 995099 995114) (-621 "LETAST.spad" 992821 992829 993112 993117) (-620 "LEADCDET.spad" 991205 991222 992811 992816) (-619 "LAZM3PK.spad" 989909 989931 991195 991200) (-618 "LAUPOL.spad" 988598 988611 989502 989571) (-617 "LAPLACE.spad" 988171 988187 988588 988593) (-616 "LALG.spad" 987947 987957 988151 988166) (-615 "LALG.spad" 987731 987743 987937 987942) (-614 "LA.spad" 987171 987185 987653 987692) (-613 "KVTFROM.spad" 986906 986916 987161 987166) (-612 "KTVLOGIC.spad" 986329 986337 986896 986901) (-611 "KRCFROM.spad" 986067 986077 986319 986324) (-610 "KOVACIC.spad" 984780 984797 986057 986062) (-609 "KONVERT.spad" 984502 984512 984770 984775) (-608 "KOERCE.spad" 984239 984249 984492 984497) (-607 "KERNEL2.spad" 983942 983954 984229 984234) (-606 "KERNEL.spad" 982477 982487 983726 983731) (-605 "KDAGG.spad" 981580 981602 982457 982472) (-604 "KDAGG.spad" 980691 980715 981570 981575) (-603 "KAFILE.spad" 979654 979670 979889 979916) (-602 "JORDAN.spad" 977481 977493 978944 979089) (-601 "JOINAST.spad" 977175 977183 977471 977476) (-600 "JAVACODE.spad" 977041 977049 977165 977170) (-599 "IXAGG.spad" 975164 975188 977031 977036) (-598 "IXAGG.spad" 973142 973168 975011 975016) (-597 "IVECTOR.spad" 971913 971928 972068 972095) (-596 "ITUPLE.spad" 971058 971068 971903 971908) (-595 "ITRIGMNP.spad" 969869 969888 971048 971053) (-594 "ITFUN3.spad" 969363 969377 969859 969864) (-593 "ITFUN2.spad" 969093 969105 969353 969358) (-592 "ITAYLOR.spad" 966885 966900 968929 969054) (-591 "ISUPS.spad" 959296 959311 965859 965956) (-590 "ISUMP.spad" 958793 958809 959286 959291) (-589 "ISTRING.spad" 957796 957809 957962 957989) (-588 "ISAST.spad" 957515 957523 957786 957791) (-587 "IRURPK.spad" 956228 956247 957505 957510) (-586 "IRSN.spad" 954188 954196 956218 956223) (-585 "IRRF2F.spad" 952663 952673 954144 954149) (-584 "IRREDFFX.spad" 952264 952275 952653 952658) (-583 "IROOT.spad" 950595 950605 952254 952259) (-582 "IR2F.spad" 949795 949811 950585 950590) (-581 "IR2.spad" 948815 948831 949785 949790) (-580 "IR.spad" 946604 946618 948670 948697) (-579 "IPRNTPK.spad" 946364 946372 946594 946599) (-578 "IPF.spad" 945929 945941 946169 946262) (-577 "IPADIC.spad" 945690 945716 945855 945924) (-576 "IP4ADDR.spad" 945247 945255 945680 945685) (-575 "IOMODE.spad" 944868 944876 945237 945242) (-574 "IOBFILE.spad" 944229 944237 944858 944863) (-573 "IOBCON.spad" 944094 944102 944219 944224) (-572 "INVLAPLA.spad" 943739 943755 944084 944089) (-571 "INTTR.spad" 936997 937014 943729 943734) (-570 "INTTOOLS.spad" 934708 934724 936571 936576) (-569 "INTSLPE.spad" 934014 934022 934698 934703) (-568 "INTRVL.spad" 933580 933590 933928 934009) (-567 "INTRF.spad" 931944 931958 933570 933575) (-566 "INTRET.spad" 931376 931386 931934 931939) (-565 "INTRAT.spad" 930051 930068 931366 931371) (-564 "INTPM.spad" 928414 928430 929694 929699) (-563 "INTPAF.spad" 926189 926207 928346 928351) (-562 "INTPACK.spad" 916499 916507 926179 926184) (-561 "INTHERTR.spad" 915765 915782 916489 916494) (-560 "INTHERAL.spad" 915431 915455 915755 915760) (-559 "INTHEORY.spad" 911844 911852 915421 915426) (-558 "INTG0.spad" 905325 905343 911776 911781) (-557 "INTFTBL.spad" 900779 900787 905315 905320) (-556 "INTFACT.spad" 899838 899848 900769 900774) (-555 "INTEF.spad" 898155 898171 899828 899833) (-554 "INTDOM.spad" 896770 896778 898081 898150) (-553 "INTDOM.spad" 895447 895457 896760 896765) (-552 "INTCAT.spad" 893700 893710 895361 895442) (-551 "INTBIT.spad" 893203 893211 893690 893695) (-550 "INTALG.spad" 892385 892412 893193 893198) (-549 "INTAF.spad" 891877 891893 892375 892380) (-548 "INTABL.spad" 890395 890426 890558 890585) (-547 "INT8.spad" 890275 890283 890385 890390) (-546 "INT32.spad" 890154 890162 890265 890270) (-545 "INT16.spad" 890033 890041 890144 890149) (-544 "INT.spad" 889394 889402 889887 890028) (-543 "INS.spad" 886861 886869 889296 889389) (-542 "INS.spad" 884414 884424 886851 886856) (-541 "INPSIGN.spad" 883870 883883 884404 884409) (-540 "INPRODPF.spad" 882936 882955 883860 883865) (-539 "INPRODFF.spad" 881994 882018 882926 882931) (-538 "INNMFACT.spad" 880965 880982 881984 881989) (-537 "INMODGCD.spad" 880449 880479 880955 880960) (-536 "INFSP.spad" 878734 878756 880439 880444) (-535 "INFPROD0.spad" 877784 877803 878724 878729) (-534 "INFORM1.spad" 877409 877419 877774 877779) (-533 "INFORM.spad" 874570 874578 877399 877404) (-532 "INFINITY.spad" 874122 874130 874560 874565) (-531 "INETCLTS.spad" 874099 874107 874112 874117) (-530 "INEP.spad" 872631 872653 874089 874094) (-529 "INDE.spad" 872360 872377 872621 872626) (-528 "INCRMAPS.spad" 871781 871791 872350 872355) (-527 "INBFILE.spad" 870853 870861 871771 871776) (-526 "INBFF.spad" 866623 866634 870843 870848) (-525 "INBCON.spad" 864911 864919 866613 866618) (-524 "INBCON.spad" 863197 863207 864901 864906) (-523 "INAST.spad" 862862 862870 863187 863192) (-522 "IMPTAST.spad" 862570 862578 862852 862857) (-521 "IMATRIX.spad" 861515 861541 862027 862054) (-520 "IMATQF.spad" 860609 860653 861471 861476) (-519 "IMATLIN.spad" 859214 859238 860565 860570) (-518 "ILIST.spad" 857870 857885 858397 858424) (-517 "IIARRAY2.spad" 857258 857296 857477 857504) (-516 "IFF.spad" 856668 856684 856939 857032) (-515 "IFAST.spad" 856282 856290 856658 856663) (-514 "IFARRAY.spad" 853769 853784 855465 855492) (-513 "IFAMON.spad" 853631 853648 853725 853730) (-512 "IEVALAB.spad" 853020 853032 853621 853626) (-511 "IEVALAB.spad" 852407 852421 853010 853015) (-510 "IDPOAMS.spad" 852163 852175 852397 852402) (-509 "IDPOAM.spad" 851883 851895 852153 852158) (-508 "IDPO.spad" 851681 851693 851873 851878) (-507 "IDPC.spad" 850615 850627 851671 851676) (-506 "IDPAM.spad" 850360 850372 850605 850610) (-505 "IDPAG.spad" 850107 850119 850350 850355) (-504 "IDENT.spad" 849879 849887 850097 850102) (-503 "IDECOMP.spad" 847116 847134 849869 849874) (-502 "IDEAL.spad" 842039 842078 847051 847056) (-501 "ICDEN.spad" 841190 841206 842029 842034) (-500 "ICARD.spad" 840379 840387 841180 841185) (-499 "IBPTOOLS.spad" 838972 838989 840369 840374) (-498 "IBITS.spad" 838171 838184 838608 838635) (-497 "IBATOOL.spad" 835046 835065 838161 838166) (-496 "IBACHIN.spad" 833533 833548 835036 835041) (-495 "IARRAY2.spad" 832521 832547 833140 833167) (-494 "IARRAY1.spad" 831566 831581 831704 831731) (-493 "IAN.spad" 829779 829787 831382 831475) (-492 "IALGFACT.spad" 829380 829413 829769 829774) (-491 "HYPCAT.spad" 828804 828812 829370 829375) (-490 "HYPCAT.spad" 828226 828236 828794 828799) (-489 "HOSTNAME.spad" 828034 828042 828216 828221) (-488 "HOMOTOP.spad" 827777 827787 828024 828029) (-487 "HOAGG.spad" 825045 825055 827767 827772) (-486 "HOAGG.spad" 822088 822100 824812 824817) (-485 "HEXADEC.spad" 820190 820198 820555 820648) (-484 "HEUGCD.spad" 819205 819216 820180 820185) (-483 "HELLFDIV.spad" 818795 818819 819195 819200) (-482 "HEAP.spad" 818187 818197 818402 818429) (-481 "HEADAST.spad" 817718 817726 818177 818182) (-480 "HDP.spad" 807561 807577 807938 808069) (-479 "HDMP.spad" 804737 804752 805355 805482) (-478 "HB.spad" 802974 802982 804727 804732) (-477 "HASHTBL.spad" 801444 801475 801655 801682) (-476 "HASAST.spad" 801160 801168 801434 801439) (-475 "HACKPI.spad" 800643 800651 801062 801155) (-474 "GTSET.spad" 799582 799598 800289 800316) (-473 "GSTBL.spad" 798101 798136 798275 798290) (-472 "GSERIES.spad" 795268 795295 796233 796382) (-471 "GROUP.spad" 794537 794545 795248 795263) (-470 "GROUP.spad" 793814 793824 794527 794532) (-469 "GROEBSOL.spad" 792302 792323 793804 793809) (-468 "GRMOD.spad" 790873 790885 792292 792297) (-467 "GRMOD.spad" 789442 789456 790863 790868) (-466 "GRIMAGE.spad" 782047 782055 789432 789437) (-465 "GRDEF.spad" 780426 780434 782037 782042) (-464 "GRAY.spad" 778885 778893 780416 780421) (-463 "GRALG.spad" 777932 777944 778875 778880) (-462 "GRALG.spad" 776977 776991 777922 777927) (-461 "GPOLSET.spad" 776431 776454 776659 776686) (-460 "GOSPER.spad" 775696 775714 776421 776426) (-459 "GMODPOL.spad" 774834 774861 775664 775691) (-458 "GHENSEL.spad" 773903 773917 774824 774829) (-457 "GENUPS.spad" 770004 770017 773893 773898) (-456 "GENUFACT.spad" 769581 769591 769994 769999) (-455 "GENPGCD.spad" 769165 769182 769571 769576) (-454 "GENMFACT.spad" 768617 768636 769155 769160) (-453 "GENEEZ.spad" 766556 766569 768607 768612) (-452 "GDMP.spad" 763574 763591 764350 764477) (-451 "GCNAALG.spad" 757469 757496 763368 763435) (-450 "GCDDOM.spad" 756641 756649 757395 757464) (-449 "GCDDOM.spad" 755875 755885 756631 756636) (-448 "GBINTERN.spad" 751895 751933 755865 755870) (-447 "GBF.spad" 747652 747690 751885 751890) (-446 "GBEUCLID.spad" 745526 745564 747642 747647) (-445 "GB.spad" 743044 743082 745482 745487) (-444 "GAUSSFAC.spad" 742341 742349 743034 743039) (-443 "GALUTIL.spad" 740663 740673 742297 742302) (-442 "GALPOLYU.spad" 739109 739122 740653 740658) (-441 "GALFACTU.spad" 737274 737293 739099 739104) (-440 "GALFACT.spad" 727407 727418 737264 737269) (-439 "FVFUN.spad" 724430 724438 727397 727402) (-438 "FVC.spad" 723482 723490 724420 724425) (-437 "FUNCTION.spad" 723331 723343 723472 723477) (-436 "FTEM.spad" 722494 722502 723321 723326) (-435 "FT.spad" 720790 720798 722484 722489) (-434 "FSUPFACT.spad" 719690 719709 720726 720731) (-433 "FST.spad" 717776 717784 719680 719685) (-432 "FSRED.spad" 717254 717270 717766 717771) (-431 "FSPRMELT.spad" 716078 716094 717211 717216) (-430 "FSPECF.spad" 714155 714171 716068 716073) (-429 "FSINT.spad" 713813 713829 714145 714150) (-428 "FSERIES.spad" 713000 713012 713633 713732) (-427 "FSCINT.spad" 712313 712329 712990 712995) (-426 "FSAGG2.spad" 711012 711028 712303 712308) (-425 "FSAGG.spad" 710129 710139 710968 711007) (-424 "FSAGG.spad" 709208 709220 710049 710054) (-423 "FS2UPS.spad" 703691 703725 709198 709203) (-422 "FS2EXPXP.spad" 702814 702837 703681 703686) (-421 "FS2.spad" 702459 702475 702804 702809) (-420 "FS.spad" 696521 696531 702234 702454) (-419 "FS.spad" 690361 690373 696076 696081) (-418 "FRUTIL.spad" 689303 689313 690351 690356) (-417 "FRNAALG.spad" 684390 684400 689245 689298) (-416 "FRNAALG.spad" 679489 679501 684346 684351) (-415 "FRNAAF2.spad" 678943 678961 679479 679484) (-414 "FRMOD.spad" 678337 678367 678874 678879) (-413 "FRIDEAL2.spad" 677939 677971 678327 678332) (-412 "FRIDEAL.spad" 677134 677155 677919 677934) (-411 "FRETRCT.spad" 676645 676655 677124 677129) (-410 "FRETRCT.spad" 676022 676034 676503 676508) (-409 "FRAMALG.spad" 674350 674363 675978 676017) (-408 "FRAMALG.spad" 672710 672725 674340 674345) (-407 "FRAC2.spad" 672313 672325 672700 672705) (-406 "FRAC.spad" 669412 669422 669815 669988) (-405 "FR2.spad" 668746 668758 669402 669407) (-404 "FR.spad" 662467 662477 667770 667839) (-403 "FPS.spad" 659276 659284 662357 662462) (-402 "FPS.spad" 656113 656123 659196 659201) (-401 "FPC.spad" 655155 655163 656015 656108) (-400 "FPC.spad" 654283 654293 655145 655150) (-399 "FPATMAB.spad" 654045 654055 654273 654278) (-398 "FPARFRAC.spad" 652518 652535 654035 654040) (-397 "FORTRAN.spad" 651024 651067 652508 652513) (-396 "FORTFN.spad" 648194 648202 651014 651019) (-395 "FORTCAT.spad" 647878 647886 648184 648189) (-394 "FORT.spad" 646807 646815 647868 647873) (-393 "FORMULA1.spad" 646286 646296 646797 646802) (-392 "FORMULA.spad" 643750 643758 646276 646281) (-391 "FORDER.spad" 643441 643465 643740 643745) (-390 "FOP.spad" 642642 642650 643431 643436) (-389 "FNLA.spad" 642066 642088 642610 642637) (-388 "FNCAT.spad" 640653 640661 642056 642061) (-387 "FNAME.spad" 640545 640553 640643 640648) (-386 "FMTC.spad" 640343 640351 640471 640540) (-385 "FMONOID.spad" 637398 637408 640299 640304) (-384 "FMFUN.spad" 634428 634436 637388 637393) (-383 "FMCAT.spad" 632082 632100 634396 634423) (-382 "FMC.spad" 631134 631142 632072 632077) (-381 "FM1.spad" 630491 630503 631068 631095) (-380 "FM.spad" 630186 630198 630425 630452) (-379 "FLOATRP.spad" 627907 627921 630176 630181) (-378 "FLOATCP.spad" 625324 625338 627897 627902) (-377 "FLOAT.spad" 618612 618620 625190 625319) (-376 "FLINEXP.spad" 618324 618334 618592 618607) (-375 "FLINEXP.spad" 617990 618002 618260 618265) (-374 "FLASORT.spad" 617310 617322 617980 617985) (-373 "FLALG.spad" 614956 614975 617236 617305) (-372 "FLAGG2.spad" 613637 613653 614946 614951) (-371 "FLAGG.spad" 610655 610665 613617 613632) (-370 "FLAGG.spad" 607574 607586 610538 610543) (-369 "FINRALG.spad" 605603 605616 607530 607569) (-368 "FINRALG.spad" 603558 603573 605487 605492) (-367 "FINITE.spad" 602710 602718 603548 603553) (-366 "FINAALG.spad" 591691 591701 602652 602705) (-365 "FINAALG.spad" 580684 580696 591647 591652) (-364 "FILECAT.spad" 579202 579219 580674 580679) (-363 "FILE.spad" 578785 578795 579192 579197) (-362 "FIELD.spad" 578191 578199 578687 578780) (-361 "FIELD.spad" 577683 577693 578181 578186) (-360 "FGROUP.spad" 576292 576302 577663 577678) (-359 "FGLMICPK.spad" 575079 575094 576282 576287) (-358 "FFX.spad" 574454 574469 574795 574888) (-357 "FFSLPE.spad" 573943 573964 574444 574449) (-356 "FFPOLY2.spad" 573003 573020 573933 573938) (-355 "FFPOLY.spad" 564255 564266 572993 572998) (-354 "FFP.spad" 563652 563672 563971 564064) (-353 "FFNBX.spad" 562164 562184 563368 563461) (-352 "FFNBP.spad" 560677 560694 561880 561973) (-351 "FFNB.spad" 559142 559163 560358 560451) (-350 "FFINTBAS.spad" 556556 556575 559132 559137) (-349 "FFIELDC.spad" 554131 554139 556458 556551) (-348 "FFIELDC.spad" 551792 551802 554121 554126) (-347 "FFHOM.spad" 550540 550557 551782 551787) (-346 "FFF.spad" 547975 547986 550530 550535) (-345 "FFCGX.spad" 546822 546842 547691 547784) (-344 "FFCGP.spad" 545711 545731 546538 546631) (-343 "FFCG.spad" 544503 544524 545392 545485) (-342 "FFCAT2.spad" 544248 544288 544493 544498) (-341 "FFCAT.spad" 537275 537297 544087 544243) (-340 "FFCAT.spad" 530381 530405 537195 537200) (-339 "FF.spad" 529829 529845 530062 530155) (-338 "FEXPR.spad" 521538 521584 529585 529624) (-337 "FEVALAB.spad" 521244 521254 521528 521533) (-336 "FEVALAB.spad" 520735 520747 521021 521026) (-335 "FDIVCAT.spad" 518777 518801 520725 520730) (-334 "FDIVCAT.spad" 516817 516843 518767 518772) (-333 "FDIV2.spad" 516471 516511 516807 516812) (-332 "FDIV.spad" 515913 515937 516461 516466) (-331 "FCPAK1.spad" 514466 514474 515903 515908) (-330 "FCOMP.spad" 513845 513855 514456 514461) (-329 "FC.spad" 503760 503768 513835 513840) (-328 "FAXF.spad" 496695 496709 503662 503755) (-327 "FAXF.spad" 489682 489698 496651 496656) (-326 "FARRAY.spad" 487828 487838 488865 488892) (-325 "FAMR.spad" 485948 485960 487726 487823) (-324 "FAMR.spad" 484052 484066 485832 485837) (-323 "FAMONOID.spad" 483702 483712 484006 484011) (-322 "FAMONC.spad" 481924 481936 483692 483697) (-321 "FAGROUP.spad" 481530 481540 481820 481847) (-320 "FACUTIL.spad" 479726 479743 481520 481525) (-319 "FACTFUNC.spad" 478902 478912 479716 479721) (-318 "EXPUPXS.spad" 475735 475758 477034 477183) (-317 "EXPRTUBE.spad" 472963 472971 475725 475730) (-316 "EXPRODE.spad" 469835 469851 472953 472958) (-315 "EXPR2UPS.spad" 465927 465940 469825 469830) (-314 "EXPR2.spad" 465630 465642 465917 465922) (-313 "EXPR.spad" 460905 460915 461619 462026) (-312 "EXPEXPAN.spad" 457843 457868 458477 458570) (-311 "EXITAST.spad" 457579 457587 457833 457838) (-310 "EXIT.spad" 457250 457258 457569 457574) (-309 "EVALCYC.spad" 456708 456722 457240 457245) (-308 "EVALAB.spad" 456272 456282 456698 456703) (-307 "EVALAB.spad" 455834 455846 456262 456267) (-306 "EUCDOM.spad" 453376 453384 455760 455829) (-305 "EUCDOM.spad" 450980 450990 453366 453371) (-304 "ESTOOLS2.spad" 450581 450595 450970 450975) (-303 "ESTOOLS1.spad" 450266 450277 450571 450576) (-302 "ESTOOLS.spad" 442106 442114 450256 450261) (-301 "ESCONT1.spad" 441855 441867 442096 442101) (-300 "ESCONT.spad" 438628 438636 441845 441850) (-299 "ES2.spad" 438123 438139 438618 438623) (-298 "ES1.spad" 437689 437705 438113 438118) (-297 "ES.spad" 430236 430244 437679 437684) (-296 "ES.spad" 422689 422699 430134 430139) (-295 "ERROR.spad" 420010 420018 422679 422684) (-294 "EQTBL.spad" 418482 418504 418691 418718) (-293 "EQ2.spad" 418198 418210 418472 418477) (-292 "EQ.spad" 413072 413082 415871 415983) (-291 "EP.spad" 409386 409396 413062 413067) (-290 "ENV.spad" 408088 408096 409376 409381) (-289 "ENTIRER.spad" 407756 407764 408032 408083) (-288 "EMR.spad" 406957 406998 407682 407751) (-287 "ELTAGG.spad" 405197 405216 406947 406952) (-286 "ELTAGG.spad" 403401 403422 405153 405158) (-285 "ELTAB.spad" 402848 402866 403391 403396) (-284 "ELFUTS.spad" 402227 402246 402838 402843) (-283 "ELEMFUN.spad" 401916 401924 402217 402222) (-282 "ELEMFUN.spad" 401603 401613 401906 401911) (-281 "ELAGG.spad" 399546 399556 401583 401598) (-280 "ELAGG.spad" 397426 397438 399465 399470) (-279 "ELABEXPR.spad" 396357 396365 397416 397421) (-278 "EFUPXS.spad" 393133 393163 396313 396318) (-277 "EFULS.spad" 389969 389992 393089 393094) (-276 "EFSTRUC.spad" 387924 387940 389959 389964) (-275 "EF.spad" 382690 382706 387914 387919) (-274 "EAB.spad" 380966 380974 382680 382685) (-273 "E04UCFA.spad" 380502 380510 380956 380961) (-272 "E04NAFA.spad" 380079 380087 380492 380497) (-271 "E04MBFA.spad" 379659 379667 380069 380074) (-270 "E04JAFA.spad" 379195 379203 379649 379654) (-269 "E04GCFA.spad" 378731 378739 379185 379190) (-268 "E04FDFA.spad" 378267 378275 378721 378726) (-267 "E04DGFA.spad" 377803 377811 378257 378262) (-266 "E04AGNT.spad" 373645 373653 377793 377798) (-265 "DVARCAT.spad" 370330 370340 373635 373640) (-264 "DVARCAT.spad" 367013 367025 370320 370325) (-263 "DSMP.spad" 364444 364458 364749 364876) (-262 "DROPT1.spad" 364107 364117 364434 364439) (-261 "DROPT0.spad" 358934 358942 364097 364102) (-260 "DROPT.spad" 352879 352887 358924 358929) (-259 "DRAWPT.spad" 351034 351042 352869 352874) (-258 "DRAWHACK.spad" 350342 350352 351024 351029) (-257 "DRAWCX.spad" 347784 347792 350332 350337) (-256 "DRAWCURV.spad" 347321 347336 347774 347779) (-255 "DRAWCFUN.spad" 336493 336501 347311 347316) (-254 "DRAW.spad" 329093 329106 336483 336488) (-253 "DQAGG.spad" 327261 327271 329061 329088) (-252 "DPOLCAT.spad" 322602 322618 327129 327256) (-251 "DPOLCAT.spad" 318029 318047 322558 322563) (-250 "DPMO.spad" 310255 310271 310393 310694) (-249 "DPMM.spad" 302494 302512 302619 302920) (-248 "DOMCTOR.spad" 302386 302394 302484 302489) (-247 "DOMAIN.spad" 301517 301525 302376 302381) (-246 "DMP.spad" 298739 298754 299311 299438) (-245 "DLP.spad" 298087 298097 298729 298734) (-244 "DLIST.spad" 296666 296676 297270 297297) (-243 "DLAGG.spad" 295077 295087 296656 296661) (-242 "DIVRING.spad" 294619 294627 295021 295072) (-241 "DIVRING.spad" 294205 294215 294609 294614) (-240 "DISPLAY.spad" 292385 292393 294195 294200) (-239 "DIRPROD2.spad" 291193 291211 292375 292380) (-238 "DIRPROD.spad" 280773 280789 281413 281544) (-237 "DIRPCAT.spad" 279715 279731 280637 280768) (-236 "DIRPCAT.spad" 278386 278404 279310 279315) (-235 "DIOSP.spad" 277211 277219 278376 278381) (-234 "DIOPS.spad" 276195 276205 277191 277206) (-233 "DIOPS.spad" 275153 275165 276151 276156) (-232 "DIFRING.spad" 274445 274453 275133 275148) (-231 "DIFRING.spad" 273745 273755 274435 274440) (-230 "DIFEXT.spad" 272904 272914 273725 273740) (-229 "DIFEXT.spad" 271980 271992 272803 272808) (-228 "DIAGG.spad" 271610 271620 271960 271975) (-227 "DIAGG.spad" 271248 271260 271600 271605) (-226 "DHMATRIX.spad" 269552 269562 270705 270732) (-225 "DFSFUN.spad" 262960 262968 269542 269547) (-224 "DFLOAT.spad" 259681 259689 262850 262955) (-223 "DFINTTLS.spad" 257890 257906 259671 259676) (-222 "DERHAM.spad" 255800 255832 257870 257885) (-221 "DEQUEUE.spad" 255118 255128 255407 255434) (-220 "DEGRED.spad" 254733 254747 255108 255113) (-219 "DEFINTRF.spad" 252303 252313 254723 254728) (-218 "DEFINTEF.spad" 250827 250843 252293 252298) (-217 "DEFAST.spad" 250195 250203 250817 250822) (-216 "DECIMAL.spad" 248301 248309 248662 248755) (-215 "DDFACT.spad" 246100 246117 248291 248296) (-214 "DBLRESP.spad" 245698 245722 246090 246095) (-213 "DBASE.spad" 244352 244362 245688 245693) (-212 "DATAARY.spad" 243814 243827 244342 244347) (-211 "D03FAFA.spad" 243642 243650 243804 243809) (-210 "D03EEFA.spad" 243462 243470 243632 243637) (-209 "D03AGNT.spad" 242542 242550 243452 243457) (-208 "D02EJFA.spad" 242004 242012 242532 242537) (-207 "D02CJFA.spad" 241482 241490 241994 241999) (-206 "D02BHFA.spad" 240972 240980 241472 241477) (-205 "D02BBFA.spad" 240462 240470 240962 240967) (-204 "D02AGNT.spad" 235266 235274 240452 240457) (-203 "D01WGTS.spad" 233585 233593 235256 235261) (-202 "D01TRNS.spad" 233562 233570 233575 233580) (-201 "D01GBFA.spad" 233084 233092 233552 233557) (-200 "D01FCFA.spad" 232606 232614 233074 233079) (-199 "D01ASFA.spad" 232074 232082 232596 232601) (-198 "D01AQFA.spad" 231520 231528 232064 232069) (-197 "D01APFA.spad" 230944 230952 231510 231515) (-196 "D01ANFA.spad" 230438 230446 230934 230939) (-195 "D01AMFA.spad" 229948 229956 230428 230433) (-194 "D01ALFA.spad" 229488 229496 229938 229943) (-193 "D01AKFA.spad" 229014 229022 229478 229483) (-192 "D01AJFA.spad" 228537 228545 229004 229009) (-191 "D01AGNT.spad" 224596 224604 228527 228532) (-190 "CYCLOTOM.spad" 224102 224110 224586 224591) (-189 "CYCLES.spad" 220934 220942 224092 224097) (-188 "CVMP.spad" 220351 220361 220924 220929) (-187 "CTRIGMNP.spad" 218841 218857 220341 220346) (-186 "CTORKIND.spad" 218444 218452 218831 218836) (-185 "CTORCAT.spad" 217899 217907 218434 218439) (-184 "CTORCAT.spad" 217352 217362 217889 217894) (-183 "CTORCALL.spad" 216932 216940 217342 217347) (-182 "CTOR.spad" 216627 216635 216922 216927) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX2.spad" 195875 195887 196152 196157) (-167 "COMPLEX.spad" 189911 189921 190155 190404) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMMAAST.spad" 184512 184520 184739 184744) (-160 "COMM.spad" 184321 184329 184502 184507) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN2.spad" 153563 153590 154167 154172) (-134 "CARTEN.spad" 148666 148690 153553 153558) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTEBUF.spad" 142736 142744 144073 144100) (-128 "BYTE.spad" 142157 142165 142726 142731) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP1.spad" 126718 126728 129288 129293) (-113 "BOP.spad" 122182 122190 126708 126713) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP80.spad" 98053 98066 98721 98726) (-87 "ASP8.spad" 97096 97109 98043 98048) (-86 "ASP78.spad" 96547 96560 97086 97091) (-85 "ASP77.spad" 95916 95929 96537 96542) (-84 "ASP74.spad" 95008 95021 95906 95911) (-83 "ASP73.spad" 94279 94292 94998 95003) (-82 "ASP7.spad" 93439 93452 94269 94274) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP49.spad" 87631 87644 88622 88627) (-77 "ASP42.spad" 86038 86077 87621 87626) (-76 "ASP41.spad" 84617 84656 86028 86033) (-75 "ASP4.spad" 83912 83925 84607 84612) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP19.spad" 62666 62679 67970 67975) (-63 "ASP12.spad" 62080 62093 62656 62661) (-62 "ASP10.spad" 61351 61364 62070 62075) (-61 "ASP1.spad" 60732 60745 61341 61346) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY12.spad" 58761 58772 60082 60087) (-58 "ARRAY1.spad" 57596 57605 57944 57971) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY1.spad" 46438 46447 47357 47362) (-51 "ANY.spad" 44780 44787 46428 46433) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2281904 2281909 2281914 2281919) (-2 NIL 2281884 2281889 2281894 2281899) (-1 NIL 2281864 2281869 2281874 2281879) (0 NIL 2281844 2281849 2281854 2281859) (-1284 "ZMOD.spad" 2281653 2281666 2281782 2281839) (-1283 "ZLINDEP.spad" 2280697 2280708 2281643 2281648) (-1282 "ZDSOLVE.spad" 2270546 2270568 2280687 2280692) (-1281 "YSTREAM.spad" 2270039 2270050 2270536 2270541) (-1280 "XRPOLY.spad" 2269259 2269279 2269895 2269964) (-1279 "XPR.spad" 2267050 2267063 2268977 2269076) (-1278 "XPOLY.spad" 2266605 2266616 2266906 2266975) (-1277 "XPOLYC.spad" 2265922 2265938 2266531 2266600) (-1276 "XPBWPOLY.spad" 2264359 2264379 2265702 2265771) (-1275 "XF.spad" 2262820 2262835 2264261 2264354) (-1274 "XF.spad" 2261261 2261278 2262704 2262709) (-1273 "XFALG.spad" 2258285 2258301 2261187 2261256) (-1272 "XEXPPKG.spad" 2257536 2257562 2258275 2258280) (-1271 "XDPOLY.spad" 2257150 2257166 2257392 2257461) (-1270 "XALG.spad" 2256810 2256821 2257106 2257145) (-1269 "WUTSET.spad" 2252649 2252666 2256456 2256483) (-1268 "WP.spad" 2251848 2251892 2252507 2252574) (-1267 "WHILEAST.spad" 2251646 2251655 2251838 2251843) (-1266 "WHEREAST.spad" 2251317 2251326 2251636 2251641) (-1265 "WFFINTBS.spad" 2248880 2248902 2251307 2251312) (-1264 "WEIER.spad" 2247094 2247105 2248870 2248875) (-1263 "VSPACE.spad" 2246767 2246778 2247062 2247089) (-1262 "VSPACE.spad" 2246460 2246473 2246757 2246762) (-1261 "VOID.spad" 2246137 2246146 2246450 2246455) (-1260 "VIEW.spad" 2243759 2243768 2246127 2246132) (-1259 "VIEWDEF.spad" 2238956 2238965 2243749 2243754) (-1258 "VIEW3D.spad" 2222791 2222800 2238946 2238951) (-1257 "VIEW2D.spad" 2210528 2210537 2222781 2222786) (-1256 "VECTOR.spad" 2209203 2209214 2209454 2209481) (-1255 "VECTOR2.spad" 2207830 2207843 2209193 2209198) (-1254 "VECTCAT.spad" 2205730 2205741 2207798 2207825) (-1253 "VECTCAT.spad" 2203438 2203451 2205508 2205513) (-1252 "VARIABLE.spad" 2203218 2203233 2203428 2203433) (-1251 "UTYPE.spad" 2202862 2202871 2203208 2203213) (-1250 "UTSODETL.spad" 2202155 2202179 2202818 2202823) (-1249 "UTSODE.spad" 2200343 2200363 2202145 2202150) (-1248 "UTS.spad" 2195132 2195160 2198810 2198907) (-1247 "UTSCAT.spad" 2192583 2192599 2195030 2195127) (-1246 "UTSCAT.spad" 2189678 2189696 2192127 2192132) (-1245 "UTS2.spad" 2189271 2189306 2189668 2189673) (-1244 "URAGG.spad" 2183903 2183914 2189261 2189266) (-1243 "URAGG.spad" 2178499 2178512 2183859 2183864) (-1242 "UPXSSING.spad" 2176142 2176168 2177580 2177713) (-1241 "UPXS.spad" 2173290 2173318 2174274 2174423) (-1240 "UPXSCONS.spad" 2171047 2171067 2171422 2171571) (-1239 "UPXSCCA.spad" 2169612 2169632 2170893 2171042) (-1238 "UPXSCCA.spad" 2168319 2168341 2169602 2169607) (-1237 "UPXSCAT.spad" 2166900 2166916 2168165 2168314) (-1236 "UPXS2.spad" 2166441 2166494 2166890 2166895) (-1235 "UPSQFREE.spad" 2164853 2164867 2166431 2166436) (-1234 "UPSCAT.spad" 2162446 2162470 2164751 2164848) (-1233 "UPSCAT.spad" 2159745 2159771 2162052 2162057) (-1232 "UPOLYC.spad" 2154723 2154734 2159587 2159740) (-1231 "UPOLYC.spad" 2149593 2149606 2154459 2154464) (-1230 "UPOLYC2.spad" 2149062 2149081 2149583 2149588) (-1229 "UP.spad" 2146219 2146234 2146612 2146765) (-1228 "UPMP.spad" 2145109 2145122 2146209 2146214) (-1227 "UPDIVP.spad" 2144672 2144686 2145099 2145104) (-1226 "UPDECOMP.spad" 2142909 2142923 2144662 2144667) (-1225 "UPCDEN.spad" 2142116 2142132 2142899 2142904) (-1224 "UP2.spad" 2141478 2141499 2142106 2142111) (-1223 "UNISEG.spad" 2140831 2140842 2141397 2141402) (-1222 "UNISEG2.spad" 2140324 2140337 2140787 2140792) (-1221 "UNIFACT.spad" 2139425 2139437 2140314 2140319) (-1220 "ULS.spad" 2129977 2130005 2131070 2131499) (-1219 "ULSCONS.spad" 2122371 2122391 2122743 2122892) (-1218 "ULSCCAT.spad" 2120100 2120120 2122217 2122366) (-1217 "ULSCCAT.spad" 2117937 2117959 2120056 2120061) (-1216 "ULSCAT.spad" 2116153 2116169 2117783 2117932) (-1215 "ULS2.spad" 2115665 2115718 2116143 2116148) (-1214 "UINT8.spad" 2115542 2115551 2115655 2115660) (-1213 "UINT32.spad" 2115418 2115427 2115532 2115537) (-1212 "UINT16.spad" 2115294 2115303 2115408 2115413) (-1211 "UFD.spad" 2114359 2114368 2115220 2115289) (-1210 "UFD.spad" 2113486 2113497 2114349 2114354) (-1209 "UDVO.spad" 2112333 2112342 2113476 2113481) (-1208 "UDPO.spad" 2109760 2109771 2112289 2112294) (-1207 "TYPE.spad" 2109692 2109701 2109750 2109755) (-1206 "TYPEAST.spad" 2109611 2109620 2109682 2109687) (-1205 "TWOFACT.spad" 2108261 2108276 2109601 2109606) (-1204 "TUPLE.spad" 2107745 2107756 2108160 2108165) (-1203 "TUBETOOL.spad" 2104582 2104591 2107735 2107740) (-1202 "TUBE.spad" 2103223 2103240 2104572 2104577) (-1201 "TS.spad" 2101812 2101828 2102788 2102885) (-1200 "TSETCAT.spad" 2088939 2088956 2101780 2101807) (-1199 "TSETCAT.spad" 2076052 2076071 2088895 2088900) (-1198 "TRMANIP.spad" 2070418 2070435 2075758 2075763) (-1197 "TRIMAT.spad" 2069377 2069402 2070408 2070413) (-1196 "TRIGMNIP.spad" 2067894 2067911 2069367 2069372) (-1195 "TRIGCAT.spad" 2067406 2067415 2067884 2067889) (-1194 "TRIGCAT.spad" 2066916 2066927 2067396 2067401) (-1193 "TREE.spad" 2065487 2065498 2066523 2066550) (-1192 "TRANFUN.spad" 2065318 2065327 2065477 2065482) (-1191 "TRANFUN.spad" 2065147 2065158 2065308 2065313) (-1190 "TOPSP.spad" 2064821 2064830 2065137 2065142) (-1189 "TOOLSIGN.spad" 2064484 2064495 2064811 2064816) (-1188 "TEXTFILE.spad" 2063041 2063050 2064474 2064479) (-1187 "TEX.spad" 2060173 2060182 2063031 2063036) (-1186 "TEX1.spad" 2059729 2059740 2060163 2060168) (-1185 "TEMUTL.spad" 2059284 2059293 2059719 2059724) (-1184 "TBCMPPK.spad" 2057377 2057400 2059274 2059279) (-1183 "TBAGG.spad" 2056413 2056436 2057357 2057372) (-1182 "TBAGG.spad" 2055457 2055482 2056403 2056408) (-1181 "TANEXP.spad" 2054833 2054844 2055447 2055452) (-1180 "TABLE.spad" 2053244 2053267 2053514 2053541) (-1179 "TABLEAU.spad" 2052725 2052736 2053234 2053239) (-1178 "TABLBUMP.spad" 2049508 2049519 2052715 2052720) (-1177 "SYSTEM.spad" 2048782 2048791 2049498 2049503) (-1176 "SYSSOLP.spad" 2046255 2046266 2048772 2048777) (-1175 "SYSNNI.spad" 2045431 2045442 2046245 2046250) (-1174 "SYSINT.spad" 2044904 2044915 2045421 2045426) (-1173 "SYNTAX.spad" 2041174 2041183 2044894 2044899) (-1172 "SYMTAB.spad" 2039230 2039239 2041164 2041169) (-1171 "SYMS.spad" 2035215 2035224 2039220 2039225) (-1170 "SYMPOLY.spad" 2034222 2034233 2034304 2034431) (-1169 "SYMFUNC.spad" 2033697 2033708 2034212 2034217) (-1168 "SYMBOL.spad" 2031124 2031133 2033687 2033692) (-1167 "SWITCH.spad" 2027881 2027890 2031114 2031119) (-1166 "SUTS.spad" 2024780 2024808 2026348 2026445) (-1165 "SUPXS.spad" 2021915 2021943 2022912 2023061) (-1164 "SUP.spad" 2018684 2018695 2019465 2019618) (-1163 "SUPFRACF.spad" 2017789 2017807 2018674 2018679) (-1162 "SUP2.spad" 2017179 2017192 2017779 2017784) (-1161 "SUMRF.spad" 2016145 2016156 2017169 2017174) (-1160 "SUMFS.spad" 2015778 2015795 2016135 2016140) (-1159 "SULS.spad" 2006317 2006345 2007423 2007852) (-1158 "SUCHTAST.spad" 2006086 2006095 2006307 2006312) (-1157 "SUCH.spad" 2005766 2005781 2006076 2006081) (-1156 "SUBSPACE.spad" 1997773 1997788 2005756 2005761) (-1155 "SUBRESP.spad" 1996933 1996947 1997729 1997734) (-1154 "STTF.spad" 1993032 1993048 1996923 1996928) (-1153 "STTFNC.spad" 1989500 1989516 1993022 1993027) (-1152 "STTAYLOR.spad" 1981898 1981909 1989381 1989386) (-1151 "STRTBL.spad" 1980403 1980420 1980552 1980579) (-1150 "STRING.spad" 1979812 1979821 1979826 1979853) (-1149 "STRICAT.spad" 1979600 1979609 1979780 1979807) (-1148 "STREAM.spad" 1976458 1976469 1979125 1979140) (-1147 "STREAM3.spad" 1976003 1976018 1976448 1976453) (-1146 "STREAM2.spad" 1975071 1975084 1975993 1975998) (-1145 "STREAM1.spad" 1974775 1974786 1975061 1975066) (-1144 "STINPROD.spad" 1973681 1973697 1974765 1974770) (-1143 "STEP.spad" 1972882 1972891 1973671 1973676) (-1142 "STBL.spad" 1971408 1971436 1971575 1971590) (-1141 "STAGG.spad" 1970483 1970494 1971398 1971403) (-1140 "STAGG.spad" 1969556 1969569 1970473 1970478) (-1139 "STACK.spad" 1968907 1968918 1969163 1969190) (-1138 "SREGSET.spad" 1966611 1966628 1968553 1968580) (-1137 "SRDCMPK.spad" 1965156 1965176 1966601 1966606) (-1136 "SRAGG.spad" 1960253 1960262 1965124 1965151) (-1135 "SRAGG.spad" 1955370 1955381 1960243 1960248) (-1134 "SQMATRIX.spad" 1952986 1953004 1953902 1953989) (-1133 "SPLTREE.spad" 1947538 1947551 1952422 1952449) (-1132 "SPLNODE.spad" 1944126 1944139 1947528 1947533) (-1131 "SPFCAT.spad" 1942903 1942912 1944116 1944121) (-1130 "SPECOUT.spad" 1941453 1941462 1942893 1942898) (-1129 "SPADXPT.spad" 1933592 1933601 1941443 1941448) (-1128 "spad-parser.spad" 1933057 1933066 1933582 1933587) (-1127 "SPADAST.spad" 1932758 1932767 1933047 1933052) (-1126 "SPACEC.spad" 1916771 1916782 1932748 1932753) (-1125 "SPACE3.spad" 1916547 1916558 1916761 1916766) (-1124 "SORTPAK.spad" 1916092 1916105 1916503 1916508) (-1123 "SOLVETRA.spad" 1913849 1913860 1916082 1916087) (-1122 "SOLVESER.spad" 1912369 1912380 1913839 1913844) (-1121 "SOLVERAD.spad" 1908379 1908390 1912359 1912364) (-1120 "SOLVEFOR.spad" 1906799 1906817 1908369 1908374) (-1119 "SNTSCAT.spad" 1906399 1906416 1906767 1906794) (-1118 "SMTS.spad" 1904659 1904685 1905964 1906061) (-1117 "SMP.spad" 1902098 1902118 1902488 1902615) (-1116 "SMITH.spad" 1900941 1900966 1902088 1902093) (-1115 "SMATCAT.spad" 1899051 1899081 1900885 1900936) (-1114 "SMATCAT.spad" 1897093 1897125 1898929 1898934) (-1113 "SKAGG.spad" 1896054 1896065 1897061 1897088) (-1112 "SINT.spad" 1894880 1894889 1895920 1896049) (-1111 "SIMPAN.spad" 1894608 1894617 1894870 1894875) (-1110 "SIG.spad" 1893936 1893945 1894598 1894603) (-1109 "SIGNRF.spad" 1893044 1893055 1893926 1893931) (-1108 "SIGNEF.spad" 1892313 1892330 1893034 1893039) (-1107 "SIGAST.spad" 1891694 1891703 1892303 1892308) (-1106 "SHP.spad" 1889612 1889627 1891650 1891655) (-1105 "SHDP.spad" 1879323 1879350 1879832 1879963) (-1104 "SGROUP.spad" 1878931 1878940 1879313 1879318) (-1103 "SGROUP.spad" 1878537 1878548 1878921 1878926) (-1102 "SGCF.spad" 1871418 1871427 1878527 1878532) (-1101 "SFRTCAT.spad" 1870346 1870363 1871386 1871413) (-1100 "SFRGCD.spad" 1869409 1869429 1870336 1870341) (-1099 "SFQCMPK.spad" 1864046 1864066 1869399 1869404) (-1098 "SFORT.spad" 1863481 1863495 1864036 1864041) (-1097 "SEXOF.spad" 1863324 1863364 1863471 1863476) (-1096 "SEX.spad" 1863216 1863225 1863314 1863319) (-1095 "SEXCAT.spad" 1860767 1860807 1863206 1863211) (-1094 "SET.spad" 1859067 1859078 1860188 1860227) (-1093 "SETMN.spad" 1857501 1857518 1859057 1859062) (-1092 "SETCAT.spad" 1856986 1856995 1857491 1857496) (-1091 "SETCAT.spad" 1856469 1856480 1856976 1856981) (-1090 "SETAGG.spad" 1852990 1853001 1856449 1856464) (-1089 "SETAGG.spad" 1849519 1849532 1852980 1852985) (-1088 "SEQAST.spad" 1849222 1849231 1849509 1849514) (-1087 "SEGXCAT.spad" 1848344 1848357 1849212 1849217) (-1086 "SEG.spad" 1848157 1848168 1848263 1848268) (-1085 "SEGCAT.spad" 1847064 1847075 1848147 1848152) (-1084 "SEGBIND.spad" 1846136 1846147 1847019 1847024) (-1083 "SEGBIND2.spad" 1845832 1845845 1846126 1846131) (-1082 "SEGAST.spad" 1845546 1845555 1845822 1845827) (-1081 "SEG2.spad" 1844971 1844984 1845502 1845507) (-1080 "SDVAR.spad" 1844247 1844258 1844961 1844966) (-1079 "SDPOL.spad" 1841637 1841648 1841928 1842055) (-1078 "SCPKG.spad" 1839716 1839727 1841627 1841632) (-1077 "SCOPE.spad" 1838861 1838870 1839706 1839711) (-1076 "SCACHE.spad" 1837543 1837554 1838851 1838856) (-1075 "SASTCAT.spad" 1837452 1837461 1837533 1837538) (-1074 "SAOS.spad" 1837324 1837333 1837442 1837447) (-1073 "SAERFFC.spad" 1837037 1837057 1837314 1837319) (-1072 "SAE.spad" 1835212 1835228 1835823 1835958) (-1071 "SAEFACT.spad" 1834913 1834933 1835202 1835207) (-1070 "RURPK.spad" 1832554 1832570 1834903 1834908) (-1069 "RULESET.spad" 1831995 1832019 1832544 1832549) (-1068 "RULE.spad" 1830199 1830223 1831985 1831990) (-1067 "RULECOLD.spad" 1830051 1830064 1830189 1830194) (-1066 "RSTRCAST.spad" 1829768 1829777 1830041 1830046) (-1065 "RSETGCD.spad" 1826146 1826166 1829758 1829763) (-1064 "RSETCAT.spad" 1815930 1815947 1826114 1826141) (-1063 "RSETCAT.spad" 1805734 1805753 1815920 1815925) (-1062 "RSDCMPK.spad" 1804186 1804206 1805724 1805729) (-1061 "RRCC.spad" 1802570 1802600 1804176 1804181) (-1060 "RRCC.spad" 1800952 1800984 1802560 1802565) (-1059 "RPTAST.spad" 1800654 1800663 1800942 1800947) (-1058 "RPOLCAT.spad" 1780014 1780029 1800522 1800649) (-1057 "RPOLCAT.spad" 1759088 1759105 1779598 1779603) (-1056 "ROUTINE.spad" 1754951 1754960 1757735 1757762) (-1055 "ROMAN.spad" 1754279 1754288 1754817 1754946) (-1054 "ROIRC.spad" 1753359 1753391 1754269 1754274) (-1053 "RNS.spad" 1752262 1752271 1753261 1753354) (-1052 "RNS.spad" 1751251 1751262 1752252 1752257) (-1051 "RNG.spad" 1750986 1750995 1751241 1751246) (-1050 "RMODULE.spad" 1750624 1750635 1750976 1750981) (-1049 "RMCAT2.spad" 1750032 1750089 1750614 1750619) (-1048 "RMATRIX.spad" 1748856 1748875 1749199 1749238) (-1047 "RMATCAT.spad" 1744389 1744420 1748812 1748851) (-1046 "RMATCAT.spad" 1739812 1739845 1744237 1744242) (-1045 "RINTERP.spad" 1739700 1739720 1739802 1739807) (-1044 "RING.spad" 1739170 1739179 1739680 1739695) (-1043 "RING.spad" 1738648 1738659 1739160 1739165) (-1042 "RIDIST.spad" 1738032 1738041 1738638 1738643) (-1041 "RGCHAIN.spad" 1736611 1736627 1737517 1737544) (-1040 "RGBCSPC.spad" 1736392 1736404 1736601 1736606) (-1039 "RGBCMDL.spad" 1735922 1735934 1736382 1736387) (-1038 "RF.spad" 1733536 1733547 1735912 1735917) (-1037 "RFFACTOR.spad" 1732998 1733009 1733526 1733531) (-1036 "RFFACT.spad" 1732733 1732745 1732988 1732993) (-1035 "RFDIST.spad" 1731721 1731730 1732723 1732728) (-1034 "RETSOL.spad" 1731138 1731151 1731711 1731716) (-1033 "RETRACT.spad" 1730566 1730577 1731128 1731133) (-1032 "RETRACT.spad" 1729992 1730005 1730556 1730561) (-1031 "RETAST.spad" 1729804 1729813 1729982 1729987) (-1030 "RESULT.spad" 1727864 1727873 1728451 1728478) (-1029 "RESRING.spad" 1727211 1727258 1727802 1727859) (-1028 "RESLATC.spad" 1726535 1726546 1727201 1727206) (-1027 "REPSQ.spad" 1726264 1726275 1726525 1726530) (-1026 "REP.spad" 1723816 1723825 1726254 1726259) (-1025 "REPDB.spad" 1723521 1723532 1723806 1723811) (-1024 "REP2.spad" 1713093 1713104 1723363 1723368) (-1023 "REP1.spad" 1707083 1707094 1713043 1713048) (-1022 "REGSET.spad" 1704880 1704897 1706729 1706756) (-1021 "REF.spad" 1704209 1704220 1704835 1704840) (-1020 "REDORDER.spad" 1703385 1703402 1704199 1704204) (-1019 "RECLOS.spad" 1702168 1702188 1702872 1702965) (-1018 "REALSOLV.spad" 1701300 1701309 1702158 1702163) (-1017 "REAL.spad" 1701172 1701181 1701290 1701295) (-1016 "REAL0Q.spad" 1698454 1698469 1701162 1701167) (-1015 "REAL0.spad" 1695282 1695297 1698444 1698449) (-1014 "RDUCEAST.spad" 1695003 1695012 1695272 1695277) (-1013 "RDIV.spad" 1694654 1694679 1694993 1694998) (-1012 "RDIST.spad" 1694217 1694228 1694644 1694649) (-1011 "RDETRS.spad" 1693013 1693031 1694207 1694212) (-1010 "RDETR.spad" 1691120 1691138 1693003 1693008) (-1009 "RDEEFS.spad" 1690193 1690210 1691110 1691115) (-1008 "RDEEF.spad" 1689189 1689206 1690183 1690188) (-1007 "RCFIELD.spad" 1686375 1686384 1689091 1689184) (-1006 "RCFIELD.spad" 1683647 1683658 1686365 1686370) (-1005 "RCAGG.spad" 1681559 1681570 1683637 1683642) (-1004 "RCAGG.spad" 1679398 1679411 1681478 1681483) (-1003 "RATRET.spad" 1678758 1678769 1679388 1679393) (-1002 "RATFACT.spad" 1678450 1678462 1678748 1678753) (-1001 "RANDSRC.spad" 1677769 1677778 1678440 1678445) (-1000 "RADUTIL.spad" 1677523 1677532 1677759 1677764) (-999 "RADIX.spad" 1674425 1674438 1675990 1676083) (-998 "RADFF.spad" 1672839 1672875 1672957 1673113) (-997 "RADCAT.spad" 1672433 1672441 1672829 1672834) (-996 "RADCAT.spad" 1672025 1672035 1672423 1672428) (-995 "QUEUE.spad" 1671368 1671378 1671632 1671659) (-994 "QUAT.spad" 1669950 1669960 1670292 1670357) (-993 "QUATCT2.spad" 1669569 1669587 1669940 1669945) (-992 "QUATCAT.spad" 1667734 1667744 1669499 1669564) (-991 "QUATCAT.spad" 1665650 1665662 1667417 1667422) (-990 "QUAGG.spad" 1664476 1664486 1665618 1665645) (-989 "QQUTAST.spad" 1664245 1664253 1664466 1664471) (-988 "QFORM.spad" 1663708 1663722 1664235 1664240) (-987 "QFCAT.spad" 1662411 1662421 1663610 1663703) (-986 "QFCAT.spad" 1660705 1660717 1661906 1661911) (-985 "QFCAT2.spad" 1660396 1660412 1660695 1660700) (-984 "QEQUAT.spad" 1659953 1659961 1660386 1660391) (-983 "QCMPACK.spad" 1654700 1654719 1659943 1659948) (-982 "QALGSET.spad" 1650775 1650807 1654614 1654619) (-981 "QALGSET2.spad" 1648771 1648789 1650765 1650770) (-980 "PWFFINTB.spad" 1646081 1646102 1648761 1648766) (-979 "PUSHVAR.spad" 1645410 1645429 1646071 1646076) (-978 "PTRANFN.spad" 1641536 1641546 1645400 1645405) (-977 "PTPACK.spad" 1638624 1638634 1641526 1641531) (-976 "PTFUNC2.spad" 1638445 1638459 1638614 1638619) (-975 "PTCAT.spad" 1637694 1637704 1638413 1638440) (-974 "PSQFR.spad" 1637001 1637025 1637684 1637689) (-973 "PSEUDLIN.spad" 1635859 1635869 1636991 1636996) (-972 "PSETPK.spad" 1621292 1621308 1635737 1635742) (-971 "PSETCAT.spad" 1615212 1615235 1621272 1621287) (-970 "PSETCAT.spad" 1609106 1609131 1615168 1615173) (-969 "PSCURVE.spad" 1608089 1608097 1609096 1609101) (-968 "PSCAT.spad" 1606856 1606885 1607987 1608084) (-967 "PSCAT.spad" 1605713 1605744 1606846 1606851) (-966 "PRTITION.spad" 1604658 1604666 1605703 1605708) (-965 "PRTDAST.spad" 1604377 1604385 1604648 1604653) (-964 "PRS.spad" 1593939 1593956 1604333 1604338) (-963 "PRQAGG.spad" 1593370 1593380 1593907 1593934) (-962 "PROPLOG.spad" 1592773 1592781 1593360 1593365) (-961 "PROPFRML.spad" 1590691 1590702 1592763 1592768) (-960 "PROPERTY.spad" 1590185 1590193 1590681 1590686) (-959 "PRODUCT.spad" 1587865 1587877 1588151 1588206) (-958 "PR.spad" 1586251 1586263 1586956 1587083) (-957 "PRINT.spad" 1586003 1586011 1586241 1586246) (-956 "PRIMES.spad" 1584254 1584264 1585993 1585998) (-955 "PRIMELT.spad" 1582235 1582249 1584244 1584249) (-954 "PRIMCAT.spad" 1581858 1581866 1582225 1582230) (-953 "PRIMARR.spad" 1580863 1580873 1581041 1581068) (-952 "PRIMARR2.spad" 1579586 1579598 1580853 1580858) (-951 "PREASSOC.spad" 1578958 1578970 1579576 1579581) (-950 "PPCURVE.spad" 1578095 1578103 1578948 1578953) (-949 "PORTNUM.spad" 1577870 1577878 1578085 1578090) (-948 "POLYROOT.spad" 1576699 1576721 1577826 1577831) (-947 "POLY.spad" 1573996 1574006 1574513 1574640) (-946 "POLYLIFT.spad" 1573257 1573280 1573986 1573991) (-945 "POLYCATQ.spad" 1571359 1571381 1573247 1573252) (-944 "POLYCAT.spad" 1564765 1564786 1571227 1571354) (-943 "POLYCAT.spad" 1557473 1557496 1563937 1563942) (-942 "POLY2UP.spad" 1556921 1556935 1557463 1557468) (-941 "POLY2.spad" 1556516 1556528 1556911 1556916) (-940 "POLUTIL.spad" 1555457 1555486 1556472 1556477) (-939 "POLTOPOL.spad" 1554205 1554220 1555447 1555452) (-938 "POINT.spad" 1553044 1553054 1553131 1553158) (-937 "PNTHEORY.spad" 1549710 1549718 1553034 1553039) (-936 "PMTOOLS.spad" 1548467 1548481 1549700 1549705) (-935 "PMSYM.spad" 1548012 1548022 1548457 1548462) (-934 "PMQFCAT.spad" 1547599 1547613 1548002 1548007) (-933 "PMPRED.spad" 1547068 1547082 1547589 1547594) (-932 "PMPREDFS.spad" 1546512 1546534 1547058 1547063) (-931 "PMPLCAT.spad" 1545582 1545600 1546444 1546449) (-930 "PMLSAGG.spad" 1545163 1545177 1545572 1545577) (-929 "PMKERNEL.spad" 1544730 1544742 1545153 1545158) (-928 "PMINS.spad" 1544306 1544316 1544720 1544725) (-927 "PMFS.spad" 1543879 1543897 1544296 1544301) (-926 "PMDOWN.spad" 1543165 1543179 1543869 1543874) (-925 "PMASS.spad" 1542177 1542185 1543155 1543160) (-924 "PMASSFS.spad" 1541146 1541162 1542167 1542172) (-923 "PLOTTOOL.spad" 1540926 1540934 1541136 1541141) (-922 "PLOT.spad" 1535757 1535765 1540916 1540921) (-921 "PLOT3D.spad" 1532177 1532185 1535747 1535752) (-920 "PLOT1.spad" 1531318 1531328 1532167 1532172) (-919 "PLEQN.spad" 1518534 1518561 1531308 1531313) (-918 "PINTERP.spad" 1518150 1518169 1518524 1518529) (-917 "PINTERPA.spad" 1517932 1517948 1518140 1518145) (-916 "PI.spad" 1517539 1517547 1517906 1517927) (-915 "PID.spad" 1516495 1516503 1517465 1517534) (-914 "PICOERCE.spad" 1516152 1516162 1516485 1516490) (-913 "PGROEB.spad" 1514749 1514763 1516142 1516147) (-912 "PGE.spad" 1506002 1506010 1514739 1514744) (-911 "PGCD.spad" 1504884 1504901 1505992 1505997) (-910 "PFRPAC.spad" 1504027 1504037 1504874 1504879) (-909 "PFR.spad" 1500684 1500694 1503929 1504022) (-908 "PFOTOOLS.spad" 1499942 1499958 1500674 1500679) (-907 "PFOQ.spad" 1499312 1499330 1499932 1499937) (-906 "PFO.spad" 1498731 1498758 1499302 1499307) (-905 "PF.spad" 1498305 1498317 1498536 1498629) (-904 "PFECAT.spad" 1495971 1495979 1498231 1498300) (-903 "PFECAT.spad" 1493665 1493675 1495927 1495932) (-902 "PFBRU.spad" 1491535 1491547 1493655 1493660) (-901 "PFBR.spad" 1489073 1489096 1491525 1491530) (-900 "PERM.spad" 1484754 1484764 1488903 1488918) (-899 "PERMGRP.spad" 1479490 1479500 1484744 1484749) (-898 "PERMCAT.spad" 1478042 1478052 1479470 1479485) (-897 "PERMAN.spad" 1476574 1476588 1478032 1478037) (-896 "PENDTREE.spad" 1475913 1475923 1476203 1476208) (-895 "PDRING.spad" 1474404 1474414 1475893 1475908) (-894 "PDRING.spad" 1472903 1472915 1474394 1474399) (-893 "PDEPROB.spad" 1471918 1471926 1472893 1472898) (-892 "PDEPACK.spad" 1465920 1465928 1471908 1471913) (-891 "PDECOMP.spad" 1465382 1465399 1465910 1465915) (-890 "PDECAT.spad" 1463736 1463744 1465372 1465377) (-889 "PCOMP.spad" 1463587 1463600 1463726 1463731) (-888 "PBWLB.spad" 1462169 1462186 1463577 1463582) (-887 "PATTERN.spad" 1456600 1456610 1462159 1462164) (-886 "PATTERN2.spad" 1456336 1456348 1456590 1456595) (-885 "PATTERN1.spad" 1454638 1454654 1456326 1456331) (-884 "PATRES.spad" 1452185 1452197 1454628 1454633) (-883 "PATRES2.spad" 1451847 1451861 1452175 1452180) (-882 "PATMATCH.spad" 1450004 1450035 1451555 1451560) (-881 "PATMAB.spad" 1449429 1449439 1449994 1449999) (-880 "PATLRES.spad" 1448513 1448527 1449419 1449424) (-879 "PATAB.spad" 1448277 1448287 1448503 1448508) (-878 "PARTPERM.spad" 1445639 1445647 1448267 1448272) (-877 "PARSURF.spad" 1445067 1445095 1445629 1445634) (-876 "PARSU2.spad" 1444862 1444878 1445057 1445062) (-875 "script-parser.spad" 1444382 1444390 1444852 1444857) (-874 "PARSCURV.spad" 1443810 1443838 1444372 1444377) (-873 "PARSC2.spad" 1443599 1443615 1443800 1443805) (-872 "PARPCURV.spad" 1443057 1443085 1443589 1443594) (-871 "PARPC2.spad" 1442846 1442862 1443047 1443052) (-870 "PAN2EXPR.spad" 1442258 1442266 1442836 1442841) (-869 "PALETTE.spad" 1441228 1441236 1442248 1442253) (-868 "PAIR.spad" 1440211 1440224 1440816 1440821) (-867 "PADICRC.spad" 1437541 1437559 1438716 1438809) (-866 "PADICRAT.spad" 1435556 1435568 1435777 1435870) (-865 "PADIC.spad" 1435251 1435263 1435482 1435551) (-864 "PADICCT.spad" 1433792 1433804 1435177 1435246) (-863 "PADEPAC.spad" 1432471 1432490 1433782 1433787) (-862 "PADE.spad" 1431211 1431227 1432461 1432466) (-861 "OWP.spad" 1430451 1430481 1431069 1431136) (-860 "OVERSET.spad" 1430024 1430032 1430441 1430446) (-859 "OVAR.spad" 1429805 1429828 1430014 1430019) (-858 "OUT.spad" 1428889 1428897 1429795 1429800) (-857 "OUTFORM.spad" 1418185 1418193 1428879 1428884) (-856 "OUTBFILE.spad" 1417603 1417611 1418175 1418180) (-855 "OUTBCON.spad" 1416601 1416609 1417593 1417598) (-854 "OUTBCON.spad" 1415597 1415607 1416591 1416596) (-853 "OSI.spad" 1415072 1415080 1415587 1415592) (-852 "OSGROUP.spad" 1414990 1414998 1415062 1415067) (-851 "ORTHPOL.spad" 1413451 1413461 1414907 1414912) (-850 "OREUP.spad" 1412904 1412932 1413131 1413170) (-849 "ORESUP.spad" 1412203 1412227 1412584 1412623) (-848 "OREPCTO.spad" 1410022 1410034 1412123 1412128) (-847 "OREPCAT.spad" 1404079 1404089 1409978 1410017) (-846 "OREPCAT.spad" 1398026 1398038 1403927 1403932) (-845 "ORDSET.spad" 1397192 1397200 1398016 1398021) (-844 "ORDSET.spad" 1396356 1396366 1397182 1397187) (-843 "ORDRING.spad" 1395746 1395754 1396336 1396351) (-842 "ORDRING.spad" 1395144 1395154 1395736 1395741) (-841 "ORDMON.spad" 1394999 1395007 1395134 1395139) (-840 "ORDFUNS.spad" 1394125 1394141 1394989 1394994) (-839 "ORDFIN.spad" 1393945 1393953 1394115 1394120) (-838 "ORDCOMP.spad" 1392410 1392420 1393492 1393521) (-837 "ORDCOMP2.spad" 1391695 1391707 1392400 1392405) (-836 "OPTPROB.spad" 1390333 1390341 1391685 1391690) (-835 "OPTPACK.spad" 1382718 1382726 1390323 1390328) (-834 "OPTCAT.spad" 1380393 1380401 1382708 1382713) (-833 "OPSIG.spad" 1380045 1380053 1380383 1380388) (-832 "OPQUERY.spad" 1379594 1379602 1380035 1380040) (-831 "OP.spad" 1379336 1379346 1379416 1379483) (-830 "OPERCAT.spad" 1378924 1378934 1379326 1379331) (-829 "OPERCAT.spad" 1378510 1378522 1378914 1378919) (-828 "ONECOMP.spad" 1377255 1377265 1378057 1378086) (-827 "ONECOMP2.spad" 1376673 1376685 1377245 1377250) (-826 "OMSERVER.spad" 1375675 1375683 1376663 1376668) (-825 "OMSAGG.spad" 1375463 1375473 1375631 1375670) (-824 "OMPKG.spad" 1374075 1374083 1375453 1375458) (-823 "OM.spad" 1373040 1373048 1374065 1374070) (-822 "OMLO.spad" 1372465 1372477 1372926 1372965) (-821 "OMEXPR.spad" 1372299 1372309 1372455 1372460) (-820 "OMERR.spad" 1371842 1371850 1372289 1372294) (-819 "OMERRK.spad" 1370876 1370884 1371832 1371837) (-818 "OMENC.spad" 1370220 1370228 1370866 1370871) (-817 "OMDEV.spad" 1364509 1364517 1370210 1370215) (-816 "OMCONN.spad" 1363918 1363926 1364499 1364504) (-815 "OINTDOM.spad" 1363681 1363689 1363844 1363913) (-814 "OFMONOID.spad" 1359868 1359878 1363671 1363676) (-813 "ODVAR.spad" 1359129 1359139 1359858 1359863) (-812 "ODR.spad" 1358773 1358799 1358941 1359090) (-811 "ODPOL.spad" 1356119 1356129 1356459 1356586) (-810 "ODP.spad" 1345966 1345986 1346339 1346470) (-809 "ODETOOLS.spad" 1344549 1344568 1345956 1345961) (-808 "ODESYS.spad" 1342199 1342216 1344539 1344544) (-807 "ODERTRIC.spad" 1338140 1338157 1342156 1342161) (-806 "ODERED.spad" 1337527 1337551 1338130 1338135) (-805 "ODERAT.spad" 1335078 1335095 1337517 1337522) (-804 "ODEPRRIC.spad" 1331969 1331991 1335068 1335073) (-803 "ODEPROB.spad" 1331226 1331234 1331959 1331964) (-802 "ODEPRIM.spad" 1328500 1328522 1331216 1331221) (-801 "ODEPAL.spad" 1327876 1327900 1328490 1328495) (-800 "ODEPACK.spad" 1314478 1314486 1327866 1327871) (-799 "ODEINT.spad" 1313909 1313925 1314468 1314473) (-798 "ODEIFTBL.spad" 1311304 1311312 1313899 1313904) (-797 "ODEEF.spad" 1306671 1306687 1311294 1311299) (-796 "ODECONST.spad" 1306190 1306208 1306661 1306666) (-795 "ODECAT.spad" 1304786 1304794 1306180 1306185) (-794 "OCT.spad" 1302924 1302934 1303640 1303679) (-793 "OCTCT2.spad" 1302568 1302589 1302914 1302919) (-792 "OC.spad" 1300342 1300352 1302524 1302563) (-791 "OC.spad" 1297841 1297853 1300025 1300030) (-790 "OCAMON.spad" 1297689 1297697 1297831 1297836) (-789 "OASGP.spad" 1297504 1297512 1297679 1297684) (-788 "OAMONS.spad" 1297024 1297032 1297494 1297499) (-787 "OAMON.spad" 1296885 1296893 1297014 1297019) (-786 "OAGROUP.spad" 1296747 1296755 1296875 1296880) (-785 "NUMTUBE.spad" 1296334 1296350 1296737 1296742) (-784 "NUMQUAD.spad" 1284196 1284204 1296324 1296329) (-783 "NUMODE.spad" 1275332 1275340 1284186 1284191) (-782 "NUMINT.spad" 1272890 1272898 1275322 1275327) (-781 "NUMFMT.spad" 1271730 1271738 1272880 1272885) (-780 "NUMERIC.spad" 1263802 1263812 1271535 1271540) (-779 "NTSCAT.spad" 1262304 1262320 1263770 1263797) (-778 "NTPOLFN.spad" 1261849 1261859 1262221 1262226) (-777 "NSUP.spad" 1254859 1254869 1259399 1259552) (-776 "NSUP2.spad" 1254251 1254263 1254849 1254854) (-775 "NSMP.spad" 1250446 1250465 1250754 1250881) (-774 "NREP.spad" 1248818 1248832 1250436 1250441) (-773 "NPCOEF.spad" 1248064 1248084 1248808 1248813) (-772 "NORMRETR.spad" 1247662 1247701 1248054 1248059) (-771 "NORMPK.spad" 1245564 1245583 1247652 1247657) (-770 "NORMMA.spad" 1245252 1245278 1245554 1245559) (-769 "NONE.spad" 1244993 1245001 1245242 1245247) (-768 "NONE1.spad" 1244669 1244679 1244983 1244988) (-767 "NODE1.spad" 1244138 1244154 1244659 1244664) (-766 "NNI.spad" 1243025 1243033 1244112 1244133) (-765 "NLINSOL.spad" 1241647 1241657 1243015 1243020) (-764 "NIPROB.spad" 1240188 1240196 1241637 1241642) (-763 "NFINTBAS.spad" 1237648 1237665 1240178 1240183) (-762 "NETCLT.spad" 1237622 1237633 1237638 1237643) (-761 "NCODIV.spad" 1235820 1235836 1237612 1237617) (-760 "NCNTFRAC.spad" 1235462 1235476 1235810 1235815) (-759 "NCEP.spad" 1233622 1233636 1235452 1235457) (-758 "NASRING.spad" 1233218 1233226 1233612 1233617) (-757 "NASRING.spad" 1232812 1232822 1233208 1233213) (-756 "NARNG.spad" 1232156 1232164 1232802 1232807) (-755 "NARNG.spad" 1231498 1231508 1232146 1232151) (-754 "NAGSP.spad" 1230571 1230579 1231488 1231493) (-753 "NAGS.spad" 1220096 1220104 1230561 1230566) (-752 "NAGF07.spad" 1218489 1218497 1220086 1220091) (-751 "NAGF04.spad" 1212721 1212729 1218479 1218484) (-750 "NAGF02.spad" 1206530 1206538 1212711 1212716) (-749 "NAGF01.spad" 1202133 1202141 1206520 1206525) (-748 "NAGE04.spad" 1195593 1195601 1202123 1202128) (-747 "NAGE02.spad" 1185935 1185943 1195583 1195588) (-746 "NAGE01.spad" 1181819 1181827 1185925 1185930) (-745 "NAGD03.spad" 1179739 1179747 1181809 1181814) (-744 "NAGD02.spad" 1172270 1172278 1179729 1179734) (-743 "NAGD01.spad" 1166383 1166391 1172260 1172265) (-742 "NAGC06.spad" 1162170 1162178 1166373 1166378) (-741 "NAGC05.spad" 1160639 1160647 1162160 1162165) (-740 "NAGC02.spad" 1159894 1159902 1160629 1160634) (-739 "NAALG.spad" 1159429 1159439 1159862 1159889) (-738 "NAALG.spad" 1158984 1158996 1159419 1159424) (-737 "MULTSQFR.spad" 1155942 1155959 1158974 1158979) (-736 "MULTFACT.spad" 1155325 1155342 1155932 1155937) (-735 "MTSCAT.spad" 1153359 1153380 1155223 1155320) (-734 "MTHING.spad" 1153016 1153026 1153349 1153354) (-733 "MSYSCMD.spad" 1152450 1152458 1153006 1153011) (-732 "MSET.spad" 1150392 1150402 1152156 1152195) (-731 "MSETAGG.spad" 1150237 1150247 1150360 1150387) (-730 "MRING.spad" 1147208 1147220 1149945 1150012) (-729 "MRF2.spad" 1146776 1146790 1147198 1147203) (-728 "MRATFAC.spad" 1146322 1146339 1146766 1146771) (-727 "MPRFF.spad" 1144352 1144371 1146312 1146317) (-726 "MPOLY.spad" 1141787 1141802 1142146 1142273) (-725 "MPCPF.spad" 1141051 1141070 1141777 1141782) (-724 "MPC3.spad" 1140866 1140906 1141041 1141046) (-723 "MPC2.spad" 1140508 1140541 1140856 1140861) (-722 "MONOTOOL.spad" 1138843 1138860 1140498 1140503) (-721 "MONOID.spad" 1138162 1138170 1138833 1138838) (-720 "MONOID.spad" 1137479 1137489 1138152 1138157) (-719 "MONOGEN.spad" 1136225 1136238 1137339 1137474) (-718 "MONOGEN.spad" 1134993 1135008 1136109 1136114) (-717 "MONADWU.spad" 1133007 1133015 1134983 1134988) (-716 "MONADWU.spad" 1131019 1131029 1132997 1133002) (-715 "MONAD.spad" 1130163 1130171 1131009 1131014) (-714 "MONAD.spad" 1129305 1129315 1130153 1130158) (-713 "MOEBIUS.spad" 1127991 1128005 1129285 1129300) (-712 "MODULE.spad" 1127861 1127871 1127959 1127986) (-711 "MODULE.spad" 1127751 1127763 1127851 1127856) (-710 "MODRING.spad" 1127082 1127121 1127731 1127746) (-709 "MODOP.spad" 1125741 1125753 1126904 1126971) (-708 "MODMONOM.spad" 1125470 1125488 1125731 1125736) (-707 "MODMON.spad" 1122229 1122245 1122948 1123101) (-706 "MODFIELD.spad" 1121587 1121626 1122131 1122224) (-705 "MMLFORM.spad" 1120447 1120455 1121577 1121582) (-704 "MMAP.spad" 1120187 1120221 1120437 1120442) (-703 "MLO.spad" 1118614 1118624 1120143 1120182) (-702 "MLIFT.spad" 1117186 1117203 1118604 1118609) (-701 "MKUCFUNC.spad" 1116719 1116737 1117176 1117181) (-700 "MKRECORD.spad" 1116321 1116334 1116709 1116714) (-699 "MKFUNC.spad" 1115702 1115712 1116311 1116316) (-698 "MKFLCFN.spad" 1114658 1114668 1115692 1115697) (-697 "MKCHSET.spad" 1114523 1114533 1114648 1114653) (-696 "MKBCFUNC.spad" 1114008 1114026 1114513 1114518) (-695 "MINT.spad" 1113447 1113455 1113910 1114003) (-694 "MHROWRED.spad" 1111948 1111958 1113437 1113442) (-693 "MFLOAT.spad" 1110464 1110472 1111838 1111943) (-692 "MFINFACT.spad" 1109864 1109886 1110454 1110459) (-691 "MESH.spad" 1107596 1107604 1109854 1109859) (-690 "MDDFACT.spad" 1105789 1105799 1107586 1107591) (-689 "MDAGG.spad" 1105076 1105086 1105769 1105784) (-688 "MCMPLX.spad" 1101062 1101070 1101676 1101865) (-687 "MCDEN.spad" 1100270 1100282 1101052 1101057) (-686 "MCALCFN.spad" 1097372 1097398 1100260 1100265) (-685 "MAYBE.spad" 1096656 1096667 1097362 1097367) (-684 "MATSTOR.spad" 1093932 1093942 1096646 1096651) (-683 "MATRIX.spad" 1092636 1092646 1093120 1093147) (-682 "MATLIN.spad" 1089962 1089986 1092520 1092525) (-681 "MATCAT.spad" 1081547 1081569 1089930 1089957) (-680 "MATCAT.spad" 1073004 1073028 1081389 1081394) (-679 "MATCAT2.spad" 1072272 1072320 1072994 1072999) (-678 "MAPPKG3.spad" 1071171 1071185 1072262 1072267) (-677 "MAPPKG2.spad" 1070505 1070517 1071161 1071166) (-676 "MAPPKG1.spad" 1069323 1069333 1070495 1070500) (-675 "MAPPAST.spad" 1068636 1068644 1069313 1069318) (-674 "MAPHACK3.spad" 1068444 1068458 1068626 1068631) (-673 "MAPHACK2.spad" 1068209 1068221 1068434 1068439) (-672 "MAPHACK1.spad" 1067839 1067849 1068199 1068204) (-671 "MAGMA.spad" 1065629 1065646 1067829 1067834) (-670 "MACROAST.spad" 1065208 1065216 1065619 1065624) (-669 "M3D.spad" 1062904 1062914 1064586 1064591) (-668 "LZSTAGG.spad" 1060132 1060142 1062894 1062899) (-667 "LZSTAGG.spad" 1057358 1057370 1060122 1060127) (-666 "LWORD.spad" 1054063 1054080 1057348 1057353) (-665 "LSTAST.spad" 1053847 1053855 1054053 1054058) (-664 "LSQM.spad" 1052073 1052087 1052471 1052522) (-663 "LSPP.spad" 1051606 1051623 1052063 1052068) (-662 "LSMP.spad" 1050446 1050474 1051596 1051601) (-661 "LSMP1.spad" 1048250 1048264 1050436 1050441) (-660 "LSAGG.spad" 1047919 1047929 1048218 1048245) (-659 "LSAGG.spad" 1047608 1047620 1047909 1047914) (-658 "LPOLY.spad" 1046562 1046581 1047464 1047533) (-657 "LPEFRAC.spad" 1045819 1045829 1046552 1046557) (-656 "LO.spad" 1045220 1045234 1045753 1045780) (-655 "LOGIC.spad" 1044822 1044830 1045210 1045215) (-654 "LOGIC.spad" 1044422 1044432 1044812 1044817) (-653 "LODOOPS.spad" 1043340 1043352 1044412 1044417) (-652 "LODO.spad" 1042724 1042740 1043020 1043059) (-651 "LODOF.spad" 1041768 1041785 1042681 1042686) (-650 "LODOCAT.spad" 1040426 1040436 1041724 1041763) (-649 "LODOCAT.spad" 1039082 1039094 1040382 1040387) (-648 "LODO2.spad" 1038355 1038367 1038762 1038801) (-647 "LODO1.spad" 1037755 1037765 1038035 1038074) (-646 "LODEEF.spad" 1036527 1036545 1037745 1037750) (-645 "LNAGG.spad" 1032329 1032339 1036517 1036522) (-644 "LNAGG.spad" 1028095 1028107 1032285 1032290) (-643 "LMOPS.spad" 1024831 1024848 1028085 1028090) (-642 "LMODULE.spad" 1024473 1024483 1024821 1024826) (-641 "LMDICT.spad" 1023756 1023766 1024024 1024051) (-640 "LITERAL.spad" 1023662 1023673 1023746 1023751) (-639 "LIST.spad" 1021380 1021390 1022809 1022836) (-638 "LIST3.spad" 1020671 1020685 1021370 1021375) (-637 "LIST2.spad" 1019311 1019323 1020661 1020666) (-636 "LIST2MAP.spad" 1016188 1016200 1019301 1019306) (-635 "LINEXP.spad" 1015620 1015630 1016168 1016183) (-634 "LINDEP.spad" 1014397 1014409 1015532 1015537) (-633 "LIMITRF.spad" 1012311 1012321 1014387 1014392) (-632 "LIMITPS.spad" 1011194 1011207 1012301 1012306) (-631 "LIE.spad" 1009208 1009220 1010484 1010629) (-630 "LIECAT.spad" 1008684 1008694 1009134 1009203) (-629 "LIECAT.spad" 1008188 1008200 1008640 1008645) (-628 "LIB.spad" 1006236 1006244 1006847 1006862) (-627 "LGROBP.spad" 1003589 1003608 1006226 1006231) (-626 "LF.spad" 1002508 1002524 1003579 1003584) (-625 "LFCAT.spad" 1001527 1001535 1002498 1002503) (-624 "LEXTRIPK.spad" 997030 997045 1001517 1001522) (-623 "LEXP.spad" 995033 995060 997010 997025) (-622 "LETAST.spad" 994732 994740 995023 995028) (-621 "LEADCDET.spad" 993116 993133 994722 994727) (-620 "LAZM3PK.spad" 991820 991842 993106 993111) (-619 "LAUPOL.spad" 990509 990522 991413 991482) (-618 "LAPLACE.spad" 990082 990098 990499 990504) (-617 "LA.spad" 989522 989536 990004 990043) (-616 "LALG.spad" 989298 989308 989502 989517) (-615 "LALG.spad" 989082 989094 989288 989293) (-614 "KVTFROM.spad" 988817 988827 989072 989077) (-613 "KTVLOGIC.spad" 988240 988248 988807 988812) (-612 "KRCFROM.spad" 987978 987988 988230 988235) (-611 "KOVACIC.spad" 986691 986708 987968 987973) (-610 "KONVERT.spad" 986413 986423 986681 986686) (-609 "KOERCE.spad" 986150 986160 986403 986408) (-608 "KERNEL.spad" 984685 984695 985934 985939) (-607 "KERNEL2.spad" 984388 984400 984675 984680) (-606 "KDAGG.spad" 983491 983513 984368 984383) (-605 "KDAGG.spad" 982602 982626 983481 983486) (-604 "KAFILE.spad" 981565 981581 981800 981827) (-603 "JORDAN.spad" 979392 979404 980855 981000) (-602 "JOINAST.spad" 979086 979094 979382 979387) (-601 "JAVACODE.spad" 978952 978960 979076 979081) (-600 "IXAGG.spad" 977075 977099 978942 978947) (-599 "IXAGG.spad" 975053 975079 976922 976927) (-598 "IVECTOR.spad" 973824 973839 973979 974006) (-597 "ITUPLE.spad" 972969 972979 973814 973819) (-596 "ITRIGMNP.spad" 971780 971799 972959 972964) (-595 "ITFUN3.spad" 971274 971288 971770 971775) (-594 "ITFUN2.spad" 971004 971016 971264 971269) (-593 "ITAYLOR.spad" 968796 968811 970840 970965) (-592 "ISUPS.spad" 961207 961222 967770 967867) (-591 "ISUMP.spad" 960704 960720 961197 961202) (-590 "ISTRING.spad" 959707 959720 959873 959900) (-589 "ISAST.spad" 959426 959434 959697 959702) (-588 "IRURPK.spad" 958139 958158 959416 959421) (-587 "IRSN.spad" 956099 956107 958129 958134) (-586 "IRRF2F.spad" 954574 954584 956055 956060) (-585 "IRREDFFX.spad" 954175 954186 954564 954569) (-584 "IROOT.spad" 952506 952516 954165 954170) (-583 "IR.spad" 950295 950309 952361 952388) (-582 "IR2.spad" 949315 949331 950285 950290) (-581 "IR2F.spad" 948515 948531 949305 949310) (-580 "IPRNTPK.spad" 948275 948283 948505 948510) (-579 "IPF.spad" 947840 947852 948080 948173) (-578 "IPADIC.spad" 947601 947627 947766 947835) (-577 "IP4ADDR.spad" 947158 947166 947591 947596) (-576 "IOMODE.spad" 946779 946787 947148 947153) (-575 "IOBFILE.spad" 946140 946148 946769 946774) (-574 "IOBCON.spad" 946005 946013 946130 946135) (-573 "INVLAPLA.spad" 945650 945666 945995 946000) (-572 "INTTR.spad" 938896 938913 945640 945645) (-571 "INTTOOLS.spad" 936607 936623 938470 938475) (-570 "INTSLPE.spad" 935913 935921 936597 936602) (-569 "INTRVL.spad" 935479 935489 935827 935908) (-568 "INTRF.spad" 933843 933857 935469 935474) (-567 "INTRET.spad" 933275 933285 933833 933838) (-566 "INTRAT.spad" 931950 931967 933265 933270) (-565 "INTPM.spad" 930313 930329 931593 931598) (-564 "INTPAF.spad" 928081 928099 930245 930250) (-563 "INTPACK.spad" 918391 918399 928071 928076) (-562 "INT.spad" 917752 917760 918245 918386) (-561 "INTHERTR.spad" 917018 917035 917742 917747) (-560 "INTHERAL.spad" 916684 916708 917008 917013) (-559 "INTHEORY.spad" 913097 913105 916674 916679) (-558 "INTG0.spad" 906560 906578 913029 913034) (-557 "INTFTBL.spad" 900589 900597 906550 906555) (-556 "INTFACT.spad" 899648 899658 900579 900584) (-555 "INTEF.spad" 897963 897979 899638 899643) (-554 "INTDOM.spad" 896578 896586 897889 897958) (-553 "INTDOM.spad" 895255 895265 896568 896573) (-552 "INTCAT.spad" 893508 893518 895169 895250) (-551 "INTBIT.spad" 893011 893019 893498 893503) (-550 "INTALG.spad" 892193 892220 893001 893006) (-549 "INTAF.spad" 891685 891701 892183 892188) (-548 "INTABL.spad" 890203 890234 890366 890393) (-547 "INT8.spad" 890083 890091 890193 890198) (-546 "INT32.spad" 889962 889970 890073 890078) (-545 "INT16.spad" 889841 889849 889952 889957) (-544 "INS.spad" 887308 887316 889743 889836) (-543 "INS.spad" 884861 884871 887298 887303) (-542 "INPSIGN.spad" 884295 884308 884851 884856) (-541 "INPRODPF.spad" 883361 883380 884285 884290) (-540 "INPRODFF.spad" 882419 882443 883351 883356) (-539 "INNMFACT.spad" 881390 881407 882409 882414) (-538 "INMODGCD.spad" 880874 880904 881380 881385) (-537 "INFSP.spad" 879159 879181 880864 880869) (-536 "INFPROD0.spad" 878209 878228 879149 879154) (-535 "INFORM.spad" 875370 875378 878199 878204) (-534 "INFORM1.spad" 874995 875005 875360 875365) (-533 "INFINITY.spad" 874547 874555 874985 874990) (-532 "INETCLTS.spad" 874524 874532 874537 874542) (-531 "INEP.spad" 873056 873078 874514 874519) (-530 "INDE.spad" 872785 872802 873046 873051) (-529 "INCRMAPS.spad" 872206 872216 872775 872780) (-528 "INBFILE.spad" 871278 871286 872196 872201) (-527 "INBFF.spad" 867048 867059 871268 871273) (-526 "INBCON.spad" 865336 865344 867038 867043) (-525 "INBCON.spad" 863622 863632 865326 865331) (-524 "INAST.spad" 863287 863295 863612 863617) (-523 "IMPTAST.spad" 862995 863003 863277 863282) (-522 "IMATRIX.spad" 861940 861966 862452 862479) (-521 "IMATQF.spad" 861034 861078 861896 861901) (-520 "IMATLIN.spad" 859639 859663 860990 860995) (-519 "ILIST.spad" 858295 858310 858822 858849) (-518 "IIARRAY2.spad" 857683 857721 857902 857929) (-517 "IFF.spad" 857093 857109 857364 857457) (-516 "IFAST.spad" 856707 856715 857083 857088) (-515 "IFARRAY.spad" 854194 854209 855890 855917) (-514 "IFAMON.spad" 854056 854073 854150 854155) (-513 "IEVALAB.spad" 853445 853457 854046 854051) (-512 "IEVALAB.spad" 852832 852846 853435 853440) (-511 "IDPO.spad" 852630 852642 852822 852827) (-510 "IDPOAMS.spad" 852386 852398 852620 852625) (-509 "IDPOAM.spad" 852106 852118 852376 852381) (-508 "IDPC.spad" 851040 851052 852096 852101) (-507 "IDPAM.spad" 850785 850797 851030 851035) (-506 "IDPAG.spad" 850532 850544 850775 850780) (-505 "IDENT.spad" 850304 850312 850522 850527) (-504 "IDECOMP.spad" 847541 847559 850294 850299) (-503 "IDEAL.spad" 842464 842503 847476 847481) (-502 "ICDEN.spad" 841615 841631 842454 842459) (-501 "ICARD.spad" 840804 840812 841605 841610) (-500 "IBPTOOLS.spad" 839397 839414 840794 840799) (-499 "IBITS.spad" 838596 838609 839033 839060) (-498 "IBATOOL.spad" 835471 835490 838586 838591) (-497 "IBACHIN.spad" 833958 833973 835461 835466) (-496 "IARRAY2.spad" 832946 832972 833565 833592) (-495 "IARRAY1.spad" 831991 832006 832129 832156) (-494 "IAN.spad" 830204 830212 831807 831900) (-493 "IALGFACT.spad" 829805 829838 830194 830199) (-492 "HYPCAT.spad" 829229 829237 829795 829800) (-491 "HYPCAT.spad" 828651 828661 829219 829224) (-490 "HOSTNAME.spad" 828459 828467 828641 828646) (-489 "HOMOTOP.spad" 828202 828212 828449 828454) (-488 "HOAGG.spad" 825470 825480 828192 828197) (-487 "HOAGG.spad" 822513 822525 825237 825242) (-486 "HEXADEC.spad" 820615 820623 820980 821073) (-485 "HEUGCD.spad" 819630 819641 820605 820610) (-484 "HELLFDIV.spad" 819220 819244 819620 819625) (-483 "HEAP.spad" 818612 818622 818827 818854) (-482 "HEADAST.spad" 818143 818151 818602 818607) (-481 "HDP.spad" 807986 808002 808363 808494) (-480 "HDMP.spad" 805162 805177 805780 805907) (-479 "HB.spad" 803399 803407 805152 805157) (-478 "HASHTBL.spad" 801869 801900 802080 802107) (-477 "HASAST.spad" 801585 801593 801859 801864) (-476 "HACKPI.spad" 801068 801076 801487 801580) (-475 "GTSET.spad" 800007 800023 800714 800741) (-474 "GSTBL.spad" 798526 798561 798700 798715) (-473 "GSERIES.spad" 795693 795720 796658 796807) (-472 "GROUP.spad" 794962 794970 795673 795688) (-471 "GROUP.spad" 794239 794249 794952 794957) (-470 "GROEBSOL.spad" 792727 792748 794229 794234) (-469 "GRMOD.spad" 791298 791310 792717 792722) (-468 "GRMOD.spad" 789867 789881 791288 791293) (-467 "GRIMAGE.spad" 782472 782480 789857 789862) (-466 "GRDEF.spad" 780851 780859 782462 782467) (-465 "GRAY.spad" 779310 779318 780841 780846) (-464 "GRALG.spad" 778357 778369 779300 779305) (-463 "GRALG.spad" 777402 777416 778347 778352) (-462 "GPOLSET.spad" 776856 776879 777084 777111) (-461 "GOSPER.spad" 776121 776139 776846 776851) (-460 "GMODPOL.spad" 775259 775286 776089 776116) (-459 "GHENSEL.spad" 774328 774342 775249 775254) (-458 "GENUPS.spad" 770429 770442 774318 774323) (-457 "GENUFACT.spad" 770006 770016 770419 770424) (-456 "GENPGCD.spad" 769590 769607 769996 770001) (-455 "GENMFACT.spad" 769042 769061 769580 769585) (-454 "GENEEZ.spad" 766981 766994 769032 769037) (-453 "GDMP.spad" 763999 764016 764775 764902) (-452 "GCNAALG.spad" 757894 757921 763793 763860) (-451 "GCDDOM.spad" 757066 757074 757820 757889) (-450 "GCDDOM.spad" 756300 756310 757056 757061) (-449 "GB.spad" 753818 753856 756256 756261) (-448 "GBINTERN.spad" 749838 749876 753808 753813) (-447 "GBF.spad" 745595 745633 749828 749833) (-446 "GBEUCLID.spad" 743469 743507 745585 745590) (-445 "GAUSSFAC.spad" 742766 742774 743459 743464) (-444 "GALUTIL.spad" 741088 741098 742722 742727) (-443 "GALPOLYU.spad" 739534 739547 741078 741083) (-442 "GALFACTU.spad" 737699 737718 739524 739529) (-441 "GALFACT.spad" 727832 727843 737689 737694) (-440 "FVFUN.spad" 724855 724863 727822 727827) (-439 "FVC.spad" 723907 723915 724845 724850) (-438 "FUNDESC.spad" 723585 723593 723897 723902) (-437 "FUNCTION.spad" 723434 723446 723575 723580) (-436 "FT.spad" 721727 721735 723424 723429) (-435 "FTEM.spad" 720890 720898 721717 721722) (-434 "FSUPFACT.spad" 719790 719809 720826 720831) (-433 "FST.spad" 717876 717884 719780 719785) (-432 "FSRED.spad" 717354 717370 717866 717871) (-431 "FSPRMELT.spad" 716178 716194 717311 717316) (-430 "FSPECF.spad" 714255 714271 716168 716173) (-429 "FS.spad" 708317 708327 714030 714250) (-428 "FS.spad" 702157 702169 707872 707877) (-427 "FSINT.spad" 701815 701831 702147 702152) (-426 "FSERIES.spad" 701002 701014 701635 701734) (-425 "FSCINT.spad" 700315 700331 700992 700997) (-424 "FSAGG.spad" 699432 699442 700271 700310) (-423 "FSAGG.spad" 698511 698523 699352 699357) (-422 "FSAGG2.spad" 697210 697226 698501 698506) (-421 "FS2UPS.spad" 691693 691727 697200 697205) (-420 "FS2.spad" 691338 691354 691683 691688) (-419 "FS2EXPXP.spad" 690461 690484 691328 691333) (-418 "FRUTIL.spad" 689403 689413 690451 690456) (-417 "FR.spad" 683097 683107 688427 688496) (-416 "FRNAALG.spad" 678184 678194 683039 683092) (-415 "FRNAALG.spad" 673283 673295 678140 678145) (-414 "FRNAAF2.spad" 672737 672755 673273 673278) (-413 "FRMOD.spad" 672131 672161 672668 672673) (-412 "FRIDEAL.spad" 671326 671347 672111 672126) (-411 "FRIDEAL2.spad" 670928 670960 671316 671321) (-410 "FRETRCT.spad" 670439 670449 670918 670923) (-409 "FRETRCT.spad" 669816 669828 670297 670302) (-408 "FRAMALG.spad" 668144 668157 669772 669811) (-407 "FRAMALG.spad" 666504 666519 668134 668139) (-406 "FRAC.spad" 663603 663613 664006 664179) (-405 "FRAC2.spad" 663206 663218 663593 663598) (-404 "FR2.spad" 662540 662552 663196 663201) (-403 "FPS.spad" 659349 659357 662430 662535) (-402 "FPS.spad" 656186 656196 659269 659274) (-401 "FPC.spad" 655228 655236 656088 656181) (-400 "FPC.spad" 654356 654366 655218 655223) (-399 "FPATMAB.spad" 654118 654128 654346 654351) (-398 "FPARFRAC.spad" 652591 652608 654108 654113) (-397 "FORTRAN.spad" 651097 651140 652581 652586) (-396 "FORT.spad" 650026 650034 651087 651092) (-395 "FORTFN.spad" 647196 647204 650016 650021) (-394 "FORTCAT.spad" 646880 646888 647186 647191) (-393 "FORMULA.spad" 644344 644352 646870 646875) (-392 "FORMULA1.spad" 643823 643833 644334 644339) (-391 "FORDER.spad" 643514 643538 643813 643818) (-390 "FOP.spad" 642715 642723 643504 643509) (-389 "FNLA.spad" 642139 642161 642683 642710) (-388 "FNCAT.spad" 640726 640734 642129 642134) (-387 "FNAME.spad" 640618 640626 640716 640721) (-386 "FMTC.spad" 640416 640424 640544 640613) (-385 "FMONOID.spad" 637471 637481 640372 640377) (-384 "FM.spad" 637166 637178 637405 637432) (-383 "FMFUN.spad" 634196 634204 637156 637161) (-382 "FMC.spad" 633248 633256 634186 634191) (-381 "FMCAT.spad" 630902 630920 633216 633243) (-380 "FM1.spad" 630259 630271 630836 630863) (-379 "FLOATRP.spad" 627980 627994 630249 630254) (-378 "FLOAT.spad" 621268 621276 627846 627975) (-377 "FLOATCP.spad" 618685 618699 621258 621263) (-376 "FLINEXP.spad" 618397 618407 618665 618680) (-375 "FLINEXP.spad" 618063 618075 618333 618338) (-374 "FLASORT.spad" 617383 617395 618053 618058) (-373 "FLALG.spad" 615029 615048 617309 617378) (-372 "FLAGG.spad" 612047 612057 615009 615024) (-371 "FLAGG.spad" 608966 608978 611930 611935) (-370 "FLAGG2.spad" 607647 607663 608956 608961) (-369 "FINRALG.spad" 605676 605689 607603 607642) (-368 "FINRALG.spad" 603631 603646 605560 605565) (-367 "FINITE.spad" 602783 602791 603621 603626) (-366 "FINAALG.spad" 591764 591774 602725 602778) (-365 "FINAALG.spad" 580757 580769 591720 591725) (-364 "FILE.spad" 580340 580350 580747 580752) (-363 "FILECAT.spad" 578858 578875 580330 580335) (-362 "FIELD.spad" 578264 578272 578760 578853) (-361 "FIELD.spad" 577756 577766 578254 578259) (-360 "FGROUP.spad" 576365 576375 577736 577751) (-359 "FGLMICPK.spad" 575152 575167 576355 576360) (-358 "FFX.spad" 574527 574542 574868 574961) (-357 "FFSLPE.spad" 574016 574037 574517 574522) (-356 "FFPOLY.spad" 565268 565279 574006 574011) (-355 "FFPOLY2.spad" 564328 564345 565258 565263) (-354 "FFP.spad" 563725 563745 564044 564137) (-353 "FF.spad" 563173 563189 563406 563499) (-352 "FFNBX.spad" 561685 561705 562889 562982) (-351 "FFNBP.spad" 560198 560215 561401 561494) (-350 "FFNB.spad" 558663 558684 559879 559972) (-349 "FFINTBAS.spad" 556077 556096 558653 558658) (-348 "FFIELDC.spad" 553652 553660 555979 556072) (-347 "FFIELDC.spad" 551313 551323 553642 553647) (-346 "FFHOM.spad" 550061 550078 551303 551308) (-345 "FFF.spad" 547496 547507 550051 550056) (-344 "FFCGX.spad" 546343 546363 547212 547305) (-343 "FFCGP.spad" 545232 545252 546059 546152) (-342 "FFCG.spad" 544024 544045 544913 545006) (-341 "FFCAT.spad" 537051 537073 543863 544019) (-340 "FFCAT.spad" 530157 530181 536971 536976) (-339 "FFCAT2.spad" 529902 529942 530147 530152) (-338 "FEXPR.spad" 521611 521657 529658 529697) (-337 "FEVALAB.spad" 521317 521327 521601 521606) (-336 "FEVALAB.spad" 520808 520820 521094 521099) (-335 "FDIV.spad" 520250 520274 520798 520803) (-334 "FDIVCAT.spad" 518292 518316 520240 520245) (-333 "FDIVCAT.spad" 516332 516358 518282 518287) (-332 "FDIV2.spad" 515986 516026 516322 516327) (-331 "FCPAK1.spad" 514539 514547 515976 515981) (-330 "FCOMP.spad" 513918 513928 514529 514534) (-329 "FC.spad" 503833 503841 513908 513913) (-328 "FAXF.spad" 496768 496782 503735 503828) (-327 "FAXF.spad" 489755 489771 496724 496729) (-326 "FARRAY.spad" 487901 487911 488938 488965) (-325 "FAMR.spad" 486021 486033 487799 487896) (-324 "FAMR.spad" 484125 484139 485905 485910) (-323 "FAMONOID.spad" 483775 483785 484079 484084) (-322 "FAMONC.spad" 481997 482009 483765 483770) (-321 "FAGROUP.spad" 481603 481613 481893 481920) (-320 "FACUTIL.spad" 479799 479816 481593 481598) (-319 "FACTFUNC.spad" 478975 478985 479789 479794) (-318 "EXPUPXS.spad" 475808 475831 477107 477256) (-317 "EXPRTUBE.spad" 473036 473044 475798 475803) (-316 "EXPRODE.spad" 469908 469924 473026 473031) (-315 "EXPR.spad" 465183 465193 465897 466304) (-314 "EXPR2UPS.spad" 461275 461288 465173 465178) (-313 "EXPR2.spad" 460978 460990 461265 461270) (-312 "EXPEXPAN.spad" 457916 457941 458550 458643) (-311 "EXIT.spad" 457587 457595 457906 457911) (-310 "EXITAST.spad" 457323 457331 457577 457582) (-309 "EVALCYC.spad" 456781 456795 457313 457318) (-308 "EVALAB.spad" 456345 456355 456771 456776) (-307 "EVALAB.spad" 455907 455919 456335 456340) (-306 "EUCDOM.spad" 453449 453457 455833 455902) (-305 "EUCDOM.spad" 451053 451063 453439 453444) (-304 "ESTOOLS.spad" 442893 442901 451043 451048) (-303 "ESTOOLS2.spad" 442494 442508 442883 442888) (-302 "ESTOOLS1.spad" 442179 442190 442484 442489) (-301 "ES.spad" 434726 434734 442169 442174) (-300 "ES.spad" 427179 427189 434624 434629) (-299 "ESCONT.spad" 423952 423960 427169 427174) (-298 "ESCONT1.spad" 423701 423713 423942 423947) (-297 "ES2.spad" 423196 423212 423691 423696) (-296 "ES1.spad" 422762 422778 423186 423191) (-295 "ERROR.spad" 420083 420091 422752 422757) (-294 "EQTBL.spad" 418555 418577 418764 418791) (-293 "EQ.spad" 413429 413439 416228 416340) (-292 "EQ2.spad" 413145 413157 413419 413424) (-291 "EP.spad" 409459 409469 413135 413140) (-290 "ENV.spad" 408161 408169 409449 409454) (-289 "ENTIRER.spad" 407829 407837 408105 408156) (-288 "EMR.spad" 407030 407071 407755 407824) (-287 "ELTAGG.spad" 405270 405289 407020 407025) (-286 "ELTAGG.spad" 403474 403495 405226 405231) (-285 "ELTAB.spad" 402921 402939 403464 403469) (-284 "ELFUTS.spad" 402300 402319 402911 402916) (-283 "ELEMFUN.spad" 401989 401997 402290 402295) (-282 "ELEMFUN.spad" 401676 401686 401979 401984) (-281 "ELAGG.spad" 399619 399629 401656 401671) (-280 "ELAGG.spad" 397499 397511 399538 399543) (-279 "ELABEXPR.spad" 396430 396438 397489 397494) (-278 "EFUPXS.spad" 393206 393236 396386 396391) (-277 "EFULS.spad" 390042 390065 393162 393167) (-276 "EFSTRUC.spad" 387997 388013 390032 390037) (-275 "EF.spad" 382763 382779 387987 387992) (-274 "EAB.spad" 381039 381047 382753 382758) (-273 "E04UCFA.spad" 380575 380583 381029 381034) (-272 "E04NAFA.spad" 380152 380160 380565 380570) (-271 "E04MBFA.spad" 379732 379740 380142 380147) (-270 "E04JAFA.spad" 379268 379276 379722 379727) (-269 "E04GCFA.spad" 378804 378812 379258 379263) (-268 "E04FDFA.spad" 378340 378348 378794 378799) (-267 "E04DGFA.spad" 377876 377884 378330 378335) (-266 "E04AGNT.spad" 373718 373726 377866 377871) (-265 "DVARCAT.spad" 370403 370413 373708 373713) (-264 "DVARCAT.spad" 367086 367098 370393 370398) (-263 "DSMP.spad" 364517 364531 364822 364949) (-262 "DROPT.spad" 358462 358470 364507 364512) (-261 "DROPT1.spad" 358125 358135 358452 358457) (-260 "DROPT0.spad" 352952 352960 358115 358120) (-259 "DRAWPT.spad" 351107 351115 352942 352947) (-258 "DRAW.spad" 343707 343720 351097 351102) (-257 "DRAWHACK.spad" 343015 343025 343697 343702) (-256 "DRAWCX.spad" 340457 340465 343005 343010) (-255 "DRAWCURV.spad" 339994 340009 340447 340452) (-254 "DRAWCFUN.spad" 329166 329174 339984 339989) (-253 "DQAGG.spad" 327334 327344 329134 329161) (-252 "DPOLCAT.spad" 322675 322691 327202 327329) (-251 "DPOLCAT.spad" 318102 318120 322631 322636) (-250 "DPMO.spad" 310328 310344 310466 310767) (-249 "DPMM.spad" 302567 302585 302692 302993) (-248 "DOMCTOR.spad" 302459 302467 302557 302562) (-247 "DOMAIN.spad" 301590 301598 302449 302454) (-246 "DMP.spad" 298812 298827 299384 299511) (-245 "DLP.spad" 298160 298170 298802 298807) (-244 "DLIST.spad" 296739 296749 297343 297370) (-243 "DLAGG.spad" 295150 295160 296729 296734) (-242 "DIVRING.spad" 294692 294700 295094 295145) (-241 "DIVRING.spad" 294278 294288 294682 294687) (-240 "DISPLAY.spad" 292458 292466 294268 294273) (-239 "DIRPROD.spad" 282038 282054 282678 282809) (-238 "DIRPROD2.spad" 280846 280864 282028 282033) (-237 "DIRPCAT.spad" 279788 279804 280710 280841) (-236 "DIRPCAT.spad" 278459 278477 279383 279388) (-235 "DIOSP.spad" 277284 277292 278449 278454) (-234 "DIOPS.spad" 276268 276278 277264 277279) (-233 "DIOPS.spad" 275226 275238 276224 276229) (-232 "DIFRING.spad" 274518 274526 275206 275221) (-231 "DIFRING.spad" 273818 273828 274508 274513) (-230 "DIFEXT.spad" 272977 272987 273798 273813) (-229 "DIFEXT.spad" 272053 272065 272876 272881) (-228 "DIAGG.spad" 271683 271693 272033 272048) (-227 "DIAGG.spad" 271321 271333 271673 271678) (-226 "DHMATRIX.spad" 269625 269635 270778 270805) (-225 "DFSFUN.spad" 263033 263041 269615 269620) (-224 "DFLOAT.spad" 259754 259762 262923 263028) (-223 "DFINTTLS.spad" 257963 257979 259744 259749) (-222 "DERHAM.spad" 255873 255905 257943 257958) (-221 "DEQUEUE.spad" 255191 255201 255480 255507) (-220 "DEGRED.spad" 254806 254820 255181 255186) (-219 "DEFINTRF.spad" 252331 252341 254796 254801) (-218 "DEFINTEF.spad" 250827 250843 252321 252326) (-217 "DEFAST.spad" 250195 250203 250817 250822) (-216 "DECIMAL.spad" 248301 248309 248662 248755) (-215 "DDFACT.spad" 246100 246117 248291 248296) (-214 "DBLRESP.spad" 245698 245722 246090 246095) (-213 "DBASE.spad" 244352 244362 245688 245693) (-212 "DATAARY.spad" 243814 243827 244342 244347) (-211 "D03FAFA.spad" 243642 243650 243804 243809) (-210 "D03EEFA.spad" 243462 243470 243632 243637) (-209 "D03AGNT.spad" 242542 242550 243452 243457) (-208 "D02EJFA.spad" 242004 242012 242532 242537) (-207 "D02CJFA.spad" 241482 241490 241994 241999) (-206 "D02BHFA.spad" 240972 240980 241472 241477) (-205 "D02BBFA.spad" 240462 240470 240962 240967) (-204 "D02AGNT.spad" 235266 235274 240452 240457) (-203 "D01WGTS.spad" 233585 233593 235256 235261) (-202 "D01TRNS.spad" 233562 233570 233575 233580) (-201 "D01GBFA.spad" 233084 233092 233552 233557) (-200 "D01FCFA.spad" 232606 232614 233074 233079) (-199 "D01ASFA.spad" 232074 232082 232596 232601) (-198 "D01AQFA.spad" 231520 231528 232064 232069) (-197 "D01APFA.spad" 230944 230952 231510 231515) (-196 "D01ANFA.spad" 230438 230446 230934 230939) (-195 "D01AMFA.spad" 229948 229956 230428 230433) (-194 "D01ALFA.spad" 229488 229496 229938 229943) (-193 "D01AKFA.spad" 229014 229022 229478 229483) (-192 "D01AJFA.spad" 228537 228545 229004 229009) (-191 "D01AGNT.spad" 224596 224604 228527 228532) (-190 "CYCLOTOM.spad" 224102 224110 224586 224591) (-189 "CYCLES.spad" 220934 220942 224092 224097) (-188 "CVMP.spad" 220351 220361 220924 220929) (-187 "CTRIGMNP.spad" 218841 218857 220341 220346) (-186 "CTOR.spad" 218536 218544 218831 218836) (-185 "CTORKIND.spad" 218139 218147 218526 218531) (-184 "CTORCAT.spad" 217594 217602 218129 218134) (-183 "CTORCAT.spad" 217047 217057 217584 217589) (-182 "CTORCALL.spad" 216627 216635 217037 217042) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX.spad" 190198 190208 190442 190691) (-167 "COMPLEX2.spad" 189911 189923 190188 190193) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMM.spad" 184558 184566 184739 184744) (-160 "COMMAAST.spad" 184321 184329 184548 184553) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN.spad" 149280 149304 154167 154172) (-134 "CARTEN2.spad" 148666 148693 149270 149275) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 5acfef10..7d2ad6a5 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3540 +1,3542 @@ -(162053 . 3442118613) -((((-857)) . T)) +(162070 . 3442535953) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) #0#) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +((((-562)) . T) (($) -4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1033 (-406 (-562))))) ((|#1|) . T)) +(((|#2| |#2|) . T)) +((((-562)) . T)) +((($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) ((|#2| |#2|) . T) ((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562))))) +((($) . T)) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#2|) . T)) +((($) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562))))) +(|has| |#1| (-904)) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) +((($) . T) (((-406 (-562))) . T)) +((($) . T)) +((($) . T)) +(((|#2| |#2|) . T)) +((((-143)) . T)) +((((-535)) . T) (((-1150)) . T) (((-224)) . T) (((-378)) . T) (((-887 (-378))) . T)) +(((|#1|) . T)) +((((-224)) . T) (((-857)) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) +((($ $) . T) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T)) +(-4037 (|has| |#1| (-815)) (|has| |#1| (-845))) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) ((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-406 |#2|) |#3|) . T)) -((((-406 (-544))) |has| #1=(-406 |#2|) (-1031 (-406 (-544)))) (((-544)) |has| #1# (-1031 (-544))) ((#1#) . T)) -((((-406 |#2|)) . T)) -((((-544)) |has| #1=(-406 |#2|) (-634 (-544))) ((#1#) . T)) -((((-406 |#2|)) . T)) -((((-406 |#2|) |#3|) . T)) -(|has| (-406 |#2|) (-146)) -((((-406 |#2|) |#3|) . T)) -(|has| (-406 |#2|) (-144)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T)) -(|has| (-406 |#2|) (-232)) -((((-1166)) |has| (-406 |#2|) (-893 (-1166)))) -((((-406 |#2|)) . T)) -(((|#3|) . T)) -(((#1=(-406 |#2|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T)) ((((-857)) . T)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(|has| |#1| (-843)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (((|#1| |#2| |#3|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1132 |#2| |#1|)) . T) ((|#1|) . T)) +((((-1173)) . T)) +((((-562)) . T) (((-865 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) ((((-857)) . T)) +((((-1173)) . T)) +(((|#4|) . T)) +((((-857)) . T)) +((((-857)) |has| |#1| (-1092))) +((((-857)) . T) (((-1173)) . T)) +(((|#1|) . T) ((|#2|) . T)) +((((-1173)) . T)) +(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(((|#2| (-481 (-3492 |#1|) (-766))) . T)) +(((|#1| (-530 (-1168))) . T)) +(((#0=(-865 |#1|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) +((((-1150)) . T) (((-857)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(|has| |#4| (-367)) +(|has| |#3| (-367)) (((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) +((((-505)) . T)) +((((-865 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) +((((-857)) . T)) ((((-857)) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#1| |#2|) . T)) -((((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((|#1| |#2|) . T)) -((((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((|#2|) . T)) -(((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) ((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -((((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-167 (-377))) . T) (((-224)) . T) (((-377)) . T)) -((((-406 (-544))) . T) (((-544)) . T)) -((($) . T) (((-406 (-544))) . T)) -((($) . T) (((-406 (-544))) . T)) -((($) . T) (((-406 (-544))) . T)) -((((-406 (-544))) . T) (($) . T)) -(((#1=(-406 (-544)) #1#) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-606 $) $) . T)) +(|has| |#1| (-144)) +(|has| |#1| (-146)) +(|has| |#1| (-554)) +((((-562)) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))) ((|#2|) . T) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-859 |#1|)) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +((((-2 (|:| -2466 |#1|) (|:| -1960 |#2|))) . T)) +((($) . T)) +((((-562)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) ((|#1|) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) (((-1168)) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-535)) |has| |#1| (-610 (-535)))) +((((-1168)) . T)) +((((-562)) . T) (($) . T)) +((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) ((((-857)) . T)) -((((-406 (-544))) . T) (((-544)) . T) (((-606 $)) . T)) -((($) . T) (((-544)) . T) (((-406 (-544))) . T) (((-606 $)) . T)) ((((-857)) . T)) -(((|#1|) . T)) +((((-406 (-562))) . T) (($) . T)) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-1248 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T)) ((((-857)) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-544)) . T)) (((|#1|) . T)) ((((-857)) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-857)) . T)) +(((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) . T)) +(((|#1| |#2|) . T)) ((((-857)) . T)) (((|#1|) . T)) -(|has| |#1| (-844)) +(((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562)))) ((|#2| |#2|) . T) (($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) (((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) +(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +((((-406 (-562))) . T) (($) . T) (((-562)) . T)) +(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +(((|#2|) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T) (($) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((($ $) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +((($) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-367)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1| (-58 |#1|) (-58 |#1|)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-682 (-338 (-3929) (-3929 (QUOTE X) (QUOTE HESS)) (-692)))) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) ((((-857)) . T)) +(((|#1| |#2|) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) +(((|#1| |#1|) . T)) ((((-857)) . T)) +(|has| |#1| (-554)) +(((|#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) (((-1168) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-513 (-1168) |#2|)))) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) +((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(|has| |#1| (-1092)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(|has| |#1| (-1092)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(|has| |#1| (-843)) +((($) . T) (((-406 (-562))) . T)) +(((|#1|) . T)) +((((-562) (-129)) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +((((-129)) . T)) +((((-1173)) . T)) +(-4037 (|has| |#4| (-788)) (|has| |#4| (-843))) +(-4037 (|has| |#4| (-788)) (|has| |#4| (-843))) +(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) +(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-1092)) +(|has| |#1| (-1092)) +(((|#1| (-1168) (-1080 (-1168)) (-530 (-1080 (-1168)))) . T)) +((((-562) |#1|) . T)) +((((-562)) . T)) +((((-562)) . T)) +((((-905 |#1|)) . T)) +(((|#1| (-530 |#2|)) . T)) +((((-562)) . T)) +((((-562)) . T)) +(((|#1|) . T)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(((|#1| (-766)) . T)) +(|has| |#2| (-788)) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(|has| |#2| (-843)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2|) . T)) +((((-1150) |#1|) . T)) +((((-562) (-129)) . T)) +(((|#1|) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(((|#3| (-766)) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-144)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) +(|has| |#1| (-1092)) +((((-406 (-562))) . T) (((-562)) . T)) +((((-562)) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +((((-562)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) ((|#1|) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#2|) . T)) +((((-1168) |#2|) |has| |#2| (-513 (-1168) |#2|)) ((|#2| |#2|) |has| |#2| (-308 |#2|))) +((((-406 (-562))) . T) (((-562)) . T)) +((((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) (((-1074)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) +(((|#1|) . T) (($) . T)) +((((-562)) . T)) +((((-562)) . T)) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) +((((-562)) . T)) +((((-562)) . T)) +(((#0=(-693) (-1164 #0#)) . T)) +((((-406 (-562))) . T) (($) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +((((-562) |#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-362)) +((($) . T) (((-562)) . T) (((-406 (-562))) . T)) +(((|#1|) . T)) +(((|#1| |#2|) . T)) ((((-857)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-1150) |#1|) . T)) +(((|#3| |#3|) . T)) ((((-857)) . T)) ((((-857)) . T)) +(((|#1| |#1|) . T)) +(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((($) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044)))) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) +((((-562) |#1|) . T)) ((((-857)) . T)) +((((-168 (-224))) |has| |#1| (-1017)) (((-168 (-378))) |has| |#1| (-1017)) (((-535)) |has| |#1| (-610 (-535))) (((-1164 |#1|)) . T) (((-887 (-562))) |has| |#1| (-610 (-887 (-562)))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378))))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) +(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +(|has| |#1| (-362)) ((((-857)) . T)) +((((-129)) . T)) +(-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) +(-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) +(-4037 (|has| |#4| (-171)) (|has| |#4| (-843)) (|has| |#4| (-1044))) +(-4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +((((-857)) . T) (((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-857)) . T)) +(((|#1|) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) +(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) +(((|#2|) . T) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) +(|has| |#1| (-554)) +((((-562)) -4037 (|has| |#4| (-171)) (|has| |#4| (-843)) (-12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092))) (|has| |#4| (-1044))) ((|#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-1092))) (((-406 (-562))) -12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092)))) +((((-562)) -4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (|has| |#3| (-1044))) ((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-1092))) (((-406 (-562))) -12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(|has| |#1| (-554)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(((|#1|) . T)) +(|has| |#1| (-554)) +(|has| |#1| (-554)) +(|has| |#1| (-554)) +((((-693)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-997)) (|has| |#1| (-1192))) +(((|#2|) . T) (($) . T) (((-406 (-562))) . T)) +(-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))) +((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) . T)) +(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) +(((|#4| |#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1044))) (($ $) |has| |#4| (-171))) +(((|#3| |#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044))) (($ $) |has| |#3| (-171))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-535)) |has| |#2| (-610 (-535))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562))))) ((((-857)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-2 (|:| -2466 |#1|) (|:| -1960 |#2|))) . T) (((-857)) . T)) +((((-535)) |has| |#1| (-610 (-535))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#1| (-610 (-887 (-562))))) +(((|#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1044))) (($) |has| |#4| (-171))) +(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044))) (($) |has| |#3| (-171))) +((((-2 (|:| -2466 |#1|) (|:| -1960 |#2|))) . T)) ((((-857)) . T)) ((((-857)) . T)) +((((-535)) . T) (((-562)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) +((((-639 |#1|)) . T)) +(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +((($) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T)) +((((-406 $) (-406 $)) |has| |#2| (-554)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-904)) +((((-1150) (-52)) . T)) +((((-562)) |has| #0=(-406 |#2|) (-635 (-562))) ((#0#) . T)) +((((-535)) . T) (((-224)) . T) (((-378)) . T) (((-887 (-378))) . T)) ((((-857)) . T)) -((((-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) +(((|#1|) |has| |#1| (-171))) +(((|#1| $) |has| |#1| (-285 |#1| |#1|))) ((((-857)) . T)) ((((-857)) . T)) +((((-406 (-562))) . T) (($) . T)) +((((-406 (-562))) . T) (($) . T)) ((((-857)) . T)) +(|has| |#1| (-845)) +(((|#2|) . T) (((-562)) . T) (((-814 |#1|)) . T)) +(|has| |#1| (-1092)) +(((|#1|) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-535)) |has| |#1| (-610 (-535)))) +((((-857)) . T) (((-1173)) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((((-1173)) . T)) +((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(|has| |#1| (-232)) +((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#1| (-530 (-813 (-1168)))) . T)) +(((|#1| (-966)) . T)) +(((#0=(-865 |#1|) $) |has| #0# (-285 #0# #0#))) +((((-562) |#4|) . T)) +((((-562) |#3|) . T)) +(((|#1|) . T)) +(((|#2| |#2|) . T)) +(|has| |#1| (-1143)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) +(|has| (-1242 |#1| |#2| |#3| |#4|) (-144)) +(|has| (-1242 |#1| |#2| |#3| |#4|) (-146)) +(|has| |#1| (-144)) +(|has| |#1| (-146)) +(((|#1|) |has| |#1| (-171))) +((((-1168)) -12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) +(|has| |#1| (-1092)) +((((-1150) |#1|) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) +((((-1117 |#1| (-1168))) . T) (((-562)) . T) (((-813 (-1168))) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-1168)) . T)) +(|has| |#2| (-367)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((($) . T) ((|#1|) . T)) +(((|#2|) |has| |#2| (-1044))) ((((-857)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) #0#) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +(((|#1|) . T)) +((((-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((#0=(-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) #0#) |has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))))) ((((-857)) . T)) +((((-562) |#1|) . T)) +((((-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#2| (-610 (-535)))) (((-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378))))) (((-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) +((($) . T)) ((((-857)) . T)) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) ((((-857)) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) ((((-857)) . T)) ((((-857)) . T)) +(|has| (-1241 |#2| |#3| |#4|) (-146)) +(|has| (-1241 |#2| |#3| |#4|) (-144)) +(((|#2|) |has| |#2| (-1092)) (((-562)) -12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T)) -(((|#1| |#1|) . T)) +(|has| |#1| (-1092)) ((((-857)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) (((|#1|) . T)) +((((-562) |#1|) . T)) +(((|#2|) |has| |#2| (-171))) +(((|#1|) |has| |#1| (-171))) (((|#1|) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) +((((-857)) |has| |#1| (-1092))) +(-4037 (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)) (|has| |#1| (-1104))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +((((-905 |#1|)) . T)) +((((-406 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-562) |#1|))) +((((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-845)) +(((|#1|) . T) (($) . T)) +((((-406 (-562))) . T) (($) . T)) ((((-857)) . T)) -((((-997 2)) . T) (((-406 (-544))) . T) (((-857)) . T)) -((((-544)) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((($) . T) (((-544)) . T) (((-406 (-544))) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((((-544)) . T) (((-406 (-544))) . T) (($) . T)) -(((#1=(-544) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-533)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T)) -((((-406 (-544))) . T) (((-544)) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((((-544)) . T)) -((((-857)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-544) (-112)) . T)) -((((-544) (-112)) . T)) -((((-544) (-112)) . T)) -((((-533)) . T)) -((((-112)) . T)) -((((-857)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-533)) . T)) -((((-857)) . T)) -((((-857)) . T)) +(((|#1|) . T)) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +(|has| |#1| (-362)) +(-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))) +(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) +(|has| |#1| (-362)) +((((-562)) . T)) +(|has| |#1| (-15 * (|#1| (-766) |#1|))) +((((-1134 |#2| (-406 (-947 |#1|)))) . T) (((-406 (-947 |#1|))) . T)) ((($) . T)) +(((|#1|) |has| |#1| (-171)) (($) . T)) +(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) +(((|#1|) . T)) +((((-562) |#1|) . T)) +((((-857)) . T)) +(((|#2|) . T)) +(-4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +((((-562)) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +((($) |has| |#1| (-554)) (((-562)) . T)) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +((((-1248 |#1| |#2| |#3|)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) ((|#1|) |has| |#1| (-171))) +((((-1252 |#2|)) . T) (((-1248 |#1| |#2| |#3|)) . T) (((-1220 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (((-562)) . T)) +(((|#1|) . T)) +((((-1168)) -12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) +(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) +(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) +((($ $) |has| |#1| (-554))) +(((#0=(-693) (-1164 #0#)) . T)) +((((-857)) . T) (((-1256 |#4|)) . T)) +((((-857)) . T) (((-1256 |#3|)) . T)) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) +((($) |has| |#1| (-554))) ((((-857)) . T)) ((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -((((-544)) . T) (($) . T)) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((#1=(-1248 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-1248 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T)) +(((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) +(((|#3|) |has| |#3| (-1044))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(|has| |#1| (-1092)) +(((|#2| (-814 |#1|)) . T)) (((|#1|) . T)) +(|has| |#1| (-362)) +((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-1074) |#2|) . T) ((#0# $) . T) (($ $) . T)) ((((-857)) . T)) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -((($) . T) (((-116 |#1|)) . T) (((-406 (-544))) . T)) -((((-116 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -((((-116 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) -(((#1=(-116 |#1|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T)) -((((-116 |#1|)) . T)) -((((-1166) #1=(-116 |#1|)) |has| #1# (-512 (-1166) #1#)) ((#1# #1#) |has| #1# (-308 #1#))) -(((#1=(-116 |#1|)) |has| #1# (-308 #1#))) -(((#1=(-116 |#1|) $) |has| #1# (-285 #1# #1#))) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -((((-544)) . T) (((-116 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) +((((-905 |#1|)) . T)) +((((-143)) . T)) +((((-143)) . T)) +(((|#3|) |has| |#3| (-1092)) (((-562)) -12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (((-406 (-562))) -12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) +((((-857)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) (((|#1|) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-535)) |has| |#1| (-610 (-535)))) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) . T)) +(|has| |#1| (-362)) +((((-1173)) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) +((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) +(|has| |#2| (-815)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-843)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +((((-857)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-535)) |has| |#1| (-610 (-535)))) +(((|#1| |#2|) . T)) +((((-1168)) -12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) +((((-1150) |#1|) . T)) +(((|#1| |#2| |#3| (-530 |#3|)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +((((-857)) . T)) (((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(|has| |#1| (-367)) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +((((-562)) . T)) +((((-562)) . T)) +(((|#1|) . T) (((-562)) . T)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +((((-857)) . T)) +((((-857)) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (((-562)) . T) (($) . T)) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +(-12 (|has| |#2| (-232)) (|has| |#2| (-1044))) +((((-1168) #0=(-865 |#1|)) |has| #0# (-513 (-1168) #0#)) ((#0# #0#) |has| #0# (-308 #0#))) +(((|#1|) . T)) +((((-562) |#4|) . T)) +((((-562) |#3|) . T)) +(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +((((-1242 |#1| |#2| |#3| |#4|)) . T)) +((((-406 (-562))) . T) (((-562)) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(((|#1| |#1|) . T)) (((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (((|#1|) . T)) (((|#1|) . T)) +((($) . T) (((-562)) . T) (((-406 (-562))) . T)) +((((-562)) . T)) +((((-562)) . T)) +((($) . T) (((-562)) . T) (((-406 (-562))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +((((-562)) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) (((|#1|) . T)) (((|#1|) . T)) +(((#0=(-562) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) +(((|#1|) |has| |#1| (-554))) +((((-562) |#4|) . T)) +((((-562) |#3|) . T)) +((((-857)) . T)) +((((-562)) . T) (((-406 (-562))) . T) (($) . T)) +((((-857)) . T)) +((((-562) |#1|) . T)) (((|#1|) . T)) +((($ $) . T) ((#0=(-859 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1168) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-171))) +((($) -4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) ((|#2|) |has| |#2| (-171)) (((-406 (-562))) |has| |#2| (-38 (-406 (-562))))) +(((|#2| |#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($ $) |has| |#2| (-171))) +((((-143)) . T)) (((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) +(-12 (|has| |#1| (-367)) (|has| |#2| (-367))) +((((-857)) . T)) +(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($) |has| |#2| (-171))) (((|#1|) . T)) +((((-857)) . T)) +(|has| |#1| (-1092)) +(|has| $ (-146)) +((((-1173)) . T)) +((((-562) |#1|) . T)) +((($) -4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) +((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) +(|has| |#1| (-362)) +(-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))) +(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) +(|has| |#1| (-362)) +(|has| |#1| (-15 * (|#1| (-766) |#1|))) (((|#1|) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-143)) . T) (((-857)) . T)) -((((-128)) . T)) -((((-128)) . T)) -((((-1148)) . T) (((-857)) . T)) -((((-128)) . T)) -((((-544) (-128)) . T)) -((((-544) (-128)) . T)) -((((-544) (-128)) . T)) -((((-128)) . T)) -((((-128)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-857)) . T)) -((((-544) (-765)) . T) ((|#3| (-765)) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) ((((-857)) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(((|#2| (-530 (-859 |#1|))) . T)) +((((-857)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +((((-579 |#1|)) . T)) +((($) . T)) +((((-562)) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +(((|#1|) . T) (($) . T)) +((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) +((((-1166 |#1| |#2| |#3|)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) ((|#1|) |has| |#1| (-171))) +((((-1252 |#2|)) . T) (((-1166 |#1| |#2| |#3|)) . T) (((-1159 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +(((|#4|) . T)) (((|#3|) . T)) -(((|#3|) . T)) -(((|#3| (-765)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-504)) . T)) -((((-182)) . T) (((-857)) . T)) +((((-865 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (((-562)) . T)) +((((-1168)) -12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) +(((|#1|) . T)) ((((-857)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-635 (-143))) . T) (((-1148)) . T)) ((((-857)) . T)) +((((-562)) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))) ((|#2|) . T) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-859 |#1|)) . T)) +((((-562) |#2|) . T)) ((((-857)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-544)) . T)) -(((|#2|) . T) (($) . T)) ((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) ((((-857)) . T)) +(((|#1| |#2| |#3| |#4| |#5|) . T)) +(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((#1=(-1166 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +((((-857)) . T)) +(((|#2|) |has| |#2| (-1044))) +(|has| |#1| (-1092)) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T)) +(((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#1|) |has| |#1| (-171)) (($) . T)) +(((|#1|) . T)) +(((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562)))) ((|#2| |#2|) . T) (($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) ((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -(|has| |#1| (-815)) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-349))) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +(((#0=(-1074) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T) (($) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((($) . T)) +(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1092)) (((-562)) -12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) +(((|#2|) |has| |#1| (-362))) +((((-562) |#1|) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) ((((-857)) . T)) +((((-406 |#2|) |#3|) . T)) +(((|#1| (-406 (-562))) . T)) +((((-406 (-562))) . T) (($) . T)) +((((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +((((-857)) . T) (((-1173)) . T)) +(|has| |#1| (-144)) (|has| |#1| (-146)) +((((-1173)) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-406 (-562))) . T) (($) . T)) +((((-406 (-562))) . T) (($) . T)) +((((-406 (-562))) . T) (($) . T)) +(((|#2| |#3| (-859 |#1|)) . T)) +((((-1168)) |has| |#2| (-895 (-1168)))) +(((|#1|) . T)) +(((|#1| (-530 |#2|) |#2|) . T)) +(((|#1| (-766) (-1074)) . T)) +((((-406 (-562))) |has| |#2| (-362)) (($) . T)) +(((|#1| (-530 (-1080 (-1168))) (-1080 (-1168))) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(((|#1|) . T)) +((((-994 |#1|)) . T) (((-562)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(|has| |#2| (-788)) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#2| (-843)) +((((-888 |#1|)) . T) (((-814 |#1|)) . T)) +((((-814 (-1168))) . T)) (((|#1|) . T)) -((((-1166)) |has| |#1| (-893 (-1166)))) -(-3936 (|has| |#1| (-232)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(((|#1|) . T)) -((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) -(((|#1|) |has| |#1| (-308 |#1|))) -(((|#1| $) |has| |#1| (-285 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544)))) -(((|#1|) . T)) -((((-544)) |has| |#1| (-879 (-544))) (((-377)) |has| |#1| (-879 (-377)))) +(((|#2|) . T)) +(((|#2|) . T)) +((((-857)) . T)) +((((-857)) . T)) +((((-639 (-562))) . T)) +((((-639 (-562))) . T) (((-857)) . T)) +((((-406 (-562))) . T) (((-857)) . T)) +((((-535)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) +(|has| |#1| (-232)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((($ $) . T)) +(((|#1| |#1|) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-1248 |#1| |#2| |#3|) $) -12 (|has| (-1248 |#1| |#2| |#3|) (-285 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T)) +((($ $) . T)) +((($ $) . T)) (((|#1|) . T)) -((((-544)) . T) (($) -3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-1031 (-406 (-544))))) ((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(((|#1| (-1160 |#1|)) . T)) -(((|#1| (-1160 |#1|)) . T)) -((($) -3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T)) -((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T)) -((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) -((($) -3936 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T)) -(((|#1| (-1160 |#1|)) . T)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(-3936 (|has| |#1| (-367)) (|has| |#1| (-349))) -(|has| |#1| (-844)) +((((-1132 |#1| |#2|)) |has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(((|#2|) . T) (((-562)) |has| |#2| (-1033 (-562))) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) +(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) (((|#1|) . T)) -((((-167 (-224))) |has| |#1| . #1=((-1013))) (((-167 (-377))) |has| |#1| . #1#) (((-533)) |has| |#1| (-609 (-533))) (((-1160 |#1|)) . T) (((-883 (-544))) |has| |#1| (-609 (-883 (-544)))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377))))) -(-12 (|has| |#1| (-306)) (|has| |#1| (-903))) -(-12 (|has| |#1| (-995)) (|has| |#1| (-1190))) -(|has| |#1| (-1190)) -(|has| |#1| (-1190)) -(|has| |#1| (-1190)) -(|has| |#1| (-1190)) -(|has| |#1| (-1190)) -(|has| |#1| (-1190)) +(((|#1| |#2|) . T)) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +(((|#3|) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +(((|#2|) . T)) +((((-857)) -4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-609 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) (((-1256 |#2|)) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (((-562)) . T) (($) . T)) +(((|#1|) |has| |#1| (-171))) +((((-562)) . T)) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-562) (-143)) . T)) +((($) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044)))) +((((-562)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-562)) . T)) +((($) |has| |#1| (-554)) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-562)) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) +(((|#1|) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) +(((|#2|) |has| |#1| (-362))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| |#1|) . T) (($ $) . T)) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-1173)) . T)) +(((|#1| (-530 #0=(-1168)) #0#) . T)) +(((|#1|) . T) (($) . T)) +(|has| |#4| (-171)) +(|has| |#3| (-171)) +(((#0=(-406 (-947 |#1|)) #0#) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(|has| |#1| (-1092)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(|has| |#1| (-1092)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-535)) |has| |#1| (-610 (-535)))) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +(((|#1| |#1|) |has| |#1| (-171))) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (((|#1|) . T)) +((((-406 (-947 |#1|))) . T)) +(((|#1|) |has| |#1| (-171))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((((-857)) . T)) -((((-406 (-544))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T)) -((((-857)) . T)) -((($) . T) (((-406 (-544))) . T) (((-406 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) . T) ((#2=(-406 |#1|) #2#) . T) ((|#1| |#1|) . T)) -((((-406 (-544))) . T) (((-406 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T) (((-544)) . T)) -((((-406 (-544))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T)) -((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-504)) . T)) -((((-857)) . T)) -((((-857)) . T)) +((((-1242 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1044)) (((-562)) -12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) +(((|#1| |#2|) . T)) +(-4037 (|has| |#3| (-171)) (|has| |#3| (-721)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +(|has| |#3| (-788)) +(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) +(|has| |#3| (-843)) +(((|#1|) . T)) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) +(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +(((|#2|) . T)) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) +(((|#1| (-1148 |#1|)) |has| |#1| (-843))) +((((-562) |#2|) . T)) +(|has| |#1| (-1092)) +(((|#1|) . T)) +(-12 (|has| |#1| (-362)) (|has| |#2| (-1143))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(|has| |#1| (-1092)) +(((|#2|) . T)) +((((-535)) |has| |#2| (-610 (-535))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562))))) +(((|#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-362)))) +(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)))) ((((-857)) . T)) +(((|#1|) . T)) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-904))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-904))) +((($ $) . T) ((#0=(-1168) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-813 (-1168)) |#1|) . T) ((#1# $) . T)) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) +((((-562) |#2|) . T)) ((((-857)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((($) -4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) ((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044)))) +((((-562) |#1|) . T)) +(|has| (-406 |#2|) (-146)) +(|has| (-406 |#2|) (-144)) +(((|#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|)))) +(|has| |#1| (-38 (-406 (-562)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-406 (-562))) . T)) ((((-857)) . T)) +(|has| |#1| (-554)) +(|has| |#1| (-554)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-857)) . T)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) +(|has| |#1| (-38 (-406 (-562)))) +((((-387) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#2| (-1143)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +((((-857)) . T) (((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-1206)) . T) (((-857)) . T) (((-1173)) . T)) +((((-116 |#1|)) . T)) +((((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +(((|#1|) . T)) +((((-387) (-1150)) . T)) +(|has| |#1| (-554)) +((((-562) |#1|) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +(((|#2|) . T)) ((((-857)) . T)) +((((-814 |#1|)) . T)) +(((|#2|) |has| |#2| (-171))) +((((-1168) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-554)) +(((|#1|) |has| |#1| (-171))) +((((-639 |#1|)) . T)) ((((-857)) . T)) +((((-535)) |has| |#1| (-610 (-535)))) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(((|#2|) |has| |#2| (-308 |#2|))) +(((#0=(-562) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1164 |#1|)) . T)) +(|has| $ (-146)) +(((|#2|) . T)) +(((#0=(-562) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) +((($) . T) (((-562)) . T) (((-406 (-562))) . T)) +(|has| |#2| (-367)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +((((-562)) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-562)) . T) (((-406 (-562))) . T) (($) . T)) +((((-1166 |#1| |#2| |#3|) $) -12 (|has| (-1166 |#1| |#2| |#3|) (-285 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T)) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) +((((-535)) |has| |#1| (-610 (-535)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) +((($ $) . T)) ((((-857)) . T)) +((($ $) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((#0=(-1248 |#1| |#2| |#3|) #0#) -12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1168) #0#) -12 (|has| (-1248 |#1| |#2| |#3|) (-513 (-1168) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) +(-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-406 (-562))) . T) (((-562)) . T)) +((((-562) (-143)) . T)) +((((-143)) . T)) +(((|#1|) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) +((((-112)) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-112)) . T)) +(((|#1|) . T)) +((((-535)) |has| |#1| (-610 (-535))) (((-224)) . #0=(|has| |#1| (-1017))) (((-378)) . #0#)) ((((-857)) . T)) +((((-1173)) . T)) +(|has| |#1| (-815)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(|has| |#1| (-845)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) +(|has| |#1| (-554)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (((-562)) . T)) +(|has| |#1| (-904)) +(((|#1|) . T)) +(|has| |#1| (-1092)) ((((-857)) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) -((((-635 |#1|)) . T)) +(((|#1| (-1256 |#1|) (-1256 |#1|)) . T)) +((((-562) (-143)) . T)) +((($) . T)) +(-4037 (|has| |#4| (-171)) (|has| |#4| (-843)) (|has| |#4| (-1044))) +(-4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +((((-1173)) . T) (((-857)) . T)) +((((-1173)) . T)) ((((-857)) . T)) -((((-997 10)) . T) (((-406 (-544))) . T) (((-857)) . T)) -((((-544)) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((($) . T) (((-544)) . T) (((-406 (-544))) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((((-544)) . T) (((-406 (-544))) . T) (($) . T)) -(((#1=(-544) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-533)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T)) -((((-406 (-544))) . T) (((-544)) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((((-544)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) +(|has| |#1| (-1092)) +(((|#1| (-966)) . T)) +(((|#1| |#1|) . T)) +((($) . T)) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(-12 (|has| |#1| (-472)) (|has| |#2| (-472))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) (((|#1|) . T)) +(|has| |#2| (-788)) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(((|#1| |#2|) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(|has| |#2| (-843)) +(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) +(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) +(((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-171)) ((|#4|) . T) (((-562)) . T)) +(((|#2|) |has| |#2| (-171))) +(((|#1|) |has| |#1| (-171))) +((((-857)) . T)) +(|has| |#1| (-348)) (((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) (((|#1|) . T)) (((|#1|) . T)) +((((-406 (-562))) . T) (($) . T)) +((($) |has| |#1| (-554)) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-562)) . T)) +((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) . T)) +(|has| |#1| (-823)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) +(|has| |#1| (-1092)) +(((|#1| $) |has| |#1| (-285 |#1| |#1|))) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +((($) |has| |#1| (-554))) +(((|#4|) |has| |#4| (-1092))) +(((|#3|) |has| |#3| (-1092))) +(|has| |#3| (-367)) +(((|#1|) . T) (((-857)) . T)) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1248 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) (((|#1|) . T)) -((((-313 |#1|)) . T)) ((((-857)) . T)) -((((-313 |#1|)) . T) (($) . T)) -((((-313 |#1|)) . T) (((-544)) . T)) -((((-313 |#1|)) . T)) -((((-544)) . T) (((-406 (-544))) . T)) -((((-377)) . T)) -((($) . T) (((-406 (-544))) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-533)) . T) (((-224)) . T) (((-377)) . T) (((-883 (-377))) . T)) ((((-857)) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(((|#1| (-1253 |#1|) (-1253 |#1|)) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) +(((|#1| |#2|) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#1| |#1|) |has| |#1| (-171))) +(|has| |#2| (-362)) (((|#1|) . T)) -(((|#1| (-1253 |#1|) (-1253 |#1|)) . T)) -(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) -(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) -(((|#2|) |has| |#2| (-171))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -((($) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042)))) -(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)))) -((((-857)) -3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) (((-1253 |#2|)) . T)) +(((|#1|) |has| |#1| (-171))) +((((-406 (-562))) . T) (((-562)) . T)) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +((((-143)) . T)) +(((|#1|) . T)) +((($) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044)))) +((((-143)) . T)) +((((-143)) . T)) +((((-406 (-562))) . #0=(|has| |#2| (-362))) (($) . #0#) ((|#2|) . T) (((-562)) . T)) +(((|#1| |#2| |#3|) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) +(|has| $ (-146)) +(|has| $ (-146)) +((((-1173)) . T)) +(|has| |#1| (-1092)) +((((-857)) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-472)) (|has| |#1| (-554)) (|has| |#1| (-1044)) (|has| |#1| (-1104))) +((($ $) |has| |#1| (-285 $ $)) ((|#1| $) |has| |#1| (-285 |#1| |#1|))) +(((|#1| (-406 (-562))) . T)) +(((|#1|) . T)) +((((-1168)) . T)) +(|has| |#1| (-554)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(|has| |#1| (-554)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +((((-857)) . T)) +(|has| |#2| (-144)) +(|has| |#2| (-146)) +(((|#2|) . T) (($) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-144)) +(|has| |#4| (-843)) +(((|#2| (-239 (-3492 |#1|) (-766)) (-859 |#1|)) . T)) +(|has| |#3| (-843)) +(((|#1| (-530 |#3|) |#3|) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-144)) +(((#0=(-406 (-562)) #0#) |has| |#2| (-362)) (($ $) . T)) +((((-865 |#1|)) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +((((-857)) . T)) +(|has| |#1| (-144)) +((((-406 (-562))) |has| |#2| (-362)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(-4037 (|has| |#1| (-348)) (|has| |#1| (-367))) +((((-1134 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-171)) -(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171))) -(((|#2| |#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171))) -(((|#2|) |has| |#2| (-1042))) -((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) -(-12 (|has| |#2| (-232)) (|has| |#2| (-1042))) -(|has| |#2| (-367)) -(((|#2|) |has| |#2| (-1042))) -(((|#2|) |has| |#2| (-1042)) (((-544)) -12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) -(((|#2|) |has| |#2| (-1091))) -((((-544)) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) -(((|#2|) |has| |#2| (-1091)) (((-544)) -12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) -((((-544) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -(((|#2|) . T)) -((((-544) |#2|) . T)) -((((-544) |#2|) . T)) -(|has| |#2| (-787)) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(|has| |#2| (-842)) -(|has| |#2| (-842)) -(((|#2|) |has| |#2| (-362))) (((|#1| |#2|) . T)) -((((-635 |#1|)) . T)) -((((-635 |#1|)) . T)) +(-12 (|has| |#2| (-232)) (|has| |#2| (-1044))) +(((|#2|) . T) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) +(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) +((((-857)) . T)) (((|#1|) . T)) +(((|#2|) . T) (($) . T)) +((((-693)) . T)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(|has| |#1| (-554)) (((|#1|) . T)) -((((-635 |#1|)) . T) (((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-844)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +((((-1168) (-52)) . T)) +(((|#1|) . T) (($) . T)) +((((-999 10)) . T) (((-406 (-562))) . T) (((-857)) . T)) +((((-535)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) (((|#1|) . T)) -((((-533)) |has| |#2| (-609 (-533))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544))))) -((($) . T)) -(((|#2| (-238 (-4364 |#1|) (-765))) . T)) -(((|#2|) . T)) +((((-999 16)) . T) (((-406 (-562))) . T) (((-857)) . T)) +((((-535)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) +(((|#1| (-562)) . T)) ((((-857)) . T)) -((($) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-146)) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T) (($) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544)))) ((|#2| |#2|) . T) (($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(((|#2| (-238 (-4364 |#1|) (-765))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544)))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-903))) -((($ $) . T) ((#1=(-858 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-844)) -((((-858 |#1|)) . T)) -(|has| |#2| (-903)) -(|has| |#2| (-903)) -((((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) (((-544)) |has| |#2| (-1031 (-544))) ((|#2|) . T) (((-858 |#1|)) . T)) -((((-544)) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))) ((|#2|) . T) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-858 |#1|)) . T)) -(((|#2| (-238 (-4364 |#1|) (-765)) (-858 |#1|)) . T)) -((((-857)) . T)) -((((-504)) . T)) -((((-182)) . T) (((-857)) . T)) -(((|#4|) |has| |#4| (-171))) -(-3936 (|has| |#4| (-171)) (|has| |#4| (-720)) (|has| |#4| (-842)) (|has| |#4| (-1042))) -(-3936 (|has| |#4| (-171)) (|has| |#4| (-720)) (|has| |#4| (-842)) (|has| |#4| (-1042))) -(-3936 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042))) -(-3936 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042))) -(((|#3|) . T) ((|#2|) . T) (($) -3936 (|has| |#4| (-171)) (|has| |#4| (-842)) (|has| |#4| (-1042))) ((|#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042)))) -(((|#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-362)))) -((((-857)) . T) (((-1253 |#4|)) . T)) -(|has| |#4| (-171)) -(((|#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))) (($) |has| |#4| (-171))) -(((|#4| |#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1042))) (($ $) |has| |#4| (-171))) -(((|#4|) |has| |#4| (-1042))) -((((-1166)) -12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) -(-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) -(|has| |#4| (-367)) -(((|#4|) |has| |#4| (-1042))) -(((|#4|) |has| |#4| (-1042)) (((-544)) -12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042)))) -(((|#4|) |has| |#4| (-1091))) -((((-544)) -3936 (|has| |#4| (-171)) (|has| |#4| (-842)) (-12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091))) (|has| |#4| (-1042))) ((|#4|) -3936 (|has| |#4| (-171)) (|has| |#4| (-1091))) (((-406 (-544))) -12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091)))) -(((|#4|) |has| |#4| (-1091)) (((-544)) -12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091))) (((-406 (-544))) -12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091)))) -((((-544) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4|) . T)) -((((-544) |#4|) . T)) -((((-544) |#4|) . T)) -(|has| |#4| (-787)) -(-3936 (|has| |#4| (-787)) (|has| |#4| (-842))) -(-3936 (|has| |#4| (-787)) (|has| |#4| (-842))) -(-3936 (|has| |#4| (-787)) (|has| |#4| (-842))) -(-3936 (|has| |#4| (-787)) (|has| |#4| (-842))) -(|has| |#4| (-842)) -(|has| |#4| (-842)) -(((|#4|) |has| |#4| (-362))) -(((|#1| |#4|) . T)) -(((|#3|) |has| |#3| (-171))) -(-3936 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(((|#2|) . T) (($) -3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) ((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042)))) -(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)))) -((((-857)) . T) (((-1253 |#3|)) . T)) -(|has| |#3| (-171)) -(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($) |has| |#3| (-171))) -(((|#3| |#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($ $) |has| |#3| (-171))) -(((|#3|) |has| |#3| (-1042))) -((((-1166)) -12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) -(-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) -(|has| |#3| (-367)) -(((|#3|) |has| |#3| (-1042))) -(((|#3|) |has| |#3| (-1042)) (((-544)) -12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042)))) -(((|#3|) |has| |#3| (-1091))) -((((-544)) -3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (|has| |#3| (-1042))) ((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-1091))) (((-406 (-544))) -12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) -(((|#3|) |has| |#3| (-1091)) (((-544)) -12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (((-406 (-544))) -12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) -((((-544) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) -(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) -(((|#3|) . T)) -((((-544) |#3|) . T)) -((((-544) |#3|) . T)) -(|has| |#3| (-787)) -(-3936 (|has| |#3| (-787)) (|has| |#3| (-842))) -(-3936 (|has| |#3| (-787)) (|has| |#3| (-842))) -(-3936 (|has| |#3| (-787)) (|has| |#3| (-842))) -(-3936 (|has| |#3| (-787)) (|has| |#3| (-842))) -(|has| |#3| (-842)) -(|has| |#3| (-842)) -(((|#3|) |has| |#3| (-362))) -(((|#1| |#3|) . T)) ((((-857)) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -((((-857)) . T)) -(|has| |#1| (-232)) -((($) . T)) -(((|#1| (-529 |#3|) |#3|) . T)) -(|has| |#1| (-903)) -(|has| |#1| (-903)) -((((-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))) (((-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377))))) -((((-1166)) |has| |#1| (-893 (-1166))) ((|#3|) . T)) -(|has| |#1| (-844)) -((($ $) . T) ((|#2| $) |has| |#1| . #1=((-232))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-903))) -((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-529 |#3|)) . T)) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) +(((|#1| (-406 (-562))) . T)) +(((|#3|) . T) (((-608 $)) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) (((|#1|) . T)) -(((|#1| (-529 |#3|)) . T)) -((((-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544))))) (((-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377))))) (((-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533))))) -((((-1115 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#2|) . T)) -((((-1115 |#1| |#2|)) . T) (((-544)) . T) ((|#3|) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-529 |#3|)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-562)) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +((($ $) . T) ((|#2| $) . T)) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +(((#0=(-1166 |#1| |#2| |#3|) #0#) -12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1168) #0#) -12 (|has| (-1166 |#1| |#2| |#3|) (-513 (-1168) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) ((((-857)) . T)) ((((-857)) . T)) +(((|#1| |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) |has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))))) ((((-857)) . T)) +(((|#1|) . T)) +(((|#3| |#3|) . T)) +(((|#1|) . T)) +((($) . T) ((|#2|) . T)) +((((-1168) (-52)) . T)) (((|#3|) . T)) -(((|#3|) . T)) +((($ $) . T) ((#0=(-859 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-1092)) +(((|#2| |#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($ $) |has| |#2| (-171))) +(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)))) +((((-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($) |has| |#2| (-171))) +((((-1173)) . T)) +((((-766)) . T)) +(|has| |#1| (-554)) +((((-562)) . T)) ((((-857)) . T)) -((($) . T)) -((($) . T)) +(((|#1| (-406 (-562)) (-1074)) . T)) +(|has| |#1| (-144)) +(((|#1|) . T)) +(|has| |#1| (-554)) +((((-562)) . T)) +((((-116 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-146)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) +((((-887 (-562))) . T) (((-887 (-378))) . T) (((-535)) . T) (((-1168)) . T)) ((((-857)) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) ((($) . T)) -((($ $) . T)) -((($) . T) (((-544)) . T)) -((($) . T)) -((((-857)) . T)) -(((|#1|) |has| |#1| (-362))) -((((-1166)) |has| |#1| (-893 (-1166)))) -(((|#1|) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)))) -(((|#1|) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042)))) -(((|#1| |#1|) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042)))) -((((-544)) -3936 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))) -(((|#1|) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1042))) (($) -3936 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)))) -(-3936 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))) -(|has| |#1| (-471)) -(-3936 (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1091))) -((((-112)) |has| |#1| (-1091)) (((-857)) -3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-471)) (|has| |#1| (-720)) (|has| |#1| (-893 (-1166))) (|has| |#1| (-1042)) (|has| |#1| (-1102)) (|has| |#1| (-1091))) -((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|))) -(((|#1| |#2|) . T)) ((((-857)) . T)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(((|#2|) |has| |#2| (-171))) +((($) -4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) ((|#2|) |has| |#2| (-171)) (((-406 (-562))) |has| |#2| (-38 (-406 (-562))))) +((((-865 |#1|)) . T)) +(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) +(-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) +(|has| |#2| (-1143)) +(((#0=(-52)) . T) (((-2 (|:| -2320 (-1168)) (|:| -2694 #0#))) . T)) (((|#1| |#2|) . T)) +(-4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +(((|#1| (-562) (-1074)) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| (-406 (-562)) (-1074)) . T)) +((($) -4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) +((((-562) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#1| |#2|) . T)) +(|has| |#2| (-367)) +(-12 (|has| |#1| (-367)) (|has| |#2| (-367))) ((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T)) -(|has| (-1240 |#1| |#2| |#3| |#4|) (-144)) -(|has| (-1240 |#1| |#2| |#3| |#4|) (-146)) -((((-1240 |#1| |#2| |#3| |#4|)) . T)) -((((-1240 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-544))) . T)) -((($) . T) (((-1240 |#1| |#2| |#3| |#4|)) . T) (((-406 (-544))) . T)) -((((-1240 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-544))) . T)) -((((-1240 |#1| |#2| |#3| |#4|)) . T) (((-406 (-544))) . T) (($) . T)) -(((#1=(-1240 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T)) -((((-1240 |#1| |#2| |#3| |#4|)) . T)) -((((-1166) #1=(-1240 |#1| |#2| |#3| |#4|)) |has| #1# (-512 (-1166) #1#)) ((#1# #1#) |has| #1# (-308 #1#))) -(((#1=(-1240 |#1| |#2| |#3| |#4|)) |has| #1# (-308 #1#))) -(((#1=(-1240 |#1| |#2| |#3| |#4|) $) |has| #1# (-285 #1# #1#))) -((((-1240 |#1| |#2| |#3| |#4|)) . T)) -((((-1240 |#1| |#2| |#3| |#4|)) . T)) -((((-1240 |#1| |#2| |#3| |#4|)) . T)) -((((-1240 |#1| |#2| |#3| |#4|)) . T)) -((((-1234 |#2| |#3| |#4|)) . T) (((-544)) . T) (((-1240 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-544))) . T)) -((((-1234 |#2| |#3| |#4|)) . T) (((-1240 |#1| |#2| |#3| |#4|)) . T)) -((((-1240 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) +((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(((|#1|) . T)) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) +(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#4|) . T)) +(|has| |#1| (-348)) +((((-562)) -4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (|has| |#3| (-1044))) ((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-1092))) (((-406 (-562))) -12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) +(((|#1|) . T)) +(((|#4|) . T) (((-857)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) #0#) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) (|has| |#1| (-554)) -(((|#1|) |has| |#1| (-554))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042))) -((((-857)) . T)) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-554)) (|has| |#1| (-1042)) (|has| |#1| (-1102))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-471)) (|has| |#1| (-554)) (|has| |#1| (-1042)) (|has| |#1| (-1102))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042))) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -((((-606 $) $) . T) (($ $) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-857)) . T)) +(((|#1| |#2|) . T)) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-904))) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) +((((-406 (-562))) . T) (((-562)) . T)) +((((-562)) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) ((($) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)) (((-406 (-544))) |has| |#1| (-554))) -((($) -3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1042))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-554))) -(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)) (((-406 (-544))) |has| |#1| (-554))) -(|has| |#1| (-554)) -(((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-554)) (($) |has| |#1| (-554))) -(((|#1| |#1|) |has| |#1| (-171)) ((#1=(-406 (-544)) #1#) |has| |#1| (-554)) (($ $) |has| |#1| (-554))) -(|has| |#1| (-554)) -(((|#1|) |has| |#1| (-1042))) -(((|#1|) |has| |#1| (-1042)) (((-544)) -12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))) +((((-857)) . T)) (((|#1|) . T)) -((((-544)) |has| |#1| (-879 (-544))) (((-377)) |has| |#1| (-879 (-377)))) +((((-865 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +((((-857)) . T)) +(((|#3| |#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044))) (($ $) |has| |#3| (-171))) +(|has| |#1| (-1017)) +((((-857)) . T)) +(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044))) (($) |has| |#3| (-171))) +((((-562) (-112)) . T)) +((((-1173)) . T)) +(((|#1|) |has| |#1| (-308 |#1|))) +((((-1173)) . T)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +((((-1168) $) |has| |#1| (-513 (-1168) $)) (($ $) |has| |#1| (-308 $)) ((|#1| |#1|) |has| |#1| (-308 |#1|)) (((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|))) +((((-1168)) |has| |#1| (-895 (-1168)))) +(-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348))) +(((|#1| |#4|) . T)) +(((|#1| |#3|) . T)) +((((-387) |#1|) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +(|has| |#1| (-1092)) +(((|#2|) . T) (((-857)) . T)) +((((-857)) . T)) +(((|#2|) . T)) +((((-905 |#1|)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +(((|#1| |#2|) . T)) +((($) . T)) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +(((|#1| |#1|) . T)) +(((#0=(-865 |#1|)) |has| #0# (-308 #0#))) +((((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1033 (-406 (-562))))) ((|#1|) . T)) +(((|#1| |#2|) . T)) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (((|#1|) . T)) -(|has| |#1| (-471)) -((((-1166)) |has| |#1| (-1042))) +(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(((|#2|) . T) (($) . T)) +(((|#2|) . T) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(|has| |#1| (-1192)) +(((#0=(-562) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) +((((-406 (-562))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1044))) +(((|#3|) |has| |#3| (-1044))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(|has| |#1| (-362)) +((((-562)) . T) (((-406 (-562))) . T) (($) . T)) +((($ $) . T) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) +((((-857)) . T)) +((((-857)) . T)) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533))) (((-883 (-544))) |has| |#1| (-609 (-883 (-544)))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377))))) -((((-48)) -12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (((-606 $)) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) -3936 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-406 (-939 |#1|))) |has| |#1| (-554)) (((-939 |#1|)) |has| |#1| (-1042)) (((-1166)) . T)) -((((-48)) -12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (((-544)) -3936 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))) (|has| |#1| (-1042))) ((|#1|) . T) (((-606 $)) . T) (($) |has| |#1| (-554)) (((-406 (-544))) -3936 (|has| |#1| (-554)) (|has| |#1| (-1031 (-406 (-544))))) (((-406 (-939 |#1|))) |has| |#1| (-554)) (((-939 |#1|)) |has| |#1| (-1042)) (((-1166)) . T)) (((|#1|) . T)) +((((-562) |#3|) . T)) +((((-857)) . T)) +((((-535)) |has| |#3| (-610 (-535)))) +((((-683 |#3|)) . T) (((-857)) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-843)) +(|has| |#1| (-843)) +((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) +((($) . T)) +(((#0=(-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) #0#) |has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))))) +(|has| |#2| (-845)) +((($) . T)) +(((|#2|) |has| |#2| (-1092))) +((((-857)) -4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-609 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) (((-1256 |#2|)) . T)) +(|has| |#1| (-845)) +(|has| |#1| (-845)) +((((-1150) (-52)) . T)) +(|has| |#1| (-845)) +((((-857)) . T)) +((((-562)) |has| #0=(-406 |#2|) (-635 (-562))) ((#0#) . T)) +((($) . T) (((-562)) . T)) +((((-562) (-143)) . T)) +((((-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T) ((|#1| |#2|) . T)) +((((-406 (-562))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-857)) . T)) +((((-905 |#1|)) . T)) (|has| |#1| (-362)) (|has| |#1| (-362)) (|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -((((-857)) . T)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) +(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) +(|has| |#1| (-843)) (|has| |#1| (-362)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(((|#1| (-406 (-544))) . T)) -(((|#1| (-406 (-544))) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1|) . T)) -(((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1| |#1|) . T)) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -(((|#1| (-406 (-544)) (-1072)) . T)) -((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) +(|has| |#1| (-843)) +(((|#1|) . T) (($) . T)) +(|has| |#1| (-843)) +((((-1168)) |has| |#1| (-895 (-1168)))) +((((-505)) . T)) +(((|#1| (-1168)) . T)) +(((|#1| (-1256 |#1|) (-1256 |#1|)) . T)) +((((-857)) . T) (((-1173)) . T)) +(((|#1| |#2|) . T)) ((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-844)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-544)) . T)) -(((#1=(-544) #1#) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-857)) . T)) +((((-1173)) . T)) +(|has| |#1| (-1092)) +(((|#1| (-1168) (-813 (-1168)) (-530 (-813 (-1168)))) . T)) +((((-406 (-947 |#1|))) . T)) +((((-535)) . T)) ((((-857)) . T)) +((($) . T)) +(((|#2|) . T) (($) . T)) +((((-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) +(((|#1|) |has| |#1| (-171))) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#3|) . T)) +(((|#1|) |has| |#1| (-171))) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) (((|#1|) . T)) -(((|#1| (-765)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-844)) (((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) +((((-535)) |has| |#1| (-610 (-535))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#1| (-610 (-887 (-562))))) +((((-857)) . T)) +(((|#2|) . T) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-505)) . T)) +(|has| |#2| (-843)) +((((-505)) . T)) +(-12 (|has| |#2| (-232)) (|has| |#2| (-1044))) +(|has| |#1| (-554)) +((((-1150) |#1|) . T)) +(|has| |#1| (-1143)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +((((-953 |#1|)) . T)) +(((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1| |#1|) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-562))) (((-562)) |has| |#1| (-1033 (-562))) (((-1168)) |has| |#1| (-1033 (-1168))) ((|#1|) . T)) +((((-562) |#2|) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) +((((-562)) |has| |#1| (-881 (-562))) (((-378)) |has| |#1| (-881 (-378)))) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1|) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) +((((-639 |#4|)) . T) (((-857)) . T)) +((((-535)) |has| |#4| (-610 (-535)))) +((((-535)) |has| |#4| (-610 (-535)))) +((((-857)) . T) (((-639 |#4|)) . T)) +((($) |has| |#1| (-843))) +((((-562)) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((|#1|) . T)) +((((-639 |#4|)) . T) (((-857)) . T)) +((((-535)) |has| |#4| (-610 (-535)))) (((|#1|) . T)) +(((|#2|) . T)) +((((-1168)) |has| (-406 |#2|) (-895 (-1168)))) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) #0#) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-857)) -4037 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-609 (-857))) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-721)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044)) (|has| |#3| (-1092))) (((-1256 |#3|)) . T)) +((((-562) |#2|) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(((|#2| |#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($ $) |has| |#2| (-171))) +(((|#2|) . T) (((-562)) . T)) ((((-857)) . T)) ((((-857)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T) ((|#2|) . T)) ((((-857)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-1166)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -(((|#3| |#3|) . T)) -(((|#3|) . T) (($) . T)) -(((|#3|) . T)) -((($) . T)) -((($ $) . T) (((-606 $) $) . T)) ((((-857)) . T)) -(((|#3|) . T) (((-606 $)) . T)) -(((|#3|) . T) (((-544)) . T) (((-606 $)) . T)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -(((#1=(-899 |#1|) #1#) . T) (($ $) . T) ((#2=(-406 (-544)) #2#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) +((((-1150) (-1168) (-562) (-224) (-857)) . T)) ((((-857)) . T)) -((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| $ (-146)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -(((#1=(-899 |#1|) #1#) . T) (($ $) . T) ((#2=(-406 (-544)) #2#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-857)) . T)) -((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| $ (-146)) -((((-899 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) ((((-857)) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) ((((-857)) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(((|#1|) . T)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T)) -((((-899 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -(((#1=(-899 |#1|) #1#) . T) (($ $) . T) ((#2=(-406 (-544)) #2#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) ((((-857)) . T)) -((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-899 |#1|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| $ (-146)) -((((-899 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) ((((-857)) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) ((((-857)) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) ((((-857)) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-367))) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) ((((-857)) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) ((((-857)) . T)) ((((-857)) . T)) -((((-387) |#1|) . T)) -((((-224)) . T)) -((((-544)) . T) (((-406 (-544))) . T)) -((((-377)) . T)) -((($) . T) (((-406 (-544))) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-533)) . T) (((-1148)) . T) (((-224)) . T) (((-377)) . T) (((-883 (-377))) . T)) -((((-224)) . T) (((-857)) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1| |#2|) . T)) -(((|#1|) . T)) ((((-857)) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) ((((-857)) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#1| |#2|) . T)) -(|has| |#1| (-844)) -(((|#1|) . T)) +((((-562) (-112)) . T)) (((|#1|) . T)) ((((-857)) . T)) -((((-1148)) . T)) -((((-1148)) . T)) -((((-1148)) . T) (((-857)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) +((((-112)) . T)) +((((-112)) . T)) ((((-857)) . T)) -(((|#3|) . T)) -(((|#3| |#3|) . T)) -(((|#3|) . T)) ((((-857)) . T)) +((((-112)) . T)) ((((-857)) . T)) ((((-857)) . T)) -((((-406 |#2|)) . T)) ((((-857)) . T)) -(|has| |#1| (-1209)) -((((-533)) |has| |#1| (-609 (-533))) (((-224)) . #1=(|has| |#1| (-1013))) (((-377)) . #1#)) -(|has| |#1| (-1013)) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-1209))) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T)) -(((|#1|) . T)) -((($ $) |has| |#1| (-285 $ $)) ((|#1| $) |has| |#1| (-285 |#1| |#1|))) -((($) |has| |#1| (-308 $)) ((|#1|) |has| |#1| (-308 |#1|))) -((((-1166) $) |has| |#1| (-512 (-1166) $)) (($ $) |has| |#1| (-308 $)) ((|#1| |#1|) |has| |#1| (-308 |#1|)) (((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-232)) -((((-1166)) |has| |#1| (-893 (-1166)))) -(((|#1|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1| |#1|) . T) (($ $) . T)) -(((|#1|) . T) (($) . T)) ((((-857)) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) . T) (($) . T)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (((-544)) . T) (($) . T)) -(-12 (|has| |#1| (-543)) (|has| |#1| (-815))) ((((-857)) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +((((-857)) . T)) +((((-535)) |has| |#1| (-610 (-535)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($) |has| |#2| (-171))) +(|has| $ (-146)) +((((-406 |#2|)) . T)) +((((-888 |#1|)) . T) ((|#2|) . T) (((-562)) . T) (((-814 |#1|)) . T)) +((((-406 (-562))) |has| #0=(-406 |#2|) (-1033 (-406 (-562)))) (((-562)) |has| #0# (-1033 (-562))) ((#0#) . T)) +(((|#2| |#2|) . T)) +(((|#4|) |has| |#4| (-171))) +(|has| |#2| (-144)) +(|has| |#2| (-146)) +(((|#3|) |has| |#3| (-171))) +(|has| |#1| (-146)) (|has| |#1| (-144)) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(|has| |#1| (-146)) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(|has| |#1| (-146)) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) (|has| |#1| (-146)) (((|#1|) . T)) -((((-1166)) |has| |#1| (-893 (-1166)))) -(|has| |#1| (-232)) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T)) -((($) . T) ((|#1|) . T) (((-406 (-544))) . T)) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) -(((|#1|) |has| |#1| (-308 |#1|))) -(((|#1| $) |has| |#1| (-285 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544)))) -(((|#1|) . T)) -((((-544)) |has| |#1| (-879 (-544))) (((-377)) |has| |#1| (-879 (-377)))) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -(-3936 (|has| |#1| (-814)) (|has| |#1| (-844))) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -(((|#1|) . T)) -(|has| |#1| (-903)) -(|has| |#1| (-1013)) -((((-533)) |has| |#1| (-609 (-533))) (((-883 (-544))) |has| |#1| (-609 (-883 (-544)))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377)))) (((-377)) . #1=(|has| |#1| (-1013))) (((-224)) . #1#)) -((((-544)) . T) ((|#1|) . T) (($) . T) (((-406 (-544))) . T) (((-1166)) |has| |#1| (-1031 (-1166)))) -((((-406 (-544))) |has| |#1| . #1=((-1031 (-544)))) (((-544)) |has| |#1| . #1#) (((-1166)) |has| |#1| (-1031 (-1166))) ((|#1|) . T)) -(|has| |#1| (-1141)) -(((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#1|) . T)) +(|has| |#2| (-232)) +(((|#2|) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-1168) (-52)) . T)) ((((-857)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +(((|#1| |#1|) . T)) +((((-1168)) |has| |#2| (-895 (-1168)))) +((((-129)) . T)) +((((-562) (-112)) . T)) +(|has| |#1| (-554)) +(((|#1|) . T) (((-562)) . T) (((-814 (-1168))) . T)) +(((|#2|) . T)) +(((|#2|) . T)) (((|#1|) . T)) +(((|#2| |#2|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-544)) . T)) (((|#1|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(((|#3|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +((((-562)) . T) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) +(((|#1|) . T)) +((((-999 2)) . T) (((-406 (-562))) . T) (((-857)) . T)) +((((-535)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) -((((-387) (-1148)) . T)) +((((-994 |#1|)) . T) ((|#1|) . T)) ((((-857)) . T)) -((((-406 (-939 |#1|))) . T)) -((((-406 (-939 |#1|))) . T)) -((((-1132 |#2| (-406 (-939 |#1|)))) . T) (((-406 (-939 |#1|))) . T)) ((((-857)) . T)) -((((-406 (-939 |#1|))) . T)) -(((#1=(-406 (-939 |#1|)) #1#) . T)) -((((-406 (-939 |#1|))) . T)) -((((-406 (-939 |#1|))) . T)) -((((-533)) |has| |#2| (-609 (-533))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544))))) -((($) . T)) -(((|#2| |#3|) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-406 (-562))) . T) (((-406 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1164 |#1|)) . T)) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +(((|#3|) . T) (($) . T)) +(|has| |#1| (-845)) (((|#2|) . T)) -((((-857)) . T)) -((($) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-146)) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T) (($) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544)))) ((|#2| |#2|) . T) (($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(((|#2| |#3|) . T)) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) +((((-562) |#2|) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) (((|#2|) . T)) -(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544)))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-903))) -((($ $) . T) ((#1=(-858 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-844)) -((((-858 |#1|)) . T)) -(|has| |#2| (-903)) -(|has| |#2| (-903)) -((((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) (((-544)) |has| |#2| (-1031 (-544))) ((|#2|) . T) (((-858 |#1|)) . T)) -((((-544)) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))) ((|#2|) . T) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-858 |#1|)) . T)) -(((|#2| |#3| (-858 |#1|)) . T)) -(((|#2| |#2|) . T) ((|#6| |#6|) . T)) -(((|#2|) . T) ((|#6|) . T)) -((((-857)) . T)) -(((|#2|) . T) ((|#6|) . T)) -(((|#2|) . T) ((|#6|) . T)) -(((|#4|) . T)) -((((-635 |#4|)) . T) (((-857)) . T)) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4|) . T)) -((((-533)) |has| |#4| (-609 (-533)))) -(((|#1| |#2| |#3| |#4|) . T)) +((((-562) |#3|) . T)) +(((|#2|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) ((((-857)) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) +((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) +(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) +(|has| |#1| (-1092)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) #0#) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +(((|#2| |#2|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(((|#2|) . T)) +(|has| |#2| (-362)) +(((|#2|) . T) (((-562)) |has| |#2| (-1033 (-562))) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1150) (-52)) . T)) +(((|#2|) |has| |#2| (-171))) +((((-562) |#3|) . T)) +((((-562) (-143)) . T)) +((((-143)) . T)) ((((-857)) . T)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(((|#1| (-406 (-544))) . T)) -(((|#1| (-406 (-544))) . T)) +((((-1173)) . T)) +((((-112)) . T)) (|has| |#1| (-146)) +(((|#1|) . T)) (|has| |#1| (-144)) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1|) . T)) -(((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1| |#1|) . T)) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -(((|#1| (-406 (-544)) (-1072)) . T)) -((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) -((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))) +((($) . T)) +(|has| |#1| (-554)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (((|#1|) . T)) -(((|#1| |#2|) . T)) +(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) +((((-143)) . T)) ((((-857)) . T)) +((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) +((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) +((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) +((((-1150) (-52)) . T)) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (((|#1| |#2|) . T)) +((((-562) (-143)) . T)) +(((#0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) #0#) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(|has| |#1| (-845)) +(((|#2| (-766) (-1074)) . T)) (((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-533)) |has| |#4| (-609 (-533)))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) +(|has| |#1| (-786)) +(((|#1|) |has| |#1| (-171))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (((|#4|) . T)) -((((-857)) . T) (((-635 |#4|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-533)) . T) (((-406 (-1160 (-544)))) . T) (((-224)) . T) (((-377)) . T)) -((((-406 (-544))) . T) (((-544)) . T)) -((((-377)) . T) (((-224)) . T) (((-857)) . T)) -((($) . T) (((-406 (-544))) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (((-544)) . T) (($) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) (((|#1| |#2|) . T)) +(-4037 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| |#2| (-146)))) +(-4037 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144)))) +(((|#4|) . T)) +(|has| |#1| (-144)) +((((-1150) |#1|) . T)) +(|has| |#1| (-146)) +(((|#1|) . T)) +((((-562)) . T)) ((((-857)) . T)) (((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#1| |#2|) . T)) -((((-533)) |has| |#2| (-609 (-533))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544))))) -((($) . T)) -(((|#2| (-480 (-4364 |#1|) (-765))) . T)) -(((|#2|) . T)) ((((-857)) . T)) -((($) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-146)) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T) (($) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544)))) ((|#2| |#2|) . T) (($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(((|#2| (-480 (-4364 |#1|) (-765))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544)))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-903))) -((($ $) . T) ((#1=(-858 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-844)) -((((-858 |#1|)) . T)) -(|has| |#2| (-903)) -(|has| |#2| (-903)) -((((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) (((-544)) |has| |#2| (-1031 (-544))) ((|#2|) . T) (((-858 |#1|)) . T)) -((((-544)) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))) ((|#2|) . T) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-858 |#1|)) . T)) -(((|#2| (-480 (-4364 |#1|) (-765)) (-858 |#1|)) . T)) -(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) -(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) -(((|#2|) |has| |#2| (-171))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -((($) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042)))) -(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)))) -((((-857)) -3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) (((-1253 |#2|)) . T)) -(|has| |#2| (-171)) -(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171))) -(((|#2| |#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171))) -(((|#2|) |has| |#2| (-1042))) -((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) -(-12 (|has| |#2| (-232)) (|has| |#2| (-1042))) -(|has| |#2| (-367)) -(((|#2|) |has| |#2| (-1042))) -(((|#2|) |has| |#2| (-1042)) (((-544)) -12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) -(((|#2|) |has| |#2| (-1091))) -((((-544)) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) -(((|#2|) |has| |#2| (-1091)) (((-544)) -12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) -((((-544) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -(((|#2|) . T)) -((((-544) |#2|) . T)) -((((-544) |#2|) . T)) -(|has| |#2| (-787)) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(|has| |#2| (-842)) -(|has| |#2| (-842)) -(((|#2|) |has| |#2| (-362))) -(((|#1| |#2|) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -(((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#3|) . T)) +((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) +((((-857)) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) (((|#1|) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092))) (((-953 |#1|)) . T)) +(|has| |#1| (-843)) +(|has| |#1| (-843)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-953 |#1|)) . T)) +(|has| |#2| (-362)) +(((|#1|) |has| |#1| (-171))) +(((|#2|) |has| |#2| (-1044))) +((((-1150) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) +(((|#2| (-888 |#1|)) . T)) +((($) . T)) +((((-387) (-1150)) . T)) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-857)) -4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-609 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) (((-1256 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2320 (-1150)) (|:| -2694 #0#))) . T)) (((|#1|) . T)) ((((-857)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-997 16)) . T) (((-406 (-544))) . T) (((-857)) . T)) -((((-544)) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((($) . T) (((-544)) . T) (((-406 (-544))) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((((-544)) . T) (((-406 (-544))) . T) (($) . T)) -(((#1=(-544) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-533)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T)) -((((-406 (-544))) . T) (((-544)) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((((-544)) . T)) -((((-1148)) . T) (((-857)) . T)) -((((-167 (-377))) . T) (((-224)) . T) (((-377)) . T)) -((((-406 (-544))) . T) (((-544)) . T)) -((($) . T) (((-406 (-544))) . T)) -((($) . T) (((-406 (-544))) . T)) -((($) . T) (((-406 (-544))) . T)) -((((-406 (-544))) . T) (($) . T)) -(((#1=(-406 (-544)) #1#) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-606 $) $) . T)) -((((-857)) . T)) -((((-406 (-544))) . T) (((-544)) . T) (((-606 $)) . T)) -((($) . T) (((-544)) . T) (((-406 (-544))) . T) (((-606 $)) . T)) -(((|#1|) . T)) -(|has| |#1| (-844)) -(((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-544) (-112)) . T)) -((((-544) (-112)) . T)) -((((-544) (-112)) . T)) -((((-533)) . T)) -((((-112)) . T)) -((((-857)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-1166)) . T) (((-857)) . T)) -(((|#1| |#2|) . T)) -((((-857)) . T)) -(((|#1| |#2|) . T)) -((((-857)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +((((-143)) . T)) +(|has| |#2| (-144)) +(|has| |#2| (-146)) +(|has| |#1| (-472)) +(-4037 (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) +(|has| |#1| (-362)) ((((-857)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +((($) |has| |#1| (-554))) +((((-1173)) . T)) +(|has| |#1| (-843)) +(|has| |#1| (-843)) ((((-857)) . T)) +(((|#2|) . T)) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1248 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) +(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#2|) . T) (((-562)) . T) (((-814 |#1|)) . T)) (((|#1| |#2|) . T)) +((((-1168)) |has| |#1| (-895 (-1168)))) +((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) ((((-857)) . T)) ((((-857)) . T)) +(|has| |#1| (-1092)) +(((|#2| (-481 (-3492 |#1|) (-766)) (-859 |#1|)) . T)) +((((-406 (-562))) . #0=(|has| |#2| (-362))) (($) . #0#)) +(((|#1| (-530 (-1168)) (-1168)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| |#2|) . T)) -(((|#1|) . T)) +((((-857)) . T)) +((((-857)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-844)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) +(|has| |#2| (-171)) +(((|#2| |#2|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) +(|has| |#1| (-144)) +(|has| |#1| (-146)) (((|#1|) . T)) +(((|#2|) . T)) +(((|#1|) . T) (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) . T)) +((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-1168) (-52)) . T)) +((($ $) . T)) +(((|#1| (-562)) . T)) +((((-905 |#1|)) . T)) +(((|#1|) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1044))) (($) -4037 (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)))) +(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +(|has| |#1| (-845)) +(|has| |#1| (-845)) +((((-562) |#2|) . T)) +((((-562)) . T)) +((((-1248 |#1| |#2| |#3|)) -12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) +(|has| |#1| (-845)) +((((-683 |#2|)) . T) (((-857)) . T)) +((((-406 (-562))) . T) (((-562)) . T) (($) . T)) +(((|#1| |#2|) . T)) +((((-406 (-947 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(((|#1|) |has| |#1| (-171))) +(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(|has| |#2| (-845)) +(|has| |#1| (-845)) +(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)))) +(-4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-904))) +((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +((((-562) |#2|) . T)) +(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)))) +(|has| |#1| (-348)) +(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) +(((|#2|) . T) (((-562)) . T)) +((($) . T) (((-406 (-562))) . T)) +((((-562) (-112)) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) (((|#1|) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-578 |#1|)) . T)) -((((-578 |#1|)) . T)) -((((-578 |#1|)) . T)) -((((-578 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -(((#1=(-578 |#1|) #1#) . T) (($ $) . T) ((#2=(-406 (-544)) #2#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-578 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-857)) . T)) -((((-578 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-578 |#1|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(|has| $ (-146)) -((((-578 |#1|)) . T)) +(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348))) +(|has| |#1| (-843)) +(|has| |#1| (-843)) +(|has| |#1| (-843)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-38 (-406 (-562)))) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +(|has| |#1| (-38 (-406 (-562)))) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-1168)) |has| |#1| (-895 (-1168))) (((-1074)) . T)) +(((|#1|) . T)) +(|has| |#1| (-843)) +(((#0=(-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) #0#) |has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(|has| |#1| (-1092)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) (((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1| |#4| |#5|) . T)) +(((|#2| |#2|) . T)) (((|#1|) . T)) +(((|#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) . T)) (((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) +(((|#3| |#3|) . T)) +(((|#2|) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) +(((|#1| (-530 |#2|) |#2|) . T)) +((((-857)) . T)) +((((-143)) . T) (((-857)) . T)) +(((|#1| (-766) (-1074)) . T)) +(((|#3|) . T)) +((((-143)) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) -4037 (|has| |#1| (-843)) (|has| |#1| (-1033 (-562)))) ((|#1|) . T)) (((|#1|) . T)) +((((-143)) . T)) +(((|#2|) |has| |#2| (-171))) +(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) (((|#1|) . T)) -(|has| |#1| (-844)) +(|has| |#1| (-144)) +(|has| |#1| (-146)) +(|has| |#3| (-171)) +(((|#4|) |has| |#4| (-362))) +(((|#3|) |has| |#3| (-362))) (((|#1|) . T)) +(((|#2|) |has| |#1| (-362))) +((((-857)) . T)) +(((|#2|) . T)) +(((|#1| (-1164 |#1|)) . T)) +((((-1074)) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +((($) . T) ((|#1|) . T) (((-406 (-562))) . T)) +(((|#2|) . T)) +((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) +((($) |has| |#1| (-843))) +(|has| |#1| (-904)) +((((-1168)) . T)) +((((-857)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (((|#1|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((#0=(-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) #0#) |has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))))) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-904))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) +(((|#1|) . T) (($) . T)) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +(((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) (((|#1|) . T)) -(((|#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T)) -((((-765) |#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-576)) . T)) -((((-1093)) . T)) -((((-635 $)) . T) (((-1148)) . T) (((-1166)) . T) (((-544)) . T) (((-224)) . T) (((-857)) . T)) -((((-857)) . T)) -((((-1148) (-1166) (-544) (-224) (-857)) . T)) -((($) . T)) -((((-857)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) +(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)))) +(|has| |#1| (-845)) +(|has| |#1| (-554)) +((((-579 |#1|)) . T)) ((($) . T)) -((((-544)) . T) (($) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-1148)) . T) (((-533)) . T) (((-544)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T)) -((((-544)) . T)) +(((|#2|) . T)) +(-4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-815))) (-12 (|has| |#1| (-362)) (|has| |#2| (-845)))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +((((-905 |#1|)) . T)) +(((|#1| (-495 |#1| |#3|) (-495 |#1| |#2|)) . T)) +(((|#1| |#4| |#5|) . T)) +(((|#1| (-766)) . T)) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) +(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) . T)) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +((((-666 |#1|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-535)) . T)) ((((-857)) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) ((((-857)) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((((-1173)) . T)) +((((-406 (-562))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T) (((-562)) . T)) +(((|#3|) . T) (((-562)) . T) (((-608 $)) . T)) ((((-857)) . T)) -(((|#1| |#2|) . T)) ((((-857)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#1| |#2|) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) ((((-857)) . T)) -((($) . T)) -((($) . T)) -((((-544)) . T) (($) . T)) -((((-544)) . T)) +(((|#2|) . T)) +(-4037 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-721)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044)) (|has| |#3| (-1092))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) +(|has| |#1| (-1192)) +(|has| |#1| (-1192)) +(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) +(|has| |#1| (-1192)) +(|has| |#1| (-1192)) +(((|#3| |#3|) . T)) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +((($ $) . T) ((#0=(-406 (-562)) #0#) . T) ((#1=(-406 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-406 (-562))) . T) (((-406 |#1|)) . T) ((|#1|) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(((|#3|) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +((((-1150) (-52)) . T)) +(|has| |#1| (-1092)) +(-4037 (|has| |#2| (-815)) (|has| |#2| (-845))) (((|#1|) . T)) +(((|#1|) |has| |#1| (-171)) (($) . T)) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) +((($) . T)) +((((-1166 |#1| |#2| |#3|)) -12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) ((((-857)) . T)) +((((-562)) . T) (($) . T)) +((((-766)) . T)) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) ((((-857)) . T)) -((((-857)) . T)) +((($) . T) (((-562)) . T)) ((($) . T)) +(|has| |#2| (-904)) +(|has| |#1| (-362)) +(((|#2|) |has| |#2| (-1092))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +((((-535)) . T) (((-406 (-1164 (-562)))) . T) (((-224)) . T) (((-378)) . T)) +((((-378)) . T) (((-224)) . T) (((-857)) . T)) +(|has| |#1| (-904)) +(|has| |#1| (-904)) +(|has| |#1| (-904)) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) +((($) . T) ((|#2|) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-904))) ((((-857)) . T)) -((($) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) ((($ $) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((($ $) . T)) +((((-562) (-112)) . T)) ((($) . T)) -((($) . T)) -((((-544)) . T) (($) . T)) (((|#1|) . T)) -((((-544)) . T)) -((($) . T)) -((($) . T)) -((($) . T)) -(|has| $ (-146)) +((((-562)) . T)) +((((-112)) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) +(|has| |#1| (-38 (-406 (-562)))) +(((|#1| (-562)) . T)) ((($) . T)) +(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) +((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) +(((|#1|) . T)) +((((-562)) . T)) +(((|#1| |#2|) . T)) +((((-1168)) |has| |#1| (-1044))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(((|#1|) . T)) ((((-857)) . T)) -((($) . T) (((-406 (-544))) . T)) -((($) . T) (((-406 (-544))) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-544)) . T) (((-406 (-544))) . T) (($) . T)) +(((|#1| (-562)) . T)) +(((|#1| (-1248 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) +(((|#1| (-406 (-562))) . T)) +(((|#1| (-1220 |#1| |#2| |#3|)) . T)) +(((|#1| (-766)) . T)) (((|#1|) . T)) -(((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) ((((-857)) . T)) -((((-406 (-544))) . T)) -((((-406 (-544))) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-544) (-143)) . T)) -((((-544) (-143)) . T)) -((((-544) (-143)) . T)) -((((-143)) . T)) +(|has| |#1| (-1092)) +((((-1150) |#1|) . T)) +((($) . T)) +(|has| |#2| (-146)) +(|has| |#2| (-144)) +(((|#1| (-530 (-813 (-1168))) (-813 (-1168))) . T)) ((((-857)) . T)) -((((-143)) . T)) -((((-143)) . T)) -(|has| |#1| (-15 * (|#1| (-544) |#1|))) +((((-1242 |#1| |#2| |#3| |#4|)) . T)) +((((-1242 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1044))) +((((-562) (-112)) . T)) +((((-857)) |has| |#1| (-1092))) +(|has| |#2| (-171)) +((((-562)) . T)) +(|has| |#2| (-843)) +(((|#1|) . T)) +((((-562)) . T)) ((((-857)) . T)) -((($ $) . T)) -((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) -(((|#1| (-544) (-1072)) . T)) -((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T)) -(|has| |#1| (-144)) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-348))) (|has| |#1| (-146)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-554))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554)))) -(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554)))) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -((((-544)) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -(((|#1| (-544)) . T)) -(((|#1| (-544)) . T)) -((($) |has| |#1| (-554))) -((($ $) |has| |#1| (-554))) -((($) |has| |#1| (-554))) -((($) |has| |#1| (-554))) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -((($) |has| |#1| (-554)) (((-544)) . T)) -((($) . T)) ((((-857)) . T)) +(((|#3|) . T)) +(-4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) ((((-857)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -(((|#1|) . T)) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) . T)) -(|has| |#1| (-844)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-128)) . T)) -((((-128)) . T)) -((((-128)) . T) (((-857)) . T)) -((((-1171)) . T)) -((((-1205)) . T) (((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -(((|#1|) -3936 (|has| |#2| (-366 |#1|)) (|has| |#2| (-417 |#1|)))) -(((|#1|) |has| |#2| (-417 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-857)) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T)) -((((-1148) |#1|) . T)) -((((-1148) |#1|) . T)) -((((-1148) |#1|) . T)) -((((-1148) |#1|) . T)) -((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((#1=(-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) #1#) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))))) -((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -((((-1148) |#1|) . T)) +((((-1241 |#2| |#3| |#4|)) . T) (((-1242 |#1| |#2| |#3| |#4|)) . T)) ((((-857)) . T)) -((((-387) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -((((-533)) |has| |#1| (-609 (-533))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#1| (-609 (-883 (-544))))) +((((-48)) -12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (((-608 $)) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) -4037 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-406 (-947 |#1|))) |has| |#1| (-554)) (((-947 |#1|)) |has| |#1| (-1044)) (((-1168)) . T)) +(((|#1|) . T) (($) . T)) +(((|#1| (-766)) . T)) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) +(((|#1|) |has| |#1| (-308 |#1|))) +((((-1242 |#1| |#2| |#3| |#4|)) . T)) +((((-562)) |has| |#1| (-881 (-562))) (((-378)) |has| |#1| (-881 (-378)))) +(((|#1|) . T)) +(|has| |#1| (-554)) (((|#1|) . T)) ((((-857)) . T)) -((((-857)) . T)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(((|#2|) . T)) -((((-857)) . T)) -(((|#2|) . T)) -(((|#2| |#2|) . T)) -(((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-544)) . T)) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +(((|#1|) |has| |#1| (-171))) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1092))) +((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)))) +((((-1241 |#2| |#3| |#4|)) . T)) +((((-112)) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +(((|#1| (-562) (-1074)) . T)) +((($) |has| |#1| (-308 $)) ((|#1|) |has| |#1| (-308 |#1|))) +(|has| |#1| (-843)) +(|has| |#1| (-843)) +(((|#1| (-562) (-1074)) . T)) +(-4037 (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(((|#1| (-406 (-562)) (-1074)) . T)) +(((|#1| (-766) (-1074)) . T)) +(|has| |#1| (-845)) +(((#0=(-905 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-562)) #1#) . T)) +(|has| |#2| (-144)) +(|has| |#2| (-146)) (((|#2|) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) (|has| |#1| (-144)) (|has| |#1| (-146)) -(((|#2|) . T) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T)) -(((|#1|) . T)) -((((-406 |#2|)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -(|has| |#2| (-232)) -(((|#2|) . T) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (($) . T) (((-544)) . T)) -((($) . T)) +(|has| |#1| (-1092)) +((((-905 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +(|has| |#1| (-1092)) +((((-562)) -4037 (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)))) +(((|#1|) . T)) +(|has| |#1| (-1092)) +((((-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-635 (-562)))) ((|#2|) |has| |#1| (-362))) +(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) +((((-683 (-338 (-4066) (-4066 (QUOTE X) (QUOTE HESS)) (-693)))) . T)) +(((|#2|) |has| |#2| (-171))) +(((|#1|) |has| |#1| (-171))) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) ((((-857)) . T)) -((((-1166)) |has| |#2| (-893 (-1166)))) -(((|#2|) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) +(|has| |#3| (-843)) ((((-857)) . T)) -((((-1148) (-51)) . T)) +((((-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T)) ((((-857)) . T)) -((((-1148) (-51)) . T)) -((((-1148) (-51)) . T)) -((((-1148) (-51)) . T)) -((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) . T)) -((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4267 (-1148)) (|:| -2226 #1#))) . T)) -(((#1=(-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) #1#) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))))) -((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))))) -((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) . T)) -((((-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) . T)) -((((-1148) (-51)) . T)) -(((|#1|) -3936 (|has| |#2| (-366 |#1|)) (|has| |#2| (-417 |#1|)))) -(((|#1|) |has| |#2| (-417 |#1|))) +(((|#1| |#1|) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1044)))) (((|#1|) . T)) +((((-562)) . T)) +((((-562)) . T)) +(((|#1|) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1044)))) +(((|#2|) |has| |#2| (-362))) +((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-362))) +(|has| |#1| (-845)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) |has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) +(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) +((((-857)) . T)) +((((-857)) . T)) +((((-535)) . T) (((-562)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) +((((-857)) . T)) +(|has| |#1| (-38 (-406 (-562)))) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +(|has| |#1| (-232)) (((|#1|) . T)) -(((|#2|) . T) (((-857)) . T)) -(((|#1|) . T)) +(((|#1| (-562)) . T)) +(|has| |#1| (-843)) +(((|#1| (-1166 |#1| |#2| |#3|)) . T)) +(((|#1| |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-815)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-844)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1171)) . T)) -(((|#1|) . T) (((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -(((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) +(((|#1| (-406 (-562))) . T)) +(((|#1| (-1159 |#1| |#2| |#3|)) . T)) +(((|#1| (-766)) . T)) (((|#1|) . T)) +(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-144)) +(|has| |#1| (-146)) +(|has| |#1| (-146)) +(|has| |#1| (-144)) +((((-562)) . T) ((|#1|) . T) (($) . T) (((-406 (-562))) . T) (((-1168)) |has| |#1| (-1033 (-1168)))) +(((|#1| |#2|) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) -4037 (|has| |#1| (-843)) (|has| |#1| (-1033 (-562)))) ((|#1|) . T)) +((((-143)) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) (((|#1|) . T)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-562)) . T)) ((((-857)) . T)) -(|has| |#1| (-785)) -(|has| |#1| (-785)) -(|has| |#1| (-785)) -(|has| |#1| (-785)) -(|has| |#1| (-785)) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-857)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T)) -(((|#1|) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| (-406 |#2|) (-232)) +((((-639 |#1|)) . T)) +(|has| |#1| (-904)) +(((|#2|) |has| |#2| (-1044))) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +(|has| |#1| (-362)) (((|#1|) |has| |#1| (-171))) +(((|#1| |#1|) . T)) +((((-865 |#1|)) . T)) ((((-857)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (((-544)) . T)) -(((|#1|) |has| |#1| (-171))) +(((|#2|) |has| |#2| (-1092))) +(|has| |#2| (-845)) (((|#1|) . T)) -(((|#1| |#1|) . T)) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +((((-639 $)) . T) (((-1150)) . T) (((-1168)) . T) (((-562)) . T) (((-224)) . T) (((-857)) . T)) +((((-406 (-562))) . T) (((-562)) . T) (((-608 $)) . T)) (((|#1|) . T)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-171))) ((((-857)) . T)) +((($) . T)) +(|has| |#1| (-845)) +((((-857)) . T)) +(((|#1| (-530 |#2|) |#2|) . T)) +(((|#1| (-562) (-1074)) . T)) +((((-905 |#1|)) . T)) +((((-857)) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (((-544)) . T)) +(((|#1| (-406 (-562)) (-1074)) . T)) +(((|#1| (-766) (-1074)) . T)) +(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-562)) -4037 (|has| (-406 (-562)) (-1033 (-562))) (|has| |#1| (-1033 (-562)))) (((-406 (-562))) . T)) +(((|#1| (-598 |#1| |#3|) (-598 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-171))) (((|#1|) . T)) -(((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-171))) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +(|has| |#2| (-232)) +(((|#2| (-530 (-859 |#1|)) (-859 |#1|)) . T)) ((((-857)) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((|#1|) . T) (((-544)) . T)) +((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-857)) . T)) +(((|#1| |#3|) . T)) +((((-857)) . T)) +(((|#1|) |has| |#1| (-171)) (((-947 |#1|)) . T) (((-562)) . T)) (((|#1|) |has| |#1| (-171))) -(((|#1|) . T)) -((((-665 |#1|)) . T)) -((((-665 |#1|)) . T)) -(((|#2| (-665 |#1|)) . T)) +((((-693)) . T)) +((((-693)) . T)) +(((|#2|) |has| |#2| (-171))) +(|has| |#2| (-843)) +((((-562)) . T) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) +((((-112)) |has| |#1| (-1092)) (((-857)) -4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)) (|has| |#1| (-1104)) (|has| |#1| (-1092)))) +(((|#1|) . T) (($) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) . T)) +((((-857)) . T)) +((((-562) |#1|) . T)) +((((-857)) . T)) +((((-693)) . T) (((-406 (-562))) . T) (((-562)) . T)) +(((|#1| |#1|) |has| |#1| (-171))) (((|#2|) . T)) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +((((-378)) . T)) +((((-693)) . T)) +((((-406 (-562))) . #0=(|has| |#2| (-362))) (($) . #0#)) +(((|#1|) |has| |#1| (-171))) +((((-406 (-947 |#1|))) . T)) (((|#2| |#2|) . T)) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(((|#1|) . T)) (((|#2|) . T)) +(|has| |#2| (-845)) +(|has| |#2| (-904)) +(|has| |#1| (-904)) +(|has| |#1| (-362)) +(|has| |#1| (-845)) +(((|#3|) |has| |#3| (-1044))) +((((-1168)) |has| |#2| (-895 (-1168)))) ((((-857)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-472)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#1| (-362)) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-472)) (|has| |#1| (-554)) (|has| |#1| (-1044)) (|has| |#1| (-1104))) +(|has| |#1| (-38 (-406 (-562)))) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +(|has| |#1| (-348)) +((((-143)) . T)) +(|has| |#1| (-38 (-406 (-562)))) +((($) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(((|#2|) . T) (((-857)) . T)) +(((|#2|) . T) (((-857)) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-845)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) (((|#1| |#2|) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-144)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) ((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4402 "*")))) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-682 |#2|)) . T) (((-857)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-1166)) |has| |#2| (-893 (-1166)))) -(|has| |#2| (-232)) -(((|#2|) . T)) -(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544)))) -(((|#2|) . T)) -((((-544)) . T) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544))))) -(((|#2|) . T) (((-544)) |has| |#2| (-1031 (-544))) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544))))) -(((|#1| |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -(((|#2|) . T)) -(((|#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -(((|#1|) . T)) +(((|#3|) . T)) +((((-116 |#1|)) . T)) +(|has| |#1| (-367)) +(|has| |#1| (-845)) +(((|#2|) . T) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) +((((-116 |#1|)) . T)) +(((|#2|) |has| |#2| (-171))) (((|#1|) . T)) +((((-562)) . T)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) ((((-857)) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1|) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) ((((-857)) . T)) -((((-1171)) . T)) -((((-1205)) . T) (((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -(((|#1| (-1253 |#1|) (-1253 |#1|)) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1|) . T)) -(((|#1| (-1253 |#1|) (-1253 |#1|)) . T)) +((((-535)) |has| |#1| (-610 (-535))) (((-887 (-562))) |has| |#1| (-610 (-887 (-562)))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378)))) (((-378)) . #0=(|has| |#1| (-1017))) (((-224)) . #0#)) +(((|#1|) |has| |#1| (-362))) ((((-857)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-692)) . T)) -((((-692)) . T)) -((((-692)) . T)) -((((-692)) . T)) -((((-692)) . T)) -((((-377)) . T)) -((((-692)) . T)) -(((#1=(-692) (-1160 #1#)) . T)) -(((#1=(-692) (-1160 #1#)) . T)) -(((#1=(-692) (-1160 #1#)) . T)) -((((-692)) . T)) -((((-167 (-224))) . T) (((-167 (-377))) . T) (((-1160 (-692))) . T) (((-883 (-377))) . T)) -((((-692)) . T)) -((((-406 (-544))) . T) (((-692)) . T) (($) . T)) -((((-406 (-544))) . T) (((-692)) . T) (($) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((($ $) . T) (((-608 $) $) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +((($) . T) (((-1242 |#1| |#2| |#3| |#4|)) . T) (((-406 (-562))) . T)) +((($) -4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-554))) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +((((-378)) . T) (((-562)) . T) (((-406 (-562))) . T)) +((((-639 (-775 |#1| (-859 |#2|)))) . T) (((-857)) . T)) +((((-535)) |has| (-775 |#1| (-859 |#2|)) (-610 (-535)))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-378)) . T)) +(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) +((((-857)) . T)) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-904))) +(((|#1|) . T)) +(|has| |#1| (-845)) +(|has| |#1| (-845)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((((-535)) |has| |#1| (-610 (-535)))) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +((((-766)) . T)) +(|has| |#1| (-1092)) +((((-857)) . T)) +((((-1168)) . T) (((-857)) . T)) +((((-406 (-562))) . T) (((-562)) . T) (((-608 $)) . T)) +(|has| |#1| (-144)) +(|has| |#1| (-146)) +((((-562)) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(((#0=(-1241 |#2| |#3| |#4|)) . T) (((-406 (-562))) |has| #0# (-38 (-406 (-562)))) (($) . T)) +((((-562)) . T)) +(|has| |#1| (-362)) +(-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146))) +(-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))) +(|has| |#1| (-362)) +(|has| |#1| (-144)) +(|has| |#1| (-146)) +(|has| |#1| (-146)) +(|has| |#1| (-144)) +(|has| |#1| (-232)) +(|has| |#1| (-362)) +(((|#3|) . T)) ((((-857)) . T)) -((((-406 (-544))) . T) (((-692)) . T) (($) . T)) -(((#1=(-406 (-544)) #1#) . T) ((#2=(-692) #2#) . T) (($ $) . T)) -((((-406 (-544))) . T) (((-692)) . T) (($) . T) (((-544)) . T)) -((((-406 (-544))) . T) (((-692)) . T) (($) . T)) -((((-692)) . T) (((-406 (-544))) . T) (((-544)) . T)) -((((-377)) . T) (((-544)) . T) (((-406 (-544))) . T)) -((((-377)) . T)) -((($) . T) (((-406 (-544))) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-224)) . T) (((-377)) . T) (((-883 (-377))) . T)) ((((-857)) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-377)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-533)) . T) (((-544)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T)) -((($) . T)) -((($) . T)) +((((-562)) |has| |#2| (-635 (-562))) ((|#2|) . T)) +(((|#2|) . T)) +(|has| |#1| (-1092)) +(((|#1| |#2|) . T)) +((((-562)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562)))))) +(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) +(((|#3|) |has| |#3| (-171))) +(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) ((((-857)) . T)) +((((-562)) . T)) +(((|#1| $) |has| |#1| (-285 |#1| |#1|))) +((((-406 (-562))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T)) +((((-947 |#1|)) . T) (((-857)) . T)) +(((|#3|) . T)) +(((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-289)) (|has| |#1| (-362))) ((#0=(-406 (-562)) #0#) |has| |#1| (-362))) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) . T)) +((((-947 |#1|)) . T)) ((($) . T)) -((($ $) . T)) -((($) . T) (((-544)) . T)) -((($) . T)) -((((-544)) . T)) +((((-562) |#1|) . T)) +((((-1168)) |has| (-406 |#2|) (-895 (-1168)))) +(((|#1|) . T) (($) -4037 (|has| |#1| (-289)) (|has| |#1| (-362))) (((-406 (-562))) |has| |#1| (-362))) +((((-535)) |has| |#2| (-610 (-535)))) +((((-683 |#2|)) . T) (((-857)) . T)) (((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-857)) . T)) +(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +((((-865 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(-4037 (|has| |#4| (-788)) (|has| |#4| (-843))) +(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) ((((-857)) . T)) ((((-857)) . T)) -((($) . T) (((-406 (-544))) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (((-544)) . T) (($) . T)) -(|has| |#1| (-367)) +(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(((|#2|) |has| |#2| (-1044))) (((|#1|) . T)) +((((-406 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) +((((-562) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +((((-406 (-562))) . T) (($) . T)) +((((-406 (-562))) . T) (($) . T)) +((((-406 (-562))) . T) (($) . T)) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-1211))) +((($) . T)) +((((-406 (-562))) |has| #0=(-406 |#2|) (-1033 (-406 (-562)))) (((-562)) |has| #0# (-1033 (-562))) ((#0#) . T)) +(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) +(((|#1| (-766)) . T)) +(|has| |#1| (-845)) +(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) +((((-562)) . T)) +(|has| |#1| (-38 (-406 (-562)))) +((((-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) |has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(|has| |#1| (-843)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-348)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +((((-1150)) . T) (((-1168)) . T) (((-224)) . T) (((-562)) . T)) +(((|#2|) . T) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) (((-1074)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) +(((|#1| |#2|) . T)) +((((-143)) . T)) +((((-775 |#1| (-859 |#2|))) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(|has| |#1| (-1192)) ((((-857)) . T)) -((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) +(((|#1|) . T)) +(-4037 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-721)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044)) (|has| |#3| (-1092))) +((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|))) +(((|#2|) . T)) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +((((-905 |#1|)) . T)) +((($) . T)) +((((-406 (-947 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-535)) |has| |#4| (-610 (-535)))) +((((-857)) . T) (((-639 |#4|)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-843)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) |has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))))) +(|has| |#1| (-1092)) (|has| |#1| (-362)) -(((|#1| (-765) (-1072)) . T)) -(|has| |#1| (-903)) -(|has| |#1| (-903)) -((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T)) -(|has| |#1| (-844)) -((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-765)) . T)) -(|has| |#1| (-146)) +(|has| |#1| (-845)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-666 |#1|)) . T)) +((($) . T) (((-406 (-562))) . T)) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) (|has| |#1| (-144)) -(((|#2|) . T) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) (((-1072)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -(((|#1|) . T)) -((((-1072)) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(((|#1| (-765)) . T)) -(((#1=(-1072) |#1|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1141)) -(((|#1|) . T)) -((((-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) . T)) -((((-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) . T)) -((((-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) . T) (((-857)) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171))) -(((|#1| |#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171))) +(|has| |#1| (-146)) +(-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146))) +(-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))) (|has| |#1| (-144)) (|has| |#1| (-146)) -(((|#2| |#2|) . T)) -((((-113)) . T) ((|#1|) . T)) -((((-113)) . T) ((|#1|) . T) (((-544)) . T)) -(((|#1|) |has| |#1| (-171)) (($) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-144)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) +(|has| |#1| (-843)) +(((|#1| |#2|) . T)) +(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) +((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) +((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-1092)) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T) (((-562)) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (((-562)) . T)) +(|has| |#2| (-144)) +(|has| |#2| (-146)) +((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-1092)) +(((|#2|) |has| |#2| (-171))) +(((|#2|) . T)) +(((|#1| |#1|) . T)) +(((|#3|) |has| |#3| (-362))) +((((-406 |#2|)) . T)) ((((-857)) . T)) -((((-544)) . T)) -((($) . T)) +(((|#1|) . T)) ((((-857)) . T)) ((((-857)) . T)) -((((-533)) |has| |#2| (-609 (-533))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544))))) -((($) . T)) -(((|#2| (-529 (-858 |#1|))) . T)) +((((-535)) |has| |#1| (-610 (-535)))) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) +(((|#1|) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)))) +((((-315 |#1|)) . T)) +(((|#2|) |has| |#2| (-362))) (((|#2|) . T)) -((((-857)) . T)) -((($) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-146)) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) . T) (($) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544)))) ((|#2| |#2|) . T) (($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -((((-406 (-544))) |has| |#2| (-38 (-406 (-544)))) ((|#2|) |has| |#2| (-171)) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903)))) -(((|#2| (-529 (-858 |#1|))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544)))) -(-3936 (|has| |#2| (-450)) (|has| |#2| (-903))) -((($ $) . T) ((#1=(-858 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-844)) -((((-858 |#1|)) . T)) -(|has| |#2| (-903)) -(|has| |#2| (-903)) -((((-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) (((-544)) |has| |#2| (-1031 (-544))) ((|#2|) . T) (((-858 |#1|)) . T)) -((((-544)) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))) ((|#2|) . T) (($) -3936 (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-858 |#1|)) . T)) -(((|#2| (-529 (-858 |#1|)) (-858 |#1|)) . T)) -(-12 (|has| |#1| (-367)) (|has| |#2| (-367))) -(((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171))) -(((|#1| |#1|) |has| |#1| (-171))) +((((-406 (-562))) . T) (((-693)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((#0=(-775 |#1| (-859 |#2|)) #0#) |has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|))))) +((((-562)) . T) (($) . T)) +((((-859 |#1|)) . T)) +(((|#2|) |has| |#2| (-171))) (((|#1|) |has| |#1| (-171))) +(((|#2|) . T)) +((((-1168)) |has| |#1| (-895 (-1168))) (((-1074)) . T)) +((((-1168)) |has| |#1| (-895 (-1168))) (((-1080 (-1168))) . T)) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(|has| |#1| (-38 (-406 (-562)))) +(((|#4|) |has| |#4| (-1044)) (((-562)) -12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044)))) +(((|#3|) |has| |#3| (-1044)) (((-562)) -12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) (|has| |#1| (-144)) (|has| |#1| (-146)) -(((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-544)) . T)) -(((|#1|) |has| |#1| (-171)) (($) . T)) -((((-857)) . T)) +((($ $) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)) (|has| |#1| (-1104)) (|has| |#1| (-1092))) +(|has| |#1| (-554)) +(((|#2|) . T)) +((((-562)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) (((|#1|) . T)) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) +((((-579 |#1|)) . T)) +((($) . T)) +(((|#1| (-59 |#1|) (-59 |#1|)) . T)) (((|#1|) . T)) -((((-857)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (((|#1|) . T)) +((($) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) +((((-857)) . T)) +(((|#2|) |has| |#2| (-6 (-4404 "*")))) (((|#1|) . T)) (((|#1|) . T)) +(((|#3|) . T)) (((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#1| (-529 |#2|) |#2|) . T)) -(|has| |#1| (-903)) -(|has| |#1| (-903)) -((((-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#2| (-879 (-544)))) (((-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#2| (-879 (-377))))) -(((|#2|) . T)) -(|has| |#1| (-844)) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-903))) -((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-529 |#2|)) . T)) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((((-1115 |#1| |#2|)) . T) (((-939 |#1|)) |has| |#2| (-609 (-1166))) (((-857)) . T)) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T)) -((((-1115 |#1| |#2|)) . T) ((|#2|) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-544)) . T)) -((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -(((|#1|) . T)) -((((-1115 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(((|#1| (-529 |#2|)) . T)) -(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) +((((-1241 |#2| |#3| |#4|)) . T) (((-562)) . T) (((-1242 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-562))) . T)) +((((-48)) -12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (((-562)) -4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))) (|has| |#1| (-1044))) ((|#1|) . T) (((-608 $)) . T) (($) |has| |#1| (-554)) (((-406 (-562))) -4037 (|has| |#1| (-554)) (|has| |#1| (-1033 (-406 (-562))))) (((-406 (-947 |#1|))) |has| |#1| (-554)) (((-947 |#1|)) |has| |#1| (-1044)) (((-1168)) . T)) +((((-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) (((-562)) |has| |#2| (-1033 (-562))) ((|#2|) . T) (((-859 |#1|)) . T)) +((($) . T) (((-116 |#1|)) . T) (((-406 (-562))) . T)) +((((-1117 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +((((-1164 |#1|)) . T) (((-1074)) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +((((-1117 |#1| (-1168))) . T) (((-1080 (-1168))) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-1168)) . T)) +(|has| |#1| (-1092)) ((($) . T)) -((((-939 |#1|)) |has| |#2| (-609 (-1166))) (((-1148)) -12 (|has| |#1| (-1031 (-544))) (|has| |#2| (-609 (-1166)))) (((-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544))))) (((-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377))))) (((-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#2| (-609 (-533))))) -(((|#1| (-529 |#2|) |#2|) . T)) -(((|#1|) . T)) -((((-1160 |#1|)) . T) (((-857)) . T)) -((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) +(|has| |#1| (-1092)) +((((-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#2| (-881 (-562)))) (((-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#2| (-881 (-378))))) +(((|#1| |#2|) . T)) +((((-1168) |#1|) . T)) +(((|#4|) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +((((-1168) (-52)) . T)) +((((-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) +((((-857)) . T)) +(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) +(((#0=(-1242 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-171)) ((#0=(-406 (-562)) #0#) |has| |#1| (-554)) (($ $) |has| |#1| (-554))) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) +(((|#1| $) |has| |#1| (-285 |#1| |#1|))) +((((-1242 |#1| |#2| |#3| |#4|)) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-554)) (($) |has| |#1| (-554))) (|has| |#1| (-362)) -(((|#1| (-765) (-1072)) . T)) -(|has| |#1| (-903)) -(|has| |#1| (-903)) -((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T)) -(|has| |#1| (-844)) -((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-765)) . T)) +(|has| |#1| (-144)) +(|has| |#1| (-146)) (|has| |#1| (-146)) (|has| |#1| (-144)) -((((-1160 |#1|)) . T) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) (((-1072)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -(((|#1|) . T)) -((((-1160 |#1|)) . T) (((-1072)) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(((|#1| (-765)) . T)) -(((#1=(-1072) |#1|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1141)) -(((|#1|) . T)) +((((-406 (-562))) . T) (($) . T)) +(((|#3|) |has| |#3| (-362))) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +((((-1168)) . T)) +((($) . T) (((-1241 |#2| |#3| |#4|)) . T) (((-406 (-562))) |has| (-1241 |#2| |#3| |#4|) (-38 (-406 (-562)))) (((-562)) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +(((|#2| |#3|) . T)) +(-4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(((|#1| (-530 |#2|)) . T)) +(((|#1| (-766)) . T)) +(((|#1| (-530 (-1080 (-1168)))) . T)) +(((|#1|) |has| |#1| (-171))) (((|#1|) . T)) +(|has| |#2| (-904)) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) ((((-857)) . T)) -((($) . T) ((|#1|) . T)) +((($ $) . T) ((#0=(-1241 |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-562)) #1#) |has| #0# (-38 (-406 (-562))))) +((((-905 |#1|)) . T)) +(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) +((($) . T) (((-406 (-562))) . T)) +((((-857)) . T)) +((($) . T)) +((($) . T)) +(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(((|#1| |#2|) . T)) +((($) . T) ((#0=(-1241 |#2| |#3| |#4|)) . T) (((-406 (-562))) |has| #0# (-38 (-406 (-562))))) +((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) +(-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362)) (|has| |#1| (-348))) +(-4037 (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) +((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) +(((|#1| |#2|) . T)) +((((-857)) . T)) +((((-857)) . T)) +((((-112)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) . T)) +(|has| |#2| (-362)) +(|has| |#1| (-845)) (((|#1|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -((((-533)) |has| |#1| (-609 (-533)))) -(|has| |#1| (-367)) (((|#1|) . T)) -((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) -(((|#1|) |has| |#1| (-308 |#1|))) -(((|#1| $) |has| |#1| (-285 |#1| |#1|))) -((((-989 |#1|)) . T) ((|#1|) . T)) -((((-989 |#1|)) . T) (((-544)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| (-989 |#1|) (-1031 (-406 (-544)))))) -((((-989 |#1|)) . T) ((|#1|) . T) (((-544)) -3936 (|has| |#1| (-1031 (-544))) (|has| (-989 |#1|) (-1031 (-544)))) (((-406 (-544))) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| (-989 |#1|) (-1031 (-406 (-544)))))) -(|has| |#1| (-844)) (((|#1|) . T)) +((((-562)) . T)) +((((-857)) . T)) +(|has| |#1| (-1092)) +(((|#4|) . T)) +(((|#4|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-815)) +(((|#4|) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((((-857)) . T)) +(((|#1| (-530 (-1168))) . T)) +(((|#1|) |has| |#1| (-171))) ((((-857)) . T)) -(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) -(-3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) +(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(((|#2|) -4037 (|has| |#2| (-6 (-4404 "*"))) (|has| |#2| (-171)))) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(|has| |#2| (-845)) +(|has| |#2| (-904)) +(|has| |#1| (-904)) (((|#2|) |has| |#2| (-171))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-720)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -(-3936 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042))) -((($) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042)))) -(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)))) -((((-857)) -3936 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-608 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-720)) (|has| |#2| (-787)) (|has| |#2| (-842)) (|has| |#2| (-1042)) (|has| |#2| (-1091))) (((-1253 |#2|)) . T)) -(|has| |#2| (-171)) -(((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($) |has| |#2| (-171))) -(((|#2| |#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1042))) (($ $) |has| |#2| (-171))) -(((|#2|) |has| |#2| (-1042))) -((((-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) -(-12 (|has| |#2| (-232)) (|has| |#2| (-1042))) -(|has| |#2| (-367)) -(((|#2|) |has| |#2| (-1042))) -(((|#2|) |has| |#2| (-1042)) (((-544)) -12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) -(((|#2|) |has| |#2| (-1091))) -((((-544)) -3936 (|has| |#2| (-171)) (|has| |#2| (-842)) (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042))) ((|#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) -(((|#2|) |has| |#2| (-1091)) (((-544)) -12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (((-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) -((((-544) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -(((|#2|) . T)) -((((-544) |#2|) . T)) -((((-544) |#2|) . T)) -(|has| |#2| (-787)) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(-3936 (|has| |#2| (-787)) (|has| |#2| (-842))) -(|has| |#2| (-842)) -(|has| |#2| (-842)) -(((|#2|) |has| |#2| (-362))) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) +((((-857)) . T)) +((((-857)) . T)) +((((-535)) . T) (((-562)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) (((|#1| |#2|) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) . T)) (((|#1|) . T)) ((((-857)) . T)) -(|has| |#1| (-232)) -((($) . T)) -(((|#1| (-529 (-812 (-1166))) (-812 (-1166))) . T)) -(|has| |#1| (-903)) -(|has| |#1| (-903)) -((((-1166)) |has| |#1| (-893 (-1166))) (((-812 (-1166))) . T)) -(|has| |#1| (-844)) -((($ $) . T) ((#1=(-1166) $) |has| |#1| . #2=((-232))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-812 (-1166)) |#1|) . T) ((#3# $) . T)) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-903))) -((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-529 (-812 (-1166)))) . T)) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -(((|#1|) . T)) -(((|#1| (-529 (-812 (-1166)))) . T)) -((((-1115 |#1| (-1166))) . T) (((-812 (-1166))) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-1166)) . T)) -((((-1115 |#1| (-1166))) . T) (((-544)) . T) (((-812 (-1166))) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-1166)) . T)) -(((|#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) . T)) -(|has| |#2| (-362)) -(|has| |#2| (-362)) -(|has| |#2| (-362)) -(|has| |#2| (-362)) -((((-406 (-544))) . #1=(|has| |#2| (-362))) (($) . #1#)) -((((-406 (-544))) . #1=(|has| |#2| (-362))) (($) . #1#)) -(|has| |#2| (-362)) -(|has| |#2| (-362)) -(|has| |#2| (-362)) -(|has| |#2| (-362)) -(|has| |#2| (-362)) -(((|#2|) . T)) -((((-406 (-544))) . #1=(|has| |#2| (-362))) (($) . #1#) ((|#2|) . T) (((-544)) . T)) -((((-406 (-544))) |has| |#2| (-362)) (($) . T)) -(((|#2|) . T) (((-857)) . T)) -((((-406 (-544))) |has| |#2| (-362)) (($) . T)) -(((#1=(-406 (-544)) #1#) |has| |#2| (-362)) (($ $) . T)) +(((|#1| |#2|) . T)) +(((|#1| (-406 (-562))) . T)) +(((|#1|) . T)) +(-4037 (|has| |#1| (-289)) (|has| |#1| (-362))) +((((-143)) . T)) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-843)) +((((-857)) . T)) ((((-857)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1| |#2|) . T)) +((((-406 (-562))) . T) (($) . T)) +((((-857)) . T)) +((((-857)) . T)) +((((-186)) . T) (((-857)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(((|#2| |#2|) . T) ((|#1| |#1|) . T)) +((((-857)) . T)) +((((-857)) . T)) +((((-535)) |has| |#1| (-610 (-535))) (((-887 (-562))) |has| |#1| (-610 (-887 (-562)))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378))))) +((((-1168) (-52)) . T)) +(((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) +((((-639 (-143))) . T) (((-1150)) . T)) ((((-857)) . T)) +((((-1150)) . T)) +((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) +((((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) +(|has| |#1| (-845)) ((((-857)) . T)) +((((-535)) |has| |#1| (-610 (-535)))) ((((-857)) . T)) +(((|#2|) |has| |#2| (-362))) ((((-857)) . T)) -(|has| |#1| (-232)) -(((|#2|) |has| |#2| (-171))) -(((|#2| |#2|) . T)) +((((-535)) |has| |#4| (-610 (-535)))) +((((-857)) . T) (((-639 |#4|)) . T)) +(((|#2|) . T)) +((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) +((($) . T) (((-562)) . T) (((-406 (-562))) . T) (((-608 $)) . T)) +(-4037 (|has| |#4| (-171)) (|has| |#4| (-721)) (|has| |#4| (-843)) (|has| |#4| (-1044))) +(-4037 (|has| |#3| (-171)) (|has| |#3| (-721)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +((((-1168) (-52)) . T)) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(|has| |#1| (-904)) +((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +(|has| |#1| (-904)) +(((|#1|) . T) (((-562)) . T) (((-406 (-562))) . T) (($) . T)) (((|#2|) . T)) -((((-857)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-171))) -((((-544)) . T) ((|#2|) |has| |#2| (-171))) -(((|#2|) . T)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -((($) |has| |#1| (-842))) -(|has| |#1| (-842)) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-842))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-842))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-842))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-842))) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) -3936 (|has| |#1| (-842)) (|has| |#1| (-1031 (-544)))) ((|#1|) . T)) (((|#1|) . T)) ((((-857)) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171))) -(((|#1| |#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171))) -(|has| |#1| (-144)) +((((-562)) . T)) +(((#0=(-406 (-562)) #0#) . T) (($ $) . T)) +((((-406 (-562))) . T) (($) . T)) +(((|#1| (-406 (-562)) (-1074)) . T)) +(|has| |#1| (-1092)) +(|has| |#1| (-554)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(|has| |#1| (-815)) +(((#0=(-905 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-562)) #1#) . T)) +((((-406 |#2|)) . T)) +(|has| |#1| (-843)) +((((-1193 |#1|)) . T) (((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) . T) ((#1=(-562) #1#) . T) (($ $) . T)) +((((-905 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +(((|#2|) |has| |#2| (-1044)) (((-562)) -12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) +(((|#1|) . T) (((-406 (-562))) . T) (((-562)) . T) (($) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-146)) -(((|#1| |#1|) . T)) -((((-113)) . T) ((|#1|) . T)) -((((-113)) . T) ((|#1|) . T) (((-544)) . T)) -(((|#1|) |has| |#1| (-171)) (($) . T)) +(|has| |#1| (-144)) +(((|#2|) . T)) ((((-857)) . T)) +((((-406 (-562))) . T) (((-693)) . T) (($) . T) (((-562)) . T)) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2320 (-1168)) (|:| -2694 #0#))) . T)) +(|has| |#1| (-348)) +((((-562)) . T)) ((((-857)) . T)) -((((-504)) . T)) +(((|#1|) . T)) +(((#0=(-1242 |#1| |#2| |#3| |#4|) $) |has| #0# (-285 #0# #0#))) +(|has| |#1| (-362)) +(((#0=(-1074) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +(((#0=(-406 (-562)) #0#) . T) ((#1=(-693) #1#) . T) (($ $) . T)) +((((-315 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-406 (-562))) |has| |#1| (-362))) ((((-857)) . T)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -((($) |has| |#1| (-842))) -(|has| |#1| (-842)) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-842))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-842))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-842))) -(-3936 (|has| |#1| (-21)) (|has| |#1| (-842))) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) -3936 (|has| |#1| (-842)) (|has| |#1| (-1031 (-544)))) ((|#1|) . T)) +(|has| |#1| (-1092)) (((|#1|) . T)) +(((|#1|) -4037 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|)))) +(((|#1|) -4037 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|)))) +(((|#2|) . T)) +((((-406 (-562))) . T) (((-693)) . T) (($) . T)) +((((-577)) . T)) +(((|#3| |#3|) . T)) +(|has| |#2| (-232)) +((((-859 |#1|)) . T)) +((((-1168)) |has| |#1| (-895 (-1168))) ((|#3|) . T)) +((((-639 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-362)) (|has| |#2| (-1017))) +((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) ((((-857)) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1| |#1|) . T)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +((((-406 (-562))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T)) +((((-562)) . T) (((-116 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +((((-562)) . T)) +(((|#3|) . T)) +(|has| |#1| (-1092)) +(((|#2|) . T)) (((|#1|) . T)) +((((-562)) . T)) +(((|#2|) . T) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (($) . T) (((-562)) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) +(((|#1| |#2|) . T)) +((($) . T)) +((((-579 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) +((($) . T) (((-406 (-562))) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1|) . T) (($) . T)) +(((|#1| (-1256 |#1|) (-1256 |#1|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) ((((-857)) . T)) -((($) . T) ((|#1|) . T)) -(((|#1|) |has| |#1| (-171))) +((((-857)) . T)) +(((#0=(-116 |#1|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) +((((-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) (((-562)) |has| |#2| (-1033 (-562))) ((|#2|) . T) (((-859 |#1|)) . T)) +((((-1117 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#2|) . T)) (((|#1|) . T)) -((((-544)) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -((((-857)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#2|) . T)) -((((-1250 |#1|)) . T) (((-544)) . T) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544))))) -(((|#2|) . T) (((-544)) |has| |#2| (-1031 (-544))) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544))))) +(((|#1|) . T)) +((($ $) . T)) +((((-666 |#1|)) . T)) +((($) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T)) +((((-116 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) +((((-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))) (((-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378))))) +(((|#2|) . T) ((|#6|) . T)) +(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) +((((-143)) . T)) +((($) . T)) +((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-378)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#1|) . T)) +(|has| |#2| (-904)) +(|has| |#1| (-904)) +(|has| |#1| (-904)) +(((|#4|) . T)) +(|has| |#2| (-1017)) +((($) . T)) +(|has| |#1| (-904)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((($) . T)) (((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T)) +((($) . T)) +(|has| |#1| (-362)) +((((-905 |#1|)) . T)) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(-4037 (|has| |#1| (-367)) (|has| |#1| (-845))) +(((|#1|) . T)) +((((-766)) . T)) ((((-857)) . T)) +((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) +((((-406 |#2|) |#3|) . T)) +((($) . T) (((-406 (-562))) . T)) +((($) . T) (((-562)) . T) (((-406 (-562))) . T) (((-608 $)) . T)) +((((-562)) . T) (($) . T)) +((((-562)) . T) (($) . T)) +((((-766) |#1|) . T)) +(((|#2| (-239 (-3492 |#1|) (-766))) . T)) +(((|#1| (-530 |#3|)) . T)) +((((-406 (-562))) . T)) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +((((-1150)) . T) (((-857)) . T)) +(((#0=(-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) #0#) |has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))))) +((((-1150)) . T)) +(|has| |#1| (-904)) +(|has| |#2| (-362)) +(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T)) ((((-857)) . T)) +(((|#1|) . T)) +((((-378)) . T) (((-562)) . T)) +(((#0=(-406 (-562)) #0#) . T) (($ $) . T)) +((($ $) . T)) +((($ $) . T)) +(((|#1| |#1|) . T)) ((((-857)) . T)) -((((-883 (-544))) . T) (((-883 (-377))) . T) (((-533)) . T) (((-1166)) . T)) +(|has| |#1| (-554)) +((((-406 (-562))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348))) +(|has| |#1| (-38 (-406 (-562)))) +(-12 (|has| |#1| (-544)) (|has| |#1| (-823))) ((((-857)) . T)) +((((-1168)) -4037 (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-895 (-1168)))))) +(|has| |#1| (-362)) +((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) +(|has| |#1| (-362)) +((((-406 (-562))) . T) (($) . T)) +((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) +((((-562) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-362))) +(((|#2|) |has| |#1| (-362))) +((((-562)) . T) (($) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(((|#1|) . T)) (((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171))) -(((|#1| |#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171))) -((((-939 |#1|)) . T)) -(((|#1|) |has| |#1| (-171)) (((-939 |#1|)) . T) (((-544)) . T)) -(((|#1|) |has| |#1| (-171)) (($) . T)) -((((-939 |#1|)) . T) (((-857)) . T)) -((($) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-1168)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-1168)))) (((-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-562)))) (((-406 (-562))) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-562))))) +(((|#2|) . T)) +((((-1168) #0=(-1242 |#1| |#2| |#3| |#4|)) |has| #0# (-513 (-1168) #0#)) ((#0# #0#) |has| #0# (-308 #0#))) +((((-608 $) $) . T) (($ $) . T)) +((((-168 (-224))) . T) (((-168 (-378))) . T) (((-1164 (-693))) . T) (((-887 (-378))) . T)) ((((-857)) . T)) -((($) . T)) +(|has| |#1| (-554)) +(|has| |#1| (-554)) +(|has| (-406 |#2|) (-232)) +(((|#1| (-406 (-562))) . T)) ((($ $) . T)) +((((-1168)) |has| |#2| (-895 (-1168)))) ((($) . T)) -((($) . T)) -((((-544)) . T) (($) . T)) -(((|#1|) . T)) ((((-857)) . T)) -((((-862 |#1|)) . T)) -((((-862 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -((($) . T) (((-862 |#1|)) . T) (((-406 (-544))) . T)) -((((-862 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -((((-862 |#1|)) . T) (((-406 (-544))) . T) (($) . T)) -(((#1=(-862 |#1|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T)) -((((-862 |#1|)) . T)) -((((-1166) #1=(-862 |#1|)) |has| #1# (-512 (-1166) #1#)) ((#1# #1#) |has| #1# (-308 #1#))) -(((#1=(-862 |#1|)) |has| #1# (-308 #1#))) -(((#1=(-862 |#1|) $) |has| #1# (-285 #1# #1#))) -((((-862 |#1|)) . T)) -((((-862 |#1|)) . T)) -((((-862 |#1|)) . T)) -((((-862 |#1|)) . T)) -((((-544)) . T) (((-862 |#1|)) . T) (($) . T) (((-406 (-544))) . T)) -((((-862 |#1|)) . T)) -((((-862 |#1|)) . T)) +((((-406 (-562))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) ((((-857)) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-146)) -(((|#2|) . T)) -((((-1166)) |has| |#2| (-893 (-1166)))) -(|has| |#2| (-232)) -(((|#2|) . T) (($) . T) (((-406 (-544))) . T)) -((($) . T) ((|#2|) . T) (((-406 (-544))) . T)) -(((|#2|) . T) (($) . T) (((-406 (-544))) . T)) -(((|#2|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#2| |#2|) . T) ((#1=(-406 (-544)) #1#) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1166) |#2|) |has| |#2| (-512 (-1166) |#2|)) ((|#2| |#2|) |has| |#2| (-308 |#2|))) -(((|#2|) |has| |#2| (-308 |#2|))) -(((|#2| $) |has| |#2| (-285 |#2| |#2|))) +(((|#2|) |has| |#1| (-362))) +((((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-881 (-378)))) (((-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-881 (-562))))) +(|has| |#1| (-362)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(|has| |#1| (-362)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(|has| |#1| (-362)) +(|has| |#1| (-554)) +(((|#1|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(((|#3|) . T)) +((((-1150)) . T) (((-1168)) . T) (((-224)) . T) (((-562)) . T)) +(((|#1|) . T)) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) (((|#2|) . T)) -(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544)))) (((|#2|) . T)) -((((-544)) |has| |#2| (-879 (-544))) (((-377)) |has| |#2| (-879 (-377)))) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -(-3936 (|has| |#2| (-814)) (|has| |#2| (-844))) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(((|#1| |#2|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(|has| |#1| (-146)) +((((-1150) |#1|) . T)) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(|has| |#1| (-146)) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) +(|has| |#1| (-146)) +((((-579 |#1|)) . T)) +((($) . T)) +((((-406 |#2|)) . T)) +(|has| |#1| (-554)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-348))) +(|has| |#1| (-146)) +((((-857)) . T)) +((($) . T)) +((((-406 (-562))) |has| |#2| (-1033 (-562))) (((-562)) |has| |#2| (-1033 (-562))) (((-1168)) |has| |#2| (-1033 (-1168))) ((|#2|) . T)) +(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) +((((-1132 |#1| |#2|)) . T)) +(((|#1| (-562)) . T)) +(((|#1| (-406 (-562))) . T)) +((((-562)) |has| |#2| (-881 (-562))) (((-378)) |has| |#2| (-881 (-378)))) (((|#2|) . T)) -(|has| |#2| (-903)) -(|has| |#2| (-1013)) -((((-533)) |has| |#2| (-609 (-533))) (((-883 (-544))) |has| |#2| (-609 (-883 (-544)))) (((-883 (-377))) |has| |#2| (-609 (-883 (-377)))) (((-377)) . #1=(|has| |#2| (-1013))) (((-224)) . #1#)) -((((-544)) . T) ((|#2|) . T) (($) . T) (((-406 (-544))) . T) (((-1166)) |has| |#2| (-1031 (-1166)))) -((((-406 (-544))) |has| |#2| . #1=((-1031 (-544)))) (((-544)) |has| |#2| . #1#) (((-1166)) |has| |#2| (-1031 (-1166))) ((|#2|) . T)) -(|has| |#2| (-1141)) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +((((-112)) . T)) +(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) (((|#2|) . T)) -(-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))) -(-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))) -((((-857)) -3936 (-12 (|has| |#1| (-608 (-857))) (|has| |#2| (-608 (-857)))) (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))))) ((((-857)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-1168) (-52)) . T)) +((((-406 |#2|)) . T)) ((((-857)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1092)) +(|has| |#1| (-786)) +(|has| |#1| (-786)) ((((-857)) . T)) -((((-1166)) . T) ((|#1|) . T)) -((((-1166)) . T) ((|#1|) . T)) +((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +((((-535)) |has| |#1| (-610 (-535)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-114)) . T) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-224)) . T) (((-378)) . T) (((-887 (-378))) . T)) ((((-857)) . T)) -((((-665 |#1|)) . T)) -((((-665 |#1|)) . T)) +((((-1242 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-562))) . T)) +(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)) (((-406 (-562))) |has| |#1| (-554))) ((((-857)) . T)) ((((-857)) . T)) -(((|#1|) . T)) -((((-1191 |#1|)) . T) (((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) +(((|#2|) . T)) +((((-857)) . T)) +(((#0=(-905 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-562)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) +((((-905 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +(|has| |#1| (-362)) ((((-857)) . T)) -(-3936 (|has| |#1| (-367)) (|has| |#1| (-844))) -(((|#1|) . T)) +(((|#2|) . T)) +((((-562)) . T)) ((((-857)) . T)) -((((-544)) . T)) -((($) . T)) -((($) . T)) -((($) . T)) -(|has| $ (-146)) -((($) . T)) +((((-562)) . T)) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T)) ((((-857)) . T)) -((($) . T) (((-406 (-544))) . T)) -((($) . T) (((-406 (-544))) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-406 (-544))) . T) (($) . T)) -((((-544)) . T) (((-406 (-544))) . T) (($) . T)) ((((-857)) . T)) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-406 (-544)) #1#) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (((-544)) . T) (($) . T)) +((((-1150)) . T) (((-535)) . T) (((-562)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) ((((-857)) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-144)) +((($) . T) ((#0=(-1241 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-562))) |has| #0# (-38 (-406 (-562))))) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)) (|has| |#1| (-1104)) (|has| |#1| (-1092))) +(|has| |#1| (-1143)) +((((-562) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-116 |#1|) $) |has| #0# (-285 #0# #0#))) +(((|#1|) |has| |#1| (-171))) +((((-315 |#1|)) . T) (((-562)) . T)) +(((|#1|) . T)) ((((-857)) . T)) +((((-114)) . T) ((|#1|) . T)) ((((-857)) . T)) -((((-635 |#1|)) . T)) -(((|#1|) . T)) +(((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-308 |#1|))) +((((-562) |#1|) . T)) +((((-1168) |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-844)) +((((-562)) . T) (((-406 (-562))) . T)) (((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) +(|has| |#1| (-554)) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +((((-378)) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) (((|#1|) . T)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-554)) +(|has| |#1| (-1092)) +((((-775 |#1| (-859 |#2|))) |has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|))))) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((|#1|) . T)) +(((|#2| |#3|) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533))) (((-883 (-377))) |has| |#1| (-609 (-883 (-377)))) (((-883 (-544))) |has| |#1| (-609 (-883 (-544))))) -((($) . T)) -(((|#1| (-529 (-1166))) . T)) +(|has| |#2| (-904)) +(((|#1| (-530 |#2|)) . T)) +(((|#1| (-766)) . T)) +(|has| |#1| (-232)) +(((|#1| (-530 (-1080 (-1168)))) . T)) +(|has| |#2| (-362)) +((((-579 |#1|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +((((-562)) . T) (((-406 (-562))) . T) (($) . T)) +((((-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) . T)) (((|#1|) . T)) +(((|#1|) . T) (((-562)) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) ((((-857)) . T)) -((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))) -(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))) -(((|#1| (-529 (-1166))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544)))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-903))) -((($ $) . T) ((#1=(-1166) $) . T) ((#1# |#1|) . T)) -(|has| |#1| (-844)) -((((-1166)) . T)) -((((-377)) |has| |#1| (-879 (-377))) (((-544)) |has| |#1| (-879 (-544)))) -(|has| |#1| (-903)) -(|has| |#1| (-903)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T) (((-1166)) . T)) -((((-544)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) ((|#1|) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) (((-1166)) . T)) -(((|#1| (-529 (-1166)) (-1166)) . T)) -((((-1110)) . T) (((-857)) . T)) -(((|#1| |#2|) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-554))) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) ((((-857)) . T)) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T)) -((($) |has| |#1| (-554)) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-544)) . T)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -(((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(((|#1| |#2|) . T)) +(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) +((((-857)) . T)) +((((-1112)) . T) (((-857)) . T)) +((((-535)) . T) (((-857)) . T)) (((|#1|) . T)) -(|has| |#1| (-844)) +((($ $) . T) (((-608 $) $) . T)) (((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) +((((-562)) . T)) +(((|#3|) . T)) +((((-857)) . T)) +(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348))) +((((-562)) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))) ((|#2|) . T) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-859 |#1|)) . T)) +((((-1117 |#1| |#2|)) . T) ((|#2|) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-562)) . T)) +((((-1164 |#1|)) . T) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) (((-1074)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) +(-4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) +((((-1117 |#1| (-1168))) . T) (((-562)) . T) (((-1080 (-1168))) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-1168)) . T)) +(((#0=(-579 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-562)) #1#) . T)) +((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(((|#1|) |has| |#1| (-171))) +(((|#1| (-1256 |#1|) (-1256 |#1|)) . T)) +((((-579 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +((($) . T) (((-406 (-562))) . T)) +((($) . T) (((-406 (-562))) . T)) +(((|#2|) |has| |#2| (-6 (-4404 "*")))) (((|#1|) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (((-562)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-787)) (|has| |#2| (-787))) -(-12 (|has| |#1| (-787)) (|has| |#2| (-787))) -(-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))) -(-12 (|has| |#1| (-787)) (|has| |#2| (-787))) -(-12 (|has| |#1| (-787)) (|has| |#2| (-787))) -(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-471)) (|has| |#2| (-471))) -(-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) -(-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) -(-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) -(-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))) -(-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))) -(-12 (|has| |#1| (-367)) (|has| |#2| (-367))) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-635 (-544))) . T)) -((((-635 (-544))) . T) (((-857)) . T)) -((((-857)) . T)) ((((-857)) . T)) +((((-293 |#3|)) . T)) +(((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562)))) ((|#2| |#2|) . T) (($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +(((|#2| |#2|) . T) ((|#6| |#6|) . T)) +(((|#1|) . T)) +((($) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +(((|#2|) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T) (($) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +(((|#2|) . T) ((|#6|) . T)) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) ((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(|has| |#2| (-904)) +(|has| |#1| (-904)) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) ((((-857)) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -((((-533)) |has| |#1| (-609 (-533)))) (((|#1|) . T)) -((((-1166)) |has| |#1| (-893 (-1166)))) -(|has| |#1| (-232)) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-289)) (|has| |#1| (-362))) -((((-544)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544)))))) -(((|#1|) . T) (((-406 (-544))) |has| |#1| (-362))) -((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-362))) -(((|#1|) . T) (($) -3936 (|has| |#1| (-289)) (|has| |#1| (-362))) (((-406 (-544))) |has| |#1| (-362))) -(((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-289)) (|has| |#1| (-362))) ((#1=(-406 (-544)) #1#) |has| |#1| (-362))) -(((|#1|) . T) (((-406 (-544))) |has| |#1| (-362))) -(((|#1|) . T)) -((((-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) -(((|#1|) |has| |#1| (-308 |#1|))) -(((|#1| $) |has| |#1| (-285 |#1| |#1|))) +((((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544)))) (((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(|has| |#1| (-844)) (((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) (((|#1|) . T)) +(|has| |#1| (-1092)) (((|#1|) . T)) -((((-406 |#2|) |#3|) . T)) -((((-406 (-544))) |has| #1=(-406 |#2|) (-1031 (-406 (-544)))) (((-544)) |has| #1# (-1031 (-544))) ((#1#) . T)) -((((-406 |#2|)) . T)) -((((-544)) |has| #1=(-406 |#2|) (-634 (-544))) ((#1#) . T)) -((((-406 |#2|)) . T)) -((((-406 |#2|) |#3|) . T)) -(|has| (-406 |#2|) (-146)) -((((-406 |#2|) |#3|) . T)) -(|has| (-406 |#2|) (-144)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T)) -(|has| (-406 |#2|) (-232)) -((((-1166)) |has| (-406 |#2|) (-893 (-1166)))) -((((-406 |#2|)) . T)) -(((|#3|) . T)) -(((#1=(-406 |#2|) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T)) +((((-1168)) . T) ((|#1|) . T)) ((((-857)) . T)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T)) -((((-406 |#2|)) . T) (((-406 (-544))) . T) (($) . T) (((-544)) . T)) -(((|#1| |#2| |#3|) . T)) -((((-406 (-544))) . T) (((-857)) . T)) -((((-544)) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((($) . T) (((-544)) . T) (((-406 (-544))) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((((-544)) . T) (((-406 (-544))) . T) (($) . T)) -(((#1=(-544) #1#) . T) ((#2=(-406 (-544)) #2#) . T) (($ $) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-533)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T)) -((((-406 (-544))) . T) (((-544)) . T)) -((((-544)) . T) (($) . T) (((-406 (-544))) . T)) -((((-544)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T)) -(((|#1|) . T) (($) . T) (((-406 (-544))) . T) (((-544)) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (((-544)) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) . T) ((#2=(-544) #2#) . T) (($ $) . T)) -(((|#1|) . T) (((-544)) . T) (((-406 (-544))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (((-544)) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T) (((-544)) . T) (($) . T)) -(((|#1|) . T) (((-406 (-544))) . T)) -(((|#1|) . T) (((-544)) -3936 (|has| |#1| (-1031 (-544))) (|has| (-406 (-544)) (-1031 (-544)))) (((-406 (-544))) . T)) -(|has| |#1| (-1091)) -((((-857)) |has| |#1| (-1091))) -(|has| |#1| (-1091)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#4|) . T)) -((((-635 |#4|)) . T) (((-857)) . T)) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4|) . T)) -((((-533)) |has| |#4| (-609 (-533)))) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) +((((-857)) . T)) +(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +(((#0=(-406 (-562)) #0#) . T)) +((((-406 (-562))) . T)) +(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T)) -(((|#1|) . T) (($) . T)) -((((-857)) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-544)) . T)) -((((-1166) (-51)) . T)) -((((-857)) . T)) -((((-1166) (-51)) . T)) -((((-1166) (-51)) . T)) -((((-1166) (-51)) . T)) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T)) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4267 (-1166)) (|:| -2226 #1#))) . T)) -(((#1=(-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) #1#) |has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))))) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) |has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))))) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T)) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T)) -((((-1166) (-51)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T)) -((((-774 |#1| (-858 |#2|))) . T)) -((((-635 (-774 |#1| (-858 |#2|)))) . T) (((-857)) . T)) -((((-774 |#1| (-858 |#2|))) |has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|))))) -(((#1=(-774 |#1| (-858 |#2|)) #1#) |has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|))))) -((((-774 |#1| (-858 |#2|))) . T)) -((((-533)) |has| (-774 |#1| (-858 |#2|)) (-609 (-533)))) -(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T)) -(((|#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) . T)) -((((-533)) |has| |#3| (-609 (-533)))) -(((|#3|) |has| |#3| (-362))) -(((|#3| |#3|) . T)) -(((|#3|) . T)) -((((-682 |#3|)) . T) (((-857)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) -(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) -(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)))) -(((|#1| |#2| |#3| (-238 |#2| |#3|) (-238 |#1| |#3|)) . T)) -((((-857)) . T)) -(((|#1| |#2|) . T)) -((((-1166)) . T)) -((($) . T)) -((((-857)) . T)) -((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -((((-544)) . T) (($) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-533)) . T) (((-544)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T)) -((((-544)) . T)) -((((-1166) (-51)) . T)) -((((-857)) . T)) -((((-1166) (-51)) . T)) -((((-1166) (-51)) . T)) -((((-1166) (-51)) . T)) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T)) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4267 (-1166)) (|:| -2226 #1#))) . T)) -(((#1=(-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) #1#) |has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))))) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) |has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))))) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T)) -((((-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) . T)) -((((-1166) (-51)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-292 |#3|)) . T)) -((((-292 |#3|)) . T)) -(((|#3| |#3|) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#3| |#3|) . T)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +((((-406 (-562))) . T) (((-562)) . T) (($) . T)) +((((-535)) . T)) ((((-857)) . T)) +((((-562)) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +((((-1168)) |has| |#2| (-895 (-1168))) (((-1074)) . T)) +((((-1241 |#2| |#3| |#4|)) . T)) +((((-905 |#1|)) . T)) +((($) . T) (((-406 (-562))) . T)) +(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) +(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((((-857)) . T)) +(|has| |#1| (-1211)) (((|#2|) . T)) +((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +((((-1168)) |has| |#1| (-895 (-1168)))) +((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) +((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) . T)) +(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) +((($) . T) (((-406 (-562))) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (((-562)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1044)) (((-562)) -12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) +(|has| |#1| (-554)) (((|#1|) |has| |#1| (-362))) -((((-1166)) -12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) -(-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-349))) -(-3936 (|has| |#1| (-367)) (|has| |#1| (-349))) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(-3936 (|has| |#1| (-144)) (|has| |#1| (-349))) -(|has| |#1| (-349)) -(((|#1| |#2|) . T)) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T)) -((($ $) . T) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) -((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T)) -((($) . T) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T)) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-349))) (((-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-349)) (|has| |#1| (-1031 (-406 (-544))))) ((|#1|) . T)) -(|has| |#1| (-146)) -(((|#1| |#2|) . T)) +((((-562)) . T)) +(|has| |#1| (-786)) +(|has| |#1| (-786)) +((((-1168) #0=(-116 |#1|)) |has| #0# (-513 (-1168) #0#)) ((#0# #0#) |has| #0# (-308 #0#))) +(((|#2|) . T) (((-562)) |has| |#2| (-1033 (-562))) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) +((((-1074)) . T) ((|#2|) . T) (((-562)) |has| |#2| (-1033 (-562))) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) (((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544)))) (((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(((|#1| |#2|) . T)) -((((-1166)) . T)) -((((-857)) . T)) -((((-857)) . T)) (((|#1|) . T)) -((((-857)) . T)) -(|has| |#1| (-232)) -((($) . T)) -(((|#1| (-529 (-1078 (-1166))) (-1078 (-1166))) . T)) -(|has| |#1| (-903)) -(|has| |#1| (-903)) -((((-1166)) |has| |#1| (-893 (-1166))) (((-1078 (-1166))) . T)) -(|has| |#1| (-844)) -((($ $) . T) ((#1=(-1166) $) |has| |#1| . #2=((-232))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1078 (-1166)) |#1|) . T) ((#3# $) . T)) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-903))) -((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-529 (-1078 (-1166)))) . T)) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) +((((-562) (-766)) . T) ((|#3| (-766)) . T)) (((|#1|) . T)) -(((|#1| (-529 (-1078 (-1166)))) . T)) -((((-1115 |#1| (-1166))) . T) (((-1078 (-1166))) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-1166)) . T)) -((((-1115 |#1| (-1166))) . T) (((-544)) . T) (((-1078 (-1166))) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-1166)) . T)) -(((|#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) . T)) -((((-857)) . T)) +(((|#1| |#2|) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-857)) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +((((-562)) |has| |#1| (-881 (-562))) (((-378)) |has| |#1| (-881 (-378)))) +(((|#1|) . T)) +((((-865 |#1|)) . T)) +((((-865 |#1|)) . T)) +(-12 (|has| |#1| (-362)) (|has| |#2| (-904))) +((((-406 (-562))) . T) (((-693)) . T) (($) . T)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) (((|#1|) . T)) (((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +(|has| |#1| (-362)) +(((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-635 |#1|)) |has| |#1| (-842))) -(|has| |#1| (-1091)) -((((-857)) |has| |#1| (-1091))) -(|has| |#1| (-1091)) (((|#1|) . T)) (((|#1|) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -(|has| |#1| (-1091)) -((((-857)) |has| |#1| (-1091))) -(|has| |#1| (-1091)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) (((|#1|) . T)) +((((-859 |#1|)) . T)) (((|#1|) . T)) -((((-857)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (((|#1|) . T)) +(((|#2| (-766)) . T)) +((((-1168)) . T)) +((((-865 |#1|)) . T)) +(-4037 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +(-4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +((((-857)) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) +(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))) +((((-865 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-367)) -(((|#1|) . T)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +((($ $) . T) (((-608 $) $) . T)) +((($) . T)) +((((-857)) . T)) +((((-562)) . T)) +(((|#2|) . T)) +((((-857)) . T)) +(((|#1|) . T) (((-406 (-562))) |has| |#1| (-362))) +((((-857)) . T)) (((|#1|) . T)) ((((-857)) . T)) -((((-635 $)) . T) (((-1148)) . T) (((-1166)) . T) (((-544)) . T) (((-224)) . T) (((-857)) . T)) +((($) . T) ((|#2|) . T) (((-406 (-562))) . T)) +(|has| |#1| (-1092)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) ((((-857)) . T)) -((((-1148) (-1166) (-544) (-224) (-857)) . T)) -((((-635 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(|has| |#2| (-904)) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) . T)) +((((-535)) |has| |#2| (-610 (-535))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562))))) ((((-857)) . T)) -(((|#1| |#2| |#3| |#4| |#5|) . T)) ((((-857)) . T)) -(-3936 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1091))) -(-3936 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1091))) -(((|#3|) |has| |#3| (-171))) -(-3936 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-171)) (|has| |#3| (-720)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -(-3936 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042))) -((($) -3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (|has| |#3| (-1042))) ((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042)))) -(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)))) -((((-857)) -3936 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-608 (-857))) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-720)) (|has| |#3| (-787)) (|has| |#3| (-842)) (|has| |#3| (-1042)) (|has| |#3| (-1091))) (((-1253 |#3|)) . T)) -(|has| |#3| (-171)) -(((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($) |has| |#3| (-171))) -(((|#3| |#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1042))) (($ $) |has| |#3| (-171))) -(((|#3|) |has| |#3| (-1042))) -((((-1166)) -12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) -(-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) -(|has| |#3| (-367)) -(((|#3|) |has| |#3| (-1042))) -(((|#3|) |has| |#3| (-1042)) (((-544)) -12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042)))) -(((|#3|) |has| |#3| (-1091))) -((((-544)) -3936 (|has| |#3| (-171)) (|has| |#3| (-842)) (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (|has| |#3| (-1042))) ((|#3|) -3936 (|has| |#3| (-171)) (|has| |#3| (-1091))) (((-406 (-544))) -12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) -(((|#3|) |has| |#3| (-1091)) (((-544)) -12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (((-406 (-544))) -12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) -((((-544) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) -(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) -(((|#3|) . T)) -((((-544) |#3|) . T)) -((((-544) |#3|) . T)) -(|has| |#3| (-787)) -(-3936 (|has| |#3| (-787)) (|has| |#3| (-842))) -(-3936 (|has| |#3| (-787)) (|has| |#3| (-842))) -(-3936 (|has| |#3| (-787)) (|has| |#3| (-842))) -(-3936 (|has| |#3| (-787)) (|has| |#3| (-842))) -(|has| |#3| (-842)) -(|has| |#3| (-842)) -(((|#3|) |has| |#3| (-362))) -(((|#1| |#3|) . T)) +(((|#3|) |has| |#3| (-1044)) (((-562)) -12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) +((((-1117 |#1| |#2|)) . T) (((-947 |#1|)) |has| |#2| (-610 (-1168))) (((-857)) . T)) +((((-947 |#1|)) |has| |#2| (-610 (-1168))) (((-1150)) -12 (|has| |#1| (-1033 (-562))) (|has| |#2| (-610 (-1168)))) (((-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562))))) (((-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378))))) (((-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#2| (-610 (-535))))) +((((-1164 |#1|)) . T) (((-857)) . T)) ((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((($) . T)) +((((-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) (((-562)) |has| |#2| (-1033 (-562))) ((|#2|) . T) (((-859 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T) (((-1168)) . T)) ((((-857)) . T)) +((((-562)) . T)) +(((|#1|) . T)) ((($) . T)) -((($ $) . T)) -((($) . T)) -((($) . T)) -((((-544)) . T) (($) . T)) -((((-544)) . T)) -((((-544)) . T)) -((((-533)) . T) (((-544)) . T) (((-883 (-544))) . T) (((-377)) . T) (((-224)) . T)) -((((-544)) . T)) -((((-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#2| (-609 (-533)))) (((-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377))))) (((-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) -((($) . T)) -(((|#1| (-529 |#2|)) . T)) +((((-378)) |has| |#1| (-881 (-378))) (((-562)) |has| |#1| (-881 (-562)))) +((((-562)) . T)) (((|#1|) . T)) ((((-857)) . T)) -((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))) -(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903)))) -(((|#1| (-529 |#2|)) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-634 (-544)))) -(-3936 (|has| |#1| (-450)) (|has| |#1| (-903))) -((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -(|has| |#1| (-844)) -(((|#2|) . T)) -((((-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#2| (-879 (-377)))) (((-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#2| (-879 (-544))))) -(|has| |#1| (-903)) -(|has| |#1| (-903)) -((((-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) (((-544)) |has| |#1| (-1031 (-544))) ((|#1|) . T) ((|#2|) . T)) -((((-544)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) ((|#1|) . T) (($) -3936 (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#2|) . T)) -(((|#1| (-529 |#2|) |#2|) . T)) -((($) . T)) -((($ $) . T) ((|#2| $) . T)) -(((|#2|) . T)) +(((|#1|) . T)) ((((-857)) . T)) -(((|#1| (-529 |#2|) |#2|) . T)) -((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-554))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554)))) -(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554)))) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -((((-544)) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -(((|#1| (-529 |#2|)) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(((|#1| |#2|) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-639 |#1|)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +(((|#1|) |has| |#1| (-171)) (($) . T)) +((((-562)) . T) (((-406 (-562))) . T)) +(((|#1|) |has| |#1| (-308 |#1|))) ((((-857)) . T)) +((((-378)) . T)) +(((|#1|) . T)) (((|#1|) . T)) -((((-1171)) . T)) -((((-1171)) . T)) -((((-1171)) . T) (((-857)) . T)) -((((-857)) . T)) -((((-1130 |#1| |#2|)) . T)) -(((#1=(-1130 |#1| |#2|) #1#) |has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|)))) -((((-1130 |#1| |#2|)) |has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|)))) ((((-857)) . T)) -((((-1130 |#1| |#2|)) . T)) -((((-533)) |has| |#2| (-609 (-533)))) -(((|#2|) |has| |#2| (-6 (-4402 "*")))) +((((-406 (-562))) . T) (($) . T)) +((((-406 |#2|) |#3|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1092)) +(((|#2| (-481 (-3492 |#1|) (-766))) . T)) +((((-562) |#1|) . T)) +((((-1150)) . T) (((-857)) . T)) (((|#2| |#2|) . T)) +(((|#1| (-530 (-1168))) . T)) +(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +((((-562)) . T)) (((|#2|) . T)) -((((-682 |#2|)) . T) (((-857)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) -3936 (|has| |#2| (-6 (-4402 "*"))) (|has| |#2| (-171)))) -(((|#2|) . T)) -((((-1166)) |has| |#2| (-893 (-1166)))) -(|has| |#2| (-232)) -(((|#2|) . T)) -(((|#2|) . T) (((-544)) |has| |#2| (-634 (-544)))) -(((|#2|) . T)) -((((-544)) . T) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544))))) -(((|#2|) . T) (((-544)) |has| |#2| (-1031 (-544))) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544))))) -(((|#1| |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (((|#2|) . T)) -(((|#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-533)) |has| |#4| (-609 (-533)))) -(((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4|) . T)) -((((-857)) . T) (((-635 |#4|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1|) . T)) +((((-1168)) |has| |#1| (-895 (-1168))) (((-1074)) . T)) +(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) +(|has| |#1| (-554)) +((($) . T) (((-406 (-562))) . T)) +((($) . T)) +((($) . T)) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) (((|#1|) . T)) -(((|#1| |#2|) . T)) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) ((((-857)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#1| |#2|) . T)) -((((-635 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) +((((-143)) . T)) +(((|#1|) . T) (((-406 (-562))) . T)) (((|#1|) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) (((|#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) +((((-857)) . T)) (((|#1|) . T)) +(|has| |#1| (-1143)) +(((|#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) . T)) (((|#1|) . T)) +((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) ((((-857)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-544) (-143)) . T)) -((((-544) (-143)) . T)) -((((-544) (-143)) . T)) -((((-143)) . T)) -((((-143)) . T)) -((((-1148) |#1|) . T)) -((((-857)) . T)) -((((-1148) |#1|) . T)) -((((-1148) |#1|) . T)) -((((-1148) |#1|) . T)) -((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((#1=(-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) #1#) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) |has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))))) -((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -((((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) . T)) -((((-1148) |#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-1164 |#1| |#2| |#3|)) . T)) -((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362))) -(|has| |#1| (-362)) -((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-1164 |#1| |#2| |#3|)) -12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))))) -(((#1=(-1164 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|)))) (((-1166) #1#) -12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))))) -((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362))) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) +((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T) ((|#2|) . T)) +((((-1074)) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) +((((-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#2| (-881 (-378)))) (((-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#2| (-881 (-562))))) +((((-1242 |#1| |#2| |#3| |#4|)) . T)) +((((-562) |#1|) . T)) +(((|#1| |#1|) . T)) +((($) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-171)) (($) . T)) +((($) . T)) +((((-693)) . T)) +((((-775 |#1| (-859 |#2|))) . T)) +((($) . T)) +((((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-1092)) +(|has| |#1| (-1092)) +(|has| |#2| (-362)) (|has| |#1| (-362)) (|has| |#1| (-362)) -(-3936 (-12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) -((((-1166)) -3936 (-12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166)))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) -((((-1164 |#1| |#2| |#3|)) |has| |#1| (-362))) -(-3936 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-146)))) -(-3936 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-144)))) -((((-857)) . T)) -(((|#1|) . T)) -((((-1164 |#1| |#2| |#3|) $) -12 (|has| |#1| (-362)) (|has| (-1164 |#1| |#2| |#3|) (-285 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-544) (-1072)) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((#2=(-1164 |#1| |#2| |#3|) #2#) |has| |#1| (-362)) ((|#1| |#1|) . T)) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -((((-1164 |#1| |#2| |#3|)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) ((|#1|) |has| |#1| (-171))) -(((|#1| (-544)) . T)) -(((|#1| (-544)) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(((|#1| (-1164 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-406 (-562)))) +((((-562)) . T)) +((((-1168)) -12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) +((((-1168)) -12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (((|#1|) . T)) +(|has| |#1| (-232)) +(((|#1| (-530 |#3|)) . T)) +(((|#2| (-239 (-3492 |#1|) (-766))) . T)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(|has| |#1| (-367)) +(((|#1|) . T) (($) . T)) +(((|#1| (-530 |#2|)) . T)) +(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(((|#1| (-766)) . T)) +(|has| |#1| (-554)) +(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ((((-857)) . T)) -((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) -(|has| |#1| (-362)) -(((|#1| (-765) (-1072)) . T)) -(|has| |#1| (-903)) -(|has| |#1| (-903)) -((((-1166)) |has| |#1| (-893 (-1166))) (((-1072)) . T)) -(|has| |#1| (-844)) -((((-544)) |has| |#1| (-634 (-544))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-765)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) (((-1072)) . T) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) . T) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-362)) (|has| |#1| (-450)) (|has| |#1| (-554)) (|has| |#1| (-903))) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) +((((-562)) . T) (((-406 (-562))) . T) (($) . T)) +(-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) +(-4037 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(((|#1|) |has| |#1| (-171))) +(((|#4|) |has| |#4| (-1044))) +(((|#3|) |has| |#3| (-1044))) +(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) +(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) +((((-562)) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))) ((|#2|) . T) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-859 |#1|)) . T)) +((((-1117 |#1| |#2|)) . T) (((-562)) . T) ((|#3|) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) ((|#2|) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-535)) |has| |#1| (-610 (-535)))) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +((((-1173)) . T)) +((((-666 |#1|)) . T)) +((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +((((-857)) . T)) +((((-639 $)) . T) (((-1150)) . T) (((-1168)) . T) (((-562)) . T) (((-224)) . T) (((-857)) . T)) +((($) . T) (((-406 (-562))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1092)) (((-562)) -12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092))) (((-406 (-562))) -12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092)))) +(((|#3|) |has| |#3| (-1092)) (((-562)) -12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (((-406 (-562))) -12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) +(|has| |#2| (-362)) +(((|#2|) |has| |#2| (-1044)) (((-562)) -12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((|#1|) . T)) -((((-1072)) . T) ((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(((|#1| (-765)) . T)) -(((#1=(-1072) |#1|) . T) ((#1# $) . T) (($ $) . T)) +(|has| |#2| (-362)) +(((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562)))) ((|#2| |#2|) . T) (($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(((|#2| |#2|) . T)) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T) (($) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) +(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) +(((|#2|) . T)) +((((-857)) |has| |#1| (-1092))) ((($) . T)) -(|has| |#1| (-1141)) +((((-1242 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) -((((-1164 |#1| |#2| |#3|)) . T) (((-1157 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))) -((($ $) . T)) -((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) -(((|#1| (-406 (-544)) (-1072)) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(((|#1| (-406 (-544))) . T)) -(((|#1| (-406 (-544))) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -((((-857)) . T)) -(((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362)))) -(((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362)))) -(((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) (|has| |#1| (-362)) (|has| |#1| (-362)) -(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554)))) -(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554)))) -((((-1250 |#2|)) . T) (((-1164 |#1| |#2| |#3|)) . T) (((-1157 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554)))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) +(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-362)) +(((|#1|) |has| |#2| (-416 |#1|))) +(((|#1|) |has| |#2| (-416 |#1|))) +((((-1150)) . T)) +((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-639 |#1|)) . T) (((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-639 |#1|)) . T)) +((((-535)) |has| |#1| (-610 (-535)))) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-857)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1206)) . T) (((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) |has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))))) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +((((-562) |#1|) . T)) +((((-562) |#1|) . T)) +((((-562) |#1|) . T)) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +((((-562) |#1|) . T)) +(((|#1|) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) +((((-1168)) |has| |#1| (-895 (-1168))) (((-813 (-1168))) . T)) +(-4037 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +((((-814 |#1|)) . T)) +(((|#1| |#2|) . T)) +((((-857)) . T)) +(-4037 (|has| |#3| (-171)) (|has| |#3| (-721)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +(((|#1| |#2|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +((((-857)) . T)) +((((-1242 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-562))) . T)) +(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)) (((-406 (-562))) |has| |#1| (-554))) +(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) (|has| |#1| (-362)) +(-4037 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (-12 (|has| |#1| (-362)) (|has| |#2| (-232)))) +(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-362)) -(((|#1| (-1157 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(((|#1| (-765)) . T)) -(((|#1| (-765)) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-554))) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -(((|#1| (-765) (-1072)) . T)) -((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) -((($ $) . T)) -((((-857)) . T)) -(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (((-544)) . T)) -(|has| |#1| (-15 * (|#1| (-765) |#1|))) (((|#1|) . T)) +(((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1| |#1|) . T)) +((((-562) |#1|) . T)) +((((-315 |#1|)) . T)) +(((#0=(-693) (-1164 #0#)) . T)) +((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(|has| |#1| (-843)) +(((|#2|) . T) (((-1168)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-1168)))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) ((|#1|) |has| |#1| (-171))) +(((|#2|) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +((($ $) . T) ((#0=(-859 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1117 |#1| (-1168))) . T) (((-813 (-1168))) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-1168)) . T)) +((($) . T)) +(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) +(((#0=(-1074) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1168) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-1080 (-1168)) |#1|) . T) ((#1# $) . T)) +((($) . T) ((|#2|) . T)) +((($) . T) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562))))) +(|has| |#2| (-904)) +((($) . T) ((#0=(-1241 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-562))) |has| #0# (-38 (-406 (-562))))) +((((-562) |#1|) . T)) +((((-1173)) . T)) +(((#0=(-1242 |#1| |#2| |#3| |#4|)) |has| #0# (-308 #0#))) +((($) . T)) +(((|#1|) . T)) +((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#2| |#2|) |has| |#1| (-362)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) +(|has| |#2| (-232)) +(|has| $ (-146)) +((((-857)) . T)) +((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) ((((-857)) . T)) -((((-377)) . T) (((-544)) . T)) -((((-1148)) . T)) -((((-883 (-377))) . T) (((-883 (-544))) . T) (((-1166)) . T) (((-533)) . T)) +(|has| |#1| (-843)) +((((-129)) . T)) +((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) +((((-406 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-129)) . T)) ((((-857)) . T)) -(((|#1| (-964)) . T)) +(((|#2| (-666 |#1|)) . T)) +(-12 (|has| |#1| (-306)) (|has| |#1| (-904))) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#4|) . T)) (|has| |#1| (-554)) +((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) ((|#1|) . T)) +((((-1168)) -4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) +(((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) +((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) +((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) +(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +((((-562) |#1|) . T)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(((|#1|) . T)) +(((|#1| (-530 (-813 (-1168)))) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +((((-562)) . T) ((|#2|) . T) (($) . T) (((-406 (-562))) . T) (((-1168)) |has| |#2| (-1033 (-1168)))) +(((|#1|) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +(((|#1|) . T)) +(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) +((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) +((($) . T) (((-865 |#1|)) . T) (((-406 (-562))) . T)) +((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) (|has| |#1| (-554)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-554))) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((((-857)) . T)) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T)) -((($) |has| |#1| (-554)) ((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))) (((-544)) . T)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) (((|#1|) . T)) -(((|#1|) . T) (((-544)) |has| |#1| (-1031 (-544))) (((-406 (-544))) |has| |#1| (-1031 (-406 (-544))))) -(((|#1| (-964)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-406 |#2|)) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-535)) |has| |#1| (-610 (-535)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-535)) |has| |#1| (-610 (-535)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((((-535)) |has| |#1| (-610 (-535)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-406 (-562)) #0#) . T) (($ $) . T)) +((((-562)) . T)) +(((|#2|) . T) (((-406 (-562))) . T) (($) . T)) ((((-857)) . T)) +((((-579 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) ((((-857)) . T)) -((((-1148)) . T) (((-1166)) . T) (((-224)) . T) (((-544)) . T)) -((((-1148)) . T) (((-1166)) . T) (((-224)) . T) (((-544)) . T)) -((((-533)) . T) (((-857)) . T)) +((((-406 (-562))) . T) (($) . T)) +((((-562) |#1|) . T)) ((((-857)) . T)) +((($ $) . T) (((-1168) $) . T)) +((((-1248 |#1| |#2| |#3|)) . T)) +((((-535)) |has| |#2| (-610 (-535))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562))))) ((((-857)) . T)) -(((|#1| |#2|) . T)) ((((-857)) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((#1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #1#) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -((((-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T)) -(((|#1| |#2|) . T)) +((((-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562))))) (((-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378))))) (((-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535))))) ((((-857)) . T)) ((((-857)) . T)) ((((-857)) . T)) -((((-387) (-1148)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091)))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1166) $) . T)) -((((-1166)) . T)) +(((|#1|) . T) (((-857)) . T) (((-1173)) . T)) ((((-857)) . T)) -(((|#1| (-529 #1=(-1166)) #1#) . T)) -((($) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-554))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554)))) -(((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544)))) ((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554)))) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -((((-544)) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -(((|#1| (-529 (-1166))) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(((|#1| (-1166)) . T)) -(|has| |#1| (-1091)) -(|has| |#1| (-1091)) -((((-951 |#1|)) . T)) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-1091))) (((-951 |#1|)) . T)) -((((-951 |#1|)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-1243 |#1| |#2| |#3|)) . T)) -((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362))) -(|has| |#1| (-362)) -((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-1243 |#1| |#2| |#3|)) -12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|))))) -(((#1=(-1243 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|)))) (((-1166) #1#) -12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-512 (-1166) (-1243 |#1| |#2| |#3|))))) -((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362))) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(-3936 (-12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) -((((-1166)) -3936 (-12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166)))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) -((((-1243 |#1| |#2| |#3|)) |has| |#1| (-362))) -(-3936 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-146)))) -(-3936 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-144)))) -((((-857)) . T)) -(((|#1|) . T)) -((((-1243 |#1| |#2| |#3|) $) -12 (|has| |#1| (-362)) (|has| (-1243 |#1| |#2| |#3|) (-285 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-544) (-1072)) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((#2=(-1243 |#1| |#2| |#3|) #2#) |has| |#1| (-362)) ((|#1| |#1|) . T)) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1243 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -((((-1243 |#1| |#2| |#3|)) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) ((|#1|) |has| |#1| (-171))) -(((|#1| (-544)) . T)) -(((|#1| (-544)) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(((|#1| (-1243 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-362))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-1141))) -(((|#2|) . T) (((-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) (((-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544)))) (((-406 (-544))) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544))))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-1013))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-903))) -(((|#2|) |has| |#1| (-362))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-814))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-814))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-814))) -(-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-814))) (-12 (|has| |#1| (-362)) (|has| |#2| (-844)))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-814))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-814))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-814))) -((((-377)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-377)))) (((-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-544))))) -(|has| |#1| (-362)) -(((|#2|) |has| |#1| (-362))) -((((-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-634 (-544)))) ((|#2|) |has| |#1| (-362))) -(((|#2|) |has| |#1| (-362))) -(((|#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) (((-1166) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|)))) -(((|#2|) |has| |#1| (-362))) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) +((((-1173)) . T)) +((((-114)) . T) ((|#1|) . T) (((-562)) . T)) +(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) . T)) +(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) +((((-129)) . T)) +((((-857)) . T)) +((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) +((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +(((|#2|) . T) ((|#6|) . T)) +((($) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T)) (|has| |#1| (-362)) -(-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) -((((-1166)) -3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) -(((|#2|) |has| |#1| (-362))) -((((-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) (((-377)) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) (((-883 (-377))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-377))))) (((-883 (-544))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-544))))) (((-533)) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-533))))) -(-3936 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| |#2| (-146)))) -(-3936 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144)))) +((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-1096)) . T)) ((((-857)) . T)) +((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) +((($) . T)) +((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((((-1248 |#1| |#2| |#3|)) . T) (((-1220 |#1| |#2| |#3|)) . T)) +((((-1168)) . T) (((-857)) . T)) +(|has| |#2| (-904)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) (($ $) . T)) -(((|#1| (-544) (-1072)) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#2| |#2|) |has| |#1| (-362)) ((|#1| |#1|) . T)) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) ((|#1|) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) (($) . T) ((|#1|) . T)) -((((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -(((|#2|) . T) (((-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-544)) . T) ((|#1|) |has| |#1| (-171))) -(((|#1| (-544)) . T)) -(((|#1| (-544)) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(((|#1| |#2|) . T)) -(((|#1| (-1143 |#1|)) |has| |#1| (-842))) -(|has| |#1| (-1091)) -((((-857)) |has| |#1| (-1091))) -(|has| |#1| (-1091)) +(|has| |#1| (-904)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T)) -((((-857)) . T)) -((((-406 $) (-406 $)) |has| |#2| (-554)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-362)) -(-3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-903))) -(-3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -(-3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -(-3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) -(|has| |#2| (-362)) -(((|#2| (-765) (-1072)) . T)) -(|has| |#2| (-903)) -(|has| |#2| (-903)) -((((-1166)) |has| |#2| (-893 (-1166))) (((-1072)) . T)) -(|has| |#2| (-844)) -((((-544)) |has| |#2| (-634 (-544))) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2| (-765)) . T)) -(|has| |#2| (-146)) -(|has| |#2| (-144)) -((((-1250 |#1|)) . T) (((-544)) . T) (($) -3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) (((-1072)) . T) ((|#2|) . T) (((-406 (-544))) -3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544)))))) -((($) -3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) ((|#2|) |has| |#2| (-171)) (((-406 (-544))) |has| |#2| (-38 (-406 (-544))))) -((($) . T) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544))))) -((($) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) ((|#2|) . T) (((-406 (-544))) |has| |#2| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) ((|#2| |#2|) . T) ((#1=(-406 (-544)) #1#) |has| |#2| (-38 (-406 (-544))))) -((($) -3936 (|has| |#2| (-362)) (|has| |#2| (-450)) (|has| |#2| (-554)) (|has| |#2| (-903))) ((|#2|) |has| |#2| (-171)) (((-406 (-544))) |has| |#2| (-38 (-406 (-544))))) -(((|#2|) . T)) -((((-1072)) . T) ((|#2|) . T) (((-544)) |has| |#2| (-1031 (-544))) (((-406 (-544))) |has| |#2| (-1031 (-406 (-544))))) -(((|#2| (-765)) . T)) -(((#1=(-1072) |#2|) . T) ((#1# $) . T) (($ $) . T)) -((($) . T)) -(|has| |#2| (-1141)) -(((|#2|) . T)) -((((-1243 |#1| |#2| |#3|)) . T) (((-1213 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))) -((($ $) . T)) -((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) -(((|#1| (-406 (-544)) (-1072)) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(((|#1| (-406 (-544))) . T)) -(((|#1| (-406 (-544))) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -((((-857)) . T)) -(((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362)))) -(((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362)))) -(((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554)))) -(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554)))) -((((-1250 |#2|)) . T) (((-1243 |#1| |#2| |#3|)) . T) (((-1213 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554)))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) +(((|#1| |#1|) |has| |#1| (-171))) +((((-693)) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((((-1173)) . T)) +(((|#1|) |has| |#1| (-171))) +((((-1173)) . T)) +((((-1173)) . T)) +(((|#1|) |has| |#1| (-171))) +((((-406 (-562))) . T) (($) . T)) +(((|#1| (-562)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +((((-1173)) . T)) +((((-1173)) . T)) (|has| |#1| (-362)) (|has| |#1| (-362)) -(((|#1| (-1213 |#1| |#2| |#3|)) . T)) -(((|#2|) . T)) +(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) +(((|#1| (-562)) . T)) +(((|#1| (-406 (-562))) . T)) +(((|#1| (-766)) . T)) +((((-406 (-562))) . T)) +(((|#1| (-530 |#2|) |#2|) . T)) +((((-562) |#1|) . T)) +((((-562) |#1|) . T)) +(|has| |#1| (-1092)) +((((-562) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-887 (-378))) . T) (((-887 (-562))) . T) (((-1168)) . T) (((-535)) . T)) +(((|#1|) . T)) +((((-857)) . T)) +(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) +((((-562)) . T)) +((((-562)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))) -((($ $) . T)) -((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) -(((|#1| (-406 (-544)) (-1072)) . T)) +(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +((((-1168)) -12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) +(-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) (|has| |#1| (-144)) (|has| |#1| (-146)) -(((|#1| (-406 (-544))) . T)) -(((|#1| (-406 (-544))) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362)) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-232)) ((((-857)) . T)) -(((|#1|) . T) (($) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362)))) -(((|#1| |#1|) . T) (($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#1=(-406 (-544)) #1#) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362)))) -(((|#1|) . T) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554)))) -(((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) -3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-362))) (((-544)) . T) (($) -3936 (|has| |#1| (-362)) (|has| |#1| (-554)))) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-3936 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) +(((|#1| (-766) (-1074)) . T)) +((((-562) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-562) |#1|) . T)) +((((-562) |#1|) . T)) +((((-116 |#1|)) . T)) +((((-406 (-562))) . T) (((-562)) . T)) +(((|#2|) |has| |#2| (-1044))) +((((-406 (-562))) . T) (($) . T)) +(((|#2|) . T)) +((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +((((-562)) . T)) +((((-562)) . T)) +((((-1150) (-1168) (-562) (-224) (-857)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T)) -(|has| (-1234 |#2| |#3| |#4|) (-146)) -(|has| (-1234 |#2| |#3| |#4|) (-144)) -((($) . T) ((#1=(-1234 |#2| |#3| |#4|)) |has| #1# (-171)) (((-406 (-544))) |has| #1# (-38 (-406 (-544))))) -((((-857)) . T)) -((($) . T) ((#1=(-1234 |#2| |#3| |#4|)) . T) (((-406 (-544))) |has| #1# (-38 (-406 (-544))))) -((($ $) . T) ((#1=(-1234 |#2| |#3| |#4|) #1#) . T) ((#2=(-406 (-544)) #2#) |has| #1# (-38 (-406 (-544))))) -(((#1=(-1234 |#2| |#3| |#4|)) . T) (((-406 (-544))) |has| #1# (-38 (-406 (-544)))) (($) . T)) -((($) . T) (((-1234 |#2| |#3| |#4|)) . T) (((-406 (-544))) |has| (-1234 |#2| |#3| |#4|) (-38 (-406 (-544)))) (((-544)) . T)) -((($) . T) ((#1=(-1234 |#2| |#3| |#4|)) |has| #1# (-171)) (((-406 (-544))) |has| #1# (-38 (-406 (-544))))) -((((-1234 |#2| |#3| |#4|)) . T)) -((((-1234 |#2| |#3| |#4|)) . T)) -((((-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(|has| |#1| (-38 (-406 (-544)))) -(((|#1| (-765)) . T)) -(((|#1| (-765)) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(-3936 (|has| |#1| (-171)) (|has| |#1| (-554))) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -((($ $) -3936 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#1=(-406 (-544)) #1#) |has| |#1| (-38 (-406 (-544))))) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544))))) -(((|#1| (-765) (-1072)) . T)) -((((-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) -((($ $) . T)) +((((-562)) . T) ((|#2|) |has| |#2| (-171))) +((((-114)) . T) ((|#1|) . T) (((-562)) . T)) +(-4037 (|has| |#1| (-348)) (|has| |#1| (-367))) +(((|#1| |#2|) . T)) +((((-224)) . T)) +((((-406 (-562))) . T) (($) . T) (((-562)) . T)) ((((-857)) . T)) -(((|#1|) . T) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (($) . T)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-544))) |has| |#1| (-38 (-406 (-544)))) (((-544)) . T)) -(|has| |#1| (-15 * (|#1| (-765) |#1|))) +((($) . T) ((|#1|) . T)) +((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(((|#2|) |has| |#2| (-1092)) (((-562)) -12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((|#1|) . T)) -((((-1166)) . T) (((-857)) . T)) (((|#1|) . T)) +((((-535)) |has| |#1| (-610 (-535)))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +((($) . T) (((-406 (-562))) . T)) +(|has| |#1| (-904)) +(|has| |#1| (-904)) +((((-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) (((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) (((-887 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-887 (-378))))) (((-887 (-562))) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-887 (-562))))) (((-535)) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-535))))) +((((-857)) . T)) +((((-857)) . T)) +(((|#2| |#2|) . T)) +(((|#1| |#1|) |has| |#1| (-171))) +(((|#1|) . T) (((-562)) . T)) +((((-1173)) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) +(((|#2|) . T)) +(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) +(((|#1|) |has| |#1| (-171))) (((|#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-544) |#1|) . T)) -((((-533)) |has| |#1| (-609 (-533)))) (((|#1|) . T)) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(-3936 (|has| |#1| (-844)) (|has| |#1| (-1091))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) -((((-857)) -3936 (|has| |#1| (-608 (-857))) (|has| |#1| (-844)) (|has| |#1| (-1091)))) +((((-857)) -4037 (-12 (|has| |#1| (-609 (-857))) (|has| |#2| (-609 (-857)))) (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))))) +((((-406 |#2|) |#3|) . T)) +((((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-362)) +((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +(|has| (-406 |#2|) (-146)) +(|has| (-406 |#2|) (-144)) +((((-693)) . T)) +(((|#1|) . T) (((-406 (-562))) . T) (((-562)) . T) (($) . T)) +(((#0=(-562) #0#) . T)) +((($) . T) (((-406 (-562))) . T)) +(-4037 (|has| |#4| (-171)) (|has| |#4| (-721)) (|has| |#4| (-843)) (|has| |#4| (-1044))) +(-4037 (|has| |#3| (-171)) (|has| |#3| (-721)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +((((-857)) . T) (((-1173)) . T)) +(|has| |#4| (-788)) +(-4037 (|has| |#4| (-788)) (|has| |#4| (-843))) +(|has| |#4| (-843)) +(|has| |#3| (-788)) +((((-1173)) . T)) +(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) +(|has| |#3| (-843)) +((((-562)) . T)) +(((|#2|) . T)) +((((-1168)) -4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) +((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) +((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) +(((|#1| |#1|) . T) (($ $) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (((|#1|) . T)) -(|has| |#1| (-844)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) . T)) +((((-859 |#1|)) . T)) +((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) +((((-1132 |#1| |#2|)) . T)) +((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) +(((|#2|) . T) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-1017)) +(((|#2|) . T) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) ((((-857)) . T)) +((((-535)) |has| |#2| (-610 (-535))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562)))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-378)) . #0=(|has| |#2| (-1017))) (((-224)) . #0#)) +((((-293 |#3|)) . T)) +((((-1168) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-406 (-562)))) ((((-857)) . T)) +(((|#2|) . T)) ((((-857)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -((((-1171)) . T)) -((((-857)) . T) (((-1171)) . T)) -((((-1171)) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171))) -(((|#1| |#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171))) -(((|#4|) . T)) -(((|#1|) |has| |#1| (-171)) ((|#4|) . T) (((-544)) . T)) -(((|#1|) |has| |#1| (-171)) (($) . T)) -(((|#4|) . T) (((-857)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-533)) |has| |#4| (-609 (-533)))) -(((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) -(((|#4|) . T)) -((((-857)) . T) (((-635 |#4|)) . T)) +((($ $) . T)) +((((-406 (-562))) . T) (((-693)) . T) (($) . T)) +((((-1166 |#1| |#2| |#3|)) . T)) +((((-1166 |#1| |#2| |#3|)) . T) (((-1159 |#1| |#2| |#3|)) . T)) +((((-857)) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((((-562) |#1|) . T)) +((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#2|) . T)) -(((|#1| |#2|) . T)) -(((|#2| |#2|) . T)) +(((|#1|) . T)) (((|#2|) . T)) +(|has| |#2| (-362)) +(((|#3|) . T) ((|#2|) . T) (($) -4037 (|has| |#4| (-171)) (|has| |#4| (-843)) (|has| |#4| (-1044))) ((|#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1044)))) +(((|#2|) . T) (($) -4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) ((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044)))) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-362)) +((((-116 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) (((-562)) |has| |#2| (-1033 (-562))) ((|#2|) . T) (((-859 |#1|)) . T)) +((((-1168)) . T) ((|#1|) . T)) ((((-857)) . T)) -((($) . T) ((|#2|) . T)) -(((|#2|) |has| |#2| (-171))) -((((-813 |#1|)) . T)) -(((|#2|) . T) (((-544)) . T) (((-813 |#1|)) . T)) -(((|#2| (-813 |#1|)) . T)) -(((|#2| (-886 |#1|)) . T)) -(((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#2|) . T)) -(((|#2|) . T) (($) . T)) ((((-857)) . T)) -((((-886 |#1|)) . T) ((|#2|) . T) (((-544)) . T) (((-813 |#1|)) . T)) -((((-886 |#1|)) . T) (((-813 |#1|)) . T)) -(((|#1| |#2|) . T)) -((((-1166) |#1|) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1| |#1|) . T)) +((((-857)) . T)) +((((-186)) . T) (((-857)) . T)) +((((-857)) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-171))) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((((-129)) . T) (((-857)) . T)) +((((-562) |#1|) . T)) +((((-129)) . T)) (((|#1|) . T)) -(((|#1|) . T) (($) . T)) -((((-857)) . T)) -(((|#1|) . T) (((-544)) . T) (((-813 (-1166))) . T)) -((((-813 (-1166))) . T)) -((((-1166) |#1|) . T)) -(((|#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-171))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-544)) . T)) -(((|#1|) . T) (($) . T)) -((((-857)) . T)) +(((|#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) (($ $) . T)) +((($ $) . T)) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-904))) +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +((((-857)) . T)) +((((-857)) . T)) +((((-857)) . T)) +(((|#1| (-530 |#2|)) . T)) +((((-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) . T)) +((((-562) (-129)) . T)) +(((|#1| (-562)) . T)) +(((|#1| (-406 (-562))) . T)) +(((|#1| (-766)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) +((((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) +((($) . T)) +(((|#2| (-530 (-859 |#1|))) . T)) +((((-1173)) . T)) +((((-1173)) . T)) +((((-562) |#1|) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +(((|#2|) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-857)) . T) (((-1173)) . T)) +((((-1173)) . T)) +((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +(((|#1|) . T)) +(((|#2| (-766)) . T)) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#2| |#2|) . T)) -(((|#2|) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#2|) . T)) -(((|#2|) . T) (($) . T)) -((((-857)) . T)) -(((|#2|) . T) (((-544)) . T) (((-813 |#1|)) . T)) -((((-813 |#1|)) . T)) +((((-1150) |#1|) . T)) +((((-406 |#2|)) . T)) +((((-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T)) +(|has| |#1| (-554)) +(|has| |#1| (-554)) +((($) . T) ((|#2|) . T)) +(((|#1|) . T)) (((|#1| |#2|) . T)) -((((-544)) . T)) +((((-562)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-285 |#2| |#2|))) +(((|#1| (-639 |#1|)) |has| |#1| (-843))) +(-4037 (|has| |#1| (-232)) (|has| |#1| (-348))) +(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +((((-1252 |#1|)) . T) (((-562)) . T) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) +(|has| |#1| (-1092)) +(((|#1|) . T)) +((((-1252 |#1|)) . T) (((-562)) . T) (($) -4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-1074)) . T) ((|#2|) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) +((((-406 (-562))) . T) (($) . T)) +((((-994 |#1|)) . T) ((|#1|) . T) (((-562)) -4037 (|has| (-994 |#1|) (-1033 (-562))) (|has| |#1| (-1033 (-562)))) (((-406 (-562))) -4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-1168)) |has| |#1| (-895 (-1168)))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| (-598 |#1| |#3|) (-598 |#1| |#2|)) . T)) +(((|#1|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((#0=(-1132 |#1| |#2|) #0#) |has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|)))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) #0#) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) +(((#0=(-116 |#1|)) |has| #0# (-308 #0#))) ((($ $) . T)) -((($) . T)) -((((-857)) . T)) -((($) . T)) -((((-544)) . T)) -(((-1282 . -171) T) ((-1282 . -611) 162035) ((-1282 . -720) T) ((-1282 . -1102) T) ((-1282 . -1049) T) ((-1282 . -1042) T) ((-1282 . -641) 162022) ((-1282 . -130) T) ((-1282 . -25) T) ((-1282 . -102) T) ((-1282 . -608) 162004) ((-1282 . -1091) T) ((-1282 . -23) T) ((-1282 . -21) T) ((-1282 . -1048) 161991) ((-1282 . -111) 161976) ((-1282 . -367) T) ((-1282 . -609) 161958) ((-1282 . -1141) T) ((-1278 . -1276) 161937) ((-1278 . -1031) 161914) ((-1278 . -611) 161863) ((-1278 . -1042) T) ((-1278 . -1049) T) ((-1278 . -1102) T) ((-1278 . -720) T) ((-1278 . -21) T) ((-1278 . -23) T) ((-1278 . -1091) T) ((-1278 . -608) 161845) ((-1278 . -102) T) ((-1278 . -25) T) ((-1278 . -130) T) ((-1278 . -641) 161819) ((-1278 . -1268) 161803) ((-1278 . -711) 161773) ((-1278 . -1048) 161757) ((-1278 . -111) 161736) ((-1278 . -38) 161706) ((-1278 . -1273) 161685) ((-1277 . -1042) T) ((-1277 . -1049) T) ((-1277 . -1102) T) ((-1277 . -720) T) ((-1277 . -21) T) ((-1277 . -23) T) ((-1277 . -1091) T) ((-1277 . -608) 161667) ((-1277 . -102) T) ((-1277 . -25) T) ((-1277 . -130) T) ((-1277 . -641) 161641) ((-1277 . -611) 161597) ((-1277 . -1268) 161581) ((-1277 . -711) 161551) ((-1277 . -1048) 161535) ((-1277 . -111) 161514) ((-1277 . -38) 161484) ((-1277 . -383) 161463) ((-1277 . -1031) 161447) ((-1275 . -1276) 161423) ((-1275 . -1031) 161397) ((-1275 . -611) 161343) ((-1275 . -1042) T) ((-1275 . -1049) T) ((-1275 . -1102) T) ((-1275 . -720) T) ((-1275 . -21) T) ((-1275 . -23) T) ((-1275 . -1091) T) ((-1275 . -608) 161325) ((-1275 . -102) T) ((-1275 . -25) T) ((-1275 . -130) T) ((-1275 . -641) 161299) ((-1275 . -1268) 161283) ((-1275 . -711) 161253) ((-1275 . -1048) 161237) ((-1275 . -111) 161216) ((-1275 . -38) 161186) ((-1275 . -1273) 161162) ((-1274 . -1276) 161141) ((-1274 . -1031) 161098) ((-1274 . -611) 161027) ((-1274 . -1042) T) ((-1274 . -1049) T) ((-1274 . -1102) T) ((-1274 . -720) T) ((-1274 . -21) T) ((-1274 . -23) T) ((-1274 . -1091) T) ((-1274 . -608) 161009) ((-1274 . -102) T) ((-1274 . -25) T) ((-1274 . -130) T) ((-1274 . -641) 160983) ((-1274 . -1268) 160967) ((-1274 . -711) 160937) ((-1274 . -1048) 160921) ((-1274 . -111) 160900) ((-1274 . -38) 160870) ((-1274 . -1273) 160849) ((-1274 . -383) 160821) ((-1269 . -383) 160793) ((-1269 . -611) 160742) ((-1269 . -1031) 160719) ((-1269 . -711) 160689) ((-1269 . -641) 160663) ((-1269 . -130) T) ((-1269 . -25) T) ((-1269 . -102) T) ((-1269 . -608) 160645) ((-1269 . -1091) T) ((-1269 . -23) T) ((-1269 . -21) T) ((-1269 . -1048) 160629) ((-1269 . -111) 160608) ((-1269 . -1276) 160587) ((-1269 . -1042) T) ((-1269 . -1049) T) ((-1269 . -1102) T) ((-1269 . -720) T) ((-1269 . -1268) 160571) ((-1269 . -38) 160541) ((-1269 . -1273) 160520) ((-1267 . -1199) 160489) ((-1267 . -608) 160451) ((-1267 . -150) 160435) ((-1267 . -34) T) ((-1267 . -1204) T) ((-1267 . -308) 160373) ((-1267 . -512) 160306) ((-1267 . -1091) T) ((-1267 . -102) T) ((-1267 . -487) 160290) ((-1267 . -609) 160251) ((-1267 . -969) 160220) ((-1266 . -1042) T) ((-1266 . -1049) T) ((-1266 . -1102) T) ((-1266 . -720) T) ((-1266 . -21) T) ((-1266 . -23) T) ((-1266 . -1091) T) ((-1266 . -608) 160189) ((-1266 . -102) T) ((-1266 . -25) T) ((-1266 . -130) T) ((-1266 . -641) 160149) ((-1266 . -611) 160091) ((-1266 . -488) 160075) ((-1266 . -38) 160045) ((-1266 . -111) 160010) ((-1266 . -1048) 159980) ((-1266 . -711) 159950) ((-1265 . -1073) T) ((-1265 . -488) 159931) ((-1265 . -608) 159897) ((-1265 . -611) 159878) ((-1265 . -1091) T) ((-1265 . -102) T) ((-1265 . -93) T) ((-1264 . -1073) T) ((-1264 . -488) 159859) ((-1264 . -608) 159825) ((-1264 . -611) 159806) ((-1264 . -1091) T) ((-1264 . -102) T) ((-1264 . -93) T) ((-1259 . -608) 159788) ((-1257 . -1091) T) ((-1257 . -608) 159770) ((-1257 . -102) T) ((-1256 . -1091) T) ((-1256 . -608) 159752) ((-1256 . -102) T) ((-1253 . -1252) 159736) ((-1253 . -371) 159720) ((-1253 . -844) 159699) ((-1253 . -150) 159683) ((-1253 . -34) T) ((-1253 . -1204) T) ((-1253 . -608) 159595) ((-1253 . -308) 159533) ((-1253 . -512) 159466) ((-1253 . -1091) 159416) ((-1253 . -102) 159366) ((-1253 . -487) 159350) ((-1253 . -609) 159311) ((-1253 . -599) 159288) ((-1253 . -285) 159265) ((-1253 . -287) 159242) ((-1253 . -644) 159226) ((-1253 . -19) 159210) ((-1250 . -1091) T) ((-1250 . -608) 159176) ((-1250 . -102) T) ((-1243 . -1246) 159160) ((-1243 . -232) 159119) ((-1243 . -611) 159001) ((-1243 . -641) 158926) ((-1243 . -130) T) ((-1243 . -25) T) ((-1243 . -102) T) ((-1243 . -608) 158908) ((-1243 . -1091) T) ((-1243 . -23) T) ((-1243 . -21) T) ((-1243 . -720) T) ((-1243 . -1102) T) ((-1243 . -1049) T) ((-1243 . -1042) T) ((-1243 . -285) 158893) ((-1243 . -893) 158806) ((-1243 . -966) 158775) ((-1243 . -38) 158672) ((-1243 . -111) 158541) ((-1243 . -1048) 158424) ((-1243 . -711) 158321) ((-1243 . -144) 158300) ((-1243 . -146) 158279) ((-1243 . -171) 158230) ((-1243 . -554) 158209) ((-1243 . -289) 158188) ((-1243 . -47) 158165) ((-1243 . -1232) 158142) ((-1243 . -35) 158108) ((-1243 . -95) 158074) ((-1243 . -283) 158040) ((-1243 . -491) 158006) ((-1243 . -1193) 157972) ((-1243 . -1190) 157938) ((-1243 . -995) 157904) ((-1240 . -325) 157848) ((-1240 . -1031) 157814) ((-1240 . -411) 157780) ((-1240 . -38) 157672) ((-1240 . -611) 157546) ((-1240 . -641) 157451) ((-1240 . -720) T) ((-1240 . -1102) T) ((-1240 . -1049) T) ((-1240 . -1042) T) ((-1240 . -111) 157343) ((-1240 . -1048) 157248) ((-1240 . -21) T) ((-1240 . -23) T) ((-1240 . -1091) T) ((-1240 . -608) 157230) ((-1240 . -102) T) ((-1240 . -25) T) ((-1240 . -130) T) ((-1240 . -711) 157122) ((-1240 . -144) 157083) ((-1240 . -146) 157044) ((-1240 . -171) T) ((-1240 . -554) T) ((-1240 . -289) T) ((-1240 . -47) 156988) ((-1239 . -1238) 156967) ((-1239 . -362) 156946) ((-1239 . -1209) 156925) ((-1239 . -914) 156904) ((-1239 . -554) 156855) ((-1239 . -171) 156786) ((-1239 . -611) 156599) ((-1239 . -711) 156440) ((-1239 . -38) 156281) ((-1239 . -450) 156260) ((-1239 . -306) 156239) ((-1239 . -641) 156136) ((-1239 . -720) T) ((-1239 . -1102) T) ((-1239 . -1049) T) ((-1239 . -1042) T) ((-1239 . -111) 155957) ((-1239 . -1048) 155792) ((-1239 . -21) T) ((-1239 . -23) T) ((-1239 . -1091) T) ((-1239 . -608) 155774) ((-1239 . -102) T) ((-1239 . -25) T) ((-1239 . -130) T) ((-1239 . -289) 155725) ((-1239 . -242) 155704) ((-1239 . -995) 155670) ((-1239 . -1190) 155636) ((-1239 . -1193) 155602) ((-1239 . -491) 155568) ((-1239 . -283) 155534) ((-1239 . -95) 155500) ((-1239 . -35) 155466) ((-1239 . -1232) 155436) ((-1239 . -47) 155406) ((-1239 . -146) 155385) ((-1239 . -144) 155364) ((-1239 . -966) 155326) ((-1239 . -893) 155232) ((-1239 . -285) 155217) ((-1239 . -232) 155169) ((-1239 . -1236) 155153) ((-1239 . -1031) 155137) ((-1234 . -1238) 155098) ((-1234 . -362) 155077) ((-1234 . -1209) 155056) ((-1234 . -914) 155035) ((-1234 . -554) 154986) ((-1234 . -171) 154917) ((-1234 . -611) 154660) ((-1234 . -711) 154501) ((-1234 . -38) 154342) ((-1234 . -450) 154321) ((-1234 . -306) 154300) ((-1234 . -641) 154197) ((-1234 . -720) T) ((-1234 . -1102) T) ((-1234 . -1049) T) ((-1234 . -1042) T) ((-1234 . -111) 154018) ((-1234 . -1048) 153853) ((-1234 . -21) T) ((-1234 . -23) T) ((-1234 . -1091) T) ((-1234 . -608) 153835) ((-1234 . -102) T) ((-1234 . -25) T) ((-1234 . -130) T) ((-1234 . -289) 153786) ((-1234 . -242) 153765) ((-1234 . -995) 153731) ((-1234 . -1190) 153697) ((-1234 . -1193) 153663) ((-1234 . -491) 153629) ((-1234 . -283) 153595) ((-1234 . -95) 153561) ((-1234 . -35) 153527) ((-1234 . -1232) 153497) ((-1234 . -47) 153467) ((-1234 . -146) 153446) ((-1234 . -144) 153425) ((-1234 . -966) 153387) ((-1234 . -893) 153293) ((-1234 . -285) 153278) ((-1234 . -232) 153230) ((-1234 . -1236) 153214) ((-1234 . -1031) 153149) ((-1222 . -1229) 153133) ((-1222 . -1141) 153111) ((-1222 . -609) NIL) ((-1222 . -308) 153098) ((-1222 . -512) 153045) ((-1222 . -325) 153022) ((-1222 . -1031) 152902) ((-1222 . -411) 152886) ((-1222 . -38) 152715) ((-1222 . -111) 152524) ((-1222 . -1048) 152347) ((-1222 . -641) 152272) ((-1222 . -711) 152101) ((-1222 . -611) 151849) ((-1222 . -144) 151828) ((-1222 . -146) 151807) ((-1222 . -47) 151784) ((-1222 . -376) 151768) ((-1222 . -634) 151716) ((-1222 . -844) 151695) ((-1222 . -893) 151638) ((-1222 . -879) NIL) ((-1222 . -903) 151617) ((-1222 . -1209) 151596) ((-1222 . -943) 151565) ((-1222 . -914) 151544) ((-1222 . -554) 151455) ((-1222 . -289) 151366) ((-1222 . -171) 151257) ((-1222 . -450) 151188) ((-1222 . -306) 151167) ((-1222 . -285) 151094) ((-1222 . -232) T) ((-1222 . -130) T) ((-1222 . -25) T) ((-1222 . -102) T) ((-1222 . -608) 151076) ((-1222 . -1091) T) ((-1222 . -23) T) ((-1222 . -21) T) ((-1222 . -720) T) ((-1222 . -1102) T) ((-1222 . -1049) T) ((-1222 . -1042) T) ((-1222 . -230) 151060) ((-1220 . -1084) 151044) ((-1220 . -613) 151028) ((-1220 . -1091) 151006) ((-1220 . -608) 150973) ((-1220 . -102) 150951) ((-1220 . -1085) 150908) ((-1218 . -1217) 150887) ((-1218 . -995) 150853) ((-1218 . -1190) 150819) ((-1218 . -1193) 150785) ((-1218 . -491) 150751) ((-1218 . -283) 150717) ((-1218 . -95) 150683) ((-1218 . -35) 150649) ((-1218 . -1232) 150626) ((-1218 . -47) 150603) ((-1218 . -611) 150351) ((-1218 . -711) 150165) ((-1218 . -641) 150035) ((-1218 . -1048) 149843) ((-1218 . -111) 149632) ((-1218 . -38) 149446) ((-1218 . -966) 149415) ((-1218 . -285) 149335) ((-1218 . -1215) 149319) ((-1218 . -720) T) ((-1218 . -1102) T) ((-1218 . -1049) T) ((-1218 . -1042) T) ((-1218 . -21) T) ((-1218 . -23) T) ((-1218 . -1091) T) ((-1218 . -608) 149301) ((-1218 . -102) T) ((-1218 . -25) T) ((-1218 . -130) T) ((-1218 . -144) 149226) ((-1218 . -146) 149151) ((-1218 . -609) 148822) ((-1218 . -230) 148792) ((-1218 . -893) 148643) ((-1218 . -232) 148548) ((-1218 . -362) 148527) ((-1218 . -1209) 148506) ((-1218 . -914) 148485) ((-1218 . -554) 148436) ((-1218 . -171) 148367) ((-1218 . -450) 148346) ((-1218 . -306) 148325) ((-1218 . -289) 148276) ((-1218 . -242) 148255) ((-1218 . -337) 148225) ((-1218 . -512) 148085) ((-1218 . -308) 148024) ((-1218 . -376) 147994) ((-1218 . -634) 147902) ((-1218 . -399) 147872) ((-1218 . -1204) 147851) ((-1218 . -879) 147724) ((-1218 . -814) 147677) ((-1218 . -785) 147630) ((-1218 . -786) 147583) ((-1218 . -844) 147482) ((-1218 . -788) 147435) ((-1218 . -791) 147388) ((-1218 . -842) 147341) ((-1218 . -877) 147311) ((-1218 . -903) 147264) ((-1218 . -1013) 147216) ((-1218 . -1031) 147002) ((-1218 . -1141) 146954) ((-1218 . -984) 146924) ((-1213 . -1217) 146885) ((-1213 . -995) 146851) ((-1213 . -1190) 146817) ((-1213 . -1193) 146783) ((-1213 . -491) 146749) ((-1213 . -283) 146715) ((-1213 . -95) 146681) ((-1213 . -35) 146647) ((-1213 . -1232) 146624) ((-1213 . -47) 146601) ((-1213 . -611) 146396) ((-1213 . -711) 146192) ((-1213 . -641) 146044) ((-1213 . -1048) 145834) ((-1213 . -111) 145603) ((-1213 . -38) 145399) ((-1213 . -966) 145368) ((-1213 . -285) 145216) ((-1213 . -1215) 145200) ((-1213 . -720) T) ((-1213 . -1102) T) ((-1213 . -1049) T) ((-1213 . -1042) T) ((-1213 . -21) T) ((-1213 . -23) T) ((-1213 . -1091) T) ((-1213 . -608) 145182) ((-1213 . -102) T) ((-1213 . -25) T) ((-1213 . -130) T) ((-1213 . -144) 145089) ((-1213 . -146) 144996) ((-1213 . -609) NIL) ((-1213 . -230) 144948) ((-1213 . -893) 144781) ((-1213 . -232) 144668) ((-1213 . -362) 144647) ((-1213 . -1209) 144626) ((-1213 . -914) 144605) ((-1213 . -554) 144556) ((-1213 . -171) 144487) ((-1213 . -450) 144466) ((-1213 . -306) 144445) ((-1213 . -289) 144396) ((-1213 . -242) 144375) ((-1213 . -337) 144327) ((-1213 . -512) 144096) ((-1213 . -308) 143981) ((-1213 . -376) 143933) ((-1213 . -634) 143885) ((-1213 . -399) 143837) ((-1213 . -1204) 143816) ((-1213 . -879) NIL) ((-1213 . -814) NIL) ((-1213 . -785) NIL) ((-1213 . -786) NIL) ((-1213 . -844) NIL) ((-1213 . -788) NIL) ((-1213 . -791) NIL) ((-1213 . -842) NIL) ((-1213 . -877) 143768) ((-1213 . -903) NIL) ((-1213 . -1013) NIL) ((-1213 . -1031) 143734) ((-1213 . -1141) NIL) ((-1213 . -984) 143686) ((-1212 . -838) T) ((-1212 . -844) T) ((-1212 . -1091) T) ((-1212 . -608) 143668) ((-1212 . -102) T) ((-1212 . -367) T) ((-1211 . -838) T) ((-1211 . -844) T) ((-1211 . -1091) T) ((-1211 . -608) 143650) ((-1211 . -102) T) ((-1211 . -367) T) ((-1210 . -838) T) ((-1210 . -844) T) ((-1210 . -1091) T) ((-1210 . -608) 143632) ((-1210 . -102) T) ((-1210 . -367) T) ((-1205 . -1073) T) ((-1205 . -488) 143613) ((-1205 . -608) 143579) ((-1205 . -611) 143560) ((-1205 . -1091) T) ((-1205 . -102) T) ((-1205 . -93) T) ((-1202 . -488) 143537) ((-1202 . -608) 143449) ((-1202 . -611) 143426) ((-1202 . -1091) 143404) ((-1202 . -102) 143382) ((-1197 . -734) 143358) ((-1197 . -35) 143324) ((-1197 . -95) 143290) ((-1197 . -283) 143256) ((-1197 . -491) 143222) ((-1197 . -1193) 143188) ((-1197 . -1190) 143154) ((-1197 . -995) 143120) ((-1197 . -47) 143089) ((-1197 . -38) 142986) ((-1197 . -711) 142883) ((-1197 . -611) 142765) ((-1197 . -289) 142744) ((-1197 . -554) 142723) ((-1197 . -111) 142592) ((-1197 . -1048) 142475) ((-1197 . -171) 142426) ((-1197 . -146) 142405) ((-1197 . -144) 142384) ((-1197 . -641) 142309) ((-1197 . -966) 142271) ((-1197 . -1042) T) ((-1197 . -1049) T) ((-1197 . -1102) T) ((-1197 . -720) T) ((-1197 . -21) T) ((-1197 . -23) T) ((-1197 . -1091) T) ((-1197 . -608) 142253) ((-1197 . -102) T) ((-1197 . -25) T) ((-1197 . -130) T) ((-1197 . -893) 142234) ((-1197 . -512) 142201) ((-1197 . -308) 142188) ((-1191 . -1003) 142172) ((-1191 . -34) T) ((-1191 . -1204) T) ((-1191 . -608) 142104) ((-1191 . -308) 142042) ((-1191 . -512) 141975) ((-1191 . -1091) 141953) ((-1191 . -102) 141931) ((-1191 . -487) 141915) ((-1186 . -364) 141889) ((-1186 . -102) T) ((-1186 . -608) 141871) ((-1186 . -1091) T) ((-1184 . -1091) T) ((-1184 . -608) 141853) ((-1184 . -102) T) ((-1184 . -611) 141835) ((-1177 . -1181) 141814) ((-1177 . -228) 141764) ((-1177 . -107) 141714) ((-1177 . -308) 141518) ((-1177 . -512) 141310) ((-1177 . -487) 141247) ((-1177 . -150) 141197) ((-1177 . -609) NIL) ((-1177 . -234) 141147) ((-1177 . -605) 141126) ((-1177 . -287) 141105) ((-1177 . -285) 141084) ((-1177 . -102) T) ((-1177 . -1091) T) ((-1177 . -608) 141066) ((-1177 . -1204) T) ((-1177 . -34) T) ((-1177 . -599) 141045) ((-1173 . -838) T) ((-1173 . -844) T) ((-1173 . -1091) T) ((-1173 . -608) 141027) ((-1173 . -102) T) ((-1173 . -367) T) ((-1172 . -838) T) ((-1172 . -844) T) ((-1172 . -1091) T) ((-1172 . -608) 141009) ((-1172 . -102) T) ((-1172 . -367) T) ((-1171 . -1249) T) ((-1171 . -1091) T) ((-1171 . -608) 140976) ((-1171 . -102) T) ((-1171 . -1031) 140911) ((-1171 . -611) 140846) ((-1170 . -608) 140828) ((-1169 . -608) 140810) ((-1168 . -325) 140787) ((-1168 . -1031) 140683) ((-1168 . -411) 140667) ((-1168 . -38) 140564) ((-1168 . -611) 140417) ((-1168 . -641) 140342) ((-1168 . -720) T) ((-1168 . -1102) T) ((-1168 . -1049) T) ((-1168 . -1042) T) ((-1168 . -111) 140211) ((-1168 . -1048) 140094) ((-1168 . -21) T) ((-1168 . -23) T) ((-1168 . -1091) T) ((-1168 . -608) 140076) ((-1168 . -102) T) ((-1168 . -25) T) ((-1168 . -130) T) ((-1168 . -711) 139973) ((-1168 . -144) 139952) ((-1168 . -146) 139931) ((-1168 . -171) 139882) ((-1168 . -554) 139861) ((-1168 . -289) 139840) ((-1168 . -47) 139817) ((-1166 . -844) T) ((-1166 . -102) T) ((-1166 . -608) 139799) ((-1166 . -1091) T) ((-1166 . -609) 139721) ((-1166 . -815) T) ((-1166 . -611) 139702) ((-1166 . -879) 139669) ((-1165 . -608) 139651) ((-1164 . -1246) 139635) ((-1164 . -232) 139594) ((-1164 . -611) 139476) ((-1164 . -641) 139401) ((-1164 . -130) T) ((-1164 . -25) T) ((-1164 . -102) T) ((-1164 . -608) 139383) ((-1164 . -1091) T) ((-1164 . -23) T) ((-1164 . -21) T) ((-1164 . -720) T) ((-1164 . -1102) T) ((-1164 . -1049) T) ((-1164 . -1042) T) ((-1164 . -285) 139368) ((-1164 . -893) 139281) ((-1164 . -966) 139250) ((-1164 . -38) 139147) ((-1164 . -111) 139016) ((-1164 . -1048) 138899) ((-1164 . -711) 138796) ((-1164 . -144) 138775) ((-1164 . -146) 138754) ((-1164 . -171) 138705) ((-1164 . -554) 138684) ((-1164 . -289) 138663) ((-1164 . -47) 138640) ((-1164 . -1232) 138617) ((-1164 . -35) 138583) ((-1164 . -95) 138549) ((-1164 . -283) 138515) ((-1164 . -491) 138481) ((-1164 . -1193) 138447) ((-1164 . -1190) 138413) ((-1164 . -995) 138379) ((-1163 . -1238) 138340) ((-1163 . -362) 138319) ((-1163 . -1209) 138298) ((-1163 . -914) 138277) ((-1163 . -554) 138228) ((-1163 . -171) 138159) ((-1163 . -611) 137902) ((-1163 . -711) 137743) ((-1163 . -38) 137584) ((-1163 . -450) 137563) ((-1163 . -306) 137542) ((-1163 . -641) 137439) ((-1163 . -720) T) ((-1163 . -1102) T) ((-1163 . -1049) T) ((-1163 . -1042) T) ((-1163 . -111) 137260) ((-1163 . -1048) 137095) ((-1163 . -21) T) ((-1163 . -23) T) ((-1163 . -1091) T) ((-1163 . -608) 137077) ((-1163 . -102) T) ((-1163 . -25) T) ((-1163 . -130) T) ((-1163 . -289) 137028) ((-1163 . -242) 137007) ((-1163 . -995) 136973) ((-1163 . -1190) 136939) ((-1163 . -1193) 136905) ((-1163 . -491) 136871) ((-1163 . -283) 136837) ((-1163 . -95) 136803) ((-1163 . -35) 136769) ((-1163 . -1232) 136739) ((-1163 . -47) 136709) ((-1163 . -146) 136688) ((-1163 . -144) 136667) ((-1163 . -966) 136629) ((-1163 . -893) 136535) ((-1163 . -285) 136520) ((-1163 . -232) 136472) ((-1163 . -1236) 136456) ((-1163 . -1031) 136391) ((-1160 . -1229) 136375) ((-1160 . -1141) 136353) ((-1160 . -609) NIL) ((-1160 . -308) 136340) ((-1160 . -512) 136287) ((-1160 . -325) 136264) ((-1160 . -1031) 136144) ((-1160 . -411) 136128) ((-1160 . -38) 135957) ((-1160 . -111) 135766) ((-1160 . -1048) 135589) ((-1160 . -641) 135514) ((-1160 . -711) 135343) ((-1160 . -611) 135112) ((-1160 . -144) 135091) ((-1160 . -146) 135070) ((-1160 . -47) 135047) ((-1160 . -376) 135031) ((-1160 . -634) 134979) ((-1160 . -844) 134958) ((-1160 . -893) 134901) ((-1160 . -879) NIL) ((-1160 . -903) 134880) ((-1160 . -1209) 134859) ((-1160 . -943) 134828) ((-1160 . -914) 134807) ((-1160 . -554) 134718) ((-1160 . -289) 134629) ((-1160 . -171) 134520) ((-1160 . -450) 134451) ((-1160 . -306) 134430) ((-1160 . -285) 134357) ((-1160 . -232) T) ((-1160 . -130) T) ((-1160 . -25) T) ((-1160 . -102) T) ((-1160 . -608) 134339) ((-1160 . -1091) T) ((-1160 . -23) T) ((-1160 . -21) T) ((-1160 . -720) T) ((-1160 . -1102) T) ((-1160 . -1049) T) ((-1160 . -1042) T) ((-1160 . -230) 134323) ((-1157 . -1217) 134284) ((-1157 . -995) 134250) ((-1157 . -1190) 134216) ((-1157 . -1193) 134182) ((-1157 . -491) 134148) ((-1157 . -283) 134114) ((-1157 . -95) 134080) ((-1157 . -35) 134046) ((-1157 . -1232) 134023) ((-1157 . -47) 134000) ((-1157 . -611) 133795) ((-1157 . -711) 133591) ((-1157 . -641) 133443) ((-1157 . -1048) 133233) ((-1157 . -111) 133002) ((-1157 . -38) 132798) ((-1157 . -966) 132767) ((-1157 . -285) 132615) ((-1157 . -1215) 132599) ((-1157 . -720) T) ((-1157 . -1102) T) ((-1157 . -1049) T) ((-1157 . -1042) T) ((-1157 . -21) T) ((-1157 . -23) T) ((-1157 . -1091) T) ((-1157 . -608) 132581) ((-1157 . -102) T) ((-1157 . -25) T) ((-1157 . -130) T) ((-1157 . -144) 132488) ((-1157 . -146) 132395) ((-1157 . -609) NIL) ((-1157 . -230) 132347) ((-1157 . -893) 132180) ((-1157 . -232) 132067) ((-1157 . -362) 132046) ((-1157 . -1209) 132025) ((-1157 . -914) 132004) ((-1157 . -554) 131955) ((-1157 . -171) 131886) ((-1157 . -450) 131865) ((-1157 . -306) 131844) ((-1157 . -289) 131795) ((-1157 . -242) 131774) ((-1157 . -337) 131726) ((-1157 . -512) 131495) ((-1157 . -308) 131380) ((-1157 . -376) 131332) ((-1157 . -634) 131284) ((-1157 . -399) 131236) ((-1157 . -1204) 131215) ((-1157 . -879) NIL) ((-1157 . -814) NIL) ((-1157 . -785) NIL) ((-1157 . -786) NIL) ((-1157 . -844) NIL) ((-1157 . -788) NIL) ((-1157 . -791) NIL) ((-1157 . -842) NIL) ((-1157 . -877) 131167) ((-1157 . -903) NIL) ((-1157 . -1013) NIL) ((-1157 . -1031) 131133) ((-1157 . -1141) NIL) ((-1157 . -984) 131085) ((-1156 . -1073) T) ((-1156 . -488) 131066) ((-1156 . -608) 131032) ((-1156 . -611) 131013) ((-1156 . -1091) T) ((-1156 . -102) T) ((-1156 . -93) T) ((-1155 . -1091) T) ((-1155 . -608) 130995) ((-1155 . -102) T) ((-1154 . -1091) T) ((-1154 . -608) 130977) ((-1154 . -102) T) ((-1149 . -1181) 130953) ((-1149 . -228) 130900) ((-1149 . -107) 130847) ((-1149 . -308) 130642) ((-1149 . -512) 130425) ((-1149 . -487) 130359) ((-1149 . -150) 130306) ((-1149 . -609) NIL) ((-1149 . -234) 130253) ((-1149 . -605) 130229) ((-1149 . -287) 130205) ((-1149 . -285) 130181) ((-1149 . -102) T) ((-1149 . -1091) T) ((-1149 . -608) 130163) ((-1149 . -1204) T) ((-1149 . -34) T) ((-1149 . -599) 130139) ((-1148 . -1147) T) ((-1148 . -19) 130121) ((-1148 . -644) 130103) ((-1148 . -287) 130078) ((-1148 . -285) 130053) ((-1148 . -599) 130028) ((-1148 . -609) NIL) ((-1148 . -487) 130010) ((-1148 . -512) NIL) ((-1148 . -308) NIL) ((-1148 . -1204) T) ((-1148 . -34) T) ((-1148 . -150) 129992) ((-1148 . -844) T) ((-1148 . -371) 129974) ((-1148 . -1134) T) ((-1148 . -102) T) ((-1148 . -608) 129956) ((-1148 . -1091) T) ((-1148 . -815) T) ((-1143 . -667) 129940) ((-1143 . -644) 129924) ((-1143 . -287) 129901) ((-1143 . -285) 129878) ((-1143 . -599) 129855) ((-1143 . -609) 129816) ((-1143 . -487) 129800) ((-1143 . -102) 129778) ((-1143 . -1091) 129756) ((-1143 . -512) 129689) ((-1143 . -308) 129627) ((-1143 . -608) 129559) ((-1143 . -1204) T) ((-1143 . -34) T) ((-1143 . -150) 129543) ((-1143 . -1242) 129527) ((-1143 . -1003) 129511) ((-1143 . -1139) 129495) ((-1143 . -611) 129472) ((-1140 . -1181) 129451) ((-1140 . -228) 129401) ((-1140 . -107) 129351) ((-1140 . -308) 129155) ((-1140 . -512) 128947) ((-1140 . -487) 128884) ((-1140 . -150) 128834) ((-1140 . -609) NIL) ((-1140 . -234) 128784) ((-1140 . -605) 128763) ((-1140 . -287) 128742) ((-1140 . -285) 128721) ((-1140 . -102) T) ((-1140 . -1091) T) ((-1140 . -608) 128703) ((-1140 . -1204) T) ((-1140 . -34) T) ((-1140 . -599) 128682) ((-1137 . -1111) 128666) ((-1137 . -487) 128650) ((-1137 . -102) 128628) ((-1137 . -1091) 128606) ((-1137 . -512) 128539) ((-1137 . -308) 128477) ((-1137 . -608) 128409) ((-1137 . -1204) T) ((-1137 . -34) T) ((-1137 . -107) 128393) ((-1136 . -1099) 128362) ((-1136 . -1199) 128331) ((-1136 . -608) 128293) ((-1136 . -150) 128277) ((-1136 . -34) T) ((-1136 . -1204) T) ((-1136 . -308) 128215) ((-1136 . -512) 128148) ((-1136 . -1091) T) ((-1136 . -102) T) ((-1136 . -487) 128132) ((-1136 . -609) 128093) ((-1136 . -969) 128062) ((-1136 . -1062) 128031) ((-1132 . -1113) 127976) ((-1132 . -487) 127960) ((-1132 . -512) 127893) ((-1132 . -308) 127831) ((-1132 . -1204) T) ((-1132 . -34) T) ((-1132 . -1045) 127771) ((-1132 . -1031) 127667) ((-1132 . -611) 127585) ((-1132 . -411) 127569) ((-1132 . -634) 127517) ((-1132 . -376) 127501) ((-1132 . -232) 127480) ((-1132 . -893) 127439) ((-1132 . -230) 127423) ((-1132 . -711) 127355) ((-1132 . -641) 127329) ((-1132 . -130) T) ((-1132 . -25) T) ((-1132 . -102) T) ((-1132 . -608) 127291) ((-1132 . -1091) T) ((-1132 . -23) T) ((-1132 . -21) T) ((-1132 . -1048) 127275) ((-1132 . -111) 127254) ((-1132 . -1042) T) ((-1132 . -1049) T) ((-1132 . -1102) T) ((-1132 . -720) T) ((-1132 . -38) 127214) ((-1132 . -609) 127175) ((-1131 . -1003) 127146) ((-1131 . -34) T) ((-1131 . -1204) T) ((-1131 . -608) 127128) ((-1131 . -308) 127054) ((-1131 . -512) 126973) ((-1131 . -1091) T) ((-1131 . -102) T) ((-1131 . -487) 126944) ((-1130 . -1091) T) ((-1130 . -608) 126926) ((-1130 . -102) T) ((-1125 . -1127) T) ((-1125 . -1249) T) ((-1125 . -93) T) ((-1125 . -102) T) ((-1125 . -608) 126892) ((-1125 . -1091) T) ((-1125 . -611) 126873) ((-1125 . -488) 126854) ((-1125 . -1073) T) ((-1123 . -1124) 126838) ((-1123 . -102) T) ((-1123 . -608) 126820) ((-1123 . -1091) T) ((-1116 . -734) 126799) ((-1116 . -35) 126765) ((-1116 . -95) 126731) ((-1116 . -283) 126697) ((-1116 . -491) 126663) ((-1116 . -1193) 126629) ((-1116 . -1190) 126595) ((-1116 . -995) 126561) ((-1116 . -47) 126533) ((-1116 . -38) 126430) ((-1116 . -711) 126327) ((-1116 . -611) 126209) ((-1116 . -289) 126188) ((-1116 . -554) 126167) ((-1116 . -111) 126036) ((-1116 . -1048) 125919) ((-1116 . -171) 125870) ((-1116 . -146) 125849) ((-1116 . -144) 125828) ((-1116 . -641) 125753) ((-1116 . -966) 125720) ((-1116 . -1042) T) ((-1116 . -1049) T) ((-1116 . -1102) T) ((-1116 . -720) T) ((-1116 . -21) T) ((-1116 . -23) T) ((-1116 . -1091) T) ((-1116 . -608) 125702) ((-1116 . -102) T) ((-1116 . -25) T) ((-1116 . -130) T) ((-1116 . -893) 125686) ((-1116 . -512) 125656) ((-1116 . -308) 125643) ((-1115 . -943) 125610) ((-1115 . -611) 125402) ((-1115 . -1031) 125285) ((-1115 . -1209) 125264) ((-1115 . -903) 125243) ((-1115 . -879) 125102) ((-1115 . -893) 125086) ((-1115 . -844) 125065) ((-1115 . -512) 125017) ((-1115 . -450) 124968) ((-1115 . -634) 124916) ((-1115 . -376) 124900) ((-1115 . -47) 124872) ((-1115 . -38) 124721) ((-1115 . -711) 124570) ((-1115 . -289) 124501) ((-1115 . -554) 124432) ((-1115 . -111) 124261) ((-1115 . -1048) 124104) ((-1115 . -171) 124015) ((-1115 . -146) 123994) ((-1115 . -144) 123973) ((-1115 . -641) 123898) ((-1115 . -130) T) ((-1115 . -25) T) ((-1115 . -102) T) ((-1115 . -608) 123880) ((-1115 . -1091) T) ((-1115 . -23) T) ((-1115 . -21) T) ((-1115 . -1042) T) ((-1115 . -1049) T) ((-1115 . -1102) T) ((-1115 . -720) T) ((-1115 . -411) 123864) ((-1115 . -325) 123836) ((-1115 . -308) 123823) ((-1115 . -609) 123571) ((-1110 . -543) T) ((-1110 . -1209) T) ((-1110 . -1141) T) ((-1110 . -1031) 123553) ((-1110 . -609) 123468) ((-1110 . -1013) T) ((-1110 . -879) 123450) ((-1110 . -842) T) ((-1110 . -791) T) ((-1110 . -788) T) ((-1110 . -844) T) ((-1110 . -786) T) ((-1110 . -785) T) ((-1110 . -814) T) ((-1110 . -634) 123432) ((-1110 . -914) T) ((-1110 . -554) T) ((-1110 . -289) T) ((-1110 . -171) T) ((-1110 . -611) 123404) ((-1110 . -711) 123391) ((-1110 . -1048) 123378) ((-1110 . -111) 123363) ((-1110 . -38) 123350) ((-1110 . -450) T) ((-1110 . -306) T) ((-1110 . -232) T) ((-1110 . -142) T) ((-1110 . -1042) T) ((-1110 . -1049) T) ((-1110 . -1102) T) ((-1110 . -720) T) ((-1110 . -21) T) ((-1110 . -23) T) ((-1110 . -1091) T) ((-1110 . -608) 123332) ((-1110 . -102) T) ((-1110 . -25) T) ((-1110 . -130) T) ((-1110 . -641) 123319) ((-1110 . -146) T) ((-1110 . -838) T) ((-1110 . -367) T) ((-1110 . -655) T) ((-1110 . -815) T) ((-1106 . -1073) T) ((-1106 . -488) 123300) ((-1106 . -608) 123266) ((-1106 . -611) 123247) ((-1106 . -1091) T) ((-1106 . -102) T) ((-1106 . -93) T) ((-1105 . -1091) T) ((-1105 . -608) 123229) ((-1105 . -102) T) ((-1103 . -237) 123208) ((-1103 . -1261) 123178) ((-1103 . -785) 123157) ((-1103 . -842) 123136) ((-1103 . -791) 123087) ((-1103 . -788) 123038) ((-1103 . -844) 122989) ((-1103 . -786) 122940) ((-1103 . -787) 122919) ((-1103 . -287) 122896) ((-1103 . -285) 122873) ((-1103 . -487) 122857) ((-1103 . -512) 122790) ((-1103 . -308) 122728) ((-1103 . -1204) T) ((-1103 . -34) T) ((-1103 . -599) 122705) ((-1103 . -1031) 122532) ((-1103 . -611) 122262) ((-1103 . -411) 122231) ((-1103 . -634) 122137) ((-1103 . -376) 122106) ((-1103 . -367) 122085) ((-1103 . -232) 122037) ((-1103 . -893) 121969) ((-1103 . -230) 121938) ((-1103 . -111) 121828) ((-1103 . -1048) 121725) ((-1103 . -171) 121704) ((-1103 . -608) 121435) ((-1103 . -711) 121377) ((-1103 . -641) 121225) ((-1103 . -130) 121095) ((-1103 . -23) 120965) ((-1103 . -21) 120875) ((-1103 . -1042) 120805) ((-1103 . -1049) 120735) ((-1103 . -1102) 120645) ((-1103 . -720) 120555) ((-1103 . -38) 120525) ((-1103 . -1091) 120315) ((-1103 . -102) 120105) ((-1103 . -25) 119956) ((-1096 . -395) T) ((-1096 . -1204) T) ((-1096 . -608) 119938) ((-1095 . -1094) 119902) ((-1095 . -102) T) ((-1095 . -608) 119884) ((-1095 . -1091) T) ((-1095 . -613) 119799) ((-1093 . -1094) 119751) ((-1093 . -102) T) ((-1093 . -608) 119733) ((-1093 . -1091) T) ((-1093 . -613) 119636) ((-1092 . -367) T) ((-1092 . -102) T) ((-1092 . -608) 119618) ((-1092 . -1091) T) ((-1087 . -425) 119602) ((-1087 . -1089) 119586) ((-1087 . -367) 119565) ((-1087 . -234) 119549) ((-1087 . -609) 119510) ((-1087 . -150) 119494) ((-1087 . -487) 119478) ((-1087 . -102) T) ((-1087 . -1091) T) ((-1087 . -512) 119411) ((-1087 . -308) 119349) ((-1087 . -608) 119331) ((-1087 . -1204) T) ((-1087 . -34) T) ((-1087 . -107) 119315) ((-1087 . -228) 119299) ((-1086 . -1073) T) ((-1086 . -488) 119280) ((-1086 . -608) 119246) ((-1086 . -611) 119227) ((-1086 . -1091) T) ((-1086 . -102) T) ((-1086 . -93) T) ((-1082 . -1204) T) ((-1082 . -1091) 119205) ((-1082 . -608) 119172) ((-1082 . -102) 119150) ((-1081 . -1073) T) ((-1081 . -488) 119131) ((-1081 . -608) 119097) ((-1081 . -611) 119078) ((-1081 . -1091) T) ((-1081 . -102) T) ((-1081 . -93) T) ((-1079 . -1084) 119062) ((-1079 . -613) 119046) ((-1079 . -1091) 119024) ((-1079 . -608) 118991) ((-1079 . -102) 118969) ((-1079 . -1085) 118927) ((-1078 . -265) 118911) ((-1078 . -611) 118895) ((-1078 . -1031) 118879) ((-1078 . -1091) T) ((-1078 . -608) 118861) ((-1078 . -102) T) ((-1078 . -844) T) ((-1077 . -252) 118798) ((-1077 . -611) 118534) ((-1077 . -1031) 118361) ((-1077 . -609) NIL) ((-1077 . -325) 118322) ((-1077 . -411) 118306) ((-1077 . -38) 118155) ((-1077 . -111) 117984) ((-1077 . -1048) 117827) ((-1077 . -641) 117752) ((-1077 . -711) 117601) ((-1077 . -144) 117580) ((-1077 . -146) 117559) ((-1077 . -171) 117470) ((-1077 . -554) 117401) ((-1077 . -289) 117332) ((-1077 . -47) 117293) ((-1077 . -376) 117277) ((-1077 . -634) 117225) ((-1077 . -450) 117176) ((-1077 . -512) 117043) ((-1077 . -844) 117022) ((-1077 . -893) 116957) ((-1077 . -879) NIL) ((-1077 . -903) 116936) ((-1077 . -1209) 116915) ((-1077 . -943) 116860) ((-1077 . -308) 116847) ((-1077 . -232) 116826) ((-1077 . -130) T) ((-1077 . -25) T) ((-1077 . -102) T) ((-1077 . -608) 116808) ((-1077 . -1091) T) ((-1077 . -23) T) ((-1077 . -21) T) ((-1077 . -720) T) ((-1077 . -1102) T) ((-1077 . -1049) T) ((-1077 . -1042) T) ((-1077 . -230) 116792) ((-1075 . -608) 116774) ((-1072 . -844) T) ((-1072 . -102) T) ((-1072 . -608) 116756) ((-1072 . -1091) T) ((-1072 . -609) 116737) ((-1069 . -718) 116716) ((-1069 . -1031) 116612) ((-1069 . -411) 116596) ((-1069 . -634) 116544) ((-1069 . -376) 116528) ((-1069 . -369) 116507) ((-1069 . -146) 116486) ((-1069 . -611) 116304) ((-1069 . -711) 116172) ((-1069 . -641) 116082) ((-1069 . -1048) 115992) ((-1069 . -111) 115888) ((-1069 . -38) 115756) ((-1069 . -409) 115735) ((-1069 . -401) 115714) ((-1069 . -144) 115665) ((-1069 . -1141) 115644) ((-1069 . -349) 115623) ((-1069 . -367) 115574) ((-1069 . -242) 115525) ((-1069 . -289) 115476) ((-1069 . -306) 115427) ((-1069 . -450) 115378) ((-1069 . -554) 115329) ((-1069 . -914) 115280) ((-1069 . -1209) 115231) ((-1069 . -362) 115182) ((-1069 . -232) 115107) ((-1069 . -893) 115040) ((-1069 . -230) 115010) ((-1069 . -609) 114994) ((-1069 . -21) T) ((-1069 . -23) T) ((-1069 . -1091) T) ((-1069 . -608) 114976) ((-1069 . -102) T) ((-1069 . -25) T) ((-1069 . -130) T) ((-1069 . -1042) T) ((-1069 . -1049) T) ((-1069 . -1102) T) ((-1069 . -720) T) ((-1069 . -171) T) ((-1067 . -1091) T) ((-1067 . -608) 114958) ((-1067 . -102) T) ((-1067 . -285) 114937) ((-1066 . -1091) T) ((-1066 . -608) 114919) ((-1066 . -102) T) ((-1065 . -1091) T) ((-1065 . -608) 114901) ((-1065 . -102) T) ((-1065 . -285) 114880) ((-1065 . -1031) 114857) ((-1065 . -611) 114834) ((-1064 . -1073) T) ((-1064 . -488) 114815) ((-1064 . -608) 114781) ((-1064 . -611) 114762) ((-1064 . -1091) T) ((-1064 . -102) T) ((-1064 . -93) T) ((-1057 . -1073) T) ((-1057 . -488) 114743) ((-1057 . -608) 114709) ((-1057 . -611) 114690) ((-1057 . -1091) T) ((-1057 . -102) T) ((-1057 . -93) T) ((-1054 . -1181) 114665) ((-1054 . -228) 114611) ((-1054 . -107) 114557) ((-1054 . -308) 114408) ((-1054 . -512) 114252) ((-1054 . -487) 114183) ((-1054 . -150) 114129) ((-1054 . -609) NIL) ((-1054 . -234) 114075) ((-1054 . -605) 114050) ((-1054 . -287) 114025) ((-1054 . -285) 114000) ((-1054 . -102) T) ((-1054 . -1091) T) ((-1054 . -608) 113982) ((-1054 . -1204) T) ((-1054 . -34) T) ((-1054 . -599) 113957) ((-1053 . -543) T) ((-1053 . -1209) T) ((-1053 . -1141) T) ((-1053 . -1031) 113939) ((-1053 . -609) 113854) ((-1053 . -1013) T) ((-1053 . -879) 113836) ((-1053 . -842) T) ((-1053 . -791) T) ((-1053 . -788) T) ((-1053 . -844) T) ((-1053 . -786) T) ((-1053 . -785) T) ((-1053 . -814) T) ((-1053 . -634) 113818) ((-1053 . -914) T) ((-1053 . -554) T) ((-1053 . -289) T) ((-1053 . -171) T) ((-1053 . -611) 113790) ((-1053 . -711) 113777) ((-1053 . -1048) 113764) ((-1053 . -111) 113749) ((-1053 . -38) 113736) ((-1053 . -450) T) ((-1053 . -306) T) ((-1053 . -232) T) ((-1053 . -142) T) ((-1053 . -1042) T) ((-1053 . -1049) T) ((-1053 . -1102) T) ((-1053 . -720) T) ((-1053 . -21) T) ((-1053 . -23) T) ((-1053 . -1091) T) ((-1053 . -608) 113718) ((-1053 . -102) T) ((-1053 . -25) T) ((-1053 . -130) T) ((-1053 . -641) 113705) ((-1053 . -146) T) ((-1053 . -613) 113686) ((-1052 . -1059) 113665) ((-1052 . -102) T) ((-1052 . -608) 113647) ((-1052 . -1091) T) ((-1046 . -1045) 113587) ((-1046 . -711) 113529) ((-1046 . -34) T) ((-1046 . -1204) T) ((-1046 . -308) 113467) ((-1046 . -512) 113400) ((-1046 . -487) 113384) ((-1046 . -641) 113368) ((-1046 . -130) T) ((-1046 . -25) T) ((-1046 . -102) T) ((-1046 . -608) 113330) ((-1046 . -1091) T) ((-1046 . -23) T) ((-1046 . -21) T) ((-1046 . -1048) 113314) ((-1046 . -111) 113293) ((-1046 . -1261) 113263) ((-1046 . -609) 113224) ((-1039 . -1062) 113153) ((-1039 . -969) 113082) ((-1039 . -609) 113024) ((-1039 . -487) 112989) ((-1039 . -102) T) ((-1039 . -1091) T) ((-1039 . -512) 112890) ((-1039 . -308) 112798) ((-1039 . -608) 112741) ((-1039 . -1204) T) ((-1039 . -34) T) ((-1039 . -150) 112706) ((-1039 . -1199) 112635) ((-1029 . -1073) T) ((-1029 . -488) 112616) ((-1029 . -608) 112582) ((-1029 . -611) 112563) ((-1029 . -1091) T) ((-1029 . -102) T) ((-1029 . -93) T) ((-1028 . -1181) 112538) ((-1028 . -228) 112484) ((-1028 . -107) 112430) ((-1028 . -308) 112281) ((-1028 . -512) 112125) ((-1028 . -487) 112056) ((-1028 . -150) 112002) ((-1028 . -609) NIL) ((-1028 . -234) 111948) ((-1028 . -605) 111923) ((-1028 . -287) 111898) ((-1028 . -285) 111873) ((-1028 . -102) T) ((-1028 . -1091) T) ((-1028 . -608) 111855) ((-1028 . -1204) T) ((-1028 . -34) T) ((-1028 . -599) 111830) ((-1027 . -171) T) ((-1027 . -611) 111799) ((-1027 . -720) T) ((-1027 . -1102) T) ((-1027 . -1049) T) ((-1027 . -1042) T) ((-1027 . -641) 111773) ((-1027 . -130) T) ((-1027 . -25) T) ((-1027 . -102) T) ((-1027 . -608) 111755) ((-1027 . -1091) T) ((-1027 . -23) T) ((-1027 . -21) T) ((-1027 . -1048) 111729) ((-1027 . -111) 111696) ((-1027 . -38) 111680) ((-1027 . -711) 111664) ((-1020 . -1062) 111633) ((-1020 . -969) 111602) ((-1020 . -609) 111563) ((-1020 . -487) 111547) ((-1020 . -102) T) ((-1020 . -1091) T) ((-1020 . -512) 111480) ((-1020 . -308) 111418) ((-1020 . -608) 111380) ((-1020 . -1204) T) ((-1020 . -34) T) ((-1020 . -150) 111364) ((-1020 . -1199) 111333) ((-1019 . -1204) T) ((-1019 . -1091) 111311) ((-1019 . -608) 111278) ((-1019 . -102) 111256) ((-1017 . -1005) T) ((-1017 . -995) T) ((-1017 . -785) T) ((-1017 . -786) T) ((-1017 . -844) T) ((-1017 . -788) T) ((-1017 . -791) T) ((-1017 . -842) T) ((-1017 . -1031) 111136) ((-1017 . -411) 111098) ((-1017 . -242) T) ((-1017 . -289) T) ((-1017 . -306) T) ((-1017 . -450) T) ((-1017 . -38) 111035) ((-1017 . -711) 110972) ((-1017 . -611) 110909) ((-1017 . -554) T) ((-1017 . -914) T) ((-1017 . -1209) T) ((-1017 . -362) T) ((-1017 . -111) 110825) ((-1017 . -1048) 110762) ((-1017 . -171) T) ((-1017 . -146) T) ((-1017 . -641) 110699) ((-1017 . -130) T) ((-1017 . -25) T) ((-1017 . -102) T) ((-1017 . -608) 110681) ((-1017 . -1091) T) ((-1017 . -23) T) ((-1017 . -21) T) ((-1017 . -1042) T) ((-1017 . -1049) T) ((-1017 . -1102) T) ((-1017 . -720) T) ((-1012 . -1073) T) ((-1012 . -488) 110662) ((-1012 . -608) 110628) ((-1012 . -611) 110609) ((-1012 . -1091) T) ((-1012 . -102) T) ((-1012 . -93) T) ((-997 . -984) 110591) ((-997 . -1141) T) ((-997 . -611) 110541) ((-997 . -1031) 110501) ((-997 . -609) 110431) ((-997 . -1013) T) ((-997 . -903) NIL) ((-997 . -877) 110413) ((-997 . -842) T) ((-997 . -791) T) ((-997 . -788) T) ((-997 . -844) T) ((-997 . -786) T) ((-997 . -785) T) ((-997 . -814) T) ((-997 . -879) 110395) ((-997 . -1204) T) ((-997 . -399) 110377) ((-997 . -634) 110359) ((-997 . -376) 110341) ((-997 . -285) NIL) ((-997 . -308) NIL) ((-997 . -512) NIL) ((-997 . -337) 110323) ((-997 . -242) T) ((-997 . -111) 110257) ((-997 . -1048) 110207) ((-997 . -289) T) ((-997 . -711) 110157) ((-997 . -641) 110107) ((-997 . -38) 110057) ((-997 . -306) T) ((-997 . -450) T) ((-997 . -171) T) ((-997 . -554) T) ((-997 . -914) T) ((-997 . -1209) T) ((-997 . -362) T) ((-997 . -232) T) ((-997 . -893) NIL) ((-997 . -230) 110039) ((-997 . -146) T) ((-997 . -144) NIL) ((-997 . -130) T) ((-997 . -25) T) ((-997 . -102) T) ((-997 . -608) 109999) ((-997 . -1091) T) ((-997 . -23) T) ((-997 . -21) T) ((-997 . -1042) T) ((-997 . -1049) T) ((-997 . -1102) T) ((-997 . -720) T) ((-996 . -341) 109973) ((-996 . -171) T) ((-996 . -611) 109903) ((-996 . -720) T) ((-996 . -1102) T) ((-996 . -1049) T) ((-996 . -1042) T) ((-996 . -641) 109848) ((-996 . -130) T) ((-996 . -25) T) ((-996 . -102) T) ((-996 . -608) 109830) ((-996 . -1091) T) ((-996 . -23) T) ((-996 . -21) T) ((-996 . -1048) 109775) ((-996 . -111) 109704) ((-996 . -609) 109688) ((-996 . -230) 109665) ((-996 . -893) 109617) ((-996 . -232) 109589) ((-996 . -362) T) ((-996 . -1209) T) ((-996 . -914) T) ((-996 . -554) T) ((-996 . -711) 109534) ((-996 . -38) 109479) ((-996 . -450) T) ((-996 . -306) T) ((-996 . -289) T) ((-996 . -242) T) ((-996 . -367) NIL) ((-996 . -349) NIL) ((-996 . -1141) NIL) ((-996 . -144) 109451) ((-996 . -401) NIL) ((-996 . -409) 109423) ((-996 . -146) 109395) ((-996 . -369) 109367) ((-996 . -376) 109344) ((-996 . -634) 109283) ((-996 . -411) 109260) ((-996 . -1031) 109148) ((-996 . -718) 109120) ((-993 . -988) 109104) ((-993 . -487) 109088) ((-993 . -102) 109066) ((-993 . -1091) 109044) ((-993 . -512) 108977) ((-993 . -308) 108915) ((-993 . -608) 108847) ((-993 . -1204) T) ((-993 . -34) T) ((-993 . -107) 108831) ((-989 . -991) 108815) ((-989 . -844) 108794) ((-989 . -1031) 108690) ((-989 . -411) 108674) ((-989 . -634) 108622) ((-989 . -376) 108606) ((-989 . -285) 108564) ((-989 . -308) 108529) ((-989 . -512) 108441) ((-989 . -337) 108425) ((-989 . -38) 108373) ((-989 . -111) 108255) ((-989 . -1048) 108151) ((-989 . -641) 108089) ((-989 . -711) 108037) ((-989 . -611) 107927) ((-989 . -289) 107878) ((-989 . -242) 107857) ((-989 . -232) 107836) ((-989 . -893) 107795) ((-989 . -230) 107779) ((-989 . -609) 107740) ((-989 . -146) 107719) ((-989 . -144) 107698) ((-989 . -130) T) ((-989 . -25) T) ((-989 . -102) T) ((-989 . -608) 107680) ((-989 . -1091) T) ((-989 . -23) T) ((-989 . -21) T) ((-989 . -1042) T) ((-989 . -1049) T) ((-989 . -1102) T) ((-989 . -720) T) ((-987 . -1073) T) ((-987 . -488) 107661) ((-987 . -608) 107627) ((-987 . -611) 107608) ((-987 . -1091) T) ((-987 . -102) T) ((-987 . -93) T) ((-986 . -21) T) ((-986 . -23) T) ((-986 . -1091) T) ((-986 . -608) 107590) ((-986 . -102) T) ((-986 . -25) T) ((-986 . -130) T) ((-982 . -608) 107572) ((-979 . -1091) T) ((-979 . -608) 107554) ((-979 . -102) T) ((-964 . -791) T) ((-964 . -788) T) ((-964 . -844) T) ((-964 . -786) T) ((-964 . -23) T) ((-964 . -1091) T) ((-964 . -608) 107514) ((-964 . -102) T) ((-964 . -25) T) ((-964 . -130) T) ((-964 . -609) 107489) ((-963 . -1073) T) ((-963 . -488) 107470) ((-963 . -608) 107436) ((-963 . -611) 107417) ((-963 . -1091) T) ((-963 . -102) T) ((-963 . -93) T) ((-959 . -960) T) ((-959 . -102) T) ((-959 . -608) 107399) ((-959 . -1091) T) ((-958 . -608) 107381) ((-957 . -1091) T) ((-957 . -608) 107363) ((-957 . -102) T) ((-957 . -367) 107316) ((-957 . -720) 107215) ((-957 . -1102) 107114) ((-957 . -23) 106925) ((-957 . -25) 106736) ((-957 . -130) 106591) ((-957 . -471) 106544) ((-957 . -21) 106499) ((-957 . -787) 106452) ((-957 . -786) 106405) ((-957 . -844) 106304) ((-957 . -788) 106257) ((-957 . -791) 106210) ((-951 . -19) 106194) ((-951 . -644) 106178) ((-951 . -287) 106155) ((-951 . -285) 106132) ((-951 . -599) 106109) ((-951 . -609) 106070) ((-951 . -487) 106054) ((-951 . -102) 106004) ((-951 . -1091) 105954) ((-951 . -512) 105887) ((-951 . -308) 105825) ((-951 . -608) 105737) ((-951 . -1204) T) ((-951 . -34) T) ((-951 . -150) 105721) ((-951 . -844) 105700) ((-951 . -371) 105684) ((-949 . -325) 105663) ((-949 . -1031) 105559) ((-949 . -411) 105543) ((-949 . -38) 105440) ((-949 . -611) 105293) ((-949 . -641) 105218) ((-949 . -720) T) ((-949 . -1102) T) ((-949 . -1049) T) ((-949 . -1042) T) ((-949 . -111) 105087) ((-949 . -1048) 104970) ((-949 . -21) T) ((-949 . -23) T) ((-949 . -1091) T) ((-949 . -608) 104952) ((-949 . -102) T) ((-949 . -25) T) ((-949 . -130) T) ((-949 . -711) 104849) ((-949 . -144) 104828) ((-949 . -146) 104807) ((-949 . -171) 104758) ((-949 . -554) 104737) ((-949 . -289) 104716) ((-949 . -47) 104695) ((-947 . -1091) T) ((-947 . -608) 104661) ((-947 . -102) T) ((-939 . -943) 104622) ((-939 . -611) 104411) ((-939 . -1031) 104291) ((-939 . -1209) 104270) ((-939 . -903) 104249) ((-939 . -879) 104174) ((-939 . -893) 104155) ((-939 . -844) 104134) ((-939 . -512) 104081) ((-939 . -450) 104032) ((-939 . -634) 103980) ((-939 . -376) 103964) ((-939 . -47) 103933) ((-939 . -38) 103782) ((-939 . -711) 103631) ((-939 . -289) 103562) ((-939 . -554) 103493) ((-939 . -111) 103322) ((-939 . -1048) 103165) ((-939 . -171) 103076) ((-939 . -146) 103055) ((-939 . -144) 103034) ((-939 . -641) 102959) ((-939 . -130) T) ((-939 . -25) T) ((-939 . -102) T) ((-939 . -608) 102941) ((-939 . -1091) T) ((-939 . -23) T) ((-939 . -21) T) ((-939 . -1042) T) ((-939 . -1049) T) ((-939 . -1102) T) ((-939 . -720) T) ((-939 . -411) 102925) ((-939 . -325) 102894) ((-939 . -308) 102881) ((-939 . -609) 102742) ((-936 . -973) 102726) ((-936 . -19) 102710) ((-936 . -644) 102694) ((-936 . -287) 102671) ((-936 . -285) 102648) ((-936 . -599) 102625) ((-936 . -609) 102586) ((-936 . -487) 102570) ((-936 . -102) 102520) ((-936 . -1091) 102470) ((-936 . -512) 102403) ((-936 . -308) 102341) ((-936 . -608) 102253) ((-936 . -1204) T) ((-936 . -34) T) ((-936 . -150) 102237) ((-936 . -844) 102216) ((-936 . -371) 102200) ((-936 . -1252) 102184) ((-936 . -613) 102161) ((-920 . -967) T) ((-920 . -608) 102143) ((-918 . -948) T) ((-918 . -608) 102125) ((-912 . -788) T) ((-912 . -844) T) ((-912 . -1091) T) ((-912 . -608) 102107) ((-912 . -102) T) ((-912 . -25) T) ((-912 . -720) T) ((-912 . -1102) T) ((-907 . -362) T) ((-907 . -1209) T) ((-907 . -914) T) ((-907 . -554) T) ((-907 . -171) T) ((-907 . -611) 102044) ((-907 . -711) 101996) ((-907 . -38) 101948) ((-907 . -450) T) ((-907 . -306) T) ((-907 . -641) 101900) ((-907 . -720) T) ((-907 . -1102) T) ((-907 . -1049) T) ((-907 . -1042) T) ((-907 . -111) 101838) ((-907 . -1048) 101790) ((-907 . -21) T) ((-907 . -23) T) ((-907 . -1091) T) ((-907 . -608) 101772) ((-907 . -102) T) ((-907 . -25) T) ((-907 . -130) T) ((-907 . -289) T) ((-907 . -242) T) ((-899 . -349) T) ((-899 . -1141) T) ((-899 . -367) T) ((-899 . -144) T) ((-899 . -362) T) ((-899 . -1209) T) ((-899 . -914) T) ((-899 . -554) T) ((-899 . -171) T) ((-899 . -611) 101722) ((-899 . -711) 101687) ((-899 . -38) 101652) ((-899 . -450) T) ((-899 . -306) T) ((-899 . -111) 101608) ((-899 . -1048) 101573) ((-899 . -641) 101538) ((-899 . -289) T) ((-899 . -242) T) ((-899 . -401) T) ((-899 . -1042) T) ((-899 . -1049) T) ((-899 . -1102) T) ((-899 . -720) T) ((-899 . -21) T) ((-899 . -23) T) ((-899 . -1091) T) ((-899 . -608) 101520) ((-899 . -102) T) ((-899 . -25) T) ((-899 . -130) T) ((-899 . -232) T) ((-899 . -328) 101507) ((-899 . -146) 101489) ((-899 . -1031) 101476) ((-899 . -1261) 101463) ((-899 . -1272) 101450) ((-899 . -609) 101432) ((-898 . -1091) T) ((-898 . -608) 101414) ((-898 . -102) T) ((-895 . -897) 101398) ((-895 . -844) 101349) ((-895 . -720) T) ((-895 . -1091) T) ((-895 . -608) 101331) ((-895 . -102) T) ((-895 . -1102) T) ((-895 . -471) T) ((-894 . -119) 101315) ((-894 . -487) 101299) ((-894 . -102) 101277) ((-894 . -1091) 101255) ((-894 . -512) 101188) ((-894 . -308) 101126) ((-894 . -608) 101037) ((-894 . -1204) T) ((-894 . -34) T) ((-894 . -1003) 101021) ((-891 . -1091) T) ((-891 . -608) 101003) ((-891 . -102) T) ((-886 . -844) T) ((-886 . -102) T) ((-886 . -608) 100985) ((-886 . -1091) T) ((-886 . -1031) 100962) ((-886 . -611) 100939) ((-883 . -1091) T) ((-883 . -608) 100921) ((-883 . -102) T) ((-883 . -1031) 100889) ((-883 . -611) 100857) ((-881 . -1091) T) ((-881 . -608) 100839) ((-881 . -102) T) ((-878 . -1091) T) ((-878 . -608) 100821) ((-878 . -102) T) ((-867 . -1091) T) ((-867 . -608) 100803) ((-867 . -102) T) ((-866 . -1204) T) ((-866 . -608) 100675) ((-866 . -1091) 100626) ((-866 . -102) 100577) ((-865 . -984) 100561) ((-865 . -1141) 100539) ((-865 . -1031) 100405) ((-865 . -611) 100303) ((-865 . -609) 100110) ((-865 . -1013) 100088) ((-865 . -903) 100067) ((-865 . -877) 100051) ((-865 . -842) 100030) ((-865 . -791) 100009) ((-865 . -788) 99988) ((-865 . -844) 99939) ((-865 . -786) 99918) ((-865 . -785) 99897) ((-865 . -814) 99876) ((-865 . -879) 99801) ((-865 . -1204) T) ((-865 . -399) 99785) ((-865 . -634) 99733) ((-865 . -376) 99717) ((-865 . -285) 99675) ((-865 . -308) 99640) ((-865 . -512) 99552) ((-865 . -337) 99536) ((-865 . -242) T) ((-865 . -111) 99474) ((-865 . -1048) 99426) ((-865 . -289) T) ((-865 . -711) 99378) ((-865 . -641) 99330) ((-865 . -38) 99282) ((-865 . -306) T) ((-865 . -450) T) ((-865 . -171) T) ((-865 . -554) T) ((-865 . -914) T) ((-865 . -1209) T) ((-865 . -362) T) ((-865 . -232) 99261) ((-865 . -893) 99220) ((-865 . -230) 99204) ((-865 . -146) 99183) ((-865 . -144) 99162) ((-865 . -130) T) ((-865 . -25) T) ((-865 . -102) T) ((-865 . -608) 99144) ((-865 . -1091) T) ((-865 . -23) T) ((-865 . -21) T) ((-865 . -1042) T) ((-865 . -1049) T) ((-865 . -1102) T) ((-865 . -720) T) ((-864 . -984) 99121) ((-864 . -1141) NIL) ((-864 . -1031) 99098) ((-864 . -611) 99028) ((-864 . -609) NIL) ((-864 . -1013) NIL) ((-864 . -903) NIL) ((-864 . -877) 99005) ((-864 . -842) NIL) ((-864 . -791) NIL) ((-864 . -788) NIL) ((-864 . -844) NIL) ((-864 . -786) NIL) ((-864 . -785) NIL) ((-864 . -814) NIL) ((-864 . -879) NIL) ((-864 . -1204) T) ((-864 . -399) 98982) ((-864 . -634) 98959) ((-864 . -376) 98936) ((-864 . -285) 98887) ((-864 . -308) 98844) ((-864 . -512) 98752) ((-864 . -337) 98729) ((-864 . -242) T) ((-864 . -111) 98658) ((-864 . -1048) 98603) ((-864 . -289) T) ((-864 . -711) 98548) ((-864 . -641) 98493) ((-864 . -38) 98438) ((-864 . -306) T) ((-864 . -450) T) ((-864 . -171) T) ((-864 . -554) T) ((-864 . -914) T) ((-864 . -1209) T) ((-864 . -362) T) ((-864 . -232) NIL) ((-864 . -893) NIL) ((-864 . -230) 98415) ((-864 . -146) T) ((-864 . -144) NIL) ((-864 . -130) T) ((-864 . -25) T) ((-864 . -102) T) ((-864 . -608) 98397) ((-864 . -1091) T) ((-864 . -23) T) ((-864 . -21) T) ((-864 . -1042) T) ((-864 . -1049) T) ((-864 . -1102) T) ((-864 . -720) T) ((-862 . -863) 98381) ((-862 . -914) T) ((-862 . -554) T) ((-862 . -289) T) ((-862 . -171) T) ((-862 . -611) 98353) ((-862 . -711) 98340) ((-862 . -1048) 98327) ((-862 . -111) 98312) ((-862 . -38) 98299) ((-862 . -450) T) ((-862 . -306) T) ((-862 . -1042) T) ((-862 . -1049) T) ((-862 . -1102) T) ((-862 . -720) T) ((-862 . -21) T) ((-862 . -23) T) ((-862 . -1091) T) ((-862 . -608) 98281) ((-862 . -102) T) ((-862 . -25) T) ((-862 . -130) T) ((-862 . -641) 98268) ((-862 . -146) T) ((-859 . -1042) T) ((-859 . -1049) T) ((-859 . -1102) T) ((-859 . -720) T) ((-859 . -21) T) ((-859 . -23) T) ((-859 . -1091) T) ((-859 . -608) 98230) ((-859 . -102) T) ((-859 . -25) T) ((-859 . -130) T) ((-859 . -641) 98190) ((-859 . -611) 98125) ((-859 . -488) 98102) ((-859 . -38) 98072) ((-859 . -111) 98037) ((-859 . -1048) 98007) ((-859 . -711) 97977) ((-858 . -838) T) ((-858 . -844) T) ((-858 . -1091) T) ((-858 . -608) 97959) ((-858 . -102) T) ((-858 . -367) T) ((-858 . -609) 97881) ((-857 . -1091) T) ((-857 . -608) 97863) ((-857 . -102) T) ((-856 . -855) T) ((-856 . -172) T) ((-856 . -608) 97845) ((-852 . -844) T) ((-852 . -102) T) ((-852 . -608) 97827) ((-852 . -1091) T) ((-849 . -846) 97811) ((-849 . -1031) 97707) ((-849 . -611) 97604) ((-849 . -411) 97588) ((-849 . -711) 97558) ((-849 . -641) 97532) ((-849 . -130) T) ((-849 . -25) T) ((-849 . -102) T) ((-849 . -608) 97514) ((-849 . -1091) T) ((-849 . -23) T) ((-849 . -21) T) ((-849 . -1048) 97498) ((-849 . -111) 97477) ((-849 . -1042) T) ((-849 . -1049) T) ((-849 . -1102) T) ((-849 . -720) T) ((-849 . -38) 97447) ((-848 . -846) 97431) ((-848 . -1031) 97327) ((-848 . -611) 97245) ((-848 . -411) 97229) ((-848 . -711) 97199) ((-848 . -641) 97173) ((-848 . -130) T) ((-848 . -25) T) ((-848 . -102) T) ((-848 . -608) 97155) ((-848 . -1091) T) ((-848 . -23) T) ((-848 . -21) T) ((-848 . -1048) 97139) ((-848 . -111) 97118) ((-848 . -1042) T) ((-848 . -1049) T) ((-848 . -1102) T) ((-848 . -720) T) ((-848 . -38) 97088) ((-836 . -1091) T) ((-836 . -608) 97070) ((-836 . -102) T) ((-836 . -411) 97054) ((-836 . -611) 96922) ((-836 . -1031) 96818) ((-836 . -21) 96770) ((-836 . -23) 96722) ((-836 . -25) 96674) ((-836 . -130) 96626) ((-836 . -842) 96605) ((-836 . -641) 96578) ((-836 . -1049) 96557) ((-836 . -1042) 96536) ((-836 . -791) 96515) ((-836 . -788) 96494) ((-836 . -844) 96473) ((-836 . -786) 96452) ((-836 . -785) 96431) ((-836 . -1102) 96410) ((-836 . -720) 96389) ((-835 . -1091) T) ((-835 . -608) 96371) ((-835 . -102) T) ((-832 . -830) 96353) ((-832 . -102) T) ((-832 . -608) 96335) ((-832 . -1091) T) ((-828 . -1042) T) ((-828 . -1049) T) ((-828 . -1102) T) ((-828 . -720) T) ((-828 . -21) T) ((-828 . -23) T) ((-828 . -1091) T) ((-828 . -608) 96317) ((-828 . -102) T) ((-828 . -25) T) ((-828 . -130) T) ((-828 . -641) 96277) ((-828 . -611) 96231) ((-828 . -1031) 96200) ((-828 . -285) 96179) ((-828 . -146) 96158) ((-828 . -144) 96137) ((-828 . -38) 96107) ((-828 . -111) 96072) ((-828 . -1048) 96042) ((-828 . -711) 96012) ((-826 . -1091) T) ((-826 . -608) 95994) ((-826 . -102) T) ((-826 . -411) 95978) ((-826 . -611) 95846) ((-826 . -1031) 95742) ((-826 . -21) 95694) ((-826 . -23) 95646) ((-826 . -25) 95598) ((-826 . -130) 95550) ((-826 . -842) 95529) ((-826 . -641) 95502) ((-826 . -1049) 95481) ((-826 . -1042) 95460) ((-826 . -791) 95439) ((-826 . -788) 95418) ((-826 . -844) 95397) ((-826 . -786) 95376) ((-826 . -785) 95355) ((-826 . -1102) 95334) ((-826 . -720) 95313) ((-822 . -702) 95297) ((-822 . -611) 95252) ((-822 . -711) 95222) ((-822 . -641) 95196) ((-822 . -130) T) ((-822 . -25) T) ((-822 . -102) T) ((-822 . -608) 95178) ((-822 . -1091) T) ((-822 . -23) T) ((-822 . -21) T) ((-822 . -1048) 95162) ((-822 . -111) 95141) ((-822 . -1042) T) ((-822 . -1049) T) ((-822 . -1102) T) ((-822 . -720) T) ((-822 . -38) 95111) ((-822 . -232) 95090) ((-820 . -1091) T) ((-820 . -608) 95072) ((-820 . -102) T) ((-819 . -1091) T) ((-819 . -608) 95054) ((-819 . -102) T) ((-818 . -1091) T) ((-818 . -608) 95036) ((-818 . -102) T) ((-813 . -840) T) ((-813 . -844) T) ((-813 . -851) T) ((-813 . -1102) T) ((-813 . -102) T) ((-813 . -608) 95018) ((-813 . -1091) T) ((-813 . -720) T) ((-813 . -1031) 95002) ((-813 . -611) 94986) ((-812 . -265) 94970) ((-812 . -611) 94954) ((-812 . -1031) 94938) ((-812 . -1091) T) ((-812 . -608) 94920) ((-812 . -102) T) ((-812 . -844) T) ((-811 . -111) 94862) ((-811 . -1048) 94813) ((-811 . -21) T) ((-811 . -23) T) ((-811 . -1091) T) ((-811 . -608) 94782) ((-811 . -102) T) ((-811 . -25) T) ((-811 . -130) T) ((-811 . -641) 94733) ((-811 . -232) T) ((-811 . -611) 94647) ((-811 . -720) T) ((-811 . -1102) T) ((-811 . -1049) T) ((-811 . -1042) T) ((-811 . -488) 94631) ((-811 . -362) 94610) ((-811 . -1209) 94589) ((-811 . -914) 94568) ((-811 . -554) 94547) ((-811 . -171) 94526) ((-811 . -711) 94468) ((-811 . -38) 94410) ((-811 . -450) 94389) ((-811 . -306) 94368) ((-811 . -289) 94347) ((-811 . -242) 94326) ((-810 . -252) 94265) ((-810 . -611) 94002) ((-810 . -1031) 93830) ((-810 . -609) NIL) ((-810 . -325) 93792) ((-810 . -411) 93776) ((-810 . -38) 93625) ((-810 . -111) 93454) ((-810 . -1048) 93297) ((-810 . -641) 93222) ((-810 . -711) 93071) ((-810 . -144) 93050) ((-810 . -146) 93029) ((-810 . -171) 92940) ((-810 . -554) 92871) ((-810 . -289) 92802) ((-810 . -47) 92764) ((-810 . -376) 92748) ((-810 . -634) 92696) ((-810 . -450) 92647) ((-810 . -512) 92515) ((-810 . -844) 92494) ((-810 . -893) 92430) ((-810 . -879) NIL) ((-810 . -903) 92409) ((-810 . -1209) 92388) ((-810 . -943) 92335) ((-810 . -308) 92322) ((-810 . -232) 92301) ((-810 . -130) T) ((-810 . -25) T) ((-810 . -102) T) ((-810 . -608) 92283) ((-810 . -1091) T) ((-810 . -23) T) ((-810 . -21) T) ((-810 . -720) T) ((-810 . -1102) T) ((-810 . -1049) T) ((-810 . -1042) T) ((-810 . -230) 92267) ((-809 . -237) 92246) ((-809 . -1261) 92216) ((-809 . -785) 92195) ((-809 . -842) 92174) ((-809 . -791) 92125) ((-809 . -788) 92076) ((-809 . -844) 92027) ((-809 . -786) 91978) ((-809 . -787) 91957) ((-809 . -287) 91934) ((-809 . -285) 91911) ((-809 . -487) 91895) ((-809 . -512) 91828) ((-809 . -308) 91766) ((-809 . -1204) T) ((-809 . -34) T) ((-809 . -599) 91743) ((-809 . -1031) 91570) ((-809 . -611) 91300) ((-809 . -411) 91269) ((-809 . -634) 91175) ((-809 . -376) 91144) ((-809 . -367) 91123) ((-809 . -232) 91075) ((-809 . -893) 91007) ((-809 . -230) 90976) ((-809 . -111) 90866) ((-809 . -1048) 90763) ((-809 . -171) 90742) ((-809 . -608) 90473) ((-809 . -711) 90415) ((-809 . -641) 90263) ((-809 . -130) 90133) ((-809 . -23) 90003) ((-809 . -21) 89913) ((-809 . -1042) 89843) ((-809 . -1049) 89773) ((-809 . -1102) 89683) ((-809 . -720) 89593) ((-809 . -38) 89563) ((-809 . -1091) 89353) ((-809 . -102) 89143) ((-809 . -25) 88994) ((-802 . -1091) T) ((-802 . -608) 88976) ((-802 . -102) T) ((-792 . -790) 88960) ((-792 . -844) 88939) ((-792 . -1031) 88722) ((-792 . -611) 88570) ((-792 . -411) 88534) ((-792 . -285) 88492) ((-792 . -308) 88457) ((-792 . -512) 88369) ((-792 . -337) 88353) ((-792 . -367) 88332) ((-792 . -609) 88293) ((-792 . -146) 88272) ((-792 . -144) 88251) ((-792 . -711) 88235) ((-792 . -641) 88209) ((-792 . -130) T) ((-792 . -25) T) ((-792 . -102) T) ((-792 . -608) 88191) ((-792 . -1091) T) ((-792 . -23) T) ((-792 . -21) T) ((-792 . -1048) 88175) ((-792 . -111) 88154) ((-792 . -1042) T) ((-792 . -1049) T) ((-792 . -1102) T) ((-792 . -720) T) ((-792 . -38) 88138) ((-775 . -1229) 88122) ((-775 . -1141) 88100) ((-775 . -609) NIL) ((-775 . -308) 88087) ((-775 . -512) 88034) ((-775 . -325) 88011) ((-775 . -1031) 87870) ((-775 . -411) 87854) ((-775 . -38) 87683) ((-775 . -111) 87492) ((-775 . -1048) 87315) ((-775 . -641) 87240) ((-775 . -711) 87069) ((-775 . -611) 86817) ((-775 . -144) 86796) ((-775 . -146) 86775) ((-775 . -47) 86752) ((-775 . -376) 86736) ((-775 . -634) 86684) ((-775 . -844) 86663) ((-775 . -893) 86606) ((-775 . -879) NIL) ((-775 . -903) 86585) ((-775 . -1209) 86564) ((-775 . -943) 86533) ((-775 . -914) 86512) ((-775 . -554) 86423) ((-775 . -289) 86334) ((-775 . -171) 86225) ((-775 . -450) 86156) ((-775 . -306) 86135) ((-775 . -285) 86062) ((-775 . -232) T) ((-775 . -130) T) ((-775 . -25) T) ((-775 . -102) T) ((-775 . -608) 86023) ((-775 . -1091) T) ((-775 . -23) T) ((-775 . -21) T) ((-775 . -720) T) ((-775 . -1102) T) ((-775 . -1049) T) ((-775 . -1042) T) ((-775 . -230) 86007) ((-774 . -1056) 85974) ((-774 . -609) 85608) ((-774 . -308) 85595) ((-774 . -512) 85547) ((-774 . -325) 85519) ((-774 . -1031) 85376) ((-774 . -411) 85360) ((-774 . -38) 85209) ((-774 . -611) 84975) ((-774 . -641) 84900) ((-774 . -720) T) ((-774 . -1102) T) ((-774 . -1049) T) ((-774 . -1042) T) ((-774 . -111) 84729) ((-774 . -1048) 84572) ((-774 . -21) T) ((-774 . -23) T) ((-774 . -1091) T) ((-774 . -608) 84486) ((-774 . -102) T) ((-774 . -25) T) ((-774 . -130) T) ((-774 . -711) 84335) ((-774 . -144) 84314) ((-774 . -146) 84293) ((-774 . -171) 84204) ((-774 . -554) 84135) ((-774 . -289) 84066) ((-774 . -47) 84038) ((-774 . -376) 84022) ((-774 . -634) 83970) ((-774 . -450) 83921) ((-774 . -844) 83900) ((-774 . -893) 83884) ((-774 . -879) 83743) ((-774 . -903) 83722) ((-774 . -1209) 83701) ((-774 . -943) 83668) ((-767 . -1091) T) ((-767 . -608) 83650) ((-767 . -102) T) ((-765 . -787) T) ((-765 . -130) T) ((-765 . -25) T) ((-765 . -102) T) ((-765 . -608) 83632) ((-765 . -1091) T) ((-765 . -23) T) ((-765 . -786) T) ((-765 . -844) T) ((-765 . -788) T) ((-765 . -791) T) ((-765 . -720) T) ((-765 . -1102) T) ((-763 . -1091) T) ((-763 . -608) 83614) ((-763 . -102) T) ((-730 . -731) 83598) ((-730 . -1089) 83582) ((-730 . -234) 83566) ((-730 . -609) 83527) ((-730 . -150) 83511) ((-730 . -487) 83495) ((-730 . -102) T) ((-730 . -1091) T) ((-730 . -512) 83428) ((-730 . -308) 83366) ((-730 . -608) 83348) ((-730 . -1204) T) ((-730 . -34) T) ((-730 . -107) 83332) ((-730 . -688) 83316) ((-729 . -1042) T) ((-729 . -1049) T) ((-729 . -1102) T) ((-729 . -720) T) ((-729 . -21) T) ((-729 . -23) T) ((-729 . -1091) T) ((-729 . -608) 83298) ((-729 . -102) T) ((-729 . -25) T) ((-729 . -130) T) ((-729 . -641) 83258) ((-729 . -611) 83214) ((-729 . -1031) 83185) ((-729 . -146) 83164) ((-729 . -144) 83143) ((-729 . -38) 83113) ((-729 . -111) 83078) ((-729 . -1048) 83048) ((-729 . -711) 83018) ((-729 . -367) 82971) ((-725 . -943) 82924) ((-725 . -611) 82709) ((-725 . -1031) 82585) ((-725 . -1209) 82564) ((-725 . -903) 82543) ((-725 . -879) NIL) ((-725 . -893) 82520) ((-725 . -844) 82499) ((-725 . -512) 82442) ((-725 . -450) 82393) ((-725 . -634) 82341) ((-725 . -376) 82325) ((-725 . -47) 82290) ((-725 . -38) 82139) ((-725 . -711) 81988) ((-725 . -289) 81919) ((-725 . -554) 81850) ((-725 . -111) 81679) ((-725 . -1048) 81522) ((-725 . -171) 81433) ((-725 . -146) 81412) ((-725 . -144) 81391) ((-725 . -641) 81316) ((-725 . -130) T) ((-725 . -25) T) ((-725 . -102) T) ((-725 . -608) 81298) ((-725 . -1091) T) ((-725 . -23) T) ((-725 . -21) T) ((-725 . -1042) T) ((-725 . -1049) T) ((-725 . -1102) T) ((-725 . -720) T) ((-725 . -411) 81282) ((-725 . -325) 81247) ((-725 . -308) 81234) ((-725 . -609) 81095) ((-712 . -471) T) ((-712 . -1102) T) ((-712 . -102) T) ((-712 . -608) 81077) ((-712 . -1091) T) ((-712 . -720) T) ((-709 . -1042) T) ((-709 . -1049) T) ((-709 . -1102) T) ((-709 . -720) T) ((-709 . -21) T) ((-709 . -23) T) ((-709 . -1091) T) ((-709 . -608) 81059) ((-709 . -102) T) ((-709 . -25) T) ((-709 . -130) T) ((-709 . -641) 81046) ((-709 . -611) 81028) ((-708 . -1042) T) ((-708 . -1049) T) ((-708 . -1102) T) ((-708 . -720) T) ((-708 . -21) T) ((-708 . -23) T) ((-708 . -1091) T) ((-708 . -608) 81010) ((-708 . -102) T) ((-708 . -25) T) ((-708 . -130) T) ((-708 . -641) 80970) ((-708 . -611) 80924) ((-708 . -1031) 80893) ((-708 . -285) 80872) ((-708 . -146) 80851) ((-708 . -144) 80830) ((-708 . -38) 80800) ((-708 . -111) 80765) ((-708 . -1048) 80735) ((-708 . -711) 80705) ((-707 . -844) T) ((-707 . -102) T) ((-707 . -608) 80640) ((-707 . -1091) T) ((-707 . -488) 80590) ((-707 . -611) 80540) ((-706 . -1229) 80524) ((-706 . -1141) 80502) ((-706 . -609) NIL) ((-706 . -308) 80489) ((-706 . -512) 80436) ((-706 . -325) 80413) ((-706 . -1031) 80293) ((-706 . -411) 80277) ((-706 . -38) 80106) ((-706 . -111) 79915) ((-706 . -1048) 79738) ((-706 . -641) 79663) ((-706 . -711) 79492) ((-706 . -611) 79248) ((-706 . -144) 79227) ((-706 . -146) 79206) ((-706 . -47) 79183) ((-706 . -376) 79167) ((-706 . -634) 79115) ((-706 . -844) 79094) ((-706 . -893) 79037) ((-706 . -879) NIL) ((-706 . -903) 79016) ((-706 . -1209) 78995) ((-706 . -943) 78964) ((-706 . -914) 78943) ((-706 . -554) 78854) ((-706 . -289) 78765) ((-706 . -171) 78656) ((-706 . -450) 78587) ((-706 . -306) 78566) ((-706 . -285) 78493) ((-706 . -232) T) ((-706 . -130) T) ((-706 . -25) T) ((-706 . -102) T) ((-706 . -608) 78475) ((-706 . -1091) T) ((-706 . -23) T) ((-706 . -21) T) ((-706 . -720) T) ((-706 . -1102) T) ((-706 . -1049) T) ((-706 . -1042) T) ((-706 . -230) 78459) ((-706 . -367) 78438) ((-705 . -362) T) ((-705 . -1209) T) ((-705 . -914) T) ((-705 . -554) T) ((-705 . -171) T) ((-705 . -611) 78388) ((-705 . -711) 78353) ((-705 . -38) 78318) ((-705 . -450) T) ((-705 . -306) T) ((-705 . -641) 78283) ((-705 . -720) T) ((-705 . -1102) T) ((-705 . -1049) T) ((-705 . -1042) T) ((-705 . -111) 78239) ((-705 . -1048) 78204) ((-705 . -21) T) ((-705 . -23) T) ((-705 . -1091) T) ((-705 . -608) 78186) ((-705 . -102) T) ((-705 . -25) T) ((-705 . -130) T) ((-705 . -289) T) ((-705 . -242) T) ((-704 . -1091) T) ((-704 . -608) 78168) ((-704 . -102) T) ((-696 . -131) T) ((-696 . -1091) T) ((-696 . -608) 78137) ((-696 . -102) T) ((-696 . -844) T) ((-696 . -488) 78121) ((-696 . -611) 78105) ((-694 . -386) T) ((-694 . -1031) 78087) ((-694 . -844) T) ((-694 . -38) 78074) ((-694 . -611) 78046) ((-694 . -720) T) ((-694 . -1102) T) ((-694 . -1049) T) ((-694 . -1042) T) ((-694 . -111) 78031) ((-694 . -1048) 78018) ((-694 . -21) T) ((-694 . -23) T) ((-694 . -1091) T) ((-694 . -608) 78000) ((-694 . -102) T) ((-694 . -25) T) ((-694 . -130) T) ((-694 . -641) 77987) ((-694 . -711) 77974) ((-694 . -171) T) ((-694 . -289) T) ((-694 . -554) T) ((-694 . -543) T) ((-694 . -1209) T) ((-694 . -1141) T) ((-694 . -609) 77889) ((-694 . -1013) T) ((-694 . -879) 77871) ((-694 . -842) T) ((-694 . -791) T) ((-694 . -788) T) ((-694 . -786) T) ((-694 . -785) T) ((-694 . -814) T) ((-694 . -634) 77853) ((-694 . -914) T) ((-694 . -450) T) ((-694 . -306) T) ((-694 . -232) T) ((-694 . -142) T) ((-694 . -146) T) ((-692 . -403) T) ((-692 . -146) T) ((-692 . -611) 77788) ((-692 . -641) 77753) ((-692 . -130) T) ((-692 . -25) T) ((-692 . -102) T) ((-692 . -608) 77735) ((-692 . -1091) T) ((-692 . -23) T) ((-692 . -21) T) ((-692 . -720) T) ((-692 . -1102) T) ((-692 . -1049) T) ((-692 . -1042) T) ((-692 . -609) 77680) ((-692 . -362) T) ((-692 . -1209) T) ((-692 . -914) T) ((-692 . -554) T) ((-692 . -171) T) ((-692 . -711) 77645) ((-692 . -38) 77610) ((-692 . -450) T) ((-692 . -306) T) ((-692 . -111) 77566) ((-692 . -1048) 77531) ((-692 . -289) T) ((-692 . -242) T) ((-692 . -842) T) ((-692 . -791) T) ((-692 . -788) T) ((-692 . -844) T) ((-692 . -786) T) ((-692 . -785) T) ((-692 . -879) 77513) ((-692 . -995) T) ((-692 . -1013) T) ((-692 . -1031) 77458) ((-692 . -1051) T) ((-692 . -386) T) ((-687 . -386) T) ((-687 . -1031) 77403) ((-687 . -844) T) ((-687 . -38) 77353) ((-687 . -611) 77288) ((-687 . -720) T) ((-687 . -1102) T) ((-687 . -1049) T) ((-687 . -1042) T) ((-687 . -111) 77222) ((-687 . -1048) 77172) ((-687 . -21) T) ((-687 . -23) T) ((-687 . -1091) T) ((-687 . -608) 77154) ((-687 . -102) T) ((-687 . -25) T) ((-687 . -130) T) ((-687 . -641) 77104) ((-687 . -711) 77054) ((-687 . -171) T) ((-687 . -289) T) ((-687 . -554) T) ((-687 . -165) 77036) ((-687 . -35) NIL) ((-687 . -95) NIL) ((-687 . -283) NIL) ((-687 . -491) NIL) ((-687 . -1193) NIL) ((-687 . -1190) NIL) ((-687 . -995) NIL) ((-687 . -903) NIL) ((-687 . -609) 76944) ((-687 . -877) 76926) ((-687 . -367) NIL) ((-687 . -349) NIL) ((-687 . -1141) NIL) ((-687 . -401) NIL) ((-687 . -409) 76893) ((-687 . -369) 76860) ((-687 . -718) 76827) ((-687 . -411) 76809) ((-687 . -879) 76791) ((-687 . -1204) T) ((-687 . -399) 76773) ((-687 . -634) 76755) ((-687 . -376) 76737) ((-687 . -285) NIL) ((-687 . -308) NIL) ((-687 . -512) NIL) ((-687 . -337) 76719) ((-687 . -242) T) ((-687 . -1209) T) ((-687 . -362) T) ((-687 . -914) T) ((-687 . -450) T) ((-687 . -306) T) ((-687 . -232) NIL) ((-687 . -893) NIL) ((-687 . -230) 76701) ((-687 . -146) T) ((-687 . -144) NIL) ((-684 . -1249) T) ((-684 . -1031) 76685) ((-684 . -611) 76669) ((-684 . -608) 76651) ((-682 . -679) 76609) ((-682 . -487) 76593) ((-682 . -102) 76571) ((-682 . -1091) 76549) ((-682 . -512) 76482) ((-682 . -308) 76420) ((-682 . -608) 76352) ((-682 . -1204) T) ((-682 . -34) T) ((-682 . -57) 76310) ((-682 . -609) 76271) ((-674 . -1073) T) ((-674 . -488) 76252) ((-674 . -608) 76202) ((-674 . -611) 76183) ((-674 . -1091) T) ((-674 . -102) T) ((-674 . -93) T) ((-670 . -844) T) ((-670 . -102) T) ((-670 . -608) 76165) ((-670 . -1091) T) ((-670 . -1031) 76149) ((-670 . -611) 76133) ((-669 . -1073) T) ((-669 . -488) 76114) ((-669 . -608) 76080) ((-669 . -611) 76061) ((-669 . -1091) T) ((-669 . -102) T) ((-669 . -93) T) ((-668 . -487) 76045) ((-668 . -102) 76023) ((-668 . -1091) 76001) ((-668 . -512) 75934) ((-668 . -308) 75872) ((-668 . -608) 75804) ((-668 . -1204) T) ((-668 . -34) T) ((-665 . -844) T) ((-665 . -102) T) ((-665 . -608) 75786) ((-665 . -1091) T) ((-665 . -1031) 75770) ((-665 . -611) 75754) ((-664 . -1073) T) ((-664 . -488) 75735) ((-664 . -608) 75701) ((-664 . -611) 75682) ((-664 . -1091) T) ((-664 . -102) T) ((-664 . -93) T) ((-663 . -1113) 75627) ((-663 . -487) 75611) ((-663 . -512) 75544) ((-663 . -308) 75482) ((-663 . -1204) T) ((-663 . -34) T) ((-663 . -1045) 75422) ((-663 . -1031) 75318) ((-663 . -611) 75236) ((-663 . -411) 75220) ((-663 . -634) 75168) ((-663 . -376) 75152) ((-663 . -232) 75131) ((-663 . -893) 75090) ((-663 . -230) 75074) ((-663 . -711) 75058) ((-663 . -641) 75032) ((-663 . -130) T) ((-663 . -25) T) ((-663 . -102) T) ((-663 . -608) 74994) ((-663 . -1091) T) ((-663 . -23) T) ((-663 . -21) T) ((-663 . -1048) 74978) ((-663 . -111) 74957) ((-663 . -1042) T) ((-663 . -1049) T) ((-663 . -1102) T) ((-663 . -720) T) ((-663 . -38) 74917) ((-663 . -417) 74901) ((-663 . -738) 74885) ((-663 . -714) T) ((-663 . -755) T) ((-663 . -366) 74869) ((-657 . -373) 74848) ((-657 . -711) 74832) ((-657 . -641) 74816) ((-657 . -130) T) ((-657 . -25) T) ((-657 . -102) T) ((-657 . -608) 74798) ((-657 . -1091) T) ((-657 . -23) T) ((-657 . -21) T) ((-657 . -1048) 74782) ((-657 . -111) 74761) ((-657 . -630) 74745) ((-657 . -383) 74717) ((-657 . -611) 74694) ((-657 . -1031) 74671) ((-649 . -651) 74655) ((-649 . -38) 74625) ((-649 . -611) 74543) ((-649 . -641) 74517) ((-649 . -720) T) ((-649 . -1102) T) ((-649 . -1049) T) ((-649 . -1042) T) ((-649 . -111) 74496) ((-649 . -1048) 74480) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1091) T) ((-649 . -608) 74462) ((-649 . -102) T) ((-649 . -25) T) ((-649 . -130) T) ((-649 . -711) 74432) ((-649 . -411) 74416) ((-649 . -1031) 74312) ((-649 . -846) 74296) ((-649 . -285) 74257) ((-648 . -651) 74241) ((-648 . -38) 74211) ((-648 . -611) 74129) ((-648 . -641) 74103) ((-648 . -720) T) ((-648 . -1102) T) ((-648 . -1049) T) ((-648 . -1042) T) ((-648 . -111) 74082) ((-648 . -1048) 74066) ((-648 . -21) T) ((-648 . -23) T) ((-648 . -1091) T) ((-648 . -608) 74048) ((-648 . -102) T) ((-648 . -25) T) ((-648 . -130) T) ((-648 . -711) 74018) ((-648 . -411) 74002) ((-648 . -1031) 73898) ((-648 . -846) 73882) ((-648 . -285) 73861) ((-647 . -651) 73845) ((-647 . -38) 73815) ((-647 . -611) 73733) ((-647 . -641) 73707) ((-647 . -720) T) ((-647 . -1102) T) ((-647 . -1049) T) ((-647 . -1042) T) ((-647 . -111) 73686) ((-647 . -1048) 73670) ((-647 . -21) T) ((-647 . -23) T) ((-647 . -1091) T) ((-647 . -608) 73652) ((-647 . -102) T) ((-647 . -25) T) ((-647 . -130) T) ((-647 . -711) 73622) ((-647 . -411) 73606) ((-647 . -1031) 73502) ((-647 . -846) 73486) ((-647 . -285) 73465) ((-645 . -711) 73449) ((-645 . -641) 73433) ((-645 . -130) T) ((-645 . -25) T) ((-645 . -102) T) ((-645 . -608) 73415) ((-645 . -1091) T) ((-645 . -23) T) ((-645 . -21) T) ((-645 . -1048) 73399) ((-645 . -111) 73378) ((-645 . -785) 73357) ((-645 . -786) 73336) ((-645 . -844) 73315) ((-645 . -788) 73294) ((-645 . -791) 73273) ((-642 . -1091) T) ((-642 . -608) 73255) ((-642 . -102) T) ((-642 . -1031) 73239) ((-642 . -611) 73223) ((-640 . -688) 73207) ((-640 . -107) 73191) ((-640 . -34) T) ((-640 . -1204) T) ((-640 . -608) 73123) ((-640 . -308) 73061) ((-640 . -512) 72994) ((-640 . -1091) 72972) ((-640 . -102) 72950) ((-640 . -487) 72934) ((-640 . -150) 72918) ((-640 . -609) 72879) ((-640 . -234) 72863) ((-639 . -1073) T) ((-639 . -488) 72844) ((-639 . -608) 72797) ((-639 . -611) 72778) ((-639 . -1091) T) ((-639 . -102) T) ((-639 . -93) T) ((-635 . -659) 72762) ((-635 . -1242) 72746) ((-635 . -1003) 72730) ((-635 . -1139) 72714) ((-635 . -844) 72693) ((-635 . -371) 72677) ((-635 . -644) 72661) ((-635 . -287) 72638) ((-635 . -285) 72615) ((-635 . -599) 72592) ((-635 . -609) 72553) ((-635 . -487) 72537) ((-635 . -102) 72487) ((-635 . -1091) 72437) ((-635 . -512) 72370) ((-635 . -308) 72308) ((-635 . -608) 72220) ((-635 . -1204) T) ((-635 . -34) T) ((-635 . -150) 72204) ((-635 . -281) 72188) ((-635 . -815) 72167) ((-628 . -738) 72151) ((-628 . -714) T) ((-628 . -755) T) ((-628 . -111) 72130) ((-628 . -1048) 72114) ((-628 . -21) T) ((-628 . -23) T) ((-628 . -1091) T) ((-628 . -608) 72083) ((-628 . -102) T) ((-628 . -25) T) ((-628 . -130) T) ((-628 . -641) 72067) ((-628 . -711) 72051) ((-628 . -417) 72016) ((-628 . -366) 71948) ((-627 . -1181) 71923) ((-627 . -228) 71869) ((-627 . -107) 71815) ((-627 . -308) 71666) ((-627 . -512) 71510) ((-627 . -487) 71441) ((-627 . -150) 71387) ((-627 . -609) NIL) ((-627 . -234) 71333) ((-627 . -605) 71308) ((-627 . -287) 71283) ((-627 . -285) 71258) ((-627 . -102) T) ((-627 . -1091) T) ((-627 . -608) 71240) ((-627 . -1204) T) ((-627 . -34) T) ((-627 . -599) 71215) ((-622 . -471) T) ((-622 . -1102) T) ((-622 . -102) T) ((-622 . -608) 71197) ((-622 . -1091) T) ((-622 . -720) T) ((-621 . -1073) T) ((-621 . -488) 71178) ((-621 . -608) 71144) ((-621 . -611) 71125) ((-621 . -1091) T) ((-621 . -102) T) ((-621 . -93) T) ((-618 . -230) 71109) ((-618 . -893) 71068) ((-618 . -1042) T) ((-618 . -1049) T) ((-618 . -1102) T) ((-618 . -720) T) ((-618 . -21) T) ((-618 . -23) T) ((-618 . -1091) T) ((-618 . -608) 71050) ((-618 . -102) T) ((-618 . -25) T) ((-618 . -130) T) ((-618 . -641) 71037) ((-618 . -611) 70932) ((-618 . -232) 70911) ((-618 . -554) T) ((-618 . -289) T) ((-618 . -171) T) ((-618 . -711) 70898) ((-618 . -1048) 70885) ((-618 . -111) 70870) ((-618 . -38) 70857) ((-618 . -609) 70834) ((-618 . -411) 70818) ((-618 . -1031) 70701) ((-618 . -146) 70680) ((-618 . -144) 70659) ((-618 . -306) 70638) ((-618 . -450) 70617) ((-618 . -914) 70596) ((-614 . -38) 70580) ((-614 . -611) 70549) ((-614 . -641) 70523) ((-614 . -720) T) ((-614 . -1102) T) ((-614 . -1049) T) ((-614 . -1042) T) ((-614 . -111) 70502) ((-614 . -1048) 70486) ((-614 . -21) T) ((-614 . -23) T) ((-614 . -1091) T) ((-614 . -608) 70468) ((-614 . -102) T) ((-614 . -25) T) ((-614 . -130) T) ((-614 . -711) 70452) ((-614 . -842) 70431) ((-614 . -791) 70410) ((-614 . -788) 70389) ((-614 . -844) 70368) ((-614 . -786) 70347) ((-614 . -785) 70326) ((-612 . -960) T) ((-612 . -102) T) ((-612 . -608) 70308) ((-612 . -1091) T) ((-606 . -131) T) ((-606 . -1091) T) ((-606 . -608) 70290) ((-606 . -102) T) ((-606 . -844) T) ((-606 . -877) 70274) ((-606 . -609) 70135) ((-603 . -364) 70075) ((-603 . -102) T) ((-603 . -608) 70057) ((-603 . -1091) T) ((-603 . -1181) 70033) ((-603 . -228) 69980) ((-603 . -107) 69927) ((-603 . -308) 69722) ((-603 . -512) 69505) ((-603 . -487) 69439) ((-603 . -150) 69386) ((-603 . -609) NIL) ((-603 . -234) 69333) ((-603 . -605) 69309) ((-603 . -287) 69285) ((-603 . -285) 69261) ((-603 . -1204) T) ((-603 . -34) T) ((-603 . -599) 69237) ((-602 . -738) 69221) ((-602 . -714) T) ((-602 . -755) T) ((-602 . -111) 69200) ((-602 . -1048) 69184) ((-602 . -21) T) ((-602 . -23) T) ((-602 . -1091) T) ((-602 . -608) 69153) ((-602 . -102) T) ((-602 . -25) T) ((-602 . -130) T) ((-602 . -641) 69137) ((-602 . -711) 69121) ((-602 . -417) 69086) ((-602 . -366) 69018) ((-601 . -1073) T) ((-601 . -488) 68999) ((-601 . -608) 68949) ((-601 . -611) 68930) ((-601 . -1091) T) ((-601 . -102) T) ((-601 . -93) T) ((-600 . -608) 68897) ((-600 . -488) 68879) ((-600 . -611) 68861) ((-597 . -1252) 68845) ((-597 . -371) 68829) ((-597 . -844) 68808) ((-597 . -150) 68792) ((-597 . -34) T) ((-597 . -1204) T) ((-597 . -608) 68704) ((-597 . -308) 68642) ((-597 . -512) 68575) ((-597 . -1091) 68525) ((-597 . -102) 68475) ((-597 . -487) 68459) ((-597 . -609) 68420) ((-597 . -599) 68397) ((-597 . -285) 68374) ((-597 . -287) 68351) ((-597 . -644) 68335) ((-597 . -19) 68319) ((-596 . -608) 68301) ((-592 . -1042) T) ((-592 . -1049) T) ((-592 . -1102) T) ((-592 . -720) T) ((-592 . -21) T) ((-592 . -23) T) ((-592 . -1091) T) ((-592 . -608) 68283) ((-592 . -102) T) ((-592 . -25) T) ((-592 . -130) T) ((-592 . -641) 68270) ((-592 . -611) 68228) ((-592 . -554) 68207) ((-592 . -289) 68186) ((-592 . -171) 68165) ((-592 . -711) 68138) ((-592 . -1048) 68111) ((-592 . -111) 68082) ((-592 . -38) 68055) ((-591 . -1232) 68032) ((-591 . -47) 68009) ((-591 . -38) 67906) ((-591 . -711) 67803) ((-591 . -611) 67685) ((-591 . -289) 67664) ((-591 . -554) 67643) ((-591 . -111) 67512) ((-591 . -1048) 67395) ((-591 . -171) 67346) ((-591 . -146) 67325) ((-591 . -144) 67304) ((-591 . -641) 67229) ((-591 . -966) 67198) ((-591 . -893) 67111) ((-591 . -285) 67096) ((-591 . -1042) T) ((-591 . -1049) T) ((-591 . -1102) T) ((-591 . -720) T) ((-591 . -21) T) ((-591 . -23) T) ((-591 . -1091) T) ((-591 . -608) 67078) ((-591 . -102) T) ((-591 . -25) T) ((-591 . -130) T) ((-591 . -232) 67037) ((-589 . -1134) T) ((-589 . -371) 67019) ((-589 . -844) T) ((-589 . -150) 67001) ((-589 . -34) T) ((-589 . -1204) T) ((-589 . -608) 66983) ((-589 . -308) NIL) ((-589 . -512) NIL) ((-589 . -1091) T) ((-589 . -102) T) ((-589 . -487) 66965) ((-589 . -609) NIL) ((-589 . -599) 66940) ((-589 . -285) 66915) ((-589 . -287) 66890) ((-589 . -644) 66872) ((-589 . -19) 66854) ((-588 . -1073) T) ((-588 . -488) 66835) ((-588 . -608) 66801) ((-588 . -611) 66782) ((-588 . -1091) T) ((-588 . -102) T) ((-588 . -93) T) ((-580 . -711) 66757) ((-580 . -641) 66732) ((-580 . -130) T) ((-580 . -25) T) ((-580 . -102) T) ((-580 . -608) 66714) ((-580 . -1091) T) ((-580 . -23) T) ((-580 . -21) T) ((-580 . -1048) 66689) ((-580 . -111) 66657) ((-580 . -1031) 66641) ((-580 . -611) 66625) ((-578 . -349) T) ((-578 . -1141) T) ((-578 . -367) T) ((-578 . -144) T) ((-578 . -362) T) ((-578 . -1209) T) ((-578 . -914) T) ((-578 . -554) T) ((-578 . -171) T) ((-578 . -611) 66575) ((-578 . -711) 66540) ((-578 . -38) 66505) ((-578 . -450) T) ((-578 . -306) T) ((-578 . -111) 66461) ((-578 . -1048) 66426) ((-578 . -641) 66391) ((-578 . -289) T) ((-578 . -242) T) ((-578 . -401) T) ((-578 . -1042) T) ((-578 . -1049) T) ((-578 . -1102) T) ((-578 . -720) T) ((-578 . -21) T) ((-578 . -23) T) ((-578 . -1091) T) ((-578 . -608) 66373) ((-578 . -102) T) ((-578 . -25) T) ((-578 . -130) T) ((-578 . -232) T) ((-578 . -328) 66360) ((-578 . -146) 66342) ((-578 . -1031) 66329) ((-578 . -1261) 66316) ((-578 . -1272) 66303) ((-578 . -609) 66285) ((-577 . -863) 66269) ((-577 . -914) T) ((-577 . -554) T) ((-577 . -289) T) ((-577 . -171) T) ((-577 . -611) 66241) ((-577 . -711) 66228) ((-577 . -1048) 66215) ((-577 . -111) 66200) ((-577 . -38) 66187) ((-577 . -450) T) ((-577 . -306) T) ((-577 . -1042) T) ((-577 . -1049) T) ((-577 . -1102) T) ((-577 . -720) T) ((-577 . -21) T) ((-577 . -23) T) ((-577 . -1091) T) ((-577 . -608) 66169) ((-577 . -102) T) ((-577 . -25) T) ((-577 . -130) T) ((-577 . -641) 66156) ((-577 . -146) T) ((-576 . -1091) T) ((-576 . -608) 66138) ((-576 . -102) T) ((-575 . -1091) T) ((-575 . -608) 66120) ((-575 . -102) T) ((-574 . -573) T) ((-574 . -855) T) ((-574 . -172) T) ((-574 . -525) T) ((-574 . -608) 66102) ((-568 . -552) 66086) ((-568 . -35) T) ((-568 . -95) T) ((-568 . -283) T) ((-568 . -491) T) ((-568 . -1193) T) ((-568 . -1190) T) ((-568 . -1031) 66068) ((-568 . -995) T) ((-568 . -844) T) ((-568 . -554) T) ((-568 . -289) T) ((-568 . -171) T) ((-568 . -611) 66040) ((-568 . -711) 66027) ((-568 . -641) 66014) ((-568 . -130) T) ((-568 . -25) T) ((-568 . -102) T) ((-568 . -608) 65996) ((-568 . -1091) T) ((-568 . -23) T) ((-568 . -21) T) ((-568 . -1048) 65983) ((-568 . -111) 65968) ((-568 . -1042) T) ((-568 . -1049) T) ((-568 . -1102) T) ((-568 . -720) T) ((-568 . -38) 65955) ((-568 . -450) T) ((-548 . -1181) 65934) ((-548 . -228) 65884) ((-548 . -107) 65834) ((-548 . -308) 65638) ((-548 . -512) 65430) ((-548 . -487) 65367) ((-548 . -150) 65317) ((-548 . -609) NIL) ((-548 . -234) 65267) ((-548 . -605) 65246) ((-548 . -287) 65225) ((-548 . -285) 65204) ((-548 . -102) T) ((-548 . -1091) T) ((-548 . -608) 65186) ((-548 . -1204) T) ((-548 . -34) T) ((-548 . -599) 65165) ((-547 . -838) T) ((-547 . -844) T) ((-547 . -1091) T) ((-547 . -608) 65147) ((-547 . -102) T) ((-547 . -367) T) ((-546 . -838) T) ((-546 . -844) T) ((-546 . -1091) T) ((-546 . -608) 65129) ((-546 . -102) T) ((-546 . -367) T) ((-545 . -838) T) ((-545 . -844) T) ((-545 . -1091) T) ((-545 . -608) 65111) ((-545 . -102) T) ((-545 . -367) T) ((-544 . -543) T) ((-544 . -1209) T) ((-544 . -1141) T) ((-544 . -1031) 65093) ((-544 . -609) 64992) ((-544 . -1013) T) ((-544 . -879) 64974) ((-544 . -842) T) ((-544 . -791) T) ((-544 . -788) T) ((-544 . -844) T) ((-544 . -786) T) ((-544 . -785) T) ((-544 . -814) T) ((-544 . -634) 64956) ((-544 . -914) T) ((-544 . -554) T) ((-544 . -289) T) ((-544 . -171) T) ((-544 . -611) 64928) ((-544 . -711) 64915) ((-544 . -1048) 64902) ((-544 . -111) 64887) ((-544 . -38) 64874) ((-544 . -450) T) ((-544 . -306) T) ((-544 . -232) T) ((-544 . -142) T) ((-544 . -1042) T) ((-544 . -1049) T) ((-544 . -1102) T) ((-544 . -720) T) ((-544 . -21) T) ((-544 . -23) T) ((-544 . -1091) T) ((-544 . -608) 64856) ((-544 . -102) T) ((-544 . -25) T) ((-544 . -130) T) ((-544 . -641) 64843) ((-544 . -146) T) ((-544 . -815) T) ((-533 . -1094) 64795) ((-533 . -102) T) ((-533 . -608) 64777) ((-533 . -1091) T) ((-533 . -613) 64680) ((-533 . -609) 64661) ((-531 . -761) 64643) ((-531 . -525) T) ((-531 . -172) T) ((-531 . -855) T) ((-531 . -573) T) ((-531 . -608) 64625) ((-529 . -787) T) ((-529 . -130) T) ((-529 . -25) T) ((-529 . -102) T) ((-529 . -608) 64607) ((-529 . -1091) T) ((-529 . -23) T) ((-529 . -786) T) ((-529 . -844) T) ((-529 . -788) T) ((-529 . -791) T) ((-529 . -507) 64584) ((-527 . -525) T) ((-527 . -172) T) ((-527 . -608) 64566) ((-523 . -1073) T) ((-523 . -488) 64547) ((-523 . -608) 64513) ((-523 . -611) 64494) ((-523 . -1091) T) ((-523 . -102) T) ((-523 . -93) T) ((-522 . -1073) T) ((-522 . -488) 64475) ((-522 . -608) 64441) ((-522 . -611) 64422) ((-522 . -1091) T) ((-522 . -102) T) ((-522 . -93) T) ((-521 . -679) 64372) ((-521 . -487) 64356) ((-521 . -102) 64334) ((-521 . -1091) 64312) ((-521 . -512) 64245) ((-521 . -308) 64183) ((-521 . -608) 64115) ((-521 . -1204) T) ((-521 . -34) T) ((-521 . -57) 64065) ((-518 . -659) 64049) ((-518 . -1242) 64033) ((-518 . -1003) 64017) ((-518 . -1139) 64001) ((-518 . -844) 63980) ((-518 . -371) 63964) ((-518 . -644) 63948) ((-518 . -287) 63925) ((-518 . -285) 63902) ((-518 . -599) 63879) ((-518 . -609) 63840) ((-518 . -487) 63824) ((-518 . -102) 63774) ((-518 . -1091) 63724) ((-518 . -512) 63657) ((-518 . -308) 63595) ((-518 . -608) 63507) ((-518 . -1204) T) ((-518 . -34) T) ((-518 . -150) 63491) ((-518 . -281) 63475) ((-517 . -57) 63449) ((-517 . -34) T) ((-517 . -1204) T) ((-517 . -608) 63381) ((-517 . -308) 63319) ((-517 . -512) 63252) ((-517 . -1091) 63230) ((-517 . -102) 63208) ((-517 . -487) 63192) ((-516 . -328) 63169) ((-516 . -232) T) ((-516 . -367) T) ((-516 . -1141) T) ((-516 . -349) T) ((-516 . -146) 63151) ((-516 . -611) 63081) ((-516 . -641) 63026) ((-516 . -130) T) ((-516 . -25) T) ((-516 . -102) T) ((-516 . -608) 63008) ((-516 . -1091) T) ((-516 . -23) T) ((-516 . -21) T) ((-516 . -720) T) ((-516 . -1102) T) ((-516 . -1049) T) ((-516 . -1042) T) ((-516 . -362) T) ((-516 . -1209) T) ((-516 . -914) T) ((-516 . -554) T) ((-516 . -171) T) ((-516 . -711) 62953) ((-516 . -38) 62918) ((-516 . -450) T) ((-516 . -306) T) ((-516 . -111) 62847) ((-516 . -1048) 62792) ((-516 . -289) T) ((-516 . -242) T) ((-516 . -401) T) ((-516 . -144) T) ((-516 . -1031) 62769) ((-516 . -1261) 62746) ((-516 . -1272) 62723) ((-515 . -1073) T) ((-515 . -488) 62704) ((-515 . -608) 62670) ((-515 . -611) 62651) ((-515 . -1091) T) ((-515 . -102) T) ((-515 . -93) T) ((-514 . -19) 62635) ((-514 . -644) 62619) ((-514 . -287) 62596) ((-514 . -285) 62573) ((-514 . -599) 62550) ((-514 . -609) 62511) ((-514 . -487) 62495) ((-514 . -102) 62445) ((-514 . -1091) 62395) ((-514 . -512) 62328) ((-514 . -308) 62266) ((-514 . -608) 62178) ((-514 . -1204) T) ((-514 . -34) T) ((-514 . -150) 62162) ((-514 . -844) 62141) ((-514 . -371) 62125) ((-514 . -281) 62109) ((-513 . -322) 62088) ((-513 . -611) 62072) ((-513 . -1031) 62056) ((-513 . -23) T) ((-513 . -1091) T) ((-513 . -608) 62038) ((-513 . -102) T) ((-513 . -25) T) ((-513 . -130) T) ((-510 . -787) T) ((-510 . -130) T) ((-510 . -25) T) ((-510 . -102) T) ((-510 . -608) 62020) ((-510 . -1091) T) ((-510 . -23) T) ((-510 . -786) T) ((-510 . -844) T) ((-510 . -788) T) ((-510 . -791) T) ((-510 . -507) 61999) ((-509 . -786) T) ((-509 . -844) T) ((-509 . -788) T) ((-509 . -25) T) ((-509 . -102) T) ((-509 . -608) 61981) ((-509 . -1091) T) ((-509 . -23) T) ((-509 . -507) 61960) ((-508 . -507) 61939) ((-508 . -102) T) ((-508 . -608) 61921) ((-508 . -1091) T) ((-506 . -23) T) ((-506 . -1091) T) ((-506 . -608) 61903) ((-506 . -102) T) ((-506 . -25) T) ((-506 . -507) 61882) ((-505 . -21) T) ((-505 . -23) T) ((-505 . -1091) T) ((-505 . -608) 61864) ((-505 . -102) T) ((-505 . -25) T) ((-505 . -130) T) ((-505 . -507) 61843) ((-504 . -1091) T) ((-504 . -608) 61809) ((-504 . -102) T) ((-502 . -1091) T) ((-502 . -608) 61791) ((-502 . -102) T) ((-500 . -844) T) ((-500 . -102) T) ((-500 . -608) 61773) ((-500 . -1091) T) ((-498 . -123) T) ((-498 . -371) 61755) ((-498 . -844) T) ((-498 . -150) 61737) ((-498 . -34) T) ((-498 . -1204) T) ((-498 . -608) 61719) ((-498 . -308) NIL) ((-498 . -512) NIL) ((-498 . -1091) T) ((-498 . -487) 61701) ((-498 . -609) 61683) ((-498 . -599) 61658) ((-498 . -285) 61633) ((-498 . -287) 61608) ((-498 . -644) 61590) ((-498 . -19) 61572) ((-498 . -102) T) ((-498 . -655) T) ((-495 . -57) 61522) ((-495 . -34) T) ((-495 . -1204) T) ((-495 . -608) 61454) ((-495 . -308) 61392) ((-495 . -512) 61325) ((-495 . -1091) 61303) ((-495 . -102) 61281) ((-495 . -487) 61265) ((-494 . -19) 61249) ((-494 . -644) 61233) ((-494 . -287) 61210) ((-494 . -285) 61187) ((-494 . -599) 61164) ((-494 . -609) 61125) ((-494 . -487) 61109) ((-494 . -102) 61059) ((-494 . -1091) 61009) ((-494 . -512) 60942) ((-494 . -308) 60880) ((-494 . -608) 60792) ((-494 . -1204) T) ((-494 . -34) T) ((-494 . -150) 60776) ((-494 . -844) 60755) ((-494 . -371) 60739) ((-493 . -297) T) ((-493 . -611) 60672) ((-493 . -1031) 60615) ((-493 . -1091) T) ((-493 . -608) 60597) ((-493 . -102) T) ((-493 . -844) T) ((-493 . -512) 60563) ((-493 . -308) 60550) ((-493 . -27) T) ((-493 . -995) T) ((-493 . -242) T) ((-493 . -111) 60506) ((-493 . -1048) 60471) ((-493 . -289) T) ((-493 . -711) 60436) ((-493 . -641) 60401) ((-493 . -130) T) ((-493 . -25) T) ((-493 . -23) T) ((-493 . -21) T) ((-493 . -1042) T) ((-493 . -1049) T) ((-493 . -1102) T) ((-493 . -720) T) ((-493 . -38) 60366) ((-493 . -306) T) ((-493 . -450) T) ((-493 . -171) T) ((-493 . -554) T) ((-493 . -914) T) ((-493 . -1209) T) ((-493 . -362) T) ((-493 . -634) 60326) ((-493 . -1013) T) ((-493 . -609) 60271) ((-493 . -146) T) ((-493 . -232) T) ((-489 . -1091) T) ((-489 . -608) 60237) ((-489 . -102) T) ((-485 . -984) 60219) ((-485 . -1141) T) ((-485 . -611) 60169) ((-485 . -1031) 60129) ((-485 . -609) 60059) ((-485 . -1013) T) ((-485 . -903) NIL) ((-485 . -877) 60041) ((-485 . -842) T) ((-485 . -791) T) ((-485 . -788) T) ((-485 . -844) T) ((-485 . -786) T) ((-485 . -785) T) ((-485 . -814) T) ((-485 . -879) 60023) ((-485 . -1204) T) ((-485 . -399) 60005) ((-485 . -634) 59987) ((-485 . -376) 59969) ((-485 . -285) NIL) ((-485 . -308) NIL) ((-485 . -512) NIL) ((-485 . -337) 59951) ((-485 . -242) T) ((-485 . -111) 59885) ((-485 . -1048) 59835) ((-485 . -289) T) ((-485 . -711) 59785) ((-485 . -641) 59735) ((-485 . -38) 59685) ((-485 . -306) T) ((-485 . -450) T) ((-485 . -171) T) ((-485 . -554) T) ((-485 . -914) T) ((-485 . -1209) T) ((-485 . -362) T) ((-485 . -232) T) ((-485 . -893) NIL) ((-485 . -230) 59667) ((-485 . -146) T) ((-485 . -144) NIL) ((-485 . -130) T) ((-485 . -25) T) ((-485 . -102) T) ((-485 . -608) 59609) ((-485 . -1091) T) ((-485 . -23) T) ((-485 . -21) T) ((-485 . -1042) T) ((-485 . -1049) T) ((-485 . -1102) T) ((-485 . -720) T) ((-483 . -335) 59578) ((-483 . -130) T) ((-483 . -25) T) ((-483 . -102) T) ((-483 . -608) 59560) ((-483 . -1091) T) ((-483 . -23) T) ((-483 . -21) T) ((-482 . -961) 59544) ((-482 . -487) 59528) ((-482 . -102) 59506) ((-482 . -1091) 59484) ((-482 . -512) 59417) ((-482 . -308) 59355) ((-482 . -608) 59287) ((-482 . -1204) T) ((-482 . -34) T) ((-482 . -107) 59271) ((-481 . -1073) T) ((-481 . -488) 59252) ((-481 . -608) 59218) ((-481 . -611) 59199) ((-481 . -1091) T) ((-481 . -102) T) ((-481 . -93) T) ((-480 . -237) 59178) ((-480 . -1261) 59148) ((-480 . -785) 59127) ((-480 . -842) 59106) ((-480 . -791) 59057) ((-480 . -788) 59008) ((-480 . -844) 58959) ((-480 . -786) 58910) ((-480 . -787) 58889) ((-480 . -287) 58866) ((-480 . -285) 58843) ((-480 . -487) 58827) ((-480 . -512) 58760) ((-480 . -308) 58698) ((-480 . -1204) T) ((-480 . -34) T) ((-480 . -599) 58675) ((-480 . -1031) 58502) ((-480 . -611) 58232) ((-480 . -411) 58201) ((-480 . -634) 58107) ((-480 . -376) 58076) ((-480 . -367) 58055) ((-480 . -232) 58007) ((-480 . -893) 57939) ((-480 . -230) 57908) ((-480 . -111) 57798) ((-480 . -1048) 57695) ((-480 . -171) 57674) ((-480 . -608) 57405) ((-480 . -711) 57347) ((-480 . -641) 57195) ((-480 . -130) 57065) ((-480 . -23) 56935) ((-480 . -21) 56845) ((-480 . -1042) 56775) ((-480 . -1049) 56705) ((-480 . -1102) 56615) ((-480 . -720) 56525) ((-480 . -38) 56495) ((-480 . -1091) 56285) ((-480 . -102) 56075) ((-480 . -25) 55926) ((-479 . -943) 55871) ((-479 . -611) 55656) ((-479 . -1031) 55532) ((-479 . -1209) 55511) ((-479 . -903) 55490) ((-479 . -879) NIL) ((-479 . -893) 55467) ((-479 . -844) 55446) ((-479 . -512) 55389) ((-479 . -450) 55340) ((-479 . -634) 55288) ((-479 . -376) 55272) ((-479 . -47) 55229) ((-479 . -38) 55078) ((-479 . -711) 54927) ((-479 . -289) 54858) ((-479 . -554) 54789) ((-479 . -111) 54618) ((-479 . -1048) 54461) ((-479 . -171) 54372) ((-479 . -146) 54351) ((-479 . -144) 54330) ((-479 . -641) 54255) ((-479 . -130) T) ((-479 . -25) T) ((-479 . -102) T) ((-479 . -608) 54237) ((-479 . -1091) T) ((-479 . -23) T) ((-479 . -21) T) ((-479 . -1042) T) ((-479 . -1049) T) ((-479 . -1102) T) ((-479 . -720) T) ((-479 . -411) 54221) ((-479 . -325) 54178) ((-479 . -308) 54165) ((-479 . -609) 54026) ((-477 . -1181) 54005) ((-477 . -228) 53955) ((-477 . -107) 53905) ((-477 . -308) 53709) ((-477 . -512) 53501) ((-477 . -487) 53438) ((-477 . -150) 53388) ((-477 . -609) NIL) ((-477 . -234) 53338) ((-477 . -605) 53317) ((-477 . -287) 53296) ((-477 . -285) 53275) ((-477 . -102) T) ((-477 . -1091) T) ((-477 . -608) 53257) ((-477 . -1204) T) ((-477 . -34) T) ((-477 . -599) 53236) ((-476 . -1073) T) ((-476 . -488) 53217) ((-476 . -608) 53183) ((-476 . -611) 53164) ((-476 . -1091) T) ((-476 . -102) T) ((-476 . -93) T) ((-475 . -362) T) ((-475 . -1209) T) ((-475 . -914) T) ((-475 . -554) T) ((-475 . -171) T) ((-475 . -611) 53114) ((-475 . -711) 53079) ((-475 . -38) 53044) ((-475 . -450) T) ((-475 . -306) T) ((-475 . -641) 53009) ((-475 . -720) T) ((-475 . -1102) T) ((-475 . -1049) T) ((-475 . -1042) T) ((-475 . -111) 52965) ((-475 . -1048) 52930) ((-475 . -21) T) ((-475 . -23) T) ((-475 . -1091) T) ((-475 . -608) 52882) ((-475 . -102) T) ((-475 . -25) T) ((-475 . -130) T) ((-475 . -289) T) ((-475 . -242) T) ((-475 . -146) T) ((-475 . -1031) 52842) ((-475 . -1013) T) ((-475 . -609) 52764) ((-474 . -1199) 52733) ((-474 . -608) 52695) ((-474 . -150) 52679) ((-474 . -34) T) ((-474 . -1204) T) ((-474 . -308) 52617) ((-474 . -512) 52550) ((-474 . -1091) T) ((-474 . -102) T) ((-474 . -487) 52534) ((-474 . -609) 52495) ((-474 . -969) 52464) ((-473 . -1181) 52443) ((-473 . -228) 52393) ((-473 . -107) 52343) ((-473 . -308) 52147) ((-473 . -512) 51939) ((-473 . -487) 51876) ((-473 . -150) 51826) ((-473 . -609) NIL) ((-473 . -234) 51776) ((-473 . -605) 51755) ((-473 . -287) 51734) ((-473 . -285) 51713) ((-473 . -102) T) ((-473 . -1091) T) ((-473 . -608) 51695) ((-473 . -1204) T) ((-473 . -34) T) ((-473 . -599) 51674) ((-472 . -1236) 51658) ((-472 . -232) 51610) ((-472 . -285) 51595) ((-472 . -893) 51501) ((-472 . -966) 51463) ((-472 . -38) 51304) ((-472 . -111) 51125) ((-472 . -1048) 50960) ((-472 . -641) 50857) ((-472 . -711) 50698) ((-472 . -611) 50524) ((-472 . -144) 50503) ((-472 . -146) 50482) ((-472 . -47) 50452) ((-472 . -1232) 50422) ((-472 . -35) 50388) ((-472 . -95) 50354) ((-472 . -283) 50320) ((-472 . -491) 50286) ((-472 . -1193) 50252) ((-472 . -1190) 50218) ((-472 . -995) 50184) ((-472 . -242) 50163) ((-472 . -289) 50114) ((-472 . -130) T) ((-472 . -25) T) ((-472 . -102) T) ((-472 . -608) 50096) ((-472 . -1091) T) ((-472 . -23) T) ((-472 . -21) T) ((-472 . -1042) T) ((-472 . -1049) T) ((-472 . -1102) T) ((-472 . -720) T) ((-472 . -306) 50075) ((-472 . -450) 50054) ((-472 . -171) 49985) ((-472 . -554) 49936) ((-472 . -914) 49915) ((-472 . -1209) 49894) ((-472 . -362) 49873) ((-466 . -1091) T) ((-466 . -608) 49855) ((-466 . -102) T) ((-461 . -969) 49824) ((-461 . -609) 49785) ((-461 . -487) 49769) ((-461 . -102) T) ((-461 . -1091) T) ((-461 . -512) 49702) ((-461 . -308) 49640) ((-461 . -608) 49602) ((-461 . -1204) T) ((-461 . -34) T) ((-461 . -150) 49586) ((-459 . -711) 49557) ((-459 . -641) 49528) ((-459 . -130) T) ((-459 . -25) T) ((-459 . -102) T) ((-459 . -608) 49510) ((-459 . -1091) T) ((-459 . -23) T) ((-459 . -21) T) ((-459 . -1048) 49481) ((-459 . -111) 49442) ((-452 . -943) 49409) ((-452 . -611) 49194) ((-452 . -1031) 49070) ((-452 . -1209) 49049) ((-452 . -903) 49028) ((-452 . -879) NIL) ((-452 . -893) 49005) ((-452 . -844) 48984) ((-452 . -512) 48927) ((-452 . -450) 48878) ((-452 . -634) 48826) ((-452 . -376) 48810) ((-452 . -47) 48789) ((-452 . -38) 48638) ((-452 . -711) 48487) ((-452 . -289) 48418) ((-452 . -554) 48349) ((-452 . -111) 48178) ((-452 . -1048) 48021) ((-452 . -171) 47932) ((-452 . -146) 47911) ((-452 . -144) 47890) ((-452 . -641) 47815) ((-452 . -130) T) ((-452 . -25) T) ((-452 . -102) T) ((-452 . -608) 47797) ((-452 . -1091) T) ((-452 . -23) T) ((-452 . -21) T) ((-452 . -1042) T) ((-452 . -1049) T) ((-452 . -1102) T) ((-452 . -720) T) ((-452 . -411) 47781) ((-452 . -325) 47760) ((-452 . -308) 47747) ((-452 . -609) 47608) ((-451 . -417) 47578) ((-451 . -738) 47548) ((-451 . -714) T) ((-451 . -755) T) ((-451 . -111) 47511) ((-451 . -1048) 47481) ((-451 . -21) T) ((-451 . -23) T) ((-451 . -1091) T) ((-451 . -608) 47463) ((-451 . -102) T) ((-451 . -25) T) ((-451 . -130) T) ((-451 . -641) 47393) ((-451 . -711) 47363) ((-451 . -366) 47333) ((-437 . -1091) T) ((-437 . -608) 47315) ((-437 . -102) T) ((-436 . -364) 47289) ((-436 . -102) T) ((-436 . -608) 47271) ((-436 . -1091) T) ((-435 . -1091) T) ((-435 . -608) 47253) ((-435 . -102) T) ((-433 . -608) 47235) ((-428 . -38) 47219) ((-428 . -611) 47188) ((-428 . -641) 47162) ((-428 . -720) T) ((-428 . -1102) T) ((-428 . -1049) T) ((-428 . -1042) T) ((-428 . -111) 47141) ((-428 . -1048) 47125) ((-428 . -21) T) ((-428 . -23) T) ((-428 . -1091) T) ((-428 . -608) 47107) ((-428 . -102) T) ((-428 . -25) T) ((-428 . -130) T) ((-428 . -711) 47091) ((-414 . -720) T) ((-414 . -1091) T) ((-414 . -608) 47073) ((-414 . -102) T) ((-414 . -1102) T) ((-412 . -471) T) ((-412 . -1102) T) ((-412 . -102) T) ((-412 . -608) 47055) ((-412 . -1091) T) ((-412 . -720) T) ((-406 . -984) 47039) ((-406 . -1141) 47017) ((-406 . -1031) 46883) ((-406 . -611) 46781) ((-406 . -609) 46588) ((-406 . -1013) 46566) ((-406 . -903) 46545) ((-406 . -877) 46529) ((-406 . -842) 46508) ((-406 . -791) 46487) ((-406 . -788) 46466) ((-406 . -844) 46417) ((-406 . -786) 46396) ((-406 . -785) 46375) ((-406 . -814) 46354) ((-406 . -879) 46279) ((-406 . -1204) T) ((-406 . -399) 46263) ((-406 . -634) 46211) ((-406 . -376) 46195) ((-406 . -285) 46153) ((-406 . -308) 46118) ((-406 . -512) 46030) ((-406 . -337) 46014) ((-406 . -242) T) ((-406 . -111) 45952) ((-406 . -1048) 45904) ((-406 . -289) T) ((-406 . -711) 45856) ((-406 . -641) 45808) ((-406 . -38) 45760) ((-406 . -306) T) ((-406 . -450) T) ((-406 . -171) T) ((-406 . -554) T) ((-406 . -914) T) ((-406 . -1209) T) ((-406 . -362) T) ((-406 . -232) 45739) ((-406 . -893) 45698) ((-406 . -230) 45682) ((-406 . -146) 45661) ((-406 . -144) 45640) ((-406 . -130) T) ((-406 . -25) T) ((-406 . -102) T) ((-406 . -608) 45622) ((-406 . -1091) T) ((-406 . -23) T) ((-406 . -21) T) ((-406 . -1042) T) ((-406 . -1049) T) ((-406 . -1102) T) ((-406 . -720) T) ((-406 . -815) 45575) ((-404 . -554) T) ((-404 . -289) T) ((-404 . -171) T) ((-404 . -611) 45483) ((-404 . -711) 45457) ((-404 . -641) 45431) ((-404 . -130) T) ((-404 . -25) T) ((-404 . -102) T) ((-404 . -608) 45413) ((-404 . -1091) T) ((-404 . -23) T) ((-404 . -21) T) ((-404 . -1048) 45387) ((-404 . -111) 45354) ((-404 . -1042) T) ((-404 . -1049) T) ((-404 . -1102) T) ((-404 . -720) T) ((-404 . -38) 45328) ((-404 . -230) 45312) ((-404 . -893) 45271) ((-404 . -232) 45250) ((-404 . -337) 45234) ((-404 . -512) 45076) ((-404 . -308) 45015) ((-404 . -285) 44943) ((-404 . -411) 44927) ((-404 . -1031) 44823) ((-404 . -450) 44773) ((-404 . -1013) 44751) ((-404 . -609) 44658) ((-404 . -1209) 44636) ((-398 . -1091) T) ((-398 . -608) 44618) ((-398 . -102) T) ((-398 . -609) 44595) ((-397 . -395) T) ((-397 . -1204) T) ((-397 . -608) 44577) ((-392 . -1091) T) ((-392 . -608) 44559) ((-392 . -102) T) ((-392 . -611) 44541) ((-389 . -738) 44525) ((-389 . -714) T) ((-389 . -755) T) ((-389 . -111) 44504) ((-389 . -1048) 44488) ((-389 . -21) T) ((-389 . -23) T) ((-389 . -1091) T) ((-389 . -608) 44470) ((-389 . -102) T) ((-389 . -25) T) ((-389 . -130) T) ((-389 . -641) 44454) ((-389 . -711) 44438) ((-387 . -388) T) ((-387 . -102) T) ((-387 . -608) 44404) ((-387 . -1091) T) ((-387 . -611) 44385) ((-387 . -488) 44366) ((-385 . -720) T) ((-385 . -1091) T) ((-385 . -608) 44348) ((-385 . -102) T) ((-385 . -1102) T) ((-385 . -1031) 44332) ((-385 . -611) 44316) ((-385 . -844) 44295) ((-381 . -383) 44274) ((-381 . -611) 44258) ((-381 . -1031) 44242) ((-381 . -711) 44212) ((-381 . -641) 44196) ((-381 . -130) T) ((-381 . -25) T) ((-381 . -102) T) ((-381 . -608) 44178) ((-381 . -1091) T) ((-381 . -23) T) ((-381 . -21) T) ((-381 . -1048) 44162) ((-381 . -111) 44141) ((-380 . -111) 44120) ((-380 . -1048) 44104) ((-380 . -21) T) ((-380 . -23) T) ((-380 . -1091) T) ((-380 . -608) 44086) ((-380 . -102) T) ((-380 . -25) T) ((-380 . -130) T) ((-380 . -641) 44070) ((-380 . -507) 44049) ((-380 . -711) 44019) ((-377 . -403) T) ((-377 . -146) T) ((-377 . -611) 43969) ((-377 . -641) 43934) ((-377 . -130) T) ((-377 . -25) T) ((-377 . -102) T) ((-377 . -608) 43901) ((-377 . -1091) T) ((-377 . -23) T) ((-377 . -21) T) ((-377 . -720) T) ((-377 . -1102) T) ((-377 . -1049) T) ((-377 . -1042) T) ((-377 . -609) 43815) ((-377 . -362) T) ((-377 . -1209) T) ((-377 . -914) T) ((-377 . -554) T) ((-377 . -171) T) ((-377 . -711) 43780) ((-377 . -38) 43745) ((-377 . -450) T) ((-377 . -306) T) ((-377 . -111) 43701) ((-377 . -1048) 43666) ((-377 . -289) T) ((-377 . -242) T) ((-377 . -842) T) ((-377 . -791) T) ((-377 . -788) T) ((-377 . -844) T) ((-377 . -786) T) ((-377 . -785) T) ((-377 . -879) 43648) ((-377 . -995) T) ((-377 . -1013) T) ((-377 . -1031) 43608) ((-377 . -1051) T) ((-377 . -232) T) ((-377 . -815) T) ((-377 . -1190) T) ((-377 . -1193) T) ((-377 . -491) T) ((-377 . -283) T) ((-377 . -95) T) ((-377 . -35) T) ((-377 . -613) 43590) ((-363 . -364) 43567) ((-363 . -102) T) ((-363 . -608) 43549) ((-363 . -1091) T) ((-360 . -471) T) ((-360 . -1102) T) ((-360 . -102) T) ((-360 . -608) 43531) ((-360 . -1091) T) ((-360 . -720) T) ((-360 . -1031) 43515) ((-360 . -611) 43499) ((-358 . -328) 43483) ((-358 . -232) 43462) ((-358 . -367) 43441) ((-358 . -1141) 43420) ((-358 . -349) 43399) ((-358 . -146) 43378) ((-358 . -611) 43315) ((-358 . -641) 43267) ((-358 . -130) T) ((-358 . -25) T) ((-358 . -102) T) ((-358 . -608) 43249) ((-358 . -1091) T) ((-358 . -23) T) ((-358 . -21) T) ((-358 . -720) T) ((-358 . -1102) T) ((-358 . -1049) T) ((-358 . -1042) T) ((-358 . -362) T) ((-358 . -1209) T) ((-358 . -914) T) ((-358 . -554) T) ((-358 . -171) T) ((-358 . -711) 43201) ((-358 . -38) 43166) ((-358 . -450) T) ((-358 . -306) T) ((-358 . -111) 43104) ((-358 . -1048) 43056) ((-358 . -289) T) ((-358 . -242) T) ((-358 . -401) 43007) ((-358 . -144) 42958) ((-358 . -1031) 42942) ((-358 . -1261) 42926) ((-358 . -1272) 42910) ((-354 . -328) 42894) ((-354 . -232) 42873) ((-354 . -367) 42852) ((-354 . -1141) 42831) ((-354 . -349) 42810) ((-354 . -146) 42789) ((-354 . -611) 42726) ((-354 . -641) 42678) ((-354 . -130) T) ((-354 . -25) T) ((-354 . -102) T) ((-354 . -608) 42660) ((-354 . -1091) T) ((-354 . -23) T) ((-354 . -21) T) ((-354 . -720) T) ((-354 . -1102) T) ((-354 . -1049) T) ((-354 . -1042) T) ((-354 . -362) T) ((-354 . -1209) T) ((-354 . -914) T) ((-354 . -554) T) ((-354 . -171) T) ((-354 . -711) 42612) ((-354 . -38) 42577) ((-354 . -450) T) ((-354 . -306) T) ((-354 . -111) 42515) ((-354 . -1048) 42467) ((-354 . -289) T) ((-354 . -242) T) ((-354 . -401) 42418) ((-354 . -144) 42369) ((-354 . -1031) 42353) ((-354 . -1261) 42337) ((-354 . -1272) 42321) ((-353 . -328) 42305) ((-353 . -232) 42284) ((-353 . -367) 42263) ((-353 . -1141) 42242) ((-353 . -349) 42221) ((-353 . -146) 42200) ((-353 . -611) 42137) ((-353 . -641) 42089) ((-353 . -130) T) ((-353 . -25) T) ((-353 . -102) T) ((-353 . -608) 42071) ((-353 . -1091) T) ((-353 . -23) T) ((-353 . -21) T) ((-353 . -720) T) ((-353 . -1102) T) ((-353 . -1049) T) ((-353 . -1042) T) ((-353 . -362) T) ((-353 . -1209) T) ((-353 . -914) T) ((-353 . -554) T) ((-353 . -171) T) ((-353 . -711) 42023) ((-353 . -38) 41988) ((-353 . -450) T) ((-353 . -306) T) ((-353 . -111) 41926) ((-353 . -1048) 41878) ((-353 . -289) T) ((-353 . -242) T) ((-353 . -401) 41829) ((-353 . -144) 41780) ((-353 . -1031) 41764) ((-353 . -1261) 41748) ((-353 . -1272) 41732) ((-352 . -328) 41716) ((-352 . -232) 41695) ((-352 . -367) 41674) ((-352 . -1141) 41653) ((-352 . -349) 41632) ((-352 . -146) 41611) ((-352 . -611) 41548) ((-352 . -641) 41500) ((-352 . -130) T) ((-352 . -25) T) ((-352 . -102) T) ((-352 . -608) 41482) ((-352 . -1091) T) ((-352 . -23) T) ((-352 . -21) T) ((-352 . -720) T) ((-352 . -1102) T) ((-352 . -1049) T) ((-352 . -1042) T) ((-352 . -362) T) ((-352 . -1209) T) ((-352 . -914) T) ((-352 . -554) T) ((-352 . -171) T) ((-352 . -711) 41434) ((-352 . -38) 41399) ((-352 . -450) T) ((-352 . -306) T) ((-352 . -111) 41337) ((-352 . -1048) 41289) ((-352 . -289) T) ((-352 . -242) T) ((-352 . -401) 41240) ((-352 . -144) 41191) ((-352 . -1031) 41175) ((-352 . -1261) 41159) ((-352 . -1272) 41143) ((-351 . -328) 41120) ((-351 . -232) T) ((-351 . -367) T) ((-351 . -1141) T) ((-351 . -349) T) ((-351 . -146) 41102) ((-351 . -611) 41032) ((-351 . -641) 40977) ((-351 . -130) T) ((-351 . -25) T) ((-351 . -102) T) ((-351 . -608) 40959) ((-351 . -1091) T) ((-351 . -23) T) ((-351 . -21) T) ((-351 . -720) T) ((-351 . -1102) T) ((-351 . -1049) T) ((-351 . -1042) T) ((-351 . -362) T) ((-351 . -1209) T) ((-351 . -914) T) ((-351 . -554) T) ((-351 . -171) T) ((-351 . -711) 40904) ((-351 . -38) 40869) ((-351 . -450) T) ((-351 . -306) T) ((-351 . -111) 40798) ((-351 . -1048) 40743) ((-351 . -289) T) ((-351 . -242) T) ((-351 . -401) T) ((-351 . -144) T) ((-351 . -1031) 40720) ((-351 . -1261) 40697) ((-351 . -1272) 40674) ((-345 . -328) 40658) ((-345 . -232) 40637) ((-345 . -367) 40616) ((-345 . -1141) 40595) ((-345 . -349) 40574) ((-345 . -146) 40553) ((-345 . -611) 40490) ((-345 . -641) 40442) ((-345 . -130) T) ((-345 . -25) T) ((-345 . -102) T) ((-345 . -608) 40424) ((-345 . -1091) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -720) T) ((-345 . -1102) T) ((-345 . -1049) T) ((-345 . -1042) T) ((-345 . -362) T) ((-345 . -1209) T) ((-345 . -914) T) ((-345 . -554) T) ((-345 . -171) T) ((-345 . -711) 40376) ((-345 . -38) 40341) ((-345 . -450) T) ((-345 . -306) T) ((-345 . -111) 40279) ((-345 . -1048) 40231) ((-345 . -289) T) ((-345 . -242) T) ((-345 . -401) 40182) ((-345 . -144) 40133) ((-345 . -1031) 40117) ((-345 . -1261) 40101) ((-345 . -1272) 40085) ((-344 . -328) 40069) ((-344 . -232) 40048) ((-344 . -367) 40027) ((-344 . -1141) 40006) ((-344 . -349) 39985) ((-344 . -146) 39964) ((-344 . -611) 39901) ((-344 . -641) 39853) ((-344 . -130) T) ((-344 . -25) T) ((-344 . -102) T) ((-344 . -608) 39835) ((-344 . -1091) T) ((-344 . -23) T) ((-344 . -21) T) ((-344 . -720) T) ((-344 . -1102) T) ((-344 . -1049) T) ((-344 . -1042) T) ((-344 . -362) T) ((-344 . -1209) T) ((-344 . -914) T) ((-344 . -554) T) ((-344 . -171) T) ((-344 . -711) 39787) ((-344 . -38) 39752) ((-344 . -450) T) ((-344 . -306) T) ((-344 . -111) 39690) ((-344 . -1048) 39642) ((-344 . -289) T) ((-344 . -242) T) ((-344 . -401) 39593) ((-344 . -144) 39544) ((-344 . -1031) 39528) ((-344 . -1261) 39512) ((-344 . -1272) 39496) ((-343 . -328) 39473) ((-343 . -232) T) ((-343 . -367) T) ((-343 . -1141) T) ((-343 . -349) T) ((-343 . -146) 39455) ((-343 . -611) 39385) ((-343 . -641) 39330) ((-343 . -130) T) ((-343 . -25) T) ((-343 . -102) T) ((-343 . -608) 39312) ((-343 . -1091) T) ((-343 . -23) T) ((-343 . -21) T) ((-343 . -720) T) ((-343 . -1102) T) ((-343 . -1049) T) ((-343 . -1042) T) ((-343 . -362) T) ((-343 . -1209) T) ((-343 . -914) T) ((-343 . -554) T) ((-343 . -171) T) ((-343 . -711) 39257) ((-343 . -38) 39222) ((-343 . -450) T) ((-343 . -306) T) ((-343 . -111) 39151) ((-343 . -1048) 39096) ((-343 . -289) T) ((-343 . -242) T) ((-343 . -401) T) ((-343 . -144) T) ((-343 . -1031) 39073) ((-343 . -1261) 39050) ((-343 . -1272) 39027) ((-339 . -328) 39004) ((-339 . -232) T) ((-339 . -367) T) ((-339 . -1141) T) ((-339 . -349) T) ((-339 . -146) 38986) ((-339 . -611) 38916) ((-339 . -641) 38861) ((-339 . -130) T) ((-339 . -25) T) ((-339 . -102) T) ((-339 . -608) 38843) ((-339 . -1091) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -720) T) ((-339 . -1102) T) ((-339 . -1049) T) ((-339 . -1042) T) ((-339 . -362) T) ((-339 . -1209) T) ((-339 . -914) T) ((-339 . -554) T) ((-339 . -171) T) ((-339 . -711) 38788) ((-339 . -38) 38753) ((-339 . -450) T) ((-339 . -306) T) ((-339 . -111) 38682) ((-339 . -1048) 38627) ((-339 . -289) T) ((-339 . -242) T) ((-339 . -401) T) ((-339 . -144) T) ((-339 . -1031) 38604) ((-339 . -1261) 38581) ((-339 . -1272) 38558) ((-338 . -297) T) ((-338 . -611) 38510) ((-338 . -1031) 38477) ((-338 . -1091) T) ((-338 . -608) 38459) ((-338 . -102) T) ((-338 . -844) T) ((-338 . -512) 38425) ((-338 . -308) 38412) ((-338 . -38) 38396) ((-338 . -641) 38370) ((-338 . -720) T) ((-338 . -1102) T) ((-338 . -1049) T) ((-338 . -1042) T) ((-338 . -111) 38349) ((-338 . -1048) 38333) ((-338 . -21) T) ((-338 . -23) T) ((-338 . -25) T) ((-338 . -130) T) ((-338 . -711) 38317) ((-338 . -893) 38298) ((-332 . -335) 38267) ((-332 . -130) T) ((-332 . -25) T) ((-332 . -102) T) ((-332 . -608) 38249) ((-332 . -1091) T) ((-332 . -23) T) ((-332 . -21) T) ((-330 . -844) T) ((-330 . -102) T) ((-330 . -608) 38231) ((-330 . -1091) T) ((-329 . -1091) T) ((-329 . -608) 38213) ((-329 . -102) T) ((-326 . -19) 38197) ((-326 . -644) 38181) ((-326 . -287) 38158) ((-326 . -285) 38135) ((-326 . -599) 38112) ((-326 . -609) 38073) ((-326 . -487) 38057) ((-326 . -102) 38007) ((-326 . -1091) 37957) ((-326 . -512) 37890) ((-326 . -308) 37828) ((-326 . -608) 37740) ((-326 . -1204) T) ((-326 . -34) T) ((-326 . -150) 37724) ((-326 . -844) 37703) ((-326 . -371) 37687) ((-326 . -281) 37671) ((-323 . -322) 37648) ((-323 . -611) 37632) ((-323 . -1031) 37616) ((-323 . -23) T) ((-323 . -1091) T) ((-323 . -608) 37598) ((-323 . -102) T) ((-323 . -25) T) ((-323 . -130) T) ((-321 . -21) T) ((-321 . -23) T) ((-321 . -1091) T) ((-321 . -608) 37580) ((-321 . -102) T) ((-321 . -25) T) ((-321 . -130) T) ((-321 . -711) 37562) ((-321 . -641) 37544) ((-321 . -1048) 37526) ((-321 . -111) 37501) ((-321 . -322) 37478) ((-321 . -611) 37462) ((-321 . -1031) 37446) ((-321 . -844) 37425) ((-318 . -1236) 37409) ((-318 . -232) 37361) ((-318 . -285) 37346) ((-318 . -893) 37252) ((-318 . -966) 37214) ((-318 . -38) 37055) ((-318 . -111) 36876) ((-318 . -1048) 36711) ((-318 . -641) 36608) ((-318 . -711) 36449) ((-318 . -611) 36275) ((-318 . -144) 36254) ((-318 . -146) 36233) ((-318 . -47) 36203) ((-318 . -1232) 36173) ((-318 . -35) 36139) ((-318 . -95) 36105) ((-318 . -283) 36071) ((-318 . -491) 36037) ((-318 . -1193) 36003) ((-318 . -1190) 35969) ((-318 . -995) 35935) ((-318 . -242) 35914) ((-318 . -289) 35865) ((-318 . -130) T) ((-318 . -25) T) ((-318 . -102) T) ((-318 . -608) 35847) ((-318 . -1091) T) ((-318 . -23) T) ((-318 . -21) T) ((-318 . -1042) T) ((-318 . -1049) T) ((-318 . -1102) T) ((-318 . -720) T) ((-318 . -306) 35826) ((-318 . -450) 35805) ((-318 . -171) 35736) ((-318 . -554) 35687) ((-318 . -914) 35666) ((-318 . -1209) 35645) ((-318 . -362) 35624) ((-318 . -786) T) ((-318 . -844) T) ((-318 . -788) T) ((-313 . -420) 35608) ((-313 . -611) 35172) ((-313 . -1031) 34835) ((-313 . -609) 34696) ((-313 . -877) 34680) ((-313 . -893) 34646) ((-313 . -471) 34625) ((-313 . -411) 34609) ((-313 . -879) 34534) ((-313 . -1204) T) ((-313 . -399) 34518) ((-313 . -634) 34424) ((-313 . -376) 34393) ((-313 . -242) 34372) ((-313 . -111) 34268) ((-313 . -1048) 34178) ((-313 . -289) 34157) ((-313 . -711) 34067) ((-313 . -641) 33888) ((-313 . -38) 33798) ((-313 . -306) 33777) ((-313 . -450) 33756) ((-313 . -171) 33735) ((-313 . -554) 33714) ((-313 . -914) 33693) ((-313 . -1209) 33672) ((-313 . -362) 33651) ((-313 . -308) 33638) ((-313 . -512) 33604) ((-313 . -844) T) ((-313 . -297) T) ((-313 . -146) 33583) ((-313 . -144) 33562) ((-313 . -1042) 33452) ((-313 . -1049) 33342) ((-313 . -1102) 33191) ((-313 . -720) 33040) ((-313 . -130) 32911) ((-313 . -25) 32763) ((-313 . -102) T) ((-313 . -608) 32745) ((-313 . -1091) T) ((-313 . -23) 32597) ((-313 . -21) 32468) ((-313 . -29) 32438) ((-313 . -995) 32417) ((-313 . -27) 32396) ((-313 . -1190) 32375) ((-313 . -1193) 32354) ((-313 . -491) 32333) ((-313 . -283) 32312) ((-313 . -95) 32291) ((-313 . -35) 32270) ((-313 . -159) 32249) ((-313 . -142) 32228) ((-313 . -625) 32207) ((-313 . -953) 32186) ((-313 . -1129) 32165) ((-312 . -984) 32126) ((-312 . -1141) NIL) ((-312 . -1031) 32056) ((-312 . -611) 31939) ((-312 . -609) NIL) ((-312 . -1013) NIL) ((-312 . -903) NIL) ((-312 . -877) 31900) ((-312 . -842) NIL) ((-312 . -791) NIL) ((-312 . -788) NIL) ((-312 . -844) NIL) ((-312 . -786) NIL) ((-312 . -785) NIL) ((-312 . -814) NIL) ((-312 . -879) NIL) ((-312 . -1204) T) ((-312 . -399) 31861) ((-312 . -634) 31822) ((-312 . -376) 31783) ((-312 . -285) 31718) ((-312 . -308) 31659) ((-312 . -512) 31551) ((-312 . -337) 31512) ((-312 . -242) T) ((-312 . -111) 31425) ((-312 . -1048) 31354) ((-312 . -289) T) ((-312 . -711) 31283) ((-312 . -641) 31212) ((-312 . -38) 31141) ((-312 . -306) T) ((-312 . -450) T) ((-312 . -171) T) ((-312 . -554) T) ((-312 . -914) T) ((-312 . -1209) T) ((-312 . -362) T) ((-312 . -232) NIL) ((-312 . -893) NIL) ((-312 . -230) 31102) ((-312 . -146) 31058) ((-312 . -144) 31014) ((-312 . -130) T) ((-312 . -25) T) ((-312 . -102) T) ((-312 . -608) 30996) ((-312 . -1091) T) ((-312 . -23) T) ((-312 . -21) T) ((-312 . -1042) T) ((-312 . -1049) T) ((-312 . -1102) T) ((-312 . -720) T) ((-311 . -1073) T) ((-311 . -488) 30977) ((-311 . -608) 30943) ((-311 . -611) 30924) ((-311 . -1091) T) ((-311 . -102) T) ((-311 . -93) T) ((-310 . -1091) T) ((-310 . -608) 30906) ((-310 . -102) T) ((-294 . -1181) 30885) ((-294 . -228) 30835) ((-294 . -107) 30785) ((-294 . -308) 30589) ((-294 . -512) 30381) ((-294 . -487) 30318) ((-294 . -150) 30268) ((-294 . -609) NIL) ((-294 . -234) 30218) ((-294 . -605) 30197) ((-294 . -287) 30176) ((-294 . -285) 30155) ((-294 . -102) T) ((-294 . -1091) T) ((-294 . -608) 30137) ((-294 . -1204) T) ((-294 . -34) T) ((-294 . -599) 30116) ((-292 . -1204) T) ((-292 . -512) 30065) ((-292 . -1091) 29847) ((-292 . -608) 29588) ((-292 . -102) 29370) ((-292 . -25) 29234) ((-292 . -21) 29117) ((-292 . -23) 29000) ((-292 . -130) 28883) ((-292 . -1102) 28764) ((-292 . -720) 28666) ((-292 . -471) 28645) ((-292 . -1042) 28587) ((-292 . -1049) 28529) ((-292 . -641) 28389) ((-292 . -611) 28320) ((-292 . -111) 28236) ((-292 . -1048) 28157) ((-292 . -711) 28099) ((-292 . -893) 28058) ((-292 . -1261) 28028) ((-290 . -608) 28010) ((-288 . -306) T) ((-288 . -450) T) ((-288 . -38) 27997) ((-288 . -611) 27969) ((-288 . -720) T) ((-288 . -1102) T) ((-288 . -1049) T) ((-288 . -1042) T) ((-288 . -111) 27954) ((-288 . -1048) 27941) ((-288 . -21) T) ((-288 . -23) T) ((-288 . -1091) T) ((-288 . -608) 27923) ((-288 . -102) T) ((-288 . -25) T) ((-288 . -130) T) ((-288 . -641) 27910) ((-288 . -711) 27897) ((-288 . -171) T) ((-288 . -289) T) ((-288 . -554) T) ((-288 . -914) T) ((-279 . -608) 27879) ((-278 . -976) 27863) ((-277 . -976) 27847) ((-274 . -844) T) ((-274 . -102) T) ((-274 . -608) 27829) ((-274 . -1091) T) ((-273 . -833) T) ((-273 . -102) T) ((-273 . -608) 27811) ((-273 . -1091) T) ((-272 . -833) T) ((-272 . -102) T) ((-272 . -608) 27793) ((-272 . -1091) T) ((-271 . -833) T) ((-271 . -102) T) ((-271 . -608) 27775) ((-271 . -1091) T) ((-270 . -833) T) ((-270 . -102) T) ((-270 . -608) 27757) ((-270 . -1091) T) ((-269 . -833) T) ((-269 . -102) T) ((-269 . -608) 27739) ((-269 . -1091) T) ((-268 . -833) T) ((-268 . -102) T) ((-268 . -608) 27721) ((-268 . -1091) T) ((-267 . -833) T) ((-267 . -102) T) ((-267 . -608) 27703) ((-267 . -1091) T) ((-263 . -252) 27665) ((-263 . -611) 27418) ((-263 . -1031) 27262) ((-263 . -609) 27010) ((-263 . -325) 26982) ((-263 . -411) 26966) ((-263 . -38) 26815) ((-263 . -111) 26644) ((-263 . -1048) 26487) ((-263 . -641) 26412) ((-263 . -711) 26261) ((-263 . -144) 26240) ((-263 . -146) 26219) ((-263 . -171) 26130) ((-263 . -554) 26061) ((-263 . -289) 25992) ((-263 . -47) 25964) ((-263 . -376) 25948) ((-263 . -634) 25896) ((-263 . -450) 25847) ((-263 . -512) 25732) ((-263 . -844) 25711) ((-263 . -893) 25657) ((-263 . -879) 25516) ((-263 . -903) 25495) ((-263 . -1209) 25474) ((-263 . -943) 25441) ((-263 . -308) 25428) ((-263 . -232) 25407) ((-263 . -130) T) ((-263 . -25) T) ((-263 . -102) T) ((-263 . -608) 25389) ((-263 . -1091) T) ((-263 . -23) T) ((-263 . -21) T) ((-263 . -720) T) ((-263 . -1102) T) ((-263 . -1049) T) ((-263 . -1042) T) ((-263 . -230) 25373) ((-260 . -1091) T) ((-260 . -608) 25355) ((-260 . -102) T) ((-250 . -237) 25334) ((-250 . -1261) 25304) ((-250 . -785) 25283) ((-250 . -842) 25262) ((-250 . -791) 25213) ((-250 . -788) 25164) ((-250 . -844) 25115) ((-250 . -786) 25066) ((-250 . -787) 25045) ((-250 . -287) 25022) ((-250 . -285) 24999) ((-250 . -487) 24983) ((-250 . -512) 24916) ((-250 . -308) 24854) ((-250 . -1204) T) ((-250 . -34) T) ((-250 . -599) 24831) ((-250 . -1031) 24658) ((-250 . -611) 24388) ((-250 . -411) 24357) ((-250 . -634) 24263) ((-250 . -376) 24232) ((-250 . -367) 24211) ((-250 . -232) 24163) ((-250 . -893) 24095) ((-250 . -230) 24064) ((-250 . -111) 23954) ((-250 . -1048) 23851) ((-250 . -171) 23830) ((-250 . -608) 23791) ((-250 . -711) 23733) ((-250 . -641) 23568) ((-250 . -130) T) ((-250 . -23) T) ((-250 . -21) T) ((-250 . -1042) 23498) ((-250 . -1049) 23428) ((-250 . -1102) 23338) ((-250 . -720) 23248) ((-250 . -38) 23218) ((-250 . -1091) T) ((-250 . -102) T) ((-250 . -25) T) ((-249 . -237) 23197) ((-249 . -1261) 23167) ((-249 . -785) 23146) ((-249 . -842) 23125) ((-249 . -791) 23076) ((-249 . -788) 23027) ((-249 . -844) 22978) ((-249 . -786) 22929) ((-249 . -787) 22908) ((-249 . -287) 22885) ((-249 . -285) 22862) ((-249 . -487) 22846) ((-249 . -512) 22779) ((-249 . -308) 22717) ((-249 . -1204) T) ((-249 . -34) T) ((-249 . -599) 22694) ((-249 . -1031) 22521) ((-249 . -611) 22251) ((-249 . -411) 22220) ((-249 . -634) 22126) ((-249 . -376) 22095) ((-249 . -367) 22074) ((-249 . -232) 22026) ((-249 . -893) 21958) ((-249 . -230) 21927) ((-249 . -111) 21817) ((-249 . -1048) 21714) ((-249 . -171) 21693) ((-249 . -608) 21654) ((-249 . -711) 21596) ((-249 . -641) 21418) ((-249 . -130) T) ((-249 . -23) T) ((-249 . -21) T) ((-249 . -1042) 21348) ((-249 . -1049) 21278) ((-249 . -1102) 21188) ((-249 . -720) 21098) ((-249 . -38) 21068) ((-249 . -1091) T) ((-249 . -102) T) ((-249 . -25) T) ((-248 . -185) T) ((-248 . -1091) T) ((-248 . -608) 21035) ((-248 . -102) T) ((-248 . -830) 21017) ((-247 . -1091) T) ((-247 . -608) 20999) ((-247 . -102) T) ((-246 . -943) 20944) ((-246 . -611) 20729) ((-246 . -1031) 20605) ((-246 . -1209) 20584) ((-246 . -903) 20563) ((-246 . -879) NIL) ((-246 . -893) 20540) ((-246 . -844) 20519) ((-246 . -512) 20462) ((-246 . -450) 20413) ((-246 . -634) 20361) ((-246 . -376) 20345) ((-246 . -47) 20302) ((-246 . -38) 20151) ((-246 . -711) 20000) ((-246 . -289) 19931) ((-246 . -554) 19862) ((-246 . -111) 19691) ((-246 . -1048) 19534) ((-246 . -171) 19445) ((-246 . -146) 19424) ((-246 . -144) 19403) ((-246 . -641) 19328) ((-246 . -130) T) ((-246 . -25) T) ((-246 . -102) T) ((-246 . -608) 19310) ((-246 . -1091) T) ((-246 . -23) T) ((-246 . -21) T) ((-246 . -1042) T) ((-246 . -1049) T) ((-246 . -1102) T) ((-246 . -720) T) ((-246 . -411) 19294) ((-246 . -325) 19251) ((-246 . -308) 19238) ((-246 . -609) 19099) ((-244 . -659) 19083) ((-244 . -1242) 19067) ((-244 . -1003) 19051) ((-244 . -1139) 19035) ((-244 . -844) 19014) ((-244 . -371) 18998) ((-244 . -644) 18982) ((-244 . -287) 18959) ((-244 . -285) 18936) ((-244 . -599) 18913) ((-244 . -609) 18874) ((-244 . -487) 18858) ((-244 . -102) 18808) ((-244 . -1091) 18758) ((-244 . -512) 18691) ((-244 . -308) 18629) ((-244 . -608) 18521) ((-244 . -1204) T) ((-244 . -34) T) ((-244 . -150) 18505) ((-244 . -281) 18489) ((-244 . -488) 18466) ((-244 . -611) 18443) ((-238 . -237) 18422) ((-238 . -1261) 18392) ((-238 . -785) 18371) ((-238 . -842) 18350) ((-238 . -791) 18301) ((-238 . -788) 18252) ((-238 . -844) 18203) ((-238 . -786) 18154) ((-238 . -787) 18133) ((-238 . -287) 18110) ((-238 . -285) 18087) ((-238 . -487) 18071) ((-238 . -512) 18004) ((-238 . -308) 17942) ((-238 . -1204) T) ((-238 . -34) T) ((-238 . -599) 17919) ((-238 . -1031) 17746) ((-238 . -611) 17476) ((-238 . -411) 17445) ((-238 . -634) 17351) ((-238 . -376) 17320) ((-238 . -367) 17299) ((-238 . -232) 17251) ((-238 . -893) 17183) ((-238 . -230) 17152) ((-238 . -111) 17042) ((-238 . -1048) 16939) ((-238 . -171) 16918) ((-238 . -608) 16649) ((-238 . -711) 16591) ((-238 . -641) 16439) ((-238 . -130) 16309) ((-238 . -23) 16179) ((-238 . -21) 16089) ((-238 . -1042) 16019) ((-238 . -1049) 15949) ((-238 . -1102) 15859) ((-238 . -720) 15769) ((-238 . -38) 15739) ((-238 . -1091) 15529) ((-238 . -102) 15319) ((-238 . -25) 15170) ((-226 . -679) 15128) ((-226 . -487) 15112) ((-226 . -102) 15090) ((-226 . -1091) 15068) ((-226 . -512) 15001) ((-226 . -308) 14939) ((-226 . -608) 14871) ((-226 . -1204) T) ((-226 . -34) T) ((-226 . -57) 14829) ((-224 . -403) T) ((-224 . -146) T) ((-224 . -611) 14779) ((-224 . -641) 14744) ((-224 . -130) T) ((-224 . -25) T) ((-224 . -102) T) ((-224 . -608) 14726) ((-224 . -1091) T) ((-224 . -23) T) ((-224 . -21) T) ((-224 . -720) T) ((-224 . -1102) T) ((-224 . -1049) T) ((-224 . -1042) T) ((-224 . -609) 14656) ((-224 . -362) T) ((-224 . -1209) T) ((-224 . -914) T) ((-224 . -554) T) ((-224 . -171) T) ((-224 . -711) 14621) ((-224 . -38) 14586) ((-224 . -450) T) ((-224 . -306) T) ((-224 . -111) 14542) ((-224 . -1048) 14507) ((-224 . -289) T) ((-224 . -242) T) ((-224 . -842) T) ((-224 . -791) T) ((-224 . -788) T) ((-224 . -844) T) ((-224 . -786) T) ((-224 . -785) T) ((-224 . -879) 14489) ((-224 . -995) T) ((-224 . -1013) T) ((-224 . -1031) 14449) ((-224 . -1051) T) ((-224 . -232) T) ((-224 . -815) T) ((-224 . -1190) T) ((-224 . -1193) T) ((-224 . -491) T) ((-224 . -283) T) ((-224 . -95) T) ((-224 . -35) T) ((-222 . -616) 14426) ((-222 . -611) 14388) ((-222 . -641) 14355) ((-222 . -720) T) ((-222 . -1102) T) ((-222 . -1049) T) ((-222 . -1042) T) ((-222 . -21) T) ((-222 . -23) T) ((-222 . -1091) T) ((-222 . -608) 14337) ((-222 . -102) T) ((-222 . -25) T) ((-222 . -130) T) ((-222 . -1031) 14314) ((-221 . -253) 14298) ((-221 . -1111) 14282) ((-221 . -107) 14266) ((-221 . -34) T) ((-221 . -1204) T) ((-221 . -608) 14198) ((-221 . -308) 14136) ((-221 . -512) 14069) ((-221 . -1091) 14047) ((-221 . -102) 14025) ((-221 . -487) 14009) ((-221 . -988) 13993) ((-217 . -1073) T) ((-217 . -488) 13974) ((-217 . -608) 13940) ((-217 . -611) 13921) ((-217 . -1091) T) ((-217 . -102) T) ((-217 . -93) T) ((-216 . -984) 13903) ((-216 . -1141) T) ((-216 . -611) 13853) ((-216 . -1031) 13813) ((-216 . -609) 13743) ((-216 . -1013) T) ((-216 . -903) NIL) ((-216 . -877) 13725) ((-216 . -842) T) ((-216 . -791) T) ((-216 . -788) T) ((-216 . -844) T) ((-216 . -786) T) ((-216 . -785) T) ((-216 . -814) T) ((-216 . -879) 13707) ((-216 . -1204) T) ((-216 . -399) 13689) ((-216 . -634) 13671) ((-216 . -376) 13653) ((-216 . -285) NIL) ((-216 . -308) NIL) ((-216 . -512) NIL) ((-216 . -337) 13635) ((-216 . -242) T) ((-216 . -111) 13569) ((-216 . -1048) 13519) ((-216 . -289) T) ((-216 . -711) 13469) ((-216 . -641) 13419) ((-216 . -38) 13369) ((-216 . -306) T) ((-216 . -450) T) ((-216 . -171) T) ((-216 . -554) T) ((-216 . -914) T) ((-216 . -1209) T) ((-216 . -362) T) ((-216 . -232) T) ((-216 . -893) NIL) ((-216 . -230) 13351) ((-216 . -146) T) ((-216 . -144) NIL) ((-216 . -130) T) ((-216 . -25) T) ((-216 . -102) T) ((-216 . -608) 13293) ((-216 . -1091) T) ((-216 . -23) T) ((-216 . -21) T) ((-216 . -1042) T) ((-216 . -1049) T) ((-216 . -1102) T) ((-216 . -720) T) ((-213 . -1091) T) ((-213 . -608) 13275) ((-213 . -102) T) ((-213 . -611) 13252) ((-212 . -1091) T) ((-212 . -608) 13234) ((-212 . -102) T) ((-211 . -888) T) ((-211 . -102) T) ((-211 . -608) 13216) ((-211 . -1091) T) ((-210 . -888) T) ((-210 . -102) T) ((-210 . -608) 13198) ((-210 . -1091) T) ((-208 . -794) T) ((-208 . -102) T) ((-208 . -608) 13180) ((-208 . -1091) T) ((-207 . -794) T) ((-207 . -102) T) ((-207 . -608) 13162) ((-207 . -1091) T) ((-206 . -794) T) ((-206 . -102) T) ((-206 . -608) 13144) ((-206 . -1091) T) ((-205 . -794) T) ((-205 . -102) T) ((-205 . -608) 13126) ((-205 . -1091) T) ((-202 . -781) T) ((-202 . -102) T) ((-202 . -608) 13108) ((-202 . -1091) T) ((-201 . -781) T) ((-201 . -102) T) ((-201 . -608) 13090) ((-201 . -1091) T) ((-200 . -781) T) ((-200 . -102) T) ((-200 . -608) 13072) ((-200 . -1091) T) ((-199 . -781) T) ((-199 . -102) T) ((-199 . -608) 13054) ((-199 . -1091) T) ((-198 . -781) T) ((-198 . -102) T) ((-198 . -608) 13036) ((-198 . -1091) T) ((-197 . -781) T) ((-197 . -102) T) ((-197 . -608) 13018) ((-197 . -1091) T) ((-196 . -781) T) ((-196 . -102) T) ((-196 . -608) 13000) ((-196 . -1091) T) ((-195 . -781) T) ((-195 . -102) T) ((-195 . -608) 12982) ((-195 . -1091) T) ((-194 . -781) T) ((-194 . -102) T) ((-194 . -608) 12964) ((-194 . -1091) T) ((-193 . -781) T) ((-193 . -102) T) ((-193 . -608) 12946) ((-193 . -1091) T) ((-192 . -781) T) ((-192 . -102) T) ((-192 . -608) 12928) ((-192 . -1091) T) ((-186 . -1091) T) ((-186 . -608) 12910) ((-186 . -102) T) ((-183 . -1091) T) ((-183 . -608) 12892) ((-183 . -102) T) ((-182 . -185) T) ((-182 . -1091) T) ((-182 . -608) 12874) ((-182 . -102) T) ((-182 . -830) 12856) ((-179 . -1073) T) ((-179 . -488) 12837) ((-179 . -608) 12803) ((-179 . -611) 12784) ((-179 . -1091) T) ((-179 . -102) T) ((-179 . -93) T) ((-174 . -608) 12766) ((-173 . -38) 12698) ((-173 . -611) 12615) ((-173 . -641) 12547) ((-173 . -720) T) ((-173 . -1102) T) ((-173 . -1049) T) ((-173 . -1042) T) ((-173 . -111) 12458) ((-173 . -1048) 12390) ((-173 . -21) T) ((-173 . -23) T) ((-173 . -1091) T) ((-173 . -608) 12372) ((-173 . -102) T) ((-173 . -25) T) ((-173 . -130) T) ((-173 . -711) 12304) ((-173 . -362) T) ((-173 . -1209) T) ((-173 . -914) T) ((-173 . -554) T) ((-173 . -171) T) ((-173 . -450) T) ((-173 . -306) T) ((-173 . -289) T) ((-173 . -242) T) ((-170 . -1091) T) ((-170 . -608) 12286) ((-170 . -102) T) ((-167 . -165) 12270) ((-167 . -35) 12248) ((-167 . -95) 12226) ((-167 . -283) 12204) ((-167 . -491) 12182) ((-167 . -1193) 12160) ((-167 . -1190) 12138) ((-167 . -995) 12090) ((-167 . -903) 12043) ((-167 . -609) 11804) ((-167 . -877) 11788) ((-167 . -844) 11767) ((-167 . -367) 11718) ((-167 . -349) 11697) ((-167 . -1141) 11676) ((-167 . -401) 11655) ((-167 . -409) 11626) ((-167 . -38) 11454) ((-167 . -111) 11350) ((-167 . -1048) 11260) ((-167 . -641) 11170) ((-167 . -711) 10998) ((-167 . -369) 10969) ((-167 . -718) 10940) ((-167 . -1031) 10836) ((-167 . -611) 10614) ((-167 . -411) 10598) ((-167 . -879) 10523) ((-167 . -1204) T) ((-167 . -399) 10507) ((-167 . -634) 10455) ((-167 . -376) 10439) ((-167 . -285) 10397) ((-167 . -308) 10362) ((-167 . -512) 10274) ((-167 . -337) 10258) ((-167 . -242) 10209) ((-167 . -1209) 10114) ((-167 . -362) 10065) ((-167 . -914) 9996) ((-167 . -554) 9907) ((-167 . -289) 9818) ((-167 . -450) 9749) ((-167 . -306) 9680) ((-167 . -232) 9631) ((-167 . -893) 9590) ((-167 . -230) 9574) ((-167 . -171) T) ((-167 . -146) 9553) ((-167 . -1042) T) ((-167 . -1049) T) ((-167 . -1102) T) ((-167 . -720) T) ((-167 . -21) T) ((-167 . -23) T) ((-167 . -1091) T) ((-167 . -608) 9535) ((-167 . -102) T) ((-167 . -25) T) ((-167 . -130) T) ((-167 . -144) 9486) ((-167 . -815) 9465) ((-161 . -1073) T) ((-161 . -488) 9446) ((-161 . -608) 9412) ((-161 . -611) 9393) ((-161 . -1091) T) ((-161 . -102) T) ((-161 . -93) T) ((-160 . -1091) T) ((-160 . -608) 9375) ((-160 . -102) T) ((-156 . -25) T) ((-156 . -102) T) ((-156 . -608) 9357) ((-156 . -1091) T) ((-155 . -1073) T) ((-155 . -488) 9338) ((-155 . -608) 9304) ((-155 . -611) 9285) ((-155 . -1091) T) ((-155 . -102) T) ((-155 . -93) T) ((-153 . -1073) T) ((-153 . -488) 9266) ((-153 . -608) 9232) ((-153 . -611) 9213) ((-153 . -1091) T) ((-153 . -102) T) ((-153 . -93) T) ((-151 . -1042) T) ((-151 . -1049) T) ((-151 . -1102) T) ((-151 . -720) T) ((-151 . -21) T) ((-151 . -23) T) ((-151 . -1091) T) ((-151 . -608) 9195) ((-151 . -102) T) ((-151 . -25) T) ((-151 . -130) T) ((-151 . -641) 9169) ((-151 . -611) 9138) ((-151 . -38) 9122) ((-151 . -111) 9101) ((-151 . -1048) 9085) ((-151 . -711) 9069) ((-151 . -1261) 9053) ((-143 . -838) T) ((-143 . -844) T) ((-143 . -1091) T) ((-143 . -608) 9035) ((-143 . -102) T) ((-143 . -367) T) ((-140 . -1091) T) ((-140 . -608) 9017) ((-140 . -102) T) ((-140 . -609) 8976) ((-140 . -425) 8958) ((-140 . -1089) 8940) ((-140 . -367) T) ((-140 . -234) 8922) ((-140 . -150) 8904) ((-140 . -487) 8886) ((-140 . -512) NIL) ((-140 . -308) NIL) ((-140 . -1204) T) ((-140 . -34) T) ((-140 . -107) 8868) ((-140 . -228) 8850) ((-139 . -608) 8832) ((-138 . -185) T) ((-138 . -1091) T) ((-138 . -608) 8799) ((-138 . -102) T) ((-138 . -830) 8781) ((-137 . -1073) T) ((-137 . -488) 8762) ((-137 . -608) 8728) ((-137 . -611) 8709) ((-137 . -1091) T) ((-137 . -102) T) ((-137 . -93) T) ((-136 . -1073) T) ((-136 . -488) 8690) ((-136 . -608) 8656) ((-136 . -611) 8637) ((-136 . -1091) T) ((-136 . -102) T) ((-136 . -93) T) ((-134 . -463) 8614) ((-134 . -611) 8598) ((-134 . -1031) 8582) ((-134 . -1091) T) ((-134 . -608) 8564) ((-134 . -102) T) ((-134 . -468) 8519) ((-133 . -844) T) ((-133 . -102) T) ((-133 . -608) 8501) ((-133 . -1091) T) ((-133 . -23) T) ((-133 . -25) T) ((-133 . -720) T) ((-133 . -1102) T) ((-133 . -1031) 8483) ((-133 . -611) 8465) ((-132 . -1073) T) ((-132 . -488) 8446) ((-132 . -608) 8412) ((-132 . -611) 8393) ((-132 . -1091) T) ((-132 . -102) T) ((-132 . -93) T) ((-129 . -19) 8375) ((-129 . -644) 8357) ((-129 . -287) 8332) ((-129 . -285) 8307) ((-129 . -599) 8282) ((-129 . -609) NIL) ((-129 . -487) 8264) ((-129 . -102) T) ((-129 . -1091) T) ((-129 . -512) NIL) ((-129 . -308) NIL) ((-129 . -608) 8230) ((-129 . -1204) T) ((-129 . -34) T) ((-129 . -150) 8212) ((-129 . -844) T) ((-129 . -371) 8194) ((-128 . -838) T) ((-128 . -844) T) ((-128 . -1091) T) ((-128 . -608) 8161) ((-128 . -102) T) ((-128 . -367) T) ((-128 . -488) 8143) ((-128 . -611) 8125) ((-127 . -125) 8109) ((-127 . -1003) 8093) ((-127 . -34) T) ((-127 . -1204) T) ((-127 . -608) 8025) ((-127 . -308) 7963) ((-127 . -512) 7896) ((-127 . -1091) 7874) ((-127 . -102) 7852) ((-127 . -487) 7836) ((-127 . -119) 7820) ((-126 . -125) 7804) ((-126 . -1003) 7788) ((-126 . -34) T) ((-126 . -1204) T) ((-126 . -608) 7720) ((-126 . -308) 7658) ((-126 . -512) 7591) ((-126 . -1091) 7569) ((-126 . -102) 7547) ((-126 . -487) 7531) ((-126 . -119) 7515) ((-121 . -125) 7499) ((-121 . -1003) 7483) ((-121 . -34) T) ((-121 . -1204) T) ((-121 . -608) 7415) ((-121 . -308) 7353) ((-121 . -512) 7286) ((-121 . -1091) 7264) ((-121 . -102) 7242) ((-121 . -487) 7226) ((-121 . -119) 7210) ((-117 . -984) 7187) ((-117 . -1141) NIL) ((-117 . -1031) 7164) ((-117 . -611) 7094) ((-117 . -609) NIL) ((-117 . -1013) NIL) ((-117 . -903) NIL) ((-117 . -877) 7071) ((-117 . -842) NIL) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-117 . -844) NIL) ((-117 . -786) NIL) ((-117 . -785) NIL) ((-117 . -814) NIL) ((-117 . -879) NIL) ((-117 . -1204) T) ((-117 . -399) 7048) ((-117 . -634) 7025) ((-117 . -376) 7002) ((-117 . -285) 6953) ((-117 . -308) 6910) ((-117 . -512) 6818) ((-117 . -337) 6795) ((-117 . -242) T) ((-117 . -111) 6724) ((-117 . -1048) 6669) ((-117 . -289) T) ((-117 . -711) 6614) ((-117 . -641) 6559) ((-117 . -38) 6504) ((-117 . -306) T) ((-117 . -450) T) ((-117 . -171) T) ((-117 . -554) T) ((-117 . -914) T) ((-117 . -1209) T) ((-117 . -362) T) ((-117 . -232) NIL) ((-117 . -893) NIL) ((-117 . -230) 6481) ((-117 . -146) T) ((-117 . -144) NIL) ((-117 . -130) T) ((-117 . -25) T) ((-117 . -102) T) ((-117 . -608) 6463) ((-117 . -1091) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1042) T) ((-117 . -1049) T) ((-117 . -1102) T) ((-117 . -720) T) ((-116 . -863) 6447) ((-116 . -914) T) ((-116 . -554) T) ((-116 . -289) T) ((-116 . -171) T) ((-116 . -611) 6419) ((-116 . -711) 6406) ((-116 . -1048) 6393) ((-116 . -111) 6378) ((-116 . -38) 6365) ((-116 . -450) T) ((-116 . -306) T) ((-116 . -1042) T) ((-116 . -1049) T) ((-116 . -1102) T) ((-116 . -720) T) ((-116 . -21) T) ((-116 . -23) T) ((-116 . -1091) T) ((-116 . -608) 6347) ((-116 . -102) T) ((-116 . -25) T) ((-116 . -130) T) ((-116 . -641) 6334) ((-116 . -146) T) ((-113 . -844) T) ((-113 . -102) T) ((-113 . -608) 6316) ((-113 . -1091) T) ((-112 . -838) T) ((-112 . -844) T) ((-112 . -1091) T) ((-112 . -608) 6298) ((-112 . -102) T) ((-112 . -367) T) ((-112 . -655) T) ((-112 . -960) T) ((-112 . -609) 6280) ((-110 . -123) T) ((-110 . -371) 6262) ((-110 . -844) T) ((-110 . -150) 6244) ((-110 . -34) T) ((-110 . -1204) T) ((-110 . -608) 6226) ((-110 . -308) NIL) ((-110 . -512) NIL) ((-110 . -1091) T) ((-110 . -487) 6208) ((-110 . -609) 6190) ((-110 . -599) 6165) ((-110 . -285) 6140) ((-110 . -287) 6115) ((-110 . -644) 6097) ((-110 . -19) 6079) ((-110 . -102) T) ((-110 . -655) T) ((-109 . -608) 6061) ((-108 . -984) 6043) ((-108 . -1141) T) ((-108 . -611) 5993) ((-108 . -1031) 5953) ((-108 . -609) 5883) ((-108 . -1013) T) ((-108 . -903) NIL) ((-108 . -877) 5865) ((-108 . -842) T) ((-108 . -791) T) ((-108 . -788) T) ((-108 . -844) T) ((-108 . -786) T) ((-108 . -785) T) ((-108 . -814) T) ((-108 . -879) 5847) ((-108 . -1204) T) ((-108 . -399) 5829) ((-108 . -634) 5811) ((-108 . -376) 5793) ((-108 . -285) NIL) ((-108 . -308) NIL) ((-108 . -512) NIL) ((-108 . -337) 5775) ((-108 . -242) T) ((-108 . -111) 5709) ((-108 . -1048) 5659) ((-108 . -289) T) ((-108 . -711) 5609) ((-108 . -641) 5559) ((-108 . -38) 5509) ((-108 . -306) T) ((-108 . -450) T) ((-108 . -171) T) ((-108 . -554) T) ((-108 . -914) T) ((-108 . -1209) T) ((-108 . -362) T) ((-108 . -232) T) ((-108 . -893) NIL) ((-108 . -230) 5491) ((-108 . -146) T) ((-108 . -144) NIL) ((-108 . -130) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -608) 5434) ((-108 . -1091) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1042) T) ((-108 . -1049) T) ((-108 . -1102) T) ((-108 . -720) T) ((-105 . -1091) T) ((-105 . -608) 5416) ((-105 . -102) T) ((-103 . -125) 5400) ((-103 . -1003) 5384) ((-103 . -34) T) ((-103 . -1204) T) ((-103 . -608) 5316) ((-103 . -308) 5254) ((-103 . -512) 5187) ((-103 . -1091) 5165) ((-103 . -102) 5143) ((-103 . -487) 5127) ((-103 . -119) 5111) ((-99 . -471) T) ((-99 . -1102) T) ((-99 . -102) T) ((-99 . -608) 5093) ((-99 . -1091) T) ((-99 . -720) T) ((-99 . -285) 5072) ((-97 . -1091) T) ((-97 . -608) 5054) ((-97 . -102) T) ((-96 . -1073) T) ((-96 . -488) 5035) ((-96 . -608) 5001) ((-96 . -611) 4982) ((-96 . -1091) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1111) 4966) ((-91 . -487) 4950) ((-91 . -102) 4928) ((-91 . -1091) 4906) ((-91 . -512) 4839) ((-91 . -308) 4777) ((-91 . -608) 4709) ((-91 . -1204) T) ((-91 . -34) T) ((-91 . -107) 4693) ((-89 . -396) T) ((-89 . -608) 4675) ((-89 . -1204) T) ((-89 . -395) T) ((-88 . -384) T) ((-88 . -608) 4657) ((-88 . -1204) T) ((-88 . -395) T) ((-87 . -438) T) ((-87 . -608) 4639) ((-87 . -1204) T) ((-87 . -395) T) ((-86 . -439) T) ((-86 . -608) 4621) ((-86 . -1204) T) ((-86 . -395) T) ((-85 . -384) T) ((-85 . -608) 4603) ((-85 . -1204) T) ((-85 . -395) T) ((-84 . -384) T) ((-84 . -608) 4585) ((-84 . -1204) T) ((-84 . -395) T) ((-83 . -439) T) ((-83 . -608) 4567) ((-83 . -1204) T) ((-83 . -395) T) ((-82 . -439) T) ((-82 . -608) 4549) ((-82 . -1204) T) ((-82 . -395) T) ((-81 . -439) T) ((-81 . -608) 4531) ((-81 . -1204) T) ((-81 . -395) T) ((-81 . -611) 4472) ((-80 . -439) T) ((-80 . -608) 4454) ((-80 . -1204) T) ((-80 . -395) T) ((-79 . -439) T) ((-79 . -608) 4436) ((-79 . -1204) T) ((-79 . -395) T) ((-78 . -396) T) ((-78 . -608) 4418) ((-78 . -1204) T) ((-78 . -395) T) ((-77 . -439) T) ((-77 . -608) 4400) ((-77 . -1204) T) ((-77 . -395) T) ((-76 . -439) T) ((-76 . -608) 4382) ((-76 . -1204) T) ((-76 . -395) T) ((-75 . -396) T) ((-75 . -608) 4364) ((-75 . -1204) T) ((-75 . -395) T) ((-74 . -439) T) ((-74 . -608) 4346) ((-74 . -1204) T) ((-74 . -395) T) ((-73 . -382) T) ((-73 . -608) 4328) ((-73 . -1204) T) ((-73 . -395) T) ((-72 . -395) T) ((-72 . -1204) T) ((-72 . -608) 4310) ((-71 . -439) T) ((-71 . -608) 4292) ((-71 . -1204) T) ((-71 . -395) T) ((-70 . -382) T) ((-70 . -608) 4274) ((-70 . -1204) T) ((-70 . -395) T) ((-69 . -395) T) ((-69 . -1204) T) ((-69 . -608) 4256) ((-68 . -382) T) ((-68 . -608) 4238) ((-68 . -1204) T) ((-68 . -395) T) ((-67 . -382) T) ((-67 . -608) 4220) ((-67 . -1204) T) ((-67 . -395) T) ((-66 . -396) T) ((-66 . -608) 4202) ((-66 . -1204) T) ((-66 . -395) T) ((-65 . -384) T) ((-65 . -608) 4184) ((-65 . -1204) T) ((-65 . -395) T) ((-65 . -611) 4113) ((-64 . -439) T) ((-64 . -608) 4095) ((-64 . -1204) T) ((-64 . -395) T) ((-63 . -395) T) ((-63 . -1204) T) ((-63 . -608) 4077) ((-62 . -439) T) ((-62 . -608) 4059) ((-62 . -1204) T) ((-62 . -395) T) ((-61 . -396) T) ((-61 . -608) 4041) ((-61 . -1204) T) ((-61 . -395) T) ((-60 . -57) 4003) ((-60 . -34) T) ((-60 . -1204) T) ((-60 . -608) 3935) ((-60 . -308) 3873) ((-60 . -512) 3806) ((-60 . -1091) 3784) ((-60 . -102) 3762) ((-60 . -487) 3746) ((-58 . -19) 3730) ((-58 . -644) 3714) ((-58 . -287) 3691) ((-58 . -285) 3668) ((-58 . -599) 3645) ((-58 . -609) 3606) ((-58 . -487) 3590) ((-58 . -102) 3540) ((-58 . -1091) 3490) ((-58 . -512) 3423) ((-58 . -308) 3361) ((-58 . -608) 3273) ((-58 . -1204) T) ((-58 . -34) T) ((-58 . -150) 3257) ((-58 . -844) 3236) ((-58 . -371) 3220) ((-55 . -1091) T) ((-55 . -608) 3202) ((-55 . -102) T) ((-55 . -1031) 3184) ((-55 . -611) 3166) ((-51 . -1091) T) ((-51 . -608) 3148) ((-51 . -102) T) ((-50 . -616) 3132) ((-50 . -611) 3101) ((-50 . -641) 3075) ((-50 . -720) T) ((-50 . -1102) T) ((-50 . -1049) T) ((-50 . -1042) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1091) T) ((-50 . -608) 3057) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -130) T) ((-50 . -1031) 3041) ((-49 . -1091) T) ((-49 . -608) 3023) ((-49 . -102) T) ((-48 . -297) T) ((-48 . -611) 2956) ((-48 . -1031) 2899) ((-48 . -1091) T) ((-48 . -608) 2881) ((-48 . -102) T) ((-48 . -844) T) ((-48 . -512) 2847) ((-48 . -308) 2834) ((-48 . -27) T) ((-48 . -995) T) ((-48 . -242) T) ((-48 . -111) 2790) ((-48 . -1048) 2755) ((-48 . -289) T) ((-48 . -711) 2720) ((-48 . -641) 2685) ((-48 . -130) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1042) T) ((-48 . -1049) T) ((-48 . -1102) T) ((-48 . -720) T) ((-48 . -38) 2650) ((-48 . -306) T) ((-48 . -450) T) ((-48 . -171) T) ((-48 . -554) T) ((-48 . -914) T) ((-48 . -1209) T) ((-48 . -362) T) ((-48 . -634) 2610) ((-48 . -1013) T) ((-48 . -609) 2555) ((-48 . -146) T) ((-48 . -232) T) ((-45 . -36) 2534) ((-45 . -599) 2459) ((-45 . -308) 2263) ((-45 . -512) 2055) ((-45 . -487) 1992) ((-45 . -285) 1917) ((-45 . -287) 1842) ((-45 . -605) 1821) ((-45 . -234) 1771) ((-45 . -107) 1721) ((-45 . -228) 1671) ((-45 . -1181) 1650) ((-45 . -281) 1600) ((-45 . -150) 1550) ((-45 . -34) T) ((-45 . -1204) T) ((-45 . -608) 1532) ((-45 . -1091) T) ((-45 . -102) T) ((-45 . -609) NIL) ((-45 . -644) 1482) ((-45 . -371) 1432) ((-45 . -844) NIL) ((-45 . -1139) 1382) ((-45 . -1003) 1332) ((-45 . -1242) 1282) ((-45 . -659) 1232) ((-44 . -417) 1216) ((-44 . -738) 1200) ((-44 . -714) T) ((-44 . -755) T) ((-44 . -111) 1179) ((-44 . -1048) 1163) ((-44 . -21) T) ((-44 . -23) T) ((-44 . -1091) T) ((-44 . -608) 1145) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -130) T) ((-44 . -641) 1103) ((-44 . -711) 1087) ((-44 . -366) 1071) ((-40 . -341) 1045) ((-40 . -171) T) ((-40 . -611) 975) ((-40 . -720) T) ((-40 . -1102) T) ((-40 . -1049) T) ((-40 . -1042) T) ((-40 . -641) 920) ((-40 . -130) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -608) 902) ((-40 . -1091) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1048) 847) ((-40 . -111) 776) ((-40 . -609) 760) ((-40 . -230) 737) ((-40 . -893) 689) ((-40 . -232) 661) ((-40 . -362) T) ((-40 . -1209) T) ((-40 . -914) T) ((-40 . -554) T) ((-40 . -711) 606) ((-40 . -38) 551) ((-40 . -450) T) ((-40 . -306) T) ((-40 . -289) T) ((-40 . -242) T) ((-40 . -367) NIL) ((-40 . -349) NIL) ((-40 . -1141) NIL) ((-40 . -144) 523) ((-40 . -401) NIL) ((-40 . -409) 495) ((-40 . -146) 467) ((-40 . -369) 439) ((-40 . -376) 416) ((-40 . -634) 355) ((-40 . -411) 332) ((-40 . -1031) 220) ((-40 . -718) 192) ((-31 . -1073) T) ((-31 . -488) 173) ((-31 . -608) 139) ((-31 . -611) 120) ((-31 . -1091) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -948) T) ((-30 . -608) 102) ((0 . |EnumerationCategory|) T) ((0 . -608) 84) ((0 . -1091) T) ((0 . -102) T) ((-1 . -1091) T) ((-1 . -608) 66) ((-1 . -102) T) ((-2 . |RecordCategory|) T) ((-2 . -608) 48) ((-2 . -1091) T) ((-2 . -102) T) ((-3 . |UnionCategory|) T) ((-3 . -608) 30) ((-3 . -1091) T) ((-3 . -102) T))
\ No newline at end of file +(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +((($ $) . T) ((#0=(-859 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-232)) ((|#2| |#1|) |has| |#1| (-232)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-477 . -1092) T) ((-263 . -513) 161961) ((-246 . -513) 161904) ((-244 . -1092) 161854) ((-569 . -111) 161839) ((-530 . -23) T) ((-137 . -1092) T) ((-136 . -1092) T) ((-117 . -308) 161796) ((-132 . -1092) T) ((-478 . -513) 161588) ((-671 . -612) 161572) ((-688 . -102) T) ((-1133 . -513) 161491) ((-389 . -130) T) ((-1269 . -971) 161460) ((-31 . -93) T) ((-598 . -488) 161444) ((-617 . -130) T) ((-814 . -841) T) ((-522 . -57) 161394) ((-59 . -513) 161327) ((-518 . -513) 161260) ((-417 . -895) 161219) ((-168 . -1044) T) ((-515 . -513) 161152) ((-496 . -513) 161085) ((-495 . -513) 161018) ((-794 . -1033) 160801) ((-693 . -38) 160766) ((-1229 . -612) 160514) ((-342 . -348) T) ((-1086 . -1085) 160498) ((-1086 . -1092) 160476) ((-850 . -612) 160373) ((-168 . -242) 160324) ((-168 . -232) 160275) ((-1086 . -1087) 160233) ((-867 . -285) 160191) ((-224 . -790) T) ((-224 . -787) T) ((-688 . -283) NIL) ((-569 . -612) 160163) ((-1142 . -1183) 160142) ((-406 . -987) 160126) ((-695 . -21) T) ((-695 . -25) T) ((-1271 . -642) 160100) ((-315 . -159) 160079) ((-315 . -142) 160058) ((-1142 . -107) 160008) ((-133 . -25) T) ((-40 . -230) 159985) ((-116 . -21) T) ((-116 . -25) T) ((-604 . -287) 159961) ((-474 . -287) 159940) ((-1229 . -325) 159917) ((-1229 . -1044) T) ((-850 . -1044) T) ((-794 . -337) 159901) ((-138 . -184) T) ((-117 . -1143) NIL) ((-91 . -609) 159833) ((-476 . -130) T) ((-1229 . -232) T) ((-1088 . -489) 159814) ((-1088 . -609) 159780) ((-1082 . -489) 159761) ((-1082 . -609) 159727) ((-590 . -1207) T) ((-1066 . -489) 159708) ((-569 . -1044) T) ((-1066 . -609) 159674) ((-656 . -712) 159658) ((-1059 . -489) 159639) ((-1059 . -609) 159605) ((-953 . -287) 159582) ((-60 . -34) T) ((-1055 . -790) T) ((-1055 . -787) T) ((-1031 . -489) 159563) ((-1014 . -489) 159544) ((-811 . -721) T) ((-726 . -47) 159509) ((-619 . -38) 159496) ((-354 . -289) T) ((-351 . -289) T) ((-343 . -289) T) ((-263 . -289) 159427) ((-246 . -289) 159358) ((-1031 . -609) 159324) ((-1019 . -102) T) ((-1014 . -609) 159290) ((-622 . -489) 159271) ((-412 . -721) T) ((-117 . -38) 159216) ((-482 . -489) 159197) ((-622 . -609) 159163) ((-412 . -472) T) ((-217 . -489) 159144) ((-482 . -609) 159110) ((-353 . -102) T) ((-217 . -609) 159076) ((-1201 . -1051) T) ((-706 . -1051) T) ((-1166 . -47) 159053) ((-1165 . -47) 159023) ((-1159 . -47) 159000) ((-128 . -287) 158975) ((-1030 . -150) 158921) ((-905 . -289) T) ((-1118 . -47) 158893) ((-688 . -308) NIL) ((-514 . -609) 158875) ((-509 . -609) 158857) ((-507 . -609) 158839) ((-326 . -1092) 158789) ((-707 . -451) 158720) ((-48 . -102) T) ((-1240 . -285) 158705) ((-1219 . -285) 158625) ((-639 . -660) 158609) ((-639 . -645) 158593) ((-338 . -21) T) ((-338 . -25) T) ((-40 . -348) NIL) ((-173 . -21) T) ((-173 . -25) T) ((-639 . -372) 158577) ((-601 . -489) 158559) ((-598 . -285) 158536) ((-601 . -609) 158503) ((-387 . -102) T) ((-1112 . -142) T) ((-126 . -609) 158435) ((-869 . -1092) T) ((-652 . -410) 158419) ((-709 . -609) 158401) ((-248 . -609) 158368) ((-186 . -609) 158350) ((-161 . -609) 158332) ((-156 . -609) 158314) ((-1271 . -721) T) ((-1094 . -34) T) ((-866 . -790) NIL) ((-866 . -787) NIL) ((-853 . -845) T) ((-726 . -881) NIL) ((-1280 . -130) T) ((-380 . -130) T) ((-887 . -612) 158282) ((-899 . -102) T) ((-726 . -1033) 158158) ((-530 . -130) T) ((-1079 . -410) 158142) ((-995 . -488) 158126) ((-117 . -399) 158103) ((-1159 . -1207) 158082) ((-777 . -410) 158066) ((-775 . -410) 158050) ((-938 . -34) T) ((-688 . -1143) NIL) ((-250 . -642) 157885) ((-249 . -642) 157707) ((-812 . -915) 157686) ((-453 . -410) 157670) ((-598 . -19) 157654) ((-1138 . -1200) 157623) ((-1159 . -881) NIL) ((-1159 . -879) 157575) ((-598 . -600) 157552) ((-1193 . -609) 157484) ((-1167 . -609) 157466) ((-62 . -394) T) ((-1165 . -1033) 157401) ((-1159 . -1033) 157367) ((-688 . -38) 157317) ((-473 . -285) 157302) ((-1213 . -609) 157284) ((-726 . -376) 157268) ((-833 . -609) 157250) ((-652 . -1051) T) ((-1240 . -997) 157216) ((-1219 . -997) 157182) ((-1080 . -612) 157166) ((-1056 . -1183) 157141) ((-1068 . -612) 157118) ((-867 . -610) 156925) ((-867 . -609) 156907) ((-1180 . -488) 156844) ((-417 . -1017) 156822) ((-48 . -308) 156809) ((-1056 . -107) 156755) ((-478 . -488) 156692) ((-519 . -1207) T) ((-1159 . -337) 156644) ((-1133 . -488) 156615) ((-1159 . -376) 156567) ((-1079 . -1051) T) ((-436 . -102) T) ((-182 . -1092) T) ((-250 . -34) T) ((-249 . -34) T) ((-777 . -1051) T) ((-775 . -1051) T) ((-726 . -895) 156544) ((-453 . -1051) T) ((-59 . -488) 156528) ((-1029 . -1050) 156502) ((-518 . -488) 156486) ((-515 . -488) 156470) ((-496 . -488) 156454) ((-495 . -488) 156438) ((-244 . -513) 156371) ((-1029 . -111) 156338) ((-1166 . -895) 156251) ((-1165 . -895) 156157) ((-1159 . -895) 155990) ((-1118 . -895) 155974) ((-664 . -1104) T) ((-353 . -1143) T) ((-640 . -93) T) ((-321 . -1050) 155956) ((-250 . -786) 155935) ((-250 . -789) 155886) ((-31 . -489) 155867) ((-250 . -788) 155846) ((-249 . -786) 155825) ((-249 . -789) 155776) ((-249 . -788) 155755) ((-31 . -609) 155721) ((-50 . -1051) T) ((-250 . -721) 155631) ((-249 . -721) 155541) ((-1201 . -1092) T) ((-664 . -23) T) ((-579 . -1051) T) ((-517 . -1051) T) ((-378 . -1050) 155506) ((-321 . -111) 155481) ((-73 . -382) T) ((-73 . -394) T) ((-1019 . -38) 155418) ((-688 . -399) 155400) ((-99 . -102) T) ((-706 . -1092) T) ((-998 . -144) 155372) ((-998 . -146) 155344) ((-378 . -111) 155300) ((-318 . -1211) 155279) ((-473 . -997) 155245) ((-353 . -38) 155210) ((-40 . -369) 155182) ((-868 . -609) 155054) ((-127 . -125) 155038) ((-121 . -125) 155022) ((-831 . -1050) 154992) ((-828 . -21) 154944) ((-822 . -1050) 154928) ((-828 . -25) 154880) ((-318 . -554) 154831) ((-516 . -612) 154812) ((-562 . -823) T) ((-239 . -1207) T) ((-1029 . -612) 154781) ((-831 . -111) 154746) ((-822 . -111) 154725) ((-1240 . -609) 154707) ((-1219 . -609) 154689) ((-1219 . -610) 154360) ((-1164 . -904) 154339) ((-1117 . -904) 154318) ((-48 . -38) 154283) ((-1278 . -1104) T) ((-598 . -609) 154195) ((-598 . -610) 154156) ((-1276 . -1104) T) ((-360 . -612) 154140) ((-321 . -612) 154124) ((-239 . -1033) 153951) ((-1164 . -642) 153876) ((-1117 . -642) 153801) ((-849 . -642) 153775) ((-713 . -609) 153757) ((-545 . -367) T) ((-1278 . -23) T) ((-1276 . -23) T) ((-490 . -1092) T) ((-378 . -612) 153707) ((-378 . -614) 153689) ((-1029 . -1044) T) ((-860 . -102) T) ((-1180 . -285) 153668) ((-168 . -367) 153619) ((-999 . -1207) T) ((-831 . -612) 153573) ((-822 . -612) 153528) ((-44 . -23) T) ((-478 . -285) 153507) ((-583 . -1092) T) ((-1138 . -1101) 153476) ((-1096 . -1095) 153428) ((-389 . -21) T) ((-389 . -25) T) ((-151 . -1104) T) ((-1284 . -102) T) ((-999 . -879) 153410) ((-999 . -881) 153392) ((-1201 . -712) 153289) ((-619 . -230) 153273) ((-617 . -21) T) ((-288 . -554) T) ((-617 . -25) T) ((-1187 . -1092) T) ((-706 . -712) 153238) ((-239 . -376) 153207) ((-999 . -1033) 153167) ((-378 . -1044) T) ((-222 . -1051) T) ((-117 . -230) 153144) ((-59 . -285) 153121) ((-151 . -23) T) ((-515 . -285) 153098) ((-326 . -513) 153031) ((-495 . -285) 153008) ((-378 . -242) T) ((-378 . -232) T) ((-831 . -1044) T) ((-822 . -1044) T) ((-707 . -944) 152977) ((-695 . -845) T) ((-473 . -609) 152959) ((-822 . -232) 152938) ((-133 . -845) T) ((-652 . -1092) T) ((-1180 . -600) 152917) ((-548 . -1183) 152896) ((-335 . -1092) T) ((-318 . -362) 152875) ((-406 . -146) 152854) ((-406 . -144) 152833) ((-959 . -1104) 152732) ((-239 . -895) 152664) ((-810 . -1104) 152574) ((-648 . -847) 152558) ((-478 . -600) 152537) ((-548 . -107) 152487) ((-999 . -376) 152469) ((-999 . -337) 152451) ((-97 . -1092) T) ((-959 . -23) 152262) ((-476 . -21) T) ((-476 . -25) T) ((-810 . -23) 152132) ((-1168 . -609) 152114) ((-59 . -19) 152098) ((-1168 . -610) 152020) ((-1164 . -721) T) ((-1117 . -721) T) ((-515 . -19) 152004) ((-495 . -19) 151988) ((-59 . -600) 151965) ((-1079 . -1092) T) ((-896 . -102) 151943) ((-849 . -721) T) ((-777 . -1092) T) ((-515 . -600) 151920) ((-495 . -600) 151897) ((-775 . -1092) T) ((-775 . -1058) 151864) ((-460 . -1092) T) ((-453 . -1092) T) ((-583 . -712) 151839) ((-643 . -1092) T) ((-1248 . -47) 151816) ((-1242 . -102) T) ((-1241 . -47) 151786) ((-1220 . -47) 151763) ((-1201 . -171) 151714) ((-1165 . -306) 151693) ((-999 . -895) NIL) ((-1159 . -306) 151672) ((-623 . -1104) T) ((-664 . -130) T) ((-1088 . -612) 151653) ((-1082 . -612) 151634) ((-1072 . -554) 151585) ((-1072 . -1211) 151536) ((-1066 . -612) 151517) ((-274 . -1092) T) ((-85 . -440) T) ((-85 . -394) T) ((-1059 . -612) 151498) ((-1031 . -612) 151479) ((-50 . -1092) T) ((-1014 . -612) 151460) ((-706 . -171) T) ((-592 . -47) 151437) ((-224 . -642) 151402) ((-579 . -1092) T) ((-517 . -1092) T) ((-358 . -1211) T) ((-352 . -1211) T) ((-344 . -1211) T) ((-486 . -815) T) ((-486 . -915) T) ((-318 . -1104) T) ((-108 . -1211) T) ((-709 . -1050) 151372) ((-338 . -845) T) ((-216 . -915) T) ((-216 . -815) T) ((-622 . -612) 151353) ((-358 . -554) T) ((-352 . -554) T) ((-344 . -554) T) ((-482 . -612) 151334) ((-108 . -554) T) ((-652 . -712) 151304) ((-1159 . -1017) NIL) ((-217 . -612) 151285) ((-318 . -23) T) ((-67 . -1207) T) ((-995 . -609) 151217) ((-688 . -230) 151199) ((-709 . -111) 151164) ((-639 . -34) T) ((-244 . -488) 151148) ((-1094 . -1090) 151132) ((-170 . -1092) T) ((-947 . -904) 151111) ((-514 . -612) 151095) ((-1284 . -1143) T) ((-1280 . -21) T) ((-480 . -904) 151074) ((-1280 . -25) T) ((-1278 . -130) T) ((-1276 . -130) T) ((-1269 . -102) T) ((-1252 . -609) 151040) ((-1241 . -1033) 150975) ((-1079 . -712) 150824) ((-1055 . -642) 150811) ((-947 . -642) 150736) ((-777 . -712) 150565) ((-535 . -609) 150547) ((-535 . -610) 150528) ((-775 . -712) 150377) ((-1220 . -1207) 150356) ((-1069 . -102) T) ((-380 . -25) T) ((-380 . -21) T) ((-480 . -642) 150281) ((-460 . -712) 150252) ((-453 . -712) 150101) ((-982 . -102) T) ((-1220 . -881) NIL) ((-1220 . -879) 150053) ((-1180 . -610) NIL) ((-732 . -102) T) ((-1180 . -609) 150035) ((-601 . -612) 150017) ((-1134 . -1115) 149962) ((-1041 . -1200) 149891) ((-530 . -25) T) ((-896 . -308) 149829) ((-709 . -612) 149783) ((-342 . -1051) T) ((-640 . -489) 149764) ((-140 . -102) T) ((-44 . -130) T) ((-288 . -1104) T) ((-675 . -93) T) ((-670 . -93) T) ((-658 . -609) 149746) ((-640 . -609) 149699) ((-477 . -93) T) ((-354 . -609) 149681) ((-351 . -609) 149663) ((-343 . -609) 149645) ((-263 . -610) 149393) ((-263 . -609) 149375) ((-246 . -609) 149357) ((-246 . -610) 149218) ((-132 . -93) T) ((-137 . -93) T) ((-136 . -93) T) ((-1220 . -1033) 149184) ((-1201 . -513) 149151) ((-1133 . -609) 149133) ((-814 . -852) T) ((-814 . -721) T) ((-598 . -287) 149110) ((-579 . -712) 149075) ((-478 . -610) NIL) ((-478 . -609) 149057) ((-517 . -712) 149002) ((-315 . -102) T) ((-312 . -102) T) ((-288 . -23) T) ((-151 . -130) T) ((-905 . -609) 148984) ((-385 . -721) T) ((-867 . -1050) 148936) ((-905 . -610) 148918) ((-867 . -111) 148856) ((-709 . -1044) T) ((-707 . -1232) 148840) ((-138 . -102) T) ((-135 . -102) T) ((-114 . -102) T) ((-688 . -348) NIL) ((-518 . -609) 148772) ((-378 . -790) T) ((-222 . -1092) T) ((-378 . -787) T) ((-224 . -789) T) ((-224 . -786) T) ((-59 . -610) 148733) ((-59 . -609) 148645) ((-224 . -721) T) ((-515 . -610) 148606) ((-515 . -609) 148518) ((-496 . -609) 148450) ((-495 . -610) 148411) ((-495 . -609) 148323) ((-1072 . -362) 148274) ((-40 . -410) 148251) ((-77 . -1207) T) ((-866 . -904) NIL) ((-358 . -328) 148235) ((-358 . -362) T) ((-352 . -328) 148219) ((-352 . -362) T) ((-344 . -328) 148203) ((-344 . -362) T) ((-315 . -283) 148182) ((-108 . -362) T) ((-70 . -1207) T) ((-1220 . -337) 148134) ((-866 . -642) 148079) ((-1220 . -376) 148031) ((-959 . -130) 147886) ((-810 . -130) 147756) ((-953 . -645) 147740) ((-1079 . -171) 147651) ((-953 . -372) 147635) ((-1055 . -789) T) ((-1055 . -786) T) ((-867 . -612) 147533) ((-777 . -171) 147424) ((-775 . -171) 147335) ((-811 . -47) 147297) ((-1055 . -721) T) ((-326 . -488) 147281) ((-947 . -721) T) ((-453 . -171) 147192) ((-244 . -285) 147169) ((-1269 . -308) 147107) ((-480 . -721) T) ((-1248 . -895) 147020) ((-1241 . -895) 146926) ((-1240 . -1050) 146761) ((-1220 . -895) 146594) ((-1219 . -1050) 146402) ((-1201 . -289) 146381) ((-1175 . -367) T) ((-1174 . -367) T) ((-1138 . -150) 146365) ((-1112 . -102) T) ((-1110 . -1092) T) ((-1072 . -23) T) ((-1067 . -102) T) ((-922 . -950) T) ((-732 . -308) 146303) ((-75 . -1207) T) ((-30 . -950) T) ((-168 . -904) 146256) ((-658 . -381) 146228) ((-112 . -839) T) ((-1 . -609) 146210) ((-1072 . -1104) T) ((-128 . -645) 146192) ((-50 . -616) 146176) ((-998 . -408) 146148) ((-592 . -895) 146061) ((-437 . -102) T) ((-140 . -308) NIL) ((-128 . -372) 146043) ((-867 . -1044) T) ((-828 . -845) 146022) ((-81 . -1207) T) ((-706 . -289) T) ((-40 . -1051) T) ((-579 . -171) T) ((-517 . -171) T) ((-510 . -609) 146004) ((-168 . -642) 145914) ((-506 . -609) 145896) ((-350 . -146) 145878) ((-350 . -144) T) ((-358 . -1104) T) ((-352 . -1104) T) ((-344 . -1104) T) ((-999 . -306) T) ((-909 . -306) T) ((-867 . -242) T) ((-108 . -1104) T) ((-867 . -232) 145857) ((-1240 . -111) 145678) ((-1219 . -111) 145467) ((-244 . -1244) 145451) ((-562 . -843) T) ((-358 . -23) T) ((-353 . -348) T) ((-315 . -308) 145438) ((-312 . -308) 145379) ((-352 . -23) T) ((-318 . -130) T) ((-344 . -23) T) ((-999 . -1017) T) ((-31 . -612) 145360) ((-108 . -23) T) ((-244 . -600) 145337) ((-1242 . -38) 145229) ((-1229 . -904) 145208) ((-112 . -1092) T) ((-1030 . -102) T) ((-1229 . -642) 145133) ((-866 . -789) NIL) ((-850 . -642) 145107) ((-866 . -786) NIL) ((-811 . -881) NIL) ((-866 . -721) T) ((-1079 . -513) 144980) ((-777 . -513) 144927) ((-775 . -513) 144879) ((-569 . -642) 144866) ((-811 . -1033) 144694) ((-453 . -513) 144637) ((-387 . -388) T) ((-1240 . -612) 144450) ((-1219 . -612) 144198) ((-60 . -1207) T) ((-617 . -845) 144177) ((-499 . -655) T) ((-1138 . -971) 144146) ((-998 . -451) T) ((-693 . -843) T) ((-509 . -787) T) ((-473 . -1050) 143981) ((-342 . -1092) T) ((-312 . -1143) NIL) ((-288 . -130) T) ((-393 . -1092) T) ((-688 . -369) 143948) ((-865 . -1051) T) ((-222 . -616) 143925) ((-326 . -285) 143902) ((-473 . -111) 143723) ((-1240 . -1044) T) ((-1219 . -1044) T) ((-811 . -376) 143707) ((-168 . -721) T) ((-648 . -102) T) ((-1240 . -242) 143686) ((-1240 . -232) 143638) ((-1219 . -232) 143543) ((-1219 . -242) 143522) ((-998 . -401) NIL) ((-664 . -635) 143470) ((-315 . -38) 143380) ((-312 . -38) 143309) ((-69 . -609) 143291) ((-318 . -492) 143257) ((-1180 . -287) 143236) ((-1214 . -845) T) ((-1105 . -1104) 143146) ((-83 . -1207) T) ((-61 . -609) 143128) ((-478 . -287) 143107) ((-1271 . -1033) 143084) ((-1156 . -1092) T) ((-1105 . -23) 142954) ((-811 . -895) 142890) ((-1229 . -721) T) ((-1094 . -1207) T) ((-473 . -612) 142716) ((-1079 . -289) 142647) ((-961 . -1092) T) ((-888 . -102) T) ((-777 . -289) 142558) ((-326 . -19) 142542) ((-59 . -287) 142519) ((-775 . -289) 142450) ((-850 . -721) T) ((-117 . -843) NIL) ((-515 . -287) 142427) ((-326 . -600) 142404) ((-495 . -287) 142381) ((-453 . -289) 142312) ((-1030 . -308) 142163) ((-675 . -489) 142144) ((-569 . -721) T) ((-670 . -489) 142125) ((-675 . -609) 142075) ((-670 . -609) 142041) ((-656 . -609) 142023) ((-477 . -489) 142004) ((-477 . -609) 141970) ((-244 . -610) 141931) ((-244 . -489) 141908) ((-137 . -489) 141889) ((-136 . -489) 141870) ((-132 . -489) 141851) ((-244 . -609) 141743) ((-212 . -102) T) ((-137 . -609) 141709) ((-136 . -609) 141675) ((-132 . -609) 141641) ((-1139 . -34) T) ((-938 . -1207) T) ((-342 . -712) 141586) ((-664 . -25) T) ((-664 . -21) T) ((-1168 . -612) 141567) ((-473 . -1044) T) ((-631 . -416) 141532) ((-603 . -416) 141497) ((-1112 . -1143) T) ((-579 . -289) T) ((-517 . -289) T) ((-1241 . -306) 141476) ((-473 . -232) 141428) ((-473 . -242) 141407) ((-1220 . -306) 141386) ((-1220 . -1017) NIL) ((-1072 . -130) T) ((-867 . -790) 141365) ((-143 . -102) T) ((-40 . -1092) T) ((-867 . -787) 141344) ((-639 . -1005) 141328) ((-578 . -1051) T) ((-562 . -1051) T) ((-494 . -1051) T) ((-406 . -451) T) ((-358 . -130) T) ((-315 . -399) 141312) ((-312 . -399) 141273) ((-352 . -130) T) ((-344 . -130) T) ((-1173 . -1092) T) ((-1112 . -38) 141260) ((-1086 . -609) 141227) ((-108 . -130) T) ((-949 . -1092) T) ((-916 . -1092) T) ((-766 . -1092) T) ((-666 . -1092) T) ((-695 . -146) T) ((-116 . -146) T) ((-1278 . -21) T) ((-1278 . -25) T) ((-1276 . -21) T) ((-1276 . -25) T) ((-658 . -1050) 141211) ((-530 . -845) T) ((-499 . -845) T) ((-354 . -1050) 141163) ((-351 . -1050) 141115) ((-343 . -1050) 141067) ((-250 . -1207) T) ((-249 . -1207) T) ((-263 . -1050) 140910) ((-246 . -1050) 140753) ((-658 . -111) 140732) ((-546 . -839) T) ((-354 . -111) 140670) ((-351 . -111) 140608) ((-343 . -111) 140546) ((-263 . -111) 140375) ((-246 . -111) 140204) ((-812 . -1211) 140183) ((-619 . -410) 140167) ((-44 . -21) T) ((-44 . -25) T) ((-810 . -635) 140073) ((-812 . -554) 140052) ((-250 . -1033) 139879) ((-249 . -1033) 139706) ((-126 . -119) 139690) ((-905 . -1050) 139655) ((-707 . -102) T) ((-693 . -1051) T) ((-535 . -614) 139558) ((-342 . -171) T) ((-151 . -25) T) ((-88 . -609) 139540) ((-151 . -21) T) ((-905 . -111) 139496) ((-40 . -712) 139441) ((-865 . -1092) T) ((-658 . -612) 139418) ((-640 . -612) 139399) ((-354 . -612) 139336) ((-351 . -612) 139273) ((-546 . -1092) T) ((-343 . -612) 139210) ((-326 . -610) 139171) ((-326 . -609) 139083) ((-263 . -612) 138836) ((-246 . -612) 138621) ((-1219 . -787) 138574) ((-1219 . -790) 138527) ((-250 . -376) 138496) ((-249 . -376) 138465) ((-648 . -38) 138435) ((-604 . -34) T) ((-481 . -1104) 138345) ((-474 . -34) T) ((-1105 . -130) 138215) ((-959 . -25) 138026) ((-905 . -612) 137976) ((-869 . -609) 137958) ((-959 . -21) 137913) ((-810 . -21) 137823) ((-810 . -25) 137674) ((-1213 . -367) T) ((-619 . -1051) T) ((-1170 . -554) 137653) ((-1164 . -47) 137630) ((-354 . -1044) T) ((-351 . -1044) T) ((-481 . -23) 137500) ((-343 . -1044) T) ((-246 . -1044) T) ((-263 . -1044) T) ((-1117 . -47) 137472) ((-117 . -1051) T) ((-1029 . -642) 137446) ((-953 . -34) T) ((-354 . -232) 137425) ((-354 . -242) T) ((-351 . -232) 137404) ((-351 . -242) T) ((-343 . -232) 137383) ((-343 . -242) T) ((-246 . -325) 137340) ((-263 . -325) 137312) ((-263 . -232) 137291) ((-1148 . -150) 137275) ((-250 . -895) 137207) ((-249 . -895) 137139) ((-1074 . -845) T) ((-413 . -1104) T) ((-1048 . -23) T) ((-905 . -1044) T) ((-321 . -642) 137121) ((-1019 . -843) T) ((-1201 . -997) 137087) ((-1165 . -915) 137066) ((-1159 . -915) 137045) ((-1159 . -815) NIL) ((-905 . -242) T) ((-812 . -362) 137024) ((-384 . -23) T) ((-127 . -1092) 137002) ((-121 . -1092) 136980) ((-905 . -232) T) ((-128 . -34) T) ((-378 . -642) 136945) ((-865 . -712) 136932) ((-1041 . -150) 136897) ((-40 . -171) T) ((-688 . -410) 136879) ((-707 . -308) 136866) ((-831 . -642) 136826) ((-822 . -642) 136800) ((-318 . -25) T) ((-318 . -21) T) ((-652 . -285) 136779) ((-578 . -1092) T) ((-562 . -1092) T) ((-494 . -1092) T) ((-244 . -287) 136756) ((-312 . -230) 136717) ((-1164 . -881) NIL) ((-55 . -1092) T) ((-1117 . -881) 136576) ((-129 . -845) T) ((-1164 . -1033) 136456) ((-1117 . -1033) 136339) ((-182 . -609) 136321) ((-849 . -1033) 136217) ((-777 . -285) 136144) ((-812 . -1104) T) ((-1029 . -721) T) ((-598 . -645) 136128) ((-1041 . -971) 136057) ((-994 . -102) T) ((-812 . -23) T) ((-707 . -1143) 136035) ((-688 . -1051) T) ((-598 . -372) 136019) ((-350 . -451) T) ((-342 . -289) T) ((-1257 . -1092) T) ((-247 . -1092) T) ((-398 . -102) T) ((-288 . -21) T) ((-288 . -25) T) ((-360 . -721) T) ((-705 . -1092) T) ((-693 . -1092) T) ((-360 . -472) T) ((-1201 . -609) 136001) ((-1164 . -376) 135985) ((-1117 . -376) 135969) ((-1019 . -410) 135931) ((-140 . -228) 135913) ((-378 . -789) T) ((-378 . -786) T) ((-865 . -171) T) ((-378 . -721) T) ((-706 . -609) 135895) ((-707 . -38) 135724) ((-1256 . -1254) 135708) ((-350 . -401) T) ((-1256 . -1092) 135658) ((-578 . -712) 135645) ((-562 . -712) 135632) ((-494 . -712) 135597) ((-315 . -625) 135576) ((-831 . -721) T) ((-822 . -721) T) ((-639 . -1207) T) ((-1072 . -635) 135524) ((-1164 . -895) 135467) ((-1117 . -895) 135451) ((-656 . -1050) 135435) ((-108 . -635) 135417) ((-481 . -130) 135287) ((-1170 . -1104) T) ((-947 . -47) 135256) ((-619 . -1092) T) ((-656 . -111) 135235) ((-490 . -609) 135201) ((-326 . -287) 135178) ((-480 . -47) 135135) ((-1170 . -23) T) ((-117 . -1092) T) ((-103 . -102) 135113) ((-1268 . -1104) T) ((-1048 . -130) T) ((-1019 . -1051) T) ((-814 . -1033) 135097) ((-998 . -719) 135069) ((-1268 . -23) T) ((-693 . -712) 135034) ((-583 . -609) 135016) ((-385 . -1033) 135000) ((-353 . -1051) T) ((-384 . -130) T) ((-323 . -1033) 134984) ((-224 . -881) 134966) ((-999 . -915) T) ((-91 . -34) T) ((-999 . -815) T) ((-909 . -915) T) ((-1187 . -609) 134948) ((-1112 . -823) T) ((-486 . -1211) T) ((-1097 . -1092) T) ((-1072 . -21) T) ((-1072 . -25) T) ((-216 . -1211) T) ((-994 . -308) 134913) ((-224 . -1033) 134873) ((-40 . -289) T) ((-709 . -642) 134833) ((-675 . -612) 134814) ((-670 . -612) 134795) ((-486 . -554) T) ((-477 . -612) 134776) ((-358 . -25) T) ((-358 . -21) T) ((-352 . -25) T) ((-216 . -554) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-244 . -612) 134753) ((-137 . -612) 134734) ((-136 . -612) 134715) ((-132 . -612) 134696) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1051) T) ((-578 . -171) T) ((-562 . -171) T) ((-494 . -171) T) ((-652 . -609) 134678) ((-732 . -731) 134662) ((-335 . -609) 134644) ((-68 . -382) T) ((-68 . -394) T) ((-1094 . -107) 134628) ((-1055 . -881) 134610) ((-947 . -881) 134535) ((-647 . -1104) T) ((-619 . -712) 134522) ((-480 . -881) NIL) ((-1138 . -102) T) ((-1086 . -614) 134506) ((-1055 . -1033) 134488) ((-97 . -609) 134470) ((-476 . -146) T) ((-947 . -1033) 134350) ((-117 . -712) 134295) ((-647 . -23) T) ((-480 . -1033) 134171) ((-1079 . -610) NIL) ((-1079 . -609) 134153) ((-777 . -610) NIL) ((-777 . -609) 134114) ((-775 . -610) 133748) ((-775 . -609) 133662) ((-1105 . -635) 133568) ((-460 . -609) 133550) ((-453 . -609) 133532) ((-453 . -610) 133393) ((-1030 . -228) 133339) ((-867 . -904) 133318) ((-126 . -34) T) ((-812 . -130) T) ((-643 . -609) 133300) ((-576 . -102) T) ((-354 . -1275) 133284) ((-351 . -1275) 133268) ((-343 . -1275) 133252) ((-127 . -513) 133185) ((-121 . -513) 133118) ((-510 . -787) T) ((-510 . -790) T) ((-509 . -789) T) ((-103 . -308) 133056) ((-221 . -102) 133034) ((-688 . -1092) T) ((-693 . -171) T) ((-867 . -642) 132986) ((-65 . -383) T) ((-274 . -609) 132968) ((-65 . -394) T) ((-947 . -376) 132952) ((-865 . -289) T) ((-50 . -609) 132934) ((-994 . -38) 132882) ((-579 . -609) 132864) ((-480 . -376) 132848) ((-579 . -610) 132830) ((-517 . -609) 132812) ((-905 . -1275) 132799) ((-866 . -1207) T) ((-695 . -451) T) ((-494 . -513) 132765) ((-486 . -362) T) ((-354 . -367) 132744) ((-351 . -367) 132723) ((-343 . -367) 132702) ((-709 . -721) T) ((-216 . -362) T) ((-116 . -451) T) ((-1279 . -1270) 132686) ((-866 . -879) 132663) ((-866 . -881) NIL) ((-959 . -845) 132562) ((-810 . -845) 132513) ((-648 . -650) 132497) ((-1193 . -34) T) ((-170 . -609) 132479) ((-1105 . -21) 132389) ((-1105 . -25) 132240) ((-866 . -1033) 132217) ((-947 . -895) 132198) ((-1229 . -47) 132175) ((-905 . -367) T) ((-59 . -645) 132159) ((-515 . -645) 132143) ((-480 . -895) 132120) ((-71 . -440) T) ((-71 . -394) T) ((-495 . -645) 132104) ((-59 . -372) 132088) ((-619 . -171) T) ((-515 . -372) 132072) ((-495 . -372) 132056) ((-822 . -703) 132040) ((-1164 . -306) 132019) ((-1170 . -130) T) ((-117 . -171) T) ((-1138 . -308) 131957) ((-168 . -1207) T) ((-631 . -739) 131941) ((-603 . -739) 131925) ((-1268 . -130) T) ((-1241 . -915) 131904) ((-1220 . -915) 131883) ((-1220 . -815) NIL) ((-688 . -712) 131833) ((-1219 . -904) 131786) ((-1019 . -1092) T) ((-866 . -376) 131763) ((-866 . -337) 131740) ((-900 . -1104) T) ((-168 . -879) 131724) ((-168 . -881) 131649) ((-486 . -1104) T) ((-353 . -1092) T) ((-216 . -1104) T) ((-76 . -440) T) ((-76 . -394) T) ((-168 . -1033) 131545) ((-318 . -845) T) ((-1256 . -513) 131478) ((-1240 . -642) 131375) ((-1219 . -642) 131245) ((-867 . -789) 131224) ((-867 . -786) 131203) ((-867 . -721) T) ((-486 . -23) T) ((-222 . -609) 131185) ((-173 . -451) T) ((-221 . -308) 131123) ((-86 . -440) T) ((-86 . -394) T) ((-216 . -23) T) ((-1280 . -1273) 131102) ((-578 . -289) T) ((-562 . -289) T) ((-671 . -1033) 131086) ((-494 . -289) T) ((-135 . -469) 131041) ((-48 . -1092) T) ((-707 . -230) 131025) ((-866 . -895) NIL) ((-1229 . -881) NIL) ((-884 . -102) T) ((-880 . -102) T) ((-387 . -1092) T) ((-168 . -376) 131009) ((-168 . -337) 130993) ((-1229 . -1033) 130873) ((-850 . -1033) 130769) ((-1134 . -102) T) ((-647 . -130) T) ((-117 . -513) 130677) ((-656 . -787) 130656) ((-656 . -790) 130635) ((-569 . -1033) 130617) ((-293 . -1263) 130587) ((-861 . -102) T) ((-958 . -554) 130566) ((-1201 . -1050) 130449) ((-481 . -635) 130355) ((-899 . -1092) T) ((-1019 . -712) 130292) ((-706 . -1050) 130257) ((-613 . -102) T) ((-598 . -34) T) ((-1139 . -1207) T) ((-1201 . -111) 130126) ((-473 . -642) 130023) ((-353 . -712) 129968) ((-168 . -895) 129927) ((-693 . -289) T) ((-688 . -171) T) ((-706 . -111) 129883) ((-1284 . -1051) T) ((-1229 . -376) 129867) ((-417 . -1211) 129845) ((-1110 . -609) 129827) ((-312 . -843) NIL) ((-417 . -554) T) ((-224 . -306) T) ((-1219 . -786) 129780) ((-1219 . -789) 129733) ((-1240 . -721) T) ((-1219 . -721) T) ((-48 . -712) 129698) ((-224 . -1017) T) ((-350 . -1263) 129675) ((-1242 . -410) 129641) ((-713 . -721) T) ((-1229 . -895) 129584) ((-1201 . -612) 129466) ((-112 . -609) 129448) ((-112 . -610) 129430) ((-713 . -472) T) ((-706 . -612) 129380) ((-481 . -21) 129290) ((-127 . -488) 129274) ((-121 . -488) 129258) ((-481 . -25) 129109) ((-619 . -289) T) ((-583 . -1050) 129084) ((-436 . -1092) T) ((-1055 . -306) T) ((-117 . -289) T) ((-1096 . -102) T) ((-998 . -102) T) ((-583 . -111) 129052) ((-1134 . -308) 128990) ((-1201 . -1044) T) ((-1055 . -1017) T) ((-66 . -1207) T) ((-1048 . -25) T) ((-1048 . -21) T) ((-706 . -1044) T) ((-384 . -21) T) ((-384 . -25) T) ((-688 . -513) NIL) ((-1019 . -171) T) ((-706 . -242) T) ((-1055 . -544) T) ((-505 . -102) T) ((-501 . -102) T) ((-353 . -171) T) ((-342 . -609) 128972) ((-393 . -609) 128954) ((-473 . -721) T) ((-1112 . -843) T) ((-887 . -1033) 128922) ((-108 . -845) T) ((-652 . -1050) 128906) ((-486 . -130) T) ((-1242 . -1051) T) ((-216 . -130) T) ((-1148 . -102) 128884) ((-99 . -1092) T) ((-244 . -660) 128868) ((-244 . -645) 128852) ((-652 . -111) 128831) ((-583 . -612) 128815) ((-315 . -410) 128799) ((-244 . -372) 128783) ((-1151 . -234) 128730) ((-994 . -230) 128714) ((-74 . -1207) T) ((-48 . -171) T) ((-695 . -386) T) ((-695 . -142) T) ((-1279 . -102) T) ((-1187 . -612) 128696) ((-1079 . -1050) 128539) ((-263 . -904) 128518) ((-246 . -904) 128497) ((-777 . -1050) 128320) ((-775 . -1050) 128163) ((-604 . -1207) T) ((-1156 . -609) 128145) ((-1079 . -111) 127974) ((-1041 . -102) T) ((-474 . -1207) T) ((-460 . -1050) 127945) ((-453 . -1050) 127788) ((-658 . -642) 127772) ((-866 . -306) T) ((-777 . -111) 127581) ((-775 . -111) 127410) ((-354 . -642) 127362) ((-351 . -642) 127314) ((-343 . -642) 127266) ((-263 . -642) 127191) ((-246 . -642) 127116) ((-1150 . -845) T) ((-1080 . -1033) 127100) ((-460 . -111) 127061) ((-453 . -111) 126890) ((-1068 . -1033) 126867) ((-995 . -34) T) ((-961 . -609) 126849) ((-953 . -1207) T) ((-126 . -1005) 126833) ((-958 . -1104) T) ((-866 . -1017) NIL) ((-730 . -1104) T) ((-710 . -1104) T) ((-652 . -612) 126751) ((-1256 . -488) 126735) ((-1134 . -38) 126695) ((-958 . -23) T) ((-860 . -1092) T) ((-838 . -102) T) ((-812 . -21) T) ((-812 . -25) T) ((-730 . -23) T) ((-710 . -23) T) ((-110 . -655) T) ((-905 . -642) 126660) ((-579 . -1050) 126625) ((-517 . -1050) 126570) ((-226 . -57) 126528) ((-452 . -23) T) ((-406 . -102) T) ((-262 . -102) T) ((-688 . -289) T) ((-861 . -38) 126498) ((-579 . -111) 126454) ((-517 . -111) 126383) ((-1079 . -612) 126119) ((-417 . -1104) T) ((-315 . -1051) 126009) ((-312 . -1051) T) ((-128 . -1207) T) ((-777 . -612) 125757) ((-775 . -612) 125523) ((-652 . -1044) T) ((-1284 . -1092) T) ((-453 . -612) 125308) ((-168 . -306) 125239) ((-417 . -23) T) ((-40 . -609) 125221) ((-40 . -610) 125205) ((-108 . -987) 125187) ((-116 . -864) 125171) ((-643 . -612) 125155) ((-48 . -513) 125121) ((-1193 . -1005) 125105) ((-1173 . -609) 125072) ((-1180 . -34) T) ((-949 . -609) 125038) ((-916 . -609) 125020) ((-1105 . -845) 124971) ((-766 . -609) 124953) ((-666 . -609) 124935) ((-1148 . -308) 124873) ((-478 . -34) T) ((-1084 . -1207) T) ((-476 . -451) T) ((-1133 . -34) T) ((-1079 . -1044) T) ((-50 . -612) 124842) ((-777 . -1044) T) ((-775 . -1044) T) ((-641 . -234) 124826) ((-628 . -234) 124772) ((-579 . -612) 124722) ((-517 . -612) 124652) ((-1229 . -306) 124631) ((-1079 . -325) 124592) ((-453 . -1044) T) ((-1170 . -21) T) ((-1079 . -232) 124571) ((-777 . -325) 124548) ((-777 . -232) T) ((-775 . -325) 124520) ((-726 . -1211) 124499) ((-326 . -645) 124483) ((-1170 . -25) T) ((-59 . -34) T) ((-518 . -34) T) ((-515 . -34) T) ((-453 . -325) 124462) ((-326 . -372) 124446) ((-496 . -34) T) ((-495 . -34) T) ((-998 . -1143) NIL) ((-726 . -554) 124377) ((-631 . -102) T) ((-603 . -102) T) ((-354 . -721) T) ((-351 . -721) T) ((-343 . -721) T) ((-263 . -721) T) ((-246 . -721) T) ((-1041 . -308) 124285) ((-896 . -1092) 124263) ((-50 . -1044) T) ((-1268 . -21) T) ((-1268 . -25) T) ((-1166 . -554) 124242) ((-1165 . -1211) 124221) ((-579 . -1044) T) ((-517 . -1044) T) ((-1159 . -1211) 124200) ((-360 . -1033) 124184) ((-321 . -1033) 124168) ((-1019 . -289) T) ((-378 . -881) 124150) ((-1165 . -554) 124101) ((-1159 . -554) 124052) ((-998 . -38) 123997) ((-794 . -1104) T) ((-905 . -721) T) ((-579 . -242) T) ((-579 . -232) T) ((-517 . -232) T) ((-517 . -242) T) ((-1118 . -554) 123976) ((-353 . -289) T) ((-641 . -689) 123960) ((-378 . -1033) 123920) ((-1112 . -1051) T) ((-103 . -125) 123904) ((-794 . -23) T) ((-1278 . -1273) 123880) ((-1256 . -285) 123857) ((-406 . -308) 123822) ((-1276 . -1273) 123801) ((-1242 . -1092) T) ((-865 . -609) 123783) ((-831 . -1033) 123752) ((-202 . -782) T) ((-201 . -782) T) ((-200 . -782) T) ((-199 . -782) T) ((-198 . -782) T) ((-197 . -782) T) ((-196 . -782) T) ((-195 . -782) T) ((-194 . -782) T) ((-193 . -782) T) ((-546 . -609) 123734) ((-494 . -997) T) ((-273 . -834) T) ((-272 . -834) T) ((-271 . -834) T) ((-270 . -834) T) ((-48 . -289) T) ((-269 . -834) T) ((-268 . -834) T) ((-267 . -834) T) ((-192 . -782) T) ((-608 . -845) T) ((-648 . -410) 123718) ((-222 . -612) 123680) ((-110 . -845) T) ((-647 . -21) T) ((-647 . -25) T) ((-1279 . -38) 123650) ((-117 . -285) 123601) ((-1256 . -19) 123585) ((-1256 . -600) 123562) ((-1269 . -1092) T) ((-1069 . -1092) T) ((-982 . -1092) T) ((-958 . -130) T) ((-732 . -1092) T) ((-730 . -130) T) ((-710 . -130) T) ((-510 . -788) T) ((-406 . -1143) 123540) ((-452 . -130) T) ((-510 . -789) T) ((-222 . -1044) T) ((-293 . -102) 123322) ((-140 . -1092) T) ((-693 . -997) T) ((-91 . -1207) T) ((-127 . -609) 123254) ((-121 . -609) 123186) ((-1284 . -171) T) ((-1165 . -362) 123165) ((-1159 . -362) 123144) ((-315 . -1092) T) ((-417 . -130) T) ((-312 . -1092) T) ((-406 . -38) 123096) ((-1125 . -102) T) ((-1242 . -712) 122988) ((-648 . -1051) T) ((-1127 . -1251) T) ((-318 . -144) 122967) ((-318 . -146) 122946) ((-138 . -1092) T) ((-135 . -1092) T) ((-114 . -1092) T) ((-853 . -102) T) ((-578 . -609) 122928) ((-562 . -610) 122827) ((-562 . -609) 122809) ((-494 . -609) 122791) ((-494 . -610) 122736) ((-484 . -23) T) ((-481 . -845) 122687) ((-486 . -635) 122669) ((-960 . -609) 122651) ((-216 . -635) 122633) ((-224 . -403) T) ((-656 . -642) 122617) ((-55 . -609) 122599) ((-1164 . -915) 122578) ((-726 . -1104) T) ((-350 . -102) T) ((-1206 . -1075) T) ((-1112 . -839) T) ((-813 . -845) T) ((-726 . -23) T) ((-342 . -1050) 122523) ((-1150 . -1149) T) ((-1139 . -107) 122507) ((-1166 . -1104) T) ((-1165 . -1104) T) ((-514 . -1033) 122491) ((-1159 . -1104) T) ((-1118 . -1104) T) ((-342 . -111) 122420) ((-999 . -1211) T) ((-126 . -1207) T) ((-909 . -1211) T) ((-688 . -285) NIL) ((-1257 . -609) 122402) ((-1166 . -23) T) ((-1165 . -23) T) ((-1159 . -23) T) ((-999 . -554) T) ((-1134 . -230) 122386) ((-909 . -554) T) ((-1118 . -23) T) ((-247 . -609) 122368) ((-1067 . -1092) T) ((-794 . -130) T) ((-705 . -609) 122350) ((-315 . -712) 122260) ((-312 . -712) 122189) ((-693 . -609) 122171) ((-693 . -610) 122116) ((-406 . -399) 122100) ((-437 . -1092) T) ((-486 . -25) T) ((-486 . -21) T) ((-1112 . -1092) T) ((-216 . -25) T) ((-216 . -21) T) ((-707 . -410) 122084) ((-709 . -1033) 122053) ((-1256 . -609) 121965) ((-1256 . -610) 121926) ((-1242 . -171) T) ((-244 . -34) T) ((-342 . -612) 121856) ((-393 . -612) 121838) ((-921 . -969) T) ((-1193 . -1207) T) ((-656 . -786) 121817) ((-656 . -789) 121796) ((-397 . -394) T) ((-522 . -102) 121774) ((-1030 . -1092) T) ((-221 . -990) 121758) ((-503 . -102) T) ((-619 . -609) 121740) ((-45 . -845) NIL) ((-619 . -610) 121717) ((-1030 . -606) 121692) ((-896 . -513) 121625) ((-342 . -1044) T) ((-117 . -610) NIL) ((-117 . -609) 121607) ((-867 . -1207) T) ((-664 . -416) 121591) ((-664 . -1115) 121536) ((-499 . -150) 121518) ((-342 . -232) T) ((-342 . -242) T) ((-40 . -1050) 121463) ((-867 . -879) 121447) ((-867 . -881) 121372) ((-707 . -1051) T) ((-688 . -997) NIL) ((-3 . |UnionCategory|) T) ((-1240 . -47) 121342) ((-1219 . -47) 121319) ((-1133 . -1005) 121290) ((-224 . -915) T) ((-40 . -111) 121219) ((-867 . -1033) 121083) ((-1112 . -712) 121070) ((-1097 . -609) 121052) ((-1072 . -146) 121031) ((-1072 . -144) 120982) ((-999 . -362) T) ((-318 . -1195) 120948) ((-378 . -306) T) ((-318 . -1192) 120914) ((-315 . -171) 120893) ((-312 . -171) T) ((-998 . -230) 120870) ((-909 . -362) T) ((-579 . -1275) 120857) ((-517 . -1275) 120834) ((-358 . -146) 120813) ((-358 . -144) 120764) ((-352 . -146) 120743) ((-352 . -144) 120694) ((-604 . -1183) 120670) ((-344 . -146) 120649) ((-344 . -144) 120600) ((-318 . -35) 120566) ((-474 . -1183) 120545) ((0 . |EnumerationCategory|) T) ((-318 . -95) 120511) ((-378 . -1017) T) ((-108 . -146) T) ((-108 . -144) NIL) ((-45 . -234) 120461) ((-648 . -1092) T) ((-604 . -107) 120408) ((-484 . -130) T) ((-474 . -107) 120358) ((-239 . -1104) 120268) ((-867 . -376) 120252) ((-867 . -337) 120236) ((-239 . -23) 120106) ((-40 . -612) 120036) ((-1055 . -915) T) ((-1055 . -815) T) ((-579 . -367) T) ((-517 . -367) T) ((-350 . -1143) T) ((-326 . -34) T) ((-44 . -416) 120020) ((-1173 . -612) 119955) ((-868 . -1207) T) ((-389 . -739) 119939) ((-1269 . -513) 119872) ((-726 . -130) T) ((-666 . -612) 119856) ((-1248 . -554) 119835) ((-1241 . -1211) 119814) ((-1241 . -554) 119765) ((-1220 . -1211) 119744) ((-310 . -1075) T) ((-1220 . -554) 119695) ((-732 . -513) 119628) ((-1219 . -1207) 119607) ((-1219 . -881) 119480) ((-888 . -1092) T) ((-143 . -839) T) ((-1219 . -879) 119450) ((-685 . -609) 119432) ((-1166 . -130) T) ((-522 . -308) 119370) ((-1165 . -130) T) ((-140 . -513) NIL) ((-1159 . -130) T) ((-1118 . -130) T) ((-1019 . -997) T) ((-999 . -23) T) ((-350 . -38) 119335) ((-999 . -1104) T) ((-909 . -1104) T) ((-82 . -609) 119317) ((-40 . -1044) T) ((-865 . -1050) 119304) ((-998 . -348) NIL) ((-867 . -895) 119263) ((-695 . -102) T) ((-966 . -23) T) ((-598 . -1207) T) ((-909 . -23) T) ((-865 . -111) 119248) ((-426 . -1104) T) ((-212 . -1092) T) ((-473 . -47) 119218) ((-133 . -102) T) ((-40 . -232) 119190) ((-40 . -242) T) ((-116 . -102) T) ((-593 . -554) 119169) ((-592 . -554) 119148) ((-688 . -609) 119130) ((-688 . -610) 119038) ((-315 . -513) 119004) ((-312 . -513) 118896) ((-1240 . -1033) 118880) ((-1219 . -1033) 118666) ((-994 . -410) 118650) ((-426 . -23) T) ((-1112 . -171) T) ((-1242 . -289) T) ((-648 . -712) 118620) ((-143 . -1092) T) ((-48 . -997) T) ((-406 . -230) 118604) ((-294 . -234) 118554) ((-866 . -915) T) ((-866 . -815) NIL) ((-865 . -612) 118526) ((-859 . -845) T) ((-1219 . -337) 118496) ((-1219 . -376) 118466) ((-221 . -1113) 118450) ((-1256 . -287) 118427) ((-1201 . -642) 118352) ((-958 . -21) T) ((-958 . -25) T) ((-730 . -21) T) ((-730 . -25) T) ((-710 . -21) T) ((-710 . -25) T) ((-706 . -642) 118317) ((-452 . -21) T) ((-452 . -25) T) ((-338 . -102) T) ((-173 . -102) T) ((-994 . -1051) T) ((-865 . -1044) T) ((-769 . -102) T) ((-1241 . -362) 118296) ((-1240 . -895) 118202) ((-1220 . -362) 118181) ((-1219 . -895) 118032) ((-1019 . -609) 118014) ((-406 . -823) 117967) ((-1166 . -492) 117933) ((-168 . -915) 117864) ((-1165 . -492) 117830) ((-1159 . -492) 117796) ((-707 . -1092) T) ((-1118 . -492) 117762) ((-578 . -1050) 117749) ((-562 . -1050) 117736) ((-494 . -1050) 117701) ((-315 . -289) 117680) ((-312 . -289) T) ((-353 . -609) 117662) ((-417 . -25) T) ((-417 . -21) T) ((-99 . -285) 117641) ((-578 . -111) 117626) ((-562 . -111) 117611) ((-494 . -111) 117567) ((-1168 . -881) 117534) ((-896 . -488) 117518) ((-48 . -609) 117500) ((-48 . -610) 117445) ((-239 . -130) 117315) ((-1229 . -915) 117294) ((-811 . -1211) 117273) ((-387 . -489) 117254) ((-1030 . -513) 117098) ((-387 . -609) 117064) ((-811 . -554) 116995) ((-583 . -642) 116970) ((-263 . -47) 116942) ((-246 . -47) 116899) ((-530 . -508) 116876) ((-578 . -612) 116848) ((-562 . -612) 116820) ((-494 . -612) 116753) ((-995 . -1207) T) ((-693 . -1050) 116718) ((-1248 . -23) T) ((-1248 . -1104) T) ((-1241 . -1104) T) ((-1220 . -1104) T) ((-998 . -369) 116690) ((-112 . -367) T) ((-473 . -895) 116596) ((-1241 . -23) T) ((-899 . -609) 116578) ((-55 . -612) 116560) ((-91 . -107) 116544) ((-1201 . -721) T) ((-900 . -845) 116495) ((-695 . -1143) T) ((-693 . -111) 116451) ((-1220 . -23) T) ((-593 . -1104) T) ((-592 . -1104) T) ((-707 . -712) 116280) ((-706 . -721) T) ((-1112 . -289) T) ((-999 . -130) T) ((-486 . -845) T) ((-966 . -130) T) ((-909 . -130) T) ((-794 . -25) T) ((-216 . -845) T) ((-794 . -21) T) ((-578 . -1044) T) ((-562 . -1044) T) ((-494 . -1044) T) ((-593 . -23) T) ((-342 . -1275) 116257) ((-318 . -451) 116236) ((-338 . -308) 116223) ((-592 . -23) T) ((-426 . -130) T) ((-652 . -642) 116197) ((-244 . -1005) 116181) ((-867 . -306) T) ((-1280 . -1270) 116165) ((-766 . -787) T) ((-766 . -790) T) ((-695 . -38) 116152) ((-562 . -232) T) ((-494 . -242) T) ((-494 . -232) T) ((-1142 . -234) 116102) ((-1079 . -904) 116081) ((-116 . -38) 116068) ((-208 . -795) T) ((-207 . -795) T) ((-206 . -795) T) ((-205 . -795) T) ((-867 . -1017) 116046) ((-1269 . -488) 116030) ((-777 . -904) 116009) ((-775 . -904) 115988) ((-1180 . -1207) T) ((-453 . -904) 115967) ((-732 . -488) 115951) ((-1079 . -642) 115876) ((-693 . -612) 115811) ((-777 . -642) 115736) ((-619 . -1050) 115723) ((-478 . -1207) T) ((-342 . -367) T) ((-140 . -488) 115705) ((-775 . -642) 115630) ((-1133 . -1207) T) ((-547 . -845) T) ((-460 . -642) 115601) ((-263 . -881) 115460) ((-246 . -881) NIL) ((-117 . -1050) 115405) ((-453 . -642) 115330) ((-658 . -1033) 115307) ((-619 . -111) 115292) ((-354 . -1033) 115276) ((-351 . -1033) 115260) ((-343 . -1033) 115244) ((-263 . -1033) 115088) ((-246 . -1033) 114964) ((-117 . -111) 114893) ((-59 . -1207) T) ((-518 . -1207) T) ((-515 . -1207) T) ((-496 . -1207) T) ((-495 . -1207) T) ((-436 . -609) 114875) ((-433 . -609) 114857) ((-3 . -102) T) ((-1022 . -1200) 114826) ((-828 . -102) T) ((-683 . -57) 114784) ((-693 . -1044) T) ((-50 . -642) 114758) ((-288 . -451) T) ((-475 . -1200) 114727) ((0 . -102) T) ((-579 . -642) 114692) ((-517 . -642) 114637) ((-49 . -102) T) ((-905 . -1033) 114624) ((-693 . -242) T) ((-1072 . -408) 114603) ((-726 . -635) 114551) ((-994 . -1092) T) ((-707 . -171) 114442) ((-619 . -612) 114337) ((-486 . -987) 114319) ((-263 . -376) 114303) ((-246 . -376) 114287) ((-398 . -1092) T) ((-1021 . -102) 114265) ((-338 . -38) 114249) ((-216 . -987) 114231) ((-117 . -612) 114161) ((-173 . -38) 114093) ((-1240 . -306) 114072) ((-1219 . -306) 114051) ((-652 . -721) T) ((-99 . -609) 114033) ((-1159 . -635) 113985) ((-484 . -25) T) ((-484 . -21) T) ((-1219 . -1017) 113937) ((-619 . -1044) T) ((-378 . -403) T) ((-389 . -102) T) ((-1097 . -614) 113852) ((-263 . -895) 113798) ((-246 . -895) 113775) ((-117 . -1044) T) ((-811 . -1104) T) ((-1079 . -721) T) ((-619 . -232) 113754) ((-617 . -102) T) ((-777 . -721) T) ((-775 . -721) T) ((-412 . -1104) T) ((-117 . -242) T) ((-40 . -367) NIL) ((-117 . -232) NIL) ((-1212 . -845) T) ((-453 . -721) T) ((-811 . -23) T) ((-726 . -25) T) ((-726 . -21) T) ((-697 . -845) T) ((-1069 . -285) 113733) ((-78 . -395) T) ((-78 . -394) T) ((-532 . -762) 113715) ((-688 . -1050) 113665) ((-1248 . -130) T) ((-1241 . -130) T) ((-1220 . -130) T) ((-1166 . -25) T) ((-1134 . -410) 113649) ((-631 . -366) 113581) ((-603 . -366) 113513) ((-1148 . -1141) 113497) ((-103 . -1092) 113475) ((-1166 . -21) T) ((-1165 . -21) T) ((-860 . -609) 113457) ((-994 . -712) 113405) ((-222 . -642) 113372) ((-688 . -111) 113306) ((-50 . -721) T) ((-1165 . -25) T) ((-350 . -348) T) ((-1159 . -21) T) ((-1072 . -451) 113257) ((-1159 . -25) T) ((-707 . -513) 113204) ((-579 . -721) T) ((-517 . -721) T) ((-1118 . -21) T) ((-1118 . -25) T) ((-593 . -130) T) ((-592 . -130) T) ((-358 . -451) T) ((-352 . -451) T) ((-344 . -451) T) ((-473 . -306) 113183) ((-1214 . -102) T) ((-312 . -285) 113118) ((-108 . -451) T) ((-79 . -440) T) ((-79 . -394) T) ((-476 . -102) T) ((-685 . -612) 113102) ((-1284 . -609) 113084) ((-1284 . -610) 113066) ((-1072 . -401) 113045) ((-1030 . -488) 112976) ((-562 . -790) T) ((-562 . -787) T) ((-1056 . -234) 112922) ((-358 . -401) 112873) ((-352 . -401) 112824) ((-344 . -401) 112775) ((-1271 . -1104) T) ((-688 . -612) 112710) ((-1271 . -23) T) ((-1258 . -102) T) ((-174 . -609) 112692) ((-1134 . -1051) T) ((-546 . -367) T) ((-664 . -739) 112676) ((-1170 . -144) 112655) ((-1170 . -146) 112634) ((-1138 . -1092) T) ((-1138 . -1064) 112603) ((-69 . -1207) T) ((-1019 . -1050) 112540) ((-861 . -1051) T) ((-239 . -635) 112446) ((-688 . -1044) T) ((-353 . -1050) 112391) ((-61 . -1207) T) ((-1019 . -111) 112307) ((-896 . -609) 112218) ((-688 . -242) T) ((-688 . -232) NIL) ((-838 . -843) 112197) ((-693 . -790) T) ((-693 . -787) T) ((-998 . -410) 112174) ((-353 . -111) 112103) ((-378 . -915) T) ((-406 . -843) 112082) ((-707 . -289) 111993) ((-222 . -721) T) ((-1248 . -492) 111959) ((-1241 . -492) 111925) ((-1220 . -492) 111891) ((-576 . -1092) T) ((-315 . -997) 111870) ((-221 . -1092) 111848) ((-318 . -968) 111810) ((-105 . -102) T) ((-48 . -1050) 111775) ((-1280 . -102) T) ((-380 . -102) T) ((-48 . -111) 111731) ((-999 . -635) 111713) ((-1242 . -609) 111695) ((-530 . -102) T) ((-499 . -102) T) ((-1125 . -1126) 111679) ((-151 . -1263) 111663) ((-244 . -1207) T) ((-1206 . -102) T) ((-1019 . -612) 111600) ((-1164 . -1211) 111579) ((-353 . -612) 111509) ((-1117 . -1211) 111488) ((-239 . -21) 111398) ((-239 . -25) 111249) ((-127 . -119) 111233) ((-121 . -119) 111217) ((-44 . -739) 111201) ((-1164 . -554) 111112) ((-1117 . -554) 111043) ((-1030 . -285) 111018) ((-1158 . -1075) T) ((-989 . -1075) T) ((-811 . -130) T) ((-117 . -790) NIL) ((-117 . -787) NIL) ((-354 . -306) T) ((-351 . -306) T) ((-343 . -306) T) ((-250 . -1104) 110928) ((-249 . -1104) 110838) ((-1019 . -1044) T) ((-998 . -1051) T) ((-48 . -612) 110771) ((-342 . -642) 110716) ((-617 . -38) 110700) ((-1269 . -609) 110662) ((-1269 . -610) 110623) ((-1069 . -609) 110605) ((-1019 . -242) T) ((-353 . -1044) T) ((-810 . -1263) 110575) ((-250 . -23) T) ((-249 . -23) T) ((-982 . -609) 110557) ((-732 . -610) 110518) ((-732 . -609) 110500) ((-794 . -845) 110479) ((-1151 . -150) 110426) ((-994 . -513) 110338) ((-353 . -232) T) ((-353 . -242) T) ((-387 . -612) 110319) ((-999 . -25) T) ((-140 . -609) 110301) ((-140 . -610) 110260) ((-905 . -306) T) ((-999 . -21) T) ((-966 . -25) T) ((-909 . -21) T) ((-909 . -25) T) ((-426 . -21) T) ((-426 . -25) T) ((-838 . -410) 110244) ((-48 . -1044) T) ((-1278 . -1270) 110228) ((-1276 . -1270) 110212) ((-1030 . -600) 110187) ((-315 . -610) 110048) ((-315 . -609) 110030) ((-312 . -610) NIL) ((-312 . -609) 110012) ((-48 . -242) T) ((-48 . -232) T) ((-648 . -285) 109973) ((-548 . -234) 109923) ((-138 . -609) 109890) ((-135 . -609) 109872) ((-114 . -609) 109854) ((-476 . -38) 109819) ((-1280 . -1277) 109798) ((-1271 . -130) T) ((-1279 . -1051) T) ((-1074 . -102) T) ((-88 . -1207) T) ((-499 . -308) NIL) ((-995 . -107) 109782) ((-884 . -1092) T) ((-880 . -1092) T) ((-1256 . -645) 109766) ((-1256 . -372) 109750) ((-326 . -1207) T) ((-590 . -845) T) ((-1134 . -1092) T) ((-1134 . -1047) 109690) ((-103 . -513) 109623) ((-922 . -609) 109605) ((-342 . -721) T) ((-30 . -609) 109587) ((-861 . -1092) T) ((-838 . -1051) 109566) ((-40 . -642) 109511) ((-224 . -1211) T) ((-406 . -1051) T) ((-1150 . -150) 109493) ((-994 . -289) 109444) ((-613 . -1092) T) ((-224 . -554) T) ((-318 . -1237) 109428) ((-318 . -1234) 109398) ((-1180 . -1183) 109377) ((-1067 . -609) 109359) ((-641 . -150) 109343) ((-628 . -150) 109289) ((-1180 . -107) 109239) ((-478 . -1183) 109218) ((-486 . -146) T) ((-486 . -144) NIL) ((-1112 . -610) 109133) ((-437 . -609) 109115) ((-216 . -146) T) ((-216 . -144) NIL) ((-1112 . -609) 109097) ((-129 . -102) T) ((-52 . -102) T) ((-1220 . -635) 109049) ((-478 . -107) 108999) ((-988 . -23) T) ((-1280 . -38) 108969) ((-1164 . -1104) T) ((-1117 . -1104) T) ((-1055 . -1211) T) ((-310 . -102) T) ((-849 . -1104) T) ((-947 . -1211) 108948) ((-480 . -1211) 108927) ((-726 . -845) 108906) ((-1055 . -554) T) ((-947 . -554) 108837) ((-1164 . -23) T) ((-1117 . -23) T) ((-849 . -23) T) ((-480 . -554) 108768) ((-1134 . -712) 108700) ((-1138 . -513) 108633) ((-1030 . -610) NIL) ((-1030 . -609) 108615) ((-96 . -1075) T) ((-861 . -712) 108585) ((-1201 . -47) 108554) ((-250 . -130) T) ((-249 . -130) T) ((-1096 . -1092) T) ((-998 . -1092) T) ((-62 . -609) 108536) ((-1159 . -845) NIL) ((-1019 . -787) T) ((-1019 . -790) T) ((-1284 . -1050) 108523) ((-1284 . -111) 108508) ((-865 . -642) 108495) ((-1248 . -25) T) ((-1248 . -21) T) ((-1241 . -21) T) ((-1241 . -25) T) ((-1220 . -21) T) ((-1220 . -25) T) ((-1022 . -150) 108479) ((-867 . -815) 108458) ((-867 . -915) T) ((-707 . -285) 108385) ((-593 . -21) T) ((-593 . -25) T) ((-592 . -21) T) ((-40 . -721) T) ((-221 . -513) 108318) ((-592 . -25) T) ((-475 . -150) 108302) ((-462 . -150) 108286) ((-916 . -789) T) ((-916 . -721) T) ((-766 . -788) T) ((-766 . -789) T) ((-505 . -1092) T) ((-501 . -1092) T) ((-766 . -721) T) ((-224 . -362) T) ((-1148 . -1092) 108264) ((-866 . -1211) T) ((-648 . -609) 108246) ((-866 . -554) T) ((-688 . -367) NIL) ((-1284 . -612) 108228) ((-358 . -1263) 108212) ((-664 . -102) T) ((-352 . -1263) 108196) ((-344 . -1263) 108180) ((-1279 . -1092) T) ((-519 . -845) 108159) ((-812 . -451) 108138) ((-1041 . -1092) T) ((-1041 . -1064) 108067) ((-1022 . -971) 108036) ((-814 . -1104) T) ((-998 . -712) 107981) ((-385 . -1104) T) ((-475 . -971) 107950) ((-462 . -971) 107919) ((-110 . -150) 107901) ((-73 . -609) 107883) ((-888 . -609) 107865) ((-1072 . -719) 107844) ((-1284 . -1044) T) ((-811 . -635) 107792) ((-293 . -1051) 107734) ((-168 . -1211) 107639) ((-224 . -1104) T) ((-323 . -23) T) ((-1159 . -987) 107591) ((-838 . -1092) T) ((-1242 . -1050) 107496) ((-1118 . -735) 107475) ((-1240 . -915) 107454) ((-1219 . -915) 107433) ((-865 . -721) T) ((-168 . -554) 107344) ((-578 . -642) 107331) ((-562 . -642) 107318) ((-406 . -1092) T) ((-262 . -1092) T) ((-212 . -609) 107300) ((-494 . -642) 107265) ((-224 . -23) T) ((-1219 . -815) 107218) ((-1278 . -102) T) ((-353 . -1275) 107195) ((-1276 . -102) T) ((-1242 . -111) 107087) ((-143 . -609) 107069) ((-988 . -130) T) ((-44 . -102) T) ((-239 . -845) 107020) ((-1229 . -1211) 106999) ((-103 . -488) 106983) ((-1279 . -712) 106953) ((-1079 . -47) 106914) ((-1055 . -1104) T) ((-947 . -1104) T) ((-127 . -34) T) ((-121 . -34) T) ((-777 . -47) 106891) ((-775 . -47) 106863) ((-1229 . -554) 106774) ((-353 . -367) T) ((-480 . -1104) T) ((-1164 . -130) T) ((-1117 . -130) T) ((-453 . -47) 106753) ((-866 . -362) T) ((-849 . -130) T) ((-151 . -102) T) ((-1055 . -23) T) ((-947 . -23) T) ((-569 . -554) T) ((-811 . -25) T) ((-811 . -21) T) ((-1134 . -513) 106686) ((-589 . -1075) T) ((-583 . -1033) 106670) ((-1242 . -612) 106544) ((-480 . -23) T) ((-350 . -1051) T) ((-1201 . -895) 106525) ((-664 . -308) 106463) ((-1105 . -1263) 106433) ((-693 . -642) 106398) ((-998 . -171) T) ((-958 . -144) 106377) ((-631 . -1092) T) ((-603 . -1092) T) ((-958 . -146) 106356) ((-999 . -845) T) ((-730 . -146) 106335) ((-730 . -144) 106314) ((-966 . -845) T) ((-473 . -915) 106293) ((-315 . -1050) 106203) ((-312 . -1050) 106132) ((-994 . -285) 106090) ((-406 . -712) 106042) ((-695 . -843) T) ((-1242 . -1044) T) ((-315 . -111) 105938) ((-312 . -111) 105851) ((-959 . -102) T) ((-810 . -102) 105641) ((-707 . -610) NIL) ((-707 . -609) 105623) ((-652 . -1033) 105519) ((-1242 . -325) 105463) ((-1030 . -287) 105438) ((-578 . -721) T) ((-562 . -789) T) ((-168 . -362) 105389) ((-562 . -786) T) ((-562 . -721) T) ((-494 . -721) T) ((-1138 . -488) 105373) ((-1079 . -881) NIL) ((-866 . -1104) T) ((-117 . -904) NIL) ((-1278 . -1277) 105349) ((-1276 . -1277) 105328) ((-777 . -881) NIL) ((-775 . -881) 105187) ((-1271 . -25) T) ((-1271 . -21) T) ((-1204 . -102) 105165) ((-1098 . -394) T) ((-619 . -642) 105152) ((-453 . -881) NIL) ((-669 . -102) 105130) ((-1079 . -1033) 104957) ((-866 . -23) T) ((-777 . -1033) 104816) ((-775 . -1033) 104673) ((-117 . -642) 104618) ((-453 . -1033) 104494) ((-315 . -612) 104058) ((-312 . -612) 103941) ((-643 . -1033) 103925) ((-623 . -102) T) ((-221 . -488) 103909) ((-1256 . -34) T) ((-135 . -612) 103893) ((-631 . -712) 103877) ((-603 . -712) 103861) ((-664 . -38) 103821) ((-318 . -102) T) ((-85 . -609) 103803) ((-50 . -1033) 103787) ((-1112 . -1050) 103774) ((-1079 . -376) 103758) ((-777 . -376) 103742) ((-60 . -57) 103704) ((-693 . -789) T) ((-693 . -786) T) ((-579 . -1033) 103691) ((-517 . -1033) 103668) ((-693 . -721) T) ((-323 . -130) T) ((-315 . -1044) 103558) ((-312 . -1044) T) ((-168 . -1104) T) ((-775 . -376) 103542) ((-45 . -150) 103492) ((-999 . -987) 103474) ((-453 . -376) 103458) ((-406 . -171) T) ((-315 . -242) 103437) ((-312 . -242) T) ((-312 . -232) NIL) ((-293 . -1092) 103219) ((-224 . -130) T) ((-1112 . -111) 103204) ((-168 . -23) T) ((-794 . -146) 103183) ((-794 . -144) 103162) ((-250 . -635) 103068) ((-249 . -635) 102974) ((-318 . -283) 102940) ((-1148 . -513) 102873) ((-1125 . -1092) T) ((-224 . -1053) T) ((-810 . -308) 102811) ((-1079 . -895) 102746) ((-777 . -895) 102689) ((-775 . -895) 102673) ((-1278 . -38) 102643) ((-1276 . -38) 102613) ((-1229 . -1104) T) ((-850 . -1104) T) ((-453 . -895) 102590) ((-853 . -1092) T) ((-1229 . -23) T) ((-1112 . -612) 102562) ((-569 . -1104) T) ((-850 . -23) T) ((-619 . -721) T) ((-354 . -915) T) ((-351 . -915) T) ((-288 . -102) T) ((-343 . -915) T) ((-1055 . -130) T) ((-965 . -1075) T) ((-947 . -130) T) ((-117 . -789) NIL) ((-117 . -786) NIL) ((-117 . -721) T) ((-688 . -904) NIL) ((-1041 . -513) 102463) ((-480 . -130) T) ((-569 . -23) T) ((-669 . -308) 102401) ((-631 . -756) T) ((-603 . -756) T) ((-1220 . -845) NIL) ((-998 . -289) T) ((-250 . -21) T) ((-688 . -642) 102351) ((-350 . -1092) T) ((-250 . -25) T) ((-249 . -21) T) ((-249 . -25) T) ((-151 . -38) 102335) ((-2 . -102) T) ((-905 . -915) T) ((-481 . -1263) 102305) ((-222 . -1033) 102282) ((-1112 . -1044) T) ((-706 . -306) T) ((-293 . -712) 102224) ((-695 . -1051) T) ((-486 . -451) T) ((-406 . -513) 102136) ((-216 . -451) T) ((-1112 . -232) T) ((-294 . -150) 102086) ((-994 . -610) 102047) ((-994 . -609) 102029) ((-984 . -609) 102011) ((-116 . -1051) T) ((-648 . -1050) 101995) ((-224 . -492) T) ((-398 . -609) 101977) ((-398 . -610) 101954) ((-1048 . -1263) 101924) ((-648 . -111) 101903) ((-1134 . -488) 101887) ((-810 . -38) 101857) ((-63 . -440) T) ((-63 . -394) T) ((-1151 . -102) T) ((-866 . -130) T) ((-483 . -102) 101835) ((-1284 . -367) T) ((-1072 . -102) T) ((-1054 . -102) T) ((-350 . -712) 101780) ((-726 . -146) 101759) ((-726 . -144) 101738) ((-648 . -612) 101656) ((-1019 . -642) 101593) ((-522 . -1092) 101571) ((-358 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-108 . -102) T) ((-503 . -1092) T) ((-353 . -642) 101516) ((-1164 . -635) 101464) ((-1117 . -635) 101412) ((-384 . -508) 101391) ((-828 . -843) 101370) ((-378 . -1211) T) ((-688 . -721) T) ((-338 . -1051) T) ((-1220 . -987) 101322) ((-173 . -1051) T) ((-103 . -609) 101254) ((-1166 . -144) 101233) ((-1166 . -146) 101212) ((-378 . -554) T) ((-1165 . -146) 101191) ((-1165 . -144) 101170) ((-1159 . -144) 101077) ((-406 . -289) T) ((-1159 . -146) 100984) ((-1118 . -146) 100963) ((-1118 . -144) 100942) ((-318 . -38) 100783) ((-168 . -130) T) ((-312 . -790) NIL) ((-312 . -787) NIL) ((-648 . -1044) T) ((-48 . -642) 100748) ((-888 . -612) 100725) ((-1158 . -102) T) ((-989 . -102) T) ((-988 . -21) T) ((-127 . -1005) 100709) ((-121 . -1005) 100693) ((-988 . -25) T) ((-896 . -119) 100677) ((-1150 . -102) T) ((-811 . -845) 100656) ((-1229 . -130) T) ((-1164 . -25) T) ((-1164 . -21) T) ((-850 . -130) T) ((-1117 . -25) T) ((-1117 . -21) T) ((-849 . -25) T) ((-849 . -21) T) ((-777 . -306) 100635) ((-641 . -102) 100613) ((-628 . -102) T) ((-1151 . -308) 100408) ((-569 . -130) T) ((-617 . -843) 100387) ((-1148 . -488) 100371) ((-1142 . -150) 100321) ((-1138 . -609) 100283) ((-1138 . -610) 100244) ((-1019 . -786) T) ((-1019 . -789) T) ((-1019 . -721) T) ((-707 . -1050) 100067) ((-483 . -308) 100005) ((-452 . -416) 99975) ((-350 . -171) T) ((-288 . -38) 99962) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-268 . -102) T) ((-342 . -1033) 99939) ((-267 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-205 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-192 . -102) T) ((-353 . -721) T) ((-707 . -111) 99748) ((-664 . -230) 99732) ((-579 . -306) T) ((-517 . -306) T) ((-293 . -513) 99681) ((-108 . -308) NIL) ((-72 . -394) T) ((-1105 . -102) 99471) ((-828 . -410) 99455) ((-1112 . -790) T) ((-1112 . -787) T) ((-695 . -1092) T) ((-576 . -609) 99437) ((-378 . -362) T) ((-168 . -492) 99415) ((-221 . -609) 99347) ((-133 . -1092) T) ((-116 . -1092) T) ((-48 . -721) T) ((-1041 . -488) 99312) ((-140 . -424) 99294) ((-140 . -367) T) ((-1022 . -102) T) ((-511 . -508) 99273) ((-707 . -612) 99029) ((-475 . -102) T) ((-462 . -102) T) ((-1029 . -1104) T) ((-1173 . -1033) 98964) ((-1166 . -35) 98930) ((-1166 . -95) 98896) ((-1166 . -1195) 98862) ((-1166 . -1192) 98828) ((-1150 . -308) NIL) ((-89 . -395) T) ((-89 . -394) T) ((-1072 . -1143) 98807) ((-1165 . -1192) 98773) ((-1165 . -1195) 98739) ((-1029 . -23) T) ((-1165 . -95) 98705) ((-569 . -492) T) ((-1165 . -35) 98671) ((-1159 . -1192) 98637) ((-1159 . -1195) 98603) ((-1159 . -95) 98569) ((-360 . -1104) T) ((-358 . -1143) 98548) ((-352 . -1143) 98527) ((-344 . -1143) 98506) ((-1159 . -35) 98472) ((-1118 . -35) 98438) ((-1118 . -95) 98404) ((-108 . -1143) T) ((-1118 . -1195) 98370) ((-828 . -1051) 98349) ((-641 . -308) 98287) ((-628 . -308) 98138) ((-1118 . -1192) 98104) ((-707 . -1044) T) ((-1055 . -635) 98086) ((-1072 . -38) 97954) ((-947 . -635) 97902) ((-999 . -146) T) ((-999 . -144) NIL) ((-378 . -1104) T) ((-323 . -25) T) ((-321 . -23) T) ((-938 . -845) 97881) ((-707 . -325) 97858) ((-480 . -635) 97806) ((-40 . -1033) 97694) ((-707 . -232) T) ((-695 . -712) 97681) ((-338 . -1092) T) ((-173 . -1092) T) ((-330 . -845) T) ((-417 . -451) 97631) ((-378 . -23) T) ((-358 . -38) 97596) ((-352 . -38) 97561) ((-344 . -38) 97526) ((-80 . -440) T) ((-80 . -394) T) ((-224 . -25) T) ((-224 . -21) T) ((-831 . -1104) T) ((-108 . -38) 97476) ((-822 . -1104) T) ((-769 . -1092) T) ((-116 . -712) 97463) ((-666 . -1033) 97447) ((-608 . -102) T) ((-831 . -23) T) ((-822 . -23) T) ((-1148 . -285) 97424) ((-1105 . -308) 97362) ((-1094 . -234) 97346) ((-64 . -395) T) ((-64 . -394) T) ((-110 . -102) T) ((-40 . -376) 97323) ((-96 . -102) T) ((-647 . -847) 97307) ((-1127 . -1075) T) ((-1055 . -21) T) ((-1055 . -25) T) ((-810 . -230) 97276) ((-947 . -25) T) ((-947 . -21) T) ((-617 . -1051) T) ((-1112 . -367) T) ((-480 . -25) T) ((-480 . -21) T) ((-1022 . -308) 97214) ((-884 . -609) 97196) ((-880 . -609) 97178) ((-250 . -845) 97129) ((-249 . -845) 97080) ((-522 . -513) 97013) ((-866 . -635) 96990) ((-475 . -308) 96928) ((-462 . -308) 96866) ((-350 . -289) T) ((-1148 . -1244) 96850) ((-1134 . -609) 96812) ((-1134 . -610) 96773) ((-1132 . -102) T) ((-994 . -1050) 96669) ((-40 . -895) 96621) ((-1148 . -600) 96598) ((-1284 . -642) 96585) ((-861 . -489) 96562) ((-1056 . -150) 96508) ((-867 . -1211) T) ((-994 . -111) 96390) ((-338 . -712) 96374) ((-861 . -609) 96336) ((-173 . -712) 96268) ((-406 . -285) 96226) ((-867 . -554) T) ((-108 . -399) 96208) ((-84 . -383) T) ((-84 . -394) T) ((-695 . -171) T) ((-613 . -609) 96190) ((-99 . -721) T) ((-481 . -102) 95980) ((-99 . -472) T) ((-116 . -171) T) ((-1105 . -38) 95950) ((-168 . -635) 95898) ((-1048 . -102) T) ((-994 . -612) 95788) ((-866 . -25) T) ((-810 . -237) 95767) ((-866 . -21) T) ((-813 . -102) T) ((-413 . -102) T) ((-384 . -102) T) ((-110 . -308) NIL) ((-226 . -102) 95745) ((-127 . -1207) T) ((-121 . -1207) T) ((-1029 . -130) T) ((-664 . -366) 95729) ((-994 . -1044) T) ((-1229 . -635) 95677) ((-1096 . -609) 95659) ((-998 . -609) 95641) ((-514 . -23) T) ((-509 . -23) T) ((-342 . -306) T) ((-507 . -23) T) ((-321 . -130) T) ((-3 . -1092) T) ((-998 . -610) 95625) ((-994 . -242) 95604) ((-994 . -232) 95583) ((-1284 . -721) T) ((-1248 . -144) 95562) ((-828 . -1092) T) ((-1248 . -146) 95541) ((-1241 . -146) 95520) ((-1241 . -144) 95499) ((-1240 . -1211) 95478) ((-1220 . -144) 95385) ((-1220 . -146) 95292) ((-1219 . -1211) 95271) ((-378 . -130) T) ((-562 . -881) 95253) ((0 . -1092) T) ((-173 . -171) T) ((-168 . -21) T) ((-168 . -25) T) ((-49 . -1092) T) ((-1242 . -642) 95158) ((-1240 . -554) 95109) ((-709 . -1104) T) ((-1219 . -554) 95060) ((-562 . -1033) 95042) ((-592 . -146) 95021) ((-592 . -144) 95000) ((-494 . -1033) 94943) ((-1127 . -1129) T) ((-87 . -383) T) ((-87 . -394) T) ((-867 . -362) T) ((-831 . -130) T) ((-822 . -130) T) ((-709 . -23) T) ((-505 . -609) 94909) ((-501 . -609) 94891) ((-1280 . -1051) T) ((-378 . -1053) T) ((-1021 . -1092) 94869) ((-55 . -1033) 94851) ((-896 . -34) T) ((-481 . -308) 94789) ((-589 . -102) T) ((-1148 . -610) 94750) ((-1148 . -609) 94682) ((-1164 . -845) 94661) ((-45 . -102) T) ((-1117 . -845) 94640) ((-812 . -102) T) ((-1229 . -25) T) ((-1229 . -21) T) ((-850 . -25) T) ((-44 . -366) 94624) ((-850 . -21) T) ((-726 . -451) 94575) ((-1279 . -609) 94557) ((-1048 . -308) 94495) ((-665 . -1075) T) ((-602 . -1075) T) ((-389 . -1092) T) ((-569 . -25) T) ((-569 . -21) T) ((-179 . -1075) T) ((-160 . -1075) T) ((-155 . -1075) T) ((-153 . -1075) T) ((-617 . -1092) T) ((-693 . -881) 94477) ((-1256 . -1207) T) ((-226 . -308) 94415) ((-143 . -367) T) ((-1041 . -610) 94357) ((-1041 . -609) 94300) ((-312 . -904) NIL) ((-1214 . -839) T) ((-693 . -1033) 94245) ((-706 . -915) T) ((-473 . -1211) 94224) ((-1165 . -451) 94203) ((-1159 . -451) 94182) ((-329 . -102) T) ((-867 . -1104) T) ((-315 . -642) 94003) ((-312 . -642) 93932) ((-473 . -554) 93883) ((-338 . -513) 93849) ((-548 . -150) 93799) ((-40 . -306) T) ((-838 . -609) 93781) ((-695 . -289) T) ((-867 . -23) T) ((-378 . -492) T) ((-1072 . -230) 93751) ((-511 . -102) T) ((-406 . -610) 93558) ((-406 . -609) 93540) ((-262 . -609) 93522) ((-116 . -289) T) ((-1242 . -721) T) ((-1240 . -362) 93501) ((-1219 . -362) 93480) ((-1269 . -34) T) ((-1214 . -1092) T) ((-117 . -1207) T) ((-108 . -230) 93462) ((-1170 . -102) T) ((-476 . -1092) T) ((-522 . -488) 93446) ((-732 . -34) T) ((-481 . -38) 93416) ((-140 . -34) T) ((-117 . -879) 93393) ((-117 . -881) NIL) ((-619 . -1033) 93276) ((-639 . -845) 93255) ((-1268 . -102) T) ((-294 . -102) T) ((-707 . -367) 93234) ((-117 . -1033) 93211) ((-389 . -712) 93195) ((-617 . -712) 93179) ((-45 . -308) 92983) ((-811 . -144) 92962) ((-811 . -146) 92941) ((-1279 . -381) 92920) ((-814 . -845) T) ((-1258 . -1092) T) ((-1151 . -228) 92867) ((-385 . -845) 92846) ((-1248 . -1195) 92812) ((-1248 . -1192) 92778) ((-1241 . -1192) 92744) ((-514 . -130) T) ((-1241 . -1195) 92710) ((-1220 . -1192) 92676) ((-1220 . -1195) 92642) ((-1248 . -35) 92608) ((-1248 . -95) 92574) ((-631 . -609) 92543) ((-603 . -609) 92512) ((-224 . -845) T) ((-1241 . -95) 92478) ((-1241 . -35) 92444) ((-1240 . -1104) T) ((-1112 . -642) 92431) ((-1220 . -95) 92397) ((-1219 . -1104) T) ((-590 . -150) 92379) ((-1072 . -348) 92358) ((-173 . -289) T) ((-117 . -376) 92335) ((-117 . -337) 92312) ((-1220 . -35) 92278) ((-865 . -306) T) ((-312 . -789) NIL) ((-312 . -786) NIL) ((-315 . -721) 92127) ((-312 . -721) T) ((-473 . -362) 92106) ((-358 . -348) 92085) ((-352 . -348) 92064) ((-344 . -348) 92043) ((-315 . -472) 92022) ((-1240 . -23) T) ((-1219 . -23) T) ((-713 . -1104) T) ((-709 . -130) T) ((-647 . -102) T) ((-476 . -712) 91987) ((-45 . -281) 91937) ((-105 . -1092) T) ((-68 . -609) 91919) ((-965 . -102) T) ((-859 . -102) T) ((-619 . -895) 91878) ((-1280 . -1092) T) ((-380 . -1092) T) ((-1206 . -1092) T) ((-1105 . -230) 91847) ((-82 . -1207) T) ((-1055 . -845) T) ((-947 . -845) 91826) ((-117 . -895) NIL) ((-777 . -915) 91805) ((-708 . -845) T) ((-530 . -1092) T) ((-499 . -1092) T) ((-354 . -1211) T) ((-351 . -1211) T) ((-343 . -1211) T) ((-263 . -1211) 91784) ((-246 . -1211) 91763) ((-532 . -855) T) ((-480 . -845) 91742) ((-1150 . -823) T) ((-1134 . -1050) 91726) ((-389 . -756) T) ((-688 . -1207) T) ((-685 . -1033) 91710) ((-354 . -554) T) ((-351 . -554) T) ((-343 . -554) T) ((-263 . -554) 91641) ((-246 . -554) 91572) ((-524 . -1075) T) ((-1134 . -111) 91551) ((-452 . -739) 91521) ((-861 . -1050) 91491) ((-812 . -38) 91433) ((-688 . -879) 91415) ((-688 . -881) 91397) ((-294 . -308) 91201) ((-905 . -1211) T) ((-664 . -410) 91185) ((-861 . -111) 91150) ((-688 . -1033) 91095) ((-999 . -451) T) ((-905 . -554) T) ((-532 . -609) 91077) ((-579 . -915) T) ((-473 . -1104) T) ((-517 . -915) T) ((-1148 . -287) 91054) ((-909 . -451) T) ((-65 . -609) 91036) ((-628 . -228) 90982) ((-473 . -23) T) ((-1112 . -789) T) ((-867 . -130) T) ((-1112 . -786) T) ((-1271 . -1273) 90961) ((-1112 . -721) T) ((-648 . -642) 90935) ((-293 . -609) 90676) ((-1134 . -612) 90594) ((-1030 . -34) T) ((-810 . -843) 90573) ((-578 . -306) T) ((-562 . -306) T) ((-494 . -306) T) ((-1280 . -712) 90543) ((-688 . -376) 90525) ((-688 . -337) 90507) ((-476 . -171) T) ((-380 . -712) 90477) ((-861 . -612) 90412) ((-866 . -845) NIL) ((-562 . -1017) T) ((-494 . -1017) T) ((-1125 . -609) 90394) ((-1105 . -237) 90373) ((-213 . -102) T) ((-1142 . -102) T) ((-71 . -609) 90355) ((-1134 . -1044) T) ((-1170 . -38) 90252) ((-853 . -609) 90234) ((-562 . -544) T) ((-664 . -1051) T) ((-726 . -944) 90187) ((-1134 . -232) 90166) ((-1074 . -1092) T) ((-1029 . -25) T) ((-1029 . -21) T) ((-998 . -1050) 90111) ((-900 . -102) T) ((-861 . -1044) T) ((-688 . -895) NIL) ((-354 . -328) 90095) ((-354 . -362) T) ((-351 . -328) 90079) ((-351 . -362) T) ((-343 . -328) 90063) ((-343 . -362) T) ((-486 . -102) T) ((-1268 . -38) 90033) ((-545 . -845) T) ((-522 . -681) 89983) ((-216 . -102) T) ((-1019 . -1033) 89863) ((-998 . -111) 89792) ((-1166 . -968) 89761) ((-1165 . -968) 89723) ((-519 . -150) 89707) ((-1072 . -369) 89686) ((-350 . -609) 89668) ((-321 . -21) T) ((-353 . -1033) 89645) ((-321 . -25) T) ((-1159 . -968) 89614) ((-1118 . -968) 89581) ((-76 . -609) 89563) ((-693 . -306) T) ((-168 . -845) 89542) ((-129 . -839) T) ((-905 . -362) T) ((-378 . -25) T) ((-378 . -21) T) ((-905 . -328) 89529) ((-86 . -609) 89511) ((-693 . -1017) T) ((-671 . -845) T) ((-1240 . -130) T) ((-1219 . -130) T) ((-896 . -1005) 89495) ((-831 . -21) T) ((-48 . -1033) 89438) ((-831 . -25) T) ((-822 . -25) T) ((-822 . -21) T) ((-1278 . -1051) T) ((-547 . -102) T) ((-1276 . -1051) T) ((-648 . -721) T) ((-1096 . -614) 89341) ((-998 . -612) 89271) ((-1279 . -1050) 89255) ((-1229 . -845) 89234) ((-810 . -410) 89203) ((-103 . -119) 89187) ((-129 . -1092) T) ((-52 . -1092) T) ((-921 . -609) 89169) ((-866 . -987) 89146) ((-818 . -102) T) ((-1279 . -111) 89125) ((-647 . -38) 89095) ((-569 . -845) T) ((-354 . -1104) T) ((-351 . -1104) T) ((-343 . -1104) T) ((-263 . -1104) T) ((-246 . -1104) T) ((-619 . -306) 89074) ((-1142 . -308) 88878) ((-523 . -1075) T) ((-310 . -1092) T) ((-658 . -23) T) ((-481 . -230) 88847) ((-151 . -1051) T) ((-354 . -23) T) ((-351 . -23) T) ((-343 . -23) T) ((-117 . -306) T) ((-263 . -23) T) ((-246 . -23) T) ((-998 . -1044) T) ((-707 . -904) 88826) ((-1148 . -612) 88803) ((-998 . -232) 88775) ((-998 . -242) T) ((-117 . -1017) NIL) ((-905 . -1104) T) ((-1241 . -451) 88754) ((-1220 . -451) 88733) ((-522 . -609) 88665) ((-707 . -642) 88590) ((-406 . -1050) 88542) ((-503 . -609) 88524) ((-905 . -23) T) ((-486 . -308) NIL) ((-1279 . -612) 88480) ((-473 . -130) T) ((-216 . -308) NIL) ((-406 . -111) 88418) ((-810 . -1051) 88348) ((-732 . -1090) 88332) ((-1240 . -492) 88298) ((-1219 . -492) 88264) ((-140 . -1090) 88246) ((-476 . -289) T) ((-1279 . -1044) T) ((-1212 . -102) T) ((-1056 . -102) T) ((-838 . -612) 88114) ((-499 . -513) NIL) ((-697 . -102) T) ((-481 . -237) 88093) ((-406 . -612) 87991) ((-1164 . -144) 87970) ((-1164 . -146) 87949) ((-1117 . -146) 87928) ((-1117 . -144) 87907) ((-631 . -1050) 87891) ((-603 . -1050) 87875) ((-664 . -1092) T) ((-664 . -1047) 87815) ((-1166 . -1247) 87799) ((-1166 . -1234) 87776) ((-486 . -1143) T) ((-1165 . -1239) 87737) ((-1165 . -1234) 87707) ((-1165 . -1237) 87691) ((-216 . -1143) T) ((-342 . -915) T) ((-813 . -265) 87675) ((-631 . -111) 87654) ((-603 . -111) 87633) ((-1159 . -1218) 87594) ((-838 . -1044) 87573) ((-1159 . -1234) 87550) ((-514 . -25) T) ((-494 . -301) T) ((-510 . -23) T) ((-509 . -25) T) ((-507 . -25) T) ((-506 . -23) T) ((-1159 . -1216) 87534) ((-406 . -1044) T) ((-318 . -1051) T) ((-688 . -306) T) ((-108 . -843) T) ((-707 . -721) T) ((-406 . -242) T) ((-406 . -232) 87513) ((-486 . -38) 87463) ((-216 . -38) 87413) ((-473 . -492) 87379) ((-1150 . -1136) T) ((-1093 . -102) T) ((-695 . -609) 87361) ((-695 . -610) 87276) ((-709 . -21) T) ((-709 . -25) T) ((-1127 . -102) T) ((-133 . -609) 87258) ((-116 . -609) 87240) ((-156 . -25) T) ((-1278 . -1092) T) ((-867 . -635) 87188) ((-1276 . -1092) T) ((-958 . -102) T) ((-730 . -102) T) ((-710 . -102) T) ((-452 . -102) T) ((-811 . -451) 87139) ((-44 . -1092) T) ((-1080 . -845) T) ((-658 . -130) T) ((-1056 . -308) 86990) ((-664 . -712) 86974) ((-288 . -1051) T) ((-354 . -130) T) ((-351 . -130) T) ((-343 . -130) T) ((-263 . -130) T) ((-246 . -130) T) ((-417 . -102) T) ((-151 . -1092) T) ((-45 . -228) 86924) ((-953 . -845) 86903) ((-994 . -642) 86841) ((-239 . -1263) 86811) ((-1019 . -306) T) ((-293 . -1050) 86732) ((-905 . -130) T) ((-40 . -915) T) ((-486 . -399) 86714) ((-353 . -306) T) ((-216 . -399) 86696) ((-1072 . -410) 86680) ((-293 . -111) 86596) ((-1175 . -845) T) ((-1174 . -845) T) ((-867 . -25) T) ((-867 . -21) T) ((-338 . -609) 86578) ((-1242 . -47) 86522) ((-224 . -146) T) ((-173 . -609) 86504) ((-1105 . -843) 86483) ((-769 . -609) 86465) ((-128 . -845) T) ((-604 . -234) 86412) ((-474 . -234) 86362) ((-1278 . -712) 86332) ((-48 . -306) T) ((-1276 . -712) 86302) ((-65 . -612) 86231) ((-959 . -1092) T) ((-810 . -1092) 86021) ((-311 . -102) T) ((-896 . -1207) T) ((-48 . -1017) T) ((-1219 . -635) 85929) ((-683 . -102) 85907) ((-44 . -712) 85891) ((-548 . -102) T) ((-293 . -612) 85822) ((-67 . -382) T) ((-67 . -394) T) ((-656 . -23) T) ((-664 . -756) T) ((-1204 . -1092) 85800) ((-350 . -1050) 85745) ((-669 . -1092) 85723) ((-1055 . -146) T) ((-947 . -146) 85702) ((-947 . -144) 85681) ((-794 . -102) T) ((-151 . -712) 85665) ((-480 . -146) 85644) ((-480 . -144) 85623) ((-350 . -111) 85552) ((-1072 . -1051) T) ((-321 . -845) 85531) ((-1248 . -968) 85500) ((-623 . -1092) T) ((-1241 . -968) 85462) ((-510 . -130) T) ((-506 . -130) T) ((-294 . -228) 85412) ((-358 . -1051) T) ((-352 . -1051) T) ((-344 . -1051) T) ((-293 . -1044) 85354) ((-1220 . -968) 85323) ((-378 . -845) T) ((-108 . -1051) T) ((-994 . -721) T) ((-865 . -915) T) ((-838 . -790) 85302) ((-838 . -787) 85281) ((-417 . -308) 85220) ((-467 . -102) T) ((-592 . -968) 85189) ((-318 . -1092) T) ((-406 . -790) 85168) ((-406 . -787) 85147) ((-499 . -488) 85129) ((-1242 . -1033) 85095) ((-1240 . -21) T) ((-1240 . -25) T) ((-1219 . -21) T) ((-1219 . -25) T) ((-810 . -712) 85037) ((-350 . -612) 84967) ((-693 . -403) T) ((-1269 . -1207) T) ((-602 . -102) T) ((-1105 . -410) 84936) ((-998 . -367) NIL) ((-665 . -102) T) ((-179 . -102) T) ((-160 . -102) T) ((-155 . -102) T) ((-153 . -102) T) ((-103 . -34) T) ((-732 . -1207) T) ((-44 . -756) T) ((-590 . -102) T) ((-77 . -395) T) ((-77 . -394) T) ((-647 . -650) 84920) ((-140 . -1207) T) ((-866 . -146) T) ((-866 . -144) NIL) ((-1206 . -93) T) ((-350 . -1044) T) ((-70 . -382) T) ((-70 . -394) T) ((-1157 . -102) T) ((-664 . -513) 84853) ((-683 . -308) 84791) ((-958 . -38) 84688) ((-730 . -38) 84658) ((-548 . -308) 84462) ((-315 . -1207) T) ((-350 . -232) T) ((-350 . -242) T) ((-312 . -1207) T) ((-288 . -1092) T) ((-1172 . -609) 84444) ((-706 . -1211) T) ((-1148 . -645) 84428) ((-1201 . -554) 84407) ((-706 . -554) T) ((-315 . -879) 84391) ((-315 . -881) 84316) ((-312 . -879) 84277) ((-312 . -881) NIL) ((-794 . -308) 84242) ((-318 . -712) 84083) ((-323 . -322) 84060) ((-484 . -102) T) ((-473 . -25) T) ((-473 . -21) T) ((-417 . -38) 84034) ((-315 . -1033) 83697) ((-224 . -1192) T) ((-224 . -1195) T) ((-3 . -609) 83679) ((-312 . -1033) 83609) ((-2 . -1092) T) ((-2 . |RecordCategory|) T) ((-828 . -609) 83591) ((-1105 . -1051) 83521) ((-578 . -915) T) ((-562 . -815) T) ((-562 . -915) T) ((-494 . -915) T) ((-135 . -1033) 83505) ((-224 . -95) T) ((-75 . -440) T) ((-75 . -394) T) ((0 . -609) 83487) ((-168 . -146) 83466) ((-168 . -144) 83417) ((-224 . -35) T) ((-49 . -609) 83399) ((-476 . -1051) T) ((-486 . -230) 83381) ((-483 . -963) 83365) ((-481 . -843) 83344) ((-216 . -230) 83326) ((-81 . -440) T) ((-81 . -394) T) ((-1138 . -34) T) ((-810 . -171) 83305) ((-726 . -102) T) ((-1021 . -609) 83272) ((-499 . -285) 83247) ((-315 . -376) 83216) ((-312 . -376) 83177) ((-312 . -337) 83138) ((-1077 . -609) 83120) ((-811 . -944) 83067) ((-656 . -130) T) ((-1229 . -144) 83046) ((-1229 . -146) 83025) ((-1166 . -102) T) ((-1165 . -102) T) ((-1159 . -102) T) ((-1151 . -1092) T) ((-1118 . -102) T) ((-221 . -34) T) ((-288 . -712) 83012) ((-1151 . -606) 82988) ((-590 . -308) NIL) ((-483 . -1092) 82966) ((-389 . -609) 82948) ((-509 . -845) T) ((-1142 . -228) 82898) ((-1248 . -1247) 82882) ((-1248 . -1234) 82859) ((-1241 . -1239) 82820) ((-1241 . -1234) 82790) ((-1241 . -1237) 82774) ((-1220 . -1218) 82735) ((-1220 . -1234) 82712) ((-617 . -609) 82694) ((-1220 . -1216) 82678) ((-693 . -915) T) ((-1166 . -283) 82644) ((-1165 . -283) 82610) ((-1159 . -283) 82576) ((-1072 . -1092) T) ((-1054 . -1092) T) ((-48 . -301) T) ((-315 . -895) 82542) ((-312 . -895) NIL) ((-1054 . -1061) 82521) ((-1112 . -881) 82503) ((-794 . -38) 82487) ((-263 . -635) 82435) ((-246 . -635) 82383) ((-695 . -1050) 82370) ((-592 . -1234) 82347) ((-1118 . -283) 82313) ((-318 . -171) 82244) ((-358 . -1092) T) ((-352 . -1092) T) ((-344 . -1092) T) ((-499 . -19) 82226) ((-1112 . -1033) 82208) ((-1094 . -150) 82192) ((-108 . -1092) T) ((-116 . -1050) 82179) ((-706 . -362) T) ((-499 . -600) 82154) ((-695 . -111) 82139) ((-435 . -102) T) ((-45 . -1141) 82089) ((-116 . -111) 82074) ((-631 . -715) T) ((-603 . -715) T) ((-810 . -513) 82007) ((-1030 . -1207) T) ((-938 . -150) 81991) ((-1214 . -609) 81973) ((-1164 . -451) 81904) ((-1158 . -1092) T) ((-1150 . -1092) T) ((-524 . -102) T) ((-519 . -102) 81854) ((-1134 . -642) 81828) ((-1117 . -451) 81779) ((-1079 . -1211) 81758) ((-777 . -1211) 81737) ((-775 . -1211) 81716) ((-62 . -1207) T) ((-476 . -609) 81668) ((-476 . -610) 81590) ((-1079 . -554) 81521) ((-989 . -1092) T) ((-777 . -554) 81432) ((-775 . -554) 81363) ((-481 . -410) 81332) ((-619 . -915) 81311) ((-453 . -1211) 81290) ((-726 . -308) 81277) ((-695 . -612) 81249) ((-397 . -609) 81231) ((-669 . -513) 81164) ((-658 . -25) T) ((-658 . -21) T) ((-453 . -554) 81095) ((-354 . -25) T) ((-354 . -21) T) ((-117 . -915) T) ((-117 . -815) NIL) ((-351 . -25) T) ((-351 . -21) T) ((-343 . -25) T) ((-343 . -21) T) ((-263 . -25) T) ((-263 . -21) T) ((-246 . -25) T) ((-246 . -21) T) ((-83 . -383) T) ((-83 . -394) T) ((-133 . -612) 81077) ((-116 . -612) 81049) ((-1258 . -609) 81031) ((-1213 . -845) T) ((-1201 . -1104) T) ((-1201 . -23) T) ((-1159 . -308) 80916) ((-1118 . -308) 80903) ((-1072 . -712) 80771) ((-861 . -642) 80731) ((-938 . -975) 80715) ((-905 . -21) T) ((-288 . -171) T) ((-905 . -25) T) ((-310 . -93) T) ((-867 . -845) 80666) ((-706 . -1104) T) ((-706 . -23) T) ((-695 . -1044) T) ((-641 . -1092) 80644) ((-628 . -1092) T) ((-579 . -1211) T) ((-517 . -1211) T) ((-695 . -232) T) ((-628 . -606) 80619) ((-579 . -554) T) ((-517 . -554) T) ((-358 . -712) 80571) ((-338 . -1050) 80555) ((-352 . -712) 80507) ((-344 . -712) 80459) ((-173 . -1050) 80391) ((-173 . -111) 80302) ((-108 . -712) 80252) ((-338 . -111) 80231) ((-273 . -1092) T) ((-272 . -1092) T) ((-271 . -1092) T) ((-270 . -1092) T) ((-269 . -1092) T) ((-268 . -1092) T) ((-267 . -1092) T) ((-211 . -1092) T) ((-210 . -1092) T) ((-168 . -1195) 80209) ((-168 . -1192) 80187) ((-208 . -1092) T) ((-207 . -1092) T) ((-116 . -1044) T) ((-206 . -1092) T) ((-205 . -1092) T) ((-202 . -1092) T) ((-201 . -1092) T) ((-200 . -1092) T) ((-199 . -1092) T) ((-198 . -1092) T) ((-197 . -1092) T) ((-196 . -1092) T) ((-195 . -1092) T) ((-194 . -1092) T) ((-193 . -1092) T) ((-192 . -1092) T) ((-239 . -102) 79977) ((-168 . -35) 79955) ((-168 . -95) 79933) ((-648 . -1033) 79829) ((-481 . -1051) 79759) ((-1105 . -1092) 79549) ((-1134 . -34) T) ((-664 . -488) 79533) ((-73 . -1207) T) ((-105 . -609) 79515) ((-1280 . -609) 79497) ((-380 . -609) 79479) ((-338 . -612) 79431) ((-173 . -612) 79348) ((-1206 . -489) 79329) ((-726 . -38) 79178) ((-569 . -1195) T) ((-569 . -1192) T) ((-530 . -609) 79160) ((-519 . -308) 79098) ((-499 . -609) 79080) ((-499 . -610) 79062) ((-1206 . -609) 79028) ((-1159 . -1143) NIL) ((-1022 . -1064) 78997) ((-1022 . -1092) T) ((-999 . -102) T) ((-966 . -102) T) ((-909 . -102) T) ((-888 . -1033) 78974) ((-1134 . -721) T) ((-998 . -642) 78919) ((-475 . -1092) T) ((-462 . -1092) T) ((-583 . -23) T) ((-569 . -35) T) ((-569 . -95) T) ((-426 . -102) T) ((-1056 . -228) 78865) ((-1166 . -38) 78762) ((-861 . -721) T) ((-688 . -915) T) ((-510 . -25) T) ((-506 . -21) T) ((-506 . -25) T) ((-1165 . -38) 78603) ((-338 . -1044) T) ((-1159 . -38) 78399) ((-1072 . -171) T) ((-173 . -1044) T) ((-1118 . -38) 78296) ((-707 . -47) 78273) ((-358 . -171) T) ((-352 . -171) T) ((-518 . -57) 78247) ((-496 . -57) 78197) ((-350 . -1275) 78174) ((-224 . -451) T) ((-318 . -289) 78125) ((-344 . -171) T) ((-173 . -242) T) ((-1219 . -845) 78024) ((-108 . -171) T) ((-867 . -987) 78008) ((-652 . -1104) T) ((-579 . -362) T) ((-579 . -328) 77995) ((-517 . -328) 77972) ((-517 . -362) T) ((-315 . -306) 77951) ((-312 . -306) T) ((-598 . -845) 77930) ((-1105 . -712) 77872) ((-519 . -281) 77856) ((-652 . -23) T) ((-417 . -230) 77840) ((-312 . -1017) NIL) ((-335 . -23) T) ((-103 . -1005) 77824) ((-45 . -36) 77803) ((-608 . -1092) T) ((-350 . -367) T) ((-523 . -102) T) ((-494 . -27) T) ((-239 . -308) 77741) ((-1079 . -1104) T) ((-1279 . -642) 77715) ((-777 . -1104) T) ((-775 . -1104) T) ((-453 . -1104) T) ((-1055 . -451) T) ((-947 . -451) 77666) ((-1107 . -1075) T) ((-110 . -1092) T) ((-1079 . -23) T) ((-812 . -1051) T) ((-777 . -23) T) ((-775 . -23) T) ((-480 . -451) 77617) ((-1151 . -513) 77400) ((-380 . -381) 77379) ((-1170 . -410) 77363) ((-460 . -23) T) ((-453 . -23) T) ((-96 . -1092) T) ((-483 . -513) 77296) ((-288 . -289) T) ((-1074 . -609) 77278) ((-1074 . -610) 77259) ((-406 . -904) 77238) ((-50 . -1104) T) ((-1019 . -915) T) ((-998 . -721) T) ((-707 . -881) NIL) ((-579 . -1104) T) ((-517 . -1104) T) ((-838 . -642) 77211) ((-1201 . -130) T) ((-1159 . -399) 77163) ((-999 . -308) NIL) ((-810 . -488) 77147) ((-353 . -915) T) ((-1148 . -34) T) ((-406 . -642) 77099) ((-50 . -23) T) ((-706 . -130) T) ((-707 . -1033) 76979) ((-579 . -23) T) ((-108 . -513) NIL) ((-517 . -23) T) ((-168 . -408) 76950) ((-1132 . -1092) T) ((-1271 . -1270) 76934) ((-695 . -790) T) ((-695 . -787) T) ((-1112 . -306) T) ((-378 . -146) T) ((-279 . -609) 76916) ((-1219 . -987) 76886) ((-48 . -915) T) ((-669 . -488) 76870) ((-250 . -1263) 76840) ((-249 . -1263) 76810) ((-1168 . -845) T) ((-1105 . -171) 76789) ((-1112 . -1017) T) ((-1041 . -34) T) ((-831 . -146) 76768) ((-831 . -144) 76747) ((-732 . -107) 76731) ((-608 . -131) T) ((-481 . -1092) 76521) ((-1170 . -1051) T) ((-866 . -451) T) ((-85 . -1207) T) ((-239 . -38) 76491) ((-140 . -107) 76473) ((-707 . -376) 76457) ((-828 . -612) 76325) ((-1112 . -544) T) ((-577 . -102) T) ((-129 . -489) 76307) ((-389 . -1050) 76291) ((-1279 . -721) T) ((-1164 . -944) 76260) ((-129 . -609) 76227) ((-52 . -609) 76209) ((-1117 . -944) 76176) ((-647 . -410) 76160) ((-1268 . -1051) T) ((-617 . -1050) 76144) ((-656 . -25) T) ((-656 . -21) T) ((-1150 . -513) NIL) ((-1248 . -102) T) ((-1241 . -102) T) ((-389 . -111) 76123) ((-221 . -253) 76107) ((-1220 . -102) T) ((-1048 . -1092) T) ((-999 . -1143) T) ((-1048 . -1047) 76047) ((-813 . -1092) T) ((-342 . -1211) T) ((-631 . -642) 76031) ((-617 . -111) 76010) ((-603 . -642) 75994) ((-593 . -102) T) ((-310 . -489) 75975) ((-583 . -130) T) ((-592 . -102) T) ((-413 . -1092) T) ((-384 . -1092) T) ((-310 . -609) 75941) ((-226 . -1092) 75919) ((-641 . -513) 75852) ((-628 . -513) 75696) ((-828 . -1044) 75675) ((-639 . -150) 75659) ((-342 . -554) T) ((-707 . -895) 75602) ((-548 . -228) 75552) ((-1248 . -283) 75518) ((-1072 . -289) 75469) ((-486 . -843) T) ((-222 . -1104) T) ((-1241 . -283) 75435) ((-1220 . -283) 75401) ((-999 . -38) 75351) ((-216 . -843) T) ((-1201 . -492) 75317) ((-909 . -38) 75269) ((-838 . -789) 75248) ((-838 . -786) 75227) ((-838 . -721) 75206) ((-358 . -289) T) ((-352 . -289) T) ((-344 . -289) T) ((-168 . -451) 75137) ((-426 . -38) 75121) ((-108 . -289) T) ((-222 . -23) T) ((-406 . -789) 75100) ((-406 . -786) 75079) ((-406 . -721) T) ((-499 . -287) 75054) ((-476 . -1050) 75019) ((-652 . -130) T) ((-617 . -612) 74988) ((-1105 . -513) 74921) ((-335 . -130) T) ((-168 . -401) 74900) ((-481 . -712) 74842) ((-810 . -285) 74819) ((-476 . -111) 74775) ((-647 . -1051) T) ((-1229 . -451) 74706) ((-1267 . -1075) T) ((-1266 . -1075) T) ((-1079 . -130) T) ((-1048 . -712) 74648) ((-263 . -845) 74627) ((-246 . -845) 74606) ((-777 . -130) T) ((-775 . -130) T) ((-569 . -451) T) ((-1022 . -513) 74539) ((-617 . -1044) T) ((-589 . -1092) T) ((-532 . -172) T) ((-460 . -130) T) ((-453 . -130) T) ((-45 . -1092) T) ((-384 . -712) 74509) ((-812 . -1092) T) ((-475 . -513) 74442) ((-462 . -513) 74375) ((-452 . -366) 74345) ((-45 . -606) 74324) ((-315 . -301) T) ((-476 . -612) 74274) ((-664 . -609) 74236) ((-59 . -845) 74215) ((-1220 . -308) 74100) ((-999 . -399) 74082) ((-810 . -600) 74059) ((-515 . -845) 74038) ((-495 . -845) 74017) ((-40 . -1211) T) ((-994 . -1033) 73913) ((-50 . -130) T) ((-579 . -130) T) ((-517 . -130) T) ((-293 . -642) 73773) ((-342 . -328) 73750) ((-342 . -362) T) ((-321 . -322) 73727) ((-318 . -285) 73712) ((-40 . -554) T) ((-378 . -1192) T) ((-378 . -1195) T) ((-1030 . -1183) 73687) ((-1180 . -234) 73637) ((-1159 . -230) 73589) ((-329 . -1092) T) ((-378 . -95) T) ((-378 . -35) T) ((-1030 . -107) 73535) ((-476 . -1044) T) ((-478 . -234) 73485) ((-1151 . -488) 73419) ((-1280 . -1050) 73403) ((-380 . -1050) 73387) ((-476 . -242) T) ((-811 . -102) T) ((-709 . -146) 73366) ((-709 . -144) 73345) ((-483 . -488) 73329) ((-484 . -334) 73298) ((-1280 . -111) 73277) ((-511 . -1092) T) ((-481 . -171) 73256) ((-994 . -376) 73240) ((-412 . -102) T) ((-380 . -111) 73219) ((-994 . -337) 73203) ((-278 . -978) 73187) ((-277 . -978) 73171) ((-1278 . -609) 73153) ((-1276 . -609) 73135) ((-110 . -513) NIL) ((-1164 . -1232) 73119) ((-849 . -847) 73103) ((-1170 . -1092) T) ((-103 . -1207) T) ((-947 . -944) 73064) ((-812 . -712) 73006) ((-1220 . -1143) NIL) ((-480 . -944) 72951) ((-1055 . -142) T) ((-60 . -102) 72929) ((-44 . -609) 72911) ((-78 . -609) 72893) ((-350 . -642) 72838) ((-1268 . -1092) T) ((-510 . -845) T) ((-342 . -1104) T) ((-294 . -1092) T) ((-994 . -895) 72797) ((-294 . -606) 72776) ((-1280 . -612) 72725) ((-1248 . -38) 72622) ((-1241 . -38) 72463) ((-1220 . -38) 72259) ((-486 . -1051) T) ((-380 . -612) 72243) ((-216 . -1051) T) ((-342 . -23) T) ((-151 . -609) 72225) ((-828 . -790) 72204) ((-828 . -787) 72183) ((-1206 . -612) 72164) ((-593 . -38) 72137) ((-592 . -38) 72034) ((-865 . -554) T) ((-222 . -130) T) ((-318 . -997) 72000) ((-79 . -609) 71982) ((-707 . -306) 71961) ((-293 . -721) 71863) ((-819 . -102) T) ((-859 . -839) T) ((-293 . -472) 71842) ((-1271 . -102) T) ((-40 . -362) T) ((-867 . -146) 71821) ((-867 . -144) 71800) ((-1150 . -488) 71782) ((-1280 . -1044) T) ((-481 . -513) 71715) ((-1138 . -1207) T) ((-959 . -609) 71697) ((-641 . -488) 71681) ((-628 . -488) 71612) ((-810 . -609) 71343) ((-48 . -27) T) ((-1170 . -712) 71240) ((-647 . -1092) T) ((-856 . -855) T) ((-435 . -363) 71214) ((-1094 . -102) T) ((-965 . -1092) T) ((-859 . -1092) T) ((-811 . -308) 71201) ((-532 . -526) T) ((-532 . -574) T) ((-1276 . -381) 71173) ((-1048 . -513) 71106) ((-1151 . -285) 71082) ((-239 . -230) 71051) ((-1268 . -712) 71021) ((-1158 . -93) T) ((-989 . -93) T) ((-812 . -171) 71000) ((-1204 . -489) 70977) ((-226 . -513) 70910) ((-617 . -790) 70889) ((-617 . -787) 70868) ((-1204 . -609) 70780) ((-221 . -1207) T) ((-669 . -609) 70712) ((-1148 . -1005) 70696) ((-938 . -102) 70646) ((-350 . -721) T) ((-856 . -609) 70628) ((-1220 . -399) 70580) ((-1105 . -488) 70564) ((-60 . -308) 70502) ((-330 . -102) T) ((-1201 . -21) T) ((-1201 . -25) T) ((-40 . -1104) T) ((-706 . -21) T) ((-623 . -609) 70484) ((-514 . -322) 70463) ((-706 . -25) T) ((-438 . -102) T) ((-108 . -285) NIL) ((-916 . -1104) T) ((-40 . -23) T) ((-766 . -1104) T) ((-562 . -1211) T) ((-494 . -1211) T) ((-318 . -609) 70445) ((-999 . -230) 70427) ((-168 . -165) 70411) ((-578 . -554) T) ((-562 . -554) T) ((-494 . -554) T) ((-766 . -23) T) ((-1240 . -146) 70390) ((-1151 . -600) 70366) ((-1240 . -144) 70345) ((-1022 . -488) 70329) ((-1219 . -144) 70254) ((-1219 . -146) 70179) ((-1271 . -1277) 70158) ((-475 . -488) 70142) ((-462 . -488) 70126) ((-522 . -34) T) ((-647 . -712) 70096) ((-112 . -962) T) ((-656 . -845) 70075) ((-1170 . -171) 70026) ((-364 . -102) T) ((-239 . -237) 70005) ((-250 . -102) T) ((-249 . -102) T) ((-1229 . -944) 69974) ((-244 . -845) 69953) ((-811 . -38) 69802) ((-45 . -513) 69594) ((-1150 . -285) 69569) ((-213 . -1092) T) ((-1142 . -1092) T) ((-1142 . -606) 69548) ((-583 . -25) T) ((-583 . -21) T) ((-1094 . -308) 69486) ((-958 . -410) 69470) ((-693 . -1211) T) ((-628 . -285) 69445) ((-1079 . -635) 69393) ((-777 . -635) 69341) ((-775 . -635) 69289) ((-342 . -130) T) ((-288 . -609) 69271) ((-900 . -1092) T) ((-693 . -554) T) ((-129 . -612) 69253) ((-865 . -1104) T) ((-453 . -635) 69201) ((-900 . -898) 69185) ((-378 . -451) T) ((-486 . -1092) T) ((-938 . -308) 69123) ((-695 . -642) 69110) ((-547 . -839) T) ((-216 . -1092) T) ((-315 . -915) 69089) ((-312 . -915) T) ((-312 . -815) NIL) ((-389 . -715) T) ((-865 . -23) T) ((-116 . -642) 69076) ((-473 . -144) 69055) ((-417 . -410) 69039) ((-473 . -146) 69018) ((-110 . -488) 69000) ((-310 . -612) 68981) ((-2 . -609) 68963) ((-185 . -102) T) ((-1150 . -19) 68945) ((-1150 . -600) 68920) ((-652 . -21) T) ((-652 . -25) T) ((-590 . -1136) T) ((-1105 . -285) 68897) ((-335 . -25) T) ((-335 . -21) T) ((-494 . -362) T) ((-1271 . -38) 68867) ((-1134 . -1207) T) ((-628 . -600) 68842) ((-547 . -1092) T) ((-1079 . -25) T) ((-1079 . -21) T) ((-530 . -787) T) ((-530 . -790) T) ((-117 . -1211) T) ((-958 . -1051) T) ((-619 . -554) T) ((-777 . -25) T) ((-777 . -21) T) ((-775 . -21) T) ((-775 . -25) T) ((-730 . -1051) T) ((-710 . -1051) T) ((-664 . -1050) 68826) ((-516 . -1075) T) ((-460 . -25) T) ((-117 . -554) T) ((-460 . -21) T) ((-453 . -25) T) ((-453 . -21) T) ((-1278 . -1050) 68810) ((-1134 . -1033) 68706) ((-812 . -289) 68685) ((-1276 . -1050) 68669) ((-818 . -1092) T) ((-1240 . -1192) 68635) ((-961 . -962) T) ((-664 . -111) 68614) ((-294 . -513) 68406) ((-1240 . -1195) 68372) ((-1240 . -95) 68338) ((-1223 . -102) 68316) ((-250 . -308) 68254) ((-249 . -308) 68192) ((-1220 . -230) 68144) ((-1151 . -610) NIL) ((-1151 . -609) 68126) ((-1219 . -1192) 68092) ((-1219 . -1195) 68058) ((-1214 . -367) T) ((-96 . -93) T) ((-1212 . -839) T) ((-1134 . -376) 68042) ((-1112 . -815) T) ((-1112 . -915) T) ((-1105 . -600) 68019) ((-1072 . -610) 68003) ((-483 . -609) 67935) ((-810 . -287) 67912) ((-604 . -150) 67859) ((-417 . -1051) T) ((-486 . -712) 67809) ((-481 . -488) 67793) ((-326 . -845) 67772) ((-338 . -642) 67746) ((-50 . -21) T) ((-50 . -25) T) ((-216 . -712) 67696) ((-168 . -719) 67667) ((-173 . -642) 67599) ((-579 . -21) T) ((-579 . -25) T) ((-517 . -25) T) ((-517 . -21) T) ((-474 . -150) 67549) ((-1072 . -609) 67531) ((-1054 . -609) 67513) ((-988 . -102) T) ((-857 . -102) T) ((-794 . -410) 67477) ((-40 . -130) T) ((-693 . -362) T) ((-695 . -721) T) ((-695 . -789) T) ((-695 . -786) T) ((-211 . -890) T) ((-578 . -1104) T) ((-562 . -1104) T) ((-494 . -1104) T) ((-358 . -609) 67459) ((-352 . -609) 67441) ((-344 . -609) 67423) ((-66 . -395) T) ((-66 . -394) T) ((-108 . -610) 67353) ((-108 . -609) 67296) ((-210 . -890) T) ((-953 . -150) 67280) ((-766 . -130) T) ((-664 . -612) 67198) ((-133 . -721) T) ((-116 . -721) T) ((-1240 . -35) 67164) ((-1048 . -488) 67148) ((-578 . -23) T) ((-562 . -23) T) ((-494 . -23) T) ((-1219 . -95) 67114) ((-1219 . -35) 67080) ((-1164 . -102) T) ((-1117 . -102) T) ((-849 . -102) T) ((-226 . -488) 67064) ((-1278 . -111) 67043) ((-1276 . -111) 67022) ((-44 . -1050) 67006) ((-1229 . -1232) 66990) ((-850 . -847) 66974) ((-1278 . -612) 66920) ((-1170 . -289) 66899) ((-110 . -285) 66874) ((-1212 . -1092) T) ((-128 . -150) 66856) ((-1134 . -895) 66815) ((-44 . -111) 66794) ((-1173 . -1251) T) ((-1158 . -489) 66775) ((-1158 . -609) 66741) ((-1150 . -610) NIL) ((-664 . -1044) T) ((-1150 . -609) 66723) ((-1056 . -606) 66698) ((-1056 . -1092) T) ((-989 . -489) 66679) ((-989 . -609) 66645) ((-74 . -440) T) ((-74 . -394) T) ((-697 . -1092) T) ((-151 . -1050) 66629) ((-664 . -232) 66608) ((-569 . -552) 66592) ((-354 . -146) 66571) ((-354 . -144) 66522) ((-351 . -146) 66501) ((-351 . -144) 66452) ((-343 . -146) 66431) ((-343 . -144) 66382) ((-263 . -144) 66361) ((-263 . -146) 66340) ((-250 . -38) 66310) ((-246 . -146) 66289) ((-117 . -362) T) ((-246 . -144) 66268) ((-249 . -38) 66238) ((-151 . -111) 66217) ((-998 . -1033) 66105) ((-1159 . -843) NIL) ((-688 . -1211) T) ((-794 . -1051) T) ((-693 . -1104) T) ((-1278 . -1044) T) ((-1276 . -612) 66034) ((-1276 . -1044) T) ((-1148 . -1207) T) ((-998 . -376) 66011) ((-905 . -144) T) ((-905 . -146) 65993) ((-865 . -130) T) ((-810 . -1050) 65890) ((-688 . -554) T) ((-693 . -23) T) ((-641 . -609) 65822) ((-641 . -610) 65783) ((-628 . -610) NIL) ((-628 . -609) 65765) ((-486 . -171) T) ((-222 . -21) T) ((-216 . -171) T) ((-222 . -25) T) ((-473 . -1195) 65731) ((-473 . -1192) 65697) ((-273 . -609) 65679) ((-272 . -609) 65661) ((-271 . -609) 65643) ((-270 . -609) 65625) ((-269 . -609) 65607) ((-499 . -645) 65589) ((-268 . -609) 65571) ((-338 . -721) T) ((-267 . -609) 65553) ((-110 . -19) 65535) ((-173 . -721) T) ((-499 . -372) 65517) ((-211 . -609) 65499) ((-519 . -1141) 65483) ((-499 . -123) T) ((-110 . -600) 65458) ((-210 . -609) 65440) ((-473 . -35) 65406) ((-473 . -95) 65372) ((-208 . -609) 65354) ((-207 . -609) 65336) ((-206 . -609) 65318) ((-205 . -609) 65300) ((-202 . -609) 65282) ((-201 . -609) 65264) ((-200 . -609) 65246) ((-199 . -609) 65228) ((-198 . -609) 65210) ((-197 . -609) 65192) ((-196 . -609) 65174) ((-535 . -1095) 65126) ((-195 . -609) 65108) ((-194 . -609) 65090) ((-45 . -488) 65027) ((-193 . -609) 65009) ((-192 . -609) 64991) ((-151 . -612) 64960) ((-1107 . -102) T) ((-810 . -111) 64850) ((-639 . -102) 64800) ((-481 . -285) 64777) ((-1105 . -609) 64508) ((-1093 . -1092) T) ((-1041 . -1207) T) ((-1279 . -1033) 64492) ((-619 . -1104) T) ((-1164 . -308) 64479) ((-1127 . -1092) T) ((-1117 . -308) 64466) ((-1088 . -1075) T) ((-1082 . -1075) T) ((-1066 . -1075) T) ((-1059 . -1075) T) ((-1031 . -1075) T) ((-1014 . -1075) T) ((-117 . -1104) T) ((-814 . -102) T) ((-622 . -1075) T) ((-619 . -23) T) ((-1142 . -513) 64258) ((-482 . -1075) T) ((-998 . -895) 64210) ((-385 . -102) T) ((-323 . -102) T) ((-217 . -1075) T) ((-958 . -1092) T) ((-151 . -1044) T) ((-726 . -410) 64194) ((-117 . -23) T) ((-730 . -1092) T) ((-710 . -1092) T) ((-697 . -131) T) ((-452 . -1092) T) ((-406 . -1207) T) ((-315 . -429) 64178) ((-589 . -93) T) ((-1022 . -610) 64139) ((-1019 . -1211) T) ((-224 . -102) T) ((-1022 . -609) 64101) ((-811 . -230) 64085) ((-810 . -612) 63815) ((-1019 . -554) T) ((-828 . -642) 63788) ((-353 . -1211) T) ((-475 . -609) 63750) ((-475 . -610) 63711) ((-462 . -610) 63672) ((-462 . -609) 63634) ((-406 . -879) 63618) ((-318 . -1050) 63453) ((-406 . -881) 63378) ((-838 . -1033) 63274) ((-486 . -513) NIL) ((-481 . -600) 63251) ((-353 . -554) T) ((-216 . -513) NIL) ((-867 . -451) T) ((-417 . -1092) T) ((-406 . -1033) 63115) ((-318 . -111) 62936) ((-688 . -362) T) ((-224 . -283) T) ((-1204 . -612) 62913) ((-48 . -1211) T) ((-810 . -1044) 62843) ((-578 . -130) T) ((-562 . -130) T) ((-494 . -130) T) ((-1164 . -1143) 62821) ((-48 . -554) T) ((-1151 . -287) 62797) ((-1055 . -102) T) ((-947 . -102) T) ((-315 . -27) 62776) ((-810 . -232) 62728) ((-248 . -830) 62710) ((-239 . -843) 62689) ((-186 . -830) 62671) ((-708 . -102) T) ((-294 . -488) 62608) ((-480 . -102) T) ((-726 . -1051) T) ((-608 . -609) 62590) ((-608 . -610) 62451) ((-406 . -376) 62435) ((-406 . -337) 62419) ((-318 . -612) 62245) ((-1164 . -38) 62074) ((-1117 . -38) 61923) ((-849 . -38) 61893) ((-389 . -642) 61877) ((-639 . -308) 61815) ((-958 . -712) 61712) ((-730 . -712) 61682) ((-221 . -107) 61666) ((-45 . -285) 61591) ((-617 . -642) 61565) ((-311 . -1092) T) ((-288 . -1050) 61552) ((-110 . -609) 61534) ((-110 . -610) 61516) ((-452 . -712) 61486) ((-811 . -252) 61425) ((-683 . -1092) 61403) ((-548 . -1092) T) ((-1166 . -1051) T) ((-1165 . -1051) T) ((-96 . -489) 61384) ((-1159 . -1051) T) ((-288 . -111) 61369) ((-1118 . -1051) T) ((-548 . -606) 61348) ((-96 . -609) 61314) ((-999 . -843) T) ((-226 . -681) 61272) ((-688 . -1104) T) ((-1201 . -735) 61248) ((-1019 . -362) T) ((-833 . -830) 61230) ((-318 . -1044) T) ((-342 . -25) T) ((-342 . -21) T) ((-406 . -895) 61189) ((-68 . -1207) T) ((-828 . -789) 61168) ((-417 . -712) 61142) ((-794 . -1092) T) ((-828 . -786) 61121) ((-693 . -130) T) ((-707 . -915) 61100) ((-688 . -23) T) ((-486 . -289) T) ((-828 . -721) 61079) ((-318 . -232) 61031) ((-318 . -242) 61010) ((-216 . -289) T) ((-129 . -367) T) ((-1240 . -451) 60989) ((-1219 . -451) 60968) ((-353 . -328) 60945) ((-353 . -362) T) ((-1132 . -609) 60927) ((-45 . -1244) 60877) ((-866 . -102) T) ((-639 . -281) 60861) ((-693 . -1053) T) ((-1267 . -102) T) ((-1266 . -102) T) ((-476 . -642) 60826) ((-467 . -1092) T) ((-45 . -600) 60751) ((-1150 . -287) 60726) ((-288 . -612) 60698) ((-40 . -635) 60637) ((-48 . -362) T) ((-1098 . -609) 60619) ((-1079 . -845) 60598) ((-628 . -287) 60573) ((-777 . -845) 60552) ((-775 . -845) 60531) ((-481 . -609) 60262) ((-239 . -410) 60231) ((-947 . -308) 60218) ((-453 . -845) 60197) ((-65 . -1207) T) ((-1056 . -513) 60041) ((-619 . -130) T) ((-545 . -102) T) ((-480 . -308) 60028) ((-602 . -1092) T) ((-117 . -130) T) ((-665 . -1092) T) ((-288 . -1044) T) ((-179 . -1092) T) ((-160 . -1092) T) ((-155 . -1092) T) ((-153 . -1092) T) ((-452 . -756) T) ((-31 . -1075) T) ((-958 . -171) 59979) ((-965 . -93) T) ((-1072 . -1050) 59889) ((-617 . -789) 59868) ((-590 . -1092) T) ((-617 . -786) 59847) ((-617 . -721) T) ((-294 . -285) 59826) ((-293 . -1207) T) ((-1048 . -609) 59788) ((-1048 . -610) 59749) ((-1019 . -1104) T) ((-168 . -102) T) ((-274 . -845) T) ((-1157 . -1092) T) ((-813 . -609) 59731) ((-1105 . -287) 59708) ((-1094 . -228) 59692) ((-998 . -306) T) ((-794 . -712) 59676) ((-358 . -1050) 59628) ((-353 . -1104) T) ((-352 . -1050) 59580) ((-413 . -609) 59562) ((-384 . -609) 59544) ((-344 . -1050) 59496) ((-226 . -609) 59428) ((-1072 . -111) 59324) ((-1019 . -23) T) ((-108 . -1050) 59274) ((-893 . -102) T) ((-836 . -102) T) ((-803 . -102) T) ((-764 . -102) T) ((-671 . -102) T) ((-473 . -451) 59253) ((-417 . -171) T) ((-358 . -111) 59191) ((-352 . -111) 59129) ((-344 . -111) 59067) ((-250 . -230) 59036) ((-249 . -230) 59005) ((-353 . -23) T) ((-71 . -1207) T) ((-224 . -38) 58970) ((-108 . -111) 58904) ((-40 . -25) T) ((-40 . -21) T) ((-664 . -715) T) ((-168 . -283) 58882) ((-48 . -1104) T) ((-916 . -25) T) ((-766 . -25) T) ((-1142 . -488) 58819) ((-484 . -1092) T) ((-1280 . -642) 58793) ((-1229 . -102) T) ((-850 . -102) T) ((-239 . -1051) 58723) ((-1055 . -1143) T) ((-959 . -787) 58676) ((-380 . -642) 58660) ((-48 . -23) T) ((-959 . -790) 58613) ((-810 . -790) 58564) ((-810 . -787) 58515) ((-294 . -600) 58494) ((-476 . -721) T) ((-569 . -102) T) ((-1072 . -612) 58312) ((-248 . -184) T) ((-186 . -184) T) ((-866 . -308) 58269) ((-647 . -285) 58248) ((-112 . -655) T) ((-358 . -612) 58185) ((-352 . -612) 58122) ((-344 . -612) 58059) ((-76 . -1207) T) ((-108 . -612) 58009) ((-1055 . -38) 57996) ((-658 . -373) 57975) ((-947 . -38) 57824) ((-726 . -1092) T) ((-480 . -38) 57673) ((-86 . -1207) T) ((-589 . -489) 57654) ((-569 . -283) T) ((-1220 . -843) NIL) ((-589 . -609) 57620) ((-1166 . -1092) T) ((-1165 . -1092) T) ((-1072 . -1044) T) ((-350 . -1033) 57597) ((-812 . -489) 57581) ((-999 . -1051) T) ((-45 . -609) 57563) ((-45 . -610) NIL) ((-909 . -1051) T) ((-812 . -609) 57532) ((-1159 . -1092) T) ((-1139 . -102) 57510) ((-1072 . -242) 57461) ((-426 . -1051) T) ((-358 . -1044) T) ((-364 . -363) 57438) ((-352 . -1044) T) ((-344 . -1044) T) ((-250 . -237) 57417) ((-249 . -237) 57396) ((-1072 . -232) 57321) ((-1118 . -1092) T) ((-293 . -895) 57280) ((-108 . -1044) T) ((-688 . -130) T) ((-417 . -513) 57122) ((-358 . -232) 57101) ((-358 . -242) T) ((-44 . -715) T) ((-352 . -232) 57080) ((-352 . -242) T) ((-344 . -232) 57059) ((-344 . -242) T) ((-1158 . -612) 57040) ((-168 . -308) 57005) ((-108 . -242) T) ((-108 . -232) T) ((-989 . -612) 56986) ((-318 . -787) T) ((-865 . -21) T) ((-865 . -25) T) ((-406 . -306) T) ((-499 . -34) T) ((-110 . -287) 56961) ((-1105 . -1050) 56858) ((-866 . -1143) NIL) ((-329 . -609) 56840) ((-406 . -1017) 56818) ((-1105 . -111) 56708) ((-685 . -1251) T) ((-435 . -1092) T) ((-1280 . -721) T) ((-63 . -609) 56690) ((-866 . -38) 56635) ((-522 . -1207) T) ((-598 . -150) 56619) ((-511 . -609) 56601) ((-1229 . -308) 56588) ((-726 . -712) 56437) ((-530 . -788) T) ((-530 . -789) T) ((-562 . -635) 56419) ((-494 . -635) 56379) ((-354 . -451) T) ((-351 . -451) T) ((-343 . -451) T) ((-263 . -451) 56330) ((-524 . -1092) T) ((-519 . -1092) 56280) ((-246 . -451) 56231) ((-1142 . -285) 56210) ((-1170 . -609) 56192) ((-683 . -513) 56125) ((-958 . -289) 56104) ((-548 . -513) 55896) ((-1268 . -609) 55865) ((-1164 . -230) 55849) ((-1105 . -612) 55579) ((-168 . -1143) 55558) ((-1268 . -489) 55542) ((-1166 . -712) 55439) ((-1165 . -712) 55280) ((-887 . -102) T) ((-1159 . -712) 55076) ((-1118 . -712) 54973) ((-1148 . -668) 54957) ((-354 . -401) 54908) ((-351 . -401) 54859) ((-343 . -401) 54810) ((-1019 . -130) T) ((-794 . -513) 54722) ((-294 . -610) NIL) ((-294 . -609) 54704) ((-905 . -451) T) ((-959 . -367) 54657) ((-810 . -367) 54636) ((-509 . -508) 54615) ((-507 . -508) 54594) ((-486 . -285) NIL) ((-481 . -287) 54571) ((-417 . -289) T) ((-353 . -130) T) ((-216 . -285) NIL) ((-688 . -492) NIL) ((-99 . -1104) T) ((-168 . -38) 54399) ((-1240 . -968) 54361) ((-1139 . -308) 54299) ((-1219 . -968) 54268) ((-905 . -401) T) ((-1105 . -1044) 54198) ((-1242 . -554) T) ((-1142 . -600) 54177) ((-112 . -845) T) ((-1056 . -488) 54108) ((-578 . -21) T) ((-578 . -25) T) ((-562 . -21) T) ((-562 . -25) T) ((-494 . -25) T) ((-494 . -21) T) ((-1229 . -1143) 54086) ((-1105 . -232) 54038) ((-48 . -130) T) ((-1188 . -102) T) ((-239 . -1092) 53828) ((-866 . -399) 53805) ((-1080 . -102) T) ((-1068 . -102) T) ((-604 . -102) T) ((-474 . -102) T) ((-1229 . -38) 53634) ((-850 . -38) 53604) ((-726 . -171) 53515) ((-647 . -609) 53497) ((-640 . -1075) T) ((-569 . -38) 53484) ((-965 . -489) 53465) ((-965 . -609) 53431) ((-953 . -102) 53381) ((-859 . -609) 53363) ((-859 . -610) 53285) ((-590 . -513) NIL) ((-1248 . -1051) T) ((-1241 . -1051) T) ((-1220 . -1051) T) ((-1284 . -1104) T) ((-1175 . -102) T) ((-593 . -1051) T) ((-592 . -1051) T) ((-1174 . -102) T) ((-1166 . -171) 53236) ((-1165 . -171) 53167) ((-1159 . -171) 53098) ((-1118 . -171) 53049) ((-999 . -1092) T) ((-966 . -1092) T) ((-909 . -1092) T) ((-1201 . -146) 53028) ((-794 . -792) 53012) ((-693 . -25) T) ((-693 . -21) T) ((-117 . -635) 52989) ((-695 . -881) 52971) ((-426 . -1092) T) ((-315 . -1211) 52950) ((-312 . -1211) T) ((-168 . -399) 52934) ((-1201 . -144) 52913) ((-473 . -968) 52875) ((-128 . -102) T) ((-72 . -609) 52857) ((-108 . -790) T) ((-108 . -787) T) ((-695 . -1033) 52839) ((-315 . -554) 52818) ((-312 . -554) T) ((-1284 . -23) T) ((-133 . -1033) 52800) ((-96 . -612) 52781) ((-481 . -1050) 52678) ((-45 . -287) 52603) ((-239 . -712) 52545) ((-516 . -102) T) ((-481 . -111) 52435) ((-1084 . -102) 52413) ((-1029 . -102) T) ((-639 . -823) 52392) ((-726 . -513) 52335) ((-1048 . -1050) 52319) ((-1127 . -93) T) ((-1056 . -285) 52294) ((-619 . -21) T) ((-619 . -25) T) ((-523 . -1092) T) ((-360 . -102) T) ((-321 . -102) T) ((-664 . -642) 52268) ((-384 . -1050) 52252) ((-1048 . -111) 52231) ((-811 . -410) 52215) ((-117 . -25) T) ((-89 . -609) 52197) ((-117 . -21) T) ((-604 . -308) 51992) ((-474 . -308) 51796) ((-1142 . -610) NIL) ((-384 . -111) 51775) ((-378 . -102) T) ((-213 . -609) 51757) ((-1142 . -609) 51739) ((-1159 . -513) 51508) ((-999 . -712) 51458) ((-1118 . -513) 51428) ((-909 . -712) 51380) ((-481 . -612) 51110) ((-350 . -306) T) ((-1180 . -150) 51060) ((-953 . -308) 50998) ((-831 . -102) T) ((-426 . -712) 50982) ((-224 . -823) T) ((-822 . -102) T) ((-820 . -102) T) ((-478 . -150) 50932) ((-1240 . -1239) 50911) ((-1112 . -1211) T) ((-338 . -1033) 50878) ((-1240 . -1234) 50848) ((-1240 . -1237) 50832) ((-1219 . -1218) 50811) ((-80 . -609) 50793) ((-900 . -609) 50775) ((-1219 . -1234) 50752) ((-1112 . -554) T) ((-916 . -845) T) ((-766 . -845) T) ((-486 . -610) 50682) ((-486 . -609) 50624) ((-378 . -283) T) ((-666 . -845) T) ((-1219 . -1216) 50608) ((-1242 . -1104) T) ((-216 . -610) 50538) ((-216 . -609) 50480) ((-1278 . -642) 50454) ((-1056 . -600) 50429) ((-813 . -612) 50413) ((-59 . -150) 50397) ((-515 . -150) 50381) ((-495 . -150) 50365) ((-358 . -1275) 50349) ((-352 . -1275) 50333) ((-344 . -1275) 50317) ((-315 . -362) 50296) ((-312 . -362) T) ((-481 . -1044) 50226) ((-688 . -635) 50208) ((-1276 . -642) 50182) ((-128 . -308) NIL) ((-1242 . -23) T) ((-683 . -488) 50166) ((-64 . -609) 50148) ((-1105 . -790) 50099) ((-1105 . -787) 50050) ((-548 . -488) 49987) ((-664 . -34) T) ((-481 . -232) 49939) ((-294 . -287) 49918) ((-239 . -171) 49897) ((-811 . -1051) T) ((-44 . -642) 49855) ((-1072 . -367) 49806) ((-726 . -289) 49737) ((-519 . -513) 49670) ((-812 . -1050) 49621) ((-1079 . -144) 49600) ((-547 . -609) 49582) ((-358 . -367) 49561) ((-352 . -367) 49540) ((-344 . -367) 49519) ((-1079 . -146) 49498) ((-866 . -230) 49475) ((-812 . -111) 49417) ((-777 . -144) 49396) ((-777 . -146) 49375) ((-263 . -944) 49342) ((-250 . -843) 49321) ((-246 . -944) 49266) ((-249 . -843) 49245) ((-775 . -144) 49224) ((-775 . -146) 49203) ((-151 . -642) 49177) ((-577 . -1092) T) ((-453 . -146) 49156) ((-453 . -144) 49135) ((-664 . -721) T) ((-818 . -609) 49117) ((-1248 . -1092) T) ((-1241 . -1092) T) ((-1220 . -1092) T) ((-1201 . -1195) 49083) ((-1201 . -1192) 49049) ((-1166 . -289) 49028) ((-1165 . -289) 48979) ((-1159 . -289) 48930) ((-1118 . -289) 48909) ((-338 . -895) 48890) ((-999 . -171) T) ((-909 . -171) T) ((-593 . -1092) T) ((-592 . -1092) T) ((-688 . -21) T) ((-688 . -25) T) ((-473 . -1237) 48874) ((-473 . -1234) 48844) ((-417 . -285) 48772) ((-546 . -845) T) ((-315 . -1104) 48621) ((-312 . -1104) T) ((-1201 . -35) 48587) ((-1201 . -95) 48553) ((-84 . -609) 48535) ((-91 . -102) 48513) ((-1284 . -130) T) ((-589 . -612) 48494) ((-579 . -144) T) ((-579 . -146) 48476) ((-517 . -146) 48458) ((-517 . -144) T) ((-315 . -23) 48310) ((-40 . -341) 48284) ((-312 . -23) T) ((-812 . -612) 48198) ((-1150 . -645) 48180) ((-1271 . -1051) T) ((-1150 . -372) 48162) ((-810 . -642) 48010) ((-1088 . -102) T) ((-1082 . -102) T) ((-1066 . -102) T) ((-168 . -230) 47994) ((-1059 . -102) T) ((-1031 . -102) T) ((-1014 . -102) T) ((-590 . -488) 47976) ((-622 . -102) T) ((-239 . -513) 47909) ((-482 . -102) T) ((-1278 . -721) T) ((-1276 . -721) T) ((-217 . -102) T) ((-1170 . -1050) 47792) ((-1170 . -111) 47661) ((-856 . -172) T) ((-812 . -1044) T) ((-675 . -1075) T) ((-670 . -1075) T) ((-514 . -102) T) ((-509 . -102) T) ((-48 . -635) 47621) ((-507 . -102) T) ((-477 . -1075) T) ((-1268 . -1050) 47591) ((-137 . -1075) T) ((-136 . -1075) T) ((-132 . -1075) T) ((-1029 . -38) 47575) ((-812 . -232) T) ((-812 . -242) 47554) ((-1268 . -111) 47519) ((-1248 . -712) 47416) ((-1241 . -712) 47257) ((-1229 . -230) 47241) ((-548 . -285) 47220) ((-1212 . -609) 47202) ((-1056 . -610) NIL) ((-602 . -93) T) ((-1056 . -609) 47184) ((-697 . -489) 47168) ((-665 . -93) T) ((-179 . -93) T) ((-160 . -93) T) ((-155 . -93) T) ((-153 . -93) T) ((-1220 . -712) 46964) ((-998 . -915) T) ((-697 . -609) 46933) ((-151 . -721) T) ((-1105 . -367) 46912) ((-999 . -513) NIL) ((-250 . -410) 46881) ((-249 . -410) 46850) ((-1019 . -25) T) ((-1019 . -21) T) ((-593 . -712) 46823) ((-592 . -712) 46720) ((-794 . -285) 46678) ((-126 . -102) 46656) ((-828 . -1033) 46552) ((-168 . -823) 46531) ((-318 . -642) 46428) ((-810 . -34) T) ((-709 . -102) T) ((-1170 . -612) 46281) ((-1112 . -1104) T) ((-1021 . -1207) T) ((-378 . -38) 46246) ((-353 . -25) T) ((-353 . -21) T) ((-186 . -102) T) ((-161 . -102) T) ((-248 . -102) T) ((-156 . -102) T) ((-354 . -1263) 46230) ((-351 . -1263) 46214) ((-343 . -1263) 46198) ((-168 . -348) 46177) ((-562 . -845) T) ((-494 . -845) T) ((-1112 . -23) T) ((-87 . -609) 46159) ((-695 . -306) T) ((-831 . -38) 46129) ((-822 . -38) 46099) ((-1268 . -612) 46041) ((-1242 . -130) T) ((-1142 . -287) 46020) ((-959 . -788) 45973) ((-959 . -789) 45926) ((-810 . -786) 45905) ((-116 . -306) T) ((-91 . -308) 45843) ((-669 . -34) T) ((-548 . -600) 45822) ((-48 . -25) T) ((-48 . -21) T) ((-810 . -789) 45773) ((-810 . -788) 45752) ((-695 . -1017) T) ((-647 . -1050) 45736) ((-959 . -721) 45635) ((-810 . -721) 45545) ((-959 . -472) 45498) ((-481 . -790) 45449) ((-481 . -787) 45400) ((-905 . -1263) 45387) ((-1170 . -1044) T) ((-647 . -111) 45366) ((-1170 . -325) 45343) ((-1193 . -102) 45321) ((-1093 . -609) 45303) ((-695 . -544) T) ((-811 . -1092) T) ((-1268 . -1044) T) ((-1127 . -489) 45284) ((-1213 . -102) T) ((-412 . -1092) T) ((-1127 . -609) 45250) ((-250 . -1051) 45180) ((-249 . -1051) 45110) ((-833 . -102) T) ((-288 . -642) 45097) ((-590 . -285) 45072) ((-683 . -681) 45030) ((-958 . -609) 45012) ((-867 . -102) T) ((-730 . -609) 44994) ((-710 . -609) 44976) ((-1248 . -171) 44927) ((-1241 . -171) 44858) ((-1220 . -171) 44789) ((-693 . -845) T) ((-999 . -289) T) ((-452 . -609) 44771) ((-623 . -721) T) ((-60 . -1092) 44749) ((-244 . -150) 44733) ((-909 . -289) T) ((-1019 . -1007) T) ((-623 . -472) T) ((-707 . -1211) 44712) ((-647 . -612) 44630) ((-593 . -171) 44609) ((-592 . -171) 44560) ((-1256 . -845) 44539) ((-707 . -554) 44450) ((-406 . -915) T) ((-406 . -815) 44429) ((-318 . -789) T) ((-965 . -612) 44410) ((-318 . -721) T) ((-417 . -609) 44392) ((-417 . -610) 44299) ((-639 . -1141) 44283) ((-110 . -645) 44265) ((-173 . -306) T) ((-126 . -308) 44203) ((-110 . -372) 44185) ((-397 . -1207) T) ((-315 . -130) 44056) ((-312 . -130) T) ((-69 . -394) T) ((-110 . -123) T) ((-519 . -488) 44040) ((-648 . -1104) T) ((-590 . -19) 44022) ((-61 . -440) T) ((-61 . -394) T) ((-819 . -1092) T) ((-590 . -600) 43997) ((-476 . -1033) 43957) ((-647 . -1044) T) ((-648 . -23) T) ((-1271 . -1092) T) ((-31 . -102) T) ((-811 . -712) 43806) ((-575 . -855) T) ((-117 . -845) NIL) ((-1164 . -410) 43790) ((-1117 . -410) 43774) ((-849 . -410) 43758) ((-868 . -102) 43709) ((-1240 . -102) T) ((-1220 . -513) 43478) ((-1219 . -102) T) ((-1193 . -308) 43416) ((-524 . -93) T) ((-1166 . -285) 43401) ((-311 . -609) 43383) ((-1165 . -285) 43368) ((-1094 . -1092) T) ((-1072 . -642) 43278) ((-683 . -609) 43210) ((-288 . -721) T) ((-108 . -904) NIL) ((-683 . -610) 43171) ((-597 . -609) 43153) ((-575 . -609) 43135) ((-548 . -610) NIL) ((-548 . -609) 43117) ((-528 . -609) 43099) ((-1159 . -285) 42947) ((-486 . -1050) 42897) ((-706 . -451) T) ((-510 . -508) 42876) ((-506 . -508) 42855) ((-216 . -1050) 42805) ((-358 . -642) 42757) ((-352 . -642) 42709) ((-224 . -843) T) ((-344 . -642) 42661) ((-598 . -102) 42611) ((-481 . -367) 42590) ((-108 . -642) 42540) ((-486 . -111) 42474) ((-239 . -488) 42458) ((-342 . -146) 42440) ((-342 . -144) T) ((-168 . -369) 42411) ((-938 . -1254) 42395) ((-216 . -111) 42329) ((-867 . -308) 42294) ((-938 . -1092) 42244) ((-794 . -610) 42205) ((-794 . -609) 42187) ((-713 . -102) T) ((-330 . -1092) T) ((-213 . -612) 42164) ((-1112 . -130) T) ((-709 . -38) 42134) ((-315 . -492) 42113) ((-499 . -1207) T) ((-1240 . -283) 42079) ((-1219 . -283) 42045) ((-326 . -150) 42029) ((-438 . -1092) T) ((-1056 . -287) 42004) ((-1271 . -712) 41974) ((-1151 . -34) T) ((-1280 . -1033) 41951) ((-467 . -609) 41933) ((-483 . -34) T) ((-380 . -1033) 41917) ((-1164 . -1051) T) ((-1117 . -1051) T) ((-849 . -1051) T) ((-1055 . -843) T) ((-486 . -612) 41867) ((-216 . -612) 41817) ((-811 . -171) 41728) ((-519 . -285) 41705) ((-1248 . -289) 41684) ((-1188 . -363) 41658) ((-1080 . -265) 41642) ((-665 . -489) 41623) ((-665 . -609) 41589) ((-602 . -489) 41570) ((-117 . -987) 41547) ((-602 . -609) 41497) ((-473 . -102) T) ((-179 . -489) 41478) ((-179 . -609) 41444) ((-160 . -489) 41425) ((-155 . -489) 41406) ((-153 . -489) 41387) ((-160 . -609) 41353) ((-155 . -609) 41319) ((-364 . -1092) T) ((-250 . -1092) T) ((-249 . -1092) T) ((-153 . -609) 41285) ((-1241 . -289) 41236) ((-1220 . -289) 41187) ((-867 . -1143) 41165) ((-1166 . -997) 41131) ((-604 . -363) 41071) ((-1165 . -997) 41037) ((-604 . -228) 40984) ((-590 . -609) 40966) ((-590 . -610) NIL) ((-688 . -845) T) ((-474 . -228) 40916) ((-486 . -1044) T) ((-1159 . -997) 40882) ((-88 . -439) T) ((-88 . -394) T) ((-216 . -1044) T) ((-1118 . -997) 40848) ((-1072 . -721) T) ((-707 . -1104) T) ((-593 . -289) 40827) ((-592 . -289) 40806) ((-486 . -242) T) ((-486 . -232) T) ((-216 . -242) T) ((-216 . -232) T) ((-1157 . -609) 40788) ((-867 . -38) 40740) ((-358 . -721) T) ((-352 . -721) T) ((-344 . -721) T) ((-108 . -789) T) ((-108 . -786) T) ((-707 . -23) T) ((-108 . -721) T) ((-519 . -1244) 40724) ((-1284 . -25) T) ((-473 . -283) 40690) ((-1284 . -21) T) ((-1219 . -308) 40629) ((-1168 . -102) T) ((-40 . -144) 40601) ((-40 . -146) 40573) ((-519 . -600) 40550) ((-1105 . -642) 40398) ((-598 . -308) 40336) ((-45 . -645) 40286) ((-45 . -660) 40236) ((-45 . -372) 40186) ((-1150 . -34) T) ((-866 . -843) NIL) ((-648 . -130) T) ((-484 . -609) 40168) ((-239 . -285) 40145) ((-185 . -1092) T) ((-641 . -34) T) ((-628 . -34) T) ((-1079 . -451) 40096) ((-811 . -513) 39970) ((-777 . -451) 39901) ((-775 . -451) 39852) ((-453 . -451) 39803) ((-947 . -410) 39787) ((-726 . -609) 39769) ((-250 . -712) 39711) ((-249 . -712) 39653) ((-726 . -610) 39514) ((-480 . -410) 39498) ((-338 . -301) T) ((-523 . -93) T) ((-350 . -915) T) ((-995 . -102) 39476) ((-1019 . -845) T) ((-60 . -513) 39409) ((-1219 . -1143) 39361) ((-999 . -285) NIL) ((-224 . -1051) T) ((-378 . -823) T) ((-1105 . -34) T) ((-579 . -451) T) ((-517 . -451) T) ((-1223 . -1085) 39345) ((-1223 . -1092) 39323) ((-239 . -600) 39300) ((-1223 . -1087) 39257) ((-1166 . -609) 39239) ((-1165 . -609) 39221) ((-1159 . -609) 39203) ((-1159 . -610) NIL) ((-1118 . -609) 39185) ((-867 . -399) 39169) ((-535 . -102) T) ((-1240 . -38) 39010) ((-1219 . -38) 38824) ((-865 . -146) T) ((-697 . -612) 38808) ((-579 . -401) T) ((-48 . -845) T) ((-517 . -401) T) ((-1252 . -102) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-1105 . -786) 38787) ((-1105 . -789) 38738) ((-1105 . -788) 38717) ((-988 . -1092) T) ((-1022 . -34) T) ((-857 . -1092) T) ((-1105 . -721) 38627) ((-658 . -102) T) ((-640 . -102) T) ((-548 . -287) 38606) ((-1180 . -102) T) ((-475 . -34) T) ((-462 . -34) T) ((-354 . -102) T) ((-351 . -102) T) ((-343 . -102) T) ((-263 . -102) T) ((-246 . -102) T) ((-476 . -306) T) ((-1055 . -1051) T) ((-947 . -1051) T) ((-315 . -635) 38512) ((-312 . -635) 38473) ((-480 . -1051) T) ((-478 . -102) T) ((-435 . -609) 38455) ((-1164 . -1092) T) ((-1117 . -1092) T) ((-849 . -1092) T) ((-1133 . -102) T) ((-811 . -289) 38386) ((-958 . -1050) 38269) ((-476 . -1017) T) ((-730 . -1050) 38239) ((-452 . -1050) 38209) ((-1139 . -1113) 38193) ((-1094 . -513) 38126) ((-958 . -111) 37995) ((-905 . -102) T) ((-730 . -111) 37960) ((-524 . -489) 37941) ((-524 . -609) 37907) ((-59 . -102) 37857) ((-519 . -610) 37818) ((-519 . -609) 37730) ((-518 . -102) 37708) ((-515 . -102) 37658) ((-496 . -102) 37636) ((-495 . -102) 37586) ((-452 . -111) 37549) ((-250 . -171) 37528) ((-249 . -171) 37507) ((-417 . -1050) 37481) ((-1201 . -968) 37443) ((-994 . -1104) T) ((-1127 . -612) 37424) ((-938 . -513) 37357) ((-486 . -790) T) ((-473 . -38) 37198) ((-417 . -111) 37165) ((-486 . -787) T) ((-995 . -308) 37103) ((-216 . -790) T) ((-216 . -787) T) ((-994 . -23) T) ((-707 . -130) T) ((-1219 . -399) 37073) ((-315 . -25) 36925) ((-168 . -410) 36909) ((-315 . -21) 36780) ((-312 . -25) T) ((-312 . -21) T) ((-859 . -367) T) ((-958 . -612) 36633) ((-110 . -34) T) ((-730 . -612) 36589) ((-710 . -612) 36571) ((-481 . -642) 36419) ((-866 . -1051) T) ((-590 . -287) 36394) ((-578 . -146) T) ((-562 . -146) T) ((-494 . -146) T) ((-1164 . -712) 36223) ((-1117 . -712) 36072) ((-1112 . -635) 36054) ((-849 . -712) 36024) ((-664 . -1207) T) ((-1 . -102) T) ((-417 . -612) 35932) ((-239 . -609) 35663) ((-1107 . -1092) T) ((-1229 . -410) 35647) ((-1180 . -308) 35451) ((-958 . -1044) T) ((-730 . -1044) T) ((-710 . -1044) T) ((-639 . -1092) 35401) ((-1048 . -642) 35385) ((-850 . -410) 35369) ((-510 . -102) T) ((-506 . -102) T) ((-246 . -308) 35356) ((-263 . -308) 35343) ((-958 . -325) 35322) ((-384 . -642) 35306) ((-478 . -308) 35110) ((-250 . -513) 35043) ((-664 . -1033) 34939) ((-249 . -513) 34872) ((-1133 . -308) 34798) ((-814 . -1092) T) ((-794 . -1050) 34782) ((-1248 . -285) 34767) ((-1241 . -285) 34752) ((-1220 . -285) 34600) ((-385 . -1092) T) ((-323 . -1092) T) ((-417 . -1044) T) ((-168 . -1051) T) ((-59 . -308) 34538) ((-794 . -111) 34517) ((-592 . -285) 34502) ((-518 . -308) 34440) ((-515 . -308) 34378) ((-496 . -308) 34316) ((-495 . -308) 34254) ((-417 . -232) 34233) ((-481 . -34) T) ((-999 . -610) 34163) ((-224 . -1092) T) ((-999 . -609) 34123) ((-966 . -609) 34083) ((-966 . -610) 34058) ((-909 . -609) 34040) ((-693 . -146) T) ((-695 . -915) T) ((-695 . -815) T) ((-426 . -609) 34022) ((-1112 . -21) T) ((-1112 . -25) T) ((-664 . -376) 34006) ((-116 . -915) T) ((-867 . -230) 33990) ((-78 . -1207) T) ((-126 . -125) 33974) ((-1048 . -34) T) ((-1278 . -1033) 33948) ((-1276 . -1033) 33905) ((-1229 . -1051) T) ((-850 . -1051) T) ((-481 . -786) 33884) ((-354 . -1143) 33863) ((-351 . -1143) 33842) ((-343 . -1143) 33821) ((-481 . -789) 33772) ((-481 . -788) 33751) ((-226 . -34) T) ((-481 . -721) 33661) ((-794 . -612) 33509) ((-60 . -488) 33493) ((-569 . -1051) T) ((-1164 . -171) 33384) ((-1117 . -171) 33295) ((-1055 . -1092) T) ((-1079 . -944) 33240) ((-947 . -1092) T) ((-812 . -642) 33191) ((-777 . -944) 33160) ((-708 . -1092) T) ((-775 . -944) 33127) ((-515 . -281) 33111) ((-664 . -895) 33070) ((-480 . -1092) T) ((-453 . -944) 33037) ((-79 . -1207) T) ((-354 . -38) 33002) ((-351 . -38) 32967) ((-343 . -38) 32932) ((-263 . -38) 32781) ((-246 . -38) 32630) ((-905 . -1143) T) ((-523 . -489) 32611) ((-619 . -146) 32590) ((-619 . -144) 32569) ((-523 . -609) 32535) ((-117 . -146) T) ((-117 . -144) NIL) ((-413 . -721) T) ((-794 . -1044) T) ((-342 . -451) T) ((-1248 . -997) 32501) ((-1241 . -997) 32467) ((-1220 . -997) 32433) ((-905 . -38) 32398) ((-224 . -712) 32363) ((-318 . -47) 32333) ((-40 . -408) 32305) ((-139 . -609) 32287) ((-994 . -130) T) ((-810 . -1207) T) ((-173 . -915) T) ((-547 . -367) T) ((-602 . -612) 32268) ((-342 . -401) T) ((-665 . -612) 32249) ((-179 . -612) 32230) ((-160 . -612) 32211) ((-155 . -612) 32192) ((-153 . -612) 32173) ((-519 . -287) 32150) ((-1219 . -230) 32120) ((-810 . -1033) 31947) ((-45 . -34) T) ((-675 . -102) T) ((-670 . -102) T) ((-656 . -102) T) ((-648 . -21) T) ((-648 . -25) T) ((-1094 . -488) 31931) ((-669 . -1207) T) ((-477 . -102) T) ((-244 . -102) 31881) ((-545 . -839) T) ((-137 . -102) T) ((-136 . -102) T) ((-132 . -102) T) ((-866 . -1092) T) ((-1170 . -642) 31806) ((-1055 . -712) 31793) ((-726 . -1050) 31636) ((-1164 . -513) 31583) ((-947 . -712) 31432) ((-1117 . -513) 31384) ((-1267 . -1092) T) ((-1266 . -1092) T) ((-480 . -712) 31233) ((-67 . -609) 31215) ((-726 . -111) 31044) ((-938 . -488) 31028) ((-1268 . -642) 30988) ((-812 . -721) T) ((-1166 . -1050) 30871) ((-1165 . -1050) 30706) ((-1159 . -1050) 30496) ((-1118 . -1050) 30379) ((-998 . -1211) T) ((-1086 . -102) 30357) ((-810 . -376) 30326) ((-577 . -609) 30308) ((-545 . -1092) T) ((-998 . -554) T) ((-1166 . -111) 30177) ((-1165 . -111) 29998) ((-1159 . -111) 29767) ((-1118 . -111) 29636) ((-1097 . -1095) 29600) ((-378 . -843) T) ((-1248 . -609) 29582) ((-1241 . -609) 29564) ((-1220 . -609) 29546) ((-1220 . -610) NIL) ((-239 . -287) 29523) ((-40 . -451) T) ((-224 . -171) T) ((-168 . -1092) T) ((-726 . -612) 29308) ((-688 . -146) T) ((-688 . -144) NIL) ((-593 . -609) 29290) ((-592 . -609) 29272) ((-893 . -1092) T) ((-836 . -1092) T) ((-803 . -1092) T) ((-764 . -1092) T) ((-652 . -847) 29256) ((-671 . -1092) T) ((-810 . -895) 29188) ((-1212 . -367) T) ((-40 . -401) NIL) ((-1166 . -612) 29070) ((-1112 . -655) T) ((-866 . -712) 29015) ((-250 . -488) 28999) ((-249 . -488) 28983) ((-1165 . -612) 28726) ((-1159 . -612) 28521) ((-707 . -635) 28469) ((-647 . -642) 28443) ((-1118 . -612) 28325) ((-294 . -34) T) ((-726 . -1044) T) ((-579 . -1263) 28312) ((-517 . -1263) 28289) ((-1229 . -1092) T) ((-1164 . -289) 28200) ((-1117 . -289) 28131) ((-1055 . -171) T) ((-850 . -1092) T) ((-947 . -171) 28042) ((-777 . -1232) 28026) ((-639 . -513) 27959) ((-77 . -609) 27941) ((-726 . -325) 27906) ((-1170 . -721) T) ((-569 . -1092) T) ((-480 . -171) 27817) ((-244 . -308) 27755) ((-1134 . -1104) T) ((-70 . -609) 27737) ((-1268 . -721) T) ((-1166 . -1044) T) ((-1165 . -1044) T) ((-326 . -102) 27687) ((-1159 . -1044) T) ((-1134 . -23) T) ((-1118 . -1044) T) ((-91 . -1113) 27671) ((-861 . -1104) T) ((-1166 . -232) 27630) ((-1165 . -242) 27609) ((-1165 . -232) 27561) ((-1159 . -232) 27448) ((-1159 . -242) 27427) ((-318 . -895) 27333) ((-861 . -23) T) ((-168 . -712) 27161) ((-406 . -1211) T) ((-1093 . -367) T) ((-1019 . -146) T) ((-998 . -362) T) ((-865 . -451) T) ((-938 . -285) 27138) ((-315 . -845) T) ((-312 . -845) NIL) ((-869 . -102) T) ((-707 . -25) T) ((-406 . -554) T) ((-707 . -21) T) ((-524 . -612) 27119) ((-353 . -146) 27101) ((-353 . -144) T) ((-1139 . -1092) 27079) ((-452 . -715) T) ((-75 . -609) 27061) ((-114 . -845) T) ((-244 . -281) 27045) ((-239 . -1050) 26942) ((-81 . -609) 26924) ((-730 . -367) 26877) ((-1168 . -823) T) ((-732 . -234) 26861) ((-1151 . -1207) T) ((-140 . -234) 26843) ((-239 . -111) 26733) ((-1229 . -712) 26562) ((-48 . -146) T) ((-866 . -171) T) ((-850 . -712) 26532) ((-483 . -1207) T) ((-947 . -513) 26479) ((-647 . -721) T) ((-569 . -712) 26466) ((-1029 . -1051) T) ((-480 . -513) 26409) ((-938 . -19) 26393) ((-938 . -600) 26370) ((-811 . -610) NIL) ((-811 . -609) 26352) ((-999 . -1050) 26302) ((-412 . -609) 26284) ((-250 . -285) 26261) ((-249 . -285) 26238) ((-486 . -904) NIL) ((-315 . -29) 26208) ((-108 . -1207) T) ((-998 . -1104) T) ((-216 . -904) NIL) ((-909 . -1050) 26160) ((-1072 . -1033) 26056) ((-999 . -111) 25990) ((-998 . -23) T) ((-732 . -689) 25974) ((-263 . -230) 25958) ((-426 . -1050) 25942) ((-378 . -1051) T) ((-239 . -612) 25672) ((-909 . -111) 25610) ((-688 . -1195) NIL) ((-486 . -642) 25560) ((-108 . -879) 25542) ((-108 . -881) 25524) ((-688 . -1192) NIL) ((-216 . -642) 25474) ((-358 . -1033) 25458) ((-352 . -1033) 25442) ((-326 . -308) 25380) ((-344 . -1033) 25364) ((-224 . -289) T) ((-426 . -111) 25343) ((-60 . -609) 25275) ((-168 . -171) T) ((-1112 . -845) T) ((-108 . -1033) 25235) ((-887 . -1092) T) ((-831 . -1051) T) ((-822 . -1051) T) ((-688 . -35) NIL) ((-688 . -95) NIL) ((-312 . -987) 25196) ((-182 . -102) T) ((-578 . -451) T) ((-562 . -451) T) ((-494 . -451) T) ((-406 . -362) T) ((-239 . -1044) 25126) ((-1142 . -34) T) ((-476 . -915) T) ((-994 . -635) 25074) ((-250 . -600) 25051) ((-249 . -600) 25028) ((-1072 . -376) 25012) ((-866 . -513) 24920) ((-239 . -232) 24872) ((-1150 . -1207) T) ((-999 . -612) 24822) ((-909 . -612) 24759) ((-819 . -609) 24741) ((-1279 . -1104) T) ((-1271 . -609) 24723) ((-1229 . -171) 24614) ((-426 . -612) 24583) ((-108 . -376) 24565) ((-108 . -337) 24547) ((-1055 . -289) T) ((-947 . -289) 24478) ((-794 . -367) 24457) ((-641 . -1207) T) ((-628 . -1207) T) ((-480 . -289) 24388) ((-569 . -171) T) ((-326 . -281) 24372) ((-1279 . -23) T) ((-1201 . -102) T) ((-1188 . -1092) T) ((-1080 . -1092) T) ((-1068 . -1092) T) ((-83 . -609) 24354) ((-1175 . -839) T) ((-1174 . -839) T) ((-706 . -102) T) ((-354 . -348) 24333) ((-604 . -1092) T) ((-351 . -348) 24312) ((-343 . -348) 24291) ((-474 . -1092) T) ((-1180 . -228) 24241) ((-263 . -252) 24203) ((-1134 . -130) T) ((-604 . -606) 24179) ((-1072 . -895) 24112) ((-999 . -1044) T) ((-909 . -1044) T) ((-474 . -606) 24091) ((-1159 . -787) NIL) ((-1159 . -790) NIL) ((-1094 . -610) 24052) ((-478 . -228) 24002) ((-1094 . -609) 23984) ((-999 . -242) T) ((-999 . -232) T) ((-426 . -1044) T) ((-953 . -1092) 23934) ((-909 . -242) T) ((-861 . -130) T) ((-693 . -451) T) ((-838 . -1104) 23913) ((-108 . -895) NIL) ((-1201 . -283) 23879) ((-867 . -843) 23858) ((-1105 . -1207) T) ((-900 . -721) T) ((-168 . -513) 23770) ((-994 . -25) T) ((-900 . -472) T) ((-406 . -1104) T) ((-486 . -789) T) ((-486 . -786) T) ((-905 . -348) T) ((-486 . -721) T) ((-216 . -789) T) ((-216 . -786) T) ((-994 . -21) T) ((-216 . -721) T) ((-838 . -23) 23722) ((-523 . -612) 23703) ((-1175 . -1092) T) ((-318 . -306) 23682) ((-1174 . -1092) T) ((-1030 . -234) 23628) ((-406 . -23) T) ((-938 . -610) 23589) ((-938 . -609) 23501) ((-639 . -488) 23485) ((-45 . -1005) 23435) ((-613 . -962) T) ((-490 . -102) T) ((-330 . -609) 23417) ((-1105 . -1033) 23244) ((-590 . -645) 23226) ((-128 . -1092) T) ((-590 . -372) 23208) ((-342 . -1263) 23185) ((-438 . -609) 23167) ((-1022 . -1207) T) ((-866 . -289) T) ((-1229 . -513) 23114) ((-475 . -1207) T) ((-462 . -1207) T) ((-583 . -102) T) ((-1164 . -285) 23041) ((-619 . -451) 23020) ((-995 . -990) 23004) ((-1271 . -381) 22976) ((-516 . -1092) T) ((-117 . -451) T) ((-1187 . -102) T) ((-1084 . -1092) 22954) ((-1029 . -1092) T) ((-1107 . -93) T) ((-888 . -845) T) ((-350 . -1211) T) ((-1248 . -1050) 22837) ((-1105 . -376) 22806) ((-1241 . -1050) 22641) ((-1220 . -1050) 22431) ((-1248 . -111) 22300) ((-1241 . -111) 22121) ((-1220 . -111) 21890) ((-1201 . -308) 21877) ((-350 . -554) T) ((-364 . -609) 21859) ((-288 . -306) T) ((-593 . -1050) 21832) ((-592 . -1050) 21715) ((-360 . -1092) T) ((-321 . -1092) T) ((-250 . -609) 21676) ((-249 . -609) 21637) ((-998 . -130) T) ((-631 . -23) T) ((-688 . -408) 21604) ((-603 . -23) T) ((-652 . -102) T) ((-593 . -111) 21575) ((-592 . -111) 21444) ((-378 . -1092) T) ((-335 . -102) T) ((-168 . -289) 21355) ((-1219 . -843) 21308) ((-709 . -1051) T) ((-1139 . -513) 21241) ((-1105 . -895) 21173) ((-831 . -1092) T) ((-822 . -1092) T) ((-820 . -1092) T) ((-97 . -102) T) ((-143 . -845) T) ((-608 . -879) 21157) ((-110 . -1207) T) ((-1079 . -102) T) ((-1056 . -34) T) ((-777 . -102) T) ((-775 . -102) T) ((-1248 . -612) 21039) ((-1241 . -612) 20782) ((-460 . -102) T) ((-453 . -102) T) ((-1220 . -612) 20577) ((-239 . -790) 20528) ((-239 . -787) 20479) ((-643 . -102) T) ((-593 . -612) 20437) ((-592 . -612) 20319) ((-1229 . -289) 20230) ((-658 . -630) 20214) ((-185 . -609) 20196) ((-639 . -285) 20173) ((-1029 . -712) 20157) ((-569 . -289) T) ((-958 . -642) 20082) ((-1279 . -130) T) ((-730 . -642) 20042) ((-710 . -642) 20029) ((-274 . -102) T) ((-452 . -642) 19959) ((-50 . -102) T) ((-579 . -102) T) ((-517 . -102) T) ((-1248 . -1044) T) ((-1241 . -1044) T) ((-1220 . -1044) T) ((-1248 . -232) 19918) ((-321 . -712) 19900) ((-1241 . -242) 19879) ((-1241 . -232) 19831) ((-1220 . -232) 19718) ((-1220 . -242) 19697) ((-1201 . -38) 19594) ((-999 . -790) T) ((-593 . -1044) T) ((-592 . -1044) T) ((-999 . -787) T) ((-966 . -790) T) ((-966 . -787) T) ((-867 . -1051) T) ((-865 . -864) 19578) ((-109 . -609) 19560) ((-688 . -451) T) ((-378 . -712) 19525) ((-417 . -642) 19499) ((-707 . -845) 19478) ((-706 . -38) 19443) ((-592 . -232) 19402) ((-40 . -719) 19374) ((-350 . -328) 19351) ((-350 . -362) T) ((-1072 . -306) 19302) ((-293 . -1104) 19183) ((-1098 . -1207) T) ((-170 . -102) T) ((-1223 . -609) 19150) ((-838 . -130) 19102) ((-639 . -1244) 19086) ((-831 . -712) 19056) ((-822 . -712) 19026) ((-481 . -1207) T) ((-358 . -306) T) ((-352 . -306) T) ((-344 . -306) T) ((-639 . -600) 19003) ((-406 . -130) T) ((-519 . -660) 18987) ((-108 . -306) T) ((-293 . -23) 18870) ((-519 . -645) 18854) ((-688 . -401) NIL) ((-519 . -372) 18838) ((-290 . -609) 18820) ((-91 . -1092) 18798) ((-108 . -1017) T) ((-562 . -142) T) ((-1256 . -150) 18782) ((-481 . -1033) 18609) ((-1242 . -144) 18570) ((-1242 . -146) 18531) ((-1048 . -1207) T) ((-988 . -609) 18513) ((-857 . -609) 18495) ((-811 . -1050) 18338) ((-1267 . -93) T) ((-1266 . -93) T) ((-1164 . -610) NIL) ((-1088 . -1092) T) ((-1082 . -1092) T) ((-1079 . -308) 18325) ((-1066 . -1092) T) ((-226 . -1207) T) ((-1059 . -1092) T) ((-1031 . -1092) T) ((-1014 . -1092) T) ((-777 . -308) 18312) ((-775 . -308) 18299) ((-1164 . -609) 18281) ((-811 . -111) 18110) ((-1117 . -609) 18092) ((-622 . -1092) T) ((-575 . -172) T) ((-528 . -172) T) ((-453 . -308) 18079) ((-482 . -1092) T) ((-1117 . -610) 17827) ((-1029 . -171) T) ((-938 . -287) 17804) ((-217 . -1092) T) ((-849 . -609) 17786) ((-604 . -513) 17569) ((-81 . -612) 17510) ((-813 . -1033) 17494) ((-474 . -513) 17286) ((-958 . -721) T) ((-730 . -721) T) ((-710 . -721) T) ((-350 . -1104) T) ((-1171 . -609) 17268) ((-222 . -102) T) ((-481 . -376) 17237) ((-514 . -1092) T) ((-509 . -1092) T) ((-507 . -1092) T) ((-794 . -642) 17211) ((-1019 . -451) T) ((-953 . -513) 17144) ((-350 . -23) T) ((-631 . -130) T) ((-603 . -130) T) ((-353 . -451) T) ((-239 . -367) 17123) ((-378 . -171) T) ((-1240 . -1051) T) ((-1219 . -1051) T) ((-224 . -997) T) ((-811 . -612) 16860) ((-693 . -386) T) ((-417 . -721) T) ((-695 . -1211) T) ((-1134 . -635) 16808) ((-578 . -864) 16792) ((-1271 . -1050) 16776) ((-1151 . -1183) 16752) ((-695 . -554) T) ((-126 . -1092) 16730) ((-709 . -1092) T) ((-481 . -895) 16662) ((-248 . -1092) T) ((-186 . -1092) T) ((-652 . -38) 16632) ((-353 . -401) T) ((-315 . -146) 16611) ((-315 . -144) 16590) ((-128 . -513) NIL) ((-116 . -554) T) ((-312 . -146) 16546) ((-312 . -144) 16502) ((-48 . -451) T) ((-161 . -1092) T) ((-156 . -1092) T) ((-1151 . -107) 16449) ((-777 . -1143) 16427) ((-683 . -34) T) ((-1271 . -111) 16406) ((-548 . -34) T) ((-483 . -107) 16390) ((-250 . -287) 16367) ((-249 . -287) 16344) ((-866 . -285) 16295) ((-45 . -1207) T) ((-1213 . -839) T) ((-811 . -1044) T) ((-1170 . -47) 16272) ((-811 . -325) 16234) ((-1079 . -38) 16083) ((-811 . -232) 16062) ((-777 . -38) 15891) ((-775 . -38) 15740) ((-1107 . -489) 15721) ((-453 . -38) 15570) ((-1107 . -609) 15536) ((-1110 . -102) T) ((-639 . -610) 15497) ((-639 . -609) 15409) ((-579 . -1143) T) ((-517 . -1143) T) ((-1139 . -488) 15393) ((-1193 . -1092) 15371) ((-1134 . -25) T) ((-1134 . -21) T) ((-1271 . -612) 15320) ((-473 . -1051) T) ((-1213 . -1092) T) ((-1220 . -787) NIL) ((-1220 . -790) NIL) ((-994 . -845) 15299) ((-833 . -1092) T) ((-814 . -609) 15281) ((-861 . -21) T) ((-861 . -25) T) ((-794 . -721) T) ((-173 . -1211) T) ((-579 . -38) 15246) ((-517 . -38) 15211) ((-385 . -609) 15193) ((-323 . -609) 15175) ((-168 . -285) 15133) ((-63 . -1207) T) ((-112 . -102) T) ((-867 . -1092) T) ((-173 . -554) T) ((-709 . -712) 15103) ((-293 . -130) 14986) ((-224 . -609) 14968) ((-224 . -610) 14898) ((-998 . -635) 14837) ((-1271 . -1044) T) ((-1112 . -146) T) ((-628 . -1183) 14812) ((-726 . -904) 14791) ((-590 . -34) T) ((-641 . -107) 14775) ((-628 . -107) 14721) ((-1229 . -285) 14648) ((-726 . -642) 14573) ((-294 . -1207) T) ((-1170 . -1033) 14469) ((-938 . -614) 14446) ((-575 . -574) T) ((-575 . -526) T) ((-528 . -526) T) ((-1159 . -904) NIL) ((-1055 . -610) 14361) ((-1055 . -609) 14343) ((-947 . -609) 14325) ((-708 . -489) 14275) ((-342 . -102) T) ((-250 . -1050) 14172) ((-249 . -1050) 14069) ((-393 . -102) T) ((-31 . -1092) T) ((-947 . -610) 13930) ((-708 . -609) 13865) ((-1269 . -1200) 13834) ((-480 . -609) 13816) ((-480 . -610) 13677) ((-246 . -410) 13661) ((-263 . -410) 13645) ((-250 . -111) 13535) ((-249 . -111) 13425) ((-1166 . -642) 13350) ((-1165 . -642) 13247) ((-1159 . -642) 13099) ((-1118 . -642) 13024) ((-350 . -130) T) ((-82 . -440) T) ((-82 . -394) T) ((-998 . -25) T) ((-998 . -21) T) ((-868 . -1092) 12975) ((-867 . -712) 12927) ((-378 . -289) T) ((-168 . -997) 12879) ((-688 . -386) T) ((-994 . -992) 12863) ((-695 . -1104) T) ((-688 . -165) 12845) ((-1240 . -1092) T) ((-1219 . -1092) T) ((-315 . -1192) 12824) ((-315 . -1195) 12803) ((-1156 . -102) T) ((-315 . -954) 12782) ((-133 . -1104) T) ((-116 . -1104) T) ((-598 . -1254) 12766) ((-695 . -23) T) ((-598 . -1092) 12716) ((-315 . -95) 12695) ((-91 . -513) 12628) ((-173 . -362) T) ((-250 . -612) 12358) ((-249 . -612) 12088) ((-315 . -35) 12067) ((-604 . -488) 12001) ((-133 . -23) T) ((-116 . -23) T) ((-961 . -102) T) ((-713 . -1092) T) ((-474 . -488) 11938) ((-406 . -635) 11886) ((-647 . -1033) 11782) ((-953 . -488) 11766) ((-354 . -1051) T) ((-351 . -1051) T) ((-343 . -1051) T) ((-263 . -1051) T) ((-246 . -1051) T) ((-866 . -610) NIL) ((-866 . -609) 11748) ((-1267 . -489) 11729) ((-1266 . -489) 11710) ((-1279 . -21) T) ((-1267 . -609) 11676) ((-1266 . -609) 11642) ((-569 . -997) T) ((-726 . -721) T) ((-1279 . -25) T) ((-250 . -1044) 11572) ((-249 . -1044) 11502) ((-72 . -1207) T) ((-250 . -232) 11454) ((-249 . -232) 11406) ((-40 . -102) T) ((-905 . -1051) T) ((-128 . -488) 11388) ((-1173 . -102) T) ((-1166 . -721) T) ((-1165 . -721) T) ((-1159 . -721) T) ((-1159 . -786) NIL) ((-1159 . -789) NIL) ((-949 . -102) T) ((-916 . -102) T) ((-1118 . -721) T) ((-766 . -102) T) ((-666 . -102) T) ((-545 . -609) 11370) ((-473 . -1092) T) ((-338 . -1104) T) ((-173 . -1104) T) ((-318 . -915) 11349) ((-1240 . -712) 11190) ((-867 . -171) T) ((-1219 . -712) 11004) ((-838 . -21) 10956) ((-838 . -25) 10908) ((-244 . -1141) 10892) ((-126 . -513) 10825) ((-406 . -25) T) ((-406 . -21) T) ((-338 . -23) T) ((-168 . -610) 10591) ((-168 . -609) 10573) ((-173 . -23) T) ((-639 . -287) 10550) ((-519 . -34) T) ((-893 . -609) 10532) ((-89 . -1207) T) ((-836 . -609) 10514) ((-803 . -609) 10496) ((-764 . -609) 10478) ((-671 . -609) 10460) ((-239 . -642) 10308) ((-1168 . -1092) T) ((-1164 . -1050) 10131) ((-1142 . -1207) T) ((-1117 . -1050) 9974) ((-849 . -1050) 9958) ((-1223 . -614) 9942) ((-1164 . -111) 9751) ((-1117 . -111) 9580) ((-849 . -111) 9559) ((-1229 . -610) NIL) ((-1229 . -609) 9541) ((-342 . -1143) T) ((-850 . -609) 9523) ((-1068 . -285) 9502) ((-80 . -1207) T) ((-999 . -904) NIL) ((-604 . -285) 9478) ((-1193 . -513) 9411) ((-486 . -1207) T) ((-569 . -609) 9393) ((-474 . -285) 9372) ((-516 . -93) T) ((-216 . -1207) T) ((-1079 . -230) 9356) ((-999 . -642) 9306) ((-288 . -915) T) ((-812 . -306) 9285) ((-865 . -102) T) ((-777 . -230) 9269) ((-953 . -285) 9246) ((-909 . -642) 9198) ((-631 . -21) T) ((-631 . -25) T) ((-603 . -21) T) ((-546 . -102) T) ((-342 . -38) 9163) ((-688 . -719) 9130) ((-486 . -879) 9112) ((-486 . -881) 9094) ((-473 . -712) 8935) ((-216 . -879) 8917) ((-64 . -1207) T) ((-216 . -881) 8899) ((-603 . -25) T) ((-426 . -642) 8873) ((-1164 . -612) 8642) ((-486 . -1033) 8602) ((-867 . -513) 8514) ((-1117 . -612) 8306) ((-849 . -612) 8224) ((-216 . -1033) 8184) ((-239 . -34) T) ((-995 . -1092) 8162) ((-1240 . -171) 8093) ((-1219 . -171) 8024) ((-707 . -144) 8003) ((-707 . -146) 7982) ((-695 . -130) T) ((-135 . -464) 7959) ((-1139 . -609) 7891) ((-652 . -650) 7875) ((-128 . -285) 7850) ((-116 . -130) T) ((-476 . -1211) T) ((-604 . -600) 7826) ((-474 . -600) 7805) ((-335 . -334) 7774) ((-535 . -1092) T) ((-476 . -554) T) ((-1164 . -1044) T) ((-1117 . -1044) T) ((-849 . -1044) T) ((-239 . -786) 7753) ((-239 . -789) 7704) ((-239 . -788) 7683) ((-1164 . -325) 7660) ((-239 . -721) 7570) ((-953 . -19) 7554) ((-486 . -376) 7536) ((-486 . -337) 7518) ((-1117 . -325) 7490) ((-353 . -1263) 7467) ((-216 . -376) 7449) ((-216 . -337) 7431) ((-953 . -600) 7408) ((-1164 . -232) T) ((-658 . -1092) T) ((-640 . -1092) T) ((-1252 . -1092) T) ((-1180 . -1092) T) ((-1079 . -252) 7345) ((-354 . -1092) T) ((-351 . -1092) T) ((-343 . -1092) T) ((-263 . -1092) T) ((-246 . -1092) T) ((-84 . -1207) T) ((-127 . -102) 7323) ((-121 . -102) 7301) ((-1180 . -606) 7280) ((-478 . -1092) T) ((-1133 . -1092) T) ((-478 . -606) 7259) ((-250 . -790) 7210) ((-250 . -787) 7161) ((-249 . -790) 7112) ((-40 . -1143) NIL) ((-249 . -787) 7063) ((-1107 . -612) 7044) ((-128 . -19) 7026) ((-1072 . -915) 6977) ((-999 . -789) T) ((-999 . -786) T) ((-999 . -721) T) ((-966 . -789) T) ((-128 . -600) 6952) ((-909 . -721) T) ((-91 . -488) 6936) ((-486 . -895) NIL) ((-905 . -1092) T) ((-224 . -1050) 6901) ((-867 . -289) T) ((-216 . -895) NIL) ((-828 . -1104) 6880) ((-59 . -1092) 6830) ((-518 . -1092) 6808) ((-515 . -1092) 6758) ((-496 . -1092) 6736) ((-495 . -1092) 6686) ((-578 . -102) T) ((-562 . -102) T) ((-494 . -102) T) ((-473 . -171) 6617) ((-358 . -915) T) ((-352 . -915) T) ((-344 . -915) T) ((-224 . -111) 6573) ((-828 . -23) 6525) ((-426 . -721) T) ((-108 . -915) T) ((-40 . -38) 6470) ((-108 . -815) T) ((-579 . -348) T) ((-517 . -348) T) ((-1219 . -513) 6330) ((-315 . -451) 6309) ((-312 . -451) T) ((-887 . -609) 6291) ((-831 . -285) 6270) ((-338 . -130) T) ((-173 . -130) T) ((-293 . -25) 6134) ((-293 . -21) 6017) ((-45 . -1183) 5996) ((-66 . -609) 5978) ((-55 . -102) T) ((-598 . -513) 5911) ((-45 . -107) 5861) ((-814 . -612) 5845) ((-1094 . -424) 5829) ((-1094 . -367) 5808) ((-385 . -612) 5792) ((-323 . -612) 5776) ((-1056 . -1207) T) ((-1055 . -1050) 5763) ((-947 . -1050) 5606) ((-1257 . -102) T) ((-1256 . -102) 5556) ((-1055 . -111) 5541) ((-480 . -1050) 5384) ((-658 . -712) 5368) ((-947 . -111) 5197) ((-224 . -612) 5147) ((-476 . -362) T) ((-354 . -712) 5099) ((-351 . -712) 5051) ((-343 . -712) 5003) ((-263 . -712) 4852) ((-246 . -712) 4701) ((-1248 . -642) 4626) ((-1220 . -904) NIL) ((-1088 . -93) T) ((-1082 . -93) T) ((-938 . -645) 4610) ((-1066 . -93) T) ((-480 . -111) 4439) ((-1059 . -93) T) ((-1031 . -93) T) ((-938 . -372) 4423) ((-247 . -102) T) ((-1014 . -93) T) ((-74 . -609) 4405) ((-958 . -47) 4384) ((-705 . -102) T) ((-693 . -102) T) ((-1 . -1092) T) ((-617 . -1104) T) ((-1241 . -642) 4281) ((-622 . -93) T) ((-1188 . -609) 4263) ((-1080 . -609) 4245) ((-126 . -488) 4229) ((-482 . -93) T) ((-1068 . -609) 4211) ((-389 . -23) T) ((-87 . -1207) T) ((-217 . -93) T) ((-1220 . -642) 4063) ((-905 . -712) 4028) ((-617 . -23) T) ((-604 . -609) 4010) ((-604 . -610) NIL) ((-474 . -610) NIL) ((-474 . -609) 3992) ((-510 . -1092) T) ((-506 . -1092) T) ((-350 . -25) T) ((-350 . -21) T) ((-127 . -308) 3930) ((-121 . -308) 3868) ((-593 . -642) 3855) ((-224 . -1044) T) ((-592 . -642) 3780) ((-378 . -997) T) ((-224 . -242) T) ((-224 . -232) T) ((-1055 . -612) 3752) ((-1055 . -614) 3733) ((-953 . -610) 3694) ((-953 . -609) 3606) ((-947 . -612) 3395) ((-865 . -38) 3382) ((-708 . -612) 3332) ((-1240 . -289) 3283) ((-1219 . -289) 3234) ((-480 . -612) 3019) ((-1112 . -451) T) ((-501 . -845) T) ((-315 . -1131) 2998) ((-994 . -146) 2977) ((-994 . -144) 2956) ((-494 . -308) 2943) ((-294 . -1183) 2922) ((-1175 . -609) 2904) ((-1174 . -609) 2886) ((-866 . -1050) 2831) ((-476 . -1104) T) ((-138 . -830) 2813) ((-619 . -102) T) ((-1193 . -488) 2797) ((-250 . -367) 2776) ((-249 . -367) 2755) ((-1055 . -1044) T) ((-294 . -107) 2705) ((-128 . -610) NIL) ((-128 . -609) 2671) ((-117 . -102) T) ((-947 . -1044) T) ((-866 . -111) 2600) ((-476 . -23) T) ((-480 . -1044) T) ((-1055 . -232) T) ((-947 . -325) 2569) ((-480 . -325) 2526) ((-354 . -171) T) ((-351 . -171) T) ((-343 . -171) T) ((-263 . -171) 2437) ((-246 . -171) 2348) ((-958 . -1033) 2244) ((-516 . -489) 2225) ((-730 . -1033) 2196) ((-516 . -609) 2162) ((-1097 . -102) T) ((-1084 . -609) 2129) ((-1029 . -609) 2111) ((-1269 . -150) 2095) ((-1267 . -612) 2076) ((-1261 . -609) 2058) ((-1248 . -721) T) ((-1241 . -721) T) ((-1220 . -786) NIL) ((-1220 . -789) NIL) ((-168 . -1050) 1968) ((-905 . -171) T) ((-866 . -612) 1898) ((-1220 . -721) T) ((-1266 . -612) 1879) ((-998 . -341) 1853) ((-995 . -513) 1786) ((-838 . -845) 1765) ((-562 . -1143) T) ((-473 . -289) 1716) ((-593 . -721) T) ((-360 . -609) 1698) ((-321 . -609) 1680) ((-417 . -1033) 1576) ((-592 . -721) T) ((-406 . -845) 1527) ((-168 . -111) 1423) ((-828 . -130) 1375) ((-732 . -150) 1359) ((-1256 . -308) 1297) ((-486 . -306) T) ((-378 . -609) 1264) ((-519 . -1005) 1248) ((-378 . -610) 1162) ((-216 . -306) T) ((-140 . -150) 1144) ((-709 . -285) 1123) ((-486 . -1017) T) ((-578 . -38) 1110) ((-562 . -38) 1097) ((-494 . -38) 1062) ((-216 . -1017) T) ((-866 . -1044) T) ((-831 . -609) 1044) ((-822 . -609) 1026) ((-820 . -609) 1008) ((-811 . -904) 987) ((-1280 . -1104) T) ((-1229 . -1050) 810) ((-850 . -1050) 794) ((-866 . -242) T) ((-866 . -232) NIL) ((-683 . -1207) T) ((-1280 . -23) T) ((-811 . -642) 719) ((-548 . -1207) T) ((-417 . -337) 703) ((-569 . -1050) 690) ((-1229 . -111) 499) ((-695 . -635) 481) ((-850 . -111) 460) ((-380 . -23) T) ((-168 . -612) 238) ((-1180 . -513) 30) ((-656 . -1092) T) ((-675 . -1092) T) ((-670 . -1092) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index a2e84824..8ff9c59d 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,1006 +1,1138 @@ -(30 . 3442118605) -(4403 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3442535945) +(4405 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| - |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| - |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| - |AlgebraicallyClosedField&| |AlgebraicallyClosedField| - |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| - |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&| - |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| - |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| + |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| + |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| + |AbelianSemiGroup| |AlgebraicallyClosedField&| + |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| + |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst| + |AlgebraicFunction| |Aggregate&| |Aggregate| + |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| + |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| - |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| - |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| - |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity| + |AlgebraGivenByStructuralConstants| |AssociationList| + |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| + |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| + |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| - |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray| - |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| - |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| - |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| - |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&| - |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&| - |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons| - |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| - |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| - |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |Bits| |BiModule| - |Boolean| |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots| - |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| - |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| - |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| - |BinaryTree| |Byte| |ByteBuffer| |CancellationAbelianMonoid| |CachableSet| - |CapsuleAst| |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2| - |CaseAst| |CategoryAst| |CategoryConstructor| |Category| |CharacterClass| - |CommonDenominator| |CombinatorialFunctionCategory| |Character| - |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| - |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| - |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst| - |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction| - |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| - |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory| - |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex| - |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| - |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| + |OneDimensionalArrayFunctions2| |OneDimensionalArray| + |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| + |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| + |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| + |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| + |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory| + |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| + |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| + |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| + |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| + |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean| + |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| + |BalancedPAdicInteger| |BalancedPAdicRational| + |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| + |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| + |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| + |BinaryTree| |ByteBuffer| |Byte| |CancellationAbelianMonoid| + |CachableSet| |CapsuleAst| |CardinalNumber| + |CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst| + |CategoryConstructor| |Category| |CharacterClass| |CommonDenominator| + |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| + |CharacteristicPolynomialPackage| |CharacteristicZero| + |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| + |Collection&| |Collection| |CliffordAlgebra| + |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage| + |ColonAst| |Color| |CombinatorialFunction| + |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |CommaAst| + |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| + |ComplexCategory&| |ComplexCategory| |ComplexFactorization| + |ComplexFunctions2| |Complex| |ComplexPattern| + |SubSpaceComponentProperty| |CommutativeRing| |Conduit| + |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| - |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools| - |Constructor| |ConstructorCall| |ConstructorCategory&| |ConstructorCategory| - |ConstructorKind| |ComplexTrigonometricManipulations| - |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| - |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| - |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| - |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| - |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| - |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| - |d03fafAnnaType| |DataArray| |Database| |DoubleResultantPackage| - |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst| - |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| - |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| - |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| - |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| + |CRApackage| |CoerceAst| |ComplexRootFindingPackage| + |CyclicStreamTools| |ConstructorCall| |ConstructorCategory&| + |ConstructorCategory| |ConstructorKind| |Constructor| + |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| + |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| + |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| + |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| + |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| + |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| + |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| + |d03eefAnnaType| |d03fafAnnaType| |DataArray| |Database| + |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| + |DefinitionAst| |ElementaryFunctionDefiniteIntegration| + |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| + |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| + |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| + |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| - |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| - |DirectProductCategory| |DirectProduct| |DirectProductFunctions2| - |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| - |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| - |Domain| |DomainConstructor| |DirectProductMatrixModule| |DirectProductModule| - |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| - |DequeueAggregate| |TopLevelDrawFunctions| + |DictionaryOperations| |DiophantineSolutionPackage| + |DirectProductCategory&| |DirectProductCategory| + |DirectProductFunctions2| |DirectProduct| |DisplayPackage| + |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| + |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| + |Domain| |DomainConstructor| |DirectProductMatrixModule| + |DirectProductModule| |DifferentialPolynomialCategory&| + |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| - |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| - |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0| - |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial| + |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| + |DrawNumericHack| |TopLevelDrawFunctions| + |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| + |DrawOptionFunctions1| |DrawOption| + |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| - |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| + |ExtAlgBasis| |ElementaryFunction| + |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| - |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| - |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment| - |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| - |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| - |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage| - |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| - |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&| - |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| - |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2| - |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| - |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| - |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| - |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| - |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| - |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| - |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2| - |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| - |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&| - |FunctionFieldCategory| |FunctionFieldCategoryFunctions2| - |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| + |EllipticFunctionsUnivariateTaylorSeries| |Eltable| + |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| + |EntireRing| |Environment| |EigenPackage| |EquationFunctions2| + |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| + |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| + |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| + |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| + |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| + |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit| + |ExponentialExpansion| |ExpressionFunctions2| + |ExpressionToUnivariatePowerSeries| |Expression| + |ExpressionSpaceODESolver| |ExpressionTubePlot| + |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| + |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| + |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| + |FiniteAbelianMonoidRing| |FlexibleArray| + |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| + |FortranCode| |FourierComponent| |FortranCodePackage1| + |FiniteDivisorFunctions2| |FiniteDivisorCategory&| + |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| + |FullyEvalableOver| |FortranExpression| + |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| + |FunctionFieldCategory| |FiniteFieldCyclicGroup| + |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| - |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| - |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| - |FiniteFieldNormalBasisExtensionByPolynomial| - |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial| - |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| + |FiniteFieldHomomorphisms| |FiniteFieldCategory&| + |FiniteFieldCategory| |FunctionFieldIntegralBasis| + |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| + |FiniteFieldNormalBasisExtension| |FiniteField| + |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| + |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| - |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| - |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| - |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| - |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| - |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| - |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| - |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory| - |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid| - |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| - |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat| - |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory| - |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion| - |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| - |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| - |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| - |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| - |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| + |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| + |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| + |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| + |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| + |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| + |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| + |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| + |FreeModuleCat| |FortranMatrixCategory| + |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| + |FortranMachineTypeCategory| |FileName| |FileNameCategory| + |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| + |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| + |FortranFunctionCategory| |FortranPackage| |FortranProgram| + |FullPartialFractionExpansion| |FullyPatternMatchable| + |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| + |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| + |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| + |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| + |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| - |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| - |FunctionSpace| |FunctionSpaceFunctions2| - |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| - |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2| - |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| + |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| + |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| + |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| + |FiniteSetAggregate&| |FiniteSetAggregate| + |FunctionSpaceComplexIntegration| |FourierSeries| + |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| - |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate| - |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| + |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| + |FortranType| |FunctionCalled| |FunctionDescriptor| + |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| - |GaussianFactorizationPackage| |GroebnerPackage| - |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| - |GroebnerInternalPackage| |GcdDomain&| |GcdDomain| - |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| - |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| + |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| + |GroebnerFactorizationPackage| |GroebnerInternalPackage| + |GroebnerPackage| |GcdDomain&| |GcdDomain| + |GenericNonAssociativeAlgebra| + |GeneralDistributedMultivariatePolynomial| |GenExEuclid| + |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| - |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| - |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| - |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| - |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| - |Pi| |HasAst| |HashTable| |HallBasis| - |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| - |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| - |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| |Hostname| - |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| - |InnerAlgebraicNumber| |IndexedOneDimensionalArray| + |GeneralModulePolynomial| |GosperSummationMethod| + |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| + |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| + |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| + |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable| + |HallBasis| |HomogeneousDistributedMultivariatePolynomial| + |HomogeneousDirectProduct| |HeadAst| |Heap| + |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| + |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| + |Hostname| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| + |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| - |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| - |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| - |Identifier| |IndexedDirectProductAbelianGroup| - |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| - |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| - |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable| - |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField| - |InnerIndexedTwoDimensionalArray| |IndexedList| - |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| - |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit| + |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| + |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| + |IdealDecompositionPackage| |Identifier| + |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| + |IndexedDirectProductCategory| + |IndexedDirectProductOrderedAbelianMonoid| + |IndexedDirectProductOrderedAbelianMonoidSup| + |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| + |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| + |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| + |InnerMatrixLinearAlgebraFunctions| + |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst| + |InAst| |InputByteConduit&| |InputByteConduit| |InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |InetClientStreamSocket| - |Infinity| |InputForm| |InputFormFunctions1| + |Infinity| |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| - |IntegerNumberSystem| |Integer| |Int16| |Int32| |Int8| |InnerTable| - |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| - |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| - |IntegerFactorizationPackage| |IntegrationFunctionsTable| - |GenusZeroIntegration| |IntegerNumberTheoryFunctions| - |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| + |IntegerNumberSystem| |Int16| |Int32| |Int8| |InnerTable| + |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| + |IntervalCategory| |IntegralDomain&| |IntegralDomain| + |ElementaryIntegration| |IntegerFactorizationPackage| + |IntegrationFunctionsTable| |GenusZeroIntegration| + |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| + |TranscendentalHermiteIntegration| |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| - |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit| - |InputOutputBinaryFile| |IOMode| |IP4Address| |InnerPAdicInteger| - |InnerPrimeField| |InternalPrintPackage| |IntegrationResult| - |IntegrationResultFunctions2| |IntegrationResultToFunction| |IntegerRoots| - |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| - |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| - |IsAst| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| - |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| - |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| - |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst| - |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| - |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo| - |Kovacic| |CoercibleFrom| |KleeneTrivalentLogic| |ConvertibleFrom| - |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform| - |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| - |LetAst| |LieExponentials| |LexTriangularPackage| |LiouvillianFunction| - |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library| - |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage| - |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| - |List| |ListFunctions2| |ListToMap| |ListFunctions3| |Literal| - |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| - |LinearAggregate| |Localize| |ElementaryFunctionLODESolver| - |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| + |TranscendentalIntegration| |InverseLaplaceTransform| + |InputOutputByteConduit| |InputOutputBinaryFile| |IOMode| |IP4Address| + |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| + |IntegrationResultToFunction| |IntegrationResultFunctions2| + |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| + |IntegrationResultRFToFunction| |IrrRepSymNatPackage| + |InternalRationalUnivariateRepresentationPackage| |IsAst| + |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| + |InnerTaylorSeries| |InfiniteTupleFunctions2| + |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| + |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| + |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| + |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| + |CoercibleTo| |ConvertibleTo| |Kovacic| |CoercibleFrom| + |KleeneTrivalentLogic| |ConvertibleFrom| |LeftAlgebra&| |LeftAlgebra| + |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| + |LazardSetSolvingPackage| |LeadingCoefDetermination| |LetAst| + |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| + |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| + |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| + |RationalFunctionLimitPackage| |LinearDependence| + |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| + |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule| + |ListMonoidOps| |LinearAggregate&| |LinearAggregate| + |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| - |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| + |LinearOrdinaryDifferentialOperator| + |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| - |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| - |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord| - |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| - |MacroAst| |Magma| |MappingPackageInternalHacks1| - |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst| - |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&| - |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| + |ListAggregate| |LinearSystemMatrixPackage1| + |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| + |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&| + |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma| + |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| + |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1| + |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| + |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |Maybe| - |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| - |MultiDictionary| |ModularDistinctDegreeFactorizer| - |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| - |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| - |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| - |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| - |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| - |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| - |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| - |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| - |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| - |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| - |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset| - |MultisetAggregate| |MoreSystemCommands| |MergeThing| - |MultivariateTaylorSeriesCategory| |MultivariateFactorize| - |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| + |MultiVariableCalculusFunctions| |MatrixCommonDenominator| + |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| + |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| + |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| + |MakeBinaryCompiledFunction| |MakeCachableSet| + |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| + |MakeUnaryCompiledFunction| |MultivariateLifting| + |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| + |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| + |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| + |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| + |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| + |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| + |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| + |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| + |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| + |MultivariateFactorize| |MultivariateSquareFree| + |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| - |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| - |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| - |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| - |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| - |NumericComplexEigenPackage| |NumericContinuedFraction| - |NonCommutativeOperatorDivision| |NetworkClientSocket| - |NumberFieldIntegralBasis| |NumericalIntegrationProblem| - |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| - |None| |NoneFunctions1| |NormInMonogenicAlgebra| |NormalizationPackage| + |NagFittingPackage| |NagOptimisationPackage| + |NagMatrixOperationsPackage| |NagEigenPackage| + |NagLinearEquationSolvingPackage| |NagLapack| + |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| + |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| + |NonAssociativeRing| |NumericComplexEigenPackage| + |NumericContinuedFraction| |NonCommutativeOperatorDivision| + |NetworkClientSocket| |NumberFieldIntegralBasis| + |NumericalIntegrationProblem| |NonLinearSolvePackage| + |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| + |None| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| - |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| - |NewSparseUnivariatePolynomialFunctions2| |NumberTheoreticPolynomialFunctions| + |NewSparseMultivariatePolynomial| + |NewSparseUnivariatePolynomialFunctions2| + |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| - |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| - |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| - |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| - |OctonionCategory&| |OctonionCategory| |OrderedCancellationAbelianMonoid| - |Octonion| |OctonionCategoryFunctions2| + |NumericalIntegrationCategory| + |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| + |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| + |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| + |OrderedCancellationAbelianMonoid| |OctonionCategory&| + |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| - |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| - |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| - |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| - |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| + |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| + |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| + |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| + |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| + |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| - |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| - |OpenMath| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| - |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath| - |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate| - |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2| - |Operator| |OperatorCategory&| |OperatorCategory| |OperationsQuery| + |OrderlyDifferentialVariable| |OrderedFreeMonoid| + |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| + |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| + |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| + |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| + |OnePointCompletionFunctions2| |OnePointCompletion| + |OperatorCategory&| |OperatorCategory| |Operator| |OperationsQuery| |OperatorSignature| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| - |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite| - |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| - |OrderedSet| |UnivariateSkewPolynomialCategory&| - |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| - |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| - |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts| - |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputBinaryFile| - |OutputForm| |OrderedVariableList| |OrdinaryWeightedPolynomials| - |PadeApproximants| |PadeApproximantPackage| |PAdicInteger| - |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Pair| + |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| + |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| + |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| + |UnivariateSkewPolynomialCategory| + |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| + |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| + |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&| + |OutputByteConduit| |OutputBinaryFile| |OutputForm| |OutputPackage| + |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials| + |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| + |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| - |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| - |Parser| |ParametricSurfaceFunctions2| |ParametricSurface| - |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| - |PatternMatchable| |PatternMatch| |PatternMatchResult| - |PatternMatchResultFunctions2| |Pattern| |PatternFunctions1| - |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| + |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| + |ParametricSpaceCurve| |Parser| |ParametricSurfaceFunctions2| + |ParametricSurface| |PartitionsAndPermutations| |Patternable| + |PatternMatchListResult| |PatternMatchable| |PatternMatch| + |PatternMatchResultFunctions2| |PatternMatchResult| + |PatternFunctions1| |PatternFunctions2| |Pattern| + |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| - |Permutation| |Permanent| |PermutationCategory| |PermutationGroup| - |PrimeField| |PolynomialFactorizationByRecursion| + |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| + |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| - |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| - |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| - |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions| - |PrincipalIdealDomain| |PolynomialInterpolation| - |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot| - |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions| - |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| + |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| + |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| + |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| + |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| + |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| + |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| + |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| + |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| - |AttachPredicates| |FunctionSpaceAttachPredicates| - |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| - |PolynomialNumberTheoryFunctions| |Point| |PolToPol| - |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2| - |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| - |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| - |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing| - |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2| - |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| - |PrintPackage| |Product| |Property| |PropositionalFormula| - |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence| - |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| - |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| - |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| - |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| - |PartialTranscendentalFunctions| |PushVariables| - |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| - |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&| - |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm| - |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&| - |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&| - |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| - |RandomNumberSource| |RationalFactorize| |RationalRetractions| - |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| - |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| - |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| - |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage| - |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder| - |Reference| |RegularTriangularSet| |RadicalEigenPackage| - |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| + |FunctionSpaceAttachPredicates| |AttachPredicates| + |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| + |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| + |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| + |PolynomialToUnivariatePolynomial| |PolynomialCategory&| + |PolynomialCategory| |PolynomialCategoryQuotientFunctions| + |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| + |PortNumber| |PlottablePlaneCurveCategory| + |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| + |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| + |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| + |Property| |PropositionalFormula| |PropositionalLogic| + |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst| + |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| + |PlottableSpaceCurveCategory| |PolynomialSetCategory&| + |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| + |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| + |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| + |PushVariables| |PAdicWildFunctionFieldIntegralBasis| + |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| + |QueryEquation| |QuotientFieldCategoryFunctions2| + |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| + |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&| + |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| + |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| + |RadixExpansion| |RadixUtilities| |RandomNumberSource| + |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| + |RecursiveAggregate| |RealClosedField&| |RealClosedField| + |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| + |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| + |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| + |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| + |RegularTriangularSet| |RepresentationPackage1| + |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage| - |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor| - |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain| - |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| - |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| - |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| - |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| - |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| + |RandomFloatDistributions| |RationalFunctionFactor| + |RationalFunctionFactorizer| |RationalFunction| |RGBColorModel| + |RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&| + |Ring| |RationalInterpolation| |RectangularMatrixCategory&| + |RectangularMatrixCategory| |RectangularMatrix| + |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| + |RealNumberSystem&| |RealNumberSystem| + |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| + |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| - |RegularTriangularSetGcdPackage| |RestrictAst| |RewriteRule| |RuleCalled| - |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension| - |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor| - |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope| + |RegularTriangularSetGcdPackage| |RestrictAst| |RuleCalled| + |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| + |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| + |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| + |SpadSyntaxCategory| |SortedCache| |Scope| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| - |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst| - |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory| - |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate| - |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression| - |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram| - |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| - |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| - |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| - |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign| - |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| - |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| - |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| - |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| - |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| - |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser| + |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst| + |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| + |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&| + |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| + |Set| |SExpressionCategory| |SExpression| |SExpressionOf| + |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| + |SquareFreeRegularTriangularSetGcdPackage| + |SquareFreeRegularTriangularSetCategory| + |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| + |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst| + |ElementaryFunctionSign| |RationalFunctionSign| |Signature| + |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| + |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| + |SmithNormalForm| |SparseMultivariatePolynomial| + |SparseMultivariateTaylorSeries| + |SquareFreeNormalizedTriangularSetCategory| + |PolynomialSolveByFormulas| |RadicalSolvePackage| + |TransSolvePackageService| |TransSolvePackage| |SortPackage| + |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser| |SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| - |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| - |SparseTable| |StepThrough| |StreamInfiniteProduct| |Stream| - |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory| - |String| |StringTable| |StreamTaylorSeriesOperations| - |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| - |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst| - |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| - |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2| - |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries| + |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| + |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| + |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| + |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| + |StreamTranscendentalFunctionsNonCommutative| + |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| + |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries| + |FunctionSpaceSum| |RationalFunctionSum| + |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| + |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| - |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemInteger| - |SystemNonNegativeInteger| |SystemSolvePackage| |System| |TableauxBumpers| - |Table| |Tableau| |TangentExpansions| |TableAggregate&| |TableAggregate| - |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1| - |TextFile| |ToolsForSign| |TopLevelThreeSpace| - |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| + |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| + |SystemInteger| |SystemNonNegativeInteger| |SystemSolvePackage| + |System| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| + |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| + |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| + |TopLevelThreeSpace| |TranscendentalFunctionCategory&| + |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| - |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| - |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| - |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| - |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16| |UInt32| - |UInt8| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| - |UnivariateLaurentSeriesCategory| + |TranscendentalManipulations| |TriangularSetCategory&| + |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| + |Tuple| |TwoFactorize| |TypeAst| |Type| |UserDefinedPartialOrdering| + |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| + |UniqueFactorizationDomain| |UInt16| |UInt32| |UInt8| + |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| - |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment| - |UniversalSegmentFunctions2| |UnivariatePolynomial| - |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| + |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| + |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| + |UnivariatePolynomialFunctions2| + |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| - |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&| - |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2| + |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| + |UnivariatePolynomialCategoryFunctions2| + |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| - |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| - |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| + |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| + |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| - |UnivariatePuiseuxSeriesConstructor| - |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| - |UnaryRecursiveAggregate| |UnivariateTaylorSeries| + |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| + |UnivariatePuiseuxSeriesWithExponentialSingularity| + |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| - |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver| - |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory| - |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport| - |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&| - |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| - |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet| - |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&| - |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial| - |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| + |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| + |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable| + |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| + |TwoDimensionalViewport| |ThreeDimensionalViewport| + |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| + |VectorSpace| |WeierstrassPreparation| + |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst| + |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| + |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| + |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| + |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| - |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| - |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?| - |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom| - |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank| - |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements| - |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus| - |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter| - |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid| - |radicalOfLeftTraceForm| |showTypeInOutput| |obj| |dom| |objectOf| |domainOf| - |any| |applyRules| |localUnquote| |arbitrary| |setColumn!| |setRow!| - |oneDimensionalArray| |associatedSystem| |uncouplingMatrices| - |associatedEquations| |arrayStack| |setButtonValue| |setAttributeButtonStep| - |resetAttributeButtons| |getButtonValue| |decrease| |increase| |morphism| - |balancedFactorisation| |mapDown!| |mapUp!| |setleaves!| |balancedBinaryTree| - |sylvesterMatrix| |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant| - |bfEntry| |bfKeys| |inspect| |extract!| |bag| |binding| |test| |setProperties| - |setProperty| |deleteProperty!| |has?| |comparison| |equality| |nary?| - |unary?| |nullary?| |properties| |derivative| |constantOperator| - |constantOpIfCan| |integerBound| |setright!| |setleft!| - |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!| - |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| |byte| - |setLength!| |capacity| |byteBuffer| |subtractIfCan| |setPosition| - |generalizedContinuumHypothesisAssumed| - |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel| - |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |parents| - |principalAncestors| |exportedOperators| |alphanumeric| |alphabetic| - |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| |upperCase?| - |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| |mkIntegral| - |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| |find| |e| - |clipParametric| |clipWithRanges| |numberOfHues| |yellow| |iifact| |iibinom| - |iiperm| |iipow| |iidsum| |iidprod| |ipow| |factorial| |multinomial| - |permutation| |stirling1| |stirling2| |summation| |factorials| |mkcomm| - |polarCoordinates| |complex| |imaginary| |solid| |solid?| |denominators| - |numerators| |convergents| |approximants| |reducedForm| |partialQuotients| - |partialDenominators| |partialNumerators| |reducedContinuedFraction| |push| - |bindings| |cartesian| |polar| |cylindrical| |spherical| |parabolic| - |parabolicCylindrical| |paraboloidal| |ellipticCylindrical| - |prolateSpheroidal| |oblateSpheroidal| |bipolar| |bipolarCylindrical| - |toroidal| |conical| |modTree| |multiEuclideanTree| |complexZeros| - |divisorCascade| |graeffe| |pleskenSplit| |reciprocalPolynomial| |rootRadius| - |schwerpunkt| |setErrorBound| |startPolynomial| |cycleElt| - |computeCycleLength| |computeCycleEntry| |findConstructor| |arguments| - |dualSignature| |kind| |package| |domain| |category| |coerceP| |powerSum| - |elementary| |alternating| |cyclic| |dihedral| |cap| |cup| |wreath| - |SFunction| |skewSFunction| |cyclotomicDecomposition| - |cyclotomicFactorization| |rangeIsFinite| |functionIsContinuousAtEndPoints| - |functionIsOscillatory| |changeName| |exprHasWeightCosWXorSinWX| - |exprHasAlgebraicWeight| |exprHasLogarithmicWeights| - |combineFeatureCompatibility| |sparsityIF| |stiffnessAndStabilityFactor| - |stiffnessAndStabilityOfODEIF| |systemSizeIF| |expenseOfEvaluationIF| - |accuracyIF| |intermediateResultsIF| |subscriptedVariables| |central?| - |elliptic?| |qsetelt| |doubleResultant| |distdfact| |separateDegrees| - |trace2PowMod| |tracePowMod| |irreducible?| |decimal| |innerint| - |exteriorDifferential| |totalDifferential| |homogeneous?| |leadingBasisTerm| - |ignore?| |computeInt| |checkForZero| |logGamma| |hypergeometric0F1| |rotatez| - |rotatey| |rotatex| |identity| |dictionary| |dioSolve| |directProduct| - |newLine| |copies| |say| |sayLength| |setnext!| |setprevious!| |next| - |previous| |datalist| |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| - |constructor| |separant| |initial| |leader| |isobaric?| |weights| - |differentialVariables| |extractBottom!| |extractTop!| |insertBottom!| - |insertTop!| |bottom!| |top!| |dequeue| |makeObject| |recolor| |drawComplex| - |drawComplexVectorField| |setRealSteps| |setImagSteps| |setClipValue| |draw| - |option?| |range| |colorFunction| |curveColor| |pointColor| |clip| - |clipBoolean| |style| |toScale| |pointColorPalette| |curveColorPalette| - |var1Steps| |var2Steps| |space| |tubePoints| |tubeRadius| |option| |weight| - |makeVariable| |finiteBound| |sortConstraints| |sumOfSquares| |splitLinear| - |simpleBounds?| |linearMatrix| |linearPart| |nonLinearPart| |quadratic?| - |changeNameToObjf| |optAttributes| |Nul| |exponents| |iisqrt2| |iisqrt3| - |iiexp| |iilog| |iisin| |iicos| |iitan| |iicot| |iisec| |iicsc| |iiasin| - |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| |iisinh| |iicosh| |iitanh| - |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| |iiatanh| |iiacoth| |iiasech| - |iiacsch| |specialTrigs| |localReal?| |rischNormalize| |realElementary| - |validExponential| |rootNormalize| |tanQ| |callForm?| |getIdentifier| - |getConstant| |type| |select!| |delete!| |sn| |cn| |dn| |sncndn| |qsetelt!| - |categoryFrame| |currentEnv| |setProperties!| |getProperties| |setProperty!| - |getProperty| |scopes| |eigenvalues| |eigenvector| |generalizedEigenvector| - |generalizedEigenvectors| |eigenvectors| |factorAndSplit| |rightOne| |leftOne| - |rightZero| |leftZero| |swap| |error| |minPoly| |freeOf?| |operators| |tower| - |kernels| |mainKernel| |distribute| |subst| |functionIsFracPolynomial?| - |problemPoints| |zerosOf| |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| - |ocf2ocdf| |socf2socdf| |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| - |numberOfOperations| |edf2efi| |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| - |vedf2vef| |df2st| |f2st| |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| - |measure2Result| |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| - |fi2df| |mat| |neglist| |multiEuclidean| |extendedEuclidean| |euclideanSize| - |sizeLess?| |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| - |tubePlot| |exponentialOrder| |completeEval| |lowerPolynomial| - |raisePolynomial| |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| - |binomThmExpt| |pomopo!| |mapExponents| |linearAssociatedLog| - |linearAssociatedOrder| |linearAssociatedExp| |createNormalElement| - |setLabelValue| |getCode| |printCode| |code| |operation| |common| - |printStatement| |save| |stop| |block| |cond| |returns| |call| |comment| - |continue| |goto| |repeatUntilLoop| |whileLoop| |forLoop| |sin?| |zeroVector| - |zeroSquareMatrix| |identitySquareMatrix| |lSpaceBasis| |finiteBasis| - |principal?| |divisor| |useNagFunctions| |rationalPoints| |nonSingularModel| - |algSplitSimple| |hyperelliptic| |elliptic| |integralDerivationMatrix| - |integralRepresents| |integralCoordinates| |yCoordinates| - |inverseIntegralMatrixAtInfinity| |integralMatrixAtInfinity| - |inverseIntegralMatrix| |integralMatrix| |reduceBasisAtInfinity| - |normalizeAtInfinity| |complementaryBasis| |integral?| |integralAtInfinity?| - |integralBasisAtInfinity| |ramified?| |ramifiedAtInfinity?| |singular?| - |singularAtInfinity?| |branchPoint?| |branchPointAtInfinity?| |rationalPoint?| - |absolutelyIrreducible?| |genus| |getZechTable| |createZechTable| - |createMultiplicationTable| |createMultiplicationMatrix| - |createLowComplexityTable| |createLowComplexityNormalBasis| - |representationType| |createPrimitiveElement| |tableForDiscreteLogarithm| - |factorsOfCyclicGroupSize| |sizeMultiplication| |getMultiplicationMatrix| - |getMultiplicationTable| |primitive?| |numberOfIrreduciblePoly| - |numberOfPrimitivePoly| |numberOfNormalPoly| |createIrreduciblePoly| - |createPrimitivePoly| |createNormalPoly| |createNormalPrimitivePoly| - |createPrimitiveNormalPoly| |nextIrreduciblePoly| |nextPrimitivePoly| - |nextNormalPoly| |nextNormalPrimitivePoly| |nextPrimitiveNormalPoly| - |leastAffineMultiple| |reducedQPowers| |rootOfIrreduciblePoly| |write!| - |read!| |iomode| |close!| |reopen!| |open| |rightUnit| |leftUnit| - |rightMinimalPolynomial| |leftMinimalPolynomial| |associatorDependence| - |lieAlgebra?| |jordanAlgebra?| |noncommutativeJordanAlgebra?| - |jordanAdmissible?| |lieAdmissible?| |jacobiIdentity?| |powerAssociative?| - |alternative?| |flexible?| |rightAlternative?| |leftAlternative?| - |antiAssociative?| |associative?| |antiCommutative?| |commutative?| - |rightCharacteristicPolynomial| |leftCharacteristicPolynomial| |rightNorm| - |leftNorm| |rightTrace| |leftTrace| |someBasis| |sort!| |copyInto!| |sorted?| - |LiePoly| |quickSort| |heapSort| |shellSort| |outputSpacing| |outputGeneral| - |outputFixed| |outputFloating| |exp1| |log10| |log2| |rationalApproximation| - |relerror| |complexSolve| |complexRoots| |realRoots| |leadingTerm| |writable?| - |readable?| |exists?| |extension| |directory| |filename| |shallowExpand| - |deepExpand| |clearFortranOutputStack| |showFortranOutputStack| - |popFortranOutputStack| |pushFortranOutputStack| |topFortranOutputStack| - |setFormula!| |formula| |linkToFortran| |setLegalFortranSourceExtensions| - |fracPart| |polyPart| |fullPartialFraction| |primeFrobenius| |discreteLog| - |decreasePrecision| |increasePrecision| |bits| |unitNormalize| |unit| - |flagFactor| |sqfrFactor| |primeFactor| |nthFlag| |nthExponent| - |irreducibleFactor| |nilFactor| |regularRepresentation| |traceMatrix| - |randomLC| |minimize| |module| |rightRegularRepresentation| - |leftRegularRepresentation| |rightTraceMatrix| |leftTraceMatrix| - |rightDiscriminant| |leftDiscriminant| |represents| |mergeFactors| |isMult| - |applyQuote| |ground| |ground?| |exprToXXP| |exprToUPS| |exprToGenUPS| - |localAbs| |universe| |complement| |cardinality| |internalIntegrate0| - |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| |newReduc| |logical?| - |character?| |doubleComplex?| |complex?| |double?| |ffactor| |qfactor| - |UP2ifCan| |anfactor| |fortranCharacter| |fortranDoubleComplex| - |fortranComplex| |fortranLogical| |fortranInteger| |fortranDouble| - |fortranReal| |external?| |scalarTypeOf| |fortranCarriageReturn| - |fortranLiteral| |fortranLiteralLine| |processTemplate| |makeFR| - |musserTrials| |stopMusserTrials| |numberOfFactors| |modularFactor| - |useSingleFactorBound?| |useSingleFactorBound| |useEisensteinCriterion?| - |useEisensteinCriterion| |eisensteinIrreducible?| - |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact| - |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm| - |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree| - |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle| - |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares| - |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis| - |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB| - |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD| - |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO| - |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm| - |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm| - |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm| - |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial| - |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial| - |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow| - |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build| - |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray| - |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits| - |putColorInfo| |appendPoint| |component| |ranges| |pointLists| - |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc| - |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact| - |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host| - |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!| - |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate| - |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay| - |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal| - |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?| - |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp| - |contract| |leadingSupport| |shrinkable| |physicalLength!| |physicalLength| - |flexibleArray| |elseBranch| |thenBranch| |generalizedInverse| |imports| - |sequence| |iterationVar| |readBytes!| |readUInt32!| |readInt32!| - |readUInt16!| |readInt16!| |readUInt8!| |readInt8!| |readByte!| |setFieldInfo| - |pol| |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| |normal?| |basis| - |normalElement| |minimalPolynomial| |position!| |eof?| |inputBinaryFile| - |increment| |incrementBy| |charpol| |solve1| |innerEigenvectors| |compile| - |declare| |parseString| |unparse| |flatten| |lambda| |binary| |packageCall| - |interpret| |innerSolve1| |innerSolve| |makeEq| |modularGcdPrimitive| - |modularGcd| |reduction| |signAround| |invmod| |powmod| |mulmod| |submod| - |addmod| |mask| |dec| |inc| |symmetricRemainder| |positiveRemainder| |bit?| - |algint| |algintegrate| |palgintegrate| |palginfieldint| |bitLength| |bitCoef| - |bitTruth| |contains?| |inf| |qinterval| |interval| |unit?| |associates?| - |unitCanonical| |unitNormal| |lfextendedint| |lflimitedint| |lfinfieldint| - |lfintegrate| |lfextlimint| |BasicMethod| |PollardSmallFactor| |showTheFTable| - |clearTheFTable| |fTable| |showAttributes| |entry| |palgint0| |palgextint0| - |palglimint0| |palgRDE0| |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| - |fibonacci| |harmonic| |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors| - |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint| - |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate| - |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate| - |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax| - |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate| - |expintegrate| |tanintegrate| |primextendedint| |expextendedint| - |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac| - |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly| - |inverseLaplace| |inputOutputBinaryFile| |bothWays| |input| |resolve| |bytes| - |ip4Address| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer| - |perfectNthPower?| |perfectNthRoot| |approxNthRoot| |perfectSquare?| - |perfectSqrt| |approxSqrt| |generateIrredPoly| |complexExpand| - |complexIntegrate| |dimensionOfIrreducibleRepresentation| - |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh| - |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc| - |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos| - |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose| - |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG - |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?| - |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan| - |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |true| - |unknown| |false| |laplace| |trailingCoefficient| |normalizeIfCan| |polCase| - |distFact| |identification| |LyndonCoordinates| |LyndonBasis| - |zeroDimensional?| |fglmIfCan| |groebner| |lexTriangular| - |squareFreeLexTriangular| |belong?| |erf| |dilog| |li| |Ci| |Si| |Ei| - |linGenPos| |groebgen| |totolex| |minPol| |computeBasis| |coord| |anticoord| - |intcompBasis| |choosemon| |transform| |pack!| |library| |complexLimit| - |limit| |linearlyDependent?| |linearDependence| |solveLinear| |reducedSystem| - |setDifference| |setIntersection| |setUnion| |append| |null| |nil| - |substitute| |duplicates?| |mapGen| |mapExpon| |commutativeEquality| - |leftMult| |rightMult| |makeUnit| |reverse!| |reverse| |makeMulti| |makeTerm| - |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1| - |symmetricProduct| |symmetricPower| |directSum| |\\/| |/\\| ~ - |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve| - |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?| - |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?| - |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D| - |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp| - |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| - |curryRight| |curryLeft| |constantRight| |constantLeft| |twist| - |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat| - |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!| - |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!| - |rightScalarTimes!| |times!| |power!| |nothing| |just| |gradient| |divergence| - |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates| - |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod| - |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent| - |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal| - |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction| - |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction| - |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius| - |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index| - |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower| - |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom| - |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst| - |numberOfMonomials| |members| |multiset| |systemCommand| |mergeDifference| - |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose| - |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf| - |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf| - |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf| - |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf| - |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf| - |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff| - |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf| - |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf| - |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf| - |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf| - |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef| - |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff| - |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf| - |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf| - |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf| - |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf| - |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf| - |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf| - |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf| - |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf| - |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf| - |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator| - |complexEigenvalues| |complexEigenvectors| |isConnected?| |connectTo| |shift| - |normalizedAssociate| |normalize| |outputArgs| |normInvertible?| |normFactors| - |npcoef| |listexp| |characteristicPolynomial| |realEigenvalues| - |realEigenvectors| |halfExtendedResultant2| |halfExtendedResultant1| - |extendedResultant| |subResultantsChain| |lazyPseudoQuotient| - |lazyPseudoRemainder| |bernoulliB| |eulerE| |numeric| |complexNumeric| - |numericIfCan| |complexNumericIfCan| |FormatArabic| |ScanArabic| |FormatRoman| - |ScanRoman| |ScanFloatIgnoreSpaces| |ScanFloatIgnoreSpacesIfCan| - |numericalIntegration| |rk4| |rk4a| |rk4qc| |rk4f| |aromberg| |asimpson| - |atrapezoidal| |romberg| |simpson| |trapezoidal| |rombergo| |simpsono| - |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| |imagi| |octon| |ODESolve| - |constDsolve| |showTheIFTable| |clearTheIFTable| |keys| |iFTable| - |showIntensityFunctions| |expint| |diff| |algDsolve| |denomLODE| - |indicialEquations| |indicialEquation| |denomRicDE| |leadingCoefficientRicDE| - |constantCoefficientRicDE| |changeVar| |ratDsolve| - |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve| - |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters| - |factors| |nthFactor| |nthExpon| |overlap| |hcrf| |hclf| |lexico| |OMmakeConn| - |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| |OMconnectTCP| |OMbindTCP| - |OMopenFile| |OMopenString| |OMclose| |OMsetEncoding| |OMputApp| |OMputAtp| - |OMputAttr| |OMputBind| |OMputBVar| |OMputError| |OMputObject| |OMputEndApp| - |OMputEndAtp| |OMputEndAttr| |OMputEndBind| |OMputEndBVar| |OMputEndError| - |OMputEndObject| |OMputInteger| |OMputFloat| |OMputVariable| |OMputString| - |OMputSymbol| |OMgetApp| |OMgetAtp| |OMgetAttr| |OMgetBind| |OMgetBVar| - |OMgetError| |OMgetObject| |OMgetEndApp| |OMgetEndAtp| |OMgetEndAttr| - |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| |OMgetEndObject| |OMgetInteger| - |OMgetFloat| |OMgetVariable| |OMgetString| |OMgetSymbol| |OMgetType| - |OMencodingBinary| |OMencodingSGML| |OMencodingXML| |OMencodingUnknown| - |omError| |errorInfo| |errorKind| |OMReadError?| |OMUnknownSymbol?| - |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| |OMreadFile| - |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| |OMsupportsSymbol?| - |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| |infinity| |makeop| - |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| |arity| |getDatabase| - |numericalOptimization| |optimize| |goodnessOfFit| |whatInfinity| |infinite?| - |finite?| |minusInfinity| |plusInfinity| |pureLex| |totalLex| |reverseLex| - |min| |leftLcm| |rightExtendedGcd| |rightGcd| |rightExactQuotient| - |rightRemainder| |rightQuotient| |rightLcm| |leftExtendedGcd| |leftGcd| - |leftExactQuotient| |leftRemainder| |leftQuotient| |times| |apply| - |monicLeftDivide| |monicRightDivide| |leftDivide| |rightDivide| |hermiteH| - |laguerreL| |legendreP| |outputList| |writeBytes!| |writeUInt8!| |writeInt8!| - |writeByte!| |isOpen?| |outputBinaryFile| |quo| |rem| |div| >= > ~= - |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| |paren| |bracket| - |prod| |overlabel| |overbar| |prime| |quote| |supersub| |presuper| |presub| - |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| |label| |infix?| - |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| |vspace| |hspace| - |superHeight| |subHeight| |height| |width| |doubleFloatFormat| |messagePrint| - |message| |padecf| |pade| |root| |quotientByP| |moduloP| |modulus| |digits| - |continuedFraction| |pair| |light| |pastel| |bright| |dim| |dark| - |getSyntaxFormsFromFile| |surface| |coordinate| |partitions| |conjugates| - |shuffle| |shufflein| |sequences| |permutations| |lists| |atoms| |makeResult| - |is?| |Is| |addMatchRestricted| |insertMatch| |addMatch| |getMatch| |failed| - |failed?| |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?| - |topPredicate| |setTopPredicate| |patternVariable| |withPredicates| - |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?| - |generic?| |quoted?| |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?| - |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| |PDESolve| - |leftFactor| |rightFactorCandidate| |measure| D |ptree| |coerceImages| - |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition| - |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent| - |cycles| |cycle| |initializeGroupForWordProblem| <= < |movedPoints| - |wordInGenerators| |wordInStrongGenerators| |orbits| |orbit| - |permutationGroup| |wordsForStrongGenerators| |strongGenerators| |base| - |generators| |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| - |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit| - |charthRoot| |conditionP| |solveLinearPolynomialEquation| - |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial| - |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix| - |doubleDisc| |polyred| |padicFraction| |padicallyExpand| - |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom| - |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup| - |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11| - |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup| - |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember| - |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime| - |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve| - |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond| - |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive| - |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints| - |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D| - |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D| - |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D| - |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert| - |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes| - |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor| - |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP| - |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy| - |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials| - |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt| - |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix| - |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print| - |selectsecond| |selectfirst| |makeprod| |property| |equivOperands| |equiv?| - |impliesOperands| |implies?| |orOperands| |or?| |andOperands| |and?| - |notOperand| |not?| |variable?| |term| |term?| |equiv| |implies| |or| |and| - |merge!| |max| |resultantEuclidean| |semiResultantEuclidean2| - |semiResultantEuclidean1| |indiceSubResultant| |indiceSubResultantEuclidean| - |semiIndiceSubResultantEuclidean| |degreeSubResultant| - |degreeSubResultantEuclidean| |semiDegreeSubResultantEuclidean| - |lastSubResultantEuclidean| |semiLastSubResultantEuclidean| - |subResultantGcdEuclidean| |semiSubResultantGcdEuclidean2| - |semiSubResultantGcdEuclidean1| |discriminantEuclidean| - |semiDiscriminantEuclidean| |chainSubResultants| |schema| |resultantReduit| - |resultantReduitEuclidean| |semiResultantReduitEuclidean| |divide| |Lazard| - |Lazard2| |nextsousResultant2| |resultantnaif| |resultantEuclideannaif| - |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?| - |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches| - |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder| - |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?| - |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect| - |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan| - |unprotectedRemoveRedundantFactors| |removeRedundantFactors| - |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?| - |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials| - |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?| - |linearPolynomials| |bivariate?| |bivariatePolynomials| - |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol| - |interReduce| |roughBasicSet| |crushedSet| - |rewriteSetByReducingWithParticularGenerators| - |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors| - |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents| - |removeRedundantFactorsInContents| |removeRedundantFactorsInPols| - |irreducibleFactors| |lazyIrreducibleFactors| - |removeIrreducibleRedundantFactors| |normalForm| |changeBase| - |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord| - |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan| - |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan| - |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan| - |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan| - |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup| - |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations| - |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator| - |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!| - |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue| - |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits| - |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?| - |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance| - |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial| - |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE| - |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |operator| |midpoint| - |midpoints| |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| = - |setref| |deref| |ref| |radicalEigenvectors| |radicalEigenvector| - |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt| - |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix| - |symmetricTensors| |tensorProduct| |permutationRepresentation| - |completeEchelonBasis| |createRandomElement| |cyclicSubmodule| - |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?| - |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |showArrayValues| - |showScalarValues| |solveRetract| |variables| |mainVariable| |univariate| - |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal| - |exponential| |chiSquare| F |t| |factorFraction| |componentUpperBound| |blue| - |green| |red| |whitePoint| |uniform| |binomial| |poisson| |geometric| - |ridHack1| |interpolate| |nullSpace| |nullity| |rank| |rowEchelon| |column| - |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex| - |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix| - |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart| - |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right| - |left| |roman| |recoverAfterFail| |showTheRoutinesTable| |deleteRoutine!| - |getExplanations| |getMeasure| |changeMeasure| |changeThreshhold| - |selectMultiDimensionalRoutines| |selectNonFiniteRoutines| - |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines| - |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines| - |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent| - |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient| - |subResultantChain| |halfExtendedSubResultantGcd2| - |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!| - |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical| - |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide| - |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?| - |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial| - |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial| - |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators| - |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?| - |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit| - |invertibleSet| |invertible?| |invertibleElseSplit?| - |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?| - |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo| - |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant| - |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression| - |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create| - |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope| - |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates| - |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?| - |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex| - |hash| |delta| |member?| |enumerate| |setOfMinN| |elements| - |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer| - |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?| - |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?| - |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?| - |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?| - |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?| - |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!| - |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!| - |stosePrepareSubResAlgo| |stoseInternalLastSubResultant| - |stoseIntegralLastSubResultant| |stoseLastSubResultant| - |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg| - |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet| - |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus| - |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition| - |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0| - |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence| - |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots| - |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature| - |signatureAst| |Or| |And| |Not| |xor| |not| |depth| |top| |pop!| |push!| - |minordet| |determinant| |diagonalProduct| |trace| |diagonal| |diagonalMatrix| - |scalarMatrix| |hermite| |completeHermite| |smith| |completeSmith| - |diophantineSystem| |csubst| |particularSolution| |mapSolve| |linear| - |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| |aQuartic| - |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| |unvectorise| - |bubbleSort!| |insertionSort!| |check| |objects| |lprop| |llprop| |lllp| - |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| |closedCurve?| |closedCurve| - |curve?| |curve| |point?| |enterPointData| |composites| |components| - |numberOfComposites| |numberOfComponents| |create3Space| |parse| - |outputAsFortran| |outputAsScript| |outputAsTex| |abs| |Beta| |digamma| - |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| |airyAi| |airyBi| - |subNode?| |infLex?| |setEmpty!| |setStatus!| |setCondition!| |setValue!| - |copy| |status| |value| |empty?| |splitNodeOf!| |remove!| |remove| - |subNodeOf?| |nodeOf?| |result| |conditions| |updateStatus!| - |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| |leftTrim| - |trim| |split| |position| |replace| |match?| |match| |substring?| |suffix?| - |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| |KrullNumber| - |numberOfVariables| |algebraicDecompose| |transcendentalDecompose| - |internalDecompose| |decompose| |upDateBranches| |printInfo| |preprocess| - |internalZeroSetSplit| |internalAugment| |stack| |possiblyInfinite?| - |explicitlyFinite?| |nextItem| |init| |infiniteProduct| |evenInfiniteProduct| - |oddInfiniteProduct| |generalInfiniteProduct| |filterUntil| |filterWhile| - |generate| |showAll?| |showAllElements| |output| |cons| |delay| |findCycle| - |repeating?| |repeating| |exquo| |recip| |integers| |oddintegers| |int| - |mapmult| |deriv| |gderiv| |compose| |addiag| |lazyIntegrate| |nlde| |powern| - |mapdiv| |lazyGintegrate| |power| |sincos| |sinhcosh| |asin| |acos| |atan| - |acot| |asec| |acsc| |sinh| |cosh| |tanh| |coth| |sech| |csch| |asinh| |acosh| - |atanh| |acoth| |asech| |acsch| |subresultantVector| |primitivePart| - |pointData| |parent| |level| |extractProperty| |extractClosed| |extractIndex| - |extractPoint| |traverse| |defineProperty| |closeComponent| |modifyPoint| - |addPointLast| |addPoint2| |addPoint| |merge| |deepCopy| |shallowCopy| - |numberOfChildren| |children| |child| |birth| |internal?| |root?| |leaf?| - |rhs| |lhs| |construct| |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT - LT |list| |string| |argscript| |superscript| |subscript| |script| |scripts| - |scripted?| |name| |resetNew| |symFunc| |symbolTableOf| |argumentListOf| - |returnTypeOf| |printHeader| |returnType!| |argumentList!| |endSubProgram| - |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable| - |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList| - |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case| - |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce| - |solve| |triangularSystems| |rootDirectory| |hostPlatform| - |nativeModuleExtension| |loadNativeModule| |bumprow| |bumptab| |bumptab1| - |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr| - |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!| - |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?| - |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString| - |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue| - |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!| - |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi| - |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?| - |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary| - |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv| - |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog| - |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh| - |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig| - |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq| - |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate| - |coefficient| |coHeight| |extendIfCan| |algebraicVariables| - |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic| - |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce| - |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?| - |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent| - |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?| - |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select| - |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?| - |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder| - |resetVariableOrder| |prime?| |sample| |bitior| |bitand| |rationalFunction| - |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| |factorSquareFree| - |henselFact| |hasHi| |segment| SEGMENT |fmecg| |commonDenominator| - |clearDenominator| |splitDenominator| |monicRightFactorIfCan| - |rightFactorIfCan| |leftFactorIfCan| |monicDecomposeIfCan| - |monicCompleteDecompose| |divideIfCan| |noKaratsuba| |karatsubaOnce| - |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| |composite| - |subResultantGcd| |resultant| |discriminant| |pseudoRemainder| |shiftLeft| - |shiftRight| |karatsubaDivide| |monicDivide| |divideExponents| |unmakeSUP| - |makeSUP| |vectorise| |eval| |extend| |approximate| |truncate| |order| - |center| |terms| |squareFreePart| |BumInSepFFE| |multiplyExponents| - |laurentIfCan| |laurent| |laurentRep| |rationalPower| |puiseux| |dominantTerm| - |limitPlus| |split!| |setlast!| |setrest!| |setelt| |setfirst!| |cycleSplit!| - |concat!| |cycleTail| |cycleLength| |cycleEntry| |third| |second| |tail| - |last| |rest| |elt| |first| |concat| |invmultisect| |multisect| |revert| - |generalLambert| |evenlambert| |oddlambert| |lambert| |lagrange| - |differentiate| |univariatePolynomial| |integrate| ** |polynomial| - |multiplyCoefficients| |quoByVar| |coefficients| |series| |stFunc1| |stFunc2| - |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| UP2UTS UTS2UP - LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| |outerProduct| |dot| - - |zero| + |vector| |scan| |reduce| |graphCurves| |drawCurves| |update| |show| - |scale| |connect| |region| |points| |units| |getGraph| |putGraph| |graphs| - |graphStates| |graphState| |makeViewport2D| |viewport2D| |getPickedPoints| - |key| |close| |write| |colorDef| |reset| |intensity| |lighting| |clipSurface| - |showClipRegion| |showRegion| |hitherPlane| |eyeDistance| |perspective| - |translate| |zoom| |rotate| |drawStyle| |outlineRender| |diagonals| |axes| - |controlPanel| |viewpoint| |dimensions| |title| |resize| |move| |options| - |modifyPointData| |subspace| |makeViewport3D| |viewport3D| |viewDeltaYDefault| - |viewDeltaXDefault| |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| - |pointColorDefault| |lineColorDefault| |axesColorDefault| |unitsColorDefault| - |pointSizeDefault| |viewPosDefault| |viewSizeDefault| |viewDefaults| - |viewWriteDefault| |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| - |tubePointsDefault| |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| - |sts2stst| |clikeUniv| |weierstrass| |qqq| |integralBasis| - |localIntegralBasis| |qualifier| |mainExpression| |condition| - |changeWeightLevel| |characteristicSerie| |characteristicSet| |medialSet| - |Hausdorff| |Frobenius| |transcendenceDegree| |extensionDegree| - |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| |mirror| - |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product| - |LiePolyIfCan| |coerce| |trunc| |degree| / |quasiRegular| |quasiRegular?| - |constant| |constant?| |coef| |mindeg| |maxdeg| |#| |map| |reductum| * - |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve| - |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?| - |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite| - |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| - |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| + |Record| |Union| |conditionP| |externalList| |rational| + |positiveRemainder| |exptMod| |changeThreshhold| |cTan| |iisin| + |forLoop| |fortranLiteral| |f02bbf| |recoverAfterFail| |approxSqrt| + |readLineIfCan!| |lfextlimint| |mapGen| |leftDiscriminant| + |fractRadix| |slash| |multiple?| |reduceLODE| |inf| + |componentUpperBound| |multiEuclidean| |OMgetSymbol| + |monomialIntegrate| |powern| |normal?| |complexIntegrate| |rotatey| + |ignore?| |iiacoth| |powerAssociative?| |primitive?| |e02dff| + |addBadValue| |nor| |patternMatchTimes| |normalise| |exponents| + |divisor| |reverseLex| |s17def| |fortran| |exprToGenUPS| |npcoef| + |antisymmetric?| |nonSingularModel| |extendedResultant| |startStats!| + |sncndn| |setIntersection| |midpoint| |selectPDERoutines| + |OMgetInteger| |closeComponent| |infinite?| |radicalEigenvectors| + |droot| |consnewpol| |setUnion| |stoseInvertible?| |factorial| + |characteristicSet| |extend| |loopPoints| |OMgetAtp| |tanNa| |B1solve| + |routines| |intcompBasis| |apply| |mapMatrixIfCan| |pointColorDefault| + |vspace| |basisOfMiddleNucleus| |imagi| |ideal| |baseRDEsys| + |currentEnv| |commutativeEquality| |nil| |upperCase?| |convergents| + |e04naf| |setClosed| |exportedOperators| |chainSubResultants| + |constantKernel| |monomial| |rightPower| |f01brf| |insertBottom!| + |size| |paren| |karatsuba| |call| |cross| |intPatternMatch| + |getStream| |ScanFloatIgnoreSpaces| |multivariate| |hconcat| + |torsion?| |diophantineSystem| |postfix| |sort| |commutative?| + |product| |OMcloseConn| |sorted?| |solveLinear| |createGenericMatrix| + |variables| UTS2UP |zerosOf| |nthr| |approximate| |function| + |infRittWu?| |chvar| |primitivePart!| |cAsin| |redPol| + |quasiAlgebraicSet| |d03faf| |monicModulo| |id| |optpair| |complex| + |resultantEuclidean| |qelt| |first| |evaluateInverse| |clipSurface| + |twist| |insertRoot!| |usingTable?| |linear| |OMUnknownSymbol?| + |normalizedAssociate| |internalAugment| |qsetelt| |birth| |eval| + |rest| |HermiteIntegrate| |semiSubResultantGcdEuclidean1| + |outputAsScript| |sn| |symmetricPower| |shallowExpand| + |fortranCharacter| |asinIfCan| |table| |elseBranch| |unitNormal| + |identification| |substitute| |random| |xRange| |close| |printInfo!| + |paraboloidal| |zeroDimensional?| |polynomial| |coleman| + |algebraicDecompose| |s17adf| |new| |removeDuplicates| |point| + |pdf2df| |yRange| |cot2trig| |connect| |obj| |intermediateResultsIF| + |createMultiplicationMatrix| |leadingTerm| |taylor| |expandPower| + |clearDenominator| |search| |prepareSubResAlgo| |cup| |remove| + |getConstant| |readBytes!| |zRange| |display| |cylindrical| |cache| + |script| BY |doubleFloatFormat| |laurent| |setMinPoints3D| |bat| + |block| |getGraph| |map!| |varselect| |dAndcExp| |rationalFunction| + |pushuconst| |tower| |pushdterm| |constant| |primitivePart| |puiseux| + |getVariableOrder| |rk4qc| |rootOf| |series| |last| |qsetelt!| + |setref| |numFunEvals3D| |subSet| |drawComplex| |factors| |solid| + |setvalue!| |OMlistCDs| |tensorProduct| |assoc| + |reducedContinuedFraction| |generalizedEigenvectors| + |genericLeftTrace| |nextColeman| |keys| |nextsousResultant2| |tex| + |fortranReal| |times!| |inv| |viewWriteDefault| |limitedIntegrate| + |subresultantSequence| |scopes| |divideExponents| + |useSingleFactorBound| |headReduce| |idealSimplify| |ground?| + |leftDivide| |imagK| |zoom| |iprint| |curve| |linkToFortran| |input| + |d02bhf| |cotIfCan| |diagonal?| |mat| |isPlus| |ground| |normalForm| + |leftMult| |d01amf| |min| |tubeRadius| |splitSquarefree| |library| + |BumInSepFFE| |fortranComplex| |iiatan| |gcdcofact| |noKaratsuba| + |leadingMonomial| |subTriSet?| |complexNumeric| |adjoint| |lcm| + |minimalPolynomial| |acsch| |solveInField| |collect| + |linearlyDependent?| |index?| |maximumExponent| |showArrayValues| + |leadingCoefficient| |evenlambert| |rules| |upperCase| |euclideanSize| + |indicialEquations| |factorGroebnerBasis| |mainValue| |backOldPos| + |mapUp!| |kernels| |leadingExponent| |rischDE| |primitiveMonomials| + |permutations| |left| |nonQsign| |range| |cAcsc| |append| |subMatrix| + |dmpToHdmp| |completeHensel| |rangePascalTriangle| |safetyMargin| + |dimensionsOf| |univariate| |super| |reductum| |right| |clikeUniv| + |rootRadius| |overlap| |gcd| |trueEqual| |set| + |lastSubResultantElseSplit| |merge| |divisorCascade| |augment| + |pointColor| |lowerCase!| |false| |lazyPseudoRemainder| |seriesSolve| + |integerIfCan| |solve1| |cosSinInfo| |basisOfRightNucleus| |bringDown| + |closed?| |complementaryBasis| |sum| |semiIndiceSubResultantEuclidean| + |s21baf| |isExpt| |argumentList!| |impliesOperands| |exponentialOrder| + |getMeasure| |intensity| |univariatePolynomials| |factor| + |traceMatrix| |primextendedint| |lagrange| |leftRemainder| + |semiResultantEuclideannaif| |functionIsOscillatory| |splitLinear| + |sqrt| |permutationRepresentation| |int| |complexRoots| + |fortranLogical| |f02akf| |predicates| |lambert| |setFieldInfo| + |rootProduct| |df2fi| |palglimint0| |numeric| |thetaCoord| |real| + |saturate| |distdfact| |leftFactorIfCan| |list?| |makeResult| |lp| + |monicRightDivide| |genericRightTrace| |radical| |cAtan| |reseed| + |member?| |imag| |leftRegularRepresentation| |ptree| + |subscriptedVariables| |argscript| |trigs| |eigenMatrix| |minPoly| + |decrease| |directProduct| |leftNorm| |leftUnits| |multMonom| + |realEigenvectors| |OMputEndError| |symmetricRemainder| |mapDown!| + |clearTable!| |showSummary| |sequences| |increase| |UpTriBddDenomInv| + |setFormula!| |iipow| |numberOfMonomials| |cycles| |generalSqFr| + |tValues| |constantOpIfCan| |acscIfCan| |subNodeOf?| |specialTrigs| + |e01sef| |brace| |addPointLast| |deepExpand| |groebSolve| + |innerSolve1| |equivOperands| |hash| |mathieu12| |showAttributes| + |chiSquare| |vconcat| |monomRDEsys| |coord| |destruct| |getOrder| + |setright!| |branchPoint?| |parts| |resultantEuclideannaif| |show| + |count| |var1StepsDefault| |subHeight| |rationalIfCan| |bat1| + |modularGcdPrimitive| |OMgetEndAtp| |symbol| = |resultantReduit| + |xCoord| |numberOfImproperPartitions| |readInt8!| |monicLeftDivide| + |makeprod| |imagj| |functionIsContinuousAtEndPoints| |nlde| |unravel| + |leviCivitaSymbol| |expression| |any?| |pToDmp| |perfectSquare?| + |semiSubResultantGcdEuclidean2| |trace| |cot2tan| |rightRank| |lo| + |newSubProgram| F2FG |modifyPointData| |highCommonTerms| |pole?| + |integer| |d01gbf| < |acothIfCan| |legendre| |exquo| |every?| + |printStats!| |newLine| |incr| |ScanRoman| |identity| + |SturmHabichtMultiple| |doubleResultant| |qfactor| > |div| |cosh2sech| + |radPoly| |is?| |tanh2coth| |removeCosSq| |satisfy?| + |stoseSquareFreePart| |iiacsch| |subscript| |rootSplit| |limitedint| + <= |opeval| |quo| |constantOperator| |generalPosition| |c06fuf| + |fortranDouble| |c06fpf| |removeIrreducibleRedundantFactors| + |halfExtendedResultant1| |mainForm| |distFact| |separateFactors| >= + |label| |sample| |superHeight| |mathieu22| |rightFactorIfCan| + |duplicates?| |read!| |ref| |curveColor| + |initializeGroupForWordProblem| |invmod| |screenResolution3D| |rem| + |collectUpper| |equiv?| |invertibleSet| |setProperty| |rootPoly| + |tubePlot| |simplifyLog| |infieldIntegrate| |predicate| |zeroOf| |zag| + |bezoutDiscriminant| |fortranInteger| |inR?| |imagE| + |parabolicCylindrical| |iiabs| |totalfract| |redpps| + |axesColorDefault| |doubleRank| |genericLeftNorm| |symmetricGroup| + + |numFunEvals| |leadingIdeal| |currentSubProgram| |multiset| + |listLoops| |setVariableOrder| |combineFeatureCompatibility| + |graphStates| |hMonic| |xn| |normalElement| |linearDependence| - + |initiallyReduce| |readByte!| |lastSubResultant| |subresultantVector| + |copyInto!| |showFortranOutputStack| |assign| |oddintegers| |maxint| + |ScanArabic| / |makeop| |readIfCan!| |open?| |coth2tanh| |binding| + |idealiserMatrix| |lflimitedint| |completeSmith| |besselK| |c06gbf| + |nthExpon| |OMgetFloat| |triangulate| |symbol?| |term| |inconsistent?| + |constructor| |rationalPoint?| |iilog| |fi2df| |weights| |trunc| + |mkIntegral| |parabolic| |lazyPseudoQuotient| |euclideanGroebner| + |inRadical?| |OMmakeConn| |sqfree| |monomials| |readInt32!| |nthRoot| + |lazyEvaluate| |indiceSubResultantEuclidean| |binarySearchTree| + |option| |rightRemainder| |realEigenvalues| |tanIfCan| + |defineProperty| |order| |addMatchRestricted| |structuralConstants| + |moreAlgebraic?| |extract!| |complexForm| |trailingCoefficient| + |reciprocalPolynomial| |computeCycleLength| |cAcos| |OMputEndBVar| + |commutator| |members| |parameters| |palgextint| + |antisymmetricTensors| |setEpilogue!| |commonDenominator| |nothing| + |e02bdf| |roughSubIdeal?| |d02kef| |shuffle| |selectOrPolynomials| + |rename!| |f04axf| |imagk| |leadingIndex| |setRow!| |weight| + |internalZeroSetSplit| |setOrder| |bag| |readable?| |number?| |equiv| + |setOfMinN| |var2StepsDefault| |terms| |derivative| |safeFloor| + |makeEq| |s17acf| |lift| |showTypeInOutput| |fortranCompilerName| + |branchPointAtInfinity?| |OMopenFile| |minPoints3D| |sincos| + |invertibleElseSplit?| |matrixConcat3D| |zero?| |rowEchelonLocal| + |univariate?| |reduce| |polar| |one?| |regularRepresentation| + |ScanFloatIgnoreSpacesIfCan| |exponent| |FormatRoman| |complexZeros| + |outputGeneral| |SFunction| |rightScalarTimes!| |fullDisplay| + |outputList| |rightTrim| |f02fjf| |s17dlf| |nthFractionalTerm| + |calcRanges| |viewWriteAvailable| |bivariateSLPEBR| |biRank| |gcdprim| + |continuedFraction| |balancedBinaryTree| |style| |leftTrim| + |antiCommutative?| |integral| |Lazard2| |complexElementary| |Is| + |totalDegree| |ran| |sPol| |hclf| |minPoints| |printStatement| + |definingEquations| |central?| |primPartElseUnitCanonical| + |outputForm| |triangularSystems| |s17dhf| |reducedDiscriminant| + |lookup| |c06gqf| |cAcot| |iExquo| |cExp| |univariatePolynomial| + |build| |symFunc| |permanent| |generalTwoFactor| |oddlambert| |low| + |findCycle| |boundOfCauchy| UP2UTS |factorAndSplit| + |decreasePrecision| |realRoots| |explicitlyFinite?| |decompose| + |showTheSymbolTable| |restorePrecision| |invertible?| |divideIfCan| + |socf2socdf| |transcendent?| |problemPoints| |leftMinimalPolynomial| + |iicoth| |sech2cosh| |graphImage| |cCos| |tRange| |sinhcosh| |li| + |binaryTree| |createIrreduciblePoly| |stopMusserTrials| + |factorsOfDegree| |stoseInvertibleSetsqfreg| |weakBiRank| |reorder| + |OMgetBVar| |isTimes| |iicsch| |HenselLift| |indiceSubResultant| + |bindings| |algint| |OMgetEndApp| |green| |sizeMultiplication| + |c06ecf| |updatF| |OMgetType| |returnType!| |aCubic| |mathieu24| + |iicosh| |cyclePartition| |bipolar| |curve?| |rootSimp| + |halfExtendedSubResultantGcd1| |f02ajf| |karatsubaOnce| |shellSort| + |c06gcf| |tubeRadiusDefault| |poisson| |getExplanations| |adaptive3D?| + |mainVariable?| |shiftRoots| |meshPar1Var| |presub| + |leftExactQuotient| |minimumDegree| |iteratedInitials| |hessian| + |component| |divide| |iiacos| |and?| |singularAtInfinity?| + |splitNodeOf!| |d02bbf| |complexEigenvectors| |e04fdf| |Beta| |hi| + |leftAlternative?| |normDeriv2| |eulerE| |indices| |exactQuotient| + |ellipticCylindrical| |definingPolynomial| |quotient| |rowEch| + |c06frf| |showAllElements| |numberOfFactors| |s19acf| |pushdown| + |listConjugateBases| |froot| |particularSolution| + |fullPartialFraction| |localAbs| |updateStatus!| |moebius| + |setPosition| |imaginary| |signAround| |exprex| |OMsupportsCD?| + |genus| |rightUnit| |harmonic| |factorByRecursion| |nextSublist| + |quatern| |knownInfBasis| |elRow2!| |eyeDistance| |e02baf| + |radicalSimplify| |mathieu11| |gramschmidt| |symmetricDifference| + |perfectNthPower?| |minimumExponent| |recur| |quadraticForm| |nand| + |pr2dmp| |repeating| |nthFlag| |lyndon| |elliptic?| |linSolve| + |setTopPredicate| |normalizeAtInfinity| |primlimitedint| + |jordanAlgebra?| |useSingleFactorBound?| |lex| |dioSolve| |iiacosh| + |iibinom| |solveid| |ip4Address| |maxrow| |test| |unitNormalize| + |symmetricSquare| |printingInfo?| |tan2cot| |f04jgf| |eulerPhi| + |e02agf| |clipParametric| |s21bcf| |maxrank| |f02aaf| |PDESolve| + |limit| |generate| |leadingCoefficientRicDE| |top!| |rdregime| + |palgextint0| |measure| |rank| |findBinding| |hermite| |split| + |bounds| |prefix| |selectFiniteRoutines| |toseInvertibleSet| + |returnTypeOf| |clipPointsDefault| |randnum| |lighting| + |GospersMethod| |string?| |associatedSystem| |swapRows!| + |leftExtendedGcd| |airyBi| |OMputInteger| |OMreadStr| |depth| + |leftRank| |messagePrint| |extendedSubResultantGcd| |f04asf| |e04jaf| + |genericRightNorm| |evenInfiniteProduct| |att2Result| |showTheIFTable| + |squareMatrix| |arbitrary| |basisOfLeftAnnihilator| |corrPoly| + |roughUnitIdeal?| |patternVariable| |setProperties!| + |outputBinaryFile| |column| |showRegion| |identitySquareMatrix| + |sortConstraints| |lowerPolynomial| |mappingAst| |rootPower| + |Vectorise| |double?| |null| |lquo| |d01bbf| |s17ajf| |hspace| + |setScreenResolution| |iiasec| |rightDivide| + |stoseIntegralLastSubResultant| |critMonD1| |nil?| |zeroDim?| + |innerEigenvectors| |computeBasis| |OMreceive| + |halfExtendedSubResultantGcd2| |not| |legendreP| |character?| + |createThreeSpace| |external?| |dim| |readInt16!| |sumOfDivisors| + |uniform01| |startTableInvSet!| |and| |norm| |setValue!| + |LazardQuotient| |s14baf| |setPredicates| |radicalEigenvalues| + |cyclicGroup| |split!| |or| |complete| + |removeRoughlyRedundantFactorsInContents| |frobenius| + |setAttributeButtonStep| |meatAxe| |sh| |mathieu23| |s13acf| + |remainder| |xor| |rCoord| |quasiComponent| |critT| |setLabelValue| + |e01bgf| |createNormalPoly| |tubePointsDefault| |inputBinaryFile| + |e01saf| |qualifier| |case| |sign| |diag| |squareFreePrim| |minordet| + |OMputObject| |outputSpacing| |createPrimitiveElement| |cTanh| + |exactQuotient!| |Zero| |laurentIfCan| |rubiksGroup| |univariateSolve| + |aLinear| |swap| |bezoutMatrix| |polyred| |One| |totalGroebner| + |cycleLength| |directSum| |/\\| + |generalizedContinuumHypothesisAssumed?| |gethi| |setProperty!| + |exQuo| |sqfrFactor| |zeroSetSplit| |partitions| + |nativeModuleExtension| |returns| |\\/| |horizConcat| |lazyPquo| + |monic?| |solveLinearPolynomialEquationByRecursion| |ksec| |expIfCan| + |mainCharacterization| |extractClosed| |finiteBound| |nullSpace| + |removeCoshSq| |key| |complexNumericIfCan| |delay| |makeSketch| + |unary?| |viewport2D| |s18aff| |getSyntaxFormsFromFile| |center| + |strongGenerators| |subset?| |categoryFrame| |limitPlus| + |partialQuotients| |OMsetEncoding| |dn| |filename| |addMatch| + |polygon| |monicRightFactorIfCan| |iiasinh| |alphabetic?| + |appendPoint| |elt| |overlabel| |fintegrate| |coerceS| |hexDigit| + |nextNormalPoly| |not?| |second| |LyndonWordsList1| |plot| |iisinh| + |toseInvertible?| |rightNorm| |stFuncN| |curry| |parse| |third| + |zeroVector| |f04faf| |polarCoordinates| |tablePow| |logGamma| + |OMencodingXML| |e02daf| |alphabetic| |quotedOperators| |getOperands| + |representationType| |laplacian| |dec| |leftScalarTimes!| |acoshIfCan| + |pseudoQuotient| |point?| |numberOfFractionalTerms| |mesh| |quickSort| + |rightAlternative?| |mkAnswer| |semiResultantReduitEuclidean| + |trace2PowMod| |c06eaf| |curveColorPalette| |absolutelyIrreducible?| + |removeZero| |lintgcd| |deepestTail| |acschIfCan| |enqueue!| + |showScalarValues| |linearAssociatedExp| |lazyGintegrate| |viewport3D| + |e04gcf| |topPredicate| |infiniteProduct| |laguerreL| |qroot| + |polyPart| |palgRDE0| |f01rdf| |expr| |e02zaf| |reducedSystem| + |innerint| |heap| |bytes| |pquo| |entries| |shanksDiscLogAlgorithm| + |reopen!| |lazyVariations| |rquo| |kmax| |e02aef| |measure2Result| + |OMencodingSGML| |systemCommand| |kind| |rightTrace| |e02akf| + |cyclic?| |numberOfDivisors| |wrregime| |unmakeSUP| |element?| + |fixedPoint| |palgintegrate| |op| |nextPrimitivePoly| |logical?| + |removeSquaresIfCan| |reduceBasisAtInfinity| |associator| |divisors| + |localIntegralBasis| |e01daf| |stack| |scaleRoots| |RittWuCompare| + |se2rfi| |variable| |extractPoint| |aQuartic| |reverse!| + |abelianGroup| |complement| |complex?| |normal| + |inverseIntegralMatrixAtInfinity| |maxColIndex| |iterators| + |discriminant| |printHeader| |selectSumOfSquaresRoutines| + |genericLeftTraceForm| |deleteRoutine!| |domainOf| |lexGroebner| + |stoseInvertibleSetreg| |nilFactor| |changeWeightLevel| + |primextintfrac| |index| |swapColumns!| |isOpen?| |argumentListOf| + |iiasin| |extractProperty| |integral?| |basisOfCommutingElements| + |f02agf| |writeUInt8!| |viewZoomDefault| |sylvesterMatrix| + |OMunhandledSymbol| |OMclose| |radix| |endSubProgram| + |extendedIntegrate| |infinityNorm| |compiledFunction| |ode1| + |nextLatticePermutation| |loadNativeModule| |rightLcm| + |replaceKthElement| |elRow1!| |OMreadFile| |leftQuotient| |lowerCase?| + |union| |inverseLaplace| |zeroMatrix| |pair| |startTable!| + |eigenvalues| |leadingSupport| |minset| |expandTrigProducts| |axes| + |mulmod| |numberOfComputedEntries| |stoseInternalLastSubResultant| + |createPrimitivePoly| |createPrimitiveNormalPoly| |orthonormalBasis| + |bivariate?| |stopTableGcd!| |cCoth| |zCoord| |showIntensityFunctions| + |s14abf| |ListOfTerms| |OMputVariable| |OMputEndAtp| |lSpaceBasis| + |systemSizeIF| |validExponential| |rowEchelon| |extractIfCan| + |listBranches| |callForm?| |dark| |principalIdeal| |f02xef| + |transpose| |s13aaf| |double| |minPol| |patternMatch| |value| |seed| + |exprHasWeightCosWXorSinWX| |Ei| |complexSolve| |roughBase?| + |rewriteIdealWithHeadRemainder| |cyclicSubmodule| |coordinate| + |removeSuperfluousQuasiComponents| |copy!| |rightRecip| |presuper| + |primeFactor| |graphCurves| |bottom!| |doubleDisc| + |getMultiplicationTable| |f04qaf| |degreeSubResultantEuclidean| + |scalarMatrix| |repeating?| |polynomialZeros| |truncate| |cyclic| + |clearFortranOutputStack| |zeroSetSplitIntoTriangularSystems| + |palgint0| |pade| |dimensions| |removeSinSq| |triangSolve| |spherical| + |removeRedundantFactorsInPols| |distance| |sizeLess?| |equality| + |nthRootIfCan| |log2| |normalized?| |capacity| |getlo| |OMParseError?| + |LyndonWordsList| |scan| |characteristic| |jordanAdmissible?| |mindeg| + |newTypeLists| |writeLine!| |invmultisect| |retractable?| + |lazyPremWithDefault| |rule| |check| |primintegrate| |df2st| + |sinh2csch| |quadratic?| |prinshINFO| |say| |anticoord| |c02agf| + |e01bff| |bumptab| |s17ahf| |monicCompleteDecompose| |cyclotomic| + |declare!| |asinhIfCan| |ceiling| |linear?| |factorFraction| + |interpolate| |ddFact| |arrayStack| |pmComplexintegrate| + |OMgetEndBVar| |fortranCarriageReturn| |cycleTail| |roman| + |extendedint| |polygon?| |UnVectorise| |normalizeIfCan| + |groebnerIdeal| |lllp| |c05pbf| |pseudoDivide| |monicDivide| + |createNormalElement| |rdHack1| |critMTonD1| |OMputEndAttr| + |basisOfLeftNucloid| |OMputBind| |dfRange| |realZeros| |traverse| + |updatD| |mapUnivariateIfCan| |numericIfCan| |setImagSteps| |makeCrit| + |quadratic| |symmetricProduct| |connectTo| |prime| |f01ref| |mdeg| + |notelem| |reducedForm| |showTheFTable| |eof?| |romberg| |univcase| + |void| |reset| |basicSet| |reflect| |vertConcat| |omError| |formula| + |cCot| |sayLength| |rowEchLocal| |partition| |unvectorise| + |indicialEquationAtInfinity| |e01bef| |drawStyle| |normal01| + |flagFactor| |integrate| |cyclicEqual?| |segment| + |leftCharacteristicPolynomial| |duplicates| |write| |merge!| |cAsinh| + |companionBlocks| |hyperelliptic| |reverse| |s18acf| + |integralRepresents| |critB| |createZechTable| |interval| |save| + |directory| |Nul| |goodPoint| |setfirst!| |makeCos| |crushedSet| + |cAsech| |curryLeft| |checkForZero| |e04ycf| |entry| |rotatez| + |integralMatrixAtInfinity| |internalInfRittWu?| |mainPrimitivePart| + |nrows| |nextIrreduciblePoly| |normFactors| |components| + |rightExtendedGcd| |stFunc2| |pdf2ef| |selectPolynomials| |rur| + |quasiMonic?| |ncols| |denomRicDE| |certainlySubVariety?| |tanAn| + |useEisensteinCriterion| |currentCategoryFrame| |OMgetEndAttr| |fill!| + |prime?| |comment| |wordsForStrongGenerators| |nodes| + |principalAncestors| |maxPoints3D| |failed?| |removeZeroes| + |checkPrecision| |ReduceOrder| |factorSquareFreeByRecursion| |debug3D| + |oddInfiniteProduct| |buildSyntax| |whileLoop| |term?| |complexExpand| + |expt| |partialNumerators| |fractionPart| |push!| |parents| |color| + |unparse| |gcdPolynomial| |fortranTypeOf| |leftRankPolynomial| + |upperCase!| |stiffnessAndStabilityFactor| |box| + |inputOutputBinaryFile| |viewThetaDefault| |stripCommentsAndBlanks| + |iidsum| |prevPrime| |addiag| |rationalPoints| |prod| |flatten| + |solveLinearlyOverQ| |linearMatrix| |addPoint| |escape| |OMconnectTCP| + |rootBound| |pow| |d02ejf| |purelyAlgebraic?| |leadingBasisTerm| + |headReduced?| |concat| |internalSubPolSet?| |groebner| |setStatus| + |expintfldpoly| |orbit| |semiDiscriminantEuclidean| + |selectIntegrationRoutines| |top| |denomLODE| |cothIfCan| |endOfFile?| + |moduloP| |PollardSmallFactor| |OMgetString| |whatInfinity| + |minRowIndex| |basisOfLeftNucleus| |generalizedInverse| |child| + |expenseOfEvaluation| |linGenPos| |graphs| |cSec| |digamma| + |ramified?| |numberOfVariables| |permutation| |csc2sin| + |unitCanonical| |true| |squareFreePart| |characteristicSerie| + |makeViewport3D| |exprToUPS| |anfactor| |belong?| |setErrorBound| + |charthRoot| |iterationVar| |cap| |s20adf| |jacobiIdentity?| |lyndon?| + |aspFilename| |OMgetApp| |d01alf| |Hausdorff| |cSinh| |iicot| + |extension| |e02gaf| |rightDiscriminant| |expint| |charClass| + |optional?| |lists| |listOfLists| |e04mbf| |prefixRagits| + |processTemplate| |argument| |viewDefaults| |getButtonValue| + |compactFraction| |henselFact| |OMwrite| |quoByVar| |resultant| + |mapExponents| |trapezoidal| |conjug| |rewriteSetWithReduction| + |extractTop!| |outerProduct| |edf2df| |contains?| |vectorise| + |signature| |f01qdf| |leastMonomial| |LyndonBasis| |atom?| + |associative?| |flexibleArray| |varList| |clipBoolean| |d03eef| + |e02def| |variationOfParameters| |sts2stst| |tanintegrate| |byte| + |totalLex| |coerceP| |OMReadError?| |generalLambert| |credPol| + |points| |mapExpon| |getIdentifier| |perfectSqrt| |constantLeft| + |nary?| |transform| |Aleph| |pToHdmp| |rightUnits| |principal?| + |operator| |inverseColeman| |delete!| |rk4a| |delete| |s21bdf| + |sumOfKthPowerDivisors| |setEmpty!| |btwFact| |matrix| |c06ekf| + |shade| |genericPosition| |mainContent| |initiallyReduced?| |ipow| + |numerators| |d01apf| |vedf2vef| |composites| + |unrankImproperPartitions1| |shiftRight| |algDsolve| |host| |pile| + |accuracyIF| |setProperties| |KrullNumber| |minimize| |s19aaf| + |children| |optimize| |pushucoef| |position!| |removeRedundantFactors| + |zero| |f02axf| |latex| |packageCall| |power!| |OMUnknownCD?| + |setchildren!| |symbolIfCan| |llprop| |nextPrimitiveNormalPoly| + |squareFree| |associates?| |badValues| |lazyPseudoDivide| |reduction| + |And| |parametersOf| |viewSizeDefault| |bit?| |cscIfCan| |sequence| + |sdf2lst| |physicalLength!| |neglist| |critpOrder| |singRicDE| |Or| + |atanhIfCan| |finite?| |ridHack1| |digit?| |lfintegrate| |cond| + |atrapezoidal| |Not| |colorDef| |approximants| |generateIrredPoly| + |rewriteIdealWithQuasiMonicGenerators| |gcdcofactprim| + |probablyZeroDim?| |symmetric?| |primintfldpoly| |mainCoefficients| + |useNagFunctions| |bracket| |symmetricTensors| |OMgetEndObject| + |weighted| |plus| |resetBadValues| |orbits| |cyclicParents| + |rightCharacteristicPolynomial| |cfirst| |rightRegularRepresentation| + |plotPolar| |shallowCopy| |balancedFactorisation| |revert| + |discriminantEuclidean| |selectOptimizationRoutines| |conical| + |empty?| |getRef| |changeMeasure| |quotientByP| |cosh| + |integralDerivationMatrix| |integralBasisAtInfinity| |multinomial| + |computeInt| |log10| |gcdPrimitive| |mainSquareFreePart| LODO2FUN + |rotate| |tanh| |qqq| |cAcsch| |leftPower| |contours| |max| + |coth2trigh| |topFortranOutputStack| |fortranLiteralLine| |cAcosh| + |bitand| |rightMult| |e01baf| |coth| |times| |setColumn!| + |OMputSymbol| |e04ucf| |taylorIfCan| |isQuotient| |seriesToOutputForm| + |modifyPoint| |bitior| |changeBase| |setrest!| |f01bsf| |sech| + |rangeIsFinite| |var2Steps| |useEisensteinCriterion?| |medialSet| + |orOperands| |torsionIfCan| |ParCond| |fixedDivisor| |csch| |ode2| + |leftTraceMatrix| |squareFreePolynomial| |part?| |shiftLeft| |e01sff| + |schema| |initTable!| |expandLog| |asinh| |numberOfChildren| + |rational?| |compose| |genericLeftMinimalPolynomial| |frst| |elem?| + |outputArgs| |rightExactQuotient| |OMgetAttr| |infLex?| |acosh| + |monom| |bombieriNorm| |nextPrime| |evaluate| |stronglyReduce| + |rischNormalize| |dmpToP| |swap!| |resetVariableOrder| + |zeroDimPrimary?| |atanh| |errorKind| |lastSubResultantEuclidean| + |iiasech| |d02cjf| |height| |inrootof| |figureUnits| |head| |pop!| + |fglmIfCan| |acoth| |write!| |move| |groebnerFactorize| + |LyndonCoordinates| |cn| |factorials| |solid?| |f02bjf| |common| + |magnitude| |nsqfree| |asech| |rotatex| |asecIfCan| |wronskianMatrix| + |region| |homogeneous?| |over| |imagJ| |tree| |arity| + |completeEchelonBasis| |squareFreeLexTriangular| |e02ddf| |thenBranch| + |repSq| |simpleBounds?| |writable?| |declare| |multiple| |subPolSet?| + |stopTable!| |putGraph| |schwerpunkt| |choosemon| |untab| |debug| + |relativeApprox| |applyQuote| |normalizedDivide| |pureLex| |epilogue| + |rotate!| |subspace| |select!| |idealiser| |inGroundField?| D + |unrankImproperPartitions0| |octon| |fortranDoubleComplex| + |sumSquares| |d01anf| |quasiRegular?| |tail| |pomopo!| + |numberOfNormalPoly| |exprHasLogarithmicWeights| |hasPredicate?| + |nthFactor| |s17dcf| |listexp| |rk4f| |odd?| |addmod| |f01qcf| + |randomLC| |LiePolyIfCan| |symbolTable| |radicalOfLeftTraceForm| + |subResultantsChain| |graeffe| |ruleset| |SturmHabichtSequence| + |lowerCase| |infix| |isOp| |firstDenom| |secIfCan| |iitan| |sec2cos| + |generator| |tab1| |palgLODE| |phiCoord| |lazyIrreducibleFactors| + |getCurve| |blue| |pair?| |inHallBasis?| |cycleRagits| + |viewPhiDefault| |LagrangeInterpolation| |bernoulli| + |matrixDimensions| |simpson| |palgint| |superscript| |subst| + |basisOfNucleus| |pushNewContour| |recolor| + |genericRightMinimalPolynomial| |acosIfCan| |suchThat| Y + |goodnessOfFit| |internal?| |e02bcf| |mainDefiningPolynomial| + |pushFortranOutputStack| |localUnquote| |bitTruth| |semicolonSeparate| + |setLength!| |rischDEsys| |iisqrt2| |iiGamma| |colorFunction| + |hdmpToDmp| |derivationCoordinates| |edf2fi| |physicalLength| + |genericRightTraceForm| |internalLastSubResultant| |readUInt32!| + |polyRDE| |testDim| |lineColorDefault| |popFortranOutputStack| F + |csubst| |antiAssociative?| |tanhIfCan| |clip| |writeInt8!| + |constantToUnaryFunction| FG2F |stoseInvertibleSet| + |internalIntegrate| |print| |meshFun2Var| |definingInequation| |atoms| + |coercePreimagesImages| |dualSignature| |f2df| |subtractIfCan| + |mapBivariate| |setMinPoints| |resolve| |isPower| |outputAsFortran| + |square?| |primPartElseUnitCanonical!| |create3Space| + |transcendentalDecompose| |morphism| |setleft!| |setRealSteps| + |d03edf| |deref| |eigenvectors| |f02awf| |objects| |pointData| + |factorsOfCyclicGroupSize| |newReduc| |f07fef| |getBadValues| + |nullary?| |countRealRoots| |s18def| |rarrow| |base| + |monicDecomposeIfCan| |resetNew| |pointLists| |makeSeries| + |branchIfCan| |mapmult| |OMconnOutDevice| |hasSolution?| |setTex!| + |find| |positiveSolve| |gbasis| |name| |dihedral| RF2UTS + |unprotectedRemoveRedundantFactors| |subResultantGcd| |deepCopy| + |setLegalFortranSourceExtensions| |binomial| |inspect| |real?| + |datalist| |body| |possiblyInfinite?| |charpol| |padicallyExpand| + |kroneckerDelta| |normalize| |normalDenom| |simplifyExp| + |halfExtendedResultant2| |collectUnder| |factorset| + |subResultantGcdEuclidean| |collectQuasiMonic| |primlimintfrac| + |LowTriBddDenomInv| |digits| |lazyIntegrate| |cycle| |twoFactor| ** + |transcendenceDegree| |approxNthRoot| |laguerre| |logpart| |less?| + |stop| |semiResultantEuclidean2| |more?| |innerSolve| |ParCondList| ~ + |rootKerSimp| |insert| |d01gaf| |cos2sec| |badNum| |weierstrass| + |iiexp| |lfextendedint| |wreath| |quasiMonicPolynomials| + |numberOfIrreduciblePoly| |listOfMonoms| |c02aff| |modularGcd| + |extendIfCan| EQ |df2ef| |s19abf| |cLog| |setAdaptive3D| |open| + |condition| |allRootsOf| |denominators| |dmp2rfi| |edf2ef| + |lfinfieldint| |sturmSequence| |queue| |f02adf| |rk4| |precision| + |level| |port| |LazardQuotient2| |OMbindTCP| |imagI| |completeEval| + |rootOfIrreduciblePoly| |leftZero| |eq?| |musserTrials| + |expextendedint| |smith| |irreducibleFactor| |hitherPlane| |eq| + |trapezoidalo| |mapCoef| |OMputString| |associatedEquations| + |algebraicSort| |fmecg| |isobaric?| |besselI| |moebiusMu| |bfKeys| + |tryFunctionalDecomposition| |iter| |t| |f02aff| |ricDsolve| |shift| + |lprop| |iifact| |push| |discreteLog| |factorOfDegree| |previous| + |divergence| |bits| |euclideanNormalForm| |OMserve| |prinb| + |enumerate| |safeCeiling| |mainVariable| |stoseInvertible?sqfreg| + |multiplyExponents| |lieAlgebra?| |characteristicPolynomial| + |integer?| |toroidal| |viewPosDefault| |multiEuclideanTree| |sort!| + |oblateSpheroidal| |preprocess| |category| |wordInGenerators| + |pleskenSplit| |cosIfCan| |localReal?| |irreducibleFactors| |myDegree| + |s15aef| |negative?| |OMputEndObject| |property| |domain| |iroot| + |OMgetBind| |trim| |asimpson| |variable?| |makeFloatFunction| |airyAi| + |OMgetObject| |andOperands| |package| |s17aef| |rightRankPolynomial| + |s14aaf| |Lazard| |hue| |clearCache| |taylorQuoByVar| + |indicialEquation| |factorList| |s21bbf| |rectangularMatrix| |iiacot| + |pastel| |isAbsolutelyIrreducible?| |checkRur| |cPower| |printCode| + |hcrf| |mpsode| |numerator| |units| |roughBasicSet| |commaSeparate| + |clearTheSymbolTable| |exp| |explicitEntries?| |fractionFreeGauss!| + |arguments| |ocf2ocdf| |cAsec| |diagonalProduct| |integers| + |meshPar2Var| |supersub| |selectfirst| |elliptic| |quoted?| |d01asf| + |bernoulliB| |functionIsFracPolynomial?| |qPot| |mergeDifference| + |diagonalMatrix| |leaf?| |bumptab1| |quasiRegular| |findConstructor| + |numberOfCycles| |lifting1| |univariatePolynomialsGcds| |bfEntry| + |listRepresentation| |sinIfCan| |cyclotomicFactorization| |nodeOf?| + |doublyTransitive?| |separateDegrees| |output| |compile| |scripted?| + |any| |internalDecompose| |unexpand| |beauzamyBound| |adaptive| + |f01mcf| |linearPolynomials| |code| |rightMinimalPolynomial| + |firstSubsetGray| |modularFactor| |setButtonValue| |makeGraphImage| + |palgRDE| |factorPolynomial| |isList| |hasHi| |rightFactorCandidate| + |closedCurve| |insertMatch| |tab| |complexNormalize| |iFTable| + |gderiv| |stiffnessAndStabilityOfODEIF| |setPrologue!| |#| + |hostPlatform| |inverse| |alphanumeric?| |lexico| |errorInfo| |yellow| + |compBound| |constDsolve| |setCondition!| |janko2| |c06fqf| + |blankSeparate| |leftOne| |acotIfCan| |binaryFunction| + |numericalOptimization| |dom| |setleaves!| |adaptive?| |incrementBy| + |purelyAlgebraicLeadingMonomial?| |overset?| |prologue| |front| + |uniform| |modulus| |positive?| |normalDeriv| |entry?| |cartesian| + |iomode| |nextsubResultant2| |expand| |abs| |makeSin| |refine| + |primitiveElement| |baseRDE| |node| |iitanh| |outputFixed| + |coerceListOfPairs| |filterWhile| |monomial?| |lexTriangular| |d02gbf| + |makeFR| |addPoint2| |setAdaptive| |selectAndPolynomials| |dequeue| + |increasePrecision| |ranges| |filterUntil| |oneDimensionalArray| + |binomThmExpt| |computeCycleEntry| GF2FG |cSin| |setStatus!| + |associatorDependence| |bitCoef| |light| |select| |leastPower| + |f07fdf| |maxPoints| |resultantReduitEuclidean| |numericalIntegration| + |sub| |title| |dictionary| |movedPoints| |space| |options| |d02raf| + |sylvesterSequence| |s18dcf| |firstNumer| |c06gsf| |moduleSum| + |s17akf| |cRationalPower| |initials| |asechIfCan| |SturmHabicht| + |squareFreeFactors| |realSolve| |operation| |withPredicates| + |padicFraction| |pushup| |invertIfCan| |composite| |changeVar| + |htrigs| |primeFrobenius| |degreePartition| |e| |initial| + |coordinates| |karatsubaDivide| |reduceByQuasiMonic| |string| + |reducedQPowers| |degree| |OMgetEndBind| |dominantTerm| |in?| |e02bbf| + |makeVariable| |plusInfinity| |perfectNthRoot| |areEquivalent?| + |leastAffineMultiple| |fixedPoints| |ratDenom| |coefChoose| + |prolateSpheroidal| |upDateBranches| |iisech| |testModulus| |f04maf| + |minusInfinity| |makeRecord| |d01fcf| |pascalTriangle| |algebraicOf| + |selectNonFiniteRoutines| |groebner?| |largest| |OMgetError| + |rootDirectory| |antiCommutator| |dimension| |fibonacci| |setelt!| + |bipolarCylindrical| |tableau| |alternating| |iisqrt3| |iiacsc| + |hasoln| |or?| |f04atf| |increment| |makeViewport2D| |e02ahf| |length| + |palglimint| |pointSizeDefault| |createLowComplexityNormalBasis| + |alternatingGroup| |rootsOf| |OMopenString| |semiResultantEuclidean1| + |bandedHessian| |plenaryPower| |polyRicDE| |scripts| |notOperand| + |middle| |someBasis| |d01aqf| |f02abf| |denominator| |sup| |coerceL| + |readUInt16!| |bsolve| |explicitlyEmpty?| |unitsColorDefault| + |conjugate| |lazyResidueClass| |completeHermite| |recip| |setPoly| + |const| |leftGcd| |parametric?| |elColumn2!| |prepareDecompose| + |supDimElseRittWu?| |symbolTableOf| |separant| |OMencodingBinary| + |redPo| |equation| |type| |e02bef| |nthExponent| |numberOfComponents| + |ffactor| |back| |decimal| |rightQuotient| |lifting| |besselY| + |readUInt8!| |s18aef| |f02aef| |algebraic?| |rightOne| + |factorSquareFree| |width| |fillPascalTriangle| |nextItem| |leftUnit| + |leftFactor| |hex| |difference| |basisOfCentroid| |OMsend| + |cyclotomicDecomposition| |tryFunctionalDecomposition?| |modTree| + |headAst| |fixPredicate| |stoseLastSubResultant| |high| |sparsityIF| + |dihedralGroup| |float?| |list| |summation| |lazy?| + |toseLastSubResultant| |tanSum| |universe| |s15adf| + |extractSplittingLeaf| |pointColorPalette| |headRemainder| |geometric| + |coerceImages| |car| |init| |coHeight| |ef2edf| |exists?| + |nextSubsetGray| |slex| |jacobi| |leader| |iiatanh| |simpsono| + |stopTableInvSet!| |cdr| |drawToScale| |linearDependenceOverZ| |arg1| + |makeUnit| |setMaxPoints3D| |objectOf| |ODESolve| |aQuadratic| + |algintegrate| |setDifference| |s13adf| + |semiLastSubResultantEuclidean| |ldf2vmf| |mainVariables| |arg2| + |delta| |chineseRemainder| |iCompose| |getCode| |printTypes| |power| + |radicalRoots| |sturmVariationsOf| |toseSquareFreePart| + |clearTheIFTable| |whitePoint| |f02wef| |ode| |raisePolynomial| + |determinant| |deepestInitial| |selectODEIVPRoutines| |s19adf| + |tanh2trigh| |integerBound| |skewSFunction| |conditions| |optional| + |minus!| |hasTopPredicate?| |expPot| |hermiteH| |FormatArabic| + |supRittWu?| |generalizedContinuumHypothesisAssumed| |quote| + |writeBytes!| |conjugates| |match| |distribute| |contract| + |perspective| |lazyPrem| |result| |generators| |row| |singular?| + |diagonal| |divideIfCan!| |mightHaveRoots| |substring?| |comparison| + |even?| |outputMeasure| |makingStats?| |properties| |regime| + |stoseInvertible?reg| |alphanumeric| |logIfCan| |prinpolINFO| + |explimitedint| |noncommutativeJordanAlgebra?| |putColorInfo| + |nullary| |e01bhf| |translate| |mirror| |Gamma| |f04arf| + |RemainderList| |genericRightDiscriminant| |generic?| |suffix?| + |sin2csc| |integralBasis| |doubleComplex?| |isConnected?| + |uncouplingMatrices| |mindegTerm| |iiperm| |OMputError| + |extractBottom!| |e01sbf| |lambda| |mkcomm| |UP2ifCan| |pattern| + |padecf| |closedCurve?| |zeroSquareMatrix| |relationsIdeal| |ldf2lst| + |selectsecond| |numberOfHues| |red| |prefix?| |minrank| + |createRandomElement| |getMultiplicationMatrix| |youngGroup| + |roughEqualIdeals?| |isMult| |powmod| |mesh?| |root?| + |irreducibleRepresentation| |OMputFloat| |sumOfSquares| |ratpart| + |iicsc| |parent| |heapSort| SEGMENT |getProperties| + |degreeSubResultant| |tube| |mainExpression| |cycleElt| + |expressIdealMember| |fortranLinkerArgs| |dequeue!| |getZechTable| + |maxIndex| |viewDeltaYDefault| |exponential| |drawComplexVectorField| + |scale| |complexLimit| |subNode?| |c06ebf| |extractIndex| |message| + |rewriteIdealWithRemainder| |elements| |squareTop| |rroot| |e04dgf| + |exprToXXP| |changeName| |viewpoint| |linearAssociatedOrder| + |resultantnaif| |matrixGcd| |setMaxPoints| |e02adf| |mapSolve| + |removeSinhSq| |diagonals| |content| |unitVector| |iflist2Result| + |f01rcf| |quartic| |f01maf| |coefficient| |ptFunc| |chebyshevU| + |scalarTypeOf| |cSech| |getProperty| |parseString| |cycleEntry| + |setprevious!| |compound?| |getGoodPrime| |fixedPointExquo| |infix?| + |realElementary| |showTheRoutinesTable| |bothWays| |nullity| |s17dgf| + |interpret| |generalizedEigenvector| |mapdiv| |cyclicCopy| |basis| + |d02gaf| |mask| |unit| |psolve| |integralMatrix| |subQuasiComponent?| + |createNormalPrimitivePoly| |operators| |fracPart| |cAtanh| + |removeRedundantFactorsInContents| |atanIfCan| |basisOfCenter| + |binaryTournament| |surface| |replace| |laplace| |mantissa| + |partialDenominators| |close!| |cons| |setlast!| |clipWithRanges| + |rationalPower| |genericLeftDiscriminant| |curryRight| |factor1| + |compdegd| |OMputEndApp| |tanQ| |setScreenResolution3D| |e02ajf| + |retract| |OMputAtp| |removeSuperfluousCases| |error| |s17agf| + |writeByte!| |fTable| |f04mcf| |gradient| |overbar| |yCoordinates| + |vark| |f07aef| |aromberg| |OMsupportsSymbol?| |shufflein| |assert| + |exp1| |wholeRagits| |elementary| |status| |ratDsolve| |bright| + |tableForDiscreteLogarithm| |radicalEigenvector| + |factorSquareFreePolynomial| |bumprow| |insertTop!| |constant?| + |basisOfRightAnnihilator| |OMread| |makeYoungTableau| |mr| |implies| + |mapUnivariate| |trigs2explogs| |relerror| |firstUncouplingMatrix| + |normInvertible?| |remove!| |nonLinearPart| |lepol| |showAll?| + |vector| |option?| |sin?| |leaves| |signatureAst| |irreducible?| + |screenResolution| |repeatUntilLoop| |startTableGcd!| + |noLinearFactor?| |floor| |mkPrim| |stirling2| |optAttributes| + |represents| |quadraticNorm| |source| |erf| |getDatabase| NOT + |splitConstant| |OMputAttr| |getMatch| |cschIfCan| |outputAsTex| + |differentiate| |hypergeometric0F1| |LiePoly| |monomialIntPoly| + |fprindINFO| |intChoose| |bitLength| |categories| OR |totolex| + |s01eaf| |yCoord| ~= |lyndonIfCan| |cCosh| |totalDifferential| + |unaryFunction| |OMencodingUnknown| |monomRDE| |retractIfCan| + |resetAttributeButtons| AND |reindex| |subResultantChain| |c05nbf| + |coerce| |child?| |dilog| |identityMatrix| |OMgetVariable| |coshIfCan| + |null?| |typeList| |copies| |edf2efi| |computePowers| |numer| + |construct| |scanOneDimSubspaces| |getOperator| |radicalSolve| |df2mf| + |infieldint| |stosePrepareSubResAlgo| |SturmHabichtCoefficients| |sin| + |critM| |denom| |mix| |powers| |purelyTranscendental?| + |selectMultiDimensionalRoutines| |drawCurves| |internalIntegrate0| + |Si| |target| |removeRoughlyRedundantFactorsInPols| |deriv| |cos| + |maxRowIndex| |algebraicVariables| |decomposeFunc| |reduced?| + |BasicMethod| |prem| |OMlistSymbols| |constantCoefficientRicDE| + |splitDenominator| |tan| |laurentRep| |bandedJacobian| |pi| + |readLine!| |extendedEuclidean| |round| |primaryDecomp| |makeTerm| + |s20acf| |insertionSort!| |cot| |continue| |s17aff| |countable?| + |qinterval| |infinity| |alternative?| |nextPartition| |iicos| + |constantIfCan| |linears| |sec| |simplify| |extensionDegree| |d01akf| + |midpoints| |rightZero| |eigenvector| |OMputApp| |rspace| |wholeRadix| + |integralLastSubResultant| |csc| |goto| |leftLcm| |factorSFBRlcUnit| + |interReduce| |s18adf| |conditionsForIdempotents| |inc| |asin| + |userOrdered?| |numberOfPrimitivePoly| |kernel| |concat!| |stFunc1| + |chiSquare1| |pointPlot| |incrementKthElement| |tan2trig| |ravel| + |createLowComplexityTable| |solveLinearPolynomialEquation| |acos| + |map| |leftTrace| * |draw| |enterInCache| |separate| |ratPoly| + |finiteBasis| |exteriorDifferential| |graphState| + |brillhartIrreducible?| |singularitiesOf| |reshape| |atan| |palgLODE0| + |digit| |nextNormalPrimitivePoly| |has?| |trivialIdeal?| + |rootNormalize| |numberOfComposites| |nthCoef| |acot| + |interpretString| |palginfieldint| |dot| |setClipValue| |hexDigit?| + |f2st| |tracePowMod| |asec| |direction| |char| |getPickedPoints| + |iisec| |internalSubQuasiComponent?| |OMconnInDevice| |f04adf| + |controlPanel| |lllip| |printInfo| |algSplitSimple| + |sizePascalTriangle| |acsc| |mainMonomials| |minIndex| |f04mbf| + |makeObject| |setelt| |cCsc| |bezoutResultant| |linearAssociatedLog| + |OMputBVar| |dimensionOfIrreducibleRepresentation| |chebyshevT| |sinh| + |convert| |wordInStrongGenerators| |reify| |algebraicCoefficients?| + |setsubMatrix!| |expintegrate| |makeMulti| |primes| |update| + |minColIndex| |outputFloating| |outlineRender| |copy| |coef| + |multiplyCoefficients| |f01qef| |showClipRegion| |subCase?| + |taylorRep| |byteBuffer| |brillhartTrials| |minGbasis| |polygamma| + |toScale| |cyclicEntries| |applyRules| |cardinality| |float| + |enterPointData| |cCsch| |leftRecip| |complexEigenvalues| + |ramifiedAtInfinity?| |maxdeg| |generic| |f07adf| |var1Steps| + |inverseIntegralMatrix| |wholePart| |autoCoerce| + |rationalApproximation| |polCase| |shrinkable| |An| |autoReduced?| + |failed| |solveLinearPolynomialEquationByFractions| |c05adf| |d01ajf| + |removeConstantTerm| |lieAdmissible?| |OMputEndBind| |cAcoth| + |typeLists| |linearlyDependentOverZ?| |match?| |position| |key?| + |besselJ| |pseudoRemainder| |exponential1| |binary| + |integralCoordinates| |critBonD| |stirling1| |imports| |triangular?| + |tubePoints| |clearTheFTable| |deleteProperty!| |changeNameToObjf| + |pmintegrate| |bivariatePolynomials| |prindINFO| |rightGcd| |plus!| + |numberOfOperations| |fractRagits| |kovacic| |iidprod| + |standardBasisOfCyclicSubmodule| |cubic| |startPolynomial| + |eisensteinIrreducible?| |semiDegreeSubResultantEuclidean| |rst| |po| + |just| |freeOf?| |explogs2trigs| |makeSUP| |currentScope| |insert!| + |resize| |linearPart| |contractSolve| |powerSum| |simplifyPower| + |countRealRootsMultiple| |empty| |dflist| |module| |comp| |e02dcf| + |sechIfCan| GE |viewDeltaXDefault| |crest| |lhs| |listYoungTableaus| + |rewriteSetByReducingWithParticularGenerators| |setnext!| |rombergo| + |zeroDimPrime?| |partialFraction| |flexible?| GT |multisect| + |jacobian| |cycleSplit!| |rhs| |generalInfiniteProduct| |diff| + |singleFactorBound| |pack!| |differentialVariables| |root| |next| + |size?| LE |groebgen| |mvar| |redmat| |rename| |euler| |mainMonomial| + |hdmpToP| |bubbleSort!| |integralAtInfinity?| LT |randomR| |create| + |removeRoughlyRedundantFactorsInPol| |solve| |constantRight| + |sinhIfCan| |removeDuplicates!| |csch2sinh| |rightTraceMatrix| + |exprHasAlgebraicWeight| |coefficients| |ord| |implies?| |Ci| + |permutationGroup| |createMultiplicationTable| |lfunc| |log| + |solveRetract| |mainKernel| |pdct| |mergeFactors| |unit?| + |OMgetEndError| |possiblyNewVariety?| |virtualDegree| |Frobenius| + |submod| |intersect| |stronglyReduced?| |unknown| |node?| |pol| + |basisOfRightNucloid| |expenseOfEvaluationIF| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| + |canonical| |noetherian| |central| |partiallyOrderedSet| + |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| + |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| + |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| + |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index a829a7bf..ccb3c21c 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5287 +1,5295 @@ -(3183556 . 3442118626) -((-1876 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1874 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4194 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-1220 (-544)) |#2|) 34)) (-2416 (($ $) 59)) (-4249 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3823 (((-544) (-1 (-112) |#2|) $) 22) (((-544) |#2| $) NIL) (((-544) |#2| $ (-544)) 73)) (-2096 (((-635 |#2|) $) 13)) (-3917 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-2100 (($ (-1 |#2| |#2|) $) 29)) (-4365 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2421 (($ |#2| $ (-544)) NIL) (($ $ $ (-544)) 50)) (-1425 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2098 (((-112) (-1 (-112) |#2|) $) 21)) (-4206 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-544)) NIL) (($ $ (-1220 (-544))) 49)) (-2422 (($ $ (-544)) 56) (($ $ (-1220 (-544))) 55)) (-2097 (((-765) (-1 (-112) |#2|) $) 26) (((-765) |#2| $) NIL)) (-1875 (($ $ $ (-544)) 52)) (-3804 (($ $) 51)) (-3929 (($ (-635 |#2|)) 53)) (-4208 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-635 $)) 62)) (-4353 (((-857) $) 69)) (-2099 (((-112) (-1 (-112) |#2|) $) 20)) (-3437 (((-112) $ $) 72)) (-3067 (((-112) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1875 (|#1| |#1| |#1| (-544))) (-15 -1876 ((-112) |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4194 (|#2| |#1| (-1220 (-544)) |#2|)) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4194 (|#2| |#1| (-544) |#2|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2096 ((-635 |#2|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3804 (|#1| |#1|))) (-19 |#2|) (-1204)) (T -18)) +(3194540 . 3442535968) +((-1399 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-3381 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4200 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-1223 (-562)) |#2|) 34)) (-2447 (($ $) 59)) (-1955 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-4264 (((-562) (-1 (-112) |#2|) $) 22) (((-562) |#2| $) NIL) (((-562) |#2| $ (-562)) 73)) (-1720 (((-639 |#2|) $) 13)) (-1610 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-1490 (($ (-1 |#2| |#2|) $) 29)) (-4152 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3297 (($ |#2| $ (-562)) NIL) (($ $ $ (-562)) 50)) (-3251 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-1763 (((-112) (-1 (-112) |#2|) $) 21)) (-2343 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-562)) NIL) (($ $ (-1223 (-562))) 49)) (-2880 (($ $ (-562)) 56) (($ $ (-1223 (-562))) 55)) (-1723 (((-766) (-1 (-112) |#2|) $) 26) (((-766) |#2| $) NIL)) (-1853 (($ $ $ (-562)) 52)) (-4220 (($ $) 51)) (-4066 (($ (-639 |#2|)) 53)) (-2767 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-639 $)) 62)) (-4054 (((-857) $) 69)) (-1744 (((-112) (-1 (-112) |#2|) $) 20)) (-1731 (((-112) $ $) 72)) (-1759 (((-112) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -1731 ((-112) |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1759 ((-112) |#1| |#1|)) (-15 -3381 (|#1| |#1|)) (-15 -3381 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -1853 (|#1| |#1| |#1| (-562))) (-15 -1399 ((-112) |#1|)) (-15 -1610 (|#1| |#1| |#1|)) (-15 -4264 ((-562) |#2| |#1| (-562))) (-15 -4264 ((-562) |#2| |#1|)) (-15 -4264 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -1399 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1610 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4200 (|#2| |#1| (-1223 (-562)) |#2|)) (-15 -3297 (|#1| |#1| |#1| (-562))) (-15 -3297 (|#1| |#2| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -4066 (|#1| (-639 |#2|))) (-15 -3251 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -4200 (|#2| |#1| (-562) |#2|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1720 ((-639 |#2|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1490 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4220 (|#1| |#1|))) (-19 |#2|) (-1207)) (T -18)) NIL -(-10 -8 (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1875 (|#1| |#1| |#1| (-544))) (-15 -1876 ((-112) |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4194 (|#2| |#1| (-1220 (-544)) |#2|)) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4194 (|#2| |#1| (-544) |#2|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2096 ((-635 |#2|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3804 (|#1| |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-3823 (((-544) (-1 (-112) |#1|) $) 97) (((-544) |#1| $) 96 (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) 95 (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 83 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 85 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 82 (|has| |#1| (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-19 |#1|) (-139) (-1204)) (T -19)) +(-10 -8 (-15 -1731 ((-112) |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1759 ((-112) |#1| |#1|)) (-15 -3381 (|#1| |#1|)) (-15 -3381 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -1853 (|#1| |#1| |#1| (-562))) (-15 -1399 ((-112) |#1|)) (-15 -1610 (|#1| |#1| |#1|)) (-15 -4264 ((-562) |#2| |#1| (-562))) (-15 -4264 ((-562) |#2| |#1|)) (-15 -4264 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -1399 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1610 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4200 (|#2| |#1| (-1223 (-562)) |#2|)) (-15 -3297 (|#1| |#1| |#1| (-562))) (-15 -3297 (|#1| |#2| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -4066 (|#1| (-639 |#2|))) (-15 -3251 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -4200 (|#2| |#1| (-562) |#2|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1720 ((-639 |#2|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1490 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4220 (|#1| |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3052 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4403))) (($ $) 88 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4403))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-2447 (($ $) 90 (|has| $ (-6 -4403)))) (-2677 (($ $) 100)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 51)) (-4264 (((-562) (-1 (-112) |#1|) $) 97) (((-562) |#1| $) 96 (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) 95 (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-1458 (($ (-766) |#1|) 69)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-2093 (((-639 (-562)) $) 46)) (-1570 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2716 (($ $ |#1|) 41 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1853 (($ $ $ (-562)) 91 (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) 84 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 83 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 85 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 82 (|has| |#1| (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-19 |#1|) (-139) (-1207)) (T -19)) NIL -(-13 (-371 |t#1|) (-10 -7 (-6 -4401))) -(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-371 |#1|) . T) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1204) . T)) -((-1391 (((-3 $ "failed") $ $) 12)) (-4244 (($ $) NIL) (($ $ $) 9)) (* (($ (-912) $) NIL) (($ (-765) $) 16) (($ (-544) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -1391 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-21)) (T -20)) +(-13 (-372 |t#1|) (-10 -7 (-6 -4403))) +(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-372 |#1|) . T) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1207) . T)) +((-3214 (((-3 $ "failed") $ $) 12)) (-1848 (($ $) NIL) (($ $ $) 9)) (* (($ (-916) $) NIL) (($ (-766) $) 16) (($ (-562) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -3214 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -1391 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20))) +(-10 -8 (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -3214 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20))) (((-21) (-139)) (T -21)) -((-4244 (*1 *1 *1) (-4 *1 (-21))) (-4244 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-544))))) -(-13 (-130) (-10 -8 (-15 -4244 ($ $)) (-15 -4244 ($ $ $)) (-15 * ($ (-544) $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-3589 (((-112) $) 10)) (-4131 (($) 15)) (* (($ (-912) $) 14) (($ (-765) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 -4131 (|#1|)) (-15 * (|#1| (-912) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 -4131 (|#1|)) (-15 * (|#1| (-912) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15))) +((-1848 (*1 *1 *1) (-4 *1 (-21))) (-1848 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-562))))) +(-13 (-130) (-10 -8 (-15 -1848 ($ $)) (-15 -1848 ($ $ $)) (-15 * ($ (-562) $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-1952 (((-112) $) 10)) (-1800 (($) 15)) (* (($ (-916) $) 14) (($ (-766) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-766) |#1|)) (-15 -1952 ((-112) |#1|)) (-15 -1800 (|#1|)) (-15 * (|#1| (-916) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-766) |#1|)) (-15 -1952 ((-112) |#1|)) (-15 -1800 (|#1|)) (-15 * (|#1| (-916) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15))) (((-23) (-139)) (T -23)) -((-3040 (*1 *1) (-4 *1 (-23))) (-4131 (*1 *1) (-4 *1 (-23))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-765))))) -(-13 (-25) (-10 -8 (-15 (-3040) ($) -4359) (-15 -4131 ($) -4359) (-15 -3589 ((-112) $)) (-15 * ($ (-765) $)))) -(((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((* (($ (-912) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-912) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-912) |#1|))) -((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13))) +((-2286 (*1 *1) (-4 *1 (-23))) (-1800 (*1 *1) (-4 *1 (-23))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-766))))) +(-13 (-25) (-10 -8 (-15 (-2286) ($) -1497) (-15 -1800 ($) -1497) (-15 -1952 ((-112) $)) (-15 * ($ (-766) $)))) +(((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((* (($ (-916) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-916) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-916) |#1|))) +((-4041 (((-112) $ $) 7)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13))) (((-25) (-139)) (T -25)) -((-4246 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-912))))) -(-13 (-1091) (-10 -8 (-15 -4246 ($ $ $)) (-15 * ($ (-912) $)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-1695 (((-635 $) (-939 $)) 29) (((-635 $) (-1160 $)) 16) (((-635 $) (-1160 $) (-1166)) 20)) (-1287 (($ (-939 $)) 27) (($ (-1160 $)) 11) (($ (-1160 $) (-1166)) 54)) (-1288 (((-635 $) (-939 $)) 30) (((-635 $) (-1160 $)) 18) (((-635 $) (-1160 $) (-1166)) 19)) (-3584 (($ (-939 $)) 28) (($ (-1160 $)) 13) (($ (-1160 $) (-1166)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1695 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1695 ((-635 |#1|) (-1160 |#1|))) (-15 -1695 ((-635 |#1|) (-939 |#1|))) (-15 -1287 (|#1| (-1160 |#1|) (-1166))) (-15 -1287 (|#1| (-1160 |#1|))) (-15 -1287 (|#1| (-939 |#1|))) (-15 -1288 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1288 ((-635 |#1|) (-1160 |#1|))) (-15 -1288 ((-635 |#1|) (-939 |#1|))) (-15 -3584 (|#1| (-1160 |#1|) (-1166))) (-15 -3584 (|#1| (-1160 |#1|))) (-15 -3584 (|#1| (-939 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1695 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1695 ((-635 |#1|) (-1160 |#1|))) (-15 -1695 ((-635 |#1|) (-939 |#1|))) (-15 -1287 (|#1| (-1160 |#1|) (-1166))) (-15 -1287 (|#1| (-1160 |#1|))) (-15 -1287 (|#1| (-939 |#1|))) (-15 -1288 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1288 ((-635 |#1|) (-1160 |#1|))) (-15 -1288 ((-635 |#1|) (-939 |#1|))) (-15 -3584 (|#1| (-1160 |#1|) (-1166))) (-15 -3584 (|#1| (-1160 |#1|))) (-15 -3584 (|#1| (-939 |#1|)))) -((-2947 (((-112) $ $) 7)) (-1695 (((-635 $) (-939 $)) 81) (((-635 $) (-1160 $)) 80) (((-635 $) (-1160 $) (-1166)) 79)) (-1287 (($ (-939 $)) 84) (($ (-1160 $)) 83) (($ (-1160 $) (-1166)) 82)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3420 (($ $) 93)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-1288 (((-635 $) (-939 $)) 87) (((-635 $) (-1160 $)) 86) (((-635 $) (-1160 $) (-1166)) 85)) (-3584 (($ (-939 $)) 90) (($ (-1160 $)) 89) (($ (-1160 $) (-1166)) 88)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 92)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70) (($ $ (-406 (-544))) 91)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68))) +((-1835 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-916))))) +(-13 (-1092) (-10 -8 (-15 -1835 ($ $ $)) (-15 * ($ (-916) $)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-1404 (((-639 $) (-947 $)) 29) (((-639 $) (-1164 $)) 16) (((-639 $) (-1164 $) (-1168)) 20)) (-1821 (($ (-947 $)) 27) (($ (-1164 $)) 11) (($ (-1164 $) (-1168)) 54)) (-3646 (((-639 $) (-947 $)) 30) (((-639 $) (-1164 $)) 18) (((-639 $) (-1164 $) (-1168)) 19)) (-1502 (($ (-947 $)) 28) (($ (-1164 $)) 13) (($ (-1164 $) (-1168)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1404 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1404 ((-639 |#1|) (-1164 |#1|))) (-15 -1404 ((-639 |#1|) (-947 |#1|))) (-15 -1821 (|#1| (-1164 |#1|) (-1168))) (-15 -1821 (|#1| (-1164 |#1|))) (-15 -1821 (|#1| (-947 |#1|))) (-15 -3646 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -3646 ((-639 |#1|) (-1164 |#1|))) (-15 -3646 ((-639 |#1|) (-947 |#1|))) (-15 -1502 (|#1| (-1164 |#1|) (-1168))) (-15 -1502 (|#1| (-1164 |#1|))) (-15 -1502 (|#1| (-947 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1404 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1404 ((-639 |#1|) (-1164 |#1|))) (-15 -1404 ((-639 |#1|) (-947 |#1|))) (-15 -1821 (|#1| (-1164 |#1|) (-1168))) (-15 -1821 (|#1| (-1164 |#1|))) (-15 -1821 (|#1| (-947 |#1|))) (-15 -3646 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -3646 ((-639 |#1|) (-1164 |#1|))) (-15 -3646 ((-639 |#1|) (-947 |#1|))) (-15 -1502 (|#1| (-1164 |#1|) (-1168))) (-15 -1502 (|#1| (-1164 |#1|))) (-15 -1502 (|#1| (-947 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1404 (((-639 $) (-947 $)) 81) (((-639 $) (-1164 $)) 80) (((-639 $) (-1164 $) (-1168)) 79)) (-1821 (($ (-947 $)) 84) (($ (-1164 $)) 83) (($ (-1164 $) (-1168)) 82)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-1643 (($ $) 93)) (-2569 (((-112) $ $) 60)) (-1800 (($) 17 T CONST)) (-3646 (((-639 $) (-947 $)) 87) (((-639 $) (-1164 $)) 86) (((-639 $) (-1164 $) (-1168)) 85)) (-1502 (($ (-947 $)) 90) (($ (-1164 $)) 89) (($ (-1164 $) (-1168)) 88)) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-2717 (((-112) $) 72)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 92)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 75)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ $) 66)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70) (($ $ (-406 (-562))) 91)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) (((-27) (-139)) (T -27)) -((-3584 (*1 *1 *2) (-12 (-5 *2 (-939 *1)) (-4 *1 (-27)))) (-3584 (*1 *1 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-27)))) (-3584 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1288 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1287 (*1 *1 *2) (-12 (-5 *2 (-939 *1)) (-4 *1 (-27)))) (-1287 (*1 *1 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-27)))) (-1287 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) (-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-635 *1))))) -(-13 (-362) (-995) (-10 -8 (-15 -3584 ($ (-939 $))) (-15 -3584 ($ (-1160 $))) (-15 -3584 ($ (-1160 $) (-1166))) (-15 -1288 ((-635 $) (-939 $))) (-15 -1288 ((-635 $) (-1160 $))) (-15 -1288 ((-635 $) (-1160 $) (-1166))) (-15 -1287 ($ (-939 $))) (-15 -1287 ($ (-1160 $))) (-15 -1287 ($ (-1160 $) (-1166))) (-15 -1695 ((-635 $) (-939 $))) (-15 -1695 ((-635 $) (-1160 $))) (-15 -1695 ((-635 $) (-1160 $) (-1166))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-995) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T)) -((-1695 (((-635 $) (-939 $)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-1160 $) (-1166)) 50) (((-635 $) $) 19) (((-635 $) $ (-1166)) 41)) (-1287 (($ (-939 $)) NIL) (($ (-1160 $)) NIL) (($ (-1160 $) (-1166)) 52) (($ $) 17) (($ $ (-1166)) 37)) (-1288 (((-635 $) (-939 $)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-1160 $) (-1166)) 48) (((-635 $) $) 15) (((-635 $) $ (-1166)) 43)) (-3584 (($ (-939 $)) NIL) (($ (-1160 $)) NIL) (($ (-1160 $) (-1166)) NIL) (($ $) 12) (($ $ (-1166)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1695 ((-635 |#1|) |#1| (-1166))) (-15 -1287 (|#1| |#1| (-1166))) (-15 -1695 ((-635 |#1|) |#1|)) (-15 -1287 (|#1| |#1|)) (-15 -1288 ((-635 |#1|) |#1| (-1166))) (-15 -3584 (|#1| |#1| (-1166))) (-15 -1288 ((-635 |#1|) |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -1695 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1695 ((-635 |#1|) (-1160 |#1|))) (-15 -1695 ((-635 |#1|) (-939 |#1|))) (-15 -1287 (|#1| (-1160 |#1|) (-1166))) (-15 -1287 (|#1| (-1160 |#1|))) (-15 -1287 (|#1| (-939 |#1|))) (-15 -1288 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1288 ((-635 |#1|) (-1160 |#1|))) (-15 -1288 ((-635 |#1|) (-939 |#1|))) (-15 -3584 (|#1| (-1160 |#1|) (-1166))) (-15 -3584 (|#1| (-1160 |#1|))) (-15 -3584 (|#1| (-939 |#1|)))) (-29 |#2|) (-13 (-844) (-554))) (T -28)) -NIL -(-10 -8 (-15 -1695 ((-635 |#1|) |#1| (-1166))) (-15 -1287 (|#1| |#1| (-1166))) (-15 -1695 ((-635 |#1|) |#1|)) (-15 -1287 (|#1| |#1|)) (-15 -1288 ((-635 |#1|) |#1| (-1166))) (-15 -3584 (|#1| |#1| (-1166))) (-15 -1288 ((-635 |#1|) |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -1695 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1695 ((-635 |#1|) (-1160 |#1|))) (-15 -1695 ((-635 |#1|) (-939 |#1|))) (-15 -1287 (|#1| (-1160 |#1|) (-1166))) (-15 -1287 (|#1| (-1160 |#1|))) (-15 -1287 (|#1| (-939 |#1|))) (-15 -1288 ((-635 |#1|) (-1160 |#1|) (-1166))) (-15 -1288 ((-635 |#1|) (-1160 |#1|))) (-15 -1288 ((-635 |#1|) (-939 |#1|))) (-15 -3584 (|#1| (-1160 |#1|) (-1166))) (-15 -3584 (|#1| (-1160 |#1|))) (-15 -3584 (|#1| (-939 |#1|)))) -((-2947 (((-112) $ $) 7)) (-1695 (((-635 $) (-939 $)) 81) (((-635 $) (-1160 $)) 80) (((-635 $) (-1160 $) (-1166)) 79) (((-635 $) $) 125) (((-635 $) $ (-1166)) 123)) (-1287 (($ (-939 $)) 84) (($ (-1160 $)) 83) (($ (-1160 $) (-1166)) 82) (($ $) 126) (($ $ (-1166)) 124)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1166)) $) 200)) (-3469 (((-406 (-1160 $)) $ (-606 $)) 232 (|has| |#1| (-554)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1688 (((-635 (-606 $)) $) 163)) (-1391 (((-3 $ "failed") $ $) 19)) (-1692 (($ $ (-635 (-606 $)) (-635 $)) 153) (($ $ (-635 (-292 $))) 152) (($ $ (-292 $)) 151)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3420 (($ $) 93)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-1288 (((-635 $) (-939 $)) 87) (((-635 $) (-1160 $)) 86) (((-635 $) (-1160 $) (-1166)) 85) (((-635 $) $) 129) (((-635 $) $ (-1166)) 127)) (-3584 (($ (-939 $)) 90) (($ (-1160 $)) 89) (($ (-1160 $) (-1166)) 88) (($ $) 130) (($ $ (-1166)) 128)) (-3558 (((-3 (-939 |#1|) #1="failed") $) 250 (|has| |#1| (-1042))) (((-3 (-406 (-939 |#1|)) #1#) $) 234 (|has| |#1| (-554))) (((-3 |#1| #1#) $) 196) (((-3 (-544) #1#) $) 193 (|has| |#1| (-1031 (-544)))) (((-3 (-1166) #1#) $) 187) (((-3 (-606 $) #1#) $) 138) (((-3 (-406 (-544)) #1#) $) 121 (-3936 (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544))))))) (-3557 (((-939 |#1|) $) 249 (|has| |#1| (-1042))) (((-406 (-939 |#1|)) $) 233 (|has| |#1| (-554))) ((|#1| $) 195) (((-544) $) 194 (|has| |#1| (-1031 (-544)))) (((-1166) $) 186) (((-606 $) $) 137) (((-406 (-544)) $) 122 (-3936 (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544))))))) (-2943 (($ $ $) 56)) (-2401 (((-682 |#1|) (-682 $)) 240 (|has| |#1| (-1042))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 239 (|has| |#1| (-1042))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 120 (-3936 (-3240 (|has| |#1| (-1042)) (|has| |#1| (-634 (-544)))) (-3240 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (((-682 (-544)) (-682 $)) 119 (-3936 (-3240 (|has| |#1| (-1042)) (|has| |#1| (-634 (-544)))) (-3240 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 192 (|has| |#1| (-879 (-377)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 191 (|has| |#1| (-879 (-544))))) (-2952 (($ (-635 $)) 157) (($ $) 156)) (-1687 (((-635 (-113)) $) 164)) (-3430 (((-113) (-113)) 165)) (-2545 (((-112) $) 31)) (-3055 (((-112) $) 185 (|has| $ (-1031 (-544))))) (-3379 (($ $) 217 (|has| |#1| (-1042)))) (-3381 (((-1115 |#1| (-606 $)) $) 216 (|has| |#1| (-1042)))) (-3394 (($ $ (-544)) 92)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 53)) (-1685 (((-1160 $) (-606 $)) 182 (|has| $ (-1042)))) (-2913 (($ $ $) 136)) (-3242 (($ $ $) 135)) (-4365 (($ (-1 $ $) (-606 $)) 171)) (-1690 (((-3 (-606 $) "failed") $) 161)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-1689 (((-635 (-606 $)) $) 162)) (-2356 (($ (-113) (-635 $)) 170) (($ (-113) $) 169)) (-3205 (((-3 (-635 $) #3="failed") $) 211 (|has| |#1| (-1102)))) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) #3#) $) 220 (|has| |#1| (-1042)))) (-3204 (((-3 (-635 $) #3#) $) 213 (|has| |#1| (-25)))) (-1941 (((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) #3#) $) 214 (|has| |#1| (-25)))) (-3206 (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $ (-1166)) 219 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $ (-113)) 218 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $) 212 (|has| |#1| (-1102)))) (-3013 (((-112) $ (-1166)) 168) (((-112) $ (-113)) 167)) (-2779 (($ $) 71)) (-2982 (((-765) $) 160)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 198)) (-1943 ((|#1| $) 199)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1686 (((-112) $ (-1166)) 173) (((-112) $ $) 172)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-3056 (((-112) $) 184 (|has| $ (-1031 (-544))))) (-4174 (($ $ (-1166) (-765) (-1 $ $)) 224 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-635 $))) 223 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $)))) 222 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $))) 221 (|has| |#1| (-1042))) (($ $ (-635 (-113)) (-635 $) (-1166)) 210 (|has| |#1| (-609 (-533)))) (($ $ (-113) $ (-1166)) 209 (|has| |#1| (-609 (-533)))) (($ $) 208 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166))) 207 (|has| |#1| (-609 (-533)))) (($ $ (-1166)) 206 (|has| |#1| (-609 (-533)))) (($ $ (-113) (-1 $ $)) 181) (($ $ (-113) (-1 $ (-635 $))) 180) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) 179) (($ $ (-635 (-113)) (-635 (-1 $ $))) 178) (($ $ (-1166) (-1 $ $)) 177) (($ $ (-1166) (-1 $ (-635 $))) 176) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) 175) (($ $ (-635 (-1166)) (-635 (-1 $ $))) 174) (($ $ (-635 $) (-635 $)) 145) (($ $ $ $) 144) (($ $ (-292 $)) 143) (($ $ (-635 (-292 $))) 142) (($ $ (-635 (-606 $)) (-635 $)) 141) (($ $ (-606 $) $) 140)) (-1732 (((-765) $) 59)) (-4206 (($ (-113) (-635 $)) 150) (($ (-113) $ $ $ $) 149) (($ (-113) $ $ $) 148) (($ (-113) $ $) 147) (($ (-113) $) 146)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1691 (($ $ $) 159) (($ $) 158)) (-4217 (($ $ (-1166)) 248 (|has| |#1| (-1042))) (($ $ (-635 (-1166))) 247 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 246 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) 245 (|has| |#1| (-1042)))) (-3378 (($ $) 227 (|has| |#1| (-554)))) (-3380 (((-1115 |#1| (-606 $)) $) 226 (|has| |#1| (-554)))) (-3586 (($ $) 183 (|has| $ (-1042)))) (-4377 (((-533) $) 254 (|has| |#1| (-609 (-533)))) (($ (-404 $)) 225 (|has| |#1| (-554))) (((-883 (-377)) $) 190 (|has| |#1| (-609 (-883 (-377))))) (((-883 (-544)) $) 189 (|has| |#1| (-609 (-883 (-544)))))) (-3392 (($ $ $) 253 (|has| |#1| (-471)))) (-2729 (($ $ $) 252 (|has| |#1| (-471)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ (-939 |#1|)) 251 (|has| |#1| (-1042))) (($ (-406 (-939 |#1|))) 235 (|has| |#1| (-554))) (($ (-406 (-939 (-406 |#1|)))) 231 (|has| |#1| (-554))) (($ (-939 (-406 |#1|))) 230 (|has| |#1| (-554))) (($ (-406 |#1|)) 229 (|has| |#1| (-554))) (($ (-1115 |#1| (-606 $))) 215 (|has| |#1| (-1042))) (($ |#1|) 197) (($ (-1166)) 188) (($ (-606 $)) 139)) (-3084 (((-3 $ "failed") $) 238 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-2969 (($ (-635 $)) 155) (($ $) 154)) (-2377 (((-112) (-113)) 166)) (-2212 (((-112) $ $) 40)) (-1942 (($ (-1166) (-635 $)) 205) (($ (-1166) $ $ $ $) 204) (($ (-1166) $ $ $) 203) (($ (-1166) $ $) 202) (($ (-1166) $) 201)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1166)) 244 (|has| |#1| (-1042))) (($ $ (-635 (-1166))) 243 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 242 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) 241 (|has| |#1| (-1042)))) (-2945 (((-112) $ $) 133)) (-2946 (((-112) $ $) 132)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 134)) (-3067 (((-112) $ $) 131)) (-4356 (($ $ $) 66) (($ (-1115 |#1| (-606 $)) (-1115 |#1| (-606 $))) 228 (|has| |#1| (-554)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70) (($ $ (-406 (-544))) 91)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-171))) (($ |#1| $) 236 (|has| |#1| (-171))))) -(((-29 |#1|) (-139) (-13 (-844) (-554))) (T -29)) -((-3584 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-554))))) (-1288 (*1 *2 *1) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-554))))) (-1288 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *4)))) (-1287 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-554))))) (-1695 (*1 *2 *1) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))) (-1287 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-554))))) (-1695 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-420 |t#1|) (-10 -8 (-15 -3584 ($ $)) (-15 -1288 ((-635 $) $)) (-15 -3584 ($ $ (-1166))) (-15 -1288 ((-635 $) $ (-1166))) (-15 -1287 ($ $)) (-15 -1695 ((-635 $) $)) (-15 -1287 ($ $ (-1166))) (-15 -1695 ((-635 $) $ (-1166))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) . T) ((-611 #2=(-406 (-939 |#1|))) |has| |#1| (-554)) ((-611 (-544)) . T) ((-611 #3=(-606 $)) . T) ((-611 #4=(-939 |#1|)) |has| |#1| (-1042)) ((-611 #5=(-1166)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544)))) ((-242) . T) ((-289) . T) ((-306) . T) ((-308 $) . T) ((-297) . T) ((-362) . T) ((-376 |#1|) |has| |#1| (-1042)) ((-399 |#1|) . T) ((-411 |#1|) . T) ((-420 |#1|) . T) ((-450) . T) ((-471) |has| |#1| (-471)) ((-512 (-606 $) $) . T) ((-512 $ $) . T) ((-554) . T) ((-641 #1#) . T) ((-641 |#1|) |has| |#1| (-171)) ((-641 $) . T) ((-634 (-544)) -12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) ((-634 |#1|) |has| |#1| (-1042)) ((-711 #1#) . T) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-893 (-1166)) |has| |#1| (-1042)) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-877 |#1|) . T) ((-914) . T) ((-995) . T) ((-1031 (-406 (-544))) -3936 (|has| |#1| (-1031 (-406 (-544)))) (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) ((-1031 #2#) |has| |#1| (-554)) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 #3#) . T) ((-1031 #4#) |has| |#1| (-1042)) ((-1031 #5#) . T) ((-1031 |#1|) . T) ((-1048 #1#) . T) ((-1048 |#1|) |has| |#1| (-171)) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1204) . T) ((-1209) . T)) -((-3279 (((-1079 (-224)) $) NIL)) (-3280 (((-1079 (-224)) $) NIL)) (-3519 (($ $ (-224)) 125)) (-1289 (($ (-939 (-544)) (-1166) (-1166) (-1079 (-406 (-544))) (-1079 (-406 (-544)))) 82)) (-3281 (((-635 (-635 (-936 (-224)))) $) 137)) (-4353 (((-857) $) 149))) -(((-30) (-13 (-948) (-10 -8 (-15 -1289 ($ (-939 (-544)) (-1166) (-1166) (-1079 (-406 (-544))) (-1079 (-406 (-544))))) (-15 -3519 ($ $ (-224)))))) (T -30)) -((-1289 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-939 (-544))) (-5 *3 (-1166)) (-5 *4 (-1079 (-406 (-544)))) (-5 *1 (-30)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30))))) -(-13 (-948) (-10 -8 (-15 -1289 ($ (-939 (-544)) (-1166) (-1166) (-1079 (-406 (-544))) (-1079 (-406 (-544))))) (-15 -3519 ($ $ (-224))))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 11)) (-3076 (((-1125) $) 9)) (-3437 (((-112) $ $) NIL))) -(((-31) (-13 (-1073) (-10 -8 (-15 -3076 ((-1125) $)) (-15 -3634 ((-1125) $))))) (T -31)) -((-3076 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31))))) -(-13 (-1073) (-10 -8 (-15 -3076 ((-1125) $)) (-15 -3634 ((-1125) $)))) -((-3584 ((|#2| (-1160 |#2|) (-1166)) 43)) (-3430 (((-113) (-113)) 56)) (-1685 (((-1160 |#2|) (-606 |#2|)) 133 (|has| |#1| (-1031 (-544))))) (-1292 ((|#2| |#1| (-544)) 123 (|has| |#1| (-1031 (-544))))) (-1290 ((|#2| (-1160 |#2|) |#2|) 30)) (-1291 (((-857) (-635 |#2|)) 85)) (-3586 ((|#2| |#2|) 129 (|has| |#1| (-1031 (-544))))) (-2377 (((-112) (-113)) 18)) (** ((|#2| |#2| (-406 (-544))) 96 (|has| |#1| (-1031 (-544)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3584 (|#2| (-1160 |#2|) (-1166))) (-15 -3430 ((-113) (-113))) (-15 -2377 ((-112) (-113))) (-15 -1290 (|#2| (-1160 |#2|) |#2|)) (-15 -1291 ((-857) (-635 |#2|))) (IF (|has| |#1| (-1031 (-544))) (PROGN (-15 ** (|#2| |#2| (-406 (-544)))) (-15 -1685 ((-1160 |#2|) (-606 |#2|))) (-15 -3586 (|#2| |#2|)) (-15 -1292 (|#2| |#1| (-544)))) |%noBranch|)) (-13 (-844) (-554)) (-420 |#1|)) (T -32)) -((-1292 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-4 *2 (-420 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1031 *4)) (-4 *3 (-13 (-844) (-554))))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-1031 (-544))) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-32 *3 *2)) (-4 *2 (-420 *3)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-606 *5)) (-4 *5 (-420 *4)) (-4 *4 (-1031 (-544))) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-1160 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-544))) (-4 *4 (-1031 (-544))) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-32 *4 *2)) (-4 *2 (-420 *4)))) (-1291 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-420 *4)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-857)) (-5 *1 (-32 *4 *5)))) (-1290 (*1 *2 *3 *2) (-12 (-5 *3 (-1160 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-32 *4 *2)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-420 *4)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-32 *3 *4)) (-4 *4 (-420 *3)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *2)) (-5 *4 (-1166)) (-4 *2 (-420 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-844) (-554)))))) -(-10 -7 (-15 -3584 (|#2| (-1160 |#2|) (-1166))) (-15 -3430 ((-113) (-113))) (-15 -2377 ((-112) (-113))) (-15 -1290 (|#2| (-1160 |#2|) |#2|)) (-15 -1291 ((-857) (-635 |#2|))) (IF (|has| |#1| (-1031 (-544))) (PROGN (-15 ** (|#2| |#2| (-406 (-544)))) (-15 -1685 ((-1160 |#2|) (-606 |#2|))) (-15 -3586 (|#2| |#2|)) (-15 -1292 (|#2| |#1| (-544)))) |%noBranch|)) -((-1293 (((-112) $ (-765)) 16)) (-4131 (($) 10)) (-4126 (((-112) $ (-765)) 15)) (-4123 (((-112) $ (-765)) 14)) (-1294 (((-112) $ $) 8)) (-3807 (((-112) $) 13))) -(((-33 |#1|) (-10 -8 (-15 -4131 (|#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))) (-15 -3807 ((-112) |#1|)) (-15 -1294 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -4131 (|#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))) (-15 -3807 ((-112) |#1|)) (-15 -1294 ((-112) |#1| |#1|))) -((-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-4126 (((-112) $ (-765)) 9)) (-4123 (((-112) $ (-765)) 10)) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3804 (($ $) 13)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) +((-1502 (*1 *1 *2) (-12 (-5 *2 (-947 *1)) (-4 *1 (-27)))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-27)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-5 *3 (-1168)) (-4 *1 (-27)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1168)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-947 *1)) (-4 *1 (-27)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-27)))) (-1821 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-5 *3 (-1168)) (-4 *1 (-27)))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1168)) (-4 *1 (-27)) (-5 *2 (-639 *1))))) +(-13 (-362) (-997) (-10 -8 (-15 -1502 ($ (-947 $))) (-15 -1502 ($ (-1164 $))) (-15 -1502 ($ (-1164 $) (-1168))) (-15 -3646 ((-639 $) (-947 $))) (-15 -3646 ((-639 $) (-1164 $))) (-15 -3646 ((-639 $) (-1164 $) (-1168))) (-15 -1821 ($ (-947 $))) (-15 -1821 ($ (-1164 $))) (-15 -1821 ($ (-1164 $) (-1168))) (-15 -1404 ((-639 $) (-947 $))) (-15 -1404 ((-639 $) (-1164 $))) (-15 -1404 ((-639 $) (-1164 $) (-1168))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-997) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) +((-1404 (((-639 $) (-947 $)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-1164 $) (-1168)) 50) (((-639 $) $) 19) (((-639 $) $ (-1168)) 41)) (-1821 (($ (-947 $)) NIL) (($ (-1164 $)) NIL) (($ (-1164 $) (-1168)) 52) (($ $) 17) (($ $ (-1168)) 37)) (-3646 (((-639 $) (-947 $)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-1164 $) (-1168)) 48) (((-639 $) $) 15) (((-639 $) $ (-1168)) 43)) (-1502 (($ (-947 $)) NIL) (($ (-1164 $)) NIL) (($ (-1164 $) (-1168)) NIL) (($ $) 12) (($ $ (-1168)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1404 ((-639 |#1|) |#1| (-1168))) (-15 -1821 (|#1| |#1| (-1168))) (-15 -1404 ((-639 |#1|) |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -3646 ((-639 |#1|) |#1| (-1168))) (-15 -1502 (|#1| |#1| (-1168))) (-15 -3646 ((-639 |#1|) |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1404 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1404 ((-639 |#1|) (-1164 |#1|))) (-15 -1404 ((-639 |#1|) (-947 |#1|))) (-15 -1821 (|#1| (-1164 |#1|) (-1168))) (-15 -1821 (|#1| (-1164 |#1|))) (-15 -1821 (|#1| (-947 |#1|))) (-15 -3646 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -3646 ((-639 |#1|) (-1164 |#1|))) (-15 -3646 ((-639 |#1|) (-947 |#1|))) (-15 -1502 (|#1| (-1164 |#1|) (-1168))) (-15 -1502 (|#1| (-1164 |#1|))) (-15 -1502 (|#1| (-947 |#1|)))) (-29 |#2|) (-13 (-845) (-554))) (T -28)) +NIL +(-10 -8 (-15 -1404 ((-639 |#1|) |#1| (-1168))) (-15 -1821 (|#1| |#1| (-1168))) (-15 -1404 ((-639 |#1|) |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -3646 ((-639 |#1|) |#1| (-1168))) (-15 -1502 (|#1| |#1| (-1168))) (-15 -3646 ((-639 |#1|) |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1404 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1404 ((-639 |#1|) (-1164 |#1|))) (-15 -1404 ((-639 |#1|) (-947 |#1|))) (-15 -1821 (|#1| (-1164 |#1|) (-1168))) (-15 -1821 (|#1| (-1164 |#1|))) (-15 -1821 (|#1| (-947 |#1|))) (-15 -3646 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -3646 ((-639 |#1|) (-1164 |#1|))) (-15 -3646 ((-639 |#1|) (-947 |#1|))) (-15 -1502 (|#1| (-1164 |#1|) (-1168))) (-15 -1502 (|#1| (-1164 |#1|))) (-15 -1502 (|#1| (-947 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1404 (((-639 $) (-947 $)) 81) (((-639 $) (-1164 $)) 80) (((-639 $) (-1164 $) (-1168)) 79) (((-639 $) $) 125) (((-639 $) $ (-1168)) 123)) (-1821 (($ (-947 $)) 84) (($ (-1164 $)) 83) (($ (-1164 $) (-1168)) 82) (($ $) 126) (($ $ (-1168)) 124)) (-1952 (((-112) $) 16)) (-1402 (((-639 (-1168)) $) 200)) (-1599 (((-406 (-1164 $)) $ (-608 $)) 232 (|has| |#1| (-554)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-1495 (((-639 (-608 $)) $) 163)) (-3214 (((-3 $ "failed") $ $) 19)) (-3165 (($ $ (-639 (-608 $)) (-639 $)) 153) (($ $ (-639 (-293 $))) 152) (($ $ (-293 $)) 151)) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-1643 (($ $) 93)) (-2569 (((-112) $ $) 60)) (-1800 (($) 17 T CONST)) (-3646 (((-639 $) (-947 $)) 87) (((-639 $) (-1164 $)) 86) (((-639 $) (-1164 $) (-1168)) 85) (((-639 $) $) 129) (((-639 $) $ (-1168)) 127)) (-1502 (($ (-947 $)) 90) (($ (-1164 $)) 89) (($ (-1164 $) (-1168)) 88) (($ $) 130) (($ $ (-1168)) 128)) (-4048 (((-3 (-947 |#1|) "failed") $) 250 (|has| |#1| (-1044))) (((-3 (-406 (-947 |#1|)) "failed") $) 234 (|has| |#1| (-554))) (((-3 |#1| "failed") $) 196) (((-3 (-562) "failed") $) 193 (|has| |#1| (-1033 (-562)))) (((-3 (-1168) "failed") $) 187) (((-3 (-608 $) "failed") $) 138) (((-3 (-406 (-562)) "failed") $) 121 (-4037 (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562))))))) (-3961 (((-947 |#1|) $) 249 (|has| |#1| (-1044))) (((-406 (-947 |#1|)) $) 233 (|has| |#1| (-554))) ((|#1| $) 195) (((-562) $) 194 (|has| |#1| (-1033 (-562)))) (((-1168) $) 186) (((-608 $) $) 137) (((-406 (-562)) $) 122 (-4037 (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562))))))) (-1811 (($ $ $) 56)) (-2406 (((-683 |#1|) (-683 $)) 240 (|has| |#1| (-1044))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 239 (|has| |#1| (-1044))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 120 (-4037 (-2246 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (-2246 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (((-683 (-562)) (-683 $)) 119 (-4037 (-2246 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (-2246 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-2717 (((-112) $) 72)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 192 (|has| |#1| (-881 (-378)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 191 (|has| |#1| (-881 (-562))))) (-1383 (($ (-639 $)) 157) (($ $) 156)) (-3936 (((-639 (-114)) $) 164)) (-2876 (((-114) (-114)) 165)) (-1957 (((-112) $) 31)) (-3130 (((-112) $) 185 (|has| $ (-1033 (-562))))) (-3425 (($ $) 217 (|has| |#1| (-1044)))) (-4065 (((-1117 |#1| (-608 $)) $) 216 (|has| |#1| (-1044)))) (-1891 (($ $ (-562)) 92)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1677 (((-1164 $) (-608 $)) 182 (|has| $ (-1044)))) (-1551 (($ $ $) 136)) (-2993 (($ $ $) 135)) (-4152 (($ (-1 $ $) (-608 $)) 171)) (-4367 (((-3 (-608 $) "failed") $) 161)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1583 (((-639 (-608 $)) $) 162)) (-4141 (($ (-114) (-639 $)) 170) (($ (-114) $) 169)) (-2042 (((-3 (-639 $) "failed") $) 211 (|has| |#1| (-1104)))) (-3218 (((-3 (-2 (|:| |val| $) (|:| -1960 (-562))) "failed") $) 220 (|has| |#1| (-1044)))) (-1546 (((-3 (-639 $) "failed") $) 213 (|has| |#1| (-25)))) (-3853 (((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $) 214 (|has| |#1| (-25)))) (-1628 (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-1168)) 219 (|has| |#1| (-1044))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-114)) 218 (|has| |#1| (-1044))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $) 212 (|has| |#1| (-1104)))) (-1776 (((-112) $ (-1168)) 168) (((-112) $ (-114)) 167)) (-1525 (($ $) 71)) (-3060 (((-766) $) 160)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 198)) (-1547 ((|#1| $) 199)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-4296 (((-112) $ (-1168)) 173) (((-112) $ $) 172)) (-1635 (((-417 $) $) 75)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-3803 (((-112) $) 184 (|has| $ (-1033 (-562))))) (-1433 (($ $ (-1168) (-766) (-1 $ $)) 224 (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ (-639 $))) 223 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $)))) 222 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $))) 221 (|has| |#1| (-1044))) (($ $ (-639 (-114)) (-639 $) (-1168)) 210 (|has| |#1| (-610 (-535)))) (($ $ (-114) $ (-1168)) 209 (|has| |#1| (-610 (-535)))) (($ $) 208 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168))) 207 (|has| |#1| (-610 (-535)))) (($ $ (-1168)) 206 (|has| |#1| (-610 (-535)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-639 $))) 180) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) 179) (($ $ (-639 (-114)) (-639 (-1 $ $))) 178) (($ $ (-1168) (-1 $ $)) 177) (($ $ (-1168) (-1 $ (-639 $))) 176) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) 175) (($ $ (-639 (-1168)) (-639 (-1 $ $))) 174) (($ $ (-639 $) (-639 $)) 145) (($ $ $ $) 144) (($ $ (-293 $)) 143) (($ $ (-639 (-293 $))) 142) (($ $ (-639 (-608 $)) (-639 $)) 141) (($ $ (-608 $) $) 140)) (-1577 (((-766) $) 59)) (-2343 (($ (-114) (-639 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-3790 (($ $ $) 159) (($ $) 158)) (-4029 (($ $ (-1168)) 248 (|has| |#1| (-1044))) (($ $ (-639 (-1168))) 247 (|has| |#1| (-1044))) (($ $ (-1168) (-766)) 246 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) 245 (|has| |#1| (-1044)))) (-3658 (($ $) 227 (|has| |#1| (-554)))) (-4076 (((-1117 |#1| (-608 $)) $) 226 (|has| |#1| (-554)))) (-2096 (($ $) 183 (|has| $ (-1044)))) (-4208 (((-535) $) 254 (|has| |#1| (-610 (-535)))) (($ (-417 $)) 225 (|has| |#1| (-554))) (((-887 (-378)) $) 190 (|has| |#1| (-610 (-887 (-378))))) (((-887 (-562)) $) 189 (|has| |#1| (-610 (-887 (-562)))))) (-3665 (($ $ $) 253 (|has| |#1| (-472)))) (-1911 (($ $ $) 252 (|has| |#1| (-472)))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ (-947 |#1|)) 251 (|has| |#1| (-1044))) (($ (-406 (-947 |#1|))) 235 (|has| |#1| (-554))) (($ (-406 (-947 (-406 |#1|)))) 231 (|has| |#1| (-554))) (($ (-947 (-406 |#1|))) 230 (|has| |#1| (-554))) (($ (-406 |#1|)) 229 (|has| |#1| (-554))) (($ (-1117 |#1| (-608 $))) 215 (|has| |#1| (-1044))) (($ |#1|) 197) (($ (-1168)) 188) (($ (-608 $)) 139)) (-2805 (((-3 $ "failed") $) 238 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-2746 (($ (-639 $)) 155) (($ $) 154)) (-2803 (((-112) (-114)) 166)) (-2922 (((-112) $ $) 40)) (-3105 (($ (-1168) (-639 $)) 205) (($ (-1168) $ $ $ $) 204) (($ (-1168) $ $ $) 203) (($ (-1168) $ $) 202) (($ (-1168) $) 201)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-1168)) 244 (|has| |#1| (-1044))) (($ $ (-639 (-1168))) 243 (|has| |#1| (-1044))) (($ $ (-1168) (-766)) 242 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) 241 (|has| |#1| (-1044)))) (-1798 (((-112) $ $) 133)) (-1772 (((-112) $ $) 132)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 134)) (-1759 (((-112) $ $) 131)) (-1859 (($ $ $) 66) (($ (-1117 |#1| (-608 $)) (-1117 |#1| (-608 $))) 228 (|has| |#1| (-554)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70) (($ $ (-406 (-562))) 91)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-171))) (($ |#1| $) 236 (|has| |#1| (-171))))) +(((-29 |#1|) (-139) (-13 (-845) (-554))) (T -29)) +((-1502 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-845) (-554))))) (-3646 (*1 *2 *1) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *3)))) (-1502 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-845) (-554))))) (-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *4)))) (-1821 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-845) (-554))))) (-1404 (*1 *2 *1) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *3)))) (-1821 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-845) (-554))))) (-1404 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-429 |t#1|) (-10 -8 (-15 -1502 ($ $)) (-15 -3646 ((-639 $) $)) (-15 -1502 ($ $ (-1168))) (-15 -3646 ((-639 $) $ (-1168))) (-15 -1821 ($ $)) (-15 -1404 ((-639 $) $)) (-15 -1821 ($ $ (-1168))) (-15 -1404 ((-639 $) $ (-1168))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) . T) ((-612 #1=(-406 (-947 |#1|))) |has| |#1| (-554)) ((-612 (-562)) . T) ((-612 #2=(-608 $)) . T) ((-612 #3=(-947 |#1|)) |has| |#1| (-1044)) ((-612 #4=(-1168)) . T) ((-612 |#1|) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562)))) ((-242) . T) ((-289) . T) ((-306) . T) ((-308 $) . T) ((-301) . T) ((-362) . T) ((-376 |#1|) |has| |#1| (-1044)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-429 |#1|) . T) ((-451) . T) ((-472) |has| |#1| (-472)) ((-513 (-608 $) $) . T) ((-513 $ $) . T) ((-554) . T) ((-642 #0#) . T) ((-642 |#1|) |has| |#1| (-171)) ((-642 $) . T) ((-635 (-562)) -12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) ((-635 |#1|) |has| |#1| (-1044)) ((-712 #0#) . T) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) . T) ((-721) . T) ((-845) . T) ((-895 (-1168)) |has| |#1| (-1044)) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-879 |#1|) . T) ((-915) . T) ((-997) . T) ((-1033 (-406 (-562))) -4037 (|has| |#1| (-1033 (-406 (-562)))) (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) ((-1033 #1#) |has| |#1| (-554)) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 #2#) . T) ((-1033 #3#) |has| |#1| (-1044)) ((-1033 #4#) . T) ((-1033 |#1|) . T) ((-1050 #0#) . T) ((-1050 |#1|) |has| |#1| (-171)) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1207) . T) ((-1211) . T)) +((-1462 (((-1086 (-224)) $) NIL)) (-1449 (((-1086 (-224)) $) NIL)) (-3528 (($ $ (-224)) 125)) (-2323 (($ (-947 (-562)) (-1168) (-1168) (-1086 (-406 (-562))) (-1086 (-406 (-562)))) 82)) (-2524 (((-639 (-639 (-938 (-224)))) $) 137)) (-4054 (((-857) $) 149))) +(((-30) (-13 (-950) (-10 -8 (-15 -2323 ($ (-947 (-562)) (-1168) (-1168) (-1086 (-406 (-562))) (-1086 (-406 (-562))))) (-15 -3528 ($ $ (-224)))))) (T -30)) +((-2323 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-947 (-562))) (-5 *3 (-1168)) (-5 *4 (-1086 (-406 (-562)))) (-5 *1 (-30)))) (-3528 (*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30))))) +(-13 (-950) (-10 -8 (-15 -2323 ($ (-947 (-562)) (-1168) (-1168) (-1086 (-406 (-562))) (-1086 (-406 (-562))))) (-15 -3528 ($ $ (-224))))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 11)) (-3241 (((-1127) $) 9)) (-1731 (((-112) $ $) NIL))) +(((-31) (-13 (-1075) (-10 -8 (-15 -3241 ((-1127) $)) (-15 -3265 ((-1127) $))))) (T -31)) +((-3241 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-31)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-31))))) +(-13 (-1075) (-10 -8 (-15 -3241 ((-1127) $)) (-15 -3265 ((-1127) $)))) +((-1502 ((|#2| (-1164 |#2|) (-1168)) 43)) (-2876 (((-114) (-114)) 56)) (-1677 (((-1164 |#2|) (-608 |#2|)) 133 (|has| |#1| (-1033 (-562))))) (-3396 ((|#2| |#1| (-562)) 123 (|has| |#1| (-1033 (-562))))) (-3061 ((|#2| (-1164 |#2|) |#2|) 30)) (-1347 (((-857) (-639 |#2|)) 85)) (-2096 ((|#2| |#2|) 129 (|has| |#1| (-1033 (-562))))) (-2803 (((-112) (-114)) 18)) (** ((|#2| |#2| (-406 (-562))) 96 (|has| |#1| (-1033 (-562)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -1502 (|#2| (-1164 |#2|) (-1168))) (-15 -2876 ((-114) (-114))) (-15 -2803 ((-112) (-114))) (-15 -3061 (|#2| (-1164 |#2|) |#2|)) (-15 -1347 ((-857) (-639 |#2|))) (IF (|has| |#1| (-1033 (-562))) (PROGN (-15 ** (|#2| |#2| (-406 (-562)))) (-15 -1677 ((-1164 |#2|) (-608 |#2|))) (-15 -2096 (|#2| |#2|)) (-15 -3396 (|#2| |#1| (-562)))) |%noBranch|)) (-13 (-845) (-554)) (-429 |#1|)) (T -32)) +((-3396 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1033 *4)) (-4 *3 (-13 (-845) (-554))))) (-2096 (*1 *2 *2) (-12 (-4 *3 (-1033 (-562))) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-608 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1033 (-562))) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-1164 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-562))) (-4 *4 (-1033 (-562))) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-857)) (-5 *1 (-32 *4 *5)))) (-3061 (*1 *2 *3 *2) (-12 (-5 *3 (-1164 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-32 *4 *2)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4)))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-32 *3 *4)) (-4 *4 (-429 *3)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *2)) (-5 *4 (-1168)) (-4 *2 (-429 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-845) (-554)))))) +(-10 -7 (-15 -1502 (|#2| (-1164 |#2|) (-1168))) (-15 -2876 ((-114) (-114))) (-15 -2803 ((-112) (-114))) (-15 -3061 (|#2| (-1164 |#2|) |#2|)) (-15 -1347 ((-857) (-639 |#2|))) (IF (|has| |#1| (-1033 (-562))) (PROGN (-15 ** (|#2| |#2| (-406 (-562)))) (-15 -1677 ((-1164 |#2|) (-608 |#2|))) (-15 -2096 (|#2| |#2|)) (-15 -3396 (|#2| |#1| (-562)))) |%noBranch|)) +((-4336 (((-112) $ (-766)) 16)) (-1800 (($) 10)) (-3292 (((-112) $ (-766)) 15)) (-3289 (((-112) $ (-766)) 14)) (-3336 (((-112) $ $) 8)) (-2974 (((-112) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -1800 (|#1|)) (-15 -4336 ((-112) |#1| (-766))) (-15 -3292 ((-112) |#1| (-766))) (-15 -3289 ((-112) |#1| (-766))) (-15 -2974 ((-112) |#1|)) (-15 -3336 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -1800 (|#1|)) (-15 -4336 ((-112) |#1| (-766))) (-15 -3292 ((-112) |#1| (-766))) (-15 -3289 ((-112) |#1| (-766))) (-15 -2974 ((-112) |#1|)) (-15 -3336 ((-112) |#1| |#1|))) +((-4336 (((-112) $ (-766)) 8)) (-1800 (($) 7 T CONST)) (-3292 (((-112) $ (-766)) 9)) (-3289 (((-112) $ (-766)) 10)) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-4220 (($ $) 13)) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) (((-34) (-139)) (T -34)) -((-1294 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3804 (*1 *1 *1) (-4 *1 (-34))) (-3972 (*1 *1) (-4 *1 (-34))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4123 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-4126 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-1293 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) (-4131 (*1 *1) (-4 *1 (-34))) (-4364 (*1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-34)) (-5 *2 (-765))))) -(-13 (-1204) (-10 -8 (-15 -1294 ((-112) $ $)) (-15 -3804 ($ $)) (-15 -3972 ($)) (-15 -3807 ((-112) $)) (-15 -4123 ((-112) $ (-765))) (-15 -4126 ((-112) $ (-765))) (-15 -1293 ((-112) $ (-765))) (-15 -4131 ($) -4359) (IF (|has| $ (-6 -4400)) (-15 -4364 ((-765) $)) |%noBranch|))) -(((-1204) . T)) -((-3897 (($ $) 11)) (-3895 (($ $) 10)) (-3899 (($ $) 9)) (-3900 (($ $) 8)) (-3898 (($ $) 7)) (-3896 (($ $) 6))) +((-3336 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4220 (*1 *1 *1) (-4 *1 (-34))) (-4307 (*1 *1) (-4 *1 (-34))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3289 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) (-3292 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) (-4336 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) (-1800 (*1 *1) (-4 *1 (-34))) (-3492 (*1 *2 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-34)) (-5 *2 (-766))))) +(-13 (-1207) (-10 -8 (-15 -3336 ((-112) $ $)) (-15 -4220 ($ $)) (-15 -4307 ($)) (-15 -2974 ((-112) $)) (-15 -3289 ((-112) $ (-766))) (-15 -3292 ((-112) $ (-766))) (-15 -4336 ((-112) $ (-766))) (-15 -1800 ($) -1497) (IF (|has| $ (-6 -4402)) (-15 -3492 ((-766) $)) |%noBranch|))) +(((-1207) . T)) +((-3055 (($ $) 11)) (-3033 (($ $) 10)) (-3078 (($ $) 9)) (-1566 (($ $) 8)) (-3066 (($ $) 7)) (-3044 (($ $) 6))) (((-35) (-139)) (T -35)) -((-3897 (*1 *1 *1) (-4 *1 (-35))) (-3895 (*1 *1 *1) (-4 *1 (-35))) (-3899 (*1 *1 *1) (-4 *1 (-35))) (-3900 (*1 *1 *1) (-4 *1 (-35))) (-3898 (*1 *1 *1) (-4 *1 (-35))) (-3896 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3896 ($ $)) (-15 -3898 ($ $)) (-15 -3900 ($ $)) (-15 -3899 ($ $)) (-15 -3895 ($ $)) (-15 -3897 ($ $)))) -((-2947 (((-112) $ $) 19 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3806 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 125)) (-4201 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 148)) (-4203 (($ $) 146)) (-4004 (($) 72) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 71)) (-2344 (((-1259) $ |#1| |#1|) 99 (|has| $ (-6 -4401))) (((-1259) $ (-544) (-544)) 178 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 159 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-1874 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 200 (|has| $ (-6 -4401))) (($ $) 199 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-1293 (((-112) $ (-765)) 8)) (-3408 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 134 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 155 (|has| $ (-6 -4401)))) (-4192 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 157 (|has| $ (-6 -4401)))) (-4195 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 153 (|has| $ (-6 -4401)))) (-4194 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 189 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-1220 (-544)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 160 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #1="last" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 158 (|has| $ (-6 -4401))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #3="first" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 154 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #4="value" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 133 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 132 (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 45 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 216)) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 55 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 175 (|has| $ (-6 -4400)))) (-4202 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 147)) (-2353 (((-3 |#2| #5="failed") |#1| $) 61)) (-4131 (($) 7 T CONST)) (-2416 (($ $) 201 (|has| $ (-6 -4401)))) (-2417 (($ $) 211)) (-4205 (($ $ (-765)) 142) (($ $) 140)) (-2498 (($ $) 214 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1424 (($ $) 58 (-3936 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))) (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 46 (|has| $ (-6 -4400))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 220) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 215 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 54 (|has| $ (-6 -4400))) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 174 (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 56 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 53 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 52 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 176 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 173 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 172 (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 190 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) 88) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 188)) (-3846 (((-112) $) 192)) (-3823 (((-544) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 208) (((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 207 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) (((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 206 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 30 (|has| $ (-6 -4400))) (((-635 |#2|) $) 79 (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 114 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 123)) (-3410 (((-112) $ $) 131 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-4021 (($ (-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 169)) (-4126 (((-112) $ (-765)) 9)) (-2346 ((|#1| $) 96 (|has| |#1| (-844))) (((-544) $) 180 (|has| (-544) (-844)))) (-2913 (($ $ $) 198 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3241 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3917 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 29 (|has| $ (-6 -4400))) (((-635 |#2|) $) 80 (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 115 (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400)))) (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-2347 ((|#1| $) 95 (|has| |#1| (-844))) (((-544) $) 181 (|has| (-544) (-844)))) (-3242 (($ $ $) 197 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 34 (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4401))) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 110 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 109)) (-3941 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 225)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 128)) (-3926 (((-112) $) 124)) (-3643 (((-1148) $) 22 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4204 (($ $ (-765)) 145) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 143)) (-2789 (((-635 |#1|) $) 63)) (-2354 (((-112) |#1| $) 64)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 39)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 40) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 219) (($ $ $ (-544)) 218)) (-2421 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 162) (($ $ $ (-544)) 161)) (-2349 (((-635 |#1|) $) 93) (((-635 (-544)) $) 183)) (-2350 (((-112) |#1| $) 92) (((-112) (-544) $) 184)) (-3644 (((-1110) $) 21 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4207 ((|#2| $) 97 (|has| |#1| (-844))) (($ $ (-765)) 139) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 137)) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 51) (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #6#) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 171)) (-2345 (($ $ |#2|) 98 (|has| $ (-6 -4401))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 179 (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 41)) (-3847 (((-112) $) 191)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 32 (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 112 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) 26 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 25 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 24 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 23 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 121 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 120 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 119 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) 118 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 182 (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-2351 (((-635 |#2|) $) 91) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 185)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 187) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) 186) (($ $ (-1220 (-544))) 165) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #3#) 138) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #4#) 126)) (-3412 (((-544) $ $) 129)) (-1550 (($) 49) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 48)) (-1660 (($ $ (-544)) 222) (($ $ (-1220 (-544))) 221)) (-2422 (($ $ (-544)) 164) (($ $ (-1220 (-544))) 163)) (-4040 (((-112) $) 127)) (-4198 (($ $) 151)) (-4196 (($ $) 152 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 150)) (-4200 (($ $) 149)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 31 (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-765) |#2| $) 81 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 113 (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) 202 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533)))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 50) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 170)) (-4197 (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 224) (($ $ $) 223)) (-4208 (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 168) (($ (-635 $)) 167) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 136) (($ $ $) 135)) (-4353 (((-857) $) 18 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857)))))) (-3921 (((-635 $) $) 122)) (-3411 (((-112) $ $) 130 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 42)) (-1295 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") |#1| $) 108)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 33 (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 111 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 195 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2946 (((-112) $ $) 194 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3437 (((-112) $ $) 20 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3066 (((-112) $ $) 196 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3067 (((-112) $ $) 193 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-36 |#1| |#2|) (-139) (-1091) (-1091)) (T -36)) -((-1295 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-2 (|:| -4267 *3) (|:| -2226 *4)))))) -(-13 (-1181 |t#1| |t#2|) (-659 (-2 (|:| -4267 |t#1|) (|:| -2226 |t#2|))) (-10 -8 (-15 -1295 ((-3 (-2 (|:| -4267 |t#1|) (|:| -2226 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((-102) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) (|has| |#2| (-1091))) ((-608 (-857)) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-1091)) (|has| |#2| (-608 (-857)))) ((-150 #2=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((-609 (-533)) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))) ((-228 #1#) . T) ((-234 #1#) . T) ((-285 #3=(-544) #2#) . T) ((-285 |#1| |#2|) . T) ((-287 #3# #2#) . T) ((-287 |#1| |#2|) . T) ((-308 #2#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-281 #2#) . T) ((-371 #2#) . T) ((-487 #2#) . T) ((-487 |#2|) . T) ((-599 #3# #2#) . T) ((-599 |#1| |#2|) . T) ((-512 #2# #2#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-605 |#1| |#2|) . T) ((-644 #2#) . T) ((-659 #2#) . T) ((-844) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) ((-1003 #2#) . T) ((-1091) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)) (|has| |#2| (-1091))) ((-1139 #2#) . T) ((-1181 |#1| |#2|) . T) ((-1204) . T) ((-1242 #2#) . T)) -((-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-38 |#2|) (-171)) (T -37)) -NIL -(-10 -8 (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-3055 (*1 *1 *1) (-4 *1 (-35))) (-3033 (*1 *1 *1) (-4 *1 (-35))) (-3078 (*1 *1 *1) (-4 *1 (-35))) (-1566 (*1 *1 *1) (-4 *1 (-35))) (-3066 (*1 *1 *1) (-4 *1 (-35))) (-3044 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3044 ($ $)) (-15 -3066 ($ $)) (-15 -1566 ($ $)) (-15 -3078 ($ $)) (-15 -3033 ($ $)) (-15 -3055 ($ $)))) +((-4041 (((-112) $ $) 19 (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-2534 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 125)) (-2359 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 148)) (-3121 (($ $) 146)) (-1443 (($) 72) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 71)) (-3052 (((-1261) $ |#1| |#1|) 99 (|has| $ (-6 -4403))) (((-1261) $ (-562) (-562)) 178 (|has| $ (-6 -4403)))) (-2254 (($ $ (-562)) 159 (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-3381 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 200 (|has| $ (-6 -4403))) (($ $) 199 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)) (|has| $ (-6 -4403))))) (-1395 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-4336 (((-112) $ (-766)) 8)) (-1512 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 134 (|has| $ (-6 -4403)))) (-3012 (($ $ $) 155 (|has| $ (-6 -4403)))) (-3950 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 157 (|has| $ (-6 -4403)))) (-2687 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 153 (|has| $ (-6 -4403)))) (-4200 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 189 (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-1223 (-562)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 160 (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "last" (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 158 (|has| $ (-6 -4403))) (($ $ "rest" $) 156 (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "first" (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 154 (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "value" (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 133 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 132 (|has| $ (-6 -4403)))) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 45 (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 216)) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 55 (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 175 (|has| $ (-6 -4402)))) (-2350 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 147)) (-1472 (((-3 |#2| "failed") |#1| $) 61)) (-1800 (($) 7 T CONST)) (-2447 (($ $) 201 (|has| $ (-6 -4403)))) (-2677 (($ $) 211)) (-1434 (($ $ (-766)) 142) (($ $) 140)) (-4354 (($ $) 214 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1459 (($ $) 58 (-4037 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402))) (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 47 (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 46 (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 220) (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 215 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 54 (|has| $ (-6 -4402))) (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 174 (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 56 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 53 (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 52 (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 176 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 173 (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 172 (|has| $ (-6 -4402)))) (-1505 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 190 (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) 88) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) 188)) (-3266 (((-112) $) 192)) (-4264 (((-562) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 208) (((-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 207 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) (((-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) 206 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 30 (|has| $ (-6 -4402))) (((-639 |#2|) $) 79 (|has| $ (-6 -4402))) (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 114 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 123)) (-4379 (((-112) $ $) 131 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1458 (($ (-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 169)) (-3292 (((-112) $ (-766)) 9)) (-4197 ((|#1| $) 96 (|has| |#1| (-845))) (((-562) $) 180 (|has| (-562) (-845)))) (-1551 (($ $ $) 198 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-2673 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1610 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 29 (|has| $ (-6 -4402))) (((-639 |#2|) $) 80 (|has| $ (-6 -4402))) (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 115 (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402)))) (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402))))) (-3874 ((|#1| $) 95 (|has| |#1| (-845))) (((-562) $) 181 (|has| (-562) (-845)))) (-2993 (($ $ $) 197 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 34 (|has| $ (-6 -4403))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4403))) (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 110 (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 109)) (-3716 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 225)) (-3289 (((-112) $ (-766)) 10)) (-4007 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 128)) (-3449 (((-112) $) 124)) (-2913 (((-1150) $) 22 (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-1504 (($ $ (-766)) 145) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 143)) (-1520 (((-639 |#1|) $) 63)) (-4265 (((-112) |#1| $) 64)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 39)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 40) (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) 219) (($ $ $ (-562)) 218)) (-3297 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) 162) (($ $ $ (-562)) 161)) (-2093 (((-639 |#1|) $) 93) (((-639 (-562)) $) 183)) (-1570 (((-112) |#1| $) 92) (((-112) (-562) $) 184)) (-1709 (((-1112) $) 21 (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-1421 ((|#2| $) 97 (|has| |#1| (-845))) (($ $ (-766)) 139) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 137)) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 51) (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 171)) (-2716 (($ $ |#2|) 98 (|has| $ (-6 -4403))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 179 (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 41)) (-2017 (((-112) $) 191)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 32 (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 112 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) 26 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 25 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 24 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 23 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 121 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 120 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 119 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) 118 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 182 (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-2411 (((-639 |#2|) $) 91) (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 185)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 187) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) 186) (($ $ (-1223 (-562))) 165) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "first") 138) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "value") 126)) (-2568 (((-562) $ $) 129)) (-3564 (($) 49) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 48)) (-2878 (($ $ (-562)) 222) (($ $ (-1223 (-562))) 221)) (-2880 (($ $ (-562)) 164) (($ $ (-1223 (-562))) 163)) (-2424 (((-112) $) 127)) (-2613 (($ $) 151)) (-4327 (($ $) 152 (|has| $ (-6 -4403)))) (-2296 (((-766) $) 150)) (-3913 (($ $) 149)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 31 (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (((-766) |#2| $) 81 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 113 (|has| $ (-6 -4402)))) (-1853 (($ $ $ (-562)) 202 (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535)))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 50) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 170)) (-4142 (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 224) (($ $ $) 223)) (-2767 (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 168) (($ (-639 $)) 167) (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 136) (($ $ $) 135)) (-4054 (((-857) $) 18 (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857)))))) (-2906 (((-639 $) $) 122)) (-4055 (((-112) $ $) 130 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 42)) (-1515 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") |#1| $) 108)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 33 (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 111 (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) 195 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1772 (((-112) $ $) 194 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1731 (((-112) $ $) 20 (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-1785 (((-112) $ $) 196 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1759 (((-112) $ $) 193 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-36 |#1| |#2|) (-139) (-1092) (-1092)) (T -36)) +((-1515 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-5 *2 (-2 (|:| -2320 *3) (|:| -2694 *4)))))) +(-13 (-1183 |t#1| |t#2|) (-660 (-2 (|:| -2320 |t#1|) (|:| -2694 |t#2|))) (-10 -8 (-15 -1515 ((-3 (-2 (|:| -2320 |t#1|) (|:| -2694 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T) ((-102) -4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845))) ((-609 (-857)) -4037 (|has| |#2| (-1092)) (|has| |#2| (-609 (-857))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857)))) ((-150 #1=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T) ((-610 (-535)) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 #2=(-562) #1#) . T) ((-285 |#1| |#2|) . T) ((-287 #2# #1#) . T) ((-287 |#1| |#2|) . T) ((-308 #1#) -12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-281 #1#) . T) ((-372 #1#) . T) ((-488 #1#) . T) ((-488 |#2|) . T) ((-600 #2# #1#) . T) ((-600 |#1| |#2|) . T) ((-513 #1# #1#) -12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-606 |#1| |#2|) . T) ((-645 #1#) . T) ((-660 #1#) . T) ((-845) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)) ((-1005 #1#) . T) ((-1092) -4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845))) ((-1141 #1#) . T) ((-1183 |#1| |#2|) . T) ((-1207) . T) ((-1244 #1#) . T)) +((-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) (-38 |#2|) (-171)) (T -37)) +NIL +(-10 -8 (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-38 |#1|) (-139) (-171)) (T -38)) NIL -(-13 (-1042) (-711 |t#1|) (-611 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-3822 (((-404 |#1|) |#1|) 41)) (-4139 (((-404 |#1|) |#1|) 30) (((-404 |#1|) |#1| (-635 (-48))) 33)) (-1296 (((-112) |#1|) 56))) -(((-39 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1| (-635 (-48)))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3822 ((-404 |#1|) |#1|)) (-15 -1296 ((-112) |#1|))) (-1229 (-48))) (T -39)) -((-1296 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) (-3822 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48)))))) -(-10 -7 (-15 -4139 ((-404 |#1|) |#1| (-635 (-48)))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3822 ((-404 |#1|) |#1|)) (-15 -1296 ((-112) |#1|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1791 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-2213 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2211 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1929 (((-682 (-406 |#2|)) (-1253 $)) NIL) (((-682 (-406 |#2|))) NIL)) (-3734 (((-406 |#2|) $) NIL)) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-406 |#2|) (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4376 (((-404 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1733 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3521 (((-765)) NIL (|has| (-406 |#2|) (-367)))) (-1805 (((-112)) NIL)) (-1804 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| (-406 |#2|) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-3 (-406 |#2|) #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| (-406 |#2|) (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-406 |#2|) $) NIL)) (-1939 (($ (-1253 (-406 |#2|)) (-1253 $)) NIL) (($ (-1253 (-406 |#2|))) 57) (($ (-1253 |#2|) |#2|) 125)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-349)))) (-2943 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1928 (((-682 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-406 |#2|))) (|:| |vec| (-1253 (-406 |#2|)))) (-682 $) (-1253 $)) NIL) (((-682 (-406 |#2|)) (-682 $)) NIL)) (-1796 (((-1253 $) (-1253 $)) NIL)) (-4249 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-1783 (((-635 (-635 |#1|))) NIL (|has| |#1| (-367)))) (-1808 (((-112) |#1| |#1|) NIL)) (-3494 (((-912)) NIL)) (-3377 (($) NIL (|has| (-406 |#2|) (-367)))) (-1803 (((-112)) NIL)) (-1802 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2942 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| (-406 |#2|) (-362)))) (-3902 (($ $) NIL)) (-3215 (($) NIL (|has| (-406 |#2|) (-349)))) (-1824 (((-112) $) NIL (|has| (-406 |#2|) (-349)))) (-1914 (($ $ (-765)) NIL (|has| (-406 |#2|) (-349))) (($ $) NIL (|has| (-406 |#2|) (-349)))) (-4130 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4178 (((-912) $) NIL (|has| (-406 |#2|) (-349))) (((-826 (-912)) $) NIL (|has| (-406 |#2|) (-349)))) (-2545 (((-112) $) NIL)) (-3781 (((-765)) NIL)) (-1797 (((-1253 $) (-1253 $)) 102)) (-3517 (((-406 |#2|) $) NIL)) (-1784 (((-635 (-939 |#1|)) (-1166)) NIL (|has| |#1| (-362)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2164 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-2160 (((-912) $) NIL (|has| (-406 |#2|) (-367)))) (-3463 ((|#3| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3643 (((-1148) $) NIL)) (-1297 (((-1259) (-765)) 79)) (-1792 (((-682 (-406 |#2|))) 51)) (-1794 (((-682 (-406 |#2|))) 44)) (-2779 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1789 (($ (-1253 |#2|) |#2|) 126)) (-1793 (((-682 (-406 |#2|))) 45)) (-1795 (((-682 (-406 |#2|))) 43)) (-1788 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1790 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 64)) (-1801 (((-1253 $)) 42)) (-4325 (((-1253 $)) 41)) (-1800 (((-112) $) NIL)) (-1799 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3849 (($) NIL (|has| (-406 |#2|) (-349)) CONST)) (-2535 (($ (-912)) NIL (|has| (-406 |#2|) (-367)))) (-1786 (((-3 |#2| #3="failed")) NIL)) (-3644 (((-1110) $) NIL)) (-1810 (((-765)) NIL)) (-2544 (($) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| (-406 |#2|) (-362)))) (-3545 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-406 |#2|) (-349)))) (-4139 (((-404 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1732 (((-765) $) NIL (|has| (-406 |#2|) (-362)))) (-4206 ((|#1| $ |#1| |#1|) NIL)) (-1787 (((-3 |#2| #3#)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-4164 (((-406 |#2|) (-1253 $)) NIL) (((-406 |#2|)) 39)) (-1915 (((-765) $) NIL (|has| (-406 |#2|) (-349))) (((-3 (-765) "failed") $ $) NIL (|has| (-406 |#2|) (-349)))) (-4217 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-2543 (((-682 (-406 |#2|)) (-1253 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3586 ((|#3|) 50)) (-1818 (($) NIL (|has| (-406 |#2|) (-349)))) (-3625 (((-1253 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) (-1253 $) (-1253 $)) NIL) (((-1253 (-406 |#2|)) $) 58) (((-682 (-406 |#2|)) (-1253 $)) 103)) (-4377 (((-1253 (-406 |#2|)) $) NIL) (($ (-1253 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-406 |#2|) (-349)))) (-1798 (((-1253 $) (-1253 $)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1031 (-406 (-544)))))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3084 (($ $) NIL (|has| (-406 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-2743 ((|#3| $) NIL)) (-3511 (((-765)) NIL)) (-1807 (((-112)) 37)) (-1806 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-2162 (((-1253 $)) 93)) (-2212 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1785 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1809 (((-112)) NIL)) (-3040 (($) 16 T CONST)) (-3046 (($) 26 T CONST)) (-3051 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-544)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-544))) NIL (|has| (-406 |#2|) (-362))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -1297 ((-1259) (-765))))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) |#3|) (T -40)) -((-1297 (*1 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *2 (-1259)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1229 (-406 *5))) (-14 *7 *6)))) -(-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -1297 ((-1259) (-765))))) -((-1298 ((|#2| |#2|) 48)) (-1303 ((|#2| |#2|) 119 (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-544)))))) (-1302 ((|#2| |#2|) 86 (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-544)))))) (-1301 ((|#2| |#2|) 87 (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-544)))))) (-1304 ((|#2| (-113) |#2| (-765)) 115 (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-450)) (|has| |#1| (-844)) (|has| |#1| (-1031 (-544)))))) (-1300 (((-1160 |#2|) |#2|) 45)) (-1299 ((|#2| |#2| (-635 (-606 |#2|))) 18) ((|#2| |#2| (-635 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1298 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| (-635 |#2|))) (-15 -1299 (|#2| |#2| (-635 (-606 |#2|)))) (-15 -1300 ((-1160 |#2|) |#2|)) (IF (|has| |#1| (-844)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1031 (-544))) (IF (|has| |#2| (-420 |#1|)) (PROGN (-15 -1301 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -1304 (|#2| (-113) |#2| (-765)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-554) (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 |#1| (-606 $)) $)) (-15 -3380 ((-1115 |#1| (-606 $)) $)) (-15 -4353 ($ (-1115 |#1| (-606 $))))))) (T -41)) -((-1304 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-765)) (-4 *5 (-450)) (-4 *5 (-844)) (-4 *5 (-1031 (-544))) (-4 *5 (-554)) (-5 *1 (-41 *5 *2)) (-4 *2 (-420 *5)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *5 (-606 $)) $)) (-15 -3380 ((-1115 *5 (-606 $)) $)) (-15 -4353 ($ (-1115 *5 (-606 $))))))))) (-1303 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1302 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1301 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1300 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-1160 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $)) (-15 -3380 ((-1115 *4 (-606 $)) $)) (-15 -4353 ($ (-1115 *4 (-606 $))))))))) (-1299 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-606 *2))) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $)) (-15 -3380 ((-1115 *4 (-606 $)) $)) (-15 -4353 ($ (-1115 *4 (-606 $))))))) (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) (-1299 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $)) (-15 -3380 ((-1115 *4 (-606 $)) $)) (-15 -4353 ($ (-1115 *4 (-606 $))))))) (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) (-1299 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1299 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $))))))))) (-1298 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-297) (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) (-15 -3380 ((-1115 *3 (-606 $)) $)) (-15 -4353 ($ (-1115 *3 (-606 $)))))))))) -(-10 -7 (-15 -1298 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| (-635 |#2|))) (-15 -1299 (|#2| |#2| (-635 (-606 |#2|)))) (-15 -1300 ((-1160 |#2|) |#2|)) (IF (|has| |#1| (-844)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-1031 (-544))) (IF (|has| |#2| (-420 |#1|)) (PROGN (-15 -1301 (|#2| |#2|)) (-15 -1302 (|#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -1304 (|#2| (-113) |#2| (-765)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-4139 (((-404 (-1160 |#3|)) (-1160 |#3|) (-635 (-48))) 23) (((-404 |#3|) |#3| (-635 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-404 |#3|) |#3| (-635 (-48)))) (-15 -4139 ((-404 (-1160 |#3|)) (-1160 |#3|) (-635 (-48))))) (-844) (-787) (-943 (-48) |#2| |#1|)) (T -42)) -((-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *7 (-943 (-48) *6 *5)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-404 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-943 (-48) *6 *5))))) -(-10 -7 (-15 -4139 ((-404 |#3|) |#3| (-635 (-48)))) (-15 -4139 ((-404 (-1160 |#3|)) (-1160 |#3|) (-635 (-48))))) -((-1308 (((-765) |#2|) 65)) (-1306 (((-765) |#2|) 68)) (-1321 (((-635 |#2|)) 33)) (-1305 (((-765) |#2|) 67)) (-1307 (((-765) |#2|) 64)) (-1309 (((-765) |#2|) 66)) (-1319 (((-635 (-682 |#1|))) 60)) (-1314 (((-635 |#2|)) 55)) (-1312 (((-635 |#2|) |#2|) 43)) (-1316 (((-635 |#2|)) 57)) (-1315 (((-635 |#2|)) 56)) (-1318 (((-635 (-682 |#1|))) 48)) (-1313 (((-635 |#2|)) 54)) (-1311 (((-635 |#2|) |#2|) 42)) (-1310 (((-635 |#2|)) 50)) (-1320 (((-635 (-682 |#1|))) 61)) (-1317 (((-635 |#2|)) 59)) (-2162 (((-1253 |#2|) (-1253 |#2|)) 83 (|has| |#1| (-306))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1305 ((-765) |#2|)) (-15 -1306 ((-765) |#2|)) (-15 -1307 ((-765) |#2|)) (-15 -1308 ((-765) |#2|)) (-15 -1309 ((-765) |#2|)) (-15 -1310 ((-635 |#2|))) (-15 -1311 ((-635 |#2|) |#2|)) (-15 -1312 ((-635 |#2|) |#2|)) (-15 -1313 ((-635 |#2|))) (-15 -1314 ((-635 |#2|))) (-15 -1315 ((-635 |#2|))) (-15 -1316 ((-635 |#2|))) (-15 -1317 ((-635 |#2|))) (-15 -1318 ((-635 (-682 |#1|)))) (-15 -1319 ((-635 (-682 |#1|)))) (-15 -1320 ((-635 (-682 |#1|)))) (-15 -1321 ((-635 |#2|))) (IF (|has| |#1| (-306)) (-15 -2162 ((-1253 |#2|) (-1253 |#2|))) |%noBranch|)) (-554) (-417 |#1|)) (T -43)) -((-2162 (*1 *2 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-417 *3)) (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-43 *3 *4)))) (-1321 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1320 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1319 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1318 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1317 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1316 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1315 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1314 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1313 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1312 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1311 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1310 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1309 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1308 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1307 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1306 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1305 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) -(-10 -7 (-15 -1305 ((-765) |#2|)) (-15 -1306 ((-765) |#2|)) (-15 -1307 ((-765) |#2|)) (-15 -1308 ((-765) |#2|)) (-15 -1309 ((-765) |#2|)) (-15 -1310 ((-635 |#2|))) (-15 -1311 ((-635 |#2|) |#2|)) (-15 -1312 ((-635 |#2|) |#2|)) (-15 -1313 ((-635 |#2|))) (-15 -1314 ((-635 |#2|))) (-15 -1315 ((-635 |#2|))) (-15 -1316 ((-635 |#2|))) (-15 -1317 ((-635 |#2|))) (-15 -1318 ((-635 (-682 |#1|)))) (-15 -1319 ((-635 (-682 |#1|)))) (-15 -1320 ((-635 (-682 |#1|)))) (-15 -1321 ((-635 |#2|))) (IF (|has| |#1| (-306)) (-15 -2162 ((-1253 |#2|) (-1253 |#2|))) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 |#1|)) (-1253 $)) NIL) (((-1253 (-682 |#1|))) 24)) (-1873 (((-1253 $)) 51)) (-4131 (($) NIL T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (|has| |#1| (-554)))) (-1847 (((-3 $ #1#)) NIL (|has| |#1| (-554)))) (-1935 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) NIL)) (-1871 ((|#1| $) NIL)) (-1933 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-2539 (((-3 $ #1#) $) NIL (|has| |#1| (-554)))) (-2050 (((-1160 (-939 |#1|))) NIL (|has| |#1| (-362)))) (-2542 (($ $ (-912)) NIL)) (-1869 ((|#1| $) NIL)) (-1849 (((-1160 |#1|) $) NIL (|has| |#1| (-554)))) (-1937 ((|#1| (-1253 $)) NIL) ((|#1|) NIL)) (-1867 (((-1160 |#1|) $) NIL)) (-1861 (((-112)) 87)) (-1939 (($ (-1253 |#1|) (-1253 $)) NIL) (($ (-1253 |#1|)) NIL)) (-3866 (((-3 $ #1#) $) 14 (|has| |#1| (-554)))) (-3494 (((-912)) 52)) (-1858 (((-112)) NIL)) (-2567 (($ $ (-912)) NIL)) (-1854 (((-112)) NIL)) (-1852 (((-112)) NIL)) (-1856 (((-112)) 89)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (|has| |#1| (-554)))) (-1848 (((-3 $ #1#)) NIL (|has| |#1| (-554)))) (-1936 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) NIL)) (-1872 ((|#1| $) NIL)) (-1934 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-2540 (((-3 $ #1#) $) NIL (|has| |#1| (-554)))) (-2054 (((-1160 (-939 |#1|))) NIL (|has| |#1| (-362)))) (-2541 (($ $ (-912)) NIL)) (-1870 ((|#1| $) NIL)) (-1850 (((-1160 |#1|) $) NIL (|has| |#1| (-554)))) (-1938 ((|#1| (-1253 $)) NIL) ((|#1|) NIL)) (-1868 (((-1160 |#1|) $) NIL)) (-1862 (((-112)) 86)) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) 93)) (-1855 (((-112)) 92)) (-1857 (((-112)) 94)) (-3644 (((-1110) $) NIL)) (-1860 (((-112)) 88)) (-4206 ((|#1| $ (-544)) 54)) (-3625 (((-1253 |#1|) $ (-1253 $)) 48) (((-682 |#1|) (-1253 $) (-1253 $)) NIL) (((-1253 |#1|) $) 28) (((-682 |#1|) (-1253 $)) NIL)) (-4377 (((-1253 |#1|) $) NIL) (($ (-1253 |#1|)) NIL)) (-2042 (((-635 (-939 |#1|)) (-1253 $)) NIL) (((-635 (-939 |#1|))) NIL)) (-2729 (($ $ $) NIL)) (-1866 (((-112)) 84)) (-4353 (((-857) $) 69) (($ (-1253 |#1|)) 22)) (-2162 (((-1253 $)) 45)) (-1851 (((-635 (-1253 |#1|))) NIL (|has| |#1| (-554)))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) 82)) (-2927 (($ (-682 |#1|) $) 18)) (-2728 (($ $ $) NIL)) (-1865 (((-112)) 85)) (-1863 (((-112)) 83)) (-1859 (((-112)) 81)) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1132 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-641 (-1132 |#2| |#1|)) (-10 -8 (-15 -4353 ($ (-1253 |#1|))))) (-362) (-912) (-635 (-1166)) (-1253 (-682 |#1|))) (T -44)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-14 *6 (-1253 (-682 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-912)) (-14 *5 (-635 (-1166)))))) -(-13 (-417 |#1|) (-641 (-1132 |#2| |#1|)) (-10 -8 (-15 -4353 ($ (-1253 |#1|))))) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-3806 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4201 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4203 (($ $) NIL)) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401))) (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-1874 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844))))) (-3292 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-3408 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) 27 (|has| $ (-6 -4401)))) (-4192 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-4195 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 29 (|has| $ (-6 -4401)))) (-4194 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-1220 (-544)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #1="last" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #3="first" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #4="value" (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4202 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2353 (((-3 |#2| #5="failed") |#1| $) 37)) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-4205 (($ $ (-765)) NIL) (($ $) 24)) (-2498 (($ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #5#) |#1| $) 47) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-3823 (((-544) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) (((-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 18 (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 18 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-4021 (($ (-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844))) (((-544) $) 32 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3241 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3917 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844))) (((-544) $) 34 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-3941 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) 41 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4204 (($ $ (-765)) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2789 (((-635 |#1|) $) 20)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2421 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 |#1|) $) NIL) (((-635 (-544)) $) NIL)) (-2350 (((-112) |#1| $) NIL) (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844))) (($ $ (-765)) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 23)) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) #6#) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-3847 (((-112) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-2351 (((-635 |#2|) $) NIL) (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 17)) (-3807 (((-112) $) 16)) (-3972 (($) 13)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ (-544)) NIL) (($ $ (-1220 (-544))) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #3#) NIL) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $ #4#) NIL)) (-3412 (((-544) $ $) NIL)) (-1550 (($) 12) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-1660 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4040 (((-112) $) NIL)) (-4198 (($ $) NIL)) (-4196 (($ $) NIL (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4197 (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL) (($ $ $) NIL)) (-4208 (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL) (($ (-635 $)) NIL) (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 25) (($ $ $) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-1295 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") |#1| $) 43)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-3066 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-844)))) (-4364 (((-765) $) 22 (|has| $ (-6 -4400))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1091) (-1091)) (T -45)) +(-13 (-1044) (-712 |t#1|) (-612 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) . T) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-2176 (((-417 |#1|) |#1|) 41)) (-1635 (((-417 |#1|) |#1|) 30) (((-417 |#1|) |#1| (-639 (-48))) 33)) (-3461 (((-112) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1| (-639 (-48)))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -2176 ((-417 |#1|) |#1|)) (-15 -3461 ((-112) |#1|))) (-1232 (-48))) (T -39)) +((-3461 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) (-2176 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48)))))) +(-10 -7 (-15 -1635 ((-417 |#1|) |#1| (-639 (-48)))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -2176 ((-417 |#1|) |#1|)) (-15 -3461 ((-112) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3971 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-2796 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4370 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1636 (((-683 (-406 |#2|)) (-1256 $)) NIL) (((-683 (-406 |#2|))) NIL)) (-1748 (((-406 |#2|) $) NIL)) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-406 |#2|) (-348)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2921 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2569 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1382 (((-766)) NIL (|has| (-406 |#2|) (-367)))) (-2083 (((-112)) NIL)) (-3797 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| (-406 |#2|) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| (-406 |#2|) (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-406 |#2|) $) NIL)) (-4018 (($ (-1256 (-406 |#2|)) (-1256 $)) NIL) (($ (-1256 (-406 |#2|))) 57) (($ (-1256 |#2|) |#2|) 125)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1811 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1958 (((-683 (-406 |#2|)) $ (-1256 $)) NIL) (((-683 (-406 |#2|)) $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-406 |#2|))) (|:| |vec| (-1256 (-406 |#2|)))) (-683 $) (-1256 $)) NIL) (((-683 (-406 |#2|)) (-683 $)) NIL)) (-2435 (((-1256 $) (-1256 $)) NIL)) (-1955 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3668 (((-3 $ "failed") $) NIL)) (-2753 (((-639 (-639 |#1|))) NIL (|has| |#1| (-367)))) (-1877 (((-112) |#1| |#1|) NIL)) (-2173 (((-916)) NIL)) (-1448 (($) NIL (|has| (-406 |#2|) (-367)))) (-4240 (((-112)) NIL)) (-2792 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1787 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| (-406 |#2|) (-362)))) (-1498 (($ $) NIL)) (-3529 (($) NIL (|has| (-406 |#2|) (-348)))) (-1322 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-3589 (($ $ (-766)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-2717 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1900 (((-916) $) NIL (|has| (-406 |#2|) (-348))) (((-828 (-916)) $) NIL (|has| (-406 |#2|) (-348)))) (-1957 (((-112) $) NIL)) (-3684 (((-766)) NIL)) (-2142 (((-1256 $) (-1256 $)) 102)) (-2247 (((-406 |#2|) $) NIL)) (-1336 (((-639 (-947 |#1|)) (-1168)) NIL (|has| |#1| (-362)))) (-3699 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1565 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-1999 (((-916) $) NIL (|has| (-406 |#2|) (-367)))) (-1943 ((|#3| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2913 (((-1150) $) NIL)) (-2122 (((-1261) (-766)) 79)) (-2452 (((-683 (-406 |#2|))) 51)) (-4245 (((-683 (-406 |#2|))) 44)) (-1525 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2679 (($ (-1256 |#2|) |#2|) 126)) (-2696 (((-683 (-406 |#2|))) 45)) (-3933 (((-683 (-406 |#2|))) 43)) (-2979 (((-2 (|:| |num| (-683 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-4270 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 64)) (-2980 (((-1256 $)) 42)) (-3826 (((-1256 $)) 41)) (-4346 (((-112) $) NIL)) (-2472 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3729 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2466 (($ (-916)) NIL (|has| (-406 |#2|) (-367)))) (-2676 (((-3 |#2| "failed")) NIL)) (-1709 (((-1112) $) NIL)) (-2116 (((-766)) NIL)) (-3148 (($) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| (-406 |#2|) (-362)))) (-1606 (($ (-639 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| (-406 |#2|) (-348)))) (-1635 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1577 (((-766) $) NIL (|has| (-406 |#2|) (-362)))) (-2343 ((|#1| $ |#1| |#1|) NIL)) (-3441 (((-3 |#2| "failed")) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2455 (((-406 |#2|) (-1256 $)) NIL) (((-406 |#2|)) 39)) (-3362 (((-766) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-766) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-4029 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-3187 (((-683 (-406 |#2|)) (-1256 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-2096 ((|#3|) 50)) (-2283 (($) NIL (|has| (-406 |#2|) (-348)))) (-3593 (((-1256 (-406 |#2|)) $ (-1256 $)) NIL) (((-683 (-406 |#2|)) (-1256 $) (-1256 $)) NIL) (((-1256 (-406 |#2|)) $) 58) (((-683 (-406 |#2|)) (-1256 $)) 103)) (-4208 (((-1256 (-406 |#2|)) $) NIL) (($ (-1256 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-406 |#2|) (-348)))) (-1624 (((-1256 $) (-1256 $)) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| (-406 |#2|) (-1033 (-406 (-562)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2805 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-3376 ((|#3| $) NIL)) (-2579 (((-766)) NIL)) (-1946 (((-112)) 37)) (-1719 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-3928 (((-1256 $)) 93)) (-2922 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-4193 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2386 (((-112)) NIL)) (-2286 (($) 16 T CONST)) (-2294 (($) 26 T CONST)) (-3114 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-562)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-562))) NIL (|has| (-406 |#2|) (-362))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -2122 ((-1261) (-766))))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) |#3|) (T -40)) +((-2122 (*1 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-362)) (-4 *5 (-1232 *4)) (-5 *2 (-1261)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1232 (-406 *5))) (-14 *7 *6)))) +(-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -2122 ((-1261) (-766))))) +((-1783 ((|#2| |#2|) 48)) (-2061 ((|#2| |#2|) 119 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-451)) (|has| |#1| (-845)) (|has| |#1| (-1033 (-562)))))) (-1652 ((|#2| |#2|) 86 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-451)) (|has| |#1| (-845)) (|has| |#1| (-1033 (-562)))))) (-2217 ((|#2| |#2|) 87 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-451)) (|has| |#1| (-845)) (|has| |#1| (-1033 (-562)))))) (-3296 ((|#2| (-114) |#2| (-766)) 115 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-451)) (|has| |#1| (-845)) (|has| |#1| (-1033 (-562)))))) (-4158 (((-1164 |#2|) |#2|) 45)) (-3609 ((|#2| |#2| (-639 (-608 |#2|))) 18) ((|#2| |#2| (-639 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1783 (|#2| |#2|)) (-15 -3609 (|#2| |#2|)) (-15 -3609 (|#2| |#2| |#2|)) (-15 -3609 (|#2| |#2| (-639 |#2|))) (-15 -3609 (|#2| |#2| (-639 (-608 |#2|)))) (-15 -4158 ((-1164 |#2|) |#2|)) (IF (|has| |#1| (-845)) (IF (|has| |#1| (-451)) (IF (|has| |#1| (-1033 (-562))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -2217 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -2061 (|#2| |#2|)) (-15 -3296 (|#2| (-114) |#2| (-766)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-554) (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 |#1| (-608 $)) $)) (-15 -4076 ((-1117 |#1| (-608 $)) $)) (-15 -4054 ($ (-1117 |#1| (-608 $))))))) (T -41)) +((-3296 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-766)) (-4 *5 (-451)) (-4 *5 (-845)) (-4 *5 (-1033 (-562))) (-4 *5 (-554)) (-5 *1 (-41 *5 *2)) (-4 *2 (-429 *5)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *5 (-608 $)) $)) (-15 -4076 ((-1117 *5 (-608 $)) $)) (-15 -4054 ($ (-1117 *5 (-608 $))))))))) (-2061 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) (-15 -4076 ((-1117 *3 (-608 $)) $)) (-15 -4054 ($ (-1117 *3 (-608 $))))))))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) (-15 -4076 ((-1117 *3 (-608 $)) $)) (-15 -4054 ($ (-1117 *3 (-608 $))))))))) (-2217 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) (-15 -4076 ((-1117 *3 (-608 $)) $)) (-15 -4054 ($ (-1117 *3 (-608 $))))))))) (-4158 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-1164 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *4 (-608 $)) $)) (-15 -4076 ((-1117 *4 (-608 $)) $)) (-15 -4054 ($ (-1117 *4 (-608 $))))))))) (-3609 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-608 *2))) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *4 (-608 $)) $)) (-15 -4076 ((-1117 *4 (-608 $)) $)) (-15 -4054 ($ (-1117 *4 (-608 $))))))) (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) (-3609 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *4 (-608 $)) $)) (-15 -4076 ((-1117 *4 (-608 $)) $)) (-15 -4054 ($ (-1117 *4 (-608 $))))))) (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) (-3609 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) (-15 -4076 ((-1117 *3 (-608 $)) $)) (-15 -4054 ($ (-1117 *3 (-608 $))))))))) (-3609 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) (-15 -4076 ((-1117 *3 (-608 $)) $)) (-15 -4054 ($ (-1117 *3 (-608 $))))))))) (-1783 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) (-15 -4076 ((-1117 *3 (-608 $)) $)) (-15 -4054 ($ (-1117 *3 (-608 $)))))))))) +(-10 -7 (-15 -1783 (|#2| |#2|)) (-15 -3609 (|#2| |#2|)) (-15 -3609 (|#2| |#2| |#2|)) (-15 -3609 (|#2| |#2| (-639 |#2|))) (-15 -3609 (|#2| |#2| (-639 (-608 |#2|)))) (-15 -4158 ((-1164 |#2|) |#2|)) (IF (|has| |#1| (-845)) (IF (|has| |#1| (-451)) (IF (|has| |#1| (-1033 (-562))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -2217 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -2061 (|#2| |#2|)) (-15 -3296 (|#2| (-114) |#2| (-766)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1635 (((-417 (-1164 |#3|)) (-1164 |#3|) (-639 (-48))) 23) (((-417 |#3|) |#3| (-639 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1635 ((-417 |#3|) |#3| (-639 (-48)))) (-15 -1635 ((-417 (-1164 |#3|)) (-1164 |#3|) (-639 (-48))))) (-845) (-788) (-944 (-48) |#2| |#1|)) (T -42)) +((-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-48))) (-4 *5 (-845)) (-4 *6 (-788)) (-4 *7 (-944 (-48) *6 *5)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-48))) (-4 *5 (-845)) (-4 *6 (-788)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-944 (-48) *6 *5))))) +(-10 -7 (-15 -1635 ((-417 |#3|) |#3| (-639 (-48)))) (-15 -1635 ((-417 (-1164 |#3|)) (-1164 |#3|) (-639 (-48))))) +((-2039 (((-766) |#2|) 65)) (-1750 (((-766) |#2|) 68)) (-3136 (((-639 |#2|)) 33)) (-2194 (((-766) |#2|) 67)) (-1832 (((-766) |#2|) 64)) (-1975 (((-766) |#2|) 66)) (-4381 (((-639 (-683 |#1|))) 60)) (-1621 (((-639 |#2|)) 55)) (-3990 (((-639 |#2|) |#2|) 43)) (-3166 (((-639 |#2|)) 57)) (-1364 (((-639 |#2|)) 56)) (-2628 (((-639 (-683 |#1|))) 48)) (-2784 (((-639 |#2|)) 54)) (-2205 (((-639 |#2|) |#2|) 42)) (-2473 (((-639 |#2|)) 50)) (-3704 (((-639 (-683 |#1|))) 61)) (-3941 (((-639 |#2|)) 59)) (-3928 (((-1256 |#2|) (-1256 |#2|)) 83 (|has| |#1| (-306))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -2194 ((-766) |#2|)) (-15 -1750 ((-766) |#2|)) (-15 -1832 ((-766) |#2|)) (-15 -2039 ((-766) |#2|)) (-15 -1975 ((-766) |#2|)) (-15 -2473 ((-639 |#2|))) (-15 -2205 ((-639 |#2|) |#2|)) (-15 -3990 ((-639 |#2|) |#2|)) (-15 -2784 ((-639 |#2|))) (-15 -1621 ((-639 |#2|))) (-15 -1364 ((-639 |#2|))) (-15 -3166 ((-639 |#2|))) (-15 -3941 ((-639 |#2|))) (-15 -2628 ((-639 (-683 |#1|)))) (-15 -4381 ((-639 (-683 |#1|)))) (-15 -3704 ((-639 (-683 |#1|)))) (-15 -3136 ((-639 |#2|))) (IF (|has| |#1| (-306)) (-15 -3928 ((-1256 |#2|) (-1256 |#2|))) |%noBranch|)) (-554) (-416 |#1|)) (T -43)) +((-3928 (*1 *2 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-43 *3 *4)))) (-3136 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3704 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-4381 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2628 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3941 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3166 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1364 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1621 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2784 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3990 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2205 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2473 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1975 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2039 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1832 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-1750 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4))))) +(-10 -7 (-15 -2194 ((-766) |#2|)) (-15 -1750 ((-766) |#2|)) (-15 -1832 ((-766) |#2|)) (-15 -2039 ((-766) |#2|)) (-15 -1975 ((-766) |#2|)) (-15 -2473 ((-639 |#2|))) (-15 -2205 ((-639 |#2|) |#2|)) (-15 -3990 ((-639 |#2|) |#2|)) (-15 -2784 ((-639 |#2|))) (-15 -1621 ((-639 |#2|))) (-15 -1364 ((-639 |#2|))) (-15 -3166 ((-639 |#2|))) (-15 -3941 ((-639 |#2|))) (-15 -2628 ((-639 (-683 |#1|)))) (-15 -4381 ((-639 (-683 |#1|)))) (-15 -3704 ((-639 (-683 |#1|)))) (-15 -3136 ((-639 |#2|))) (IF (|has| |#1| (-306)) (-15 -3928 ((-1256 |#2|) (-1256 |#2|))) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3931 (((-3 $ "failed")) NIL (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1902 (((-1256 (-683 |#1|)) (-1256 $)) NIL) (((-1256 (-683 |#1|))) 24)) (-3655 (((-1256 $)) 51)) (-1800 (($) NIL T CONST)) (-2874 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL (|has| |#1| (-554)))) (-2117 (((-3 $ "failed")) NIL (|has| |#1| (-554)))) (-4356 (((-683 |#1|) (-1256 $)) NIL) (((-683 |#1|)) NIL)) (-2422 ((|#1| $) NIL)) (-2966 (((-683 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) $) NIL)) (-2545 (((-3 $ "failed") $) NIL (|has| |#1| (-554)))) (-3407 (((-1164 (-947 |#1|))) NIL (|has| |#1| (-362)))) (-1379 (($ $ (-916)) NIL)) (-2355 ((|#1| $) NIL)) (-3474 (((-1164 |#1|) $) NIL (|has| |#1| (-554)))) (-2819 ((|#1| (-1256 $)) NIL) ((|#1|) NIL)) (-2964 (((-1164 |#1|) $) NIL)) (-2380 (((-112)) 87)) (-4018 (($ (-1256 |#1|) (-1256 $)) NIL) (($ (-1256 |#1|)) NIL)) (-3668 (((-3 $ "failed") $) 14 (|has| |#1| (-554)))) (-2173 (((-916)) 52)) (-1321 (((-112)) NIL)) (-3650 (($ $ (-916)) NIL)) (-3813 (((-112)) NIL)) (-3375 (((-112)) NIL)) (-4258 (((-112)) 89)) (-1681 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL (|has| |#1| (-554)))) (-3700 (((-3 $ "failed")) NIL (|has| |#1| (-554)))) (-3025 (((-683 |#1|) (-1256 $)) NIL) (((-683 |#1|)) NIL)) (-4153 ((|#1| $) NIL)) (-1671 (((-683 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) $) NIL)) (-4238 (((-3 $ "failed") $) NIL (|has| |#1| (-554)))) (-2743 (((-1164 (-947 |#1|))) NIL (|has| |#1| (-362)))) (-2991 (($ $ (-916)) NIL)) (-1680 ((|#1| $) NIL)) (-2026 (((-1164 |#1|) $) NIL (|has| |#1| (-554)))) (-1305 ((|#1| (-1256 $)) NIL) ((|#1|) NIL)) (-2670 (((-1164 |#1|) $) NIL)) (-2090 (((-112)) 86)) (-2913 (((-1150) $) NIL)) (-2144 (((-112)) 93)) (-2580 (((-112)) 92)) (-2809 (((-112)) 94)) (-1709 (((-1112) $) NIL)) (-4323 (((-112)) 88)) (-2343 ((|#1| $ (-562)) 54)) (-3593 (((-1256 |#1|) $ (-1256 $)) 48) (((-683 |#1|) (-1256 $) (-1256 $)) NIL) (((-1256 |#1|) $) 28) (((-683 |#1|) (-1256 $)) NIL)) (-4208 (((-1256 |#1|) $) NIL) (($ (-1256 |#1|)) NIL)) (-4136 (((-639 (-947 |#1|)) (-1256 $)) NIL) (((-639 (-947 |#1|))) NIL)) (-1911 (($ $ $) NIL)) (-1396 (((-112)) 84)) (-4054 (((-857) $) 69) (($ (-1256 |#1|)) 22)) (-3928 (((-1256 $)) 45)) (-3553 (((-639 (-1256 |#1|))) NIL (|has| |#1| (-554)))) (-2436 (($ $ $ $) NIL)) (-2850 (((-112)) 82)) (-1360 (($ (-683 |#1|) $) 18)) (-3626 (($ $ $) NIL)) (-1981 (((-112)) 85)) (-3199 (((-112)) 83)) (-4114 (((-112)) 81)) (-2286 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1134 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-416 |#1|) (-642 (-1134 |#2| |#1|)) (-10 -8 (-15 -4054 ($ (-1256 |#1|))))) (-362) (-916) (-639 (-1168)) (-1256 (-683 |#1|))) (T -44)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-362)) (-14 *6 (-1256 (-683 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-916)) (-14 *5 (-639 (-1168)))))) +(-13 (-416 |#1|) (-642 (-1134 |#2| |#1|)) (-10 -8 (-15 -4054 ($ (-1256 |#1|))))) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-2534 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-2359 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-3121 (($ $) NIL)) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-3052 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4403))) (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-2254 (($ $ (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-3381 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845))))) (-1395 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-1512 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4403)))) (-3012 (($ $ $) 27 (|has| $ (-6 -4403)))) (-3950 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4403)))) (-2687 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 29 (|has| $ (-6 -4403)))) (-4200 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-1223 (-562)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "last" (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4403))) (($ $ "rest" $) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "first" (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "value" (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-2350 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-1472 (((-3 |#2| "failed") |#1| $) 37)) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1434 (($ $ (-766)) NIL) (($ $) 24)) (-4354 (($ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) NIL) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) NIL)) (-3266 (((-112) $) NIL)) (-4264 (((-562) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (((-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) (((-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 18 (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402))) (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 18 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1458 (($ (-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 ((|#1| $) NIL (|has| |#1| (-845))) (((-562) $) 32 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-2673 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1610 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402))) (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-3874 ((|#1| $) NIL (|has| |#1| (-845))) (((-562) $) 34 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-3716 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-4007 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-3449 (((-112) $) NIL)) (-2913 (((-1150) $) 41 (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1504 (($ $ (-766)) NIL) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-1520 (((-639 |#1|) $) 20)) (-4265 (((-112) |#1| $) NIL)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL) (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3297 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 |#1|) $) NIL) (((-639 (-562)) $) NIL)) (-1570 (((-112) |#1| $) NIL) (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845))) (($ $ (-766)) NIL) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 23)) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-2017 (((-112) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-2411 (((-639 |#2|) $) NIL) (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 17)) (-2974 (((-112) $) 16)) (-4307 (($) 13)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ (-562)) NIL) (($ $ (-1223 (-562))) NIL) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "first") NIL) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $ "value") NIL)) (-2568 (((-562) $ $) NIL)) (-3564 (($) 12) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-2878 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-2424 (((-112) $) NIL)) (-2613 (($ $) NIL)) (-4327 (($ $) NIL (|has| $ (-6 -4403)))) (-2296 (((-766) $) NIL)) (-3913 (($ $) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-4142 (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL) (($ $ $) NIL)) (-2767 (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL) (($ (-639 $)) NIL) (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 25) (($ $ $) NIL)) (-4054 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1515 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") |#1| $) 43)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1785 (((-112) $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-1759 (((-112) $ $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-845)))) (-3492 (((-766) $) 22 (|has| $ (-6 -4402))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1092) (-1092)) (T -45)) NIL (-36 |#1| |#2|) -((-4344 (((-112) $) 12)) (-4365 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-406 (-544)) $) 25) (($ $ (-406 (-544))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4344 ((-112) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-47 |#2| |#3|) (-1042) (-786)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4344 ((-112) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| |#2|) 64)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-4355 ((|#2| $) 67)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-4084 ((|#1| $ |#2|) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544))))))) -(((-47 |#1| |#2|) (-139) (-1042) (-786)) (T -47)) -((-3575 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-3277 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) (-3276 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-4084 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-362))))) -(-13 (-1042) (-111 |t#1| |t#1|) (-10 -8 (-15 -3575 (|t#1| $)) (-15 -3277 ($ $)) (-15 -4355 (|t#2| $)) (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (-15 -4344 ((-112) $)) (-15 -3276 ($ |t#1| |t#2|)) (-15 -4366 ($ $)) (-15 -4084 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-362)) (-15 -4356 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-6 (-171)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-554)) (-6 (-554)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-544)))) (-6 (-38 (-406 (-544)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-1695 (((-635 $) (-1160 $) (-1166)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-939 $)) NIL)) (-1287 (($ (-1160 $) (-1166)) NIL) (($ (-1160 $)) NIL) (($ (-939 $)) NIL)) (-3589 (((-112) $) 11)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1688 (((-635 (-606 $)) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-1288 (((-635 $) (-1160 $) (-1166)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-939 $)) NIL)) (-3584 (($ (-1160 $) (-1166)) NIL) (($ (-1160 $)) NIL) (($ (-939 $)) NIL)) (-3558 (((-3 (-606 $) #1="failed") $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 (-406 (-544)) #1#) $) NIL)) (-3557 (((-606 $) $) NIL) (((-544) $) NIL) (((-406 (-544)) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-406 (-544)))) (|:| |vec| (-1253 (-406 (-544))))) (-682 $) (-1253 $)) NIL) (((-682 (-406 (-544))) (-682 $)) NIL)) (-4249 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2952 (($ $) NIL) (($ (-635 $)) NIL)) (-1687 (((-635 (-113)) $) NIL)) (-3430 (((-113) (-113)) NIL)) (-2545 (((-112) $) 14)) (-3055 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-3381 (((-1115 (-544) (-606 $)) $) NIL)) (-3394 (($ $ (-544)) NIL)) (-3517 (((-1160 $) (-1160 $) (-606 $)) NIL) (((-1160 $) (-1160 $) (-635 (-606 $))) NIL) (($ $ (-606 $)) NIL) (($ $ (-635 (-606 $))) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-1685 (((-1160 $) (-606 $)) NIL (|has| $ (-1042)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 $ $) (-606 $)) NIL)) (-1690 (((-3 (-606 $) "failed") $) NIL)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-1689 (((-635 (-606 $)) $) NIL)) (-2356 (($ (-113) $) NIL) (($ (-113) (-635 $)) NIL)) (-3013 (((-112) $ (-113)) NIL) (((-112) $ (-1166)) NIL)) (-2779 (($ $) NIL)) (-2982 (((-765) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1686 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1732 (((-765) $) NIL)) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-3380 (((-1115 (-544) (-606 $)) $) NIL)) (-3586 (($ $) NIL (|has| $ (-1042)))) (-4377 (((-377) $) NIL) (((-224) $) NIL) (((-167 (-377)) $) NIL)) (-4353 (((-857) $) NIL) (($ (-606 $)) NIL) (($ (-406 (-544))) NIL) (($ $) NIL) (($ (-544)) NIL) (($ (-1115 (-544) (-606 $))) NIL)) (-3511 (((-765)) NIL)) (-2969 (($ $) NIL) (($ (-635 $)) NIL)) (-2377 (((-112) (-113)) NIL)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 7 T CONST)) (-3046 (($) 12 T CONST)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 16)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $ $) 15) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-406 (-544))) NIL) (($ $ (-544)) NIL) (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ $ $) NIL) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL))) -(((-48) (-13 (-297) (-27) (-1031 (-544)) (-1031 (-406 (-544))) (-634 (-544)) (-1013) (-634 (-406 (-544))) (-146) (-609 (-167 (-377))) (-232) (-10 -8 (-15 -4353 ($ (-1115 (-544) (-606 $)))) (-15 -3381 ((-1115 (-544) (-606 $)) $)) (-15 -3380 ((-1115 (-544) (-606 $)) $)) (-15 -4249 ($ $)) (-15 -3517 ((-1160 $) (-1160 $) (-606 $))) (-15 -3517 ((-1160 $) (-1160 $) (-635 (-606 $)))) (-15 -3517 ($ $ (-606 $))) (-15 -3517 ($ $ (-635 (-606 $))))))) (T -48)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48)))) (-4249 (*1 *1 *1) (-5 *1 (-48))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-48))) (-5 *3 (-606 (-48))) (-5 *1 (-48)))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-48))) (-5 *3 (-635 (-606 (-48)))) (-5 *1 (-48)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-48))) (-5 *1 (-48)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-606 (-48)))) (-5 *1 (-48))))) -(-13 (-297) (-27) (-1031 (-544)) (-1031 (-406 (-544))) (-634 (-544)) (-1013) (-634 (-406 (-544))) (-146) (-609 (-167 (-377))) (-232) (-10 -8 (-15 -4353 ($ (-1115 (-544) (-606 $)))) (-15 -3381 ((-1115 (-544) (-606 $)) $)) (-15 -3380 ((-1115 (-544) (-606 $)) $)) (-15 -4249 ($ $)) (-15 -3517 ((-1160 $) (-1160 $) (-606 $))) (-15 -3517 ((-1160 $) (-1160 $) (-635 (-606 $)))) (-15 -3517 ($ $ (-606 $))) (-15 -3517 ($ $ (-635 (-606 $)))))) -((-2947 (((-112) $ $) NIL)) (-2088 (((-635 (-1166)) $) 17)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 7)) (-3634 (((-1171) $) 18)) (-3437 (((-112) $ $) NIL))) -(((-49) (-13 (-1091) (-10 -8 (-15 -2088 ((-635 (-1166)) $)) (-15 -3634 ((-1171) $))))) (T -49)) -((-2088 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-49)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-49))))) -(-13 (-1091) (-10 -8 (-15 -2088 ((-635 (-1166)) $)) (-15 -3634 ((-1171) $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 61)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3044 (((-112) $) 20)) (-3558 (((-3 |#1| "failed") $) 23)) (-3557 ((|#1| $) 24)) (-4366 (($ $) 28)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3575 ((|#1| $) 21)) (-1540 (($ $) 50)) (-3643 (((-1148) $) NIL)) (-1539 (((-112) $) 30)) (-3644 (((-1110) $) NIL)) (-2544 (($ (-765)) 48)) (-4350 (($ (-635 (-544))) 49)) (-4355 (((-765) $) 31)) (-4353 (((-857) $) 64) (($ (-544)) 45) (($ |#1|) 43)) (-4084 ((|#1| $ $) 19)) (-3511 (((-765)) 47)) (-3040 (($) 32 T CONST)) (-3046 (($) 14 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 40)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-50 |#1| |#2|) (-13 (-616 |#1|) (-1031 |#1|) (-10 -8 (-15 -3575 (|#1| $)) (-15 -1540 ($ $)) (-15 -4366 ($ $)) (-15 -4084 (|#1| $ $)) (-15 -2544 ($ (-765))) (-15 -4350 ($ (-635 (-544)))) (-15 -1539 ((-112) $)) (-15 -3044 ((-112) $)) (-15 -4355 ((-765) $)) (-15 -4365 ($ (-1 |#1| |#1|) $)))) (-1042) (-635 (-1166))) (T -50)) -((-3575 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1166))))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166))))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166))))) (-4084 (*1 *2 *1 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1166))))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-4350 (*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) (-14 *4 (-635 (-1166))))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-50 *3 *4)) (-14 *4 (-635 (-1166)))))) -(-13 (-616 |#1|) (-1031 |#1|) (-10 -8 (-15 -3575 (|#1| $)) (-15 -1540 ($ $)) (-15 -4366 ($ $)) (-15 -4084 (|#1| $ $)) (-15 -2544 ($ (-765))) (-15 -4350 ($ (-635 (-544)))) (-15 -1539 ((-112) $)) (-15 -3044 ((-112) $)) (-15 -4355 ((-765) $)) (-15 -4365 ($ (-1 |#1| |#1|) $)))) -((-2947 (((-112) $ $) NIL)) (-1322 (((-1148) (-112)) 25)) (-1325 (((-857) $) 24)) (-1323 (((-767) $) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1326 (((-857) $) 16)) (-1324 (((-1093) $) 14)) (-4353 (((-857) $) 32)) (-1327 (($ (-1093) (-767)) 33)) (-3437 (((-112) $ $) 18))) -(((-51) (-13 (-1091) (-10 -8 (-15 -1327 ($ (-1093) (-767))) (-15 -1326 ((-857) $)) (-15 -1325 ((-857) $)) (-15 -1324 ((-1093) $)) (-15 -1323 ((-767) $)) (-15 -1322 ((-1148) (-112)))))) (T -51)) -((-1327 (*1 *1 *2 *3) (-12 (-5 *2 (-1093)) (-5 *3 (-767)) (-5 *1 (-51)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-51)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-51)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-51)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-51)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1148)) (-5 *1 (-51))))) -(-13 (-1091) (-10 -8 (-15 -1327 ($ (-1093) (-767))) (-15 -1326 ((-857) $)) (-15 -1325 ((-857) $)) (-15 -1324 ((-1093) $)) (-15 -1323 ((-767) $)) (-15 -1322 ((-1148) (-112))))) -((-3044 (((-112) (-51)) 13)) (-3558 (((-3 |#1| "failed") (-51)) 21)) (-3557 ((|#1| (-51)) 22)) (-4353 (((-51) |#1|) 18))) -(((-52 |#1|) (-10 -7 (-15 -4353 ((-51) |#1|)) (-15 -3558 ((-3 |#1| "failed") (-51))) (-15 -3044 ((-112) (-51))) (-15 -3557 (|#1| (-51)))) (-1204)) (T -52)) -((-3557 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1204)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1204)))) (-3558 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1204)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1204))))) -(-10 -7 (-15 -4353 ((-51) |#1|)) (-15 -3558 ((-3 |#1| "failed") (-51))) (-15 -3044 ((-112) (-51))) (-15 -3557 (|#1| (-51)))) -((-2927 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2927 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1042) (-641 |#1|) (-846 |#1|)) (T -53)) -((-2927 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-641 *5)) (-4 *5 (-1042)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-846 *5))))) -(-10 -7 (-15 -2927 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1329 ((|#3| |#3| (-635 (-1166))) 35)) (-1328 ((|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3| (-912)) 22) ((|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3|) 20))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1328 (|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3|)) (-15 -1328 (|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3| (-912))) (-15 -1329 (|#3| |#3| (-635 (-1166))))) (-1091) (-13 (-1042) (-879 |#1|) (-844) (-609 (-883 |#1|))) (-13 (-420 |#2|) (-879 |#1|) (-609 (-883 |#1|)))) (T -54)) -((-1329 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))) (-1328 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-635 (-1065 *5 *6 *2))) (-5 *4 (-912)) (-4 *5 (-1091)) (-4 *6 (-13 (-1042) (-879 *5) (-844) (-609 (-883 *5)))) (-4 *2 (-13 (-420 *6) (-879 *5) (-609 (-883 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1328 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-1065 *4 *5 *2))) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1328 (|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3|)) (-15 -1328 (|#3| (-635 (-1065 |#1| |#2| |#3|)) |#3| (-912))) (-15 -1329 (|#3| |#3| (-635 (-1166))))) -((-2947 (((-112) $ $) NIL)) (-3558 (((-3 (-765) "failed") $) 22)) (-3557 (((-765) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) 9)) (-4353 (((-857) $) 16) (($ (-765)) 20)) (-1330 (($) 7 T CONST)) (-3437 (((-112) $ $) 11))) -(((-55) (-13 (-1091) (-1031 (-765)) (-10 -8 (-15 -1330 ($) -4359)))) (T -55)) -((-1330 (*1 *1) (-5 *1 (-55)))) -(-13 (-1091) (-1031 (-765)) (-10 -8 (-15 -1330 ($) -4359))) -((-1293 (((-112) $ (-765)) 23)) (-1332 (($ $ (-544) |#3|) 47)) (-1331 (($ $ (-544) |#4|) 51)) (-3497 ((|#3| $ (-544)) 60)) (-2096 (((-635 |#2|) $) 30)) (-4126 (((-112) $ (-765)) 25)) (-3646 (((-112) |#2| $) 55)) (-2100 (($ (-1 |#2| |#2|) $) 38)) (-4365 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-4123 (((-112) $ (-765)) 24)) (-2345 (($ $ |#2|) 35)) (-2098 (((-112) (-1 (-112) |#2|) $) 19)) (-4206 ((|#2| $ (-544) (-544)) NIL) ((|#2| $ (-544) (-544) |#2|) 27)) (-2097 (((-765) (-1 (-112) |#2|) $) 28) (((-765) |#2| $) 57)) (-3804 (($ $) 34)) (-3496 ((|#4| $ (-544)) 63)) (-4353 (((-857) $) 69)) (-2099 (((-112) (-1 (-112) |#2|) $) 18)) (-3437 (((-112) $ $) 54)) (-4364 (((-765) $) 26))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1331 (|#1| |#1| (-544) |#4|)) (-15 -1332 (|#1| |#1| (-544) |#3|)) (-15 -2096 ((-635 |#2|) |#1|)) (-15 -3496 (|#4| |#1| (-544))) (-15 -3497 (|#3| |#1| (-544))) (-15 -4206 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544))) (-15 -2345 (|#1| |#1| |#2|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -3646 ((-112) |#2| |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))) (-15 -3804 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1204) (-371 |#2|) (-371 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1331 (|#1| |#1| (-544) |#4|)) (-15 -1332 (|#1| |#1| (-544) |#3|)) (-15 -2096 ((-635 |#2|) |#1|)) (-15 -3496 (|#4| |#1| (-544))) (-15 -3497 (|#3| |#1| (-544))) (-15 -4206 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544))) (-15 -2345 (|#1| |#1| |#2|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -3646 ((-112) |#2| |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765))) (-15 -3804 (|#1| |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) (-544) |#1|) 44)) (-1332 (($ $ (-544) |#2|) 42)) (-1331 (($ $ (-544) |#3|) 41)) (-4131 (($) 7 T CONST)) (-3497 ((|#2| $ (-544)) 46)) (-1665 ((|#1| $ (-544) (-544) |#1|) 43)) (-3498 ((|#1| $ (-544) (-544)) 48)) (-2096 (((-635 |#1|) $) 30)) (-3500 (((-765) $) 51)) (-4021 (($ (-765) (-765) |#1|) 57)) (-3499 (((-765) $) 50)) (-4126 (((-112) $ (-765)) 9)) (-3504 (((-544) $) 55)) (-3502 (((-544) $) 53)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3503 (((-544) $) 54)) (-3501 (((-544) $) 52)) (-2100 (($ (-1 |#1| |#1|) $) 34)) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) 56)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) (-544)) 49) ((|#1| $ (-544) (-544) |#1|) 47)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-3496 ((|#3| $ (-544)) 45)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-57 |#1| |#2| |#3|) (-139) (-1204) (-371 |t#1|) (-371 |t#1|)) (T -57)) -((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4021 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-765)) (-4 *3 (-1204)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2345 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-544)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-544)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-544)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-544)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-765)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-765)))) (-4206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-1204)))) (-3498 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1204)) (-4 *5 (-371 *4)) (-4 *2 (-371 *4)))) (-3496 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1204)) (-4 *5 (-371 *4)) (-4 *2 (-371 *4)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-635 *3)))) (-4194 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)))) (-1665 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2)) (-4 *5 (-371 *2)))) (-1332 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-544)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-371 *4)) (-4 *5 (-371 *4)))) (-1331 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-544)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1204)) (-4 *5 (-371 *4)) (-4 *3 (-371 *4)))) (-2100 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4365 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4365 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3))))) -(-13 (-487 |t#1|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -4021 ($ (-765) (-765) |t#1|)) (-15 -2345 ($ $ |t#1|)) (-15 -3504 ((-544) $)) (-15 -3503 ((-544) $)) (-15 -3502 ((-544) $)) (-15 -3501 ((-544) $)) (-15 -3500 ((-765) $)) (-15 -3499 ((-765) $)) (-15 -4206 (|t#1| $ (-544) (-544))) (-15 -3498 (|t#1| $ (-544) (-544))) (-15 -4206 (|t#1| $ (-544) (-544) |t#1|)) (-15 -3497 (|t#2| $ (-544))) (-15 -3496 (|t#3| $ (-544))) (-15 -2096 ((-635 |t#1|) $)) (-15 -4194 (|t#1| $ (-544) (-544) |t#1|)) (-15 -1665 (|t#1| $ (-544) (-544) |t#1|)) (-15 -1332 ($ $ (-544) |t#2|)) (-15 -1331 ($ $ (-544) |t#3|)) (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (-15 -2100 ($ (-1 |t#1| |t#1|) $)) (-15 -4365 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4365 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) 11 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-1333 (($ (-635 |#1|)) 13) (($ (-765) |#1|) 14)) (-4021 (($ (-765) |#1|) 9)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 7)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1333 ($ (-635 |#1|))) (-15 -1333 ($ (-765) |#1|)))) (-1204)) (T -58)) -((-1333 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-58 *3)))) (-1333 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-58 *3)) (-4 *3 (-1204))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1333 ($ (-635 |#1|))) (-15 -1333 ($ (-765) |#1|)))) -((-4248 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-4249 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-4365 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) -(((-59 |#1| |#2|) (-10 -7 (-15 -4248 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4365 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1204) (-1204)) (T -59)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-59 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -(-10 -7 (-15 -4248 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4365 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL)) (-1332 (($ $ (-544) (-58 |#1|)) NIL)) (-1331 (($ $ (-544) (-58 |#1|)) NIL)) (-4131 (($) NIL T CONST)) (-3497 (((-58 |#1|) $ (-544)) NIL)) (-1665 ((|#1| $ (-544) (-544) |#1|) NIL)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3500 (((-765) $) NIL)) (-4021 (($ (-765) (-765) |#1|) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 (((-58 |#1|) $ (-544)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4401))) (-1204)) (T -60)) -NIL -(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4401))) -((-3558 (((-3 $ #1="failed") (-313 (-377))) 41) (((-3 $ #1#) (-313 (-544))) 46) (((-3 $ #1#) (-939 (-377))) 50) (((-3 $ #1#) (-939 (-544))) 54) (((-3 $ #1#) (-406 (-939 (-377)))) 36) (((-3 $ #1#) (-406 (-939 (-544)))) 29)) (-3557 (($ (-313 (-377))) 39) (($ (-313 (-544))) 44) (($ (-939 (-377))) 48) (($ (-939 (-544))) 52) (($ (-406 (-939 (-377)))) 34) (($ (-406 (-939 (-544)))) 26)) (-3784 (((-1259) $) 76)) (-4353 (((-857) $) 69) (($ (-635 (-329))) 61) (($ (-329)) 66) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 64) (($ (-338 (-3929 (QUOTE X)) (-3929) (-692))) 25))) -(((-61 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929 (QUOTE X)) (-3929) (-692)))))) (-1166)) (T -61)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929 (QUOTE X)) (-3929) (-692))) (-5 *1 (-61 *3)) (-14 *3 (-1166))))) -(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929 (QUOTE X)) (-3929) (-692)))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 74) (((-3 $ #1#) (-1253 (-313 (-544)))) 63) (((-3 $ #1#) (-1253 (-939 (-377)))) 94) (((-3 $ #1#) (-1253 (-939 (-544)))) 84) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 52) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 39)) (-3557 (($ (-1253 (-313 (-377)))) 70) (($ (-1253 (-313 (-544)))) 59) (($ (-1253 (-939 (-377)))) 90) (($ (-1253 (-939 (-544)))) 80) (($ (-1253 (-406 (-939 (-377))))) 48) (($ (-1253 (-406 (-939 (-544))))) 32)) (-3784 (((-1259) $) 120)) (-4353 (((-857) $) 113) (($ (-635 (-329))) 103) (($ (-329)) 97) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 101) (($ (-1253 (-338 (-3929 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3929) (-692)))) 31))) -(((-62 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3929) (-692))))))) (-1166)) (T -62)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3929) (-692)))) (-5 *1 (-62 *3)) (-14 *3 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3929) (-692))))))) -((-3784 (((-1259) $) 53) (((-1259)) 54)) (-4353 (((-857) $) 50))) -(((-63 |#1|) (-13 (-395) (-10 -7 (-15 -3784 ((-1259))))) (-1166)) (T -63)) -((-3784 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-63 *3)) (-14 *3 (-1166))))) -(-13 (-395) (-10 -7 (-15 -3784 ((-1259))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 145) (((-3 $ #1#) (-1253 (-313 (-544)))) 135) (((-3 $ #1#) (-1253 (-939 (-377)))) 165) (((-3 $ #1#) (-1253 (-939 (-544)))) 155) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 124) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 112)) (-3557 (($ (-1253 (-313 (-377)))) 141) (($ (-1253 (-313 (-544)))) 131) (($ (-1253 (-939 (-377)))) 161) (($ (-1253 (-939 (-544)))) 151) (($ (-1253 (-406 (-939 (-377))))) 120) (($ (-1253 (-406 (-939 (-544))))) 105)) (-3784 (((-1259) $) 98)) (-4353 (((-857) $) 92) (($ (-635 (-329))) 29) (($ (-329)) 34) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 32) (($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))) 90))) -(((-64 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692))))))) (-1166)) (T -64)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))) (-5 *1 (-64 *3)) (-14 *3 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692))))))) -((-3558 (((-3 $ #1="failed") (-682 (-313 (-377)))) 109) (((-3 $ #1#) (-682 (-313 (-544)))) 97) (((-3 $ #1#) (-682 (-939 (-377)))) 131) (((-3 $ #1#) (-682 (-939 (-544)))) 120) (((-3 $ #1#) (-682 (-406 (-939 (-377))))) 85) (((-3 $ #1#) (-682 (-406 (-939 (-544))))) 71)) (-3557 (($ (-682 (-313 (-377)))) 105) (($ (-682 (-313 (-544)))) 93) (($ (-682 (-939 (-377)))) 127) (($ (-682 (-939 (-544)))) 116) (($ (-682 (-406 (-939 (-377))))) 81) (($ (-682 (-406 (-939 (-544))))) 64)) (-3784 (((-1259) $) 139)) (-4353 (((-857) $) 133) (($ (-635 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 31) (($ (-682 (-338 (-3929) (-3929 (QUOTE X) (QUOTE HESS)) (-692)))) 54))) -(((-65 |#1|) (-13 (-384) (-611 (-682 (-338 (-3929) (-3929 (QUOTE X) (QUOTE HESS)) (-692))))) (-1166)) (T -65)) -NIL -(-13 (-384) (-611 (-682 (-338 (-3929) (-3929 (QUOTE X) (QUOTE HESS)) (-692))))) -((-3558 (((-3 $ #1="failed") (-313 (-377))) 59) (((-3 $ #1#) (-313 (-544))) 64) (((-3 $ #1#) (-939 (-377))) 68) (((-3 $ #1#) (-939 (-544))) 72) (((-3 $ #1#) (-406 (-939 (-377)))) 54) (((-3 $ #1#) (-406 (-939 (-544)))) 47)) (-3557 (($ (-313 (-377))) 57) (($ (-313 (-544))) 62) (($ (-939 (-377))) 66) (($ (-939 (-544))) 70) (($ (-406 (-939 (-377)))) 52) (($ (-406 (-939 (-544)))) 44)) (-3784 (((-1259) $) 81)) (-4353 (((-857) $) 75) (($ (-635 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 31) (($ (-338 (-3929) (-3929 (QUOTE XC)) (-692))) 39))) -(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE XC)) (-692)))))) (-1166)) (T -66)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929) (-3929 (QUOTE XC)) (-692))) (-5 *1 (-66 *3)) (-14 *3 (-1166))))) -(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE XC)) (-692)))))) -((-3784 (((-1259) $) 63)) (-4353 (((-857) $) 57) (($ (-682 (-692))) 49) (($ (-635 (-329))) 48) (($ (-329)) 55) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 53))) -(((-67 |#1|) (-382) (-1166)) (T -67)) +((-3536 (((-112) $) 12)) (-4152 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-406 (-562)) $) 25) (($ $ (-406 (-562))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -3536 ((-112) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-47 |#2| |#3|) (-1044) (-787)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -3536 ((-112) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2796 (($ $) 55 (|has| |#1| (-554)))) (-4370 (((-112) $) 57 (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-3536 (((-112) $) 65)) (-1378 (($ |#1| |#2|) 64)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3598 ((|#2| $) 67)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3906 ((|#1| $ |#2|) 62)) (-2805 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 56 (|has| |#1| (-554)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) +(((-47 |#1| |#2|) (-139) (-1044) (-787)) (T -47)) +((-1573 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-1560 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-112)))) (-1378 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) (-1601 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) (-3906 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *2 (-362))))) +(-13 (-1044) (-111 |t#1| |t#1|) (-10 -8 (-15 -1573 (|t#1| $)) (-15 -1560 ($ $)) (-15 -3598 (|t#2| $)) (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (-15 -3536 ((-112) $)) (-15 -1378 ($ |t#1| |t#2|)) (-15 -1601 ($ $)) (-15 -3906 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-362)) (-15 -1859 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-6 (-171)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-554)) (-6 (-554)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-562)))) (-6 (-38 (-406 (-562)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1404 (((-639 $) (-1164 $) (-1168)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-947 $)) NIL)) (-1821 (($ (-1164 $) (-1168)) NIL) (($ (-1164 $)) NIL) (($ (-947 $)) NIL)) (-1952 (((-112) $) 11)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-1495 (((-639 (-608 $)) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3165 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-1643 (($ $) NIL)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-3646 (((-639 $) (-1164 $) (-1168)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-947 $)) NIL)) (-1502 (($ (-1164 $) (-1168)) NIL) (($ (-1164 $)) NIL) (($ (-947 $)) NIL)) (-4048 (((-3 (-608 $) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL)) (-3961 (((-608 $) $) NIL) (((-562) $) NIL) (((-406 (-562)) $) NIL)) (-1811 (($ $ $) NIL)) (-2406 (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1545 (-683 (-406 (-562)))) (|:| |vec| (-1256 (-406 (-562))))) (-683 $) (-1256 $)) NIL) (((-683 (-406 (-562))) (-683 $)) NIL)) (-1955 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-1383 (($ $) NIL) (($ (-639 $)) NIL)) (-3936 (((-639 (-114)) $) NIL)) (-2876 (((-114) (-114)) NIL)) (-1957 (((-112) $) 14)) (-3130 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-4065 (((-1117 (-562) (-608 $)) $) NIL)) (-1891 (($ $ (-562)) NIL)) (-2247 (((-1164 $) (-1164 $) (-608 $)) NIL) (((-1164 $) (-1164 $) (-639 (-608 $))) NIL) (($ $ (-608 $)) NIL) (($ $ (-639 (-608 $))) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1677 (((-1164 $) (-608 $)) NIL (|has| $ (-1044)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 $ $) (-608 $)) NIL)) (-4367 (((-3 (-608 $) "failed") $) NIL)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1583 (((-639 (-608 $)) $) NIL)) (-4141 (($ (-114) $) NIL) (($ (-114) (-639 $)) NIL)) (-1776 (((-112) $ (-114)) NIL) (((-112) $ (-1168)) NIL)) (-1525 (($ $) NIL)) (-3060 (((-766) $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-4296 (((-112) $ $) NIL) (((-112) $ (-1168)) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3803 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1577 (((-766) $) NIL)) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3790 (($ $) NIL) (($ $ $) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-4076 (((-1117 (-562) (-608 $)) $) NIL)) (-2096 (($ $) NIL (|has| $ (-1044)))) (-4208 (((-378) $) NIL) (((-224) $) NIL) (((-168 (-378)) $) NIL)) (-4054 (((-857) $) NIL) (($ (-608 $)) NIL) (($ (-406 (-562))) NIL) (($ $) NIL) (($ (-562)) NIL) (($ (-1117 (-562) (-608 $))) NIL)) (-2579 (((-766)) NIL)) (-2746 (($ $) NIL) (($ (-639 $)) NIL)) (-2803 (((-112) (-114)) NIL)) (-2922 (((-112) $ $) NIL)) (-2286 (($) 7 T CONST)) (-2294 (($) 12 T CONST)) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 16)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1848 (($ $ $) 15) (($ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-406 (-562))) NIL) (($ $ (-562)) NIL) (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ $ $) NIL) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL))) +(((-48) (-13 (-301) (-27) (-1033 (-562)) (-1033 (-406 (-562))) (-635 (-562)) (-1017) (-635 (-406 (-562))) (-146) (-610 (-168 (-378))) (-232) (-10 -8 (-15 -4054 ($ (-1117 (-562) (-608 $)))) (-15 -4065 ((-1117 (-562) (-608 $)) $)) (-15 -4076 ((-1117 (-562) (-608 $)) $)) (-15 -1955 ($ $)) (-15 -2247 ((-1164 $) (-1164 $) (-608 $))) (-15 -2247 ((-1164 $) (-1164 $) (-639 (-608 $)))) (-15 -2247 ($ $ (-608 $))) (-15 -2247 ($ $ (-639 (-608 $))))))) (T -48)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) (-1955 (*1 *1 *1) (-5 *1 (-48))) (-2247 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-48))) (-5 *3 (-608 (-48))) (-5 *1 (-48)))) (-2247 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-48))) (-5 *3 (-639 (-608 (-48)))) (-5 *1 (-48)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-608 (-48))) (-5 *1 (-48)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-608 (-48)))) (-5 *1 (-48))))) +(-13 (-301) (-27) (-1033 (-562)) (-1033 (-406 (-562))) (-635 (-562)) (-1017) (-635 (-406 (-562))) (-146) (-610 (-168 (-378))) (-232) (-10 -8 (-15 -4054 ($ (-1117 (-562) (-608 $)))) (-15 -4065 ((-1117 (-562) (-608 $)) $)) (-15 -4076 ((-1117 (-562) (-608 $)) $)) (-15 -1955 ($ $)) (-15 -2247 ((-1164 $) (-1164 $) (-608 $))) (-15 -2247 ((-1164 $) (-1164 $) (-639 (-608 $)))) (-15 -2247 ($ $ (-608 $))) (-15 -2247 ($ $ (-639 (-608 $)))))) +((-4041 (((-112) $ $) NIL)) (-1913 (((-639 (-1168)) $) 17)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 7)) (-3265 (((-1173) $) 18)) (-1731 (((-112) $ $) NIL))) +(((-49) (-13 (-1092) (-10 -8 (-15 -1913 ((-639 (-1168)) $)) (-15 -3265 ((-1173) $))))) (T -49)) +((-1913 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-49)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-49))))) +(-13 (-1092) (-10 -8 (-15 -1913 ((-639 (-1168)) $)) (-15 -3265 ((-1173) $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 61)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-2585 (((-112) $) 20)) (-4048 (((-3 |#1| "failed") $) 23)) (-3961 ((|#1| $) 24)) (-1601 (($ $) 28)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1573 ((|#1| $) 21)) (-2765 (($ $) 50)) (-2913 (((-1150) $) NIL)) (-3083 (((-112) $) 30)) (-1709 (((-1112) $) NIL)) (-3148 (($ (-766)) 48)) (-3430 (($ (-639 (-562))) 49)) (-3598 (((-766) $) 31)) (-4054 (((-857) $) 64) (($ (-562)) 45) (($ |#1|) 43)) (-3906 ((|#1| $ $) 19)) (-2579 (((-766)) 47)) (-2286 (($) 32 T CONST)) (-2294 (($) 14 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 40)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-616 |#1|) (-1033 |#1|) (-10 -8 (-15 -1573 (|#1| $)) (-15 -2765 ($ $)) (-15 -1601 ($ $)) (-15 -3906 (|#1| $ $)) (-15 -3148 ($ (-766))) (-15 -3430 ($ (-639 (-562)))) (-15 -3083 ((-112) $)) (-15 -2585 ((-112) $)) (-15 -3598 ((-766) $)) (-15 -4152 ($ (-1 |#1| |#1|) $)))) (-1044) (-639 (-1168))) (T -50)) +((-1573 (*1 *2 *1) (-12 (-4 *2 (-1044)) (-5 *1 (-50 *2 *3)) (-14 *3 (-639 (-1168))))) (-2765 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))))) (-1601 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))))) (-3906 (*1 *2 *1 *1) (-12 (-4 *2 (-1044)) (-5 *1 (-50 *2 *3)) (-14 *3 (-639 (-1168))))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-3430 (*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-50 *3 *4)) (-14 *4 (-639 (-1168)))))) +(-13 (-616 |#1|) (-1033 |#1|) (-10 -8 (-15 -1573 (|#1| $)) (-15 -2765 ($ $)) (-15 -1601 ($ $)) (-15 -3906 (|#1| $ $)) (-15 -3148 ($ (-766))) (-15 -3430 ($ (-639 (-562)))) (-15 -3083 ((-112) $)) (-15 -2585 ((-112) $)) (-15 -3598 ((-766) $)) (-15 -4152 ($ (-1 |#1| |#1|) $)))) +((-2585 (((-112) (-52)) 13)) (-4048 (((-3 |#1| "failed") (-52)) 21)) (-3961 ((|#1| (-52)) 22)) (-4054 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -4054 ((-52) |#1|)) (-15 -4048 ((-3 |#1| "failed") (-52))) (-15 -2585 ((-112) (-52))) (-15 -3961 (|#1| (-52)))) (-1207)) (T -51)) +((-3961 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1207)))) (-2585 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1207)))) (-4048 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1207)))) (-4054 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1207))))) +(-10 -7 (-15 -4054 ((-52) |#1|)) (-15 -4048 ((-3 |#1| "failed") (-52))) (-15 -2585 ((-112) (-52))) (-15 -3961 (|#1| (-52)))) +((-4041 (((-112) $ $) NIL)) (-1944 (((-1150) (-112)) 25)) (-3746 (((-857) $) 24)) (-1465 (((-769) $) 12)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2460 (((-857) $) 16)) (-3509 (((-1096) $) 14)) (-4054 (((-857) $) 32)) (-3466 (($ (-1096) (-769)) 33)) (-1731 (((-112) $ $) 18))) +(((-52) (-13 (-1092) (-10 -8 (-15 -3466 ($ (-1096) (-769))) (-15 -2460 ((-857) $)) (-15 -3746 ((-857) $)) (-15 -3509 ((-1096) $)) (-15 -1465 ((-769) $)) (-15 -1944 ((-1150) (-112)))))) (T -52)) +((-3466 (*1 *1 *2 *3) (-12 (-5 *2 (-1096)) (-5 *3 (-769)) (-5 *1 (-52)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-52)))) (-3746 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-52)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-52)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-52)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1150)) (-5 *1 (-52))))) +(-13 (-1092) (-10 -8 (-15 -3466 ($ (-1096) (-769))) (-15 -2460 ((-857) $)) (-15 -3746 ((-857) $)) (-15 -3509 ((-1096) $)) (-15 -1465 ((-769) $)) (-15 -1944 ((-1150) (-112))))) +((-1360 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1360 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1044) (-642 |#1|) (-847 |#1|)) (T -53)) +((-1360 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-642 *5)) (-4 *5 (-1044)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-847 *5))))) +(-10 -7 (-15 -1360 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-3178 ((|#3| |#3| (-639 (-1168))) 35)) (-4233 ((|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3| (-916)) 22) ((|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4233 (|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3|)) (-15 -4233 (|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3| (-916))) (-15 -3178 (|#3| |#3| (-639 (-1168))))) (-1092) (-13 (-1044) (-881 |#1|) (-845) (-610 (-887 |#1|))) (-13 (-429 |#2|) (-881 |#1|) (-610 (-887 |#1|)))) (T -54)) +((-3178 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) (-4233 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-639 (-1068 *5 *6 *2))) (-5 *4 (-916)) (-4 *5 (-1092)) (-4 *6 (-13 (-1044) (-881 *5) (-845) (-610 (-887 *5)))) (-4 *2 (-13 (-429 *6) (-881 *5) (-610 (-887 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4233 (*1 *2 *3 *2) (-12 (-5 *3 (-639 (-1068 *4 *5 *2))) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -4233 (|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3|)) (-15 -4233 (|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3| (-916))) (-15 -3178 (|#3| |#3| (-639 (-1168))))) +((-4041 (((-112) $ $) NIL)) (-4048 (((-3 (-766) "failed") $) 22)) (-3961 (((-766) $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) 9)) (-4054 (((-857) $) 16) (($ (-766)) 20)) (-2204 (($) 7 T CONST)) (-1731 (((-112) $ $) 11))) +(((-55) (-13 (-1092) (-1033 (-766)) (-10 -8 (-15 -2204 ($) -1497)))) (T -55)) +((-2204 (*1 *1) (-5 *1 (-55)))) +(-13 (-1092) (-1033 (-766)) (-10 -8 (-15 -2204 ($) -1497))) +((-4336 (((-112) $ (-766)) 23)) (-1928 (($ $ (-562) |#3|) 47)) (-3003 (($ $ (-562) |#4|) 51)) (-3796 ((|#3| $ (-562)) 60)) (-1720 (((-639 |#2|) $) 30)) (-3292 (((-112) $ (-766)) 25)) (-1669 (((-112) |#2| $) 55)) (-1490 (($ (-1 |#2| |#2|) $) 38)) (-4152 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-3289 (((-112) $ (-766)) 24)) (-2716 (($ $ |#2|) 35)) (-1763 (((-112) (-1 (-112) |#2|) $) 19)) (-2343 ((|#2| $ (-562) (-562)) NIL) ((|#2| $ (-562) (-562) |#2|) 27)) (-1723 (((-766) (-1 (-112) |#2|) $) 28) (((-766) |#2| $) 57)) (-4220 (($ $) 34)) (-2211 ((|#4| $ (-562)) 63)) (-4054 (((-857) $) 69)) (-1744 (((-112) (-1 (-112) |#2|) $) 18)) (-1731 (((-112) $ $) 54)) (-3492 (((-766) $) 26))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1490 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3003 (|#1| |#1| (-562) |#4|)) (-15 -1928 (|#1| |#1| (-562) |#3|)) (-15 -1720 ((-639 |#2|) |#1|)) (-15 -2211 (|#4| |#1| (-562))) (-15 -3796 (|#3| |#1| (-562))) (-15 -2343 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562))) (-15 -2716 (|#1| |#1| |#2|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1669 ((-112) |#2| |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4336 ((-112) |#1| (-766))) (-15 -3292 ((-112) |#1| (-766))) (-15 -3289 ((-112) |#1| (-766))) (-15 -4220 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1207) (-372 |#2|) (-372 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1490 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3003 (|#1| |#1| (-562) |#4|)) (-15 -1928 (|#1| |#1| (-562) |#3|)) (-15 -1720 ((-639 |#2|) |#1|)) (-15 -2211 (|#4| |#1| (-562))) (-15 -3796 (|#3| |#1| (-562))) (-15 -2343 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562))) (-15 -2716 (|#1| |#1| |#2|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1669 ((-112) |#2| |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4336 ((-112) |#1| (-766))) (-15 -3292 ((-112) |#1| (-766))) (-15 -3289 ((-112) |#1| (-766))) (-15 -4220 (|#1| |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) (-562) |#1|) 44)) (-1928 (($ $ (-562) |#2|) 42)) (-3003 (($ $ (-562) |#3|) 41)) (-1800 (($) 7 T CONST)) (-3796 ((|#2| $ (-562)) 46)) (-1505 ((|#1| $ (-562) (-562) |#1|) 43)) (-1420 ((|#1| $ (-562) (-562)) 48)) (-1720 (((-639 |#1|) $) 30)) (-2699 (((-766) $) 51)) (-1458 (($ (-766) (-766) |#1|) 57)) (-2709 (((-766) $) 50)) (-3292 (((-112) $ (-766)) 9)) (-2783 (((-562) $) 55)) (-4217 (((-562) $) 53)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4088 (((-562) $) 54)) (-2453 (((-562) $) 52)) (-1490 (($ (-1 |#1| |#1|) $) 34)) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-2716 (($ $ |#1|) 56)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ (-562) (-562)) 49) ((|#1| $ (-562) (-562) |#1|) 47)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-2211 ((|#3| $ (-562)) 45)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-57 |#1| |#2| |#3|) (-139) (-1207) (-372 |t#1|) (-372 |t#1|)) (T -57)) +((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1458 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-766)) (-4 *3 (-1207)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2716 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1207)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-562)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-562)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-562)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-562)))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-766)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-766)))) (-2343 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1207)))) (-1420 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1207)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-2211 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1207)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-639 *3)))) (-4200 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-1505 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-1928 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-562)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1207)) (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))) (-3003 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-562)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1207)) (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))) (-1490 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4152 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4152 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) +(-13 (-488 |t#1|) (-10 -8 (-6 -4403) (-6 -4402) (-15 -1458 ($ (-766) (-766) |t#1|)) (-15 -2716 ($ $ |t#1|)) (-15 -2783 ((-562) $)) (-15 -4088 ((-562) $)) (-15 -4217 ((-562) $)) (-15 -2453 ((-562) $)) (-15 -2699 ((-766) $)) (-15 -2709 ((-766) $)) (-15 -2343 (|t#1| $ (-562) (-562))) (-15 -1420 (|t#1| $ (-562) (-562))) (-15 -2343 (|t#1| $ (-562) (-562) |t#1|)) (-15 -3796 (|t#2| $ (-562))) (-15 -2211 (|t#3| $ (-562))) (-15 -1720 ((-639 |t#1|) $)) (-15 -4200 (|t#1| $ (-562) (-562) |t#1|)) (-15 -1505 (|t#1| $ (-562) (-562) |t#1|)) (-15 -1928 ($ $ (-562) |t#2|)) (-15 -3003 ($ $ (-562) |t#3|)) (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (-15 -1490 ($ (-1 |t#1| |t#1|) $)) (-15 -4152 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4152 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-2578 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-1955 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4152 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -2578 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1955 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4152 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1207) (-1207)) (T -58)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-58 *5 *2)))) (-2578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -2578 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1955 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4152 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) 11 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-4264 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-3547 (($ (-639 |#1|)) 13) (($ (-766) |#1|) 14)) (-1458 (($ (-766) |#1|) 9)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 7)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3547 ($ (-639 |#1|))) (-15 -3547 ($ (-766) |#1|)))) (-1207)) (T -59)) +((-3547 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-59 *3)))) (-3547 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-59 *3)) (-4 *3 (-1207))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3547 ($ (-639 |#1|))) (-15 -3547 ($ (-766) |#1|)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1928 (($ $ (-562) (-59 |#1|)) NIL)) (-3003 (($ $ (-562) (-59 |#1|)) NIL)) (-1800 (($) NIL T CONST)) (-3796 (((-59 |#1|) $ (-562)) NIL)) (-1505 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-2699 (((-766) $) NIL)) (-1458 (($ (-766) (-766) |#1|) NIL)) (-2709 (((-766) $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-2783 (((-562) $) NIL)) (-4217 (((-562) $) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4088 (((-562) $) NIL)) (-2453 (((-562) $) NIL)) (-1490 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2716 (($ $ |#1|) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2211 (((-59 |#1|) $ (-562)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4403))) (-1207)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4403))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 74) (((-3 $ "failed") (-1256 (-315 (-562)))) 63) (((-3 $ "failed") (-1256 (-947 (-378)))) 94) (((-3 $ "failed") (-1256 (-947 (-562)))) 84) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 52) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 39)) (-3961 (($ (-1256 (-315 (-378)))) 70) (($ (-1256 (-315 (-562)))) 59) (($ (-1256 (-947 (-378)))) 90) (($ (-1256 (-947 (-562)))) 80) (($ (-1256 (-406 (-947 (-378))))) 48) (($ (-1256 (-406 (-947 (-562))))) 32)) (-3219 (((-1261) $) 120)) (-4054 (((-857) $) 113) (($ (-639 (-329))) 103) (($ (-329)) 97) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 101) (($ (-1256 (-338 (-4066 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4066) (-693)))) 31))) +(((-61 |#1|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4066) (-693))))))) (-1168)) (T -61)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4066) (-693)))) (-5 *1 (-61 *3)) (-14 *3 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4066) (-693))))))) +((-3219 (((-1261) $) 53) (((-1261)) 54)) (-4054 (((-857) $) 50))) +(((-62 |#1|) (-13 (-394) (-10 -7 (-15 -3219 ((-1261))))) (-1168)) (T -62)) +((-3219 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-62 *3)) (-14 *3 (-1168))))) +(-13 (-394) (-10 -7 (-15 -3219 ((-1261))))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 145) (((-3 $ "failed") (-1256 (-315 (-562)))) 135) (((-3 $ "failed") (-1256 (-947 (-378)))) 165) (((-3 $ "failed") (-1256 (-947 (-562)))) 155) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 124) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 112)) (-3961 (($ (-1256 (-315 (-378)))) 141) (($ (-1256 (-315 (-562)))) 131) (($ (-1256 (-947 (-378)))) 161) (($ (-1256 (-947 (-562)))) 151) (($ (-1256 (-406 (-947 (-378))))) 120) (($ (-1256 (-406 (-947 (-562))))) 105)) (-3219 (((-1261) $) 98)) (-4054 (((-857) $) 92) (($ (-639 (-329))) 29) (($ (-329)) 34) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 32) (($ (-1256 (-338 (-4066) (-4066 (QUOTE XC)) (-693)))) 90))) +(((-63 |#1|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066) (-4066 (QUOTE XC)) (-693))))))) (-1168)) (T -63)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066) (-4066 (QUOTE XC)) (-693)))) (-5 *1 (-63 *3)) (-14 *3 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066) (-4066 (QUOTE XC)) (-693))))))) +((-4048 (((-3 $ "failed") (-315 (-378))) 41) (((-3 $ "failed") (-315 (-562))) 46) (((-3 $ "failed") (-947 (-378))) 50) (((-3 $ "failed") (-947 (-562))) 54) (((-3 $ "failed") (-406 (-947 (-378)))) 36) (((-3 $ "failed") (-406 (-947 (-562)))) 29)) (-3961 (($ (-315 (-378))) 39) (($ (-315 (-562))) 44) (($ (-947 (-378))) 48) (($ (-947 (-562))) 52) (($ (-406 (-947 (-378)))) 34) (($ (-406 (-947 (-562)))) 26)) (-3219 (((-1261) $) 76)) (-4054 (((-857) $) 69) (($ (-639 (-329))) 61) (($ (-329)) 66) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 64) (($ (-338 (-4066 (QUOTE X)) (-4066) (-693))) 25))) +(((-64 |#1|) (-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066 (QUOTE X)) (-4066) (-693)))))) (-1168)) (T -64)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-338 (-4066 (QUOTE X)) (-4066) (-693))) (-5 *1 (-64 *3)) (-14 *3 (-1168))))) +(-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066 (QUOTE X)) (-4066) (-693)))))) +((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 109) (((-3 $ "failed") (-683 (-315 (-562)))) 97) (((-3 $ "failed") (-683 (-947 (-378)))) 131) (((-3 $ "failed") (-683 (-947 (-562)))) 120) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 85) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 71)) (-3961 (($ (-683 (-315 (-378)))) 105) (($ (-683 (-315 (-562)))) 93) (($ (-683 (-947 (-378)))) 127) (($ (-683 (-947 (-562)))) 116) (($ (-683 (-406 (-947 (-378))))) 81) (($ (-683 (-406 (-947 (-562))))) 64)) (-3219 (((-1261) $) 139)) (-4054 (((-857) $) 133) (($ (-639 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 31) (($ (-683 (-338 (-4066) (-4066 (QUOTE X) (QUOTE HESS)) (-693)))) 54))) +(((-65 |#1|) (-13 (-383) (-612 (-683 (-338 (-4066) (-4066 (QUOTE X) (QUOTE HESS)) (-693))))) (-1168)) (T -65)) +NIL +(-13 (-383) (-612 (-683 (-338 (-4066) (-4066 (QUOTE X) (QUOTE HESS)) (-693))))) +((-4048 (((-3 $ "failed") (-315 (-378))) 59) (((-3 $ "failed") (-315 (-562))) 64) (((-3 $ "failed") (-947 (-378))) 68) (((-3 $ "failed") (-947 (-562))) 72) (((-3 $ "failed") (-406 (-947 (-378)))) 54) (((-3 $ "failed") (-406 (-947 (-562)))) 47)) (-3961 (($ (-315 (-378))) 57) (($ (-315 (-562))) 62) (($ (-947 (-378))) 66) (($ (-947 (-562))) 70) (($ (-406 (-947 (-378)))) 52) (($ (-406 (-947 (-562)))) 44)) (-3219 (((-1261) $) 81)) (-4054 (((-857) $) 75) (($ (-639 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 31) (($ (-338 (-4066) (-4066 (QUOTE XC)) (-693))) 39))) +(((-66 |#1|) (-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066) (-4066 (QUOTE XC)) (-693)))))) (-1168)) (T -66)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-338 (-4066) (-4066 (QUOTE XC)) (-693))) (-5 *1 (-66 *3)) (-14 *3 (-1168))))) +(-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066) (-4066 (QUOTE XC)) (-693)))))) +((-3219 (((-1261) $) 63)) (-4054 (((-857) $) 57) (($ (-683 (-693))) 49) (($ (-639 (-329))) 48) (($ (-329)) 55) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 53))) +(((-67 |#1|) (-382) (-1168)) (T -67)) NIL (-382) -((-3784 (((-1259) $) 64)) (-4353 (((-857) $) 58) (($ (-682 (-692))) 50) (($ (-635 (-329))) 49) (($ (-329)) 52) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 55))) -(((-68 |#1|) (-382) (-1166)) (T -68)) +((-3219 (((-1261) $) 64)) (-4054 (((-857) $) 58) (($ (-683 (-693))) 50) (($ (-639 (-329))) 49) (($ (-329)) 52) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 55))) +(((-68 |#1|) (-382) (-1168)) (T -68)) NIL (-382) -((-3784 (((-1259) $) NIL) (((-1259)) 32)) (-4353 (((-857) $) NIL))) -(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -3784 ((-1259))))) (-1166)) (T -69)) -((-3784 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-69 *3)) (-14 *3 (-1166))))) -(-13 (-395) (-10 -7 (-15 -3784 ((-1259))))) -((-3784 (((-1259) $) 73)) (-4353 (((-857) $) 67) (($ (-682 (-692))) 59) (($ (-635 (-329))) 61) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 58))) -(((-70 |#1|) (-382) (-1166)) (T -70)) +((-3219 (((-1261) $) NIL) (((-1261)) 32)) (-4054 (((-857) $) NIL))) +(((-69 |#1|) (-13 (-394) (-10 -7 (-15 -3219 ((-1261))))) (-1168)) (T -69)) +((-3219 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-69 *3)) (-14 *3 (-1168))))) +(-13 (-394) (-10 -7 (-15 -3219 ((-1261))))) +((-3219 (((-1261) $) 73)) (-4054 (((-857) $) 67) (($ (-683 (-693))) 59) (($ (-639 (-329))) 61) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 58))) +(((-70 |#1|) (-382) (-1168)) (T -70)) NIL (-382) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 103) (((-3 $ #1#) (-1253 (-313 (-544)))) 92) (((-3 $ #1#) (-1253 (-939 (-377)))) 123) (((-3 $ #1#) (-1253 (-939 (-544)))) 113) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 81) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 68)) (-3557 (($ (-1253 (-313 (-377)))) 99) (($ (-1253 (-313 (-544)))) 88) (($ (-1253 (-939 (-377)))) 119) (($ (-1253 (-939 (-544)))) 109) (($ (-1253 (-406 (-939 (-377))))) 77) (($ (-1253 (-406 (-939 (-544))))) 61)) (-3784 (((-1259) $) 136)) (-4353 (((-857) $) 130) (($ (-635 (-329))) 125) (($ (-329)) 128) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 53) (($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))) 54))) -(((-71 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))))))) (-1166)) (T -71)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))) (-5 *1 (-71 *3)) (-14 *3 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))))))) -((-3784 (((-1259) $) 32) (((-1259)) 31)) (-4353 (((-857) $) 35))) -(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -3784 ((-1259))))) (-1166)) (T -72)) -((-3784 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-72 *3)) (-14 *3 (-1166))))) -(-13 (-395) (-10 -7 (-15 -3784 ((-1259))))) -((-3784 (((-1259) $) 63)) (-4353 (((-857) $) 57) (($ (-682 (-692))) 49) (($ (-635 (-329))) 51) (($ (-329)) 54) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 48))) -(((-73 |#1|) (-382) (-1166)) (T -73)) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 103) (((-3 $ "failed") (-1256 (-315 (-562)))) 92) (((-3 $ "failed") (-1256 (-947 (-378)))) 123) (((-3 $ "failed") (-1256 (-947 (-562)))) 113) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 81) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 68)) (-3961 (($ (-1256 (-315 (-378)))) 99) (($ (-1256 (-315 (-562)))) 88) (($ (-1256 (-947 (-378)))) 119) (($ (-1256 (-947 (-562)))) 109) (($ (-1256 (-406 (-947 (-378))))) 77) (($ (-1256 (-406 (-947 (-562))))) 61)) (-3219 (((-1261) $) 136)) (-4054 (((-857) $) 130) (($ (-639 (-329))) 125) (($ (-329)) 128) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 53) (($ (-1256 (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693)))) 54))) +(((-71 |#1|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693))))))) (-1168)) (T -71)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693)))) (-5 *1 (-71 *3)) (-14 *3 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693))))))) +((-3219 (((-1261) $) 32) (((-1261)) 31)) (-4054 (((-857) $) 35))) +(((-72 |#1|) (-13 (-394) (-10 -7 (-15 -3219 ((-1261))))) (-1168)) (T -72)) +((-3219 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-72 *3)) (-14 *3 (-1168))))) +(-13 (-394) (-10 -7 (-15 -3219 ((-1261))))) +((-3219 (((-1261) $) 63)) (-4054 (((-857) $) 57) (($ (-683 (-693))) 49) (($ (-639 (-329))) 51) (($ (-329)) 54) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 48))) +(((-73 |#1|) (-382) (-1168)) (T -73)) NIL (-382) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 125) (((-3 $ #1#) (-1253 (-313 (-544)))) 115) (((-3 $ #1#) (-1253 (-939 (-377)))) 145) (((-3 $ #1#) (-1253 (-939 (-544)))) 135) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 105) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 93)) (-3557 (($ (-1253 (-313 (-377)))) 121) (($ (-1253 (-313 (-544)))) 111) (($ (-1253 (-939 (-377)))) 141) (($ (-1253 (-939 (-544)))) 131) (($ (-1253 (-406 (-939 (-377))))) 101) (($ (-1253 (-406 (-939 (-544))))) 86)) (-3784 (((-1259) $) 78)) (-4353 (((-857) $) 27) (($ (-635 (-329))) 68) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 71) (($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) 65))) -(((-74 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692))))))) (-1166)) (T -74)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) (-5 *1 (-74 *3)) (-14 *3 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692))))))) -((-3558 (((-3 $ #1="failed") (-313 (-377))) 46) (((-3 $ #1#) (-313 (-544))) 51) (((-3 $ #1#) (-939 (-377))) 55) (((-3 $ #1#) (-939 (-544))) 59) (((-3 $ #1#) (-406 (-939 (-377)))) 41) (((-3 $ #1#) (-406 (-939 (-544)))) 34)) (-3557 (($ (-313 (-377))) 44) (($ (-313 (-544))) 49) (($ (-939 (-377))) 53) (($ (-939 (-544))) 57) (($ (-406 (-939 (-377)))) 39) (($ (-406 (-939 (-544)))) 31)) (-3784 (((-1259) $) 80)) (-4353 (((-857) $) 74) (($ (-635 (-329))) 66) (($ (-329)) 71) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 69) (($ (-338 (-3929) (-3929 (QUOTE X)) (-692))) 30))) -(((-75 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE X)) (-692)))))) (-1166)) (T -75)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929) (-3929 (QUOTE X)) (-692))) (-5 *1 (-75 *3)) (-14 *3 (-1166))))) -(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE X)) (-692)))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 130) (((-3 $ #1#) (-1253 (-313 (-544)))) 119) (((-3 $ #1#) (-1253 (-939 (-377)))) 150) (((-3 $ #1#) (-1253 (-939 (-544)))) 140) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 108) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 95)) (-3557 (($ (-1253 (-313 (-377)))) 126) (($ (-1253 (-313 (-544)))) 115) (($ (-1253 (-939 (-377)))) 146) (($ (-1253 (-939 (-544)))) 136) (($ (-1253 (-406 (-939 (-377))))) 104) (($ (-1253 (-406 (-939 (-544))))) 88)) (-3784 (((-1259) $) 79)) (-4353 (((-857) $) 71) (($ (-635 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) NIL) (($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE EPS)) (-3929 (QUOTE -4371)) (-692)))) 66))) -(((-76 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE EPS)) (-3929 (QUOTE -4371)) (-692))))))) (-1166) (-1166) (-1166)) (T -76)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X) (QUOTE EPS)) (-3929 (QUOTE -4371)) (-692)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE EPS)) (-3929 (QUOTE -4371)) (-692))))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 134) (((-3 $ #1#) (-1253 (-313 (-544)))) 123) (((-3 $ #1#) (-1253 (-939 (-377)))) 154) (((-3 $ #1#) (-1253 (-939 (-544)))) 144) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 112) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 99)) (-3557 (($ (-1253 (-313 (-377)))) 130) (($ (-1253 (-313 (-544)))) 119) (($ (-1253 (-939 (-377)))) 150) (($ (-1253 (-939 (-544)))) 140) (($ (-1253 (-406 (-939 (-377))))) 108) (($ (-1253 (-406 (-939 (-544))))) 92)) (-3784 (((-1259) $) 83)) (-4353 (((-857) $) 75) (($ (-635 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) NIL) (($ (-1253 (-338 (-3929 (QUOTE EPS)) (-3929 (QUOTE YA) (QUOTE YB)) (-692)))) 70))) -(((-77 |#1| |#2| |#3|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE EPS)) (-3929 (QUOTE YA) (QUOTE YB)) (-692))))))) (-1166) (-1166) (-1166)) (T -77)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE EPS)) (-3929 (QUOTE YA) (QUOTE YB)) (-692)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE EPS)) (-3929 (QUOTE YA) (QUOTE YB)) (-692))))))) -((-3558 (((-3 $ #1="failed") (-313 (-377))) 82) (((-3 $ #1#) (-313 (-544))) 87) (((-3 $ #1#) (-939 (-377))) 91) (((-3 $ #1#) (-939 (-544))) 95) (((-3 $ #1#) (-406 (-939 (-377)))) 77) (((-3 $ #1#) (-406 (-939 (-544)))) 70)) (-3557 (($ (-313 (-377))) 80) (($ (-313 (-544))) 85) (($ (-939 (-377))) 89) (($ (-939 (-544))) 93) (($ (-406 (-939 (-377)))) 75) (($ (-406 (-939 (-544)))) 67)) (-3784 (((-1259) $) 62)) (-4353 (((-857) $) 50) (($ (-635 (-329))) 46) (($ (-329)) 56) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 54) (($ (-338 (-3929) (-3929 (QUOTE X)) (-692))) 47))) -(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE X)) (-692)))))) (-1166)) (T -78)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929) (-3929 (QUOTE X)) (-692))) (-5 *1 (-78 *3)) (-14 *3 (-1166))))) -(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929) (-3929 (QUOTE X)) (-692)))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 89) (((-3 $ #1#) (-1253 (-313 (-544)))) 78) (((-3 $ #1#) (-1253 (-939 (-377)))) 109) (((-3 $ #1#) (-1253 (-939 (-544)))) 99) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 67) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 54)) (-3557 (($ (-1253 (-313 (-377)))) 85) (($ (-1253 (-313 (-544)))) 74) (($ (-1253 (-939 (-377)))) 105) (($ (-1253 (-939 (-544)))) 95) (($ (-1253 (-406 (-939 (-377))))) 63) (($ (-1253 (-406 (-939 (-544))))) 47)) (-3784 (((-1259) $) 125)) (-4353 (((-857) $) 119) (($ (-635 (-329))) 112) (($ (-329)) 37) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 115) (($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))) 38))) -(((-79 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692))))))) (-1166)) (T -79)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692)))) (-5 *1 (-79 *3)) (-14 *3 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE XC)) (-692))))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 143) (((-3 $ #1#) (-1253 (-313 (-544)))) 133) (((-3 $ #1#) (-1253 (-939 (-377)))) 163) (((-3 $ #1#) (-1253 (-939 (-544)))) 153) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 123) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 111)) (-3557 (($ (-1253 (-313 (-377)))) 139) (($ (-1253 (-313 (-544)))) 129) (($ (-1253 (-939 (-377)))) 159) (($ (-1253 (-939 (-544)))) 149) (($ (-1253 (-406 (-939 (-377))))) 119) (($ (-1253 (-406 (-939 (-544))))) 104)) (-3784 (((-1259) $) 97)) (-4353 (((-857) $) 91) (($ (-635 (-329))) 82) (($ (-329)) 89) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 87) (($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) 83))) -(((-80 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692))))))) (-1166)) (T -80)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) (-5 *1 (-80 *3)) (-14 *3 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692))))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 78) (((-3 $ #1#) (-1253 (-313 (-544)))) 67) (((-3 $ #1#) (-1253 (-939 (-377)))) 98) (((-3 $ #1#) (-1253 (-939 (-544)))) 88) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 56) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 43)) (-3557 (($ (-1253 (-313 (-377)))) 74) (($ (-1253 (-313 (-544)))) 63) (($ (-1253 (-939 (-377)))) 94) (($ (-1253 (-939 (-544)))) 84) (($ (-1253 (-406 (-939 (-377))))) 52) (($ (-1253 (-406 (-939 (-544))))) 36)) (-3784 (((-1259) $) 124)) (-4353 (((-857) $) 118) (($ (-635 (-329))) 109) (($ (-329)) 115) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 113) (($ (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692)))) 35))) -(((-81 |#1|) (-13 (-439) (-611 (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692))))) (-1166)) (T -81)) -NIL -(-13 (-439) (-611 (-1253 (-338 (-3929) (-3929 (QUOTE X)) (-692))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 79) (((-3 $ #1#) (-1253 (-313 (-544)))) 68) (((-3 $ #1#) (-1253 (-939 (-377)))) 99) (((-3 $ #1#) (-1253 (-939 (-544)))) 89) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 57) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 44)) (-3557 (($ (-1253 (-313 (-377)))) 75) (($ (-1253 (-313 (-544)))) 64) (($ (-1253 (-939 (-377)))) 95) (($ (-1253 (-939 (-544)))) 85) (($ (-1253 (-406 (-939 (-377))))) 53) (($ (-1253 (-406 (-939 (-544))))) 37)) (-3784 (((-1259) $) 125)) (-4353 (((-857) $) 119) (($ (-635 (-329))) 110) (($ (-329)) 116) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 114) (($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))) 36))) -(((-82 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))))))) (-1166)) (T -82)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))) (-5 *1 (-82 *3)) (-14 *3 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 95) (((-3 $ #1#) (-1253 (-313 (-544)))) 84) (((-3 $ #1#) (-1253 (-939 (-377)))) 115) (((-3 $ #1#) (-1253 (-939 (-544)))) 105) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 73) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 60)) (-3557 (($ (-1253 (-313 (-377)))) 91) (($ (-1253 (-313 (-544)))) 80) (($ (-1253 (-939 (-377)))) 111) (($ (-1253 (-939 (-544)))) 101) (($ (-1253 (-406 (-939 (-377))))) 69) (($ (-1253 (-406 (-939 (-544))))) 53)) (-3784 (((-1259) $) 45)) (-4353 (((-857) $) 39) (($ (-635 (-329))) 29) (($ (-329)) 32) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 35) (($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))) 30))) -(((-83 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692))))))) (-1166)) (T -83)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))) (-5 *1 (-83 *3)) (-14 *3 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692))))))) -((-3558 (((-3 $ #1="failed") (-682 (-313 (-377)))) 115) (((-3 $ #1#) (-682 (-313 (-544)))) 104) (((-3 $ #1#) (-682 (-939 (-377)))) 137) (((-3 $ #1#) (-682 (-939 (-544)))) 126) (((-3 $ #1#) (-682 (-406 (-939 (-377))))) 93) (((-3 $ #1#) (-682 (-406 (-939 (-544))))) 80)) (-3557 (($ (-682 (-313 (-377)))) 111) (($ (-682 (-313 (-544)))) 100) (($ (-682 (-939 (-377)))) 133) (($ (-682 (-939 (-544)))) 122) (($ (-682 (-406 (-939 (-377))))) 89) (($ (-682 (-406 (-939 (-544))))) 73)) (-3784 (((-1259) $) 63)) (-4353 (((-857) $) 50) (($ (-635 (-329))) 57) (($ (-329)) 46) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 55) (($ (-682 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))) 47))) -(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692))))))) (-1166)) (T -84)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692)))) (-5 *1 (-84 *3)) (-14 *3 (-1166))))) -(-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE X) (QUOTE -4371)) (-3929) (-692))))))) -((-3558 (((-3 $ #1="failed") (-682 (-313 (-377)))) 112) (((-3 $ #1#) (-682 (-313 (-544)))) 100) (((-3 $ #1#) (-682 (-939 (-377)))) 134) (((-3 $ #1#) (-682 (-939 (-544)))) 123) (((-3 $ #1#) (-682 (-406 (-939 (-377))))) 88) (((-3 $ #1#) (-682 (-406 (-939 (-544))))) 74)) (-3557 (($ (-682 (-313 (-377)))) 108) (($ (-682 (-313 (-544)))) 96) (($ (-682 (-939 (-377)))) 130) (($ (-682 (-939 (-544)))) 119) (($ (-682 (-406 (-939 (-377))))) 84) (($ (-682 (-406 (-939 (-544))))) 67)) (-3784 (((-1259) $) 59)) (-4353 (((-857) $) 53) (($ (-635 (-329))) 47) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 44) (($ (-682 (-338 (-3929 (QUOTE X)) (-3929) (-692)))) 45))) -(((-85 |#1|) (-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE X)) (-3929) (-692))))))) (-1166)) (T -85)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-3929 (QUOTE X)) (-3929) (-692)))) (-5 *1 (-85 *3)) (-14 *3 (-1166))))) -(-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE X)) (-3929) (-692))))))) -((-3558 (((-3 $ #1="failed") (-1253 (-313 (-377)))) 104) (((-3 $ #1#) (-1253 (-313 (-544)))) 93) (((-3 $ #1#) (-1253 (-939 (-377)))) 124) (((-3 $ #1#) (-1253 (-939 (-544)))) 114) (((-3 $ #1#) (-1253 (-406 (-939 (-377))))) 82) (((-3 $ #1#) (-1253 (-406 (-939 (-544))))) 69)) (-3557 (($ (-1253 (-313 (-377)))) 100) (($ (-1253 (-313 (-544)))) 89) (($ (-1253 (-939 (-377)))) 120) (($ (-1253 (-939 (-544)))) 110) (($ (-1253 (-406 (-939 (-377))))) 78) (($ (-1253 (-406 (-939 (-544))))) 62)) (-3784 (((-1259) $) 46)) (-4353 (((-857) $) 40) (($ (-635 (-329))) 49) (($ (-329)) 36) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 52) (($ (-1253 (-338 (-3929 (QUOTE X)) (-3929) (-692)))) 37))) -(((-86 |#1|) (-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929) (-692))))))) (-1166)) (T -86)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-338 (-3929 (QUOTE X)) (-3929) (-692)))) (-5 *1 (-86 *3)) (-14 *3 (-1166))))) -(-13 (-439) (-10 -8 (-15 -4353 ($ (-1253 (-338 (-3929 (QUOTE X)) (-3929) (-692))))))) -((-3784 (((-1259) $) 44)) (-4353 (((-857) $) 38) (($ (-1253 (-692))) 93) (($ (-635 (-329))) 30) (($ (-329)) 35) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 33))) -(((-87 |#1|) (-438) (-1166)) (T -87)) -NIL -(-438) -((-3558 (((-3 $ #1="failed") (-682 (-313 (-377)))) 113) (((-3 $ #1#) (-682 (-313 (-544)))) 101) (((-3 $ #1#) (-682 (-939 (-377)))) 135) (((-3 $ #1#) (-682 (-939 (-544)))) 124) (((-3 $ #1#) (-682 (-406 (-939 (-377))))) 89) (((-3 $ #1#) (-682 (-406 (-939 (-544))))) 75)) (-3557 (($ (-682 (-313 (-377)))) 109) (($ (-682 (-313 (-544)))) 97) (($ (-682 (-939 (-377)))) 131) (($ (-682 (-939 (-544)))) 120) (($ (-682 (-406 (-939 (-377))))) 85) (($ (-682 (-406 (-939 (-544))))) 68)) (-3784 (((-1259) $) 59)) (-4353 (((-857) $) 53) (($ (-635 (-329))) 43) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 48) (($ (-682 (-338 (-3929 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3929) (-692)))) 44))) -(((-88 |#1|) (-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3929) (-692))))))) (-1166)) (T -88)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-682 (-338 (-3929 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3929) (-692)))) (-5 *1 (-88 *3)) (-14 *3 (-1166))))) -(-13 (-384) (-10 -8 (-15 -4353 ($ (-682 (-338 (-3929 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3929) (-692))))))) -((-3558 (((-3 $ #1="failed") (-313 (-377))) 47) (((-3 $ #1#) (-313 (-544))) 52) (((-3 $ #1#) (-939 (-377))) 56) (((-3 $ #1#) (-939 (-544))) 60) (((-3 $ #1#) (-406 (-939 (-377)))) 42) (((-3 $ #1#) (-406 (-939 (-544)))) 35)) (-3557 (($ (-313 (-377))) 45) (($ (-313 (-544))) 50) (($ (-939 (-377))) 54) (($ (-939 (-544))) 58) (($ (-406 (-939 (-377)))) 40) (($ (-406 (-939 (-544)))) 32)) (-3784 (((-1259) $) 90)) (-4353 (((-857) $) 84) (($ (-635 (-329))) 78) (($ (-329)) 81) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 76) (($ (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))) 31))) -(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))))) (-1166)) (T -89)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692))) (-5 *1 (-89 *3)) (-14 *3 (-1166))))) -(-13 (-396) (-10 -8 (-15 -4353 ($ (-338 (-3929 (QUOTE X)) (-3929 (QUOTE -4371)) (-692)))))) -((-1335 (((-1253 (-682 |#1|)) (-682 |#1|)) 54)) (-1334 (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 (-635 (-912))))) |#2| (-912)) 44)) (-1336 (((-2 (|:| |minor| (-635 (-912))) (|:| -3667 |#2|) (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 |#2|))) |#2| (-912)) 65 (|has| |#1| (-362))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -1334 ((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 (-635 (-912))))) |#2| (-912))) (-15 -1335 ((-1253 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-362)) (-15 -1336 ((-2 (|:| |minor| (-635 (-912))) (|:| -3667 |#2|) (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 |#2|))) |#2| (-912))) |%noBranch|)) (-554) (-651 |#1|)) (T -90)) -((-1336 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |minor| (-635 (-912))) (|:| -3667 *3) (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-912)) (-4 *3 (-651 *5)))) (-1335 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-682 *4)) (-4 *5 (-651 *4)))) (-1334 (*1 *2 *3 *4) (-12 (-4 *5 (-554)) (-5 *2 (-2 (|:| -1728 (-682 *5)) (|:| |vec| (-1253 (-635 (-912)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-912)) (-4 *3 (-651 *5))))) -(-10 -7 (-15 -1334 ((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 (-635 (-912))))) |#2| (-912))) (-15 -1335 ((-1253 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-362)) (-15 -1336 ((-2 (|:| |minor| (-635 (-912))) (|:| -3667 |#2|) (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 |#2|))) |#2| (-912))) |%noBranch|)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3728 ((|#1| $) 35)) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3730 ((|#1| |#1| $) 30)) (-3729 ((|#1| $) 28)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) NIL)) (-4014 (($ |#1| $) 31)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1357 ((|#1| $) 29)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 16)) (-3972 (($) 39)) (-3727 (((-765) $) 26)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 15)) (-4353 (((-857) $) 25 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) NIL)) (-1337 (($ (-635 |#1|)) 37)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 13 (|has| |#1| (-1091)))) (-4364 (((-765) $) 10 (|has| $ (-6 -4400))))) -(((-91 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -1337 ($ (-635 |#1|))))) (-1091)) (T -91)) -((-1337 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-91 *3))))) -(-13 (-1111 |#1|) (-10 -8 (-15 -1337 ($ (-635 |#1|))))) -((-4353 (((-857) $) 13) (($ (-1171)) 9) (((-1171) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -4353 ((-1171) |#1|)) (-15 -4353 (|#1| (-1171))) (-15 -4353 ((-857) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -4353 ((-1171) |#1|)) (-15 -4353 (|#1| (-1171))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-3437 (((-112) $ $) 6))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 125) (((-3 $ "failed") (-1256 (-315 (-562)))) 115) (((-3 $ "failed") (-1256 (-947 (-378)))) 145) (((-3 $ "failed") (-1256 (-947 (-562)))) 135) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 105) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 93)) (-3961 (($ (-1256 (-315 (-378)))) 121) (($ (-1256 (-315 (-562)))) 111) (($ (-1256 (-947 (-378)))) 141) (($ (-1256 (-947 (-562)))) 131) (($ (-1256 (-406 (-947 (-378))))) 101) (($ (-1256 (-406 (-947 (-562))))) 86)) (-3219 (((-1261) $) 78)) (-4054 (((-857) $) 27) (($ (-639 (-329))) 68) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 71) (($ (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693)))) 65))) +(((-74 |#1|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693))))))) (-1168)) (T -74)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693)))) (-5 *1 (-74 *3)) (-14 *3 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693))))))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 130) (((-3 $ "failed") (-1256 (-315 (-562)))) 119) (((-3 $ "failed") (-1256 (-947 (-378)))) 150) (((-3 $ "failed") (-1256 (-947 (-562)))) 140) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 108) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 95)) (-3961 (($ (-1256 (-315 (-378)))) 126) (($ (-1256 (-315 (-562)))) 115) (($ (-1256 (-947 (-378)))) 146) (($ (-1256 (-947 (-562)))) 136) (($ (-1256 (-406 (-947 (-378))))) 104) (($ (-1256 (-406 (-947 (-562))))) 88)) (-3219 (((-1261) $) 79)) (-4054 (((-857) $) 71) (($ (-639 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) NIL) (($ (-1256 (-338 (-4066 (QUOTE X) (QUOTE EPS)) (-4066 (QUOTE -3172)) (-693)))) 66))) +(((-75 |#1| |#2| |#3|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X) (QUOTE EPS)) (-4066 (QUOTE -3172)) (-693))))))) (-1168) (-1168) (-1168)) (T -75)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066 (QUOTE X) (QUOTE EPS)) (-4066 (QUOTE -3172)) (-693)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1168)) (-14 *4 (-1168)) (-14 *5 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X) (QUOTE EPS)) (-4066 (QUOTE -3172)) (-693))))))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 134) (((-3 $ "failed") (-1256 (-315 (-562)))) 123) (((-3 $ "failed") (-1256 (-947 (-378)))) 154) (((-3 $ "failed") (-1256 (-947 (-562)))) 144) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 112) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 99)) (-3961 (($ (-1256 (-315 (-378)))) 130) (($ (-1256 (-315 (-562)))) 119) (($ (-1256 (-947 (-378)))) 150) (($ (-1256 (-947 (-562)))) 140) (($ (-1256 (-406 (-947 (-378))))) 108) (($ (-1256 (-406 (-947 (-562))))) 92)) (-3219 (((-1261) $) 83)) (-4054 (((-857) $) 75) (($ (-639 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) NIL) (($ (-1256 (-338 (-4066 (QUOTE EPS)) (-4066 (QUOTE YA) (QUOTE YB)) (-693)))) 70))) +(((-76 |#1| |#2| |#3|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE EPS)) (-4066 (QUOTE YA) (QUOTE YB)) (-693))))))) (-1168) (-1168) (-1168)) (T -76)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066 (QUOTE EPS)) (-4066 (QUOTE YA) (QUOTE YB)) (-693)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1168)) (-14 *4 (-1168)) (-14 *5 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE EPS)) (-4066 (QUOTE YA) (QUOTE YB)) (-693))))))) +((-4048 (((-3 $ "failed") (-315 (-378))) 82) (((-3 $ "failed") (-315 (-562))) 87) (((-3 $ "failed") (-947 (-378))) 91) (((-3 $ "failed") (-947 (-562))) 95) (((-3 $ "failed") (-406 (-947 (-378)))) 77) (((-3 $ "failed") (-406 (-947 (-562)))) 70)) (-3961 (($ (-315 (-378))) 80) (($ (-315 (-562))) 85) (($ (-947 (-378))) 89) (($ (-947 (-562))) 93) (($ (-406 (-947 (-378)))) 75) (($ (-406 (-947 (-562)))) 67)) (-3219 (((-1261) $) 62)) (-4054 (((-857) $) 50) (($ (-639 (-329))) 46) (($ (-329)) 56) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 54) (($ (-338 (-4066) (-4066 (QUOTE X)) (-693))) 47))) +(((-77 |#1|) (-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066) (-4066 (QUOTE X)) (-693)))))) (-1168)) (T -77)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-338 (-4066) (-4066 (QUOTE X)) (-693))) (-5 *1 (-77 *3)) (-14 *3 (-1168))))) +(-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066) (-4066 (QUOTE X)) (-693)))))) +((-4048 (((-3 $ "failed") (-315 (-378))) 46) (((-3 $ "failed") (-315 (-562))) 51) (((-3 $ "failed") (-947 (-378))) 55) (((-3 $ "failed") (-947 (-562))) 59) (((-3 $ "failed") (-406 (-947 (-378)))) 41) (((-3 $ "failed") (-406 (-947 (-562)))) 34)) (-3961 (($ (-315 (-378))) 44) (($ (-315 (-562))) 49) (($ (-947 (-378))) 53) (($ (-947 (-562))) 57) (($ (-406 (-947 (-378)))) 39) (($ (-406 (-947 (-562)))) 31)) (-3219 (((-1261) $) 80)) (-4054 (((-857) $) 74) (($ (-639 (-329))) 66) (($ (-329)) 71) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 69) (($ (-338 (-4066) (-4066 (QUOTE X)) (-693))) 30))) +(((-78 |#1|) (-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066) (-4066 (QUOTE X)) (-693)))))) (-1168)) (T -78)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-338 (-4066) (-4066 (QUOTE X)) (-693))) (-5 *1 (-78 *3)) (-14 *3 (-1168))))) +(-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066) (-4066 (QUOTE X)) (-693)))))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 89) (((-3 $ "failed") (-1256 (-315 (-562)))) 78) (((-3 $ "failed") (-1256 (-947 (-378)))) 109) (((-3 $ "failed") (-1256 (-947 (-562)))) 99) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 67) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 54)) (-3961 (($ (-1256 (-315 (-378)))) 85) (($ (-1256 (-315 (-562)))) 74) (($ (-1256 (-947 (-378)))) 105) (($ (-1256 (-947 (-562)))) 95) (($ (-1256 (-406 (-947 (-378))))) 63) (($ (-1256 (-406 (-947 (-562))))) 47)) (-3219 (((-1261) $) 125)) (-4054 (((-857) $) 119) (($ (-639 (-329))) 112) (($ (-329)) 37) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 115) (($ (-1256 (-338 (-4066) (-4066 (QUOTE XC)) (-693)))) 38))) +(((-79 |#1|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066) (-4066 (QUOTE XC)) (-693))))))) (-1168)) (T -79)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066) (-4066 (QUOTE XC)) (-693)))) (-5 *1 (-79 *3)) (-14 *3 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066) (-4066 (QUOTE XC)) (-693))))))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 143) (((-3 $ "failed") (-1256 (-315 (-562)))) 133) (((-3 $ "failed") (-1256 (-947 (-378)))) 163) (((-3 $ "failed") (-1256 (-947 (-562)))) 153) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 123) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 111)) (-3961 (($ (-1256 (-315 (-378)))) 139) (($ (-1256 (-315 (-562)))) 129) (($ (-1256 (-947 (-378)))) 159) (($ (-1256 (-947 (-562)))) 149) (($ (-1256 (-406 (-947 (-378))))) 119) (($ (-1256 (-406 (-947 (-562))))) 104)) (-3219 (((-1261) $) 97)) (-4054 (((-857) $) 91) (($ (-639 (-329))) 82) (($ (-329)) 89) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 87) (($ (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693)))) 83))) +(((-80 |#1|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693))))))) (-1168)) (T -80)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693)))) (-5 *1 (-80 *3)) (-14 *3 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693))))))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 78) (((-3 $ "failed") (-1256 (-315 (-562)))) 67) (((-3 $ "failed") (-1256 (-947 (-378)))) 98) (((-3 $ "failed") (-1256 (-947 (-562)))) 88) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 56) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 43)) (-3961 (($ (-1256 (-315 (-378)))) 74) (($ (-1256 (-315 (-562)))) 63) (($ (-1256 (-947 (-378)))) 94) (($ (-1256 (-947 (-562)))) 84) (($ (-1256 (-406 (-947 (-378))))) 52) (($ (-1256 (-406 (-947 (-562))))) 36)) (-3219 (((-1261) $) 124)) (-4054 (((-857) $) 118) (($ (-639 (-329))) 109) (($ (-329)) 115) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 113) (($ (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693)))) 35))) +(((-81 |#1|) (-13 (-440) (-612 (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693))))) (-1168)) (T -81)) +NIL +(-13 (-440) (-612 (-1256 (-338 (-4066) (-4066 (QUOTE X)) (-693))))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 95) (((-3 $ "failed") (-1256 (-315 (-562)))) 84) (((-3 $ "failed") (-1256 (-947 (-378)))) 115) (((-3 $ "failed") (-1256 (-947 (-562)))) 105) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 73) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 60)) (-3961 (($ (-1256 (-315 (-378)))) 91) (($ (-1256 (-315 (-562)))) 80) (($ (-1256 (-947 (-378)))) 111) (($ (-1256 (-947 (-562)))) 101) (($ (-1256 (-406 (-947 (-378))))) 69) (($ (-1256 (-406 (-947 (-562))))) 53)) (-3219 (((-1261) $) 45)) (-4054 (((-857) $) 39) (($ (-639 (-329))) 29) (($ (-329)) 32) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 35) (($ (-1256 (-338 (-4066 (QUOTE X) (QUOTE -3172)) (-4066) (-693)))) 30))) +(((-82 |#1|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X) (QUOTE -3172)) (-4066) (-693))))))) (-1168)) (T -82)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066 (QUOTE X) (QUOTE -3172)) (-4066) (-693)))) (-5 *1 (-82 *3)) (-14 *3 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X) (QUOTE -3172)) (-4066) (-693))))))) +((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 115) (((-3 $ "failed") (-683 (-315 (-562)))) 104) (((-3 $ "failed") (-683 (-947 (-378)))) 137) (((-3 $ "failed") (-683 (-947 (-562)))) 126) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 93) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 80)) (-3961 (($ (-683 (-315 (-378)))) 111) (($ (-683 (-315 (-562)))) 100) (($ (-683 (-947 (-378)))) 133) (($ (-683 (-947 (-562)))) 122) (($ (-683 (-406 (-947 (-378))))) 89) (($ (-683 (-406 (-947 (-562))))) 73)) (-3219 (((-1261) $) 63)) (-4054 (((-857) $) 50) (($ (-639 (-329))) 57) (($ (-329)) 46) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 55) (($ (-683 (-338 (-4066 (QUOTE X) (QUOTE -3172)) (-4066) (-693)))) 47))) +(((-83 |#1|) (-13 (-383) (-10 -8 (-15 -4054 ($ (-683 (-338 (-4066 (QUOTE X) (QUOTE -3172)) (-4066) (-693))))))) (-1168)) (T -83)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-683 (-338 (-4066 (QUOTE X) (QUOTE -3172)) (-4066) (-693)))) (-5 *1 (-83 *3)) (-14 *3 (-1168))))) +(-13 (-383) (-10 -8 (-15 -4054 ($ (-683 (-338 (-4066 (QUOTE X) (QUOTE -3172)) (-4066) (-693))))))) +((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 112) (((-3 $ "failed") (-683 (-315 (-562)))) 100) (((-3 $ "failed") (-683 (-947 (-378)))) 134) (((-3 $ "failed") (-683 (-947 (-562)))) 123) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 88) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 74)) (-3961 (($ (-683 (-315 (-378)))) 108) (($ (-683 (-315 (-562)))) 96) (($ (-683 (-947 (-378)))) 130) (($ (-683 (-947 (-562)))) 119) (($ (-683 (-406 (-947 (-378))))) 84) (($ (-683 (-406 (-947 (-562))))) 67)) (-3219 (((-1261) $) 59)) (-4054 (((-857) $) 53) (($ (-639 (-329))) 47) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 44) (($ (-683 (-338 (-4066 (QUOTE X)) (-4066) (-693)))) 45))) +(((-84 |#1|) (-13 (-383) (-10 -8 (-15 -4054 ($ (-683 (-338 (-4066 (QUOTE X)) (-4066) (-693))))))) (-1168)) (T -84)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-683 (-338 (-4066 (QUOTE X)) (-4066) (-693)))) (-5 *1 (-84 *3)) (-14 *3 (-1168))))) +(-13 (-383) (-10 -8 (-15 -4054 ($ (-683 (-338 (-4066 (QUOTE X)) (-4066) (-693))))))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 104) (((-3 $ "failed") (-1256 (-315 (-562)))) 93) (((-3 $ "failed") (-1256 (-947 (-378)))) 124) (((-3 $ "failed") (-1256 (-947 (-562)))) 114) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 82) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 69)) (-3961 (($ (-1256 (-315 (-378)))) 100) (($ (-1256 (-315 (-562)))) 89) (($ (-1256 (-947 (-378)))) 120) (($ (-1256 (-947 (-562)))) 110) (($ (-1256 (-406 (-947 (-378))))) 78) (($ (-1256 (-406 (-947 (-562))))) 62)) (-3219 (((-1261) $) 46)) (-4054 (((-857) $) 40) (($ (-639 (-329))) 49) (($ (-329)) 36) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 52) (($ (-1256 (-338 (-4066 (QUOTE X)) (-4066) (-693)))) 37))) +(((-85 |#1|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X)) (-4066) (-693))))))) (-1168)) (T -85)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066 (QUOTE X)) (-4066) (-693)))) (-5 *1 (-85 *3)) (-14 *3 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X)) (-4066) (-693))))))) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 79) (((-3 $ "failed") (-1256 (-315 (-562)))) 68) (((-3 $ "failed") (-1256 (-947 (-378)))) 99) (((-3 $ "failed") (-1256 (-947 (-562)))) 89) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 57) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 44)) (-3961 (($ (-1256 (-315 (-378)))) 75) (($ (-1256 (-315 (-562)))) 64) (($ (-1256 (-947 (-378)))) 95) (($ (-1256 (-947 (-562)))) 85) (($ (-1256 (-406 (-947 (-378))))) 53) (($ (-1256 (-406 (-947 (-562))))) 37)) (-3219 (((-1261) $) 125)) (-4054 (((-857) $) 119) (($ (-639 (-329))) 110) (($ (-329)) 116) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 114) (($ (-1256 (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693)))) 36))) +(((-86 |#1|) (-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693))))))) (-1168)) (T -86)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693)))) (-5 *1 (-86 *3)) (-14 *3 (-1168))))) +(-13 (-440) (-10 -8 (-15 -4054 ($ (-1256 (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693))))))) +((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 113) (((-3 $ "failed") (-683 (-315 (-562)))) 101) (((-3 $ "failed") (-683 (-947 (-378)))) 135) (((-3 $ "failed") (-683 (-947 (-562)))) 124) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 89) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 75)) (-3961 (($ (-683 (-315 (-378)))) 109) (($ (-683 (-315 (-562)))) 97) (($ (-683 (-947 (-378)))) 131) (($ (-683 (-947 (-562)))) 120) (($ (-683 (-406 (-947 (-378))))) 85) (($ (-683 (-406 (-947 (-562))))) 68)) (-3219 (((-1261) $) 59)) (-4054 (((-857) $) 53) (($ (-639 (-329))) 43) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 48) (($ (-683 (-338 (-4066 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4066) (-693)))) 44))) +(((-87 |#1|) (-13 (-383) (-10 -8 (-15 -4054 ($ (-683 (-338 (-4066 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4066) (-693))))))) (-1168)) (T -87)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-683 (-338 (-4066 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4066) (-693)))) (-5 *1 (-87 *3)) (-14 *3 (-1168))))) +(-13 (-383) (-10 -8 (-15 -4054 ($ (-683 (-338 (-4066 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4066) (-693))))))) +((-3219 (((-1261) $) 44)) (-4054 (((-857) $) 38) (($ (-1256 (-693))) 93) (($ (-639 (-329))) 30) (($ (-329)) 35) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 33))) +(((-88 |#1|) (-439) (-1168)) (T -88)) +NIL +(-439) +((-4048 (((-3 $ "failed") (-315 (-378))) 47) (((-3 $ "failed") (-315 (-562))) 52) (((-3 $ "failed") (-947 (-378))) 56) (((-3 $ "failed") (-947 (-562))) 60) (((-3 $ "failed") (-406 (-947 (-378)))) 42) (((-3 $ "failed") (-406 (-947 (-562)))) 35)) (-3961 (($ (-315 (-378))) 45) (($ (-315 (-562))) 50) (($ (-947 (-378))) 54) (($ (-947 (-562))) 58) (($ (-406 (-947 (-378)))) 40) (($ (-406 (-947 (-562)))) 32)) (-3219 (((-1261) $) 90)) (-4054 (((-857) $) 84) (($ (-639 (-329))) 78) (($ (-329)) 81) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 76) (($ (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693))) 31))) +(((-89 |#1|) (-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693)))))) (-1168)) (T -89)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693))) (-5 *1 (-89 *3)) (-14 *3 (-1168))))) +(-13 (-395) (-10 -8 (-15 -4054 ($ (-338 (-4066 (QUOTE X)) (-4066 (QUOTE -3172)) (-693)))))) +((-3829 (((-1256 (-683 |#1|)) (-683 |#1|)) 54)) (-2187 (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 (-639 (-916))))) |#2| (-916)) 44)) (-3346 (((-2 (|:| |minor| (-639 (-916))) (|:| -3342 |#2|) (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 |#2|))) |#2| (-916)) 65 (|has| |#1| (-362))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -2187 ((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 (-639 (-916))))) |#2| (-916))) (-15 -3829 ((-1256 (-683 |#1|)) (-683 |#1|))) (IF (|has| |#1| (-362)) (-15 -3346 ((-2 (|:| |minor| (-639 (-916))) (|:| -3342 |#2|) (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 |#2|))) |#2| (-916))) |%noBranch|)) (-554) (-650 |#1|)) (T -90)) +((-3346 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |minor| (-639 (-916))) (|:| -3342 *3) (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-916)) (-4 *3 (-650 *5)))) (-3829 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-683 *4)) (-4 *5 (-650 *4)))) (-2187 (*1 *2 *3 *4) (-12 (-4 *5 (-554)) (-5 *2 (-2 (|:| -1545 (-683 *5)) (|:| |vec| (-1256 (-639 (-916)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-916)) (-4 *3 (-650 *5))))) +(-10 -7 (-15 -2187 ((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 (-639 (-916))))) |#2| (-916))) (-15 -3829 ((-1256 (-683 |#1|)) (-683 |#1|))) (IF (|has| |#1| (-362)) (-15 -3346 ((-2 (|:| |minor| (-639 (-916))) (|:| -3342 |#2|) (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 |#2|))) |#2| (-916))) |%noBranch|)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2775 ((|#1| $) 35)) (-4336 (((-112) $ (-766)) NIL)) (-1800 (($) NIL T CONST)) (-2737 ((|#1| |#1| $) 30)) (-3064 ((|#1| $) 28)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3262 ((|#1| $) NIL)) (-4300 (($ |#1| $) 31)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1904 ((|#1| $) 29)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 16)) (-4307 (($) 39)) (-2193 (((-766) $) 26)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) 15)) (-4054 (((-857) $) 25 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) NIL)) (-2609 (($ (-639 |#1|)) 37)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 13 (|has| |#1| (-1092)))) (-3492 (((-766) $) 10 (|has| $ (-6 -4402))))) +(((-91 |#1|) (-13 (-1113 |#1|) (-10 -8 (-15 -2609 ($ (-639 |#1|))))) (-1092)) (T -91)) +((-2609 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-91 *3))))) +(-13 (-1113 |#1|) (-10 -8 (-15 -2609 ($ (-639 |#1|))))) +((-4054 (((-857) $) 13) (($ (-1173)) 9) (((-1173) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -4054 ((-1173) |#1|)) (-15 -4054 (|#1| (-1173))) (-15 -4054 ((-857) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -4054 ((-1173) |#1|)) (-15 -4054 (|#1| (-1173))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-1173)) 16) (((-1173) $) 15)) (-1731 (((-112) $ $) 6))) (((-93) (-139)) (T -93)) NIL -(-13 (-1091) (-488 (-1171))) -(((-102) . T) ((-611 #1=(-1171)) . T) ((-608 (-857)) . T) ((-608 #1#) . T) ((-488 #1#) . T) ((-1091) . T)) -((-3887 (($ $) 10)) (-3888 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3888 (|#1| |#1|)) (-15 -3887 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1092) (-489 (-1173))) +(((-102) . T) ((-612 #0=(-1173)) . T) ((-609 (-857)) . T) ((-609 #0#) . T) ((-489 #0#) . T) ((-1092) . T)) +((-4182 (($ $) 10)) (-4195 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -4195 (|#1| |#1|)) (-15 -4182 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3888 (|#1| |#1|)) (-15 -3887 (|#1| |#1|))) -((-3885 (($ $) 11)) (-3883 (($ $) 10)) (-3887 (($ $) 9)) (-3888 (($ $) 8)) (-3886 (($ $) 7)) (-3884 (($ $) 6))) +(-10 -8 (-15 -4195 (|#1| |#1|)) (-15 -4182 (|#1| |#1|))) +((-4165 (($ $) 11)) (-4138 (($ $) 10)) (-4182 (($ $) 9)) (-4195 (($ $) 8)) (-4174 (($ $) 7)) (-4151 (($ $) 6))) (((-95) (-139)) (T -95)) -((-3885 (*1 *1 *1) (-4 *1 (-95))) (-3883 (*1 *1 *1) (-4 *1 (-95))) (-3887 (*1 *1 *1) (-4 *1 (-95))) (-3888 (*1 *1 *1) (-4 *1 (-95))) (-3886 (*1 *1 *1) (-4 *1 (-95))) (-3884 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3884 ($ $)) (-15 -3886 ($ $)) (-15 -3888 ($ $)) (-15 -3887 ($ $)) (-15 -3883 ($ $)) (-15 -3885 ($ $)))) -((-2947 (((-112) $ $) NIL)) (-3949 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-96) (-13 (-1073) (-10 -8 (-15 -3949 ((-1125) $))))) (T -96)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-96))))) -(-13 (-1073) (-10 -8 (-15 -3949 ((-1125) $)))) -((-2947 (((-112) $ $) NIL)) (-1338 (((-377) (-1148) (-377)) 42) (((-377) (-1148) (-1148) (-377)) 41)) (-1339 (((-377) (-377)) 33)) (-1340 (((-1259)) 36)) (-3643 (((-1148) $) NIL)) (-1343 (((-377) (-1148) (-1148)) 46) (((-377) (-1148)) 48)) (-3644 (((-1110) $) NIL)) (-1341 (((-377) (-1148) (-1148)) 47)) (-1342 (((-377) (-1148) (-1148)) 49) (((-377) (-1148)) 50)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-97) (-13 (-1091) (-10 -7 (-15 -1343 ((-377) (-1148) (-1148))) (-15 -1343 ((-377) (-1148))) (-15 -1342 ((-377) (-1148) (-1148))) (-15 -1342 ((-377) (-1148))) (-15 -1341 ((-377) (-1148) (-1148))) (-15 -1340 ((-1259))) (-15 -1339 ((-377) (-377))) (-15 -1338 ((-377) (-1148) (-377))) (-15 -1338 ((-377) (-1148) (-1148) (-377))) (-6 -4400)))) (T -97)) -((-1343 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1342 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1341 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) (-1340 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-97)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-97)))) (-1338 (*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1148)) (-5 *1 (-97)))) (-1338 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1148)) (-5 *1 (-97))))) -(-13 (-1091) (-10 -7 (-15 -1343 ((-377) (-1148) (-1148))) (-15 -1343 ((-377) (-1148))) (-15 -1342 ((-377) (-1148) (-1148))) (-15 -1342 ((-377) (-1148))) (-15 -1341 ((-377) (-1148) (-1148))) (-15 -1340 ((-1259))) (-15 -1339 ((-377) (-377))) (-15 -1338 ((-377) (-1148) (-377))) (-15 -1338 ((-377) (-1148) (-1148) (-377))) (-6 -4400))) +((-4165 (*1 *1 *1) (-4 *1 (-95))) (-4138 (*1 *1 *1) (-4 *1 (-95))) (-4182 (*1 *1 *1) (-4 *1 (-95))) (-4195 (*1 *1 *1) (-4 *1 (-95))) (-4174 (*1 *1 *1) (-4 *1 (-95))) (-4151 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -4151 ($ $)) (-15 -4174 ($ $)) (-15 -4195 ($ $)) (-15 -4182 ($ $)) (-15 -4138 ($ $)) (-15 -4165 ($ $)))) +((-4041 (((-112) $ $) NIL)) (-3254 (((-1127) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-96) (-13 (-1075) (-10 -8 (-15 -3254 ((-1127) $))))) (T -96)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-96))))) +(-13 (-1075) (-10 -8 (-15 -3254 ((-1127) $)))) +((-4041 (((-112) $ $) NIL)) (-3477 (((-378) (-1150) (-378)) 42) (((-378) (-1150) (-1150) (-378)) 41)) (-2259 (((-378) (-378)) 33)) (-4049 (((-1261)) 36)) (-2913 (((-1150) $) NIL)) (-1690 (((-378) (-1150) (-1150)) 46) (((-378) (-1150)) 48)) (-1709 (((-1112) $) NIL)) (-2830 (((-378) (-1150) (-1150)) 47)) (-1678 (((-378) (-1150) (-1150)) 49) (((-378) (-1150)) 50)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-97) (-13 (-1092) (-10 -7 (-15 -1690 ((-378) (-1150) (-1150))) (-15 -1690 ((-378) (-1150))) (-15 -1678 ((-378) (-1150) (-1150))) (-15 -1678 ((-378) (-1150))) (-15 -2830 ((-378) (-1150) (-1150))) (-15 -4049 ((-1261))) (-15 -2259 ((-378) (-378))) (-15 -3477 ((-378) (-1150) (-378))) (-15 -3477 ((-378) (-1150) (-1150) (-378))) (-6 -4402)))) (T -97)) +((-1690 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1678 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-2830 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-4049 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-97)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))) (-3477 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1150)) (-5 *1 (-97)))) (-3477 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1150)) (-5 *1 (-97))))) +(-13 (-1092) (-10 -7 (-15 -1690 ((-378) (-1150) (-1150))) (-15 -1690 ((-378) (-1150))) (-15 -1678 ((-378) (-1150) (-1150))) (-15 -1678 ((-378) (-1150))) (-15 -2830 ((-378) (-1150) (-1150))) (-15 -4049 ((-1261))) (-15 -2259 ((-378) (-378))) (-15 -3477 ((-378) (-1150) (-378))) (-15 -3477 ((-378) (-1150) (-1150) (-378))) (-6 -4402))) NIL (((-98) (-139)) (T -98)) NIL -(-13 (-10 -7 (-6 -4400) (-6 (-4402 "*")) (-6 -4401) (-6 -4397) (-6 -4395) (-6 -4394) (-6 -4393) (-6 -4398) (-6 -4392) (-6 -4391) (-6 -4390) (-6 -4389) (-6 -4388) (-6 -4396) (-6 -4399) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4387))) -((-2947 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-1344 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-544))) 22)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 14)) (-3644 (((-1110) $) NIL)) (-4206 ((|#1| $ |#1|) 11)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 20)) (-3046 (($) 8 T CONST)) (-3437 (((-112) $ $) 10)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) 27) (($ $ (-765)) NIL) (($ $ (-544)) 16)) (* (($ $ $) 28))) -(((-99 |#1|) (-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -1344 ($ (-1 |#1| |#1|))) (-15 -1344 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1344 ($ (-1 |#1| |#1| (-544)))))) (-1042)) (T -99)) -((-1344 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) (-1344 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-544))) (-4 *3 (-1042)) (-5 *1 (-99 *3))))) -(-13 (-471) (-285 |#1| |#1|) (-10 -8 (-15 -1344 ($ (-1 |#1| |#1|))) (-15 -1344 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1344 ($ (-1 |#1| |#1| (-544)))))) -((-1345 (((-404 |#2|) |#2| (-635 |#2|)) 10) (((-404 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1345 ((-404 |#2|) |#2| |#2|)) (-15 -1345 ((-404 |#2|) |#2| (-635 |#2|)))) (-13 (-450) (-146)) (-1229 |#1|)) (T -100)) -((-1345 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-13 (-450) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-100 *5 *3)))) (-1345 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -1345 ((-404 |#2|) |#2| |#2|)) (-15 -1345 ((-404 |#2|) |#2| (-635 |#2|)))) -((-2947 (((-112) $ $) 9))) -(((-101 |#1|) (-10 -8 (-15 -2947 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2947 ((-112) |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3437 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4402) (-6 (-4404 "*")) (-6 -4403) (-6 -4399) (-6 -4397) (-6 -4396) (-6 -4395) (-6 -4400) (-6 -4394) (-6 -4393) (-6 -4392) (-6 -4391) (-6 -4390) (-6 -4398) (-6 -4401) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4389))) +((-4041 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-3224 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-562))) 22)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 14)) (-1709 (((-1112) $) NIL)) (-2343 ((|#1| $ |#1|) 11)) (-3665 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-4054 (((-857) $) 20)) (-2294 (($) 8 T CONST)) (-1731 (((-112) $ $) 10)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) 27) (($ $ (-766)) NIL) (($ $ (-562)) 16)) (* (($ $ $) 28))) +(((-99 |#1|) (-13 (-472) (-285 |#1| |#1|) (-10 -8 (-15 -3224 ($ (-1 |#1| |#1|))) (-15 -3224 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3224 ($ (-1 |#1| |#1| (-562)))))) (-1044)) (T -99)) +((-3224 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-99 *3)))) (-3224 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-99 *3)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-562))) (-4 *3 (-1044)) (-5 *1 (-99 *3))))) +(-13 (-472) (-285 |#1| |#1|) (-10 -8 (-15 -3224 ($ (-1 |#1| |#1|))) (-15 -3224 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3224 ($ (-1 |#1| |#1| (-562)))))) +((-2969 (((-417 |#2|) |#2| (-639 |#2|)) 10) (((-417 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -2969 ((-417 |#2|) |#2| |#2|)) (-15 -2969 ((-417 |#2|) |#2| (-639 |#2|)))) (-13 (-451) (-146)) (-1232 |#1|)) (T -100)) +((-2969 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-13 (-451) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-2969 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-451) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -2969 ((-417 |#2|) |#2| |#2|)) (-15 -2969 ((-417 |#2|) |#2| (-639 |#2|)))) +((-4041 (((-112) $ $) 9))) +(((-101 |#1|) (-10 -8 (-15 -4041 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -4041 ((-112) |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1731 (((-112) $ $) 6))) (((-102) (-139)) (T -102)) -((-2947 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3437 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -3437 ((-112) $ $)) (-15 -2947 ((-112) $ $)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) 13 (|has| $ (-6 -4401)))) (-1375 (($ $ $) NIL (|has| $ (-6 -4401)))) (-1376 (($ $ $) NIL (|has| $ (-6 -4401)))) (-1348 (($ $ (-635 |#1|)) 15)) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 11)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) 17)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1347 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1346 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|)) 35)) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) 10)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) 12)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 9)) (-3972 (($) 16)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1349 (($ (-765) |#1|) 19)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -1349 ($ (-765) |#1|)) (-15 -1348 ($ $ (-635 |#1|))) (-15 -1347 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1347 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1346 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1346 ($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|))))) (-1091)) (T -103)) -((-1349 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-103 *3)) (-4 *3 (-1091)))) (-1348 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-103 *3)))) (-1347 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1091)))) (-1347 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-103 *3)))) (-1346 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1091)) (-5 *1 (-103 *2)))) (-1346 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-635 *2) *2 *2 *2)) (-4 *2 (-1091)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -1349 ($ (-765) |#1|)) (-15 -1348 ($ $ (-635 |#1|))) (-15 -1347 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1347 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1346 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1346 ($ $ |#1| (-1 (-635 |#1|) |#1| |#1| |#1|))))) -((-1350 ((|#3| |#2| |#2|) 28)) (-1352 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4402 #1="*"))))) (-1351 ((|#3| |#2| |#2|) 29)) (-1353 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4402 #1#)))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1350 (|#3| |#2| |#2|)) (-15 -1351 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4402 "*"))) (PROGN (-15 -1352 (|#1| |#2| |#2|)) (-15 -1353 (|#1| |#2|))) |%noBranch|)) (-1042) (-1229 |#1|) (-679 |#1| |#4| |#5|) (-371 |#1|) (-371 |#1|)) (T -104)) -((-1353 (*1 *2 *3) (-12 (|has| *2 (-6 (-4402 #1="*"))) (-4 *5 (-371 *2)) (-4 *6 (-371 *2)) (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2)) (-4 *4 (-679 *2 *5 *6)))) (-1352 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4402 #1#))) (-4 *5 (-371 *2)) (-4 *6 (-371 *2)) (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2)) (-4 *4 (-679 *2 *5 *6)))) (-1351 (*1 *2 *3 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-679 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1229 *4)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)))) (-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-679 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1229 *4)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))))) -(-10 -7 (-15 -1350 (|#3| |#2| |#2|)) (-15 -1351 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4402 "*"))) (PROGN (-15 -1352 (|#1| |#2| |#2|)) (-15 -1353 (|#1| |#2|))) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-1355 (((-635 (-1166))) 33)) (-1354 (((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1166)) 35)) (-3437 (((-112) $ $) NIL))) -(((-105) (-13 (-1091) (-10 -7 (-15 -1355 ((-635 (-1166)))) (-15 -1354 ((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1166))) (-6 -4400)))) (T -105)) -((-1355 (*1 *2) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-105)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224))))) (-5 *1 (-105))))) -(-13 (-1091) (-10 -7 (-15 -1355 ((-635 (-1166)))) (-15 -1354 ((-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) (|:| |singularities| (-1143 (-224)))) (-1166))) (-6 -4400))) -((-1358 (($ (-635 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -1358 (|#1| (-635 |#2|)))) (-107 |#2|) (-1204)) (T -106)) -NIL -(-10 -8 (-15 -1358 (|#1| (-635 |#2|)))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-107 |#1|) (-139) (-1204)) (T -107)) -((-1358 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-107 *3)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204)))) (-4014 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204))))) -(-13 (-487 |t#1|) (-10 -8 (-6 -4401) (-15 -1358 ($ (-635 |t#1|))) (-15 -1357 (|t#1| $)) (-15 -4014 ($ |t#1| $)) (-15 -1356 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-544) $) NIL (|has| (-544) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-544) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-544) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-544) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-544) (-1031 (-544))))) (-3557 (((-544) $) NIL) (((-1166) $) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-544) (-1031 (-544)))) (((-544) $) NIL (|has| (-544) (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-544) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-544) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-544) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-544) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-544) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-544) (-1141)))) (-3588 (((-112) $) NIL (|has| (-544) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-544) (-844)))) (-4365 (($ (-1 (-544) (-544)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-544) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-544) (-306))) (((-406 (-544)) $) NIL)) (-3515 (((-544) $) NIL (|has| (-544) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-544)) (-635 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-544) (-544)) NIL (|has| (-544) (-308 (-544)))) (($ $ (-292 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-292 (-544)))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-1166)) (-635 (-544))) NIL (|has| (-544) (-512 (-1166) (-544)))) (($ $ (-1166) (-544)) NIL (|has| (-544) (-512 (-1166) (-544))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-544)) NIL (|has| (-544) (-285 (-544) (-544))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-544) $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| (-544) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-544) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-544) (-609 (-533)))) (((-377) $) NIL (|has| (-544) (-1013))) (((-224) $) NIL (|has| (-544) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-544) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 8) (($ (-544)) NIL) (($ (-1166)) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL) (((-997 2) $) 10)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-544) (-903))) (|has| (-544) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-544) $) NIL (|has| (-544) (-543)))) (-2179 (($ (-406 (-544))) 9)) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-544) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-544) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-544) (-844)))) (-4356 (($ $ $) NIL) (($ (-544) (-544)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-544) $) NIL) (($ $ (-544)) NIL))) -(((-108) (-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 2)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -2179 ($ (-406 (-544))))))) (T -108)) -((-3513 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-108)))) (-2179 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-108))))) -(-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 2)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -2179 ($ (-406 (-544)))))) -((-1370 (((-635 (-958)) $) 14)) (-3949 (((-1166) $) 10)) (-4353 (((-857) $) 23)) (-1359 (($ (-1166) (-635 (-958))) 15))) -(((-109) (-13 (-608 (-857)) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -1370 ((-635 (-958)) $)) (-15 -1359 ($ (-1166) (-635 (-958))))))) (T -109)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-109)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-635 (-958))) (-5 *1 (-109)))) (-1359 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-958))) (-5 *1 (-109))))) -(-13 (-608 (-857)) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -1370 ((-635 (-958)) $)) (-15 -1359 ($ (-1166) (-635 (-958)))))) -((-2947 (((-112) $ $) NIL)) (-2430 (($ $) NIL)) (-3725 (($ $ $) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-112) (-844)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4401)))) (-3292 (($ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-112) $ (-1220 (-544)) (-112)) NIL (|has| $ (-6 -4401))) (((-112) $ (-544) (-112)) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-3810 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-4249 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-1665 (((-112) $ (-544) (-112)) NIL (|has| $ (-6 -4401)))) (-3498 (((-112) $ (-544)) NIL)) (-3823 (((-544) (-112) $ (-544)) NIL (|has| (-112) (-1091))) (((-544) (-112) $) NIL (|has| (-112) (-1091))) (((-544) (-1 (-112) (-112)) $) NIL)) (-2096 (((-635 (-112)) $) NIL (|has| $ (-6 -4400)))) (-3239 (($ $ $) NIL)) (-3726 (($ $) NIL)) (-1382 (($ $ $) NIL)) (-4021 (($ (-765) (-112)) 8)) (-1383 (($ $ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL)) (-3917 (($ $ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2554 (((-635 (-112)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL)) (-2100 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ (-112) $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-112) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2345 (($ $ (-112)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-112)) (-635 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-292 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-635 (-292 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2351 (((-635 (-112)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (($ $ (-1220 (-544))) NIL) (((-112) $ (-544)) NIL) (((-112) $ (-544) (-112)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2097 (((-765) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091)))) (((-765) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-112) (-609 (-533))))) (-3929 (($ (-635 (-112))) NIL)) (-4208 (($ (-635 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4353 (((-857) $) NIL)) (-1918 (($ (-765) (-112)) 9)) (-2099 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-3240 (($ $ $) NIL)) (-2428 (($ $ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-2429 (($ $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-110) (-13 (-123) (-10 -8 (-15 -1918 ($ (-765) (-112)))))) (T -110)) -((-1918 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -1918 ($ (-765) (-112))))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-111 |#1| |#2|) (-139) (-1042) (-1042)) (T -111)) -NIL -(-13 (-641 |t#1|) (-1048 |t#2|) (-10 -7 (-6 -4395) (-6 -4394))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-1048 |#2|) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-2430 (($ $) 10)) (-3725 (($ $ $) 15)) (-2361 (($) 7 T CONST)) (-1360 (($ $) 6)) (-3521 (((-765)) 24)) (-3377 (($) 30)) (-3239 (($ $ $) 13)) (-3726 (($ $) 9)) (-1382 (($ $ $) 16)) (-1383 (($ $ $) 17)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) 29)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) 28)) (-3238 (($ $ $) 20)) (-3644 (((-1110) $) NIL)) (-2363 (($) 8 T CONST)) (-3237 (($ $ $) 21)) (-4377 (((-533) $) 36)) (-4353 (((-857) $) 39)) (-3240 (($ $ $) 11)) (-2428 (($ $ $) 14)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 19)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 22)) (-2429 (($ $ $) 12))) -(((-112) (-13 (-838) (-655) (-960) (-609 (-533)) (-10 -8 (-15 -2361 ($) -4359) (-15 -2363 ($) -4359) (-15 -3725 ($ $ $)) (-15 -1383 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -1360 ($ $))))) (T -112)) -((-2361 (*1 *1) (-5 *1 (-112))) (-2363 (*1 *1) (-5 *1 (-112))) (-3725 (*1 *1 *1 *1) (-5 *1 (-112))) (-1383 (*1 *1 *1 *1) (-5 *1 (-112))) (-1382 (*1 *1 *1 *1) (-5 *1 (-112))) (-1360 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-838) (-655) (-960) (-609 (-533)) (-10 -8 (-15 -2361 ($) -4359) (-15 -2363 ($) -4359) (-15 -3725 ($ $ $)) (-15 -1383 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -1360 ($ $)))) -((-2947 (((-112) $ $) NIL)) (-1605 (((-765) $) 72) (($ $ (-765)) 30)) (-1368 (((-112) $) 32)) (-1362 (($ $ (-1148) (-767)) 26)) (-1361 (($ $ (-45 (-1148) (-767))) 15)) (-3223 (((-3 (-767) "failed") $ (-1148)) 25)) (-1370 (((-45 (-1148) (-767)) $) 14)) (-3430 (($ (-1166)) 17) (($ (-1166) (-765)) 22)) (-1369 (((-112) $) 31)) (-1367 (((-112) $) 33)) (-3949 (((-1166) $) 8)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3013 (((-112) $ (-1166)) 10)) (-2282 (($ $ (-1 (-533) (-635 (-533)))) 52) (((-3 (-1 (-533) (-635 (-533))) "failed") $) 56)) (-3644 (((-1110) $) NIL)) (-1364 (((-112) $ (-1148)) 29)) (-1366 (($ $ (-1 (-112) $ $)) 35)) (-4024 (((-3 (-1 (-857) (-635 (-857))) "failed") $) 54) (($ $ (-1 (-857) (-635 (-857)))) 41) (($ $ (-1 (-857) (-857))) 43)) (-1363 (($ $ (-1148)) 45)) (-3804 (($ $) 63)) (-1365 (($ $ (-1 (-112) $ $)) 36)) (-4353 (((-857) $) 48)) (-3174 (($ $ (-1148)) 27)) (-2900 (((-3 (-765) "failed") $) 58)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 71)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 78))) -(((-113) (-13 (-844) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -1370 ((-45 (-1148) (-767)) $)) (-15 -3804 ($ $)) (-15 -3430 ($ (-1166))) (-15 -3430 ($ (-1166) (-765))) (-15 -2900 ((-3 (-765) "failed") $)) (-15 -1369 ((-112) $)) (-15 -1368 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -1605 ((-765) $)) (-15 -1605 ($ $ (-765))) (-15 -1366 ($ $ (-1 (-112) $ $))) (-15 -1365 ($ $ (-1 (-112) $ $))) (-15 -4024 ((-3 (-1 (-857) (-635 (-857))) "failed") $)) (-15 -4024 ($ $ (-1 (-857) (-635 (-857))))) (-15 -4024 ($ $ (-1 (-857) (-857)))) (-15 -2282 ($ $ (-1 (-533) (-635 (-533))))) (-15 -2282 ((-3 (-1 (-533) (-635 (-533))) "failed") $)) (-15 -3013 ((-112) $ (-1166))) (-15 -1364 ((-112) $ (-1148))) (-15 -3174 ($ $ (-1148))) (-15 -1363 ($ $ (-1148))) (-15 -3223 ((-3 (-767) "failed") $ (-1148))) (-15 -1362 ($ $ (-1148) (-767))) (-15 -1361 ($ $ (-45 (-1148) (-767))))))) (T -113)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-113)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-45 (-1148) (-767))) (-5 *1 (-113)))) (-3804 (*1 *1 *1) (-5 *1 (-113))) (-3430 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-113)))) (-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *1 (-113)))) (-2900 (*1 *2 *1) (|partial| -12 (-5 *2 (-765)) (-5 *1 (-113)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-113)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-113)))) (-1366 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1365 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-4024 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-857) (-635 (-857)))) (-5 *1 (-113)))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-635 (-857)))) (-5 *1 (-113)))) (-4024 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-857))) (-5 *1 (-113)))) (-2282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-533) (-635 (-533)))) (-5 *1 (-113)))) (-2282 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-533) (-635 (-533)))) (-5 *1 (-113)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-113)))) (-1364 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-113)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-113)))) (-3223 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-767)) (-5 *1 (-113)))) (-1362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-767)) (-5 *1 (-113)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1148) (-767))) (-5 *1 (-113))))) -(-13 (-844) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -1370 ((-45 (-1148) (-767)) $)) (-15 -3804 ($ $)) (-15 -3430 ($ (-1166))) (-15 -3430 ($ (-1166) (-765))) (-15 -2900 ((-3 (-765) "failed") $)) (-15 -1369 ((-112) $)) (-15 -1368 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -1605 ((-765) $)) (-15 -1605 ($ $ (-765))) (-15 -1366 ($ $ (-1 (-112) $ $))) (-15 -1365 ($ $ (-1 (-112) $ $))) (-15 -4024 ((-3 (-1 (-857) (-635 (-857))) "failed") $)) (-15 -4024 ($ $ (-1 (-857) (-635 (-857))))) (-15 -4024 ($ $ (-1 (-857) (-857)))) (-15 -2282 ($ $ (-1 (-533) (-635 (-533))))) (-15 -2282 ((-3 (-1 (-533) (-635 (-533))) "failed") $)) (-15 -3013 ((-112) $ (-1166))) (-15 -1364 ((-112) $ (-1148))) (-15 -3174 ($ $ (-1148))) (-15 -1363 ($ $ (-1148))) (-15 -3223 ((-3 (-767) "failed") $ (-1148))) (-15 -1362 ($ $ (-1148) (-767))) (-15 -1361 ($ $ (-45 (-1148) (-767)))))) -((-2897 (((-3 (-1 |#1| (-635 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-635 |#1|))) 11) (((-3 |#1| "failed") (-113) (-635 |#1|)) 21)) (-1371 (((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-635 (-1 |#1| (-635 |#1|)))) 26)) (-1372 (((-113) |#1|) 55 (|has| |#1| (-844)))) (-1373 (((-3 |#1| "failed") (-113)) 49 (|has| |#1| (-844))))) -(((-114 |#1|) (-10 -7 (-15 -2897 ((-3 |#1| "failed") (-113) (-635 |#1|))) (-15 -2897 ((-113) (-113) (-1 |#1| (-635 |#1|)))) (-15 -2897 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2897 ((-3 (-1 |#1| (-635 |#1|)) "failed") (-113))) (-15 -1371 ((-113) (-113) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1371 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1371 ((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-113))) (IF (|has| |#1| (-844)) (PROGN (-15 -1372 ((-113) |#1|)) (-15 -1373 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1091)) (T -114)) -((-1373 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1091)) (-4 *2 (-844)) (-5 *1 (-114 *2)))) (-1372 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-844)) (-4 *3 (-1091)))) (-1371 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-635 (-1 *4 (-635 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1091)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 (-1 *4 (-635 *4)))) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) (-2897 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-635 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1091)))) (-2897 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) (-2897 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-635 *4))) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) (-2897 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-635 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1091))))) -(-10 -7 (-15 -2897 ((-3 |#1| "failed") (-113) (-635 |#1|))) (-15 -2897 ((-113) (-113) (-1 |#1| (-635 |#1|)))) (-15 -2897 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2897 ((-3 (-1 |#1| (-635 |#1|)) "failed") (-113))) (-15 -1371 ((-113) (-113) (-635 (-1 |#1| (-635 |#1|))))) (-15 -1371 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1371 ((-3 (-635 (-1 |#1| (-635 |#1|))) "failed") (-113))) (IF (|has| |#1| (-844)) (PROGN (-15 -1372 ((-113) |#1|)) (-15 -1373 ((-3 |#1| "failed") (-113)))) |%noBranch|)) -((-1374 (((-544) |#2|) 37))) -(((-115 |#1| |#2|) (-10 -7 (-15 -1374 ((-544) |#2|))) (-13 (-362) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -115)) -((-1374 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-1031 (-406 *2)))) (-5 *2 (-544)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -1374 ((-544) |#2|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ (-544)) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2989 (($ (-1160 (-544)) (-544)) NIL)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2990 (($ $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4178 (((-765) $) NIL)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 (((-544)) NIL)) (-2991 (((-544) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4175 (($ $ (-544)) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2993 (((-1143 (-544)) $) NIL)) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-4176 (((-544) $ (-544)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-863 |#1|) (-544)) (T -116)) -NIL -(-863 |#1|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-116 |#1|) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-116 |#1|) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-116 |#1|) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-116 |#1|) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-116 |#1|) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-116 |#1|) (-1031 (-544))))) (-3557 (((-116 |#1|) $) NIL) (((-1166) $) NIL (|has| (-116 |#1|) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-116 |#1|) (-1031 (-544)))) (((-544) $) NIL (|has| (-116 |#1|) (-1031 (-544))))) (-4137 (($ $) NIL) (($ (-544) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-116 |#1|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-116 |#1|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-116 |#1|))) (|:| |vec| (-1253 (-116 |#1|)))) (-682 $) (-1253 $)) NIL) (((-682 (-116 |#1|)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-116 |#1|) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-116 |#1|) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-116 |#1|) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-116 |#1|) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-116 |#1|) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1141)))) (-3588 (((-112) $) NIL (|has| (-116 |#1|) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-116 |#1|) (-844)))) (-3242 (($ $ $) NIL (|has| (-116 |#1|) (-844)))) (-4365 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-116 |#1|) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-116 |#1|) (-306)))) (-3515 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-116 |#1|) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-116 |#1|) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-116 |#1|)) (-635 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-292 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-635 (-292 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-635 (-1166)) (-635 (-116 |#1|))) NIL (|has| (-116 |#1|) (-512 (-1166) (-116 |#1|)))) (($ $ (-1166) (-116 |#1|)) NIL (|has| (-116 |#1|) (-512 (-1166) (-116 |#1|))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-285 (-116 |#1|) (-116 |#1|))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-765)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-116 |#1|) $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| (-116 |#1|) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-116 |#1|) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-116 |#1|) (-609 (-533)))) (((-377) $) NIL (|has| (-116 |#1|) (-1013))) (((-224) $) NIL (|has| (-116 |#1|) (-1013)))) (-2994 (((-173 (-406 (-544))) $) NIL)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-116 |#1|)) NIL) (($ (-1166)) NIL (|has| (-116 |#1|) (-1031 (-1166))))) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-903))) (|has| (-116 |#1|) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-543)))) (-2212 (((-112) $ $) NIL)) (-4176 (((-406 (-544)) $ (-544)) NIL)) (-3787 (($ $) NIL (|has| (-116 |#1|) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-116 |#1|) (-893 (-1166)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-765)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-116 |#1|) (-844)))) (-4356 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-984 (-116 |#1|)) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)))) (-544)) (T -117)) -((-4176 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-544)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-117 *3)) (-14 *3 (-544)))) (-4137 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-544)))) (-4137 (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-984 (-116 |#1|)) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)))) -((-4194 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3414 (((-635 $) $) 27)) (-3410 (((-112) $ $) 32)) (-3646 (((-112) |#2| $) 36)) (-3413 (((-635 |#2|) $) 22)) (-3926 (((-112) $) 16)) (-4206 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4040 (((-112) $) 45)) (-4353 (((-857) $) 41)) (-3921 (((-635 $) $) 28)) (-3437 (((-112) $ $) 34)) (-4364 (((-765) $) 43))) -(((-118 |#1| |#2|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4194 (|#1| |#1| "right" |#1|)) (-15 -4194 (|#1| |#1| "left" |#1|)) (-15 -4206 (|#1| |#1| "right")) (-15 -4206 (|#1| |#1| "left")) (-15 -4194 (|#2| |#1| #1="value" |#2|)) (-15 -3410 ((-112) |#1| |#1|)) (-15 -3413 ((-635 |#2|) |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -3646 ((-112) |#2| |#1|)) (-15 -4364 ((-765) |#1|))) (-119 |#2|) (-1204)) (T -118)) -NIL -(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4194 (|#1| |#1| "right" |#1|)) (-15 -4194 (|#1| |#1| "left" |#1|)) (-15 -4206 (|#1| |#1| "right")) (-15 -4206 (|#1| |#1| "left")) (-15 -4194 (|#2| |#1| #1="value" |#2|)) (-15 -3410 ((-112) |#1| |#1|)) (-15 -3413 ((-635 |#2|) |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -3646 ((-112) |#2| |#1|)) (-15 -4364 ((-765) |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-1375 (($ $ $) 52 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 54 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) (($ $ "left" $) 55 (|has| $ (-6 -4401))) (($ $ "right" $) 53 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-3522 (($ $) 57)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3523 (($ $) 59)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-119 |#1|) (-139) (-1204)) (T -119)) -((-3523 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1204)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1204)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1204)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1204)))) (-4194 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4401)) (-4 *1 (-119 *3)) (-4 *3 (-1204)))) (-1376 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-119 *2)) (-4 *2 (-1204)))) (-4194 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4401)) (-4 *1 (-119 *3)) (-4 *3 (-1204)))) (-1375 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-119 *2)) (-4 *2 (-1204))))) -(-13 (-1003 |t#1|) (-10 -8 (-15 -3523 ($ $)) (-15 -4206 ($ $ "left")) (-15 -3522 ($ $)) (-15 -4206 ($ $ "right")) (IF (|has| $ (-6 -4401)) (PROGN (-15 -4194 ($ $ "left" $)) (-15 -1376 ($ $ $)) (-15 -4194 ($ $ "right" $)) (-15 -1375 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-1379 (((-112) |#1|) 24)) (-1378 (((-765) (-765)) 23) (((-765)) 22)) (-1377 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) -(((-120 |#1|) (-10 -7 (-15 -1377 ((-112) |#1|)) (-15 -1377 ((-112) |#1| (-112))) (-15 -1378 ((-765))) (-15 -1378 ((-765) (-765))) (-15 -1379 ((-112) |#1|))) (-1229 (-544))) (T -120)) -((-1379 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) (-1378 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) (-1377 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) (-1377 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544)))))) -(-10 -7 (-15 -1377 ((-112) |#1|)) (-15 -1377 ((-112) |#1| (-112))) (-15 -1378 ((-765))) (-15 -1378 ((-765) (-765))) (-15 -1379 ((-112) |#1|))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 15)) (-3822 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-1375 (($ $ $) 18 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 20 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 17)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) 23)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) 19)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1380 (($ |#1| $) 24)) (-4014 (($ |#1| $) 10)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 14)) (-3972 (($) 8)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1381 (($ (-635 |#1|)) 12)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -1381 ($ (-635 |#1|))) (-15 -4014 ($ |#1| $)) (-15 -1380 ($ |#1| $)) (-15 -3822 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-844)) (T -121)) -((-1381 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-121 *3)))) (-4014 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))) (-1380 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))) (-3822 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-844))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -1381 ($ (-635 |#1|))) (-15 -4014 ($ |#1| $)) (-15 -1380 ($ |#1| $)) (-15 -3822 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2430 (($ $) 12)) (-3726 (($ $) 10)) (-1382 (($ $ $) 22)) (-1383 (($ $ $) 20)) (-2428 (($ $ $) 18)) (-2429 (($ $ $) 16))) -(((-122 |#1|) (-10 -8 (-15 -1382 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -3726 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -1382 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -3726 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-2430 (($ $) 103)) (-3725 (($ $ $) 25)) (-2344 (((-1259) $ (-544) (-544)) 66 (|has| $ (-6 -4401)))) (-1876 (((-112) $) 98 (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1874 (($ $) 102 (-12 (|has| (-112) (-844)) (|has| $ (-6 -4401)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4401)))) (-3292 (($ $) 97 (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1293 (((-112) $ (-765)) 37)) (-4194 (((-112) $ (-1220 (-544)) (-112)) 88 (|has| $ (-6 -4401))) (((-112) $ (-544) (-112)) 54 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4400)))) (-4131 (($) 38 T CONST)) (-2416 (($ $) 100 (|has| $ (-6 -4401)))) (-2417 (($ $) 90)) (-1424 (($ $) 68 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4400))) (($ (-112) $) 69 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400))))) (-4249 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400))))) (-1665 (((-112) $ (-544) (-112)) 53 (|has| $ (-6 -4401)))) (-3498 (((-112) $ (-544)) 55)) (-3823 (((-544) (-112) $ (-544)) 95 (|has| (-112) (-1091))) (((-544) (-112) $) 94 (|has| (-112) (-1091))) (((-544) (-1 (-112) (-112)) $) 93)) (-2096 (((-635 (-112)) $) 45 (|has| $ (-6 -4400)))) (-3239 (($ $ $) 26)) (-3726 (($ $) 30)) (-1382 (($ $ $) 28)) (-4021 (($ (-765) (-112)) 77)) (-1383 (($ $ $) 29)) (-4126 (((-112) $ (-765)) 36)) (-2346 (((-544) $) 63 (|has| (-544) (-844)))) (-2913 (($ $ $) 13)) (-3917 (($ $ $) 96 (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2554 (((-635 (-112)) $) 46 (|has| $ (-6 -4400)))) (-3646 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 62 (|has| (-544) (-844)))) (-3242 (($ $ $) 14)) (-2100 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4123 (((-112) $ (-765)) 35)) (-3643 (((-1148) $) 9)) (-2421 (($ $ $ (-544)) 87) (($ (-112) $ (-544)) 86)) (-2349 (((-635 (-544)) $) 60)) (-2350 (((-112) (-544) $) 59)) (-3644 (((-1110) $) 10)) (-4207 (((-112) $) 64 (|has| (-544) (-844)))) (-1425 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2345 (($ $ (-112)) 65 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-112)) (-635 (-112))) 52 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-292 (-112))) 50 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-635 (-292 (-112)))) 49 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))))) (-1294 (((-112) $ $) 31)) (-2348 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2351 (((-635 (-112)) $) 58)) (-3807 (((-112) $) 34)) (-3972 (($) 33)) (-4206 (($ $ (-1220 (-544))) 83) (((-112) $ (-544)) 57) (((-112) $ (-544) (-112)) 56)) (-2422 (($ $ (-1220 (-544))) 85) (($ $ (-544)) 84)) (-2097 (((-765) (-112) $) 47 (-12 (|has| (-112) (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) 99 (|has| $ (-6 -4401)))) (-3804 (($ $) 32)) (-4377 (((-533) $) 67 (|has| (-112) (-609 (-533))))) (-3929 (($ (-635 (-112))) 76)) (-4208 (($ (-635 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4353 (((-857) $) 11)) (-2099 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4400)))) (-3240 (($ $ $) 27)) (-2428 (($ $ $) 105)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-2429 (($ $ $) 104)) (-4364 (((-765) $) 39 (|has| $ (-6 -4400))))) +((-4041 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1731 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -1731 ((-112) $ $)) (-15 -4041 ((-112) $ $)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-1512 ((|#1| $ |#1|) 13 (|has| $ (-6 -4403)))) (-1718 (($ $ $) NIL (|has| $ (-6 -4403)))) (-3225 (($ $ $) NIL (|has| $ (-6 -4403)))) (-3510 (($ $ (-639 |#1|)) 15)) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403))) (($ $ "left" $) NIL (|has| $ (-6 -4403))) (($ $ "right" $) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-1602 (($ $) 11)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3531 (($ $ |#1| $) 17)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1582 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1686 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-639 |#1|) |#1| |#1| |#1|)) 35)) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-1588 (($ $) 10)) (-4007 (((-639 |#1|) $) NIL)) (-3449 (((-112) $) 12)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 9)) (-4307 (($) 16)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2568 (((-562) $ $) NIL)) (-2424 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1978 (($ (-766) |#1|) 19)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4402) (-6 -4403) (-15 -1978 ($ (-766) |#1|)) (-15 -3510 ($ $ (-639 |#1|))) (-15 -1582 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1582 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1686 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1686 ($ $ |#1| (-1 (-639 |#1|) |#1| |#1| |#1|))))) (-1092)) (T -103)) +((-1978 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-103 *3)) (-4 *3 (-1092)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-103 *3)))) (-1582 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1092)))) (-1582 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-103 *3)))) (-1686 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1092)) (-5 *1 (-103 *2)))) (-1686 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-639 *2) *2 *2 *2)) (-4 *2 (-1092)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4402) (-6 -4403) (-15 -1978 ($ (-766) |#1|)) (-15 -3510 ($ $ (-639 |#1|))) (-15 -1582 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1582 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1686 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1686 ($ $ |#1| (-1 (-639 |#1|) |#1| |#1| |#1|))))) +((-2477 ((|#3| |#2| |#2|) 28)) (-4202 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4404 "*"))))) (-2292 ((|#3| |#2| |#2|) 29)) (-1823 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4404 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2477 (|#3| |#2| |#2|)) (-15 -2292 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4404 "*"))) (PROGN (-15 -4202 (|#1| |#2| |#2|)) (-15 -1823 (|#1| |#2|))) |%noBranch|)) (-1044) (-1232 |#1|) (-681 |#1| |#4| |#5|) (-372 |#1|) (-372 |#1|)) (T -104)) +((-1823 (*1 *2 *3) (-12 (|has| *2 (-6 (-4404 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1044)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) (-4 *4 (-681 *2 *5 *6)))) (-4202 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4404 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1044)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) (-4 *4 (-681 *2 *5 *6)))) (-2292 (*1 *2 *3 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-681 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))) (-2477 (*1 *2 *3 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-681 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))))) +(-10 -7 (-15 -2477 (|#3| |#2| |#2|)) (-15 -2292 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4404 "*"))) (PROGN (-15 -4202 (|#1| |#2| |#2|)) (-15 -1823 (|#1| |#2|))) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-3352 (((-639 (-1168))) 33)) (-3456 (((-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) (|:| |singularities| (-1148 (-224)))) (-1168)) 35)) (-1731 (((-112) $ $) NIL))) +(((-105) (-13 (-1092) (-10 -7 (-15 -3352 ((-639 (-1168)))) (-15 -3456 ((-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) (|:| |singularities| (-1148 (-224)))) (-1168))) (-6 -4402)))) (T -105)) +((-3352 (*1 *2) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-105)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) (|:| |singularities| (-1148 (-224))))) (-5 *1 (-105))))) +(-13 (-1092) (-10 -7 (-15 -3352 ((-639 (-1168)))) (-15 -3456 ((-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) (|:| |singularities| (-1148 (-224)))) (-1168))) (-6 -4402))) +((-1932 (($ (-639 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -1932 (|#1| (-639 |#2|)))) (-107 |#2|) (-1207)) (T -106)) +NIL +(-10 -8 (-15 -1932 (|#1| (-639 |#2|)))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-1800 (($) 7 T CONST)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) 42)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-107 |#1|) (-139) (-1207)) (T -107)) +((-1932 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-107 *3)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))) (-4300 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207))))) +(-13 (-488 |t#1|) (-10 -8 (-6 -4403) (-15 -1932 ($ (-639 |t#1|))) (-15 -1904 (|t#1| $)) (-15 -4300 ($ |t#1| $)) (-15 -3262 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 (((-562) $) NIL (|has| (-562) (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL (|has| (-562) (-815)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-562) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-562) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-562) (-1033 (-562))))) (-3961 (((-562) $) NIL) (((-1168) $) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-562) (-1033 (-562)))) (((-562) $) NIL (|has| (-562) (-1033 (-562))))) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-562) (-544)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3519 (((-112) $) NIL (|has| (-562) (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-562) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-562) (-881 (-378))))) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL)) (-4065 (((-562) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| (-562) (-1143)))) (-3392 (((-112) $) NIL (|has| (-562) (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-562) (-845)))) (-4152 (($ (-1 (-562) (-562)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-562) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL (|has| (-562) (-306))) (((-406 (-562)) $) NIL)) (-4014 (((-562) $) NIL (|has| (-562) (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-562)) (-639 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-562) (-562)) NIL (|has| (-562) (-308 (-562)))) (($ $ (-293 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-293 (-562)))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-1168)) (-639 (-562))) NIL (|has| (-562) (-513 (-1168) (-562)))) (($ $ (-1168) (-562)) NIL (|has| (-562) (-513 (-1168) (-562))))) (-1577 (((-766) $) NIL)) (-2343 (($ $ (-562)) NIL (|has| (-562) (-285 (-562) (-562))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-3658 (($ $) NIL)) (-4076 (((-562) $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| (-562) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-562) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-562) (-610 (-535)))) (((-378) $) NIL (|has| (-562) (-1017))) (((-224) $) NIL (|has| (-562) (-1017)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-562) (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 8) (($ (-562)) NIL) (($ (-1168)) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL) (((-999 2) $) 10)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-562) (-904))) (|has| (-562) (-144))))) (-2579 (((-766)) NIL)) (-2604 (((-562) $) NIL (|has| (-562) (-544)))) (-4269 (($ (-406 (-562))) 9)) (-2922 (((-112) $ $) NIL)) (-3526 (($ $) NIL (|has| (-562) (-815)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1759 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1859 (($ $ $) NIL) (($ (-562) (-562)) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-562) $) NIL) (($ $ (-562)) NIL))) +(((-108) (-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 2)) (-10 -8 (-15 -2736 ((-406 (-562)) $)) (-15 -4269 ($ (-406 (-562))))))) (T -108)) +((-2736 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-108)))) (-4269 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-108))))) +(-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 2)) (-10 -8 (-15 -2736 ((-406 (-562)) $)) (-15 -4269 ($ (-406 (-562)))))) +((-3806 (((-639 (-960)) $) 14)) (-3254 (((-1168) $) 10)) (-4054 (((-857) $) 23)) (-1864 (($ (-1168) (-639 (-960))) 15))) +(((-109) (-13 (-609 (-857)) (-10 -8 (-15 -3254 ((-1168) $)) (-15 -3806 ((-639 (-960)) $)) (-15 -1864 ($ (-1168) (-639 (-960))))))) (T -109)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-109)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-639 (-960))) (-5 *1 (-109)))) (-1864 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-960))) (-5 *1 (-109))))) +(-13 (-609 (-857)) (-10 -8 (-15 -3254 ((-1168) $)) (-15 -3806 ((-639 (-960)) $)) (-15 -1864 ($ (-1168) (-639 (-960)))))) +((-4041 (((-112) $ $) NIL)) (-3295 (($ $) NIL)) (-2265 (($ $ $) NIL)) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) $) NIL (|has| (-112) (-845))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3381 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-845)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-1395 (($ $) NIL (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-4200 (((-112) $ (-1223 (-562)) (-112)) NIL (|has| $ (-6 -4403))) (((-112) $ (-562) (-112)) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-1475 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-1955 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-1505 (((-112) $ (-562) (-112)) NIL (|has| $ (-6 -4403)))) (-1420 (((-112) $ (-562)) NIL)) (-4264 (((-562) (-112) $ (-562)) NIL (|has| (-112) (-1092))) (((-562) (-112) $) NIL (|has| (-112) (-1092))) (((-562) (-1 (-112) (-112)) $) NIL)) (-1720 (((-639 (-112)) $) NIL (|has| $ (-6 -4402)))) (-2255 (($ $ $) NIL)) (-2236 (($ $) NIL)) (-1325 (($ $ $) NIL)) (-1458 (($ (-766) (-112)) 8)) (-2134 (($ $ $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL)) (-1610 (($ $ $) NIL (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1912 (((-639 (-112)) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL)) (-1490 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-3297 (($ $ $ (-562)) NIL) (($ (-112) $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-112) $) NIL (|has| (-562) (-845)))) (-3251 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2716 (($ $ (-112)) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-112)) (-639 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-639 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-2411 (((-639 (-112)) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 (($ $ (-1223 (-562))) NIL) (((-112) $ (-562)) NIL) (((-112) $ (-562) (-112)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-1723 (((-766) (-112) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092)))) (((-766) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402)))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-112) (-610 (-535))))) (-4066 (($ (-639 (-112))) NIL)) (-2767 (($ (-639 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4054 (((-857) $) NIL)) (-3366 (($ (-766) (-112)) 9)) (-1744 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402)))) (-2246 (($ $ $) NIL)) (-2308 (($ $ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-2298 (($ $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-110) (-13 (-123) (-10 -8 (-15 -3366 ($ (-766) (-112)))))) (T -110)) +((-3366 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -3366 ($ (-766) (-112))))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-111 |#1| |#2|) (-139) (-1044) (-1044)) (T -111)) +NIL +(-13 (-642 |t#1|) (-1050 |t#2|) (-10 -7 (-6 -4397) (-6 -4396))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-1050 |#2|) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-3295 (($ $) 10)) (-2265 (($ $ $) 15)) (-2797 (($) 7 T CONST)) (-2153 (($ $) 6)) (-1382 (((-766)) 24)) (-1448 (($) 30)) (-2255 (($ $ $) 13)) (-2236 (($ $) 9)) (-1325 (($ $ $) 16)) (-2134 (($ $ $) 17)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-1999 (((-916) $) 29)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) 28)) (-3994 (($ $ $) 20)) (-1709 (((-1112) $) NIL)) (-1615 (($) 8 T CONST)) (-1935 (($ $ $) 21)) (-4208 (((-535) $) 36)) (-4054 (((-857) $) 39)) (-2246 (($ $ $) 11)) (-2308 (($ $ $) 14)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 19)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 22)) (-2298 (($ $ $) 12))) +(((-112) (-13 (-839) (-655) (-962) (-610 (-535)) (-10 -8 (-15 -2797 ($) -1497) (-15 -1615 ($) -1497) (-15 -2265 ($ $ $)) (-15 -2134 ($ $ $)) (-15 -1325 ($ $ $)) (-15 -2153 ($ $))))) (T -112)) +((-2797 (*1 *1) (-5 *1 (-112))) (-1615 (*1 *1) (-5 *1 (-112))) (-2265 (*1 *1 *1 *1) (-5 *1 (-112))) (-2134 (*1 *1 *1 *1) (-5 *1 (-112))) (-1325 (*1 *1 *1 *1) (-5 *1 (-112))) (-2153 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-839) (-655) (-962) (-610 (-535)) (-10 -8 (-15 -2797 ($) -1497) (-15 -1615 ($) -1497) (-15 -2265 ($ $ $)) (-15 -2134 ($ $ $)) (-15 -1325 ($ $ $)) (-15 -2153 ($ $)))) +((-3048 (((-3 (-1 |#1| (-639 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-639 |#1|))) 11) (((-3 |#1| "failed") (-114) (-639 |#1|)) 21)) (-1939 (((-3 (-639 (-1 |#1| (-639 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-639 (-1 |#1| (-639 |#1|)))) 26)) (-1788 (((-114) |#1|) 55 (|has| |#1| (-845)))) (-1698 (((-3 |#1| "failed") (-114)) 49 (|has| |#1| (-845))))) +(((-113 |#1|) (-10 -7 (-15 -3048 ((-3 |#1| "failed") (-114) (-639 |#1|))) (-15 -3048 ((-114) (-114) (-1 |#1| (-639 |#1|)))) (-15 -3048 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3048 ((-3 (-1 |#1| (-639 |#1|)) "failed") (-114))) (-15 -1939 ((-114) (-114) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1939 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1939 ((-3 (-639 (-1 |#1| (-639 |#1|))) "failed") (-114))) (IF (|has| |#1| (-845)) (PROGN (-15 -1788 ((-114) |#1|)) (-15 -1698 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1092)) (T -113)) +((-1698 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1092)) (-4 *2 (-845)) (-5 *1 (-113 *2)))) (-1788 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-845)) (-4 *3 (-1092)))) (-1939 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-639 (-1 *4 (-639 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1092)))) (-1939 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1092)) (-5 *1 (-113 *4)))) (-1939 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 (-1 *4 (-639 *4)))) (-4 *4 (-1092)) (-5 *1 (-113 *4)))) (-3048 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-639 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1092)))) (-3048 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1092)) (-5 *1 (-113 *4)))) (-3048 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-639 *4))) (-4 *4 (-1092)) (-5 *1 (-113 *4)))) (-3048 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-639 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1092))))) +(-10 -7 (-15 -3048 ((-3 |#1| "failed") (-114) (-639 |#1|))) (-15 -3048 ((-114) (-114) (-1 |#1| (-639 |#1|)))) (-15 -3048 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3048 ((-3 (-1 |#1| (-639 |#1|)) "failed") (-114))) (-15 -1939 ((-114) (-114) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1939 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1939 ((-3 (-639 (-1 |#1| (-639 |#1|))) "failed") (-114))) (IF (|has| |#1| (-845)) (PROGN (-15 -1788 ((-114) |#1|)) (-15 -1698 ((-3 |#1| "failed") (-114)))) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-1929 (((-766) $) 72) (($ $ (-766)) 30)) (-2324 (((-112) $) 32)) (-1815 (($ $ (-1150) (-769)) 26)) (-2902 (($ $ (-45 (-1150) (-769))) 15)) (-3394 (((-3 (-769) "failed") $ (-1150)) 25)) (-3806 (((-45 (-1150) (-769)) $) 14)) (-2876 (($ (-1168)) 17) (($ (-1168) (-766)) 22)) (-3237 (((-112) $) 31)) (-2870 (((-112) $) 33)) (-3254 (((-1168) $) 8)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1776 (((-112) $ (-1168)) 10)) (-1541 (($ $ (-1 (-535) (-639 (-535)))) 52) (((-3 (-1 (-535) (-639 (-535))) "failed") $) 56)) (-1709 (((-1112) $) NIL)) (-4169 (((-112) $ (-1150)) 29)) (-2570 (($ $ (-1 (-112) $ $)) 35)) (-1479 (((-3 (-1 (-857) (-639 (-857))) "failed") $) 54) (($ $ (-1 (-857) (-639 (-857)))) 41) (($ $ (-1 (-857) (-857))) 43)) (-4277 (($ $ (-1150)) 45)) (-4220 (($ $) 63)) (-3802 (($ $ (-1 (-112) $ $)) 36)) (-4054 (((-857) $) 48)) (-3977 (($ $ (-1150)) 27)) (-3087 (((-3 (-766) "failed") $) 58)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 71)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 78))) +(((-114) (-13 (-845) (-10 -8 (-15 -3254 ((-1168) $)) (-15 -3806 ((-45 (-1150) (-769)) $)) (-15 -4220 ($ $)) (-15 -2876 ($ (-1168))) (-15 -2876 ($ (-1168) (-766))) (-15 -3087 ((-3 (-766) "failed") $)) (-15 -3237 ((-112) $)) (-15 -2324 ((-112) $)) (-15 -2870 ((-112) $)) (-15 -1929 ((-766) $)) (-15 -1929 ($ $ (-766))) (-15 -2570 ($ $ (-1 (-112) $ $))) (-15 -3802 ($ $ (-1 (-112) $ $))) (-15 -1479 ((-3 (-1 (-857) (-639 (-857))) "failed") $)) (-15 -1479 ($ $ (-1 (-857) (-639 (-857))))) (-15 -1479 ($ $ (-1 (-857) (-857)))) (-15 -1541 ($ $ (-1 (-535) (-639 (-535))))) (-15 -1541 ((-3 (-1 (-535) (-639 (-535))) "failed") $)) (-15 -1776 ((-112) $ (-1168))) (-15 -4169 ((-112) $ (-1150))) (-15 -3977 ($ $ (-1150))) (-15 -4277 ($ $ (-1150))) (-15 -3394 ((-3 (-769) "failed") $ (-1150))) (-15 -1815 ($ $ (-1150) (-769))) (-15 -2902 ($ $ (-45 (-1150) (-769))))))) (T -114)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-114)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-45 (-1150) (-769))) (-5 *1 (-114)))) (-4220 (*1 *1 *1) (-5 *1 (-114))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-114)))) (-2876 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *1 (-114)))) (-3087 (*1 *2 *1) (|partial| -12 (-5 *2 (-766)) (-5 *1 (-114)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-114)))) (-1929 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-114)))) (-2570 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1479 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-857) (-639 (-857)))) (-5 *1 (-114)))) (-1479 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-639 (-857)))) (-5 *1 (-114)))) (-1479 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-857))) (-5 *1 (-114)))) (-1541 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-535) (-639 (-535)))) (-5 *1 (-114)))) (-1541 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-535) (-639 (-535)))) (-5 *1 (-114)))) (-1776 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-114)))) (-4169 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-114)))) (-4277 (*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-114)))) (-3394 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1150)) (-5 *2 (-769)) (-5 *1 (-114)))) (-1815 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-769)) (-5 *1 (-114)))) (-2902 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1150) (-769))) (-5 *1 (-114))))) +(-13 (-845) (-10 -8 (-15 -3254 ((-1168) $)) (-15 -3806 ((-45 (-1150) (-769)) $)) (-15 -4220 ($ $)) (-15 -2876 ($ (-1168))) (-15 -2876 ($ (-1168) (-766))) (-15 -3087 ((-3 (-766) "failed") $)) (-15 -3237 ((-112) $)) (-15 -2324 ((-112) $)) (-15 -2870 ((-112) $)) (-15 -1929 ((-766) $)) (-15 -1929 ($ $ (-766))) (-15 -2570 ($ $ (-1 (-112) $ $))) (-15 -3802 ($ $ (-1 (-112) $ $))) (-15 -1479 ((-3 (-1 (-857) (-639 (-857))) "failed") $)) (-15 -1479 ($ $ (-1 (-857) (-639 (-857))))) (-15 -1479 ($ $ (-1 (-857) (-857)))) (-15 -1541 ($ $ (-1 (-535) (-639 (-535))))) (-15 -1541 ((-3 (-1 (-535) (-639 (-535))) "failed") $)) (-15 -1776 ((-112) $ (-1168))) (-15 -4169 ((-112) $ (-1150))) (-15 -3977 ($ $ (-1150))) (-15 -4277 ($ $ (-1150))) (-15 -3394 ((-3 (-769) "failed") $ (-1150))) (-15 -1815 ($ $ (-1150) (-769))) (-15 -2902 ($ $ (-45 (-1150) (-769)))))) +((-3775 (((-562) |#2|) 37))) +(((-115 |#1| |#2|) (-10 -7 (-15 -3775 ((-562) |#2|))) (-13 (-362) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -115)) +((-3775 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-1033 (-406 *2)))) (-5 *2 (-562)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -3775 ((-562) |#2|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $ (-562)) NIL)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-4334 (($ (-1164 (-562)) (-562)) NIL)) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-2977 (($ $) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-1900 (((-766) $) NIL)) (-1957 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3518 (((-562)) NIL)) (-2779 (((-562) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1353 (($ $ (-562)) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3280 (((-1148 (-562)) $) NIL)) (-2256 (($ $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL)) (-2579 (((-766)) NIL)) (-2922 (((-112) $ $) NIL)) (-1406 (((-562) $ (-562)) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-864 |#1|) (-562)) (T -116)) +NIL +(-864 |#1|) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-116 |#1|) (-904)))) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-116 |#1|) (-904)))) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL (|has| (-116 |#1|) (-815)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-116 |#1|) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-116 |#1|) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-116 |#1|) (-1033 (-562))))) (-3961 (((-116 |#1|) $) NIL) (((-1168) $) NIL (|has| (-116 |#1|) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-116 |#1|) (-1033 (-562)))) (((-562) $) NIL (|has| (-116 |#1|) (-1033 (-562))))) (-2724 (($ $) NIL) (($ (-562) $) NIL)) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| (-116 |#1|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-116 |#1|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-116 |#1|))) (|:| |vec| (-1256 (-116 |#1|)))) (-683 $) (-1256 $)) NIL) (((-683 (-116 |#1|)) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-116 |#1|) (-544)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3519 (((-112) $) NIL (|has| (-116 |#1|) (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-116 |#1|) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-116 |#1|) (-881 (-378))))) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL)) (-4065 (((-116 |#1|) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1143)))) (-3392 (((-112) $) NIL (|has| (-116 |#1|) (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-116 |#1|) (-845)))) (-2993 (($ $ $) NIL (|has| (-116 |#1|) (-845)))) (-4152 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-116 |#1|) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL (|has| (-116 |#1|) (-306)))) (-4014 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-116 |#1|) (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-116 |#1|) (-904)))) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-116 |#1|)) (-639 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-293 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-639 (-293 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-639 (-1168)) (-639 (-116 |#1|))) NIL (|has| (-116 |#1|) (-513 (-1168) (-116 |#1|)))) (($ $ (-1168) (-116 |#1|)) NIL (|has| (-116 |#1|) (-513 (-1168) (-116 |#1|))))) (-1577 (((-766) $) NIL)) (-2343 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-285 (-116 |#1|) (-116 |#1|))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-766)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1168)) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-766)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3658 (($ $) NIL)) (-4076 (((-116 |#1|) $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| (-116 |#1|) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-116 |#1|) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-116 |#1|) (-610 (-535)))) (((-378) $) NIL (|has| (-116 |#1|) (-1017))) (((-224) $) NIL (|has| (-116 |#1|) (-1017)))) (-1977 (((-173 (-406 (-562))) $) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-116 |#1|)) NIL) (($ (-1168)) NIL (|has| (-116 |#1|) (-1033 (-1168))))) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-904))) (|has| (-116 |#1|) (-144))))) (-2579 (((-766)) NIL)) (-2604 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-544)))) (-2922 (((-112) $ $) NIL)) (-1406 (((-406 (-562)) $ (-562)) NIL)) (-3526 (($ $) NIL (|has| (-116 |#1|) (-815)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-766)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1168)) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-766)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-116 |#1|) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-116 |#1|) (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-116 |#1|) (-845)))) (-1759 (((-112) $ $) NIL (|has| (-116 |#1|) (-845)))) (-1859 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-987 (-116 |#1|)) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1977 ((-173 (-406 (-562))) $)) (-15 -2724 ($ $)) (-15 -2724 ($ (-562) $)))) (-562)) (T -117)) +((-1406 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-562)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-117 *3)) (-14 *3 (-562)))) (-2724 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-562)))) (-2724 (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-987 (-116 |#1|)) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1977 ((-173 (-406 (-562))) $)) (-15 -2724 ($ $)) (-15 -2724 ($ (-562) $)))) +((-4200 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-2720 (((-639 $) $) 27)) (-4379 (((-112) $ $) 32)) (-1669 (((-112) |#2| $) 36)) (-4007 (((-639 |#2|) $) 22)) (-3449 (((-112) $) 16)) (-2343 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2424 (((-112) $) 45)) (-4054 (((-857) $) 41)) (-2906 (((-639 $) $) 28)) (-1731 (((-112) $ $) 34)) (-3492 (((-766) $) 43))) +(((-118 |#1| |#2|) (-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -4200 (|#1| |#1| "right" |#1|)) (-15 -4200 (|#1| |#1| "left" |#1|)) (-15 -2343 (|#1| |#1| "right")) (-15 -2343 (|#1| |#1| "left")) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -4379 ((-112) |#1| |#1|)) (-15 -4007 ((-639 |#2|) |#1|)) (-15 -2424 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -3449 ((-112) |#1|)) (-15 -2720 ((-639 |#1|) |#1|)) (-15 -2906 ((-639 |#1|) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1669 ((-112) |#2| |#1|)) (-15 -3492 ((-766) |#1|))) (-119 |#2|) (-1207)) (T -118)) +NIL +(-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -4200 (|#1| |#1| "right" |#1|)) (-15 -4200 (|#1| |#1| "left" |#1|)) (-15 -2343 (|#1| |#1| "right")) (-15 -2343 (|#1| |#1| "left")) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -4379 ((-112) |#1| |#1|)) (-15 -4007 ((-639 |#2|) |#1|)) (-15 -2424 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -3449 ((-112) |#1|)) (-15 -2720 ((-639 |#1|) |#1|)) (-15 -2906 ((-639 |#1|) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1669 ((-112) |#2| |#1|)) (-15 -3492 ((-766) |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2534 ((|#1| $) 48)) (-4336 (((-112) $ (-766)) 8)) (-1512 ((|#1| $ |#1|) 39 (|has| $ (-6 -4403)))) (-1718 (($ $ $) 52 (|has| $ (-6 -4403)))) (-3225 (($ $ $) 54 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4403))) (($ $ "left" $) 55 (|has| $ (-6 -4403))) (($ $ "right" $) 53 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 41 (|has| $ (-6 -4403)))) (-1800 (($) 7 T CONST)) (-1602 (($ $) 57)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 50)) (-4379 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-1588 (($ $) 59)) (-4007 (((-639 |#1|) $) 45)) (-3449 (((-112) $) 49)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2568 (((-562) $ $) 44)) (-2424 (((-112) $) 46)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) 51)) (-4055 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-119 |#1|) (-139) (-1207)) (T -119)) +((-1588 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-1602 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-4200 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4403)) (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-3225 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-119 *2)) (-4 *2 (-1207)))) (-4200 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4403)) (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-1718 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-119 *2)) (-4 *2 (-1207))))) +(-13 (-1005 |t#1|) (-10 -8 (-15 -1588 ($ $)) (-15 -2343 ($ $ "left")) (-15 -1602 ($ $)) (-15 -2343 ($ $ "right")) (IF (|has| $ (-6 -4403)) (PROGN (-15 -4200 ($ $ "left" $)) (-15 -3225 ($ $ $)) (-15 -4200 ($ $ "right" $)) (-15 -1718 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-4013 (((-112) |#1|) 24)) (-4228 (((-766) (-766)) 23) (((-766)) 22)) (-4162 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) +(((-120 |#1|) (-10 -7 (-15 -4162 ((-112) |#1|)) (-15 -4162 ((-112) |#1| (-112))) (-15 -4228 ((-766))) (-15 -4228 ((-766) (-766))) (-15 -4013 ((-112) |#1|))) (-1232 (-562))) (T -120)) +((-4013 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) (-4228 (*1 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) (-4228 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) (-4162 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562)))))) +(-10 -7 (-15 -4162 ((-112) |#1|)) (-15 -4162 ((-112) |#1| (-112))) (-15 -4228 ((-766))) (-15 -4228 ((-766) (-766))) (-15 -4013 ((-112) |#1|))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) 15)) (-2176 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-4336 (((-112) $ (-766)) NIL)) (-1512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-1718 (($ $ $) 18 (|has| $ (-6 -4403)))) (-3225 (($ $ $) 20 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403))) (($ $ "left" $) NIL (|has| $ (-6 -4403))) (($ $ "right" $) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-1602 (($ $) 17)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3531 (($ $ |#1| $) 23)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-1588 (($ $) 19)) (-4007 (((-639 |#1|) $) NIL)) (-3449 (((-112) $) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1425 (($ |#1| $) 24)) (-4300 (($ |#1| $) 10)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 14)) (-4307 (($) 8)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2568 (((-562) $ $) NIL)) (-2424 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1894 (($ (-639 |#1|)) 12)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4403) (-6 -4402) (-15 -1894 ($ (-639 |#1|))) (-15 -4300 ($ |#1| $)) (-15 -1425 ($ |#1| $)) (-15 -2176 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-845)) (T -121)) +((-1894 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-121 *3)))) (-4300 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-845)))) (-1425 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-845)))) (-2176 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-845))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4403) (-6 -4402) (-15 -1894 ($ (-639 |#1|))) (-15 -4300 ($ |#1| $)) (-15 -1425 ($ |#1| $)) (-15 -2176 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3295 (($ $) 12)) (-2236 (($ $) 10)) (-1325 (($ $ $) 22)) (-2134 (($ $ $) 20)) (-2308 (($ $ $) 18)) (-2298 (($ $ $) 16))) +(((-122 |#1|) (-10 -8 (-15 -1325 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -2298 (|#1| |#1| |#1|)) (-15 -2308 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -1325 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -2298 (|#1| |#1| |#1|)) (-15 -2308 (|#1| |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-3295 (($ $) 103)) (-2265 (($ $ $) 25)) (-3052 (((-1261) $ (-562) (-562)) 66 (|has| $ (-6 -4403)))) (-1399 (((-112) $) 98 (|has| (-112) (-845))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3381 (($ $) 102 (-12 (|has| (-112) (-845)) (|has| $ (-6 -4403)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4403)))) (-1395 (($ $) 97 (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-4336 (((-112) $ (-766)) 37)) (-4200 (((-112) $ (-1223 (-562)) (-112)) 88 (|has| $ (-6 -4403))) (((-112) $ (-562) (-112)) 54 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4402)))) (-1800 (($) 38 T CONST)) (-2447 (($ $) 100 (|has| $ (-6 -4403)))) (-2677 (($ $) 90)) (-1459 (($ $) 68 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4402))) (($ (-112) $) 69 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4402))))) (-1955 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4402))))) (-1505 (((-112) $ (-562) (-112)) 53 (|has| $ (-6 -4403)))) (-1420 (((-112) $ (-562)) 55)) (-4264 (((-562) (-112) $ (-562)) 95 (|has| (-112) (-1092))) (((-562) (-112) $) 94 (|has| (-112) (-1092))) (((-562) (-1 (-112) (-112)) $) 93)) (-1720 (((-639 (-112)) $) 45 (|has| $ (-6 -4402)))) (-2255 (($ $ $) 26)) (-2236 (($ $) 30)) (-1325 (($ $ $) 28)) (-1458 (($ (-766) (-112)) 77)) (-2134 (($ $ $) 29)) (-3292 (((-112) $ (-766)) 36)) (-4197 (((-562) $) 63 (|has| (-562) (-845)))) (-1551 (($ $ $) 13)) (-1610 (($ $ $) 96 (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1912 (((-639 (-112)) $) 46 (|has| $ (-6 -4402)))) (-1669 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 62 (|has| (-562) (-845)))) (-2993 (($ $ $) 14)) (-1490 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-3289 (((-112) $ (-766)) 35)) (-2913 (((-1150) $) 9)) (-3297 (($ $ $ (-562)) 87) (($ (-112) $ (-562)) 86)) (-2093 (((-639 (-562)) $) 60)) (-1570 (((-112) (-562) $) 59)) (-1709 (((-1112) $) 10)) (-1421 (((-112) $) 64 (|has| (-562) (-845)))) (-3251 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2716 (($ $ (-112)) 65 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-112)) (-639 (-112))) 52 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-293 (-112))) 50 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-639 (-293 (-112)))) 49 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))))) (-3336 (((-112) $ $) 31)) (-3521 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-2411 (((-639 (-112)) $) 58)) (-2974 (((-112) $) 34)) (-4307 (($) 33)) (-2343 (($ $ (-1223 (-562))) 83) (((-112) $ (-562)) 57) (((-112) $ (-562) (-112)) 56)) (-2880 (($ $ (-1223 (-562))) 85) (($ $ (-562)) 84)) (-1723 (((-766) (-112) $) 47 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4402)))) (-1853 (($ $ $ (-562)) 99 (|has| $ (-6 -4403)))) (-4220 (($ $) 32)) (-4208 (((-535) $) 67 (|has| (-112) (-610 (-535))))) (-4066 (($ (-639 (-112))) 76)) (-2767 (($ (-639 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4054 (((-857) $) 11)) (-1744 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4402)))) (-2246 (($ $ $) 27)) (-2308 (($ $ $) 105)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (-2298 (($ $ $) 104)) (-3492 (((-766) $) 39 (|has| $ (-6 -4402))))) (((-123) (-139)) (T -123)) -((-3726 (*1 *1 *1) (-4 *1 (-123))) (-1383 (*1 *1 *1 *1) (-4 *1 (-123))) (-1382 (*1 *1 *1 *1) (-4 *1 (-123))) (-3240 (*1 *1 *1 *1) (-4 *1 (-123))) (-3239 (*1 *1 *1 *1) (-4 *1 (-123))) (-3725 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-844) (-655) (-19 (-112)) (-10 -8 (-15 -3726 ($ $)) (-15 -1383 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3725 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 #1=(-112)) . T) ((-609 (-533)) |has| (-112) (-609 (-533))) ((-285 #2=(-544) #1#) . T) ((-287 #2# #1#) . T) ((-308 #1#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))) ((-371 #1#) . T) ((-487 #1#) . T) ((-599 #2# #1#) . T) ((-512 #1# #1#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))) ((-644 #1#) . T) ((-655) . T) ((-19 #1#) . T) ((-844) . T) ((-1091) . T) ((-1204) . T)) -((-2100 (($ (-1 |#2| |#2|) $) 22)) (-3804 (($ $) 16)) (-4364 (((-765) $) 24))) -(((-124 |#1| |#2|) (-10 -8 (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -3804 (|#1| |#1|))) (-125 |#2|) (-1091)) (T -124)) -NIL -(-10 -8 (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -3804 (|#1| |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-1375 (($ $ $) 52 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 54 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) (($ $ #2="left" $) 55 (|has| $ (-6 -4401))) (($ $ #3="right" $) 53 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-3522 (($ $) 57)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) 60)) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3523 (($ $) 59)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-125 |#1|) (-139) (-1091)) (T -125)) -((-1384 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1091))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -1384 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-119 |#1|) . T) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 15)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) 19 (|has| $ (-6 -4401)))) (-1375 (($ $ $) 20 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 18 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 21)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4014 (($ |#1| $) 10)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 14)) (-3972 (($) 8)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 17)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1385 (($ (-635 |#1|)) 12)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4401) (-15 -1385 ($ (-635 |#1|))) (-15 -4014 ($ |#1| $)))) (-844)) (T -126)) -((-1385 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-126 *3)))) (-4014 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-844))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4401) (-15 -1385 ($ (-635 |#1|))) (-15 -4014 ($ |#1| $)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 24)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) 26 (|has| $ (-6 -4401)))) (-1375 (($ $ $) 30 (|has| $ (-6 -4401)))) (-1376 (($ $ $) 28 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 20)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1384 (($ $ |#1| $) 15)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) 19)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) 21)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 18)) (-3972 (($) 11)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1386 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 10 (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1386 ($ |#1|)) (-15 -1386 ($ $ |#1| $)))) (-1091)) (T -127)) -((-1386 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1091)))) (-1386 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1091))))) -(-13 (-125 |#1|) (-10 -8 (-15 -1386 ($ |#1|)) (-15 -1386 ($ $ |#1| $)))) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) 15 T CONST)) (-3242 (($ $ $) NIL) (($) 16 T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-143)) 9) (((-143) $) 11)) (-1387 (($ (-765)) 6)) (-4132 (($ $ $) 18)) (-4133 (($ $ $) 17)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 13)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 14))) -(((-128) (-13 (-838) (-488 (-143)) (-10 -8 (-15 -1387 ($ (-765))) (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))) (T -128)) -((-1387 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128)))) (-4133 (*1 *1 *1 *1) (-5 *1 (-128))) (-4132 (*1 *1 *1 *1) (-5 *1 (-128))) (-4131 (*1 *1) (-5 *1 (-128)))) -(-13 (-838) (-488 (-143)) (-10 -8 (-15 -1387 ($ (-765))) (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($)))) +((-2236 (*1 *1 *1) (-4 *1 (-123))) (-2134 (*1 *1 *1 *1) (-4 *1 (-123))) (-1325 (*1 *1 *1 *1) (-4 *1 (-123))) (-2246 (*1 *1 *1 *1) (-4 *1 (-123))) (-2255 (*1 *1 *1 *1) (-4 *1 (-123))) (-2265 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-845) (-655) (-19 (-112)) (-10 -8 (-15 -2236 ($ $)) (-15 -2134 ($ $ $)) (-15 -1325 ($ $ $)) (-15 -2246 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -2265 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 #0=(-112)) . T) ((-610 (-535)) |has| (-112) (-610 (-535))) ((-285 #1=(-562) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))) ((-372 #0#) . T) ((-488 #0#) . T) ((-600 #1# #0#) . T) ((-513 #0# #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))) ((-645 #0#) . T) ((-655) . T) ((-19 #0#) . T) ((-845) . T) ((-1092) . T) ((-1207) . T)) +((-1490 (($ (-1 |#2| |#2|) $) 22)) (-4220 (($ $) 16)) (-3492 (((-766) $) 24))) +(((-124 |#1| |#2|) (-10 -8 (-15 -1490 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4220 (|#1| |#1|))) (-125 |#2|) (-1092)) (T -124)) +NIL +(-10 -8 (-15 -1490 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4220 (|#1| |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2534 ((|#1| $) 48)) (-4336 (((-112) $ (-766)) 8)) (-1512 ((|#1| $ |#1|) 39 (|has| $ (-6 -4403)))) (-1718 (($ $ $) 52 (|has| $ (-6 -4403)))) (-3225 (($ $ $) 54 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4403))) (($ $ "left" $) 55 (|has| $ (-6 -4403))) (($ $ "right" $) 53 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 41 (|has| $ (-6 -4403)))) (-1800 (($) 7 T CONST)) (-1602 (($ $) 57)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 50)) (-4379 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-3531 (($ $ |#1| $) 60)) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-1588 (($ $) 59)) (-4007 (((-639 |#1|) $) 45)) (-3449 (((-112) $) 49)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2568 (((-562) $ $) 44)) (-2424 (((-112) $) 46)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) 51)) (-4055 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-125 |#1|) (-139) (-1092)) (T -125)) +((-3531 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1092))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4403) (-6 -4402) (-15 -3531 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-119 |#1|) . T) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) 15)) (-4336 (((-112) $ (-766)) NIL)) (-1512 ((|#1| $ |#1|) 19 (|has| $ (-6 -4403)))) (-1718 (($ $ $) 20 (|has| $ (-6 -4403)))) (-3225 (($ $ $) 18 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403))) (($ $ "left" $) NIL (|has| $ (-6 -4403))) (($ $ "right" $) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-1602 (($ $) 21)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3531 (($ $ |#1| $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-1588 (($ $) NIL)) (-4007 (((-639 |#1|) $) NIL)) (-3449 (((-112) $) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-4300 (($ |#1| $) 10)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 14)) (-4307 (($) 8)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2568 (((-562) $ $) NIL)) (-2424 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) 17)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3942 (($ (-639 |#1|)) 12)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4403) (-15 -3942 ($ (-639 |#1|))) (-15 -4300 ($ |#1| $)))) (-845)) (T -126)) +((-3942 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-126 *3)))) (-4300 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-845))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4403) (-15 -3942 ($ (-639 |#1|))) (-15 -4300 ($ |#1| $)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) 24)) (-4336 (((-112) $ (-766)) NIL)) (-1512 ((|#1| $ |#1|) 26 (|has| $ (-6 -4403)))) (-1718 (($ $ $) 30 (|has| $ (-6 -4403)))) (-3225 (($ $ $) 28 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403))) (($ $ "left" $) NIL (|has| $ (-6 -4403))) (($ $ "right" $) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-1602 (($ $) 20)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3531 (($ $ |#1| $) 15)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-1588 (($ $) 19)) (-4007 (((-639 |#1|) $) NIL)) (-3449 (((-112) $) 21)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 18)) (-4307 (($) 11)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2568 (((-562) $ $) NIL)) (-2424 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2034 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 10 (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2034 ($ |#1|)) (-15 -2034 ($ $ |#1| $)))) (-1092)) (T -127)) +((-2034 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1092)))) (-2034 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1092))))) +(-13 (-125 |#1|) (-10 -8 (-15 -2034 ($ |#1|)) (-15 -2034 ($ $ |#1| $)))) +((-4041 (((-112) $ $) NIL (|has| (-129) (-1092)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-845)))) (-3381 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-129) (-845))))) (-1395 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 (((-129) $ (-562) (-129)) 17 (|has| $ (-6 -4403))) (((-129) $ (-1223 (-562)) (-129)) NIL (|has| $ (-6 -4403)))) (-3181 (((-766) $ (-766)) 7)) (-3556 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-129) (-1092))))) (-1475 (($ (-129) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-129) (-1092)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4402)) (|has| (-129) (-1092)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4402))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4402)))) (-1505 (((-129) $ (-562) (-129)) 16 (|has| $ (-6 -4403)))) (-1420 (((-129) $ (-562)) 13)) (-4264 (((-562) (-1 (-112) (-129)) $) NIL) (((-562) (-129) $) NIL (|has| (-129) (-1092))) (((-562) (-129) $ (-562)) NIL (|has| (-129) (-1092)))) (-1720 (((-639 (-129)) $) NIL (|has| $ (-6 -4402)))) (-1458 (($ (-766) (-129)) 11)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) 18 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| (-129) (-845)))) (-1610 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-845)))) (-1912 (((-639 (-129)) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-129) (-1092))))) (-3874 (((-562) $) 19 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-129) (-845)))) (-1490 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| (-129) (-1092)))) (-3297 (($ (-129) $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| (-129) (-1092)))) (-1421 (((-129) $) NIL (|has| (-562) (-845)))) (-3251 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2716 (($ $ (-129)) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-129)))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1092)))) (($ $ (-293 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1092)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1092)))) (($ $ (-639 (-129)) (-639 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-129) (-1092))))) (-2411 (((-639 (-129)) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 9)) (-2343 (((-129) $ (-562) (-129)) NIL) (((-129) $ (-562)) 15) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4402))) (((-766) (-129) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-129) (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-129) (-610 (-535))))) (-4066 (($ (-639 (-129))) 29)) (-2767 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 30) (($ (-639 $)) NIL)) (-4054 (((-1150) $) 27) (((-857) $) NIL (|has| (-129) (-609 (-857))))) (-2574 (((-766) $) 14)) (-4227 (($ (-766)) 8)) (-1744 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| (-129) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-129) (-845)))) (-1731 (((-112) $ $) 22 (|has| (-129) (-1092)))) (-1785 (((-112) $ $) NIL (|has| (-129) (-845)))) (-1759 (((-112) $ $) NIL (|has| (-129) (-845)))) (-3492 (((-766) $) 20))) +(((-128) (-13 (-19 (-129)) (-609 (-1150)) (-10 -8 (-15 -4227 ($ (-766))) (-15 -3492 ((-766) $)) (-15 -2574 ((-766) $)) (-15 -3181 ((-766) $ (-766)))))) (T -128)) +((-4227 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-128)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-128)))) (-2574 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-128)))) (-3181 (*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-128))))) +(-13 (-19 (-129)) (-609 (-1150)) (-10 -8 (-15 -4227 ($ (-766))) (-15 -3492 ((-766) $)) (-15 -2574 ((-766) $)) (-15 -3181 ((-766) $ (-766))))) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1800 (($) NIL)) (-1448 (($) NIL)) (-1551 (($ $ $) NIL) (($) 15 T CONST)) (-2993 (($ $ $) NIL) (($) 16 T CONST)) (-1999 (((-916) $) NIL)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL) (($ (-143)) 9) (((-143) $) 11)) (-2859 (($ (-766)) 6)) (-3010 (($ $ $) 18)) (-2998 (($ $ $) 17)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 13)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 14))) +(((-129) (-13 (-839) (-489 (-143)) (-10 -8 (-15 -2859 ($ (-766))) (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($))))) (T -129)) +((-2859 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-129)))) (-2998 (*1 *1 *1 *1) (-5 *1 (-129))) (-3010 (*1 *1 *1 *1) (-5 *1 (-129))) (-1800 (*1 *1) (-5 *1 (-129)))) +(-13 (-839) (-489 (-143)) (-10 -8 (-15 -2859 ($ (-766))) (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($)))) ((|NonNegativeInteger|) (< |#1| 256)) -((-2947 (((-112) $ $) NIL (|has| (-128) (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-844)))) (-1874 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-128) (-844))))) (-3292 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-128) $ (-544) (-128)) 17 (|has| $ (-6 -4401))) (((-128) $ (-1220 (-544)) (-128)) NIL (|has| $ (-6 -4401)))) (-1388 (((-765) $ (-765)) 7)) (-4117 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091))))) (-3810 (($ (-128) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4400))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-128) $ (-544) (-128)) 16 (|has| $ (-6 -4401)))) (-3498 (((-128) $ (-544)) 13)) (-3823 (((-544) (-1 (-112) (-128)) $) NIL) (((-544) (-128) $) NIL (|has| (-128) (-1091))) (((-544) (-128) $ (-544)) NIL (|has| (-128) (-1091)))) (-2096 (((-635 (-128)) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-128)) 11)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 18 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| (-128) (-844)))) (-3917 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-844)))) (-2554 (((-635 (-128)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091))))) (-2347 (((-544) $) 19 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-128) (-844)))) (-2100 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| (-128) (-1091)))) (-2421 (($ (-128) $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| (-128) (-1091)))) (-4207 (((-128) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2345 (($ $ (-128)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-128)))) NIL (-12 (|has| (-128) (-308 (-128))) (|has| (-128) (-1091)))) (($ $ (-292 (-128))) NIL (-12 (|has| (-128) (-308 (-128))) (|has| (-128) (-1091)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-308 (-128))) (|has| (-128) (-1091)))) (($ $ (-635 (-128)) (-635 (-128))) NIL (-12 (|has| (-128) (-308 (-128))) (|has| (-128) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091))))) (-2351 (((-635 (-128)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 9)) (-4206 (((-128) $ (-544) (-128)) NIL) (((-128) $ (-544)) 15) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400))) (((-765) (-128) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-128) (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-128) (-609 (-533))))) (-3929 (($ (-635 (-128))) 29)) (-4208 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 30) (($ (-635 $)) NIL)) (-4353 (((-1148) $) 27) (((-857) $) NIL (|has| (-128) (-608 (-857))))) (-1389 (((-765) $) 14)) (-1390 (($ (-765)) 8)) (-2099 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| (-128) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-128) (-844)))) (-3437 (((-112) $ $) 22 (|has| (-128) (-1091)))) (-3066 (((-112) $ $) NIL (|has| (-128) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-128) (-844)))) (-4364 (((-765) $) 20))) -(((-129) (-13 (-19 (-128)) (-608 (-1148)) (-10 -8 (-15 -1390 ($ (-765))) (-15 -4364 ((-765) $)) (-15 -1389 ((-765) $)) (-15 -1388 ((-765) $ (-765)))))) (T -129)) -((-1390 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-129)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-129)))) (-1388 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129))))) -(-13 (-19 (-128)) (-608 (-1148)) (-10 -8 (-15 -1390 ($ (-765))) (-15 -4364 ((-765) $)) (-15 -1389 ((-765) $)) (-15 -1388 ((-765) $ (-765))))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15))) (((-130) (-139)) (T -130)) -((-1391 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(-13 (-23) (-10 -8 (-15 -1391 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 7)) (-1392 (((-1259) $ (-765)) 19)) (-3823 (((-765) $) 20)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18))) +((-3214 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(-13 (-23) (-10 -8 (-15 -3214 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 7)) (-2111 (((-1261) $ (-766)) 19)) (-4264 (((-766) $) 20)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18))) (((-131) (-139)) (T -131)) -((-3823 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-765)))) (-1392 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-765)) (-5 *2 (-1259))))) -(-13 (-844) (-10 -8 (-15 -3823 ((-765) $)) (-15 -1392 ((-1259) $ (-765))))) -(((-102) . T) ((-608 (-857)) . T) ((-844) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 18) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-635 (-1125)) $) 10)) (-3437 (((-112) $ $) NIL))) -(((-132) (-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $))))) (T -132)) -((-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-132))))) -(-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $)))) -((-2947 (((-112) $ $) 34)) (-3589 (((-112) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-765) "failed") $) 41)) (-3557 (((-765) $) 39)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) 27)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1394 (((-112)) 42)) (-1393 (((-112) (-112)) 44)) (-2907 (((-112) $) 24)) (-1395 (((-112) $) 38)) (-4353 (((-857) $) 22) (($ (-765)) 14)) (-3040 (($) 11 T CONST)) (-3046 (($) 12 T CONST)) (-1396 (($ (-765)) 15)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 25)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 26)) (-4244 (((-3 $ "failed") $ $) 30)) (-4246 (($ $ $) 28)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL) (($ $ $) 37)) (* (($ (-765) $) 33) (($ (-912) $) NIL) (($ $ $) 31))) -(((-133) (-13 (-844) (-23) (-720) (-1031 (-765)) (-10 -8 (-6 (-4402 "*")) (-15 -4244 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1396 ($ (-765))) (-15 -2907 ((-112) $)) (-15 -1395 ((-112) $)) (-15 -1394 ((-112))) (-15 -1393 ((-112) (-112)))))) (T -133)) -((-4244 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-133)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1394 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(-13 (-844) (-23) (-720) (-1031 (-765)) (-10 -8 (-6 (-4402 "*")) (-15 -4244 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1396 ($ (-765))) (-15 -2907 ((-112) $)) (-15 -1395 ((-112) $)) (-15 -1394 ((-112))) (-15 -1393 ((-112) (-112))))) -((-2947 (((-112) $ $) NIL)) (-1397 (($ (-635 |#3|)) 40)) (-3818 (($ $) 99) (($ $ (-544) (-544)) 98)) (-4131 (($) 17)) (-3558 (((-3 |#3| "failed") $) 60)) (-3557 ((|#3| $) NIL)) (-1401 (($ $ (-635 (-544))) 100)) (-1398 (((-635 |#3|) $) 36)) (-3494 (((-765) $) 44)) (-4351 (($ $ $) 93)) (-1399 (($) 43)) (-3643 (((-1148) $) NIL)) (-1400 (($) 16)) (-3644 (((-1110) $) NIL)) (-4206 ((|#3| $) 46) ((|#3| $ (-544)) 47) ((|#3| $ (-544) (-544)) 48) ((|#3| $ (-544) (-544) (-544)) 49) ((|#3| $ (-544) (-544) (-544) (-544)) 50) ((|#3| $ (-635 (-544))) 52)) (-4355 (((-765) $) 45)) (-2133 (($ $ (-544) $ (-544)) 94) (($ $ (-544) (-544)) 96)) (-4353 (((-857) $) 67) (($ |#3|) 68) (($ (-238 |#2| |#3|)) 75) (($ (-1132 |#2| |#3|)) 78) (($ (-635 |#3|)) 53) (($ (-635 $)) 58)) (-3040 (($) 69 T CONST)) (-3046 (($) 70 T CONST)) (-3437 (((-112) $ $) 80)) (-4244 (($ $) 86) (($ $ $) 84)) (-4246 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-544)) 89) (($ (-544) $) 88) (($ $ $) 95))) -(((-134 |#1| |#2| |#3|) (-13 (-463 |#3| (-765)) (-468 (-544) (-765)) (-10 -8 (-15 -4353 ($ (-238 |#2| |#3|))) (-15 -4353 ($ (-1132 |#2| |#3|))) (-15 -4353 ($ (-635 |#3|))) (-15 -4353 ($ (-635 $))) (-15 -3494 ((-765) $)) (-15 -4206 (|#3| $)) (-15 -4206 (|#3| $ (-544))) (-15 -4206 (|#3| $ (-544) (-544))) (-15 -4206 (|#3| $ (-544) (-544) (-544))) (-15 -4206 (|#3| $ (-544) (-544) (-544) (-544))) (-15 -4206 (|#3| $ (-635 (-544)))) (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 -2133 ($ $ (-544) $ (-544))) (-15 -2133 ($ $ (-544) (-544))) (-15 -3818 ($ $)) (-15 -3818 ($ $ (-544) (-544))) (-15 -1401 ($ $ (-635 (-544)))) (-15 -1400 ($)) (-15 -1399 ($)) (-15 -1398 ((-635 |#3|) $)) (-15 -1397 ($ (-635 |#3|))) (-15 -4131 ($)))) (-544) (-765) (-171)) (T -134)) -((-4351 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-238 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1132 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)) (-4 *5 (-171)))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 *2) (-4 *5 (-171)))) (-4206 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-544)) (-14 *4 (-765)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-4206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-4206 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-4206 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-765)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-544))) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-544)) (-14 *5 (-765)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-2133 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-2133 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-3818 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) (-4 *5 (-171)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)) (-4 *5 (-171)))) (-1400 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-1399 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-635 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)) (-4 *5 (-171)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 (-765)))) (-4131 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171))))) -(-13 (-463 |#3| (-765)) (-468 (-544) (-765)) (-10 -8 (-15 -4353 ($ (-238 |#2| |#3|))) (-15 -4353 ($ (-1132 |#2| |#3|))) (-15 -4353 ($ (-635 |#3|))) (-15 -4353 ($ (-635 $))) (-15 -3494 ((-765) $)) (-15 -4206 (|#3| $)) (-15 -4206 (|#3| $ (-544))) (-15 -4206 (|#3| $ (-544) (-544))) (-15 -4206 (|#3| $ (-544) (-544) (-544))) (-15 -4206 (|#3| $ (-544) (-544) (-544) (-544))) (-15 -4206 (|#3| $ (-635 (-544)))) (-15 -4351 ($ $ $)) (-15 * ($ $ $)) (-15 -2133 ($ $ (-544) $ (-544))) (-15 -2133 ($ $ (-544) (-544))) (-15 -3818 ($ $)) (-15 -3818 ($ $ (-544) (-544))) (-15 -1401 ($ $ (-635 (-544)))) (-15 -1400 ($)) (-15 -1399 ($)) (-15 -1398 ((-635 |#3|) $)) (-15 -1397 ($ (-635 |#3|))) (-15 -4131 ($)))) -((-2548 (((-134 |#1| |#2| |#4|) (-635 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-4365 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 ((-134 |#1| |#2| |#4|) (-635 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4365 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-544) (-765) (-171) (-171)) (T -135)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-544)) (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-544)) (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -2548 ((-134 |#1| |#2| |#4|) (-635 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4365 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) -((-2947 (((-112) $ $) NIL)) (-3927 (((-1125) $) 11)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-136) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))) (T -136)) -((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136))))) -(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $)))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-1493 (((-1166) $) 10)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-635 (-1125)) $) 12)) (-3437 (((-112) $ $) NIL))) -(((-137) (-13 (-1073) (-10 -8 (-15 -1493 ((-1166) $)) (-15 -3634 ((-635 (-1125)) $))))) (T -137)) -((-1493 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-137)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-137))))) -(-13 (-1073) (-10 -8 (-15 -1493 ((-1166) $)) (-15 -3634 ((-635 (-1125)) $)))) -((-2947 (((-112) $ $) NIL)) (-3949 (((-504) $) NIL)) (-3643 (((-1148) $) NIL)) (-1493 (((-186) $) NIL)) (-3644 (((-1110) $) NIL)) (-1492 (((-635 (-112)) $) NIL)) (-4353 (((-857) $) NIL) (((-182) $) 6)) (-2900 (((-55) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-138) (-13 (-185) (-608 (-182)))) (T -138)) -NIL -(-13 (-185) (-608 (-182))) -((-1403 (((-635 (-183)) $) 13)) (-1402 (((-635 (-183)) $) 14)) (-1404 (((-635 (-832)) $) 10)) (-1566 (((-138) $) 7)) (-4353 (((-857) $) 16))) -(((-139) (-13 (-608 (-857)) (-10 -8 (-15 -1566 ((-138) $)) (-15 -1404 ((-635 (-832)) $)) (-15 -1403 ((-635 (-183)) $)) (-15 -1402 ((-635 (-183)) $))))) (T -139)) -((-1566 (*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-635 (-832))) (-5 *1 (-139)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-635 (-183))) (-5 *1 (-139)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-635 (-183))) (-5 *1 (-139))))) -(-13 (-608 (-857)) (-10 -8 (-15 -1566 ((-138) $)) (-15 -1404 ((-635 (-832)) $)) (-15 -1403 ((-635 (-183)) $)) (-15 -1402 ((-635 (-183)) $)))) -((-2947 (((-112) $ $) NIL)) (-3831 (($) 15 T CONST)) (-1949 (($) NIL (|has| (-143) (-367)))) (-3635 (($ $ $) 17) (($ $ (-143)) NIL) (($ (-143) $) NIL)) (-3637 (($ $ $) NIL)) (-3636 (((-112) $ $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| (-143) (-367)))) (-3640 (($) NIL) (($ (-635 (-143))) NIL)) (-1659 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3809 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400))) (($ (-143) $) 51 (|has| $ (-6 -4400)))) (-3810 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400))) (($ (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3377 (($) NIL (|has| (-143) (-367)))) (-2096 (((-635 (-143)) $) 60 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2913 (((-143) $) NIL (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) 26 (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3242 (((-143) $) NIL (|has| (-143) (-844)))) (-2100 (($ (-1 (-143) (-143)) $) 59 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) 55)) (-3833 (($) 16 T CONST)) (-2160 (((-912) $) NIL (|has| (-143) (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3639 (($ $ $) 29)) (-1356 (((-143) $) 52)) (-4014 (($ (-143) $) 50)) (-2535 (($ (-912)) NIL (|has| (-143) (-367)))) (-1407 (($) 14 T CONST)) (-3644 (((-1110) $) NIL)) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-1357 (((-143) $) 53)) (-2098 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-292 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 48)) (-1408 (($) 13 T CONST)) (-3638 (($ $ $) 31) (($ $ (-143)) NIL)) (-1550 (($ (-635 (-143))) NIL) (($) NIL)) (-2097 (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-1148) $) 36) (((-533) $) NIL (|has| (-143) (-609 (-533)))) (((-635 (-143)) $) 34)) (-3929 (($ (-635 (-143))) NIL)) (-1950 (($ $) 32 (|has| (-143) (-367)))) (-4353 (((-857) $) 46)) (-1409 (($ (-1148)) 12) (($ (-635 (-143))) 43)) (-1951 (((-765) $) NIL)) (-3641 (($) 49) (($ (-635 (-143))) NIL)) (-1358 (($ (-635 (-143))) NIL)) (-2099 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-1405 (($) 19 T CONST)) (-1406 (($) 18 T CONST)) (-3437 (((-112) $ $) 22)) (-4364 (((-765) $) 47 (|has| $ (-6 -4400))))) -(((-140) (-13 (-1091) (-609 (-1148)) (-425 (-143)) (-609 (-635 (-143))) (-10 -8 (-15 -1409 ($ (-1148))) (-15 -1409 ($ (-635 (-143)))) (-15 -1408 ($) -4359) (-15 -1407 ($) -4359) (-15 -3831 ($) -4359) (-15 -3833 ($) -4359) (-15 -1406 ($) -4359) (-15 -1405 ($) -4359)))) (T -140)) -((-1409 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-140)))) (-1409 (*1 *1 *2) (-12 (-5 *2 (-635 (-143))) (-5 *1 (-140)))) (-1408 (*1 *1) (-5 *1 (-140))) (-1407 (*1 *1) (-5 *1 (-140))) (-3831 (*1 *1) (-5 *1 (-140))) (-3833 (*1 *1) (-5 *1 (-140))) (-1406 (*1 *1) (-5 *1 (-140))) (-1405 (*1 *1) (-5 *1 (-140)))) -(-13 (-1091) (-609 (-1148)) (-425 (-143)) (-609 (-635 (-143))) (-10 -8 (-15 -1409 ($ (-1148))) (-15 -1409 ($ (-635 (-143)))) (-15 -1408 ($) -4359) (-15 -1407 ($) -4359) (-15 -3831 ($) -4359) (-15 -3833 ($) -4359) (-15 -1406 ($) -4359) (-15 -1405 ($) -4359))) -((-4148 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4146 ((|#1| |#3|) 9)) (-4147 ((|#3| |#3|) 15))) -(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -4146 (|#1| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-554) (-984 |#1|) (-371 |#2|)) (T -141)) -((-4148 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-371 *5)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *4 (-984 *3)) (-5 *1 (-141 *3 *4 *2)) (-4 *2 (-371 *4)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-371 *4))))) -(-10 -7 (-15 -4146 (|#1| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1440 (($ $ $) 8)) (-1438 (($ $) 7)) (-3487 (($ $ $) 6))) +((-4264 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-766)))) (-2111 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-766)) (-5 *2 (-1261))))) +(-13 (-845) (-10 -8 (-15 -4264 ((-766) $)) (-15 -2111 ((-1261) $ (-766))))) +(((-102) . T) ((-609 (-857)) . T) ((-845) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 18) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-639 (-1127)) $) 10)) (-1731 (((-112) $ $) NIL))) +(((-132) (-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $))))) (T -132)) +((-3265 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-132))))) +(-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $)))) +((-4041 (((-112) $ $) 34)) (-1952 (((-112) $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-766) "failed") $) 41)) (-3961 (((-766) $) 39)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) 27)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2299 (((-112)) 42)) (-3785 (((-112) (-112)) 44)) (-2939 (((-112) $) 24)) (-4111 (((-112) $) 38)) (-4054 (((-857) $) 22) (($ (-766)) 14)) (-2286 (($) 11 T CONST)) (-2294 (($) 12 T CONST)) (-2872 (($ (-766)) 15)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 25)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 26)) (-1848 (((-3 $ "failed") $ $) 30)) (-1835 (($ $ $) 28)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL) (($ $ $) 37)) (* (($ (-766) $) 33) (($ (-916) $) NIL) (($ $ $) 31))) +(((-133) (-13 (-845) (-23) (-721) (-1033 (-766)) (-10 -8 (-6 (-4404 "*")) (-15 -1848 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2872 ($ (-766))) (-15 -2939 ((-112) $)) (-15 -4111 ((-112) $)) (-15 -2299 ((-112))) (-15 -3785 ((-112) (-112)))))) (T -133)) +((-1848 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-2872 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-133)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2299 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(-13 (-845) (-23) (-721) (-1033 (-766)) (-10 -8 (-6 (-4404 "*")) (-15 -1848 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2872 ($ (-766))) (-15 -2939 ((-112) $)) (-15 -4111 ((-112) $)) (-15 -2299 ((-112))) (-15 -3785 ((-112) (-112))))) +((-4164 (((-135 |#1| |#2| |#4|) (-639 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-4152 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) +(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-135 |#1| |#2| |#4|) (-639 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4152 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-562) (-766) (-171) (-171)) (T -134)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-562)) (-14 *6 (-766)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-562)) (-14 *6 (-766)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))) +(-10 -7 (-15 -4164 ((-135 |#1| |#2| |#4|) (-639 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4152 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) +((-4041 (((-112) $ $) NIL)) (-1741 (($ (-639 |#3|)) 40)) (-2529 (($ $) 99) (($ $ (-562) (-562)) 98)) (-1800 (($) 17)) (-4048 (((-3 |#3| "failed") $) 60)) (-3961 ((|#3| $) NIL)) (-4051 (($ $ (-639 (-562))) 100)) (-4148 (((-639 |#3|) $) 36)) (-2173 (((-766) $) 44)) (-1397 (($ $ $) 93)) (-1742 (($) 43)) (-2913 (((-1150) $) NIL)) (-3269 (($) 16)) (-1709 (((-1112) $) NIL)) (-2343 ((|#3| $) 46) ((|#3| $ (-562)) 47) ((|#3| $ (-562) (-562)) 48) ((|#3| $ (-562) (-562) (-562)) 49) ((|#3| $ (-562) (-562) (-562) (-562)) 50) ((|#3| $ (-639 (-562))) 52)) (-3598 (((-766) $) 45)) (-3791 (($ $ (-562) $ (-562)) 94) (($ $ (-562) (-562)) 96)) (-4054 (((-857) $) 67) (($ |#3|) 68) (($ (-239 |#2| |#3|)) 75) (($ (-1134 |#2| |#3|)) 78) (($ (-639 |#3|)) 53) (($ (-639 $)) 58)) (-2286 (($) 69 T CONST)) (-2294 (($) 70 T CONST)) (-1731 (((-112) $ $) 80)) (-1848 (($ $) 86) (($ $ $) 84)) (-1835 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-562)) 89) (($ (-562) $) 88) (($ $ $) 95))) +(((-135 |#1| |#2| |#3|) (-13 (-464 |#3| (-766)) (-469 (-562) (-766)) (-10 -8 (-15 -4054 ($ (-239 |#2| |#3|))) (-15 -4054 ($ (-1134 |#2| |#3|))) (-15 -4054 ($ (-639 |#3|))) (-15 -4054 ($ (-639 $))) (-15 -2173 ((-766) $)) (-15 -2343 (|#3| $)) (-15 -2343 (|#3| $ (-562))) (-15 -2343 (|#3| $ (-562) (-562))) (-15 -2343 (|#3| $ (-562) (-562) (-562))) (-15 -2343 (|#3| $ (-562) (-562) (-562) (-562))) (-15 -2343 (|#3| $ (-639 (-562)))) (-15 -1397 ($ $ $)) (-15 * ($ $ $)) (-15 -3791 ($ $ (-562) $ (-562))) (-15 -3791 ($ $ (-562) (-562))) (-15 -2529 ($ $)) (-15 -2529 ($ $ (-562) (-562))) (-15 -4051 ($ $ (-639 (-562)))) (-15 -3269 ($)) (-15 -1742 ($)) (-15 -4148 ((-639 |#3|) $)) (-15 -1741 ($ (-639 |#3|))) (-15 -1800 ($)))) (-562) (-766) (-171)) (T -135)) +((-1397 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-766)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1134 *4 *5)) (-14 *4 (-766)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)) (-4 *5 (-171)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 *2) (-4 *5 (-171)))) (-2343 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-562)) (-14 *4 (-766)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-766)))) (-2343 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-766)))) (-2343 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-766)))) (-2343 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-766)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-639 (-562))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-562)) (-14 *5 (-766)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-3791 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-766)) (-4 *5 (-171)))) (-3791 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-766)) (-4 *5 (-171)))) (-2529 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-2529 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-766)) (-4 *5 (-171)))) (-4051 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)) (-4 *5 (-171)))) (-3269 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-1742 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-639 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)) (-4 *5 (-171)))) (-1741 (*1 *1 *2) (-12 (-5 *2 (-639 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)))) (-1800 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171))))) +(-13 (-464 |#3| (-766)) (-469 (-562) (-766)) (-10 -8 (-15 -4054 ($ (-239 |#2| |#3|))) (-15 -4054 ($ (-1134 |#2| |#3|))) (-15 -4054 ($ (-639 |#3|))) (-15 -4054 ($ (-639 $))) (-15 -2173 ((-766) $)) (-15 -2343 (|#3| $)) (-15 -2343 (|#3| $ (-562))) (-15 -2343 (|#3| $ (-562) (-562))) (-15 -2343 (|#3| $ (-562) (-562) (-562))) (-15 -2343 (|#3| $ (-562) (-562) (-562) (-562))) (-15 -2343 (|#3| $ (-639 (-562)))) (-15 -1397 ($ $ $)) (-15 * ($ $ $)) (-15 -3791 ($ $ (-562) $ (-562))) (-15 -3791 ($ $ (-562) (-562))) (-15 -2529 ($ $)) (-15 -2529 ($ $ (-562) (-562))) (-15 -4051 ($ $ (-639 (-562)))) (-15 -3269 ($)) (-15 -1742 ($)) (-15 -4148 ((-639 |#3|) $)) (-15 -1741 ($ (-639 |#3|))) (-15 -1800 ($)))) +((-4041 (((-112) $ $) NIL)) (-4328 (((-1127) $) 11)) (-4316 (((-1127) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-136) (-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1127) $))))) (T -136)) +((-4316 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-136)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-136))))) +(-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1127) $)))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-2421 (((-1168) $) 10)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-639 (-1127)) $) 12)) (-1731 (((-112) $ $) NIL))) +(((-137) (-13 (-1075) (-10 -8 (-15 -2421 ((-1168) $)) (-15 -3265 ((-639 (-1127)) $))))) (T -137)) +((-2421 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-137)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-137))))) +(-13 (-1075) (-10 -8 (-15 -2421 ((-1168) $)) (-15 -3265 ((-639 (-1127)) $)))) +((-4041 (((-112) $ $) NIL)) (-3254 (((-505) $) NIL)) (-2913 (((-1150) $) NIL)) (-2421 (((-185) $) NIL)) (-1709 (((-1112) $) NIL)) (-3212 (((-639 (-112)) $) NIL)) (-4054 (((-857) $) NIL) (((-186) $) 6)) (-3087 (((-55) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-138) (-13 (-184) (-609 (-186)))) (T -138)) +NIL +(-13 (-184) (-609 (-186))) +((-2721 (((-639 (-182)) $) 13)) (-2738 (((-639 (-182)) $) 14)) (-1375 (((-639 (-833)) $) 10)) (-1876 (((-138) $) 7)) (-4054 (((-857) $) 16))) +(((-139) (-13 (-609 (-857)) (-10 -8 (-15 -1876 ((-138) $)) (-15 -1375 ((-639 (-833)) $)) (-15 -2721 ((-639 (-182)) $)) (-15 -2738 ((-639 (-182)) $))))) (T -139)) +((-1876 (*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-639 (-833))) (-5 *1 (-139)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-639 (-182))) (-5 *1 (-139)))) (-2738 (*1 *2 *1) (-12 (-5 *2 (-639 (-182))) (-5 *1 (-139))))) +(-13 (-609 (-857)) (-10 -8 (-15 -1876 ((-138) $)) (-15 -1375 ((-639 (-833)) $)) (-15 -2721 ((-639 (-182)) $)) (-15 -2738 ((-639 (-182)) $)))) +((-4041 (((-112) $ $) NIL)) (-1576 (($) 15 T CONST)) (-3721 (($) NIL (|has| (-143) (-367)))) (-2494 (($ $ $) 17) (($ $ (-143)) NIL) (($ (-143) $) NIL)) (-2129 (($ $ $) NIL)) (-2330 (((-112) $ $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| (-143) (-367)))) (-1608 (($) NIL) (($ (-639 (-143))) NIL)) (-3111 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-4000 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402))) (($ (-143) $) 51 (|has| $ (-6 -4402)))) (-1475 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402))) (($ (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-1955 (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4402))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4402))) (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-1448 (($) NIL (|has| (-143) (-367)))) (-1720 (((-639 (-143)) $) 60 (|has| $ (-6 -4402)))) (-3027 (((-112) $ $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-1551 (((-143) $) NIL (|has| (-143) (-845)))) (-1912 (((-639 (-143)) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-143) $) 26 (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-2993 (((-143) $) NIL (|has| (-143) (-845)))) (-1490 (($ (-1 (-143) (-143)) $) 59 (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-143) (-143)) $) 55)) (-3141 (($) 16 T CONST)) (-1999 (((-916) $) NIL (|has| (-143) (-367)))) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-4376 (($ $ $) 29)) (-3262 (((-143) $) 52)) (-4300 (($ (-143) $) 50)) (-2466 (($ (-916)) NIL (|has| (-143) (-367)))) (-2347 (($) 14 T CONST)) (-1709 (((-1112) $) NIL)) (-3251 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-1904 (((-143) $) 53)) (-1763 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-143)) (-639 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 48)) (-4167 (($) 13 T CONST)) (-3703 (($ $ $) 31) (($ $ (-143)) NIL)) (-3564 (($ (-639 (-143))) NIL) (($) NIL)) (-1723 (((-766) (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092)))) (((-766) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-1150) $) 36) (((-535) $) NIL (|has| (-143) (-610 (-535)))) (((-639 (-143)) $) 34)) (-4066 (($ (-639 (-143))) NIL)) (-2449 (($ $) 32 (|has| (-143) (-367)))) (-4054 (((-857) $) 46)) (-2821 (($ (-1150)) 12) (($ (-639 (-143))) 43)) (-4234 (((-766) $) NIL)) (-1703 (($) 49) (($ (-639 (-143))) NIL)) (-1932 (($ (-639 (-143))) NIL)) (-1744 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-3809 (($) 19 T CONST)) (-2367 (($) 18 T CONST)) (-1731 (((-112) $ $) 22)) (-3492 (((-766) $) 47 (|has| $ (-6 -4402))))) +(((-140) (-13 (-1092) (-610 (-1150)) (-424 (-143)) (-610 (-639 (-143))) (-10 -8 (-15 -2821 ($ (-1150))) (-15 -2821 ($ (-639 (-143)))) (-15 -4167 ($) -1497) (-15 -2347 ($) -1497) (-15 -1576 ($) -1497) (-15 -3141 ($) -1497) (-15 -2367 ($) -1497) (-15 -3809 ($) -1497)))) (T -140)) +((-2821 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-140)))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-639 (-143))) (-5 *1 (-140)))) (-4167 (*1 *1) (-5 *1 (-140))) (-2347 (*1 *1) (-5 *1 (-140))) (-1576 (*1 *1) (-5 *1 (-140))) (-3141 (*1 *1) (-5 *1 (-140))) (-2367 (*1 *1) (-5 *1 (-140))) (-3809 (*1 *1) (-5 *1 (-140)))) +(-13 (-1092) (-610 (-1150)) (-424 (-143)) (-610 (-639 (-143))) (-10 -8 (-15 -2821 ($ (-1150))) (-15 -2821 ($ (-639 (-143)))) (-15 -4167 ($) -1497) (-15 -2347 ($) -1497) (-15 -1576 ($) -1497) (-15 -3141 ($) -1497) (-15 -2367 ($) -1497) (-15 -3809 ($) -1497))) +((-4096 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1917 ((|#1| |#3|) 9)) (-1471 ((|#3| |#3|) 15))) +(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -1917 (|#1| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-554) (-987 |#1|) (-372 |#2|)) (T -141)) +((-4096 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-372 *5)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *4 (-987 *3)) (-5 *1 (-141 *3 *4 *2)) (-4 *2 (-372 *4)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-372 *4))))) +(-10 -7 (-15 -1917 (|#1| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2794 (($ $ $) 8)) (-1351 (($ $) 7)) (-3261 (($ $ $) 6))) (((-142) (-139)) (T -142)) -((-1440 (*1 *1 *1 *1) (-4 *1 (-142))) (-1438 (*1 *1 *1) (-4 *1 (-142))) (-3487 (*1 *1 *1 *1) (-4 *1 (-142)))) -(-13 (-10 -8 (-15 -3487 ($ $ $)) (-15 -1438 ($ $)) (-15 -1440 ($ $ $)))) -((-2947 (((-112) $ $) NIL)) (-1412 (((-112) $) 30)) (-3831 (($ $) 43)) (-1601 (($) 17)) (-3521 (((-765)) 10)) (-3377 (($) 16)) (-2958 (($) 18)) (-1418 (((-765) $) 14)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-1411 (((-112) $) 32)) (-3833 (($ $) 44)) (-2160 (((-912) $) 15)) (-3643 (((-1148) $) 38)) (-2535 (($ (-912)) 13)) (-1414 (((-112) $) 28)) (-3644 (((-1110) $) NIL)) (-1416 (($) 19)) (-1415 (((-112) $) 26)) (-4353 (((-857) $) 21)) (-1417 (($ (-765)) 11) (($ (-1148)) 42)) (-1410 (((-112) $) 36)) (-1413 (((-112) $) 34)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 7)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 8))) -(((-143) (-13 (-838) (-10 -8 (-15 -1418 ((-765) $)) (-15 -1417 ($ (-765))) (-15 -1417 ($ (-1148))) (-15 -1601 ($)) (-15 -2958 ($)) (-15 -1416 ($)) (-15 -3831 ($ $)) (-15 -3833 ($ $)) (-15 -1415 ((-112) $)) (-15 -1414 ((-112) $)) (-15 -1413 ((-112) $)) (-15 -1412 ((-112) $)) (-15 -1411 ((-112) $)) (-15 -1410 ((-112) $))))) (T -143)) -((-1418 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-143)))) (-1417 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-143)))) (-1417 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-143)))) (-1601 (*1 *1) (-5 *1 (-143))) (-2958 (*1 *1) (-5 *1 (-143))) (-1416 (*1 *1) (-5 *1 (-143))) (-3831 (*1 *1 *1) (-5 *1 (-143))) (-3833 (*1 *1 *1) (-5 *1 (-143))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(-13 (-838) (-10 -8 (-15 -1418 ((-765) $)) (-15 -1417 ($ (-765))) (-15 -1417 ($ (-1148))) (-15 -1601 ($)) (-15 -2958 ($)) (-15 -1416 ($)) (-15 -3831 ($ $)) (-15 -3833 ($ $)) (-15 -1415 ((-112) $)) (-15 -1414 ((-112) $)) (-15 -1413 ((-112) $)) (-15 -1412 ((-112) $)) (-15 -1411 ((-112) $)) (-15 -1410 ((-112) $)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3084 (((-3 $ "failed") $) 35)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) +((-2794 (*1 *1 *1 *1) (-4 *1 (-142))) (-1351 (*1 *1 *1) (-4 *1 (-142))) (-3261 (*1 *1 *1 *1) (-4 *1 (-142)))) +(-13 (-10 -8 (-15 -3261 ($ $ $)) (-15 -1351 ($ $)) (-15 -2794 ($ $ $)))) +((-4041 (((-112) $ $) NIL)) (-1371 (((-112) $) 30)) (-1576 (($ $) 43)) (-3566 (($) 17)) (-1382 (((-766)) 10)) (-1448 (($) 16)) (-3786 (($) 18)) (-4359 (((-766) $) 14)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-2493 (((-112) $) 32)) (-3141 (($ $) 44)) (-1999 (((-916) $) 15)) (-2913 (((-1150) $) 38)) (-2466 (($ (-916)) 13)) (-4179 (((-112) $) 28)) (-1709 (((-1112) $) NIL)) (-2759 (($) 19)) (-2941 (((-112) $) 26)) (-4054 (((-857) $) 21)) (-4184 (($ (-766)) 11) (($ (-1150)) 42)) (-3495 (((-112) $) 36)) (-2341 (((-112) $) 34)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 7)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 8))) +(((-143) (-13 (-839) (-10 -8 (-15 -4359 ((-766) $)) (-15 -4184 ($ (-766))) (-15 -4184 ($ (-1150))) (-15 -3566 ($)) (-15 -3786 ($)) (-15 -2759 ($)) (-15 -1576 ($ $)) (-15 -3141 ($ $)) (-15 -2941 ((-112) $)) (-15 -4179 ((-112) $)) (-15 -2341 ((-112) $)) (-15 -1371 ((-112) $)) (-15 -2493 ((-112) $)) (-15 -3495 ((-112) $))))) (T -143)) +((-4359 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-143)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-143)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-143)))) (-3566 (*1 *1) (-5 *1 (-143))) (-3786 (*1 *1) (-5 *1 (-143))) (-2759 (*1 *1) (-5 *1 (-143))) (-1576 (*1 *1 *1) (-5 *1 (-143))) (-3141 (*1 *1 *1) (-5 *1 (-143))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-3495 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) +(-13 (-839) (-10 -8 (-15 -4359 ((-766) $)) (-15 -4184 ($ (-766))) (-15 -4184 ($ (-1150))) (-15 -3566 ($)) (-15 -3786 ($)) (-15 -2759 ($)) (-15 -1576 ($ $)) (-15 -3141 ($ $)) (-15 -2941 ((-112) $)) (-15 -4179 ((-112) $)) (-15 -2341 ((-112) $)) (-15 -1371 ((-112) $)) (-15 -2493 ((-112) $)) (-15 -3495 ((-112) $)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2805 (((-3 $ "failed") $) 35)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-144) (-139)) (T -144)) -((-3084 (*1 *1 *1) (|partial| -4 *1 (-144)))) -(-13 (-1042) (-10 -8 (-15 -3084 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2743 ((|#1| (-682 |#1|) |#1|) 19))) -(((-145 |#1|) (-10 -7 (-15 -2743 (|#1| (-682 |#1|) |#1|))) (-171)) (T -145)) -((-2743 (*1 *2 *3 *2) (-12 (-5 *3 (-682 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2))))) -(-10 -7 (-15 -2743 (|#1| (-682 |#1|) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) +((-2805 (*1 *1 *1) (|partial| -4 *1 (-144)))) +(-13 (-1044) (-10 -8 (-15 -2805 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-3376 ((|#1| (-683 |#1|) |#1|) 19))) +(((-145 |#1|) (-10 -7 (-15 -3376 (|#1| (-683 |#1|) |#1|))) (-171)) (T -145)) +((-3376 (*1 *2 *3 *2) (-12 (-5 *3 (-683 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2))))) +(-10 -7 (-15 -3376 (|#1| (-683 |#1|) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-146) (-139)) (T -146)) NIL -(-13 (-1042)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-1421 (((-2 (|:| -2536 (-765)) (|:| -4361 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765)) 69)) (-1420 (((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|) 51)) (-1419 (((-2 (|:| -4361 (-406 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-1422 ((|#1| |#3| |#3|) 39)) (-4174 ((|#3| |#3| (-406 |#2|) (-406 |#2|)) 19)) (-1423 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|) 48))) -(((-147 |#1| |#2| |#3|) (-10 -7 (-15 -1419 ((-2 (|:| -4361 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1420 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|)) (-15 -1421 ((-2 (|:| -2536 (-765)) (|:| -4361 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765))) (-15 -1422 (|#1| |#3| |#3|)) (-15 -4174 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1423 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|))) (-1209) (-1229 |#1|) (-1229 (-406 |#2|))) (T -147)) -((-1423 (*1 *2 *3 *3) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) (|:| |c2| (-406 *5)) (|:| |deg| (-765)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))) (-4174 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1229 *3)))) (-1422 (*1 *2 *3 *3) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-1209)) (-5 *1 (-147 *2 *4 *3)) (-4 *3 (-1229 (-406 *4))))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *6)) (-4 *5 (-1209)) (-4 *6 (-1229 *5)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| *6))) (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-765)) (-4 *7 (-1229 *3)))) (-1420 (*1 *2 *3) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-765)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5))))) (-1419 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -4361 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5)))))) -(-10 -7 (-15 -1419 ((-2 (|:| -4361 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1420 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-765))) "failed") |#3|)) (-15 -1421 ((-2 (|:| -2536 (-765)) (|:| -4361 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-765))) (-15 -1422 (|#1| |#3| |#3|)) (-15 -4174 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1423 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-765))) |#3| |#3|))) -((-3086 (((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|)) 31))) -(((-148 |#1| |#2|) (-10 -7 (-15 -3086 ((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|)))) (-543) (-165 |#1|)) (T -148)) -((-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *5))) (-5 *3 (-1160 *5)) (-4 *5 (-165 *4)) (-4 *4 (-543)) (-5 *1 (-148 *4 *5))))) -(-10 -7 (-15 -3086 ((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|)))) -((-4117 (($ (-1 (-112) |#2|) $) 29)) (-1424 (($ $) 36)) (-3810 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-4249 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1425 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2098 (((-112) (-1 (-112) |#2|) $) 16)) (-2097 (((-765) (-1 (-112) |#2|) $) 14) (((-765) |#2| $) NIL)) (-2099 (((-112) (-1 (-112) |#2|) $) 15)) (-4364 (((-765) $) 11))) -(((-149 |#1| |#2|) (-10 -8 (-15 -1424 (|#1| |#1|)) (-15 -3810 (|#1| |#2| |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4117 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3810 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|))) (-150 |#2|) (-1204)) (T -149)) -NIL -(-10 -8 (-15 -1424 (|#1| |#1|)) (-15 -3810 (|#1| |#2| |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4117 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3810 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4117 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 41 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400))) (($ |#1| $) 42 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 40 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 49)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-150 |#1|) (-139) (-1204)) (T -150)) -((-3929 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-150 *3)))) (-1425 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1204)))) (-4249 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)))) (-4249 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *3)) (-4 *3 (-1204)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *3)) (-4 *3 (-1204)))) (-4249 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1091)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)))) (-3810 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)) (-4 *2 (-1091)))) (-1424 (*1 *1 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)) (-4 *2 (-1091))))) -(-13 (-487 |t#1|) (-10 -8 (-15 -3929 ($ (-635 |t#1|))) (-15 -1425 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4400)) (PROGN (-15 -4249 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4249 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3810 ($ (-1 (-112) |t#1|) $)) (-15 -4117 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -4249 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3810 ($ |t#1| $)) (-15 -1424 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) 85)) (-2545 (((-112) $) NIL)) (-3276 (($ |#2| (-635 (-912))) 55)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1426 (($ (-912)) 47)) (-4318 (((-133)) 23)) (-4353 (((-857) $) 68) (($ (-544)) 45) (($ |#2|) 46)) (-4084 ((|#2| $ (-635 (-912))) 58)) (-3511 (((-765)) 20)) (-3040 (($) 40 T CONST)) (-3046 (($) 43 T CONST)) (-3437 (((-112) $ $) 26)) (-4356 (($ $ |#2|) NIL)) (-4244 (($ $) 34) (($ $ $) 32)) (-4246 (($ $ $) 30)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-151 |#1| |#2| |#3|) (-13 (-1042) (-38 |#2|) (-1261 |#2|) (-10 -8 (-15 -1426 ($ (-912))) (-15 -3276 ($ |#2| (-635 (-912)))) (-15 -4084 (|#2| $ (-635 (-912)))) (-15 -3866 ((-3 $ "failed") $)))) (-912) (-362) (-986 |#1| |#2|)) (T -151)) -((-3866 (*1 *1 *1) (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-912)) (-4 *3 (-362)) (-14 *4 (-986 *2 *3)))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362)) (-14 *5 (-986 *3 *4)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-912))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-912)) (-4 *2 (-362)) (-14 *5 (-986 *4 *2)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-912))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-912)) (-14 *5 (-986 *4 *2))))) -(-13 (-1042) (-38 |#2|) (-1261 |#2|) (-10 -8 (-15 -1426 ($ (-912))) (-15 -3276 ($ |#2| (-635 (-912)))) (-15 -4084 (|#2| $ (-635 (-912)))) (-15 -3866 ((-3 $ "failed") $)))) -((-1428 (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224)))) (-224) (-224) (-224) (-224)) 37)) (-1427 (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544))) 64) (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918)) 65)) (-1593 (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224))))) 68) (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-936 (-224)))) 67) (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544))) 59) (((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918)) 60))) -(((-152) (-10 -7 (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544)))) (-15 -1427 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918))) (-15 -1427 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544)))) (-15 -1428 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224)))) (-224) (-224) (-224) (-224))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-936 (-224))))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224)))))))) (T -152)) -((-1593 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)) (-5 *3 (-635 (-635 (-936 (-224))))))) (-1593 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)) (-5 *3 (-635 (-936 (-224)))))) (-1428 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-224)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 *4)))) (|:| |xValues| (-1079 *4)) (|:| |yValues| (-1079 *4)))) (-5 *1 (-152)) (-5 *3 (-635 (-635 (-936 *4)))))) (-1427 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-406 (-544))) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)))) (-1593 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-406 (-544))) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) (-5 *1 (-152))))) -(-10 -7 (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544)))) (-15 -1427 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918))) (-15 -1427 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-918) (-406 (-544)) (-406 (-544)))) (-15 -1428 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224)))) (-224) (-224) (-224) (-224))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-936 (-224))))) (-15 -1593 ((-2 (|:| |brans| (-635 (-635 (-936 (-224))))) (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224)))) (-635 (-635 (-936 (-224))))))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3582 (((-635 (-1125)) $) 15)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 24) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 9)) (-3437 (((-112) $ $) NIL))) -(((-153) (-13 (-1073) (-10 -8 (-15 -3582 ((-635 (-1125)) $)) (-15 -3634 ((-1125) $))))) (T -153)) -((-3582 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-153)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-153))))) -(-13 (-1073) (-10 -8 (-15 -3582 ((-635 (-1125)) $)) (-15 -3634 ((-1125) $)))) -((-1478 (((-635 (-167 |#2|)) |#1| |#2|) 45))) -(((-154 |#1| |#2|) (-10 -7 (-15 -1478 ((-635 (-167 |#2|)) |#1| |#2|))) (-1229 (-167 (-544))) (-13 (-362) (-842))) (T -154)) -((-1478 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-167 *4))) (-5 *1 (-154 *3 *4)) (-4 *3 (-1229 (-167 (-544)))) (-4 *4 (-13 (-362) (-842)))))) -(-10 -7 (-15 -1478 ((-635 (-167 |#2|)) |#1| |#2|))) -((-2947 (((-112) $ $) NIL)) (-3927 (((-1205) $) 12)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-155) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1205) $))))) (T -155)) -((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-155)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-155))))) -(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1205) $)))) -((-2947 (((-112) $ $) NIL)) (-1430 (($) 15)) (-3484 (($) 14)) (-1429 (((-912)) 22)) (-3643 (((-1148) $) NIL)) (-3339 (((-544) $) 19)) (-3644 (((-1110) $) NIL)) (-3483 (($) 16)) (-3338 (($ (-544)) 23)) (-4353 (((-857) $) 29)) (-3482 (($) 17)) (-3437 (((-112) $ $) 13)) (-4246 (($ $ $) 11)) (* (($ (-912) $) 21) (($ (-224) $) 8))) -(((-156) (-13 (-25) (-10 -8 (-15 * ($ (-912) $)) (-15 * ($ (-224) $)) (-15 -4246 ($ $ $)) (-15 -3484 ($)) (-15 -1430 ($)) (-15 -3483 ($)) (-15 -3482 ($)) (-15 -3339 ((-544) $)) (-15 -1429 ((-912))) (-15 -3338 ($ (-544)))))) (T -156)) -((-4246 (*1 *1 *1 *1) (-5 *1 (-156))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-156)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) (-3484 (*1 *1) (-5 *1 (-156))) (-1430 (*1 *1) (-5 *1 (-156))) (-3483 (*1 *1) (-5 *1 (-156))) (-3482 (*1 *1) (-5 *1 (-156))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-156)))) (-1429 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-156)))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-156))))) -(-13 (-25) (-10 -8 (-15 * ($ (-912) $)) (-15 * ($ (-224) $)) (-15 -4246 ($ $ $)) (-15 -3484 ($)) (-15 -1430 ($)) (-15 -3483 ($)) (-15 -3482 ($)) (-15 -3339 ((-544) $)) (-15 -1429 ((-912))) (-15 -3338 ($ (-544))))) -((-1443 ((|#2| |#2| (-1082 |#2|)) 88) ((|#2| |#2| (-1166)) 68)) (-4351 ((|#2| |#2| (-1082 |#2|)) 87) ((|#2| |#2| (-1166)) 67)) (-1440 ((|#2| |#2| |#2|) 27)) (-3430 (((-113) (-113)) 99)) (-1437 ((|#2| (-635 |#2|)) 117)) (-1434 ((|#2| (-635 |#2|)) 135)) (-1433 ((|#2| (-635 |#2|)) 125)) (-1431 ((|#2| |#2|) 123)) (-1435 ((|#2| (-635 |#2|)) 111)) (-1436 ((|#2| (-635 |#2|)) 112)) (-1432 ((|#2| (-635 |#2|)) 133)) (-1444 ((|#2| |#2| (-1166)) 56) ((|#2| |#2|) 55)) (-1438 ((|#2| |#2|) 23)) (-3487 ((|#2| |#2| |#2|) 26)) (-2377 (((-112) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-157 |#1| |#2|) (-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3487 (|#2| |#2| |#2|)) (-15 -1440 (|#2| |#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -1444 (|#2| |#2|)) (-15 -1444 (|#2| |#2| (-1166))) (-15 -1443 (|#2| |#2| (-1166))) (-15 -1443 (|#2| |#2| (-1082 |#2|))) (-15 -4351 (|#2| |#2| (-1166))) (-15 -4351 (|#2| |#2| (-1082 |#2|))) (-15 -1431 (|#2| |#2|)) (-15 -1432 (|#2| (-635 |#2|))) (-15 -1433 (|#2| (-635 |#2|))) (-15 -1434 (|#2| (-635 |#2|))) (-15 -1435 (|#2| (-635 |#2|))) (-15 -1436 (|#2| (-635 |#2|))) (-15 -1437 (|#2| (-635 |#2|)))) (-13 (-844) (-554)) (-420 |#1|)) (T -157)) -((-1437 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-844) (-554))))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-4351 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)))) (-4351 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-420 *4)))) (-1443 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)))) (-1443 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-420 *4)))) (-1444 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-420 *4)))) (-1444 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-1438 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-1440 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-3487 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *4)) (-4 *4 (-420 *3)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-157 *4 *5)) (-4 *5 (-420 *4))))) -(-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3487 (|#2| |#2| |#2|)) (-15 -1440 (|#2| |#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -1444 (|#2| |#2|)) (-15 -1444 (|#2| |#2| (-1166))) (-15 -1443 (|#2| |#2| (-1166))) (-15 -1443 (|#2| |#2| (-1082 |#2|))) (-15 -4351 (|#2| |#2| (-1166))) (-15 -4351 (|#2| |#2| (-1082 |#2|))) (-15 -1431 (|#2| |#2|)) (-15 -1432 (|#2| (-635 |#2|))) (-15 -1433 (|#2| (-635 |#2|))) (-15 -1434 (|#2| (-635 |#2|))) (-15 -1435 (|#2| (-635 |#2|))) (-15 -1436 (|#2| (-635 |#2|))) (-15 -1437 (|#2| (-635 |#2|)))) -((-1442 ((|#1| |#1| |#1|) 53)) (-1441 ((|#1| |#1| |#1|) 50)) (-1440 ((|#1| |#1| |#1|) 44)) (-3273 ((|#1| |#1|) 35)) (-1439 ((|#1| |#1| (-635 |#1|)) 43)) (-1438 ((|#1| |#1|) 37)) (-3487 ((|#1| |#1| |#1|) 40))) -(((-158 |#1|) (-10 -7 (-15 -3487 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -1439 (|#1| |#1| (-635 |#1|))) (-15 -3273 (|#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1441 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|))) (-543)) (T -158)) -((-1442 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1441 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1440 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3273 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2)))) (-1438 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) (-3487 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))) -(-10 -7 (-15 -3487 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -1439 (|#1| |#1| (-635 |#1|))) (-15 -3273 (|#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1441 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|))) -((-1443 (($ $ (-1166)) 12) (($ $ (-1082 $)) 11)) (-4351 (($ $ (-1166)) 10) (($ $ (-1082 $)) 9)) (-1440 (($ $ $) 8)) (-1444 (($ $) 14) (($ $ (-1166)) 13)) (-1438 (($ $) 7)) (-3487 (($ $ $) 6))) +(-13 (-1044)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-1816 (((-2 (|:| -1960 (-766)) (|:| -4221 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-766)) 69)) (-1775 (((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-766))) "failed") |#3|) 51)) (-1882 (((-2 (|:| -4221 (-406 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-2686 ((|#1| |#3| |#3|) 39)) (-1433 ((|#3| |#3| (-406 |#2|) (-406 |#2|)) 19)) (-1409 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-766))) |#3| |#3|) 48))) +(((-147 |#1| |#2| |#3|) (-10 -7 (-15 -1882 ((-2 (|:| -4221 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1775 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-766))) "failed") |#3|)) (-15 -1816 ((-2 (|:| -1960 (-766)) (|:| -4221 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-766))) (-15 -2686 (|#1| |#3| |#3|)) (-15 -1433 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1409 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-766))) |#3| |#3|))) (-1211) (-1232 |#1|) (-1232 (-406 |#2|))) (T -147)) +((-1409 (*1 *2 *3 *3) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) (|:| |c2| (-406 *5)) (|:| |deg| (-766)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5))))) (-1433 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1232 *3)))) (-2686 (*1 *2 *3 *3) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-1211)) (-5 *1 (-147 *2 *4 *3)) (-4 *3 (-1232 (-406 *4))))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *6)) (-4 *5 (-1211)) (-4 *6 (-1232 *5)) (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *3) (|:| |radicand| *6))) (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-766)) (-4 *7 (-1232 *3)))) (-1775 (*1 *2 *3) (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-766)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5))))) (-1882 (*1 *2 *3) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -4221 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5)))))) +(-10 -7 (-15 -1882 ((-2 (|:| -4221 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1775 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-766))) "failed") |#3|)) (-15 -1816 ((-2 (|:| -1960 (-766)) (|:| -4221 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-766))) (-15 -2686 (|#1| |#3| |#3|)) (-15 -1433 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1409 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-766))) |#3| |#3|))) +((-4150 (((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|)) 31))) +(((-148 |#1| |#2|) (-10 -7 (-15 -4150 ((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|)))) (-544) (-165 |#1|)) (T -148)) +((-4150 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *5))) (-5 *3 (-1164 *5)) (-4 *5 (-165 *4)) (-4 *4 (-544)) (-5 *1 (-148 *4 *5))))) +(-10 -7 (-15 -4150 ((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|)))) +((-3556 (($ (-1 (-112) |#2|) $) 29)) (-1459 (($ $) 36)) (-1475 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-1955 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3251 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-1763 (((-112) (-1 (-112) |#2|) $) 16)) (-1723 (((-766) (-1 (-112) |#2|) $) 14) (((-766) |#2| $) NIL)) (-1744 (((-112) (-1 (-112) |#2|) $) 15)) (-3492 (((-766) $) 11))) +(((-149 |#1| |#2|) (-10 -8 (-15 -1459 (|#1| |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3251 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|))) (-150 |#2|) (-1207)) (T -149)) +NIL +(-10 -8 (-15 -1459 (|#1| |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3251 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-3556 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-1459 (($ $) 41 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4402))) (($ |#1| $) 42 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 40 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 49)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-150 |#1|) (-139) (-1207)) (T -150)) +((-4066 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-150 *3)))) (-3251 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1207)))) (-1955 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4402)) (-4 *1 (-150 *2)) (-4 *2 (-1207)))) (-1955 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4402)) (-4 *1 (-150 *2)) (-4 *2 (-1207)))) (-1475 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4402)) (-4 *1 (-150 *3)) (-4 *3 (-1207)))) (-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4402)) (-4 *1 (-150 *3)) (-4 *3 (-1207)))) (-1955 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1092)) (|has| *1 (-6 -4402)) (-4 *1 (-150 *2)) (-4 *2 (-1207)))) (-1475 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-150 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) (-1459 (*1 *1 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-150 *2)) (-4 *2 (-1207)) (-4 *2 (-1092))))) +(-13 (-488 |t#1|) (-10 -8 (-15 -4066 ($ (-639 |t#1|))) (-15 -3251 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4402)) (PROGN (-15 -1955 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1955 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1475 ($ (-1 (-112) |t#1|) $)) (-15 -3556 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -1955 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1475 ($ |t#1| $)) (-15 -1459 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) 85)) (-1957 (((-112) $) NIL)) (-1378 (($ |#2| (-639 (-916))) 55)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3591 (($ (-916)) 47)) (-3627 (((-133)) 23)) (-4054 (((-857) $) 68) (($ (-562)) 45) (($ |#2|) 46)) (-3906 ((|#2| $ (-639 (-916))) 58)) (-2579 (((-766)) 20)) (-2286 (($) 40 T CONST)) (-2294 (($) 43 T CONST)) (-1731 (((-112) $ $) 26)) (-1859 (($ $ |#2|) NIL)) (-1848 (($ $) 34) (($ $ $) 32)) (-1835 (($ $ $) 30)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-151 |#1| |#2| |#3|) (-13 (-1044) (-38 |#2|) (-1263 |#2|) (-10 -8 (-15 -3591 ($ (-916))) (-15 -1378 ($ |#2| (-639 (-916)))) (-15 -3906 (|#2| $ (-639 (-916)))) (-15 -3668 ((-3 $ "failed") $)))) (-916) (-362) (-988 |#1| |#2|)) (T -151)) +((-3668 (*1 *1 *1) (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-916)) (-4 *3 (-362)) (-14 *4 (-988 *2 *3)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362)) (-14 *5 (-988 *3 *4)))) (-1378 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-916))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-916)) (-4 *2 (-362)) (-14 *5 (-988 *4 *2)))) (-3906 (*1 *2 *1 *3) (-12 (-5 *3 (-639 (-916))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-916)) (-14 *5 (-988 *4 *2))))) +(-13 (-1044) (-38 |#2|) (-1263 |#2|) (-10 -8 (-15 -3591 ($ (-916))) (-15 -1378 ($ |#2| (-639 (-916)))) (-15 -3906 (|#2| $ (-639 (-916)))) (-15 -3668 ((-3 $ "failed") $)))) +((-3951 (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224)))) (-224) (-224) (-224) (-224)) 37)) (-2161 (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562))) 64) (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922)) 65)) (-3201 (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224))))) 68) (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-938 (-224)))) 67) (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562))) 59) (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922)) 60))) +(((-152) (-10 -7 (-15 -3201 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922))) (-15 -3201 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562)))) (-15 -2161 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922))) (-15 -2161 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562)))) (-15 -3951 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224)))) (-224) (-224) (-224) (-224))) (-15 -3201 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-938 (-224))))) (-15 -3201 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224)))))))) (T -152)) +((-3201 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)) (-5 *3 (-639 (-639 (-938 (-224))))))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)) (-5 *3 (-639 (-938 (-224)))))) (-3951 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-224)) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 *4)))) (|:| |xValues| (-1086 *4)) (|:| |yValues| (-1086 *4)))) (-5 *1 (-152)) (-5 *3 (-639 (-639 (-938 *4)))))) (-2161 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-406 (-562))) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)))) (-3201 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-406 (-562))) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152))))) +(-10 -7 (-15 -3201 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922))) (-15 -3201 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562)))) (-15 -2161 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922))) (-15 -2161 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562)))) (-15 -3951 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224)))) (-224) (-224) (-224) (-224))) (-15 -3201 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-938 (-224))))) (-15 -3201 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224))))))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-2454 (((-639 (-1127)) $) 15)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 24) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 9)) (-1731 (((-112) $ $) NIL))) +(((-153) (-13 (-1075) (-10 -8 (-15 -2454 ((-639 (-1127)) $)) (-15 -3265 ((-1127) $))))) (T -153)) +((-2454 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-153)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-153))))) +(-13 (-1075) (-10 -8 (-15 -2454 ((-639 (-1127)) $)) (-15 -3265 ((-1127) $)))) +((-1962 (((-639 (-168 |#2|)) |#1| |#2|) 45))) +(((-154 |#1| |#2|) (-10 -7 (-15 -1962 ((-639 (-168 |#2|)) |#1| |#2|))) (-1232 (-168 (-562))) (-13 (-362) (-843))) (T -154)) +((-1962 (*1 *2 *3 *4) (-12 (-5 *2 (-639 (-168 *4))) (-5 *1 (-154 *3 *4)) (-4 *3 (-1232 (-168 (-562)))) (-4 *4 (-13 (-362) (-843)))))) +(-10 -7 (-15 -1962 ((-639 (-168 |#2|)) |#1| |#2|))) +((-4041 (((-112) $ $) NIL)) (-4328 (((-1206) $) 12)) (-4316 (((-1127) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-155) (-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1206) $))))) (T -155)) +((-4316 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-155)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-155))))) +(-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1206) $)))) +((-4041 (((-112) $ $) NIL)) (-3498 (($) 15)) (-3846 (($) 14)) (-3845 (((-916)) 22)) (-2913 (((-1150) $) NIL)) (-3410 (((-562) $) 19)) (-1709 (((-1112) $) NIL)) (-2049 (($) 16)) (-2739 (($ (-562)) 23)) (-4054 (((-857) $) 29)) (-3154 (($) 17)) (-1731 (((-112) $ $) 13)) (-1835 (($ $ $) 11)) (* (($ (-916) $) 21) (($ (-224) $) 8))) +(((-156) (-13 (-25) (-10 -8 (-15 * ($ (-916) $)) (-15 * ($ (-224) $)) (-15 -1835 ($ $ $)) (-15 -3846 ($)) (-15 -3498 ($)) (-15 -2049 ($)) (-15 -3154 ($)) (-15 -3410 ((-562) $)) (-15 -3845 ((-916))) (-15 -2739 ($ (-562)))))) (T -156)) +((-1835 (*1 *1 *1 *1) (-5 *1 (-156))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-156)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) (-3846 (*1 *1) (-5 *1 (-156))) (-3498 (*1 *1) (-5 *1 (-156))) (-2049 (*1 *1) (-5 *1 (-156))) (-3154 (*1 *1) (-5 *1 (-156))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-156)))) (-3845 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-156)))) (-2739 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-156))))) +(-13 (-25) (-10 -8 (-15 * ($ (-916) $)) (-15 * ($ (-224) $)) (-15 -1835 ($ $ $)) (-15 -3846 ($)) (-15 -3498 ($)) (-15 -2049 ($)) (-15 -3154 ($)) (-15 -3410 ((-562) $)) (-15 -3845 ((-916))) (-15 -2739 ($ (-562))))) +((-3717 ((|#2| |#2| (-1084 |#2|)) 88) ((|#2| |#2| (-1168)) 68)) (-1397 ((|#2| |#2| (-1084 |#2|)) 87) ((|#2| |#2| (-1168)) 67)) (-2794 ((|#2| |#2| |#2|) 27)) (-2876 (((-114) (-114)) 99)) (-2891 ((|#2| (-639 |#2|)) 117)) (-1693 ((|#2| (-639 |#2|)) 135)) (-3831 ((|#2| (-639 |#2|)) 125)) (-3360 ((|#2| |#2|) 123)) (-2750 ((|#2| (-639 |#2|)) 111)) (-4287 ((|#2| (-639 |#2|)) 112)) (-2149 ((|#2| (-639 |#2|)) 133)) (-3072 ((|#2| |#2| (-1168)) 56) ((|#2| |#2|) 55)) (-1351 ((|#2| |#2|) 23)) (-3261 ((|#2| |#2| |#2|) 26)) (-2803 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-157 |#1| |#2|) (-10 -7 (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3261 (|#2| |#2| |#2|)) (-15 -2794 (|#2| |#2| |#2|)) (-15 -1351 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -3072 (|#2| |#2| (-1168))) (-15 -3717 (|#2| |#2| (-1168))) (-15 -3717 (|#2| |#2| (-1084 |#2|))) (-15 -1397 (|#2| |#2| (-1168))) (-15 -1397 (|#2| |#2| (-1084 |#2|))) (-15 -3360 (|#2| |#2|)) (-15 -2149 (|#2| (-639 |#2|))) (-15 -3831 (|#2| (-639 |#2|))) (-15 -1693 (|#2| (-639 |#2|))) (-15 -2750 (|#2| (-639 |#2|))) (-15 -4287 (|#2| (-639 |#2|))) (-15 -2891 (|#2| (-639 |#2|)))) (-13 (-845) (-554)) (-429 |#1|)) (T -157)) +((-2891 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-3360 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-1397 (*1 *2 *2 *3) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)))) (-1397 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-3717 (*1 *2 *2 *3) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)))) (-3717 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-3072 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-1351 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-2794 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3261 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *4)) (-4 *4 (-429 *3)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4))))) +(-10 -7 (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3261 (|#2| |#2| |#2|)) (-15 -2794 (|#2| |#2| |#2|)) (-15 -1351 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -3072 (|#2| |#2| (-1168))) (-15 -3717 (|#2| |#2| (-1168))) (-15 -3717 (|#2| |#2| (-1084 |#2|))) (-15 -1397 (|#2| |#2| (-1168))) (-15 -1397 (|#2| |#2| (-1084 |#2|))) (-15 -3360 (|#2| |#2|)) (-15 -2149 (|#2| (-639 |#2|))) (-15 -3831 (|#2| (-639 |#2|))) (-15 -1693 (|#2| (-639 |#2|))) (-15 -2750 (|#2| (-639 |#2|))) (-15 -4287 (|#2| (-639 |#2|))) (-15 -2891 (|#2| (-639 |#2|)))) +((-4016 ((|#1| |#1| |#1|) 53)) (-4272 ((|#1| |#1| |#1|) 50)) (-2794 ((|#1| |#1| |#1|) 44)) (-2660 ((|#1| |#1|) 35)) (-2981 ((|#1| |#1| (-639 |#1|)) 43)) (-1351 ((|#1| |#1|) 37)) (-3261 ((|#1| |#1| |#1|) 40))) +(((-158 |#1|) (-10 -7 (-15 -3261 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1|)) (-15 -2981 (|#1| |#1| (-639 |#1|))) (-15 -2660 (|#1| |#1|)) (-15 -2794 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1| |#1|)) (-15 -4016 (|#1| |#1| |#1|))) (-544)) (T -158)) +((-4016 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-4272 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-2794 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-2660 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-2981 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-544)) (-5 *1 (-158 *2)))) (-1351 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-3261 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) +(-10 -7 (-15 -3261 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1|)) (-15 -2981 (|#1| |#1| (-639 |#1|))) (-15 -2660 (|#1| |#1|)) (-15 -2794 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1| |#1|)) (-15 -4016 (|#1| |#1| |#1|))) +((-3717 (($ $ (-1168)) 12) (($ $ (-1084 $)) 11)) (-1397 (($ $ (-1168)) 10) (($ $ (-1084 $)) 9)) (-2794 (($ $ $) 8)) (-3072 (($ $) 14) (($ $ (-1168)) 13)) (-1351 (($ $) 7)) (-3261 (($ $ $) 6))) (((-159) (-139)) (T -159)) -((-1444 (*1 *1 *1) (-4 *1 (-159))) (-1444 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-1443 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-1443 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159)))) (-4351 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) (-4351 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159))))) -(-13 (-142) (-10 -8 (-15 -1444 ($ $)) (-15 -1444 ($ $ (-1166))) (-15 -1443 ($ $ (-1166))) (-15 -1443 ($ $ (-1082 $))) (-15 -4351 ($ $ (-1166))) (-15 -4351 ($ $ (-1082 $))))) +((-3072 (*1 *1 *1) (-4 *1 (-159))) (-3072 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) (-3717 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) (-3717 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-159)))) (-1397 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-159))))) +(-13 (-142) (-10 -8 (-15 -3072 ($ $)) (-15 -3072 ($ $ (-1168))) (-15 -3717 ($ $ (-1168))) (-15 -3717 ($ $ (-1084 $))) (-15 -1397 ($ $ (-1168))) (-15 -1397 ($ $ (-1084 $))))) (((-142) . T)) -((-2947 (((-112) $ $) NIL)) (-1445 (($ (-544)) 13) (($ $ $) 14)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17)) (-3437 (((-112) $ $) 9))) -(((-160) (-13 (-1091) (-10 -8 (-15 -1445 ($ (-544))) (-15 -1445 ($ $ $))))) (T -160)) -((-1445 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-160)))) (-1445 (*1 *1 *1 *1) (-5 *1 (-160)))) -(-13 (-1091) (-10 -8 (-15 -1445 ($ (-544))) (-15 -1445 ($ $ $)))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-635 (-1125)) $) 9)) (-3437 (((-112) $ $) NIL))) -(((-161) (-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $))))) (T -161)) -((-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-161))))) -(-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $)))) -((-3430 (((-113) (-1166)) 97))) -(((-162) (-10 -7 (-15 -3430 ((-113) (-1166))))) (T -162)) -((-3430 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-113)) (-5 *1 (-162))))) -(-10 -7 (-15 -3430 ((-113) (-1166)))) -((-1683 ((|#3| |#3|) 19))) -(((-163 |#1| |#2| |#3|) (-10 -7 (-15 -1683 (|#3| |#3|))) (-1042) (-1229 |#1|) (-1229 |#2|)) (T -163)) -((-1683 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-4 *4 (-1229 *3)) (-5 *1 (-163 *3 *4 *2)) (-4 *2 (-1229 *4))))) -(-10 -7 (-15 -1683 (|#3| |#3|))) -((-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 216)) (-3734 ((|#2| $) 95)) (-3891 (($ $) 246)) (-4046 (($ $) 240)) (-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 39)) (-3889 (($ $) 244)) (-4045 (($ $) 238)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 140)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#2| $) 138)) (-2943 (($ $ $) 221)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 154) (((-682 |#2|) (-682 $)) 148)) (-4249 (($ (-1160 |#2|)) 118) (((-3 $ "failed") (-406 (-1160 |#2|))) NIL)) (-3866 (((-3 $ "failed") $) 208)) (-3407 (((-3 (-406 (-544)) "failed") $) 198)) (-3406 (((-112) $) 193)) (-3405 (((-406 (-544)) $) 196)) (-3494 (((-912)) 88)) (-2942 (($ $ $) 223)) (-1446 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 260)) (-4034 (($) 235)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 185) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 190)) (-3517 ((|#2| $) 93)) (-2164 (((-1160 |#2|) $) 120)) (-4365 (($ (-1 |#2| |#2|) $) 101)) (-4349 (($ $) 237)) (-3463 (((-1160 |#2|) $) 119)) (-2779 (($ $) 201)) (-1448 (($) 96)) (-3087 (((-404 (-1160 $)) (-1160 $)) 87)) (-3088 (((-404 (-1160 $)) (-1160 $)) 56)) (-3865 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-4350 (($ $) 236)) (-1732 (((-765) $) 218)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 228)) (-4164 ((|#2| (-1253 $)) NIL) ((|#2|) 90)) (-4217 (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-3586 (((-1160 |#2|)) 113)) (-3890 (($ $) 245)) (-4041 (($ $) 239)) (-3625 (((-1253 |#2|) $ (-1253 $)) 127) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $) 109) (((-682 |#2|) (-1253 $)) NIL)) (-4377 (((-1253 |#2|) $) NIL) (($ (-1253 |#2|)) NIL) (((-1160 |#2|) $) NIL) (($ (-1160 |#2|)) NIL) (((-883 (-544)) $) 176) (((-883 (-377)) $) 180) (((-167 (-377)) $) 166) (((-167 (-224)) $) 161) (((-533) $) 172)) (-3392 (($ $) 97)) (-4353 (((-857) $) 137) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-406 (-544))) NIL) (($ $) NIL)) (-2743 (((-1160 |#2|) $) 23)) (-3511 (((-765)) 99)) (-3897 (($ $) 249)) (-3885 (($ $) 243)) (-3895 (($ $) 247)) (-3883 (($ $) 241)) (-2357 ((|#2| $) 232)) (-3896 (($ $) 248)) (-3884 (($ $) 242)) (-3787 (($ $) 156)) (-3437 (((-112) $ $) 103)) (-3067 (((-112) $ $) 192)) (-4244 (($ $) 105) (($ $ $) NIL)) (-4246 (($ $ $) 104)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-406 (-544))) 266) (($ $ $) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 111) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL))) -(((-164 |#1| |#2|) (-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4353 (|#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -1732 ((-765) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-167 (-224)) |#1|)) (-15 -4377 ((-167 (-377)) |#1|)) (-15 -4046 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4034 (|#1|)) (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -1446 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2357 (|#2| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3392 (|#1| |#1|)) (-15 -1448 (|#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4249 ((-3 |#1| "failed") (-406 (-1160 |#2|)))) (-15 -3463 ((-1160 |#2|) |#1|)) (-15 -4377 (|#1| (-1160 |#2|))) (-15 -4249 (|#1| (-1160 |#2|))) (-15 -3586 ((-1160 |#2|))) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 ((-1160 |#2|) |#1|)) (-15 -4164 (|#2|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -2164 ((-1160 |#2|) |#1|)) (-15 -2743 ((-1160 |#2|) |#1|)) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -3517 (|#2| |#1|)) (-15 -3734 (|#2| |#1|)) (-15 -3494 ((-912))) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-165 |#2|) (-171)) (T -164)) -((-3511 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-3494 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-912)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-4164 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) (-3586 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1160 *4)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4))))) -(-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4353 (|#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -1732 ((-765) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-167 (-224)) |#1|)) (-15 -4377 ((-167 (-377)) |#1|)) (-15 -4046 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4034 (|#1|)) (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -1446 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2357 (|#2| |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3392 (|#1| |#1|)) (-15 -1448 (|#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4249 ((-3 |#1| "failed") (-406 (-1160 |#2|)))) (-15 -3463 ((-1160 |#2|) |#1|)) (-15 -4377 (|#1| (-1160 |#2|))) (-15 -4249 (|#1| (-1160 |#2|))) (-15 -3586 ((-1160 |#2|))) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 ((-1160 |#2|) |#1|)) (-15 -4164 (|#2|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -2164 ((-1160 |#2|) |#1|)) (-15 -2743 ((-1160 |#2|) |#1|)) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -3517 (|#2| |#1|)) (-15 -3734 (|#2| |#1|)) (-15 -3494 ((-912))) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 93 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-2213 (($ $) 94 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-2211 (((-112) $) 96 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-1929 (((-682 |#1|) (-1253 $)) 47) (((-682 |#1|)) 62)) (-3734 ((|#1| $) 53)) (-3891 (($ $) 227 (|has| |#1| (-1190)))) (-4046 (($ $) 210 (|has| |#1| (-1190)))) (-1819 (((-1177 (-912) (-765)) (-544)) 146 (|has| |#1| (-349)))) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 241 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-4181 (($ $) 113 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-4376 (((-404 $) $) 114 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-3420 (($ $) 240 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 244 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-1733 (((-112) $ $) 104 (|has| |#1| (-306)))) (-3521 (((-765)) 87 (|has| |#1| (-367)))) (-3889 (($ $) 226 (|has| |#1| (-1190)))) (-4045 (($ $) 211 (|has| |#1| (-1190)))) (-3893 (($ $) 225 (|has| |#1| (-1190)))) (-4044 (($ $) 212 (|has| |#1| (-1190)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 169 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 167 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 164)) (-3557 (((-544) $) 168 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 166 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 165)) (-1939 (($ (-1253 |#1|) (-1253 $)) 49) (($ (-1253 |#1|)) 65)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-2943 (($ $ $) 108 (|has| |#1| (-306)))) (-1928 (((-682 |#1|) $ (-1253 $)) 54) (((-682 |#1|) $) 60)) (-2401 (((-682 (-544)) (-682 $)) 163 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 162 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 161) (((-682 |#1|) (-682 $)) 160)) (-4249 (($ (-1160 |#1|)) 157) (((-3 $ "failed") (-406 (-1160 |#1|))) 154 (|has| |#1| (-362)))) (-3866 (((-3 $ "failed") $) 33)) (-4050 ((|#1| $) 252)) (-3407 (((-3 (-406 (-544)) "failed") $) 245 (|has| |#1| (-543)))) (-3406 (((-112) $) 247 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 246 (|has| |#1| (-543)))) (-3494 (((-912)) 55)) (-3377 (($) 90 (|has| |#1| (-367)))) (-2942 (($ $ $) 107 (|has| |#1| (-306)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 102 (|has| |#1| (-306)))) (-3215 (($) 148 (|has| |#1| (-349)))) (-1824 (((-112) $) 149 (|has| |#1| (-349)))) (-1914 (($ $ (-765)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-4130 (((-112) $) 115 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-1446 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1190))))) (-4034 (($) 237 (|has| |#1| (-1190)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 260 (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 259 (|has| |#1| (-879 (-377))))) (-4178 (((-912) $) 151 (|has| |#1| (-349))) (((-826 (-912)) $) 137 (|has| |#1| (-349)))) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 239 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3517 ((|#1| $) 52)) (-3848 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 111 (|has| |#1| (-306)))) (-2164 (((-1160 |#1|) $) 45 (|has| |#1| (-362)))) (-2913 (($ $ $) 206 (|has| |#1| (-844)))) (-3242 (($ $ $) 205 (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) 261)) (-2160 (((-912) $) 89 (|has| |#1| (-367)))) (-4349 (($ $) 234 (|has| |#1| (-1190)))) (-3463 (((-1160 |#1|) $) 155)) (-2041 (($ (-635 $)) 100 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (($ $ $) 99 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 116 (|has| |#1| (-362)))) (-3849 (($) 142 (|has| |#1| (-349)) CONST)) (-2535 (($ (-912)) 88 (|has| |#1| (-367)))) (-1448 (($) 256)) (-4051 ((|#1| $) 253)) (-3644 (((-1110) $) 10)) (-2544 (($) 159)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 101 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3545 (($ (-635 $)) 98 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (($ $ $) 97 (-3936 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 145 (|has| |#1| (-349)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 243 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-3088 (((-404 (-1160 $)) (-1160 $)) 242 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-4139 (((-404 $) $) 112 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 109 (|has| |#1| (-306)))) (-3865 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 92 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| |#1| (-306)))) (-4350 (($ $) 235 (|has| |#1| (-1190)))) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 267 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 265 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 264 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 263 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 262 (|has| |#1| (-512 (-1166) |#1|)))) (-1732 (((-765) $) 105 (|has| |#1| (-306)))) (-4206 (($ $ |#1|) 268 (|has| |#1| (-285 |#1| |#1|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 106 (|has| |#1| (-306)))) (-4164 ((|#1| (-1253 $)) 48) ((|#1|) 61)) (-1915 (((-765) $) 150 (|has| |#1| (-349))) (((-3 (-765) "failed") $ $) 138 (|has| |#1| (-349)))) (-4217 (($ $ (-1 |#1| |#1|) (-765)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-635 (-1166)) (-635 (-765))) 129 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 130 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 131 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 132 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 134 (-3936 (-3240 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 136 (-3936 (-3240 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-3240 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-2543 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3586 (((-1160 |#1|)) 158)) (-3894 (($ $) 224 (|has| |#1| (-1190)))) (-4043 (($ $) 213 (|has| |#1| (-1190)))) (-1818 (($) 147 (|has| |#1| (-349)))) (-3892 (($ $) 223 (|has| |#1| (-1190)))) (-4042 (($ $) 214 (|has| |#1| (-1190)))) (-3890 (($ $) 222 (|has| |#1| (-1190)))) (-4041 (($ $) 215 (|has| |#1| (-1190)))) (-3625 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50) (((-1253 |#1|) $) 67) (((-682 |#1|) (-1253 $)) 66)) (-4377 (((-1253 |#1|) $) 64) (($ (-1253 |#1|)) 63) (((-1160 |#1|) $) 170) (($ (-1160 |#1|)) 156) (((-883 (-544)) $) 258 (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) 257 (|has| |#1| (-609 (-883 (-377))))) (((-167 (-377)) $) 209 (|has| |#1| (-1013))) (((-167 (-224)) $) 208 (|has| |#1| (-1013))) (((-533) $) 207 (|has| |#1| (-609 (-533))))) (-3392 (($ $) 255)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 144 (-3936 (-3240 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))) (|has| |#1| (-349))))) (-1447 (($ |#1| |#1|) 254)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38) (($ (-406 (-544))) 86 (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) 91 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3084 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-3936 (-3240 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))) (|has| |#1| (-144))))) (-2743 (((-1160 |#1|) $) 46)) (-3511 (((-765)) 28)) (-2162 (((-1253 $)) 68)) (-3897 (($ $) 233 (|has| |#1| (-1190)))) (-3885 (($ $) 221 (|has| |#1| (-1190)))) (-2212 (((-112) $ $) 95 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903)))))) (-3895 (($ $) 232 (|has| |#1| (-1190)))) (-3883 (($ $) 220 (|has| |#1| (-1190)))) (-3899 (($ $) 231 (|has| |#1| (-1190)))) (-3887 (($ $) 219 (|has| |#1| (-1190)))) (-2357 ((|#1| $) 249 (|has| |#1| (-1190)))) (-3900 (($ $) 230 (|has| |#1| (-1190)))) (-3888 (($ $) 218 (|has| |#1| (-1190)))) (-3898 (($ $) 229 (|has| |#1| (-1190)))) (-3886 (($ $) 217 (|has| |#1| (-1190)))) (-3896 (($ $) 228 (|has| |#1| (-1190)))) (-3884 (($ $) 216 (|has| |#1| (-1190)))) (-3787 (($ $) 250 (|has| |#1| (-1051)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 |#1| |#1|) (-765)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-635 (-1166)) (-635 (-765))) 125 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 126 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 127 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 128 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 133 (-3936 (-3240 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 135 (-3936 (-3240 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-3240 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-2945 (((-112) $ $) 203 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 202 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 204 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 201 (|has| |#1| (-844)))) (-4356 (($ $ $) 120 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-406 (-544))) 238 (-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))) (($ $ $) 236 (|has| |#1| (-1190))) (($ $ (-544)) 117 (|has| |#1| (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-544)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-544))) 118 (|has| |#1| (-362))))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-639 (-1127)) $) 9)) (-1731 (((-112) $ $) NIL))) +(((-160) (-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $))))) (T -160)) +((-3265 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-160))))) +(-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $)))) +((-4041 (((-112) $ $) NIL)) (-3836 (($ (-562)) 13) (($ $ $) 14)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 17)) (-1731 (((-112) $ $) 9))) +(((-161) (-13 (-1092) (-10 -8 (-15 -3836 ($ (-562))) (-15 -3836 ($ $ $))))) (T -161)) +((-3836 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-161)))) (-3836 (*1 *1 *1 *1) (-5 *1 (-161)))) +(-13 (-1092) (-10 -8 (-15 -3836 ($ (-562))) (-15 -3836 ($ $ $)))) +((-2876 (((-114) (-1168)) 97))) +(((-162) (-10 -7 (-15 -2876 ((-114) (-1168))))) (T -162)) +((-2876 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-114)) (-5 *1 (-162))))) +(-10 -7 (-15 -2876 ((-114) (-1168)))) +((-2291 ((|#3| |#3|) 19))) +(((-163 |#1| |#2| |#3|) (-10 -7 (-15 -2291 (|#3| |#3|))) (-1044) (-1232 |#1|) (-1232 |#2|)) (T -163)) +((-2291 (*1 *2 *2) (-12 (-4 *3 (-1044)) (-4 *4 (-1232 *3)) (-5 *1 (-163 *3 *4 *2)) (-4 *2 (-1232 *4))))) +(-10 -7 (-15 -2291 (|#3| |#3|))) +((-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 216)) (-1748 ((|#2| $) 95)) (-2988 (($ $) 246)) (-4097 (($ $) 240)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 39)) (-4207 (($ $) 244)) (-4074 (($ $) 238)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3961 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#2| $) 138)) (-1811 (($ $ $) 221)) (-2406 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 154) (((-683 |#2|) (-683 $)) 148)) (-1955 (($ (-1164 |#2|)) 118) (((-3 $ "failed") (-406 (-1164 |#2|))) NIL)) (-3668 (((-3 $ "failed") $) 208)) (-1726 (((-3 (-406 (-562)) "failed") $) 198)) (-3035 (((-112) $) 193)) (-1291 (((-406 (-562)) $) 196)) (-2173 (((-916)) 88)) (-1787 (($ $ $) 223)) (-2362 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 260)) (-4100 (($) 235)) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 185) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 190)) (-2247 ((|#2| $) 93)) (-1565 (((-1164 |#2|) $) 120)) (-4152 (($ (-1 |#2| |#2|) $) 101)) (-4365 (($ $) 237)) (-1943 (((-1164 |#2|) $) 119)) (-1525 (($ $) 201)) (-2112 (($) 96)) (-3986 (((-417 (-1164 $)) (-1164 $)) 87)) (-3480 (((-417 (-1164 $)) (-1164 $)) 56)) (-1762 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3430 (($ $) 236)) (-1577 (((-766) $) 218)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 228)) (-2455 ((|#2| (-1256 $)) NIL) ((|#2|) 90)) (-4029 (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-2096 (((-1164 |#2|)) 113)) (-2978 (($ $) 245)) (-4087 (($ $) 239)) (-3593 (((-1256 |#2|) $ (-1256 $)) 127) (((-683 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $) 109) (((-683 |#2|) (-1256 $)) NIL)) (-4208 (((-1256 |#2|) $) NIL) (($ (-1256 |#2|)) NIL) (((-1164 |#2|) $) NIL) (($ (-1164 |#2|)) NIL) (((-887 (-562)) $) 176) (((-887 (-378)) $) 180) (((-168 (-378)) $) 166) (((-168 (-224)) $) 161) (((-535) $) 172)) (-3665 (($ $) 97)) (-4054 (((-857) $) 137) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-406 (-562))) NIL) (($ $) NIL)) (-3376 (((-1164 |#2|) $) 23)) (-2579 (((-766)) 99)) (-3055 (($ $) 249)) (-4165 (($ $) 243)) (-3033 (($ $) 247)) (-4138 (($ $) 241)) (-2828 ((|#2| $) 232)) (-3044 (($ $) 248)) (-4151 (($ $) 242)) (-3526 (($ $) 156)) (-1731 (((-112) $ $) 103)) (-1759 (((-112) $ $) 192)) (-1848 (($ $) 105) (($ $ $) NIL)) (-1835 (($ $ $) 104)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-406 (-562))) 266) (($ $ $) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 111) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL))) +(((-164 |#1| |#2|) (-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4054 (|#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1445 ((-2 (|:| -3931 |#1|) (|:| -4389 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -1577 ((-766) |#1|)) (-15 -2080 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1811 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -1759 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-168 (-224)) |#1|)) (-15 -4208 ((-168 (-378)) |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4138 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -4207 (|#1| |#1|)) (-15 -2988 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -4365 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4100 (|#1|)) (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -3480 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3986 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -4150 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -2362 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2828 (|#2| |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3665 (|#1| |#1|)) (-15 -2112 (|#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -2533 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -1955 ((-3 |#1| "failed") (-406 (-1164 |#2|)))) (-15 -1943 ((-1164 |#2|) |#1|)) (-15 -4208 (|#1| (-1164 |#2|))) (-15 -1955 (|#1| (-1164 |#2|))) (-15 -2096 ((-1164 |#2|))) (-15 -2406 ((-683 |#2|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 ((-1164 |#2|) |#1|)) (-15 -2455 (|#2|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -3593 ((-683 |#2|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1|)) (-15 -1565 ((-1164 |#2|) |#1|)) (-15 -3376 ((-1164 |#2|) |#1|)) (-15 -2455 (|#2| (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2247 (|#2| |#1|)) (-15 -1748 (|#2| |#1|)) (-15 -2173 ((-916))) (-15 -4054 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 -3668 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) (-165 |#2|) (-171)) (T -164)) +((-2579 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-2173 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-916)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-2455 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) (-2096 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1164 *4)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4))))) +(-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4054 (|#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1445 ((-2 (|:| -3931 |#1|) (|:| -4389 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -1577 ((-766) |#1|)) (-15 -2080 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1811 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -1759 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-168 (-224)) |#1|)) (-15 -4208 ((-168 (-378)) |#1|)) (-15 -4097 (|#1| |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4138 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -4207 (|#1| |#1|)) (-15 -2988 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -4365 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4100 (|#1|)) (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -3480 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3986 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -4150 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -2362 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2828 (|#2| |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3665 (|#1| |#1|)) (-15 -2112 (|#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -2533 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -1955 ((-3 |#1| "failed") (-406 (-1164 |#2|)))) (-15 -1943 ((-1164 |#2|) |#1|)) (-15 -4208 (|#1| (-1164 |#2|))) (-15 -1955 (|#1| (-1164 |#2|))) (-15 -2096 ((-1164 |#2|))) (-15 -2406 ((-683 |#2|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 ((-1164 |#2|) |#1|)) (-15 -2455 (|#2|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -3593 ((-683 |#2|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1|)) (-15 -1565 ((-1164 |#2|) |#1|)) (-15 -3376 ((-1164 |#2|) |#1|)) (-15 -2455 (|#2| (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2247 (|#2| |#1|)) (-15 -1748 (|#2| |#1|)) (-15 -2173 ((-916))) (-15 -4054 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 -3668 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 93 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-2796 (($ $) 94 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-4370 (((-112) $) 96 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-1636 (((-683 |#1|) (-1256 $)) 47) (((-683 |#1|)) 62)) (-1748 ((|#1| $) 53)) (-2988 (($ $) 227 (|has| |#1| (-1192)))) (-4097 (($ $) 210 (|has| |#1| (-1192)))) (-3984 (((-1180 (-916) (-766)) (-562)) 146 (|has| |#1| (-348)))) (-3214 (((-3 $ "failed") $ $) 19)) (-3026 (((-417 (-1164 $)) (-1164 $)) 241 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-2798 (($ $) 113 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-2921 (((-417 $) $) 114 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-1643 (($ $) 240 (-12 (|has| |#1| (-997)) (|has| |#1| (-1192))))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 244 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-2569 (((-112) $ $) 104 (|has| |#1| (-306)))) (-1382 (((-766)) 87 (|has| |#1| (-367)))) (-4207 (($ $) 226 (|has| |#1| (-1192)))) (-4074 (($ $) 211 (|has| |#1| (-1192)))) (-3014 (($ $) 225 (|has| |#1| (-1192)))) (-4119 (($ $) 212 (|has| |#1| (-1192)))) (-1800 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 169 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 167 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 164)) (-3961 (((-562) $) 168 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 166 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 165)) (-4018 (($ (-1256 |#1|) (-1256 $)) 49) (($ (-1256 |#1|)) 65)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1811 (($ $ $) 108 (|has| |#1| (-306)))) (-1958 (((-683 |#1|) $ (-1256 $)) 54) (((-683 |#1|) $) 60)) (-2406 (((-683 (-562)) (-683 $)) 163 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 162 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 161) (((-683 |#1|) (-683 $)) 160)) (-1955 (($ (-1164 |#1|)) 157) (((-3 $ "failed") (-406 (-1164 |#1|))) 154 (|has| |#1| (-362)))) (-3668 (((-3 $ "failed") $) 33)) (-1657 ((|#1| $) 252)) (-1726 (((-3 (-406 (-562)) "failed") $) 245 (|has| |#1| (-544)))) (-3035 (((-112) $) 247 (|has| |#1| (-544)))) (-1291 (((-406 (-562)) $) 246 (|has| |#1| (-544)))) (-2173 (((-916)) 55)) (-1448 (($) 90 (|has| |#1| (-367)))) (-1787 (($ $ $) 107 (|has| |#1| (-306)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 102 (|has| |#1| (-306)))) (-3529 (($) 148 (|has| |#1| (-348)))) (-1322 (((-112) $) 149 (|has| |#1| (-348)))) (-3589 (($ $ (-766)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-2717 (((-112) $) 115 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-2362 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1053)) (|has| |#1| (-1192))))) (-4100 (($) 237 (|has| |#1| (-1192)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 260 (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 259 (|has| |#1| (-881 (-378))))) (-1900 (((-916) $) 151 (|has| |#1| (-348))) (((-828 (-916)) $) 137 (|has| |#1| (-348)))) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 239 (-12 (|has| |#1| (-997)) (|has| |#1| (-1192))))) (-2247 ((|#1| $) 52)) (-3699 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 111 (|has| |#1| (-306)))) (-1565 (((-1164 |#1|) $) 45 (|has| |#1| (-362)))) (-1551 (($ $ $) 206 (|has| |#1| (-845)))) (-2993 (($ $ $) 205 (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) 261)) (-1999 (((-916) $) 89 (|has| |#1| (-367)))) (-4365 (($ $) 234 (|has| |#1| (-1192)))) (-1943 (((-1164 |#1|) $) 155)) (-1564 (($ (-639 $)) 100 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (($ $ $) 99 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-2913 (((-1150) $) 9)) (-1525 (($ $) 116 (|has| |#1| (-362)))) (-3729 (($) 142 (|has| |#1| (-348)) CONST)) (-2466 (($ (-916)) 88 (|has| |#1| (-367)))) (-2112 (($) 256)) (-1670 ((|#1| $) 253)) (-1709 (((-1112) $) 10)) (-3148 (($) 159)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 101 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-1606 (($ (-639 $)) 98 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (($ $ $) 97 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) 145 (|has| |#1| (-348)))) (-3986 (((-417 (-1164 $)) (-1164 $)) 243 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-3480 (((-417 (-1164 $)) (-1164 $)) 242 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-1635 (((-417 $) $) 112 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 109 (|has| |#1| (-306)))) (-1762 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 92 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 103 (|has| |#1| (-306)))) (-3430 (($ $) 235 (|has| |#1| (-1192)))) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 267 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 265 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 264 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 263 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) 262 (|has| |#1| (-513 (-1168) |#1|)))) (-1577 (((-766) $) 105 (|has| |#1| (-306)))) (-2343 (($ $ |#1|) 268 (|has| |#1| (-285 |#1| |#1|)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 106 (|has| |#1| (-306)))) (-2455 ((|#1| (-1256 $)) 48) ((|#1|) 61)) (-3362 (((-766) $) 150 (|has| |#1| (-348))) (((-3 (-766) "failed") $ $) 138 (|has| |#1| (-348)))) (-4029 (($ $ (-1 |#1| |#1|) (-766)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-639 (-1168)) (-639 (-766))) 129 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 130 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 131 (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 132 (|has| |#1| (-895 (-1168)))) (($ $ (-766)) 134 (-4037 (-2246 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2246 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 136 (-4037 (-2246 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2246 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-3187 (((-683 |#1|) (-1256 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-2096 (((-1164 |#1|)) 158)) (-3023 (($ $) 224 (|has| |#1| (-1192)))) (-4130 (($ $) 213 (|has| |#1| (-1192)))) (-2283 (($) 147 (|has| |#1| (-348)))) (-3001 (($ $) 223 (|has| |#1| (-1192)))) (-4108 (($ $) 214 (|has| |#1| (-1192)))) (-2978 (($ $) 222 (|has| |#1| (-1192)))) (-4087 (($ $) 215 (|has| |#1| (-1192)))) (-3593 (((-1256 |#1|) $ (-1256 $)) 51) (((-683 |#1|) (-1256 $) (-1256 $)) 50) (((-1256 |#1|) $) 67) (((-683 |#1|) (-1256 $)) 66)) (-4208 (((-1256 |#1|) $) 64) (($ (-1256 |#1|)) 63) (((-1164 |#1|) $) 170) (($ (-1164 |#1|)) 156) (((-887 (-562)) $) 258 (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) 257 (|has| |#1| (-610 (-887 (-378))))) (((-168 (-378)) $) 209 (|has| |#1| (-1017))) (((-168 (-224)) $) 208 (|has| |#1| (-1017))) (((-535) $) 207 (|has| |#1| (-610 (-535))))) (-3665 (($ $) 255)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 144 (-4037 (-2246 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (|has| |#1| (-348))))) (-1418 (($ |#1| |#1|) 254)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38) (($ (-406 (-562))) 86 (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) 91 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-2805 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (-4037 (-2246 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (|has| |#1| (-144))))) (-3376 (((-1164 |#1|) $) 46)) (-2579 (((-766)) 28)) (-3928 (((-1256 $)) 68)) (-3055 (($ $) 233 (|has| |#1| (-1192)))) (-4165 (($ $) 221 (|has| |#1| (-1192)))) (-2922 (((-112) $ $) 95 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-3033 (($ $) 232 (|has| |#1| (-1192)))) (-4138 (($ $) 220 (|has| |#1| (-1192)))) (-3078 (($ $) 231 (|has| |#1| (-1192)))) (-4182 (($ $) 219 (|has| |#1| (-1192)))) (-2828 ((|#1| $) 249 (|has| |#1| (-1192)))) (-1566 (($ $) 230 (|has| |#1| (-1192)))) (-4195 (($ $) 218 (|has| |#1| (-1192)))) (-3066 (($ $) 229 (|has| |#1| (-1192)))) (-4174 (($ $) 217 (|has| |#1| (-1192)))) (-3044 (($ $) 228 (|has| |#1| (-1192)))) (-4151 (($ $) 216 (|has| |#1| (-1192)))) (-3526 (($ $) 250 (|has| |#1| (-1053)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-1 |#1| |#1|) (-766)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-639 (-1168)) (-639 (-766))) 125 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 126 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 127 (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 128 (|has| |#1| (-895 (-1168)))) (($ $ (-766)) 133 (-4037 (-2246 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2246 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 135 (-4037 (-2246 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2246 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-1798 (((-112) $ $) 203 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 202 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 204 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 201 (|has| |#1| (-845)))) (-1859 (($ $ $) 120 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-406 (-562))) 238 (-12 (|has| |#1| (-997)) (|has| |#1| (-1192)))) (($ $ $) 236 (|has| |#1| (-1192))) (($ $ (-562)) 117 (|has| |#1| (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-562)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-562))) 118 (|has| |#1| (-362))))) (((-165 |#1|) (-139) (-171)) (T -165)) -((-3517 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1448 (*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3392 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1447 (*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-3787 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-2357 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1190)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1051)) (-4 *3 (-1190)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) (-3407 (*1 *2 *1) (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544)))))) -(-13 (-718 |t#1| (-1160 |t#1|)) (-411 |t#1|) (-230 |t#1|) (-337 |t#1|) (-399 |t#1|) (-877 |t#1|) (-376 |t#1|) (-171) (-10 -8 (-15 -1448 ($)) (-15 -3392 ($ $)) (-15 -1447 ($ |t#1| |t#1|)) (-15 -4051 (|t#1| $)) (-15 -4050 (|t#1| $)) (-15 -3517 (|t#1| $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-554)) (-15 -3865 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-306)) (-6 (-306)) |%noBranch|) (IF (|has| |t#1| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |t#1| (-6 -4396)) (-6 -4396) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1013)) (PROGN (-6 (-609 (-167 (-224)))) (-6 (-609 (-167 (-377))))) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3787 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1190)) (PROGN (-6 (-1190)) (-15 -2357 (|t#1| $)) (IF (|has| |t#1| (-995)) (-6 (-995)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -1446 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-903)) (IF (|has| |t#1| (-306)) (-6 (-903)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-35) |has| |#1| (-1190)) ((-95) |has| |#1| (-1190)) ((-102) . T) ((-111 #1# #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| |#1| (-349)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-349)) (|has| |#1| (-362))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-608 (-857)) . T) ((-171) . T) ((-609 (-167 (-224))) |has| |#1| (-1013)) ((-609 (-167 (-377))) |has| |#1| (-1013)) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544)))) ((-609 #2=(-1160 |#1|)) . T) ((-230 |#1|) . T) ((-232) -3936 (|has| |#1| (-349)) (|has| |#1| (-232))) ((-242) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-283) |has| |#1| (-1190)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-306) -3936 (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-401) |has| |#1| (-349)) ((-367) -3936 (|has| |#1| (-349)) (|has| |#1| (-367))) ((-349) |has| |#1| (-349)) ((-369 |#1| #2#) . T) ((-409 |#1| #2#) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-491) |has| |#1| (-1190)) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-641 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-711 |#1|) . T) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-718 |#1| #2#) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-877 |#1|) . T) ((-903) -12 (|has| |#1| (-306)) (|has| |#1| (-903))) ((-914) -3936 (|has| |#1| (-349)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-995) -12 (|has| |#1| (-995)) (|has| |#1| (-1190))) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-349)) ((-1190) |has| |#1| (-1190)) ((-1193) |has| |#1| (-1190)) ((-1204) . T) ((-1209) -3936 (|has| |#1| (-349)) (|has| |#1| (-362)) (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) -((-4139 (((-404 |#2|) |#2|) 63))) -(((-166 |#1| |#2|) (-10 -7 (-15 -4139 ((-404 |#2|) |#2|))) (-306) (-1229 (-167 |#1|))) (T -166)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-166 *4 *3)) (-4 *3 (-1229 (-167 *4)))))) -(-10 -7 (-15 -4139 ((-404 |#2|) |#2|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 33)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-2213 (($ $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-2211 (((-112) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-1929 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) NIL)) (-3734 ((|#1| $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-1190)))) (-4046 (($ $) NIL (|has| |#1| (-1190)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-4181 (($ $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-4376 (((-404 $) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-3420 (($ $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-306)))) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-3889 (($ $) NIL (|has| |#1| (-1190)))) (-4045 (($ $) NIL (|has| |#1| (-1190)))) (-3893 (($ $) NIL (|has| |#1| (-1190)))) (-4044 (($ $) NIL (|has| |#1| (-1190)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|) (-1253 $)) NIL) (($ (-1253 |#1|)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2943 (($ $ $) NIL (|has| |#1| (-306)))) (-1928 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-4249 (($ (-1160 |#1|)) NIL) (((-3 $ "failed") (-406 (-1160 |#1|))) NIL (|has| |#1| (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-4050 ((|#1| $) 13)) (-3407 (((-3 (-406 (-544)) #3="failed") $) NIL (|has| |#1| (-543)))) (-3406 (((-112) $) NIL (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) NIL (|has| |#1| (-543)))) (-3494 (((-912)) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2942 (($ $ $) NIL (|has| |#1| (-306)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-306)))) (-3215 (($) NIL (|has| |#1| (-349)))) (-1824 (((-112) $) NIL (|has| |#1| (-349)))) (-1914 (($ $ (-765)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-4130 (((-112) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-1446 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1051)) (|has| |#1| (-1190))))) (-4034 (($) NIL (|has| |#1| (-1190)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| |#1| (-879 (-377))))) (-4178 (((-912) $) NIL (|has| |#1| (-349))) (((-826 (-912)) $) NIL (|has| |#1| (-349)))) (-2545 (((-112) $) 35)) (-3394 (($ $ (-544)) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190))))) (-3517 ((|#1| $) 46)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1730 (((-3 (-635 $) #4="failed") (-635 $) $) NIL (|has| |#1| (-306)))) (-2164 (((-1160 |#1|) $) NIL (|has| |#1| (-362)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-4349 (($ $) NIL (|has| |#1| (-1190)))) (-3463 (((-1160 |#1|) $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-3849 (($) NIL (|has| |#1| (-349)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-1448 (($) NIL)) (-4051 ((|#1| $) 15)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-306)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-349)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-903))))) (-4139 (((-404 $) $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-362))))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-306)))) (-3865 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 47 (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-306)))) (-4350 (($ $) NIL (|has| |#1| (-1190)))) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-1732 (((-765) $) NIL (|has| |#1| (-306)))) (-4206 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-306)))) (-4164 ((|#1| (-1253 $)) NIL) ((|#1|) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-349))) (((-3 (-765) "failed") $ $) NIL (|has| |#1| (-349)))) (-4217 (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2543 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3586 (((-1160 |#1|)) NIL)) (-3894 (($ $) NIL (|has| |#1| (-1190)))) (-4043 (($ $) NIL (|has| |#1| (-1190)))) (-1818 (($) NIL (|has| |#1| (-349)))) (-3892 (($ $) NIL (|has| |#1| (-1190)))) (-4042 (($ $) NIL (|has| |#1| (-1190)))) (-3890 (($ $) NIL (|has| |#1| (-1190)))) (-4041 (($ $) NIL (|has| |#1| (-1190)))) (-3625 (((-1253 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) (-1253 $) (-1253 $)) NIL) (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-4377 (((-1253 |#1|) $) NIL) (($ (-1253 |#1|)) NIL) (((-1160 |#1|) $) NIL) (($ (-1160 |#1|)) NIL) (((-883 (-544)) $) NIL (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| |#1| (-609 (-883 (-377))))) (((-167 (-377)) $) NIL (|has| |#1| (-1013))) (((-167 (-224)) $) NIL (|has| |#1| (-1013))) (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3392 (($ $) 45)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-349))))) (-1447 (($ |#1| |#1|) 37)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) 36) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-3084 (($ $) NIL (|has| |#1| (-349))) (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-2743 (((-1160 |#1|) $) NIL)) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL)) (-3897 (($ $) NIL (|has| |#1| (-1190)))) (-3885 (($ $) NIL (|has| |#1| (-1190)))) (-2212 (((-112) $ $) NIL (-3936 (-12 (|has| |#1| (-306)) (|has| |#1| (-903))) (|has| |#1| (-554))))) (-3895 (($ $) NIL (|has| |#1| (-1190)))) (-3883 (($ $) NIL (|has| |#1| (-1190)))) (-3899 (($ $) NIL (|has| |#1| (-1190)))) (-3887 (($ $) NIL (|has| |#1| (-1190)))) (-2357 ((|#1| $) NIL (|has| |#1| (-1190)))) (-3900 (($ $) NIL (|has| |#1| (-1190)))) (-3888 (($ $) NIL (|has| |#1| (-1190)))) (-3898 (($ $) NIL (|has| |#1| (-1190)))) (-3886 (($ $) NIL (|has| |#1| (-1190)))) (-3896 (($ $) NIL (|has| |#1| (-1190)))) (-3884 (($ $) NIL (|has| |#1| (-1190)))) (-3787 (($ $) NIL (|has| |#1| (-1051)))) (-3040 (($) 28 T CONST)) (-3046 (($) 30 T CONST)) (-2879 (((-1148) $) 23 (|has| |#1| (-815))) (((-1148) $ (-112)) 25 (|has| |#1| (-815))) (((-1259) (-817) $) 26 (|has| |#1| (-815))) (((-1259) (-817) $ (-112)) 27 (|has| |#1| (-815)))) (-3051 (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 39)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-406 (-544))) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1190)))) (($ $ $) NIL (|has| |#1| (-1190))) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-544))) NIL (|has| |#1| (-362))))) -(((-167 |#1|) (-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) (-171)) (T -167)) -NIL -(-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) -((-4365 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14))) -(((-168 |#1| |#2|) (-10 -7 (-15 -4365 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-171) (-171)) (T -168)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-5 *2 (-167 *6)) (-5 *1 (-168 *5 *6))))) -(-10 -7 (-15 -4365 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) -((-4377 (((-883 |#1|) |#3|) 22))) -(((-169 |#1| |#2| |#3|) (-10 -7 (-15 -4377 ((-883 |#1|) |#3|))) (-1091) (-13 (-609 (-883 |#1|)) (-171)) (-165 |#2|)) (T -169)) -((-4377 (*1 *2 *3) (-12 (-4 *5 (-13 (-609 *2) (-171))) (-5 *2 (-883 *4)) (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1091)) (-4 *3 (-165 *5))))) -(-10 -7 (-15 -4377 ((-883 |#1|) |#3|))) -((-2947 (((-112) $ $) NIL)) (-1450 (((-112) $) 9)) (-1449 (((-112) $ (-112)) 11)) (-4021 (($) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3804 (($ $) 13)) (-4353 (((-857) $) 17)) (-4109 (((-112) $) 8)) (-4268 (((-112) $ (-112)) 10)) (-3437 (((-112) $ $) NIL))) -(((-170) (-13 (-1091) (-10 -8 (-15 -4021 ($)) (-15 -4109 ((-112) $)) (-15 -1450 ((-112) $)) (-15 -4268 ((-112) $ (-112))) (-15 -1449 ((-112) $ (-112))) (-15 -3804 ($ $))))) (T -170)) -((-4021 (*1 *1) (-5 *1 (-170))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-4268 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1449 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-3804 (*1 *1 *1) (-5 *1 (-170)))) -(-13 (-1091) (-10 -8 (-15 -4021 ($)) (-15 -4109 ((-112) $)) (-15 -1450 ((-112) $)) (-15 -4268 ((-112) $ (-112))) (-15 -1449 ((-112) $ (-112))) (-15 -3804 ($ $)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) +((-2247 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-2112 (*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-3665 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1418 (*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-3526 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1192)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1053)) (-4 *3 (-1192)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) (-1291 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562))))) (-1726 (*1 *2 *1) (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562)))))) +(-13 (-719 |t#1| (-1164 |t#1|)) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-399 |t#1|) (-879 |t#1|) (-376 |t#1|) (-171) (-10 -8 (-15 -2112 ($)) (-15 -3665 ($ $)) (-15 -1418 ($ |t#1| |t#1|)) (-15 -1670 (|t#1| $)) (-15 -1657 (|t#1| $)) (-15 -2247 (|t#1| $)) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-554)) (-15 -1762 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-306)) (-6 (-306)) |%noBranch|) (IF (|has| |t#1| (-6 -4401)) (-6 -4401) |%noBranch|) (IF (|has| |t#1| (-6 -4398)) (-6 -4398) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1017)) (PROGN (-6 (-610 (-168 (-224)))) (-6 (-610 (-168 (-378))))) |%noBranch|) (IF (|has| |t#1| (-1053)) (-15 -3526 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1192)) (PROGN (-6 (-1192)) (-15 -2828 (|t#1| $)) (IF (|has| |t#1| (-997)) (-6 (-997)) |%noBranch|) (IF (|has| |t#1| (-1053)) (-15 -2362 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-904)) (IF (|has| |t#1| (-306)) (-6 (-904)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-35) |has| |#1| (-1192)) ((-95) |has| |#1| (-1192)) ((-102) . T) ((-111 #0# #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-609 (-857)) . T) ((-171) . T) ((-610 (-168 (-224))) |has| |#1| (-1017)) ((-610 (-168 (-378))) |has| |#1| (-1017)) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562)))) ((-610 #1=(-1164 |#1|)) . T) ((-230 |#1|) . T) ((-232) -4037 (|has| |#1| (-348)) (|has| |#1| (-232))) ((-242) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-283) |has| |#1| (-1192)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-306) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -4037 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| #1#) . T) ((-408 |#1| #1#) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-492) |has| |#1| (-1192)) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-642 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-712 |#1|) . T) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-719 |#1| #1#) . T) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-879 |#1|) . T) ((-904) -12 (|has| |#1| (-306)) (|has| |#1| (-904))) ((-915) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-997) -12 (|has| |#1| (-997)) (|has| |#1| (-1192))) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-348)) ((-1192) |has| |#1| (-1192)) ((-1195) |has| |#1| (-1192)) ((-1207) . T) ((-1211) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) +((-1635 (((-417 |#2|) |#2|) 63))) +(((-166 |#1| |#2|) (-10 -7 (-15 -1635 ((-417 |#2|) |#2|))) (-306) (-1232 (-168 |#1|))) (T -166)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) +(-10 -7 (-15 -1635 ((-417 |#2|) |#2|))) +((-4152 (((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)) 14))) +(((-167 |#1| |#2|) (-10 -7 (-15 -4152 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) (-171) (-171)) (T -167)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6))))) +(-10 -7 (-15 -4152 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 33)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-2796 (($ $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-4370 (((-112) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-1636 (((-683 |#1|) (-1256 $)) NIL) (((-683 |#1|)) NIL)) (-1748 ((|#1| $) NIL)) (-2988 (($ $) NIL (|has| |#1| (-1192)))) (-4097 (($ $) NIL (|has| |#1| (-1192)))) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-348)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-2798 (($ $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-2921 (((-417 $) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-1643 (($ $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1192))))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-2569 (((-112) $ $) NIL (|has| |#1| (-306)))) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-4207 (($ $) NIL (|has| |#1| (-1192)))) (-4074 (($ $) NIL (|has| |#1| (-1192)))) (-3014 (($ $) NIL (|has| |#1| (-1192)))) (-4119 (($ $) NIL (|has| |#1| (-1192)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-4018 (($ (-1256 |#1|) (-1256 $)) NIL) (($ (-1256 |#1|)) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1811 (($ $ $) NIL (|has| |#1| (-306)))) (-1958 (((-683 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1955 (($ (-1164 |#1|)) NIL) (((-3 $ "failed") (-406 (-1164 |#1|))) NIL (|has| |#1| (-362)))) (-3668 (((-3 $ "failed") $) NIL)) (-1657 ((|#1| $) 13)) (-1726 (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-544)))) (-3035 (((-112) $) NIL (|has| |#1| (-544)))) (-1291 (((-406 (-562)) $) NIL (|has| |#1| (-544)))) (-2173 (((-916)) NIL)) (-1448 (($) NIL (|has| |#1| (-367)))) (-1787 (($ $ $) NIL (|has| |#1| (-306)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-306)))) (-3529 (($) NIL (|has| |#1| (-348)))) (-1322 (((-112) $) NIL (|has| |#1| (-348)))) (-3589 (($ $ (-766)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-2717 (((-112) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-2362 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1053)) (|has| |#1| (-1192))))) (-4100 (($) NIL (|has| |#1| (-1192)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| |#1| (-881 (-378))))) (-1900 (((-916) $) NIL (|has| |#1| (-348))) (((-828 (-916)) $) NIL (|has| |#1| (-348)))) (-1957 (((-112) $) 35)) (-1891 (($ $ (-562)) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1192))))) (-2247 ((|#1| $) 46)) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-306)))) (-1565 (((-1164 |#1|) $) NIL (|has| |#1| (-362)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1999 (((-916) $) NIL (|has| |#1| (-367)))) (-4365 (($ $) NIL (|has| |#1| (-1192)))) (-1943 (((-1164 |#1|) $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3729 (($) NIL (|has| |#1| (-348)) CONST)) (-2466 (($ (-916)) NIL (|has| |#1| (-367)))) (-2112 (($) NIL)) (-1670 ((|#1| $) 15)) (-1709 (((-1112) $) NIL)) (-3148 (($) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-306)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| |#1| (-348)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-1635 (((-417 $) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-306)))) (-1762 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 47 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-306)))) (-3430 (($ $) NIL (|has| |#1| (-1192)))) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|)))) (-1577 (((-766) $) NIL (|has| |#1| (-306)))) (-2343 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-306)))) (-2455 ((|#1| (-1256 $)) NIL) ((|#1|) NIL)) (-3362 (((-766) $) NIL (|has| |#1| (-348))) (((-3 (-766) "failed") $ $) NIL (|has| |#1| (-348)))) (-4029 (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-3187 (((-683 |#1|) (-1256 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2096 (((-1164 |#1|)) NIL)) (-3023 (($ $) NIL (|has| |#1| (-1192)))) (-4130 (($ $) NIL (|has| |#1| (-1192)))) (-2283 (($) NIL (|has| |#1| (-348)))) (-3001 (($ $) NIL (|has| |#1| (-1192)))) (-4108 (($ $) NIL (|has| |#1| (-1192)))) (-2978 (($ $) NIL (|has| |#1| (-1192)))) (-4087 (($ $) NIL (|has| |#1| (-1192)))) (-3593 (((-1256 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) (-1256 $) (-1256 $)) NIL) (((-1256 |#1|) $) NIL) (((-683 |#1|) (-1256 $)) NIL)) (-4208 (((-1256 |#1|) $) NIL) (($ (-1256 |#1|)) NIL) (((-1164 |#1|) $) NIL) (($ (-1164 |#1|)) NIL) (((-887 (-562)) $) NIL (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| |#1| (-610 (-887 (-378))))) (((-168 (-378)) $) NIL (|has| |#1| (-1017))) (((-168 (-224)) $) NIL (|has| |#1| (-1017))) (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-3665 (($ $) 45)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-348))))) (-1418 (($ |#1| |#1|) 37)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) 36) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-2805 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-3376 (((-1164 |#1|) $) NIL)) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) NIL)) (-3055 (($ $) NIL (|has| |#1| (-1192)))) (-4165 (($ $) NIL (|has| |#1| (-1192)))) (-2922 (((-112) $ $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-3033 (($ $) NIL (|has| |#1| (-1192)))) (-4138 (($ $) NIL (|has| |#1| (-1192)))) (-3078 (($ $) NIL (|has| |#1| (-1192)))) (-4182 (($ $) NIL (|has| |#1| (-1192)))) (-2828 ((|#1| $) NIL (|has| |#1| (-1192)))) (-1566 (($ $) NIL (|has| |#1| (-1192)))) (-4195 (($ $) NIL (|has| |#1| (-1192)))) (-3066 (($ $) NIL (|has| |#1| (-1192)))) (-4174 (($ $) NIL (|has| |#1| (-1192)))) (-3044 (($ $) NIL (|has| |#1| (-1192)))) (-4151 (($ $) NIL (|has| |#1| (-1192)))) (-3526 (($ $) NIL (|has| |#1| (-1053)))) (-2286 (($) 28 T CONST)) (-2294 (($) 30 T CONST)) (-2833 (((-1150) $) 23 (|has| |#1| (-823))) (((-1150) $ (-112)) 25 (|has| |#1| (-823))) (((-1261) (-817) $) 26 (|has| |#1| (-823))) (((-1261) (-817) $ (-112)) 27 (|has| |#1| (-823)))) (-3114 (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ $) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 39)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-406 (-562))) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1192)))) (($ $ $) NIL (|has| |#1| (-1192))) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-562))) NIL (|has| |#1| (-362))))) +(((-168 |#1|) (-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-171)) (T -168)) +NIL +(-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) +((-4208 (((-887 |#1|) |#3|) 22))) +(((-169 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-887 |#1|) |#3|))) (-1092) (-13 (-610 (-887 |#1|)) (-171)) (-165 |#2|)) (T -169)) +((-4208 (*1 *2 *3) (-12 (-4 *5 (-13 (-610 *2) (-171))) (-5 *2 (-887 *4)) (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1092)) (-4 *3 (-165 *5))))) +(-10 -7 (-15 -4208 ((-887 |#1|) |#3|))) +((-4041 (((-112) $ $) NIL)) (-3073 (((-112) $) 9)) (-1511 (((-112) $ (-112)) 11)) (-1458 (($) 12)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4220 (($ $) 13)) (-4054 (((-857) $) 17)) (-1623 (((-112) $) 8)) (-1450 (((-112) $ (-112)) 10)) (-1731 (((-112) $ $) NIL))) +(((-170) (-13 (-1092) (-10 -8 (-15 -1458 ($)) (-15 -1623 ((-112) $)) (-15 -3073 ((-112) $)) (-15 -1450 ((-112) $ (-112))) (-15 -1511 ((-112) $ (-112))) (-15 -4220 ($ $))))) (T -170)) +((-1458 (*1 *1) (-5 *1 (-170))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1450 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1511 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-4220 (*1 *1 *1) (-5 *1 (-170)))) +(-13 (-1092) (-10 -8 (-15 -1458 ($)) (-15 -1623 ((-112) $)) (-15 -3073 ((-112) $)) (-15 -1450 ((-112) $ (-112))) (-15 -1511 ((-112) $ (-112))) (-15 -4220 ($ $)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-171) (-139)) (T -171)) NIL -(-13 (-1042) (-111 $ $) (-10 -7 (-6 (-4402 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-1844 (($ $) 6))) +(-13 (-1044) (-111 $ $) (-10 -7 (-6 (-4404 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-3948 (($ $) 6))) (((-172) (-139)) (T -172)) -((-1844 (*1 *1 *1) (-4 *1 (-172)))) -(-13 (-10 -8 (-15 -1844 ($ $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 ((|#1| $) 74)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL)) (-1455 (($ $) 19)) (-1459 (($ |#1| (-1143 |#1|)) 47)) (-3866 (((-3 $ "failed") $) 116)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-1456 (((-1143 |#1|) $) 81)) (-1458 (((-1143 |#1|) $) 78)) (-1457 (((-1143 |#1|) $) 79)) (-2545 (((-112) $) NIL)) (-1452 (((-1143 |#1|) $) 87)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-4175 (($ $ (-544)) 90)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1451 (((-1143 |#1|) $) 88)) (-1453 (((-1143 (-406 |#1|)) $) 14)) (-2994 (($ (-406 |#1|)) 17) (($ |#1| (-1143 |#1|) (-1143 |#1|)) 37)) (-3274 (($ $) 92)) (-4353 (((-857) $) 126) (($ (-544)) 50) (($ |#1|) 51) (($ (-406 |#1|)) 35) (($ (-406 (-544))) NIL) (($ $) NIL)) (-3511 (((-765)) 63)) (-2212 (((-112) $ $) NIL)) (-1454 (((-1143 (-406 |#1|)) $) 18)) (-3040 (($) 25 T CONST)) (-3046 (($) 28 T CONST)) (-3437 (((-112) $ $) 34)) (-4356 (($ $ $) 114)) (-4244 (($ $) 105) (($ $ $) 102)) (-4246 (($ $ $) 100)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-406 |#1|) $) 110) (($ $ (-406 |#1|)) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL))) -(((-173 |#1|) (-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -2994 ($ (-406 |#1|))) (-15 -2994 ($ |#1| (-1143 |#1|) (-1143 |#1|))) (-15 -1459 ($ |#1| (-1143 |#1|))) (-15 -1458 ((-1143 |#1|) $)) (-15 -1457 ((-1143 |#1|) $)) (-15 -1456 ((-1143 |#1|) $)) (-15 -3514 (|#1| $)) (-15 -1455 ($ $)) (-15 -1454 ((-1143 (-406 |#1|)) $)) (-15 -1453 ((-1143 (-406 |#1|)) $)) (-15 -1452 ((-1143 |#1|) $)) (-15 -1451 ((-1143 |#1|) $)) (-15 -4175 ($ $ (-544))) (-15 -3274 ($ $)))) (-306)) (T -173)) -((-2994 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) (-2994 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-1459 (*1 *1 *2 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3514 (*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3274 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))) -(-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -2994 ($ (-406 |#1|))) (-15 -2994 ($ |#1| (-1143 |#1|) (-1143 |#1|))) (-15 -1459 ($ |#1| (-1143 |#1|))) (-15 -1458 ((-1143 |#1|) $)) (-15 -1457 ((-1143 |#1|) $)) (-15 -1456 ((-1143 |#1|) $)) (-15 -3514 (|#1| $)) (-15 -1455 ($ $)) (-15 -1454 ((-1143 (-406 |#1|)) $)) (-15 -1453 ((-1143 (-406 |#1|)) $)) (-15 -1452 ((-1143 |#1|) $)) (-15 -1451 ((-1143 |#1|) $)) (-15 -4175 ($ $ (-544))) (-15 -3274 ($ $)))) -((-1460 (($ (-109) $) 13)) (-3622 (((-3 (-109) "failed") (-1166) $) 12)) (-4353 (((-857) $) 16)) (-1461 (((-635 (-109)) $) 8))) -(((-174) (-13 (-608 (-857)) (-10 -8 (-15 -1461 ((-635 (-109)) $)) (-15 -1460 ($ (-109) $)) (-15 -3622 ((-3 (-109) "failed") (-1166) $))))) (T -174)) -((-1461 (*1 *2 *1) (-12 (-5 *2 (-635 (-109))) (-5 *1 (-174)))) (-1460 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))) (-3622 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-174))))) -(-13 (-608 (-857)) (-10 -8 (-15 -1461 ((-635 (-109)) $)) (-15 -1460 ($ (-109) $)) (-15 -3622 ((-3 (-109) "failed") (-1166) $)))) -((-1474 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 40)) (-1465 (((-936 |#1|) (-936 |#1|)) 19)) (-1470 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 36)) (-1463 (((-936 |#1|) (-936 |#1|)) 17)) (-1468 (((-936 |#1|) (-936 |#1|)) 25)) (-1467 (((-936 |#1|) (-936 |#1|)) 24)) (-1466 (((-936 |#1|) (-936 |#1|)) 23)) (-1471 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 37)) (-1469 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 35)) (-1787 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 34)) (-1464 (((-936 |#1|) (-936 |#1|)) 18)) (-1475 (((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|) 43)) (-1462 (((-936 |#1|) (-936 |#1|)) 8)) (-1473 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 39)) (-1472 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 38))) -(((-175 |#1|) (-10 -7 (-15 -1462 ((-936 |#1|) (-936 |#1|))) (-15 -1463 ((-936 |#1|) (-936 |#1|))) (-15 -1464 ((-936 |#1|) (-936 |#1|))) (-15 -1465 ((-936 |#1|) (-936 |#1|))) (-15 -1466 ((-936 |#1|) (-936 |#1|))) (-15 -1467 ((-936 |#1|) (-936 |#1|))) (-15 -1468 ((-936 |#1|) (-936 |#1|))) (-15 -1787 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1469 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1470 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1471 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1472 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1473 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1474 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1475 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|))) (-13 (-362) (-1190) (-995))) (T -175)) -((-1475 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1472 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1471 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1470 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1469 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1787 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1190) (-995))))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1466 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1464 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1463 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) (-5 *1 (-175 *3))))) -(-10 -7 (-15 -1462 ((-936 |#1|) (-936 |#1|))) (-15 -1463 ((-936 |#1|) (-936 |#1|))) (-15 -1464 ((-936 |#1|) (-936 |#1|))) (-15 -1465 ((-936 |#1|) (-936 |#1|))) (-15 -1466 ((-936 |#1|) (-936 |#1|))) (-15 -1467 ((-936 |#1|) (-936 |#1|))) (-15 -1468 ((-936 |#1|) (-936 |#1|))) (-15 -1787 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1469 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1470 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1471 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1472 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1473 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1474 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -1475 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|))) -((-2743 ((|#2| |#3|) 27))) -(((-176 |#1| |#2| |#3|) (-10 -7 (-15 -2743 (|#2| |#3|))) (-171) (-1229 |#1|) (-718 |#1| |#2|)) (T -176)) -((-2743 (*1 *2 *3) (-12 (-4 *4 (-171)) (-4 *2 (-1229 *4)) (-5 *1 (-176 *4 *2 *3)) (-4 *3 (-718 *4 *2))))) -(-10 -7 (-15 -2743 (|#2| |#3|))) -((-3178 (((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)) 47 (|has| (-939 |#2|) (-879 |#1|))))) -(((-177 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-939 |#2|) (-879 |#1|)) (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))) |%noBranch|)) (-1091) (-13 (-879 |#1|) (-171)) (-165 |#2|)) (T -177)) -((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *3)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *3 (-165 *6)) (-4 (-939 *6) (-879 *5)) (-4 *6 (-13 (-879 *5) (-171))) (-5 *1 (-177 *5 *6 *3))))) -(-10 -7 (IF (|has| (-939 |#2|) (-879 |#1|)) (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))) |%noBranch|)) -((-1477 (((-635 |#1|) (-635 |#1|) |#1|) 38)) (-1476 (((-635 |#1|) |#1| (-635 |#1|)) 19)) (-2232 (((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|)) 33) ((|#1| (-635 |#1|) (-635 |#1|)) 31))) -(((-178 |#1|) (-10 -7 (-15 -1476 ((-635 |#1|) |#1| (-635 |#1|))) (-15 -2232 (|#1| (-635 |#1|) (-635 |#1|))) (-15 -2232 ((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|))) (-15 -1477 ((-635 |#1|) (-635 |#1|) |#1|))) (-306)) (T -178)) -((-1477 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))) (-2232 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-306)) (-5 *1 (-178 *4)))) (-2232 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) (-1476 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -1476 ((-635 |#1|) |#1| (-635 |#1|))) (-15 -2232 (|#1| (-635 |#1|) (-635 |#1|))) (-15 -2232 ((-635 |#1|) (-635 (-635 |#1|)) (-635 |#1|))) (-15 -1477 ((-635 |#1|) (-635 |#1|) |#1|))) -((-2947 (((-112) $ $) NIL)) (-3719 (((-1205) $) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 10)) (-4353 (((-857) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-179) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $))))) (T -179)) -((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-179)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-179))))) -(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $)))) -((-1486 (((-2 (|:| |start| |#2|) (|:| -2812 (-404 |#2|))) |#2|) 61)) (-1485 ((|#1| |#1|) 54)) (-1484 (((-167 |#1|) |#2|) 84)) (-1483 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-1482 ((|#2| |#2|) 83)) (-1481 (((-404 |#2|) |#2| |#1|) 114) (((-404 |#2|) |#2| |#1| (-112)) 81)) (-3517 ((|#1| |#2|) 113)) (-1480 ((|#2| |#2|) 120)) (-4139 (((-404 |#2|) |#2|) 135) (((-404 |#2|) |#2| |#1|) 32) (((-404 |#2|) |#2| |#1| (-112)) 134)) (-1479 (((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2|) 133) (((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2| (-112)) 76)) (-1478 (((-635 (-167 |#1|)) |#2| |#1|) 40) (((-635 (-167 |#1|)) |#2|) 41))) -(((-180 |#1| |#2|) (-10 -7 (-15 -1478 ((-635 (-167 |#1|)) |#2|)) (-15 -1478 ((-635 (-167 |#1|)) |#2| |#1|)) (-15 -1479 ((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2| (-112))) (-15 -1479 ((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2|)) (-15 -4139 ((-404 |#2|) |#2| |#1| (-112))) (-15 -4139 ((-404 |#2|) |#2| |#1|)) (-15 -4139 ((-404 |#2|) |#2|)) (-15 -1480 (|#2| |#2|)) (-15 -3517 (|#1| |#2|)) (-15 -1481 ((-404 |#2|) |#2| |#1| (-112))) (-15 -1481 ((-404 |#2|) |#2| |#1|)) (-15 -1482 (|#2| |#2|)) (-15 -1483 (|#1| |#2| |#1|)) (-15 -1483 (|#1| |#2|)) (-15 -1484 ((-167 |#1|) |#2|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 ((-2 (|:| |start| |#2|) (|:| -2812 (-404 |#2|))) |#2|))) (-13 (-362) (-842)) (-1229 (-167 |#1|))) (T -180)) -((-1486 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-2 (|:| |start| *3) (|:| -2812 (-404 *3)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1485 (*1 *2 *2) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-167 *2))))) (-1484 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-842))) (-4 *3 (-1229 *2)))) (-1483 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-167 *2))))) (-1483 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-167 *2))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1229 (-167 *3))))) (-1481 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1481 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-3517 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1229 (-167 *2))))) (-1480 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1229 (-167 *3))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-4139 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1479 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-2 (|:| -2812 (-635 *3)) (|:| -1684 *4)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1479 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-842))) (-5 *2 (-635 (-2 (|:| -2812 (-635 *3)) (|:| -1684 *5)))) (-5 *1 (-180 *5 *3)) (-4 *3 (-1229 (-167 *5))))) (-1478 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-167 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) (-1478 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-167 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4)))))) -(-10 -7 (-15 -1478 ((-635 (-167 |#1|)) |#2|)) (-15 -1478 ((-635 (-167 |#1|)) |#2| |#1|)) (-15 -1479 ((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2| (-112))) (-15 -1479 ((-635 (-2 (|:| -2812 (-635 |#2|)) (|:| -1684 |#1|))) |#2| |#2|)) (-15 -4139 ((-404 |#2|) |#2| |#1| (-112))) (-15 -4139 ((-404 |#2|) |#2| |#1|)) (-15 -4139 ((-404 |#2|) |#2|)) (-15 -1480 (|#2| |#2|)) (-15 -3517 (|#1| |#2|)) (-15 -1481 ((-404 |#2|) |#2| |#1| (-112))) (-15 -1481 ((-404 |#2|) |#2| |#1|)) (-15 -1482 (|#2| |#2|)) (-15 -1483 (|#1| |#2| |#1|)) (-15 -1483 (|#1| |#2|)) (-15 -1484 ((-167 |#1|) |#2|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 ((-2 (|:| |start| |#2|) (|:| -2812 (-404 |#2|))) |#2|))) -((-1487 (((-3 |#2| "failed") |#2|) 14)) (-1488 (((-765) |#2|) 16)) (-1489 ((|#2| |#2| |#2|) 18))) -(((-181 |#1| |#2|) (-10 -7 (-15 -1487 ((-3 |#2| "failed") |#2|)) (-15 -1488 ((-765) |#2|)) (-15 -1489 (|#2| |#2| |#2|))) (-1204) (-667 |#1|)) (T -181)) -((-1489 (*1 *2 *2 *2) (-12 (-4 *3 (-1204)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3)))) (-1488 (*1 *2 *3) (-12 (-4 *4 (-1204)) (-5 *2 (-765)) (-5 *1 (-181 *4 *3)) (-4 *3 (-667 *4)))) (-1487 (*1 *2 *2) (|partial| -12 (-4 *3 (-1204)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3))))) -(-10 -7 (-15 -1487 ((-3 |#2| "failed") |#2|)) (-15 -1488 ((-765) |#2|)) (-15 -1489 (|#2| |#2| |#2|))) -((-2947 (((-112) $ $) NIL)) (-3949 (((-504) $) 8)) (-3643 (((-1148) $) NIL)) (-1493 (((-186) $) 10)) (-3644 (((-1110) $) NIL)) (-1490 (((-684 $) (-1166)) 18)) (-1492 (((-635 (-112)) $) NIL)) (-4353 (((-857) $) NIL)) (-2900 (((-55) $) 12)) (-3437 (((-112) $ $) NIL))) -(((-182) (-13 (-185) (-10 -8 (-15 -1490 ((-684 $) (-1166)))))) (T -182)) -((-1490 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-684 (-182))) (-5 *1 (-182))))) -(-13 (-185) (-10 -8 (-15 -1490 ((-684 $) (-1166))))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1566 (((-182) $) 7)) (-4353 (((-857) $) 14)) (-1491 (((-635 (-1171)) $) 10)) (-3437 (((-112) $ $) 12))) -(((-183) (-13 (-1091) (-10 -8 (-15 -1566 ((-182) $)) (-15 -1491 ((-635 (-1171)) $))))) (T -183)) -((-1566 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-183))))) -(-13 (-1091) (-10 -8 (-15 -1566 ((-182) $)) (-15 -1491 ((-635 (-1171)) $)))) -((-1493 (((-186) $) 8)) (-1492 (((-635 (-112)) $) 13)) (-2900 (((-55) $) 10))) -(((-184 |#1|) (-10 -8 (-15 -1492 ((-635 (-112)) |#1|)) (-15 -1493 ((-186) |#1|)) (-15 -2900 ((-55) |#1|))) (-185)) (T -184)) -NIL -(-10 -8 (-15 -1492 ((-635 (-112)) |#1|)) (-15 -1493 ((-186) |#1|)) (-15 -2900 ((-55) |#1|))) -((-2947 (((-112) $ $) 7)) (-3949 (((-504) $) 14)) (-3643 (((-1148) $) 9)) (-1493 (((-186) $) 18)) (-3644 (((-1110) $) 10)) (-1492 (((-635 (-112)) $) 17)) (-4353 (((-857) $) 11)) (-2900 (((-55) $) 13)) (-3437 (((-112) $ $) 6))) -(((-185) (-139)) (T -185)) -((-1493 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-635 (-112)))))) -(-13 (-830 (-504)) (-10 -8 (-15 -1493 ((-186) $)) (-15 -1492 ((-635 (-112)) $)))) -(((-102) . T) ((-608 (-857)) . T) ((-830 (-504)) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-8 (($) 7 T CONST)) (-4353 (((-857) $) 12)) (-9 (($) 6 T CONST)) (-3437 (((-112) $ $) 10))) -(((-186) (-13 (-1091) (-10 -8 (-15 -9 ($) -4359) (-15 -8 ($) -4359) (-15 -7 ($) -4359)))) (T -186)) -((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186)))) -(-13 (-1091) (-10 -8 (-15 -9 ($) -4359) (-15 -8 ($) -4359) (-15 -7 ($) -4359))) -((-4049 ((|#2| |#2|) 28)) (-4052 (((-112) |#2|) 19)) (-4050 (((-313 |#1|) |#2|) 12)) (-4051 (((-313 |#1|) |#2|) 14)) (-4047 ((|#2| |#2| (-1166)) 68) ((|#2| |#2|) 69)) (-4053 (((-167 (-313 |#1|)) |#2|) 10)) (-4048 ((|#2| |#2| (-1166)) 65) ((|#2| |#2|) 59))) -(((-187 |#1| |#2|) (-10 -7 (-15 -4047 (|#2| |#2|)) (-15 -4047 (|#2| |#2| (-1166))) (-15 -4048 (|#2| |#2|)) (-15 -4048 (|#2| |#2| (-1166))) (-15 -4050 ((-313 |#1|) |#2|)) (-15 -4051 ((-313 |#1|) |#2|)) (-15 -4052 ((-112) |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4053 ((-167 (-313 |#1|)) |#2|))) (-13 (-554) (-844) (-1031 (-544))) (-13 (-27) (-1190) (-420 (-167 |#1|)))) (T -187)) -((-4053 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-167 (-313 *4))) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3)))))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-112)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-313 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4050 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-313 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4048 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4048 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3)))))) (-4047 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *4)))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3))))))) -(-10 -7 (-15 -4047 (|#2| |#2|)) (-15 -4047 (|#2| |#2| (-1166))) (-15 -4048 (|#2| |#2|)) (-15 -4048 (|#2| |#2| (-1166))) (-15 -4050 ((-313 |#1|) |#2|)) (-15 -4051 ((-313 |#1|) |#2|)) (-15 -4052 ((-112) |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4053 ((-167 (-313 |#1|)) |#2|))) -((-1497 (((-1253 (-682 (-939 |#1|))) (-1253 (-682 |#1|))) 24)) (-4353 (((-1253 (-682 (-406 (-939 |#1|)))) (-1253 (-682 |#1|))) 33))) -(((-188 |#1|) (-10 -7 (-15 -1497 ((-1253 (-682 (-939 |#1|))) (-1253 (-682 |#1|)))) (-15 -4353 ((-1253 (-682 (-406 (-939 |#1|)))) (-1253 (-682 |#1|))))) (-171)) (T -188)) -((-4353 (*1 *2 *3) (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171)) (-5 *2 (-1253 (-682 (-406 (-939 *4))))) (-5 *1 (-188 *4)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171)) (-5 *2 (-1253 (-682 (-939 *4)))) (-5 *1 (-188 *4))))) -(-10 -7 (-15 -1497 ((-1253 (-682 (-939 |#1|))) (-1253 (-682 |#1|)))) (-15 -4353 ((-1253 (-682 (-406 (-939 |#1|)))) (-1253 (-682 |#1|))))) -((-1505 (((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544)))) 66)) (-1507 (((-1168 (-406 (-544))) (-635 (-544)) (-635 (-544))) 75)) (-1498 (((-1168 (-406 (-544))) (-544)) 40)) (-4261 (((-1168 (-406 (-544))) (-544)) 52)) (-4174 (((-406 (-544)) (-1168 (-406 (-544)))) 62)) (-1499 (((-1168 (-406 (-544))) (-544)) 32)) (-1502 (((-1168 (-406 (-544))) (-544)) 48)) (-1501 (((-1168 (-406 (-544))) (-544)) 46)) (-1504 (((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544)))) 60)) (-3274 (((-1168 (-406 (-544))) (-544)) 25)) (-1503 (((-406 (-544)) (-1168 (-406 (-544))) (-1168 (-406 (-544)))) 64)) (-1500 (((-1168 (-406 (-544))) (-544)) 30)) (-1506 (((-1168 (-406 (-544))) (-635 (-544))) 72))) -(((-189) (-10 -7 (-15 -3274 ((-1168 (-406 (-544))) (-544))) (-15 -1498 ((-1168 (-406 (-544))) (-544))) (-15 -1499 ((-1168 (-406 (-544))) (-544))) (-15 -1500 ((-1168 (-406 (-544))) (-544))) (-15 -1501 ((-1168 (-406 (-544))) (-544))) (-15 -1502 ((-1168 (-406 (-544))) (-544))) (-15 -4261 ((-1168 (-406 (-544))) (-544))) (-15 -1503 ((-406 (-544)) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -1504 ((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -4174 ((-406 (-544)) (-1168 (-406 (-544))))) (-15 -1505 ((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -1506 ((-1168 (-406 (-544))) (-635 (-544)))) (-15 -1507 ((-1168 (-406 (-544))) (-635 (-544)) (-635 (-544)))))) (T -189)) -((-1507 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))) (-1505 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-1168 (-406 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-189)))) (-1504 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)))) (-1503 (*1 *2 *3 *3) (-12 (-5 *3 (-1168 (-406 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-189)))) (-4261 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1502 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1501 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1499 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-1498 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) (-3274 (*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544))))) -(-10 -7 (-15 -3274 ((-1168 (-406 (-544))) (-544))) (-15 -1498 ((-1168 (-406 (-544))) (-544))) (-15 -1499 ((-1168 (-406 (-544))) (-544))) (-15 -1500 ((-1168 (-406 (-544))) (-544))) (-15 -1501 ((-1168 (-406 (-544))) (-544))) (-15 -1502 ((-1168 (-406 (-544))) (-544))) (-15 -4261 ((-1168 (-406 (-544))) (-544))) (-15 -1503 ((-406 (-544)) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -1504 ((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -4174 ((-406 (-544)) (-1168 (-406 (-544))))) (-15 -1505 ((-1168 (-406 (-544))) (-1168 (-406 (-544))) (-1168 (-406 (-544))))) (-15 -1506 ((-1168 (-406 (-544))) (-635 (-544)))) (-15 -1507 ((-1168 (-406 (-544))) (-635 (-544)) (-635 (-544))))) -((-1509 (((-404 (-1160 (-544))) (-544)) 28)) (-1508 (((-635 (-1160 (-544))) (-544)) 23)) (-3183 (((-1160 (-544)) (-544)) 21))) -(((-190) (-10 -7 (-15 -1508 ((-635 (-1160 (-544))) (-544))) (-15 -3183 ((-1160 (-544)) (-544))) (-15 -1509 ((-404 (-1160 (-544))) (-544))))) (T -190)) -((-1509 (*1 *2 *3) (-12 (-5 *2 (-404 (-1160 (-544)))) (-5 *1 (-190)) (-5 *3 (-544)))) (-3183 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-190)) (-5 *3 (-544)))) (-1508 (*1 *2 *3) (-12 (-5 *2 (-635 (-1160 (-544)))) (-5 *1 (-190)) (-5 *3 (-544))))) -(-10 -7 (-15 -1508 ((-635 (-1160 (-544))) (-544))) (-15 -3183 ((-1160 (-544)) (-544))) (-15 -1509 ((-404 (-1160 (-544))) (-544)))) -((-1696 (((-1143 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 103)) (-1717 (((-635 (-1148)) (-1143 (-224))) NIL)) (-1510 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 79)) (-1694 (((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224)))) NIL)) (-1716 (((-635 (-1148)) (-635 (-224))) NIL)) (-1718 (((-224) (-1079 (-836 (-224)))) 24)) (-1719 (((-224) (-1079 (-836 (-224)))) 25)) (-1512 (((-377) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 96)) (-1511 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-1714 (((-1148) (-224)) NIL)) (-2950 (((-1148) (-635 (-1148))) 20)) (-1513 (((-1028) (-1166) (-1166) (-1028)) 13))) -(((-191) (-10 -7 (-15 -1510 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1511 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -1512 ((-377) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1694 ((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))) (-15 -2950 ((-1148) (-635 (-1148)))) (-15 -1513 ((-1028) (-1166) (-1166) (-1028))))) (T -191)) -((-1513 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-191)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-191)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-191)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-191)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-191)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-191)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-191)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-191)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-191)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-191))))) -(-10 -7 (-15 -1510 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1511 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -1512 ((-377) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1694 ((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))) (-15 -2950 ((-1148) (-635 (-1148)))) (-15 -1513 ((-1028) (-1166) (-1166) (-1028)))) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 55) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-192) (-781)) (T -192)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 60) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-193) (-781)) (T -193)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 69) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-194) (-781)) (T -194)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 56) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-195) (-781)) (T -195)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 67) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 38) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-196) (-781)) (T -196)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 73) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-197) (-781)) (T -197)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 80) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 44) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-198) (-781)) (T -198)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 70) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-199) (-781)) (T -199)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 65)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-200) (-781)) (T -200)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 63)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-201) (-781)) (T -201)) -NIL -(-781) -((-2947 (((-112) $ $) NIL)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 90) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 78) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-202) (-781)) (T -202)) -NIL -(-781) -((-1514 (((-3 (-2 (|:| -2881 (-113)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 84)) (-1516 (((-544) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-1515 (((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 73))) -(((-203) (-10 -7 (-15 -1514 ((-3 (-2 (|:| -2881 (-113)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1515 ((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1516 ((-544) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -203)) -((-1516 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-544)) (-5 *1 (-203)))) (-1515 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-203)))) (-1514 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2881 (-113)) (|:| |w| (-224)))) (-5 *1 (-203))))) -(-10 -7 (-15 -1514 ((-3 (-2 (|:| -2881 (-113)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1515 ((-3 (-635 (-224)) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1516 ((-544) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) -((-1521 (((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-1520 (((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 128)) (-1519 (((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-682 (-313 (-224)))) 87)) (-1518 (((-377) (-682 (-313 (-224)))) 111)) (-2495 (((-682 (-313 (-224))) (-1253 (-313 (-224))) (-635 (-1166))) 108)) (-1524 (((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 30)) (-1522 (((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 43)) (-4174 (((-682 (-313 (-224))) (-682 (-313 (-224))) (-635 (-1166)) (-1253 (-313 (-224)))) 100)) (-1517 (((-377) (-377) (-635 (-377))) 105) (((-377) (-377) (-377)) 103)) (-1523 (((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36))) -(((-204) (-10 -7 (-15 -1517 ((-377) (-377) (-377))) (-15 -1517 ((-377) (-377) (-635 (-377)))) (-15 -1518 ((-377) (-682 (-313 (-224))))) (-15 -2495 ((-682 (-313 (-224))) (-1253 (-313 (-224))) (-635 (-1166)))) (-15 -4174 ((-682 (-313 (-224))) (-682 (-313 (-224))) (-635 (-1166)) (-1253 (-313 (-224))))) (-15 -1519 ((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-682 (-313 (-224))))) (-15 -1520 ((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1521 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1522 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1523 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1524 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -204)) -((-1524 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1521 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377)))) (-5 *1 (-204)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-682 (-313 (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377)))) (-5 *1 (-204)))) (-4174 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-682 (-313 (-224)))) (-5 *3 (-635 (-1166))) (-5 *4 (-1253 (-313 (-224)))) (-5 *1 (-204)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *4 (-635 (-1166))) (-5 *2 (-682 (-313 (-224)))) (-5 *1 (-204)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-682 (-313 (-224)))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1517 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-377))) (-5 *2 (-377)) (-5 *1 (-204)))) (-1517 (*1 *2 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-204))))) -(-10 -7 (-15 -1517 ((-377) (-377) (-377))) (-15 -1517 ((-377) (-377) (-635 (-377)))) (-15 -1518 ((-377) (-682 (-313 (-224))))) (-15 -2495 ((-682 (-313 (-224))) (-1253 (-313 (-224))) (-635 (-1166)))) (-15 -4174 ((-682 (-313 (-224))) (-682 (-313 (-224))) (-635 (-1166)) (-1253 (-313 (-224))))) (-15 -1519 ((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-682 (-313 (-224))))) (-15 -1520 ((-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1521 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1522 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1523 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1524 ((-377) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) -((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 64)) (-3437 (((-112) $ $) NIL))) -(((-205) (-794)) (T -205)) -NIL -(-794) -((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 62)) (-3437 (((-112) $ $) NIL))) -(((-206) (-794)) (T -206)) -NIL -(-794) -((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 66)) (-3437 (((-112) $ $) NIL))) -(((-207) (-794)) (T -207)) -NIL -(-794) -((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 46)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 75)) (-3437 (((-112) $ $) NIL))) -(((-208) (-794)) (T -208)) -NIL -(-794) -((-4341 (((-635 (-1166)) (-1166) (-765)) 23)) (-1525 (((-313 (-224)) (-313 (-224))) 31)) (-1527 (((-112) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 73)) (-1526 (((-112) (-224) (-224) (-635 (-313 (-224)))) 44))) -(((-209) (-10 -7 (-15 -4341 ((-635 (-1166)) (-1166) (-765))) (-15 -1525 ((-313 (-224)) (-313 (-224)))) (-15 -1526 ((-112) (-224) (-224) (-635 (-313 (-224))))) (-15 -1527 ((-112) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))))) (T -209)) -((-1527 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-112)) (-5 *1 (-209)))) (-1526 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-635 (-313 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-209)))) (-1525 (*1 *2 *2) (-12 (-5 *2 (-313 (-224))) (-5 *1 (-209)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-635 (-1166))) (-5 *1 (-209)) (-5 *3 (-1166))))) -(-10 -7 (-15 -4341 ((-635 (-1166)) (-1166) (-765))) (-15 -1525 ((-313 (-224)) (-313 (-224)))) (-15 -1526 ((-112) (-224) (-224) (-635 (-313 (-224))))) (-15 -1527 ((-112) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))))) -((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 26)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3047 (((-1028) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 57)) (-3437 (((-112) $ $) NIL))) -(((-210) (-888)) (T -210)) -NIL -(-888) -((-2947 (((-112) $ $) NIL)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 21)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3047 (((-1028) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) NIL)) (-3437 (((-112) $ $) NIL))) -(((-211) (-888)) (T -211)) -NIL -(-888) -((-2947 (((-112) $ $) NIL)) (-1528 ((|#2| $ (-765) |#2|) 11)) (-3498 ((|#2| $ (-765)) 10)) (-4021 (($) 8)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 18)) (-3437 (((-112) $ $) 13))) -(((-212 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -4021 ($)) (-15 -3498 (|#2| $ (-765))) (-15 -1528 (|#2| $ (-765) |#2|)))) (-912) (-1091)) (T -212)) -((-4021 (*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1091)))) (-3498 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *2 (-1091)) (-5 *1 (-212 *4 *2)) (-14 *4 (-912)))) (-1528 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-212 *4 *2)) (-14 *4 (-912)) (-4 *2 (-1091))))) -(-13 (-1091) (-10 -8 (-15 -4021 ($)) (-15 -3498 (|#2| $ (-765))) (-15 -1528 (|#2| $ (-765) |#2|)))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2115 (((-1259) $) 36) (((-1259) $ (-912) (-912)) 38)) (-4206 (($ $ (-982)) 19) (((-244 (-1148)) $ (-1166)) 15)) (-4024 (((-1259) $) 34)) (-4353 (((-857) $) 31) (($ (-635 |#1|)) 8)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $ $) 27)) (-4246 (($ $ $) 22))) -(((-213 |#1|) (-13 (-1091) (-611 (-635 |#1|)) (-10 -8 (-15 -4206 ($ $ (-982))) (-15 -4206 ((-244 (-1148)) $ (-1166))) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -2115 ((-1259) $ (-912) (-912))))) (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))) (T -213)) -((-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-982)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-244 (-1148))) (-5 *1 (-213 *4)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ *3)) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))))) (-4246 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))))) (-4244 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $))))))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $)) (-15 -2115 (*2 $))))))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $)) (-15 -2115 (*2 $))))))) (-2115 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-213 *4)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $)) (-15 -2115 (*2 $)))))))) -(-13 (-1091) (-611 (-635 |#1|)) (-10 -8 (-15 -4206 ($ $ (-982))) (-15 -4206 ((-244 (-1148)) $ (-1166))) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -2115 ((-1259) $ (-912) (-912))))) -((-1529 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1529 (|#2| |#4| (-1 |#2| |#2|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -214)) -((-1529 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1229 (-406 *2))) (-4 *2 (-1229 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6))))) -(-10 -7 (-15 -1529 (|#2| |#4| (-1 |#2| |#2|)))) -((-1533 ((|#2| |#2| (-765) |#2|) 42)) (-1532 ((|#2| |#2| (-765) |#2|) 38)) (-2501 (((-635 |#2|) (-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|)))) 56)) (-1531 (((-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))) |#2|) 52)) (-1534 (((-112) |#2|) 49)) (-4140 (((-404 |#2|) |#2|) 76)) (-4139 (((-404 |#2|) |#2|) 75)) (-2502 ((|#2| |#2| (-765) |#2|) 36)) (-1530 (((-2 (|:| |cont| |#1|) (|:| -2812 (-635 (-2 (|:| |irr| |#2|) (|:| -2530 (-544)))))) |#2| (-112)) 68))) -(((-215 |#1| |#2|) (-10 -7 (-15 -4139 ((-404 |#2|) |#2|)) (-15 -4140 ((-404 |#2|) |#2|)) (-15 -1530 ((-2 (|:| |cont| |#1|) (|:| -2812 (-635 (-2 (|:| |irr| |#2|) (|:| -2530 (-544)))))) |#2| (-112))) (-15 -1531 ((-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))) |#2|)) (-15 -2501 ((-635 |#2|) (-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))))) (-15 -2502 (|#2| |#2| (-765) |#2|)) (-15 -1532 (|#2| |#2| (-765) |#2|)) (-15 -1533 (|#2| |#2| (-765) |#2|)) (-15 -1534 ((-112) |#2|))) (-349) (-1229 |#1|)) (T -215)) -((-1534 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))) (-1533 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) (-1532 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) (-2502 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |deg| (-765)) (|:| -2954 *5)))) (-4 *5 (-1229 *4)) (-4 *4 (-349)) (-5 *2 (-635 *5)) (-5 *1 (-215 *4 *5)))) (-1531 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-635 (-2 (|:| |deg| (-765)) (|:| -2954 *3)))) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) (-5 *1 (-215 *5 *3)) (-4 *3 (-1229 *5)))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -4139 ((-404 |#2|) |#2|)) (-15 -4140 ((-404 |#2|) |#2|)) (-15 -1530 ((-2 (|:| |cont| |#1|) (|:| -2812 (-635 (-2 (|:| |irr| |#2|) (|:| -2530 (-544)))))) |#2| (-112))) (-15 -1531 ((-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))) |#2|)) (-15 -2501 ((-635 |#2|) (-635 (-2 (|:| |deg| (-765)) (|:| -2954 |#2|))))) (-15 -2502 (|#2| |#2| (-765) |#2|)) (-15 -1532 (|#2| |#2| (-765) |#2|)) (-15 -1533 (|#2| |#2| (-765) |#2|)) (-15 -1534 ((-112) |#2|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-544) $) NIL (|has| (-544) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-544) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-544) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-544) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-544) (-1031 (-544))))) (-3557 (((-544) $) NIL) (((-1166) $) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-544) (-1031 (-544)))) (((-544) $) NIL (|has| (-544) (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-544) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-544) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-544) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-544) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-544) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-544) (-1141)))) (-3588 (((-112) $) NIL (|has| (-544) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-544) (-844)))) (-4365 (($ (-1 (-544) (-544)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-544) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-544) (-306))) (((-406 (-544)) $) NIL)) (-3515 (((-544) $) NIL (|has| (-544) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-544)) (-635 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-544) (-544)) NIL (|has| (-544) (-308 (-544)))) (($ $ (-292 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-292 (-544)))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-1166)) (-635 (-544))) NIL (|has| (-544) (-512 (-1166) (-544)))) (($ $ (-1166) (-544)) NIL (|has| (-544) (-512 (-1166) (-544))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-544)) NIL (|has| (-544) (-285 (-544) (-544))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-544) $) NIL)) (-1535 (($ (-406 (-544))) 9)) (-4377 (((-883 (-544)) $) NIL (|has| (-544) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-544) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-544) (-609 (-533)))) (((-377) $) NIL (|has| (-544) (-1013))) (((-224) $) NIL (|has| (-544) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-544) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 8) (($ (-544)) NIL) (($ (-1166)) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL) (((-997 10) $) 10)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-544) (-903))) (|has| (-544) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-544) $) NIL (|has| (-544) (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-544) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-544) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-544) (-844)))) (-4356 (($ $ $) NIL) (($ (-544) (-544)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-544) $) NIL) (($ $ (-544)) NIL))) -(((-216) (-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 10)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -1535 ($ (-406 (-544))))))) (T -216)) -((-3513 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-216)))) (-1535 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-216))))) -(-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 10)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -1535 ($ (-406 (-544)))))) -((-2947 (((-112) $ $) NIL)) (-3720 (((-1105) $) 13)) (-3643 (((-1148) $) NIL)) (-3579 (((-481) $) 10)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 25) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 15)) (-3437 (((-112) $ $) NIL))) -(((-217) (-13 (-1073) (-10 -8 (-15 -3579 ((-481) $)) (-15 -3720 ((-1105) $)) (-15 -3634 ((-1125) $))))) (T -217)) -((-3579 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-217)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-217))))) -(-13 (-1073) (-10 -8 (-15 -3579 ((-481) $)) (-15 -3720 ((-1105) $)) (-15 -3634 ((-1125) $)))) -((-4219 (((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1082 (-836 |#2|)) (-1148)) 28) (((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1082 (-836 |#2|))) 24)) (-1536 (((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1166) (-836 |#2|) (-836 |#2|) (-112)) 17))) -(((-218 |#1| |#2|) (-10 -7 (-15 -4219 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1082 (-836 |#2|)))) (-15 -4219 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1082 (-836 |#2|)) (-1148))) (-15 -1536 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1166) (-836 |#2|) (-836 |#2|) (-112)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-953) (-29 |#1|))) (T -218)) -((-1536 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1166)) (-5 *6 (-112)) (-4 *7 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-4 *3 (-13 (-1190) (-953) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-218 *7 *3)) (-5 *5 (-836 *3)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-836 *3))) (-5 *5 (-1148)) (-4 *3 (-13 (-1190) (-953) (-29 *6))) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-218 *6 *3)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-836 *3))) (-4 *3 (-13 (-1190) (-953) (-29 *5))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-218 *5 *3))))) -(-10 -7 (-15 -4219 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1082 (-836 |#2|)))) (-15 -4219 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1082 (-836 |#2|)) (-1148))) (-15 -1536 ((-3 (|:| |f1| (-836 |#2|)) (|:| |f2| (-635 (-836 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1166) (-836 |#2|) (-836 |#2|) (-112)))) -((-4219 (((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))) (-1148)) 46) (((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|))))) 43) (((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))) (-1148)) 47) (((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|)))) 20))) -(((-219 |#1|) (-10 -7 (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))) (-1148))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))) (-1148)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (T -219)) -((-4219 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-836 (-406 (-939 *6))))) (-5 *5 (-1148)) (-5 *3 (-406 (-939 *6))) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 (-313 *6))) (|:| |f2| (-635 (-836 (-313 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-219 *6)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-836 (-406 (-939 *5))))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 (-313 *5))) (|:| |f2| (-635 (-836 (-313 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *5)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-406 (-939 *6))) (-5 *4 (-1082 (-836 (-313 *6)))) (-5 *5 (-1148)) (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 (-313 *6))) (|:| |f2| (-635 (-836 (-313 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *6)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1082 (-836 (-313 *5)))) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |f1| (-836 (-313 *5))) (|:| |f2| (-635 (-836 (-313 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *5))))) -(-10 -7 (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-313 |#1|))) (-1148))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))))) (-15 -4219 ((-3 (|:| |f1| (-836 (-313 |#1|))) (|:| |f2| (-635 (-836 (-313 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-406 (-939 |#1|)) (-1082 (-836 (-406 (-939 |#1|)))) (-1148)))) -((-4249 (((-2 (|:| -2154 (-1160 |#1|)) (|:| |deg| (-912))) (-1160 |#1|)) 21)) (-4370 (((-635 (-313 |#2|)) (-313 |#2|) (-912)) 42))) -(((-220 |#1| |#2|) (-10 -7 (-15 -4249 ((-2 (|:| -2154 (-1160 |#1|)) (|:| |deg| (-912))) (-1160 |#1|))) (-15 -4370 ((-635 (-313 |#2|)) (-313 |#2|) (-912)))) (-1042) (-13 (-554) (-844))) (T -220)) -((-4370 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-4 *6 (-13 (-554) (-844))) (-5 *2 (-635 (-313 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-313 *6)) (-4 *5 (-1042)))) (-4249 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-2 (|:| -2154 (-1160 *4)) (|:| |deg| (-912)))) (-5 *1 (-220 *4 *5)) (-5 *3 (-1160 *4)) (-4 *5 (-13 (-554) (-844)))))) -(-10 -7 (-15 -4249 ((-2 (|:| -2154 (-1160 |#1|)) (|:| |deg| (-912))) (-1160 |#1|))) (-15 -4370 ((-635 (-313 |#2|)) (-313 |#2|) (-912)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1578 ((|#1| $) NIL)) (-3728 ((|#1| $) 25)) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3385 (($ $) NIL)) (-2416 (($ $) 31)) (-3730 ((|#1| |#1| $) NIL)) (-3729 ((|#1| $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-4240 (((-765) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) NIL)) (-1576 ((|#1| |#1| $) 28)) (-1575 ((|#1| |#1| $) 30)) (-4014 (($ |#1| $) NIL)) (-2982 (((-765) $) 27)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-3384 ((|#1| $) NIL)) (-1574 ((|#1| $) 26)) (-1573 ((|#1| $) 24)) (-1357 ((|#1| $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3387 ((|#1| |#1| $) NIL)) (-3807 (((-112) $) 9)) (-3972 (($) NIL)) (-3386 ((|#1| $) NIL)) (-1579 (($) NIL) (($ (-635 |#1|)) 16)) (-3727 (((-765) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-1577 ((|#1| $) 13)) (-1358 (($ (-635 |#1|)) NIL)) (-3383 ((|#1| $) NIL)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-221 |#1|) (-13 (-253 |#1|) (-10 -8 (-15 -1579 ($ (-635 |#1|))))) (-1091)) (T -221)) -((-1579 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-221 *3))))) -(-13 (-253 |#1|) (-10 -8 (-15 -1579 ($ (-635 |#1|))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1538 (($ (-313 |#1|)) 23)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3044 (((-112) $) NIL)) (-3558 (((-3 (-313 |#1|) "failed") $) NIL)) (-3557 (((-313 |#1|) $) NIL)) (-4366 (($ $) 31)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-4365 (($ (-1 (-313 |#1|) (-313 |#1|)) $) NIL)) (-3575 (((-313 |#1|) $) NIL)) (-1540 (($ $) 30)) (-3643 (((-1148) $) NIL)) (-1539 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($ (-765)) NIL)) (-1537 (($ $) 32)) (-4355 (((-544) $) NIL)) (-4353 (((-857) $) 57) (($ (-544)) NIL) (($ (-313 |#1|)) NIL)) (-4084 (((-313 |#1|) $ $) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) 25 T CONST)) (-3046 (($) 50 T CONST)) (-3437 (((-112) $ $) 28)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 19)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 24) (($ (-313 |#1|) $) 18))) -(((-222 |#1| |#2|) (-13 (-616 (-313 |#1|)) (-1031 (-313 |#1|)) (-10 -8 (-15 -3575 ((-313 |#1|) $)) (-15 -1540 ($ $)) (-15 -4366 ($ $)) (-15 -4084 ((-313 |#1|) $ $)) (-15 -2544 ($ (-765))) (-15 -1539 ((-112) $)) (-15 -3044 ((-112) $)) (-15 -4355 ((-544) $)) (-15 -4365 ($ (-1 (-313 |#1|) (-313 |#1|)) $)) (-15 -1538 ($ (-313 |#1|))) (-15 -1537 ($ $)))) (-13 (-1042) (-844)) (-635 (-1166))) (T -222)) -((-3575 (*1 *2 *1) (-12 (-5 *2 (-313 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-635 (-1166))))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-635 (-1166))))) (-4084 (*1 *2 *1 *1) (-12 (-5 *2 (-313 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) (-14 *4 (-635 (-1166))))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-313 *3) (-313 *3))) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1166))))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-313 *3)) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1166))))) (-1537 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) (-14 *3 (-635 (-1166)))))) -(-13 (-616 (-313 |#1|)) (-1031 (-313 |#1|)) (-10 -8 (-15 -3575 ((-313 |#1|) $)) (-15 -1540 ($ $)) (-15 -4366 ($ $)) (-15 -4084 ((-313 |#1|) $ $)) (-15 -2544 ($ (-765))) (-15 -1539 ((-112) $)) (-15 -3044 ((-112) $)) (-15 -4355 ((-544) $)) (-15 -4365 ($ (-1 (-313 |#1|) (-313 |#1|)) $)) (-15 -1538 ($ (-313 |#1|))) (-15 -1537 ($ $)))) -((-1541 (((-112) (-1148)) 22)) (-1542 (((-3 (-836 |#2|) "failed") (-606 |#2|) |#2| (-836 |#2|) (-836 |#2|) (-112)) 32)) (-1543 (((-3 (-112) "failed") (-1160 |#2|) (-836 |#2|) (-836 |#2|) (-112)) 73) (((-3 (-112) "failed") (-939 |#1|) (-1166) (-836 |#2|) (-836 |#2|) (-112)) 74))) -(((-223 |#1| |#2|) (-10 -7 (-15 -1541 ((-112) (-1148))) (-15 -1542 ((-3 (-836 |#2|) "failed") (-606 |#2|) |#2| (-836 |#2|) (-836 |#2|) (-112))) (-15 -1543 ((-3 (-112) "failed") (-939 |#1|) (-1166) (-836 |#2|) (-836 |#2|) (-112))) (-15 -1543 ((-3 (-112) "failed") (-1160 |#2|) (-836 |#2|) (-836 |#2|) (-112)))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-29 |#1|))) (T -223)) -((-1543 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1160 *6)) (-5 *4 (-836 *6)) (-4 *6 (-13 (-1190) (-29 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-223 *5 *6)))) (-1543 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-939 *6)) (-5 *4 (-1166)) (-5 *5 (-836 *7)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-4 *7 (-13 (-1190) (-29 *6))) (-5 *1 (-223 *6 *7)))) (-1542 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-836 *4)) (-5 *3 (-606 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1190) (-29 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-223 *6 *4)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1190) (-29 *4)))))) -(-10 -7 (-15 -1541 ((-112) (-1148))) (-15 -1542 ((-3 (-836 |#2|) "failed") (-606 |#2|) |#2| (-836 |#2|) (-836 |#2|) (-112))) (-15 -1543 ((-3 (-112) "failed") (-939 |#1|) (-1166) (-836 |#2|) (-836 |#2|) (-112))) (-15 -1543 ((-3 (-112) "failed") (-1160 |#2|) (-836 |#2|) (-836 |#2|) (-112)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 87)) (-3514 (((-544) $) 98)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4177 (($ $) NIL)) (-3891 (($ $) 75)) (-4046 (($ $) 63)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) 54)) (-1733 (((-112) $ $) NIL)) (-3889 (($ $) 73)) (-4045 (($ $) 61)) (-4030 (((-544) $) 115)) (-3893 (($ $) 78)) (-4044 (($ $) 65)) (-4131 (($) NIL T CONST)) (-3512 (($ $) NIL)) (-3558 (((-3 (-544) #1="failed") $) 114) (((-3 (-406 (-544)) #1#) $) 111)) (-3557 (((-544) $) 112) (((-406 (-544)) $) 109)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) 91)) (-1888 (((-406 (-544)) $ (-765)) 107) (((-406 (-544)) $ (-765) (-765)) 106)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2509 (((-912)) 27) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-3587 (((-112) $) NIL)) (-4034 (($) 37)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL)) (-4178 (((-544) $) 33)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL)) (-3517 (($ $) NIL)) (-3588 (((-112) $) 86)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-2913 (($ $ $) 51) (($) 32 (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-3242 (($ $ $) 50) (($) 31 (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-2510 (((-544) $) 25)) (-1887 (($ $) 28)) (-1886 (($ $) 55)) (-4349 (($ $) 60)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-1917 (((-912) (-544)) NIL (|has| $ (-6 -4391)))) (-3644 (((-1110) $) 89)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL)) (-3515 (($ $) NIL)) (-3655 (($ (-544) (-544)) NIL) (($ (-544) (-544) (-912)) 99)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2536 (((-544) $) 26)) (-1885 (($) 36)) (-4350 (($ $) 59)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2993 (((-912)) NIL) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-4217 (($ $ (-765)) NIL) (($ $) 92)) (-1916 (((-912) (-544)) NIL (|has| $ (-6 -4391)))) (-3894 (($ $) 76)) (-4043 (($ $) 66)) (-3892 (($ $) 77)) (-4042 (($ $) 64)) (-3890 (($ $) 74)) (-4041 (($ $) 62)) (-4377 (((-377) $) 103) (((-224) $) 100) (((-883 (-377)) $) NIL) (((-533) $) 43)) (-4353 (((-857) $) 40) (($ (-544)) 58) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-544)) 58) (($ (-406 (-544))) NIL)) (-3511 (((-765)) NIL)) (-3516 (($ $) NIL)) (-1918 (((-912)) 30) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-3076 (((-912)) 23)) (-3897 (($ $) 81)) (-3885 (($ $) 69) (($ $ $) 108)) (-2212 (((-112) $ $) NIL)) (-3895 (($ $) 79)) (-3883 (($ $) 67)) (-3899 (($ $) 84)) (-3887 (($ $) 72)) (-3900 (($ $) 82)) (-3888 (($ $) 70)) (-3898 (($ $) 83)) (-3886 (($ $) 71)) (-3896 (($ $) 80)) (-3884 (($ $) 68)) (-3787 (($ $) 116)) (-3040 (($) 34 T CONST)) (-3046 (($) 35 T CONST)) (-2879 (((-1148) $) 17) (((-1148) $ (-112)) 19) (((-1259) (-817) $) 20) (((-1259) (-817) $ (-112)) 21)) (-3791 (($ $) 95)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3788 (($ $ $) 97)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 52)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 44)) (-4356 (($ $ $) 85) (($ $ (-544)) 53)) (-4244 (($ $) 45) (($ $ $) 47)) (-4246 (($ $ $) 46)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 56) (($ $ (-406 (-544))) 127) (($ $ $) 57)) (* (($ (-912) $) 29) (($ (-765) $) NIL) (($ (-544) $) 49) (($ $ $) 48) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL))) -(((-224) (-13 (-403) (-232) (-815) (-1190) (-609 (-533)) (-10 -8 (-15 -4356 ($ $ (-544))) (-15 ** ($ $ $)) (-15 -1885 ($)) (-15 -1887 ($ $)) (-15 -1886 ($ $)) (-15 -3885 ($ $ $)) (-15 -3791 ($ $)) (-15 -3788 ($ $ $)) (-15 -1888 ((-406 (-544)) $ (-765))) (-15 -1888 ((-406 (-544)) $ (-765) (-765)))))) (T -224)) -((** (*1 *1 *1 *1) (-5 *1 (-224))) (-4356 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-224)))) (-1885 (*1 *1) (-5 *1 (-224))) (-1887 (*1 *1 *1) (-5 *1 (-224))) (-1886 (*1 *1 *1) (-5 *1 (-224))) (-3885 (*1 *1 *1 *1) (-5 *1 (-224))) (-3791 (*1 *1 *1) (-5 *1 (-224))) (-3788 (*1 *1 *1 *1) (-5 *1 (-224))) (-1888 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-224)))) (-1888 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-224))))) -(-13 (-403) (-232) (-815) (-1190) (-609 (-533)) (-10 -8 (-15 -4356 ($ $ (-544))) (-15 ** ($ $ $)) (-15 -1885 ($)) (-15 -1887 ($ $)) (-15 -1886 ($ $)) (-15 -3885 ($ $ $)) (-15 -3791 ($ $)) (-15 -3788 ($ $ $)) (-15 -1888 ((-406 (-544)) $ (-765))) (-15 -1888 ((-406 (-544)) $ (-765) (-765))))) -((-3790 (((-167 (-224)) (-765) (-167 (-224))) 11) (((-224) (-765) (-224)) 12)) (-1544 (((-167 (-224)) (-167 (-224))) 13) (((-224) (-224)) 14)) (-1545 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 19) (((-224) (-224) (-224)) 22)) (-3789 (((-167 (-224)) (-167 (-224))) 25) (((-224) (-224)) 24)) (-3793 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 43) (((-224) (-224) (-224)) 35)) (-3795 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 48) (((-224) (-224) (-224)) 45)) (-3792 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 15) (((-224) (-224) (-224)) 16)) (-3794 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 17) (((-224) (-224) (-224)) 18)) (-3797 (((-167 (-224)) (-167 (-224))) 60) (((-224) (-224)) 59)) (-3796 (((-224) (-224)) 54) (((-167 (-224)) (-167 (-224))) 58)) (-3791 (((-167 (-224)) (-167 (-224))) 8) (((-224) (-224)) 9)) (-3788 (((-167 (-224)) (-167 (-224)) (-167 (-224))) 30) (((-224) (-224) (-224)) 26))) -(((-225) (-10 -7 (-15 -3791 ((-224) (-224))) (-15 -3791 ((-167 (-224)) (-167 (-224)))) (-15 -3788 ((-224) (-224) (-224))) (-15 -3788 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -1544 ((-224) (-224))) (-15 -1544 ((-167 (-224)) (-167 (-224)))) (-15 -3789 ((-224) (-224))) (-15 -3789 ((-167 (-224)) (-167 (-224)))) (-15 -3790 ((-224) (-765) (-224))) (-15 -3790 ((-167 (-224)) (-765) (-167 (-224)))) (-15 -3792 ((-224) (-224) (-224))) (-15 -3792 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3793 ((-224) (-224) (-224))) (-15 -3793 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3794 ((-224) (-224) (-224))) (-15 -3794 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3795 ((-224) (-224) (-224))) (-15 -3795 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3796 ((-167 (-224)) (-167 (-224)))) (-15 -3796 ((-224) (-224))) (-15 -3797 ((-224) (-224))) (-15 -3797 ((-167 (-224)) (-167 (-224)))) (-15 -1545 ((-224) (-224) (-224))) (-15 -1545 ((-167 (-224)) (-167 (-224)) (-167 (-224)))))) (T -225)) -((-1545 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-1545 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3794 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3794 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3793 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3793 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3790 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-224))) (-5 *3 (-765)) (-5 *1 (-225)))) (-3790 (*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-765)) (-5 *1 (-225)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3788 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3788 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))) -(-10 -7 (-15 -3791 ((-224) (-224))) (-15 -3791 ((-167 (-224)) (-167 (-224)))) (-15 -3788 ((-224) (-224) (-224))) (-15 -3788 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -1544 ((-224) (-224))) (-15 -1544 ((-167 (-224)) (-167 (-224)))) (-15 -3789 ((-224) (-224))) (-15 -3789 ((-167 (-224)) (-167 (-224)))) (-15 -3790 ((-224) (-765) (-224))) (-15 -3790 ((-167 (-224)) (-765) (-167 (-224)))) (-15 -3792 ((-224) (-224) (-224))) (-15 -3792 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3793 ((-224) (-224) (-224))) (-15 -3793 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3794 ((-224) (-224) (-224))) (-15 -3794 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3795 ((-224) (-224) (-224))) (-15 -3795 ((-167 (-224)) (-167 (-224)) (-167 (-224)))) (-15 -3796 ((-167 (-224)) (-167 (-224)))) (-15 -3796 ((-224) (-224))) (-15 -3797 ((-224) (-224))) (-15 -3797 ((-167 (-224)) (-167 (-224)))) (-15 -1545 ((-224) (-224) (-224))) (-15 -1545 ((-167 (-224)) (-167 (-224)) (-167 (-224))))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765) (-765)) NIL)) (-2473 (($ $ $) NIL)) (-3818 (($ (-1253 |#1|)) NIL) (($ $) NIL)) (-4280 (($ |#1| |#1| |#1|) 32)) (-3506 (((-112) $) NIL)) (-2472 (($ $ (-544) (-544)) NIL)) (-2471 (($ $ (-544) (-544)) NIL)) (-2470 (($ $ (-544) (-544) (-544) (-544)) NIL)) (-2475 (($ $) NIL)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-2469 (($ $ (-544) (-544) $) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544)) $) NIL)) (-1332 (($ $ (-544) (-1253 |#1|)) NIL)) (-1331 (($ $ (-544) (-1253 |#1|)) NIL)) (-4254 (($ |#1| |#1| |#1|) 31)) (-3737 (($ (-765) |#1|) NIL)) (-4131 (($) NIL T CONST)) (-3495 (($ $) NIL (|has| |#1| (-306)))) (-3497 (((-1253 |#1|) $ (-544)) NIL)) (-1546 (($ |#1|) 30)) (-1547 (($ |#1|) 29)) (-1548 (($ |#1|) 28)) (-3494 (((-765) $) NIL (|has| |#1| (-554)))) (-1665 ((|#1| $ (-544) (-544) |#1|) NIL)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3493 (((-765) $) NIL (|has| |#1| (-554)))) (-3492 (((-635 (-1253 |#1|)) $) NIL (|has| |#1| (-554)))) (-3500 (((-765) $) NIL)) (-4021 (($ (-765) (-765) |#1|) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#1| $) NIL (|has| |#1| (-6 (-4402 #1="*"))))) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#1|))) 11)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4000 (((-635 (-635 |#1|)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3996 (((-3 $ #2="failed") $) NIL (|has| |#1| (-362)))) (-1549 (($) 12)) (-2474 (($ $ $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-3865 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-554)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544))) NIL)) (-3736 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL)) (-3507 (((-112) $) NIL)) (-3732 ((|#1| $) NIL (|has| |#1| (-6 (-4402 #1#))))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 (((-1253 |#1|) $ (-544)) NIL)) (-4353 (($ (-1253 |#1|)) NIL) (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-544) $) NIL) (((-1253 |#1|) $ (-1253 |#1|)) 15) (((-1253 |#1|) (-1253 |#1|) $) NIL) (((-936 |#1|) $ (-936 |#1|)) 20)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-226 |#1|) (-13 (-679 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -1549 ($)) (-15 -1548 ($ |#1|)) (-15 -1547 ($ |#1|)) (-15 -1546 ($ |#1|)) (-15 -4254 ($ |#1| |#1| |#1|)) (-15 -4280 ($ |#1| |#1| |#1|)))) (-13 (-362) (-1190))) (T -226)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190))) (-5 *1 (-226 *3)))) (-1549 (*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-1548 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-1547 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-1546 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-4254 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) (-4280 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))) -(-13 (-679 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -1549 ($)) (-15 -1548 ($ |#1|)) (-15 -1547 ($ |#1|)) (-15 -1546 ($ |#1|)) (-15 -4254 ($ |#1| |#1| |#1|)) (-15 -4280 ($ |#1| |#1| |#1|)))) -((-1659 (($ (-1 (-112) |#2|) $) 15)) (-3809 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-1550 (($) NIL) (($ (-635 |#2|)) 11)) (-3437 (((-112) $ $) 22))) -(((-227 |#1| |#2|) (-10 -8 (-15 -1659 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -1550 (|#1| (-635 |#2|))) (-15 -1550 (|#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-228 |#2|) (-1091)) (T -227)) -NIL -(-10 -8 (-15 -1659 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -1550 (|#1| (-635 |#2|))) (-15 -1550 (|#1|)) (-15 -3437 ((-112) |#1| |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-228 |#1|) (-139) (-1091)) (T -228)) +((-3948 (*1 *1 *1) (-4 *1 (-172)))) +(-13 (-10 -8 (-15 -3948 ($ $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 ((|#1| $) 74)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-1811 (($ $ $) NIL)) (-2645 (($ $) 19)) (-1516 (($ |#1| (-1148 |#1|)) 47)) (-3668 (((-3 $ "failed") $) 116)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-2333 (((-1148 |#1|) $) 81)) (-2735 (((-1148 |#1|) $) 78)) (-3947 (((-1148 |#1|) $) 79)) (-1957 (((-112) $) NIL)) (-2892 (((-1148 |#1|) $) 87)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL)) (-1353 (($ $ (-562)) 90)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3319 (((-1148 |#1|) $) 88)) (-1372 (((-1148 (-406 |#1|)) $) 14)) (-1977 (($ (-406 |#1|)) 17) (($ |#1| (-1148 |#1|) (-1148 |#1|)) 37)) (-2256 (($ $) 92)) (-4054 (((-857) $) 126) (($ (-562)) 50) (($ |#1|) 51) (($ (-406 |#1|)) 35) (($ (-406 (-562))) NIL) (($ $) NIL)) (-2579 (((-766)) 63)) (-2922 (((-112) $ $) NIL)) (-2947 (((-1148 (-406 |#1|)) $) 18)) (-2286 (($) 25 T CONST)) (-2294 (($) 28 T CONST)) (-1731 (((-112) $ $) 34)) (-1859 (($ $ $) 114)) (-1848 (($ $) 105) (($ $ $) 102)) (-1835 (($ $ $) 100)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-406 |#1|) $) 110) (($ $ (-406 |#1|)) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL))) +(((-173 |#1|) (-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -1977 ($ (-406 |#1|))) (-15 -1977 ($ |#1| (-1148 |#1|) (-1148 |#1|))) (-15 -1516 ($ |#1| (-1148 |#1|))) (-15 -2735 ((-1148 |#1|) $)) (-15 -3947 ((-1148 |#1|) $)) (-15 -2333 ((-1148 |#1|) $)) (-15 -4246 (|#1| $)) (-15 -2645 ($ $)) (-15 -2947 ((-1148 (-406 |#1|)) $)) (-15 -1372 ((-1148 (-406 |#1|)) $)) (-15 -2892 ((-1148 |#1|) $)) (-15 -3319 ((-1148 |#1|) $)) (-15 -1353 ($ $ (-562))) (-15 -2256 ($ $)))) (-306)) (T -173)) +((-1977 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) (-1977 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1148 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-1516 (*1 *1 *2 *3) (-12 (-5 *3 (-1148 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-4246 (*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-2645 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-1148 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1148 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1353 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))) +(-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -1977 ($ (-406 |#1|))) (-15 -1977 ($ |#1| (-1148 |#1|) (-1148 |#1|))) (-15 -1516 ($ |#1| (-1148 |#1|))) (-15 -2735 ((-1148 |#1|) $)) (-15 -3947 ((-1148 |#1|) $)) (-15 -2333 ((-1148 |#1|) $)) (-15 -4246 (|#1| $)) (-15 -2645 ($ $)) (-15 -2947 ((-1148 (-406 |#1|)) $)) (-15 -1372 ((-1148 (-406 |#1|)) $)) (-15 -2892 ((-1148 |#1|) $)) (-15 -3319 ((-1148 |#1|) $)) (-15 -1353 ($ $ (-562))) (-15 -2256 ($ $)))) +((-3361 (($ (-109) $) 13)) (-2174 (((-3 (-109) "failed") (-1168) $) 12)) (-4054 (((-857) $) 16)) (-2046 (((-639 (-109)) $) 8))) +(((-174) (-13 (-609 (-857)) (-10 -8 (-15 -2046 ((-639 (-109)) $)) (-15 -3361 ($ (-109) $)) (-15 -2174 ((-3 (-109) "failed") (-1168) $))))) (T -174)) +((-2046 (*1 *2 *1) (-12 (-5 *2 (-639 (-109))) (-5 *1 (-174)))) (-3361 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))) (-2174 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-109)) (-5 *1 (-174))))) +(-13 (-609 (-857)) (-10 -8 (-15 -2046 ((-639 (-109)) $)) (-15 -3361 ($ (-109) $)) (-15 -2174 ((-3 (-109) "failed") (-1168) $)))) +((-3378 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 40)) (-2566 (((-938 |#1|) (-938 |#1|)) 19)) (-3611 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 36)) (-1956 (((-938 |#1|) (-938 |#1|)) 17)) (-1452 (((-938 |#1|) (-938 |#1|)) 25)) (-1827 (((-938 |#1|) (-938 |#1|)) 24)) (-1883 (((-938 |#1|) (-938 |#1|)) 23)) (-3382 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 37)) (-2095 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 35)) (-3441 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 34)) (-1480 (((-938 |#1|) (-938 |#1|)) 18)) (-2973 (((-1 (-938 |#1|) (-938 |#1|)) |#1| |#1|) 43)) (-3522 (((-938 |#1|) (-938 |#1|)) 8)) (-3630 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 39)) (-2059 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 38))) +(((-175 |#1|) (-10 -7 (-15 -3522 ((-938 |#1|) (-938 |#1|))) (-15 -1956 ((-938 |#1|) (-938 |#1|))) (-15 -1480 ((-938 |#1|) (-938 |#1|))) (-15 -2566 ((-938 |#1|) (-938 |#1|))) (-15 -1883 ((-938 |#1|) (-938 |#1|))) (-15 -1827 ((-938 |#1|) (-938 |#1|))) (-15 -1452 ((-938 |#1|) (-938 |#1|))) (-15 -3441 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -2095 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3611 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3382 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -2059 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3630 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3378 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -2973 ((-1 (-938 |#1|) (-938 |#1|)) |#1| |#1|))) (-13 (-362) (-1192) (-997))) (T -175)) +((-2973 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-3378 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-3630 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-2059 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-3382 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-3611 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-2095 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-3441 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-1452 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-1883 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-1480 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-1956 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-3522 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3))))) +(-10 -7 (-15 -3522 ((-938 |#1|) (-938 |#1|))) (-15 -1956 ((-938 |#1|) (-938 |#1|))) (-15 -1480 ((-938 |#1|) (-938 |#1|))) (-15 -2566 ((-938 |#1|) (-938 |#1|))) (-15 -1883 ((-938 |#1|) (-938 |#1|))) (-15 -1827 ((-938 |#1|) (-938 |#1|))) (-15 -1452 ((-938 |#1|) (-938 |#1|))) (-15 -3441 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -2095 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3611 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3382 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -2059 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3630 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3378 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -2973 ((-1 (-938 |#1|) (-938 |#1|)) |#1| |#1|))) +((-3376 ((|#2| |#3|) 27))) +(((-176 |#1| |#2| |#3|) (-10 -7 (-15 -3376 (|#2| |#3|))) (-171) (-1232 |#1|) (-719 |#1| |#2|)) (T -176)) +((-3376 (*1 *2 *3) (-12 (-4 *4 (-171)) (-4 *2 (-1232 *4)) (-5 *1 (-176 *4 *2 *3)) (-4 *3 (-719 *4 *2))))) +(-10 -7 (-15 -3376 (|#2| |#3|))) +((-2533 (((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)) 47 (|has| (-947 |#2|) (-881 |#1|))))) +(((-177 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-947 |#2|) (-881 |#1|)) (-15 -2533 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) |%noBranch|)) (-1092) (-13 (-881 |#1|) (-171)) (-165 |#2|)) (T -177)) +((-2533 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *3 (-165 *6)) (-4 (-947 *6) (-881 *5)) (-4 *6 (-13 (-881 *5) (-171))) (-5 *1 (-177 *5 *6 *3))))) +(-10 -7 (IF (|has| (-947 |#2|) (-881 |#1|)) (-15 -2533 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) |%noBranch|)) +((-3380 (((-639 |#1|) (-639 |#1|) |#1|) 38)) (-3708 (((-639 |#1|) |#1| (-639 |#1|)) 19)) (-3757 (((-639 |#1|) (-639 (-639 |#1|)) (-639 |#1|)) 33) ((|#1| (-639 |#1|) (-639 |#1|)) 31))) +(((-178 |#1|) (-10 -7 (-15 -3708 ((-639 |#1|) |#1| (-639 |#1|))) (-15 -3757 (|#1| (-639 |#1|) (-639 |#1|))) (-15 -3757 ((-639 |#1|) (-639 (-639 |#1|)) (-639 |#1|))) (-15 -3380 ((-639 |#1|) (-639 |#1|) |#1|))) (-306)) (T -178)) +((-3380 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))) (-3757 (*1 *2 *3 *2) (-12 (-5 *3 (-639 (-639 *4))) (-5 *2 (-639 *4)) (-4 *4 (-306)) (-5 *1 (-178 *4)))) (-3757 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) (-3708 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -3708 ((-639 |#1|) |#1| (-639 |#1|))) (-15 -3757 (|#1| (-639 |#1|) (-639 |#1|))) (-15 -3757 ((-639 |#1|) (-639 (-639 |#1|)) (-639 |#1|))) (-15 -3380 ((-639 |#1|) (-639 |#1|) |#1|))) +((-4041 (((-112) $ $) NIL)) (-4084 (((-1206) $) 13)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 10)) (-4054 (((-857) $) 22) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-179) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $))))) (T -179)) +((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-179)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-179))))) +(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $)))) +((-4290 (((-2 (|:| |start| |#2|) (|:| -1510 (-417 |#2|))) |#2|) 61)) (-2804 ((|#1| |#1|) 54)) (-3100 (((-168 |#1|) |#2|) 84)) (-1604 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-1907 ((|#2| |#2|) 83)) (-3386 (((-417 |#2|) |#2| |#1|) 114) (((-417 |#2|) |#2| |#1| (-112)) 81)) (-2247 ((|#1| |#2|) 113)) (-3138 ((|#2| |#2|) 120)) (-1635 (((-417 |#2|) |#2|) 135) (((-417 |#2|) |#2| |#1|) 32) (((-417 |#2|) |#2| |#1| (-112)) 134)) (-1611 (((-639 (-2 (|:| -1510 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2|) 133) (((-639 (-2 (|:| -1510 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2| (-112)) 76)) (-1962 (((-639 (-168 |#1|)) |#2| |#1|) 40) (((-639 (-168 |#1|)) |#2|) 41))) +(((-180 |#1| |#2|) (-10 -7 (-15 -1962 ((-639 (-168 |#1|)) |#2|)) (-15 -1962 ((-639 (-168 |#1|)) |#2| |#1|)) (-15 -1611 ((-639 (-2 (|:| -1510 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2| (-112))) (-15 -1611 ((-639 (-2 (|:| -1510 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2|)) (-15 -1635 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1635 ((-417 |#2|) |#2| |#1|)) (-15 -1635 ((-417 |#2|) |#2|)) (-15 -3138 (|#2| |#2|)) (-15 -2247 (|#1| |#2|)) (-15 -3386 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3386 ((-417 |#2|) |#2| |#1|)) (-15 -1907 (|#2| |#2|)) (-15 -1604 (|#1| |#2| |#1|)) (-15 -1604 (|#1| |#2|)) (-15 -3100 ((-168 |#1|) |#2|)) (-15 -2804 (|#1| |#1|)) (-15 -4290 ((-2 (|:| |start| |#2|) (|:| -1510 (-417 |#2|))) |#2|))) (-13 (-362) (-843)) (-1232 (-168 |#1|))) (T -180)) +((-4290 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-2 (|:| |start| *3) (|:| -1510 (-417 *3)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-2804 (*1 *2 *2) (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-3100 (*1 *2 *3) (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-843))) (-4 *3 (-1232 *2)))) (-1604 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-1604 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-1907 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-843))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1232 (-168 *3))))) (-3386 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-3386 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-2247 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-3138 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-843))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1232 (-168 *3))))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1635 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1611 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-2 (|:| -1510 (-639 *3)) (|:| -3964 *4)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1611 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-843))) (-5 *2 (-639 (-2 (|:| -1510 (-639 *3)) (|:| -3964 *5)))) (-5 *1 (-180 *5 *3)) (-4 *3 (-1232 (-168 *5))))) (-1962 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) +(-10 -7 (-15 -1962 ((-639 (-168 |#1|)) |#2|)) (-15 -1962 ((-639 (-168 |#1|)) |#2| |#1|)) (-15 -1611 ((-639 (-2 (|:| -1510 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2| (-112))) (-15 -1611 ((-639 (-2 (|:| -1510 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2|)) (-15 -1635 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1635 ((-417 |#2|) |#2| |#1|)) (-15 -1635 ((-417 |#2|) |#2|)) (-15 -3138 (|#2| |#2|)) (-15 -2247 (|#1| |#2|)) (-15 -3386 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3386 ((-417 |#2|) |#2| |#1|)) (-15 -1907 (|#2| |#2|)) (-15 -1604 (|#1| |#2| |#1|)) (-15 -1604 (|#1| |#2|)) (-15 -3100 ((-168 |#1|) |#2|)) (-15 -2804 (|#1| |#1|)) (-15 -4290 ((-2 (|:| |start| |#2|) (|:| -1510 (-417 |#2|))) |#2|))) +((-3869 (((-3 |#2| "failed") |#2|) 14)) (-1908 (((-766) |#2|) 16)) (-3549 ((|#2| |#2| |#2|) 18))) +(((-181 |#1| |#2|) (-10 -7 (-15 -3869 ((-3 |#2| "failed") |#2|)) (-15 -1908 ((-766) |#2|)) (-15 -3549 (|#2| |#2| |#2|))) (-1207) (-668 |#1|)) (T -181)) +((-3549 (*1 *2 *2 *2) (-12 (-4 *3 (-1207)) (-5 *1 (-181 *3 *2)) (-4 *2 (-668 *3)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-1207)) (-5 *2 (-766)) (-5 *1 (-181 *4 *3)) (-4 *3 (-668 *4)))) (-3869 (*1 *2 *2) (|partial| -12 (-4 *3 (-1207)) (-5 *1 (-181 *3 *2)) (-4 *2 (-668 *3))))) +(-10 -7 (-15 -3869 ((-3 |#2| "failed") |#2|)) (-15 -1908 ((-766) |#2|)) (-15 -3549 (|#2| |#2| |#2|))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1876 (((-186) $) 7)) (-4054 (((-857) $) 14)) (-3433 (((-639 (-1173)) $) 10)) (-1731 (((-112) $ $) 12))) +(((-182) (-13 (-1092) (-10 -8 (-15 -1876 ((-186) $)) (-15 -3433 ((-639 (-1173)) $))))) (T -182)) +((-1876 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-182))))) +(-13 (-1092) (-10 -8 (-15 -1876 ((-186) $)) (-15 -3433 ((-639 (-1173)) $)))) +((-2421 (((-185) $) 8)) (-3212 (((-639 (-112)) $) 13)) (-3087 (((-55) $) 10))) +(((-183 |#1|) (-10 -8 (-15 -3212 ((-639 (-112)) |#1|)) (-15 -2421 ((-185) |#1|)) (-15 -3087 ((-55) |#1|))) (-184)) (T -183)) +NIL +(-10 -8 (-15 -3212 ((-639 (-112)) |#1|)) (-15 -2421 ((-185) |#1|)) (-15 -3087 ((-55) |#1|))) +((-4041 (((-112) $ $) 7)) (-3254 (((-505) $) 14)) (-2913 (((-1150) $) 9)) (-2421 (((-185) $) 18)) (-1709 (((-1112) $) 10)) (-3212 (((-639 (-112)) $) 17)) (-4054 (((-857) $) 11)) (-3087 (((-55) $) 13)) (-1731 (((-112) $ $) 6))) +(((-184) (-139)) (T -184)) +((-2421 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-639 (-112)))))) +(-13 (-830 (-505)) (-10 -8 (-15 -2421 ((-185) $)) (-15 -3212 ((-639 (-112)) $)))) +(((-102) . T) ((-609 (-857)) . T) ((-830 (-505)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-8 (($) 7 T CONST)) (-4054 (((-857) $) 12)) (-9 (($) 6 T CONST)) (-1731 (((-112) $ $) 10))) +(((-185) (-13 (-1092) (-10 -8 (-15 -9 ($) -1497) (-15 -8 ($) -1497) (-15 -7 ($) -1497)))) (T -185)) +((-9 (*1 *1) (-5 *1 (-185))) (-8 (*1 *1) (-5 *1 (-185))) (-7 (*1 *1) (-5 *1 (-185)))) +(-13 (-1092) (-10 -8 (-15 -9 ($) -1497) (-15 -8 ($) -1497) (-15 -7 ($) -1497))) +((-4041 (((-112) $ $) NIL)) (-3254 (((-505) $) 8)) (-2913 (((-1150) $) NIL)) (-2421 (((-185) $) 10)) (-1709 (((-1112) $) NIL)) (-3452 (((-685 $) (-1168)) 18)) (-3212 (((-639 (-112)) $) NIL)) (-4054 (((-857) $) NIL)) (-3087 (((-55) $) 12)) (-1731 (((-112) $ $) NIL))) +(((-186) (-13 (-184) (-10 -8 (-15 -3452 ((-685 $) (-1168)))))) (T -186)) +((-3452 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-685 (-186))) (-5 *1 (-186))))) +(-13 (-184) (-10 -8 (-15 -3452 ((-685 $) (-1168))))) +((-1675 ((|#2| |#2|) 28)) (-3263 (((-112) |#2|) 19)) (-1657 (((-315 |#1|) |#2|) 12)) (-1670 (((-315 |#1|) |#2|) 14)) (-3487 ((|#2| |#2| (-1168)) 68) ((|#2| |#2|) 69)) (-1905 (((-168 (-315 |#1|)) |#2|) 10)) (-1984 ((|#2| |#2| (-1168)) 65) ((|#2| |#2|) 59))) +(((-187 |#1| |#2|) (-10 -7 (-15 -3487 (|#2| |#2|)) (-15 -3487 (|#2| |#2| (-1168))) (-15 -1984 (|#2| |#2|)) (-15 -1984 (|#2| |#2| (-1168))) (-15 -1657 ((-315 |#1|) |#2|)) (-15 -1670 ((-315 |#1|) |#2|)) (-15 -3263 ((-112) |#2|)) (-15 -1675 (|#2| |#2|)) (-15 -1905 ((-168 (-315 |#1|)) |#2|))) (-13 (-554) (-845) (-1033 (-562))) (-13 (-27) (-1192) (-429 (-168 |#1|)))) (T -187)) +((-1905 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) (-3263 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-112)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-1670 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-1657 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-1984 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-1984 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) (-3487 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3))))))) +(-10 -7 (-15 -3487 (|#2| |#2|)) (-15 -3487 (|#2| |#2| (-1168))) (-15 -1984 (|#2| |#2|)) (-15 -1984 (|#2| |#2| (-1168))) (-15 -1657 ((-315 |#1|) |#2|)) (-15 -1670 ((-315 |#1|) |#2|)) (-15 -3263 ((-112) |#2|)) (-15 -1675 (|#2| |#2|)) (-15 -1905 ((-168 (-315 |#1|)) |#2|))) +((-2861 (((-1256 (-683 (-947 |#1|))) (-1256 (-683 |#1|))) 24)) (-4054 (((-1256 (-683 (-406 (-947 |#1|)))) (-1256 (-683 |#1|))) 33))) +(((-188 |#1|) (-10 -7 (-15 -2861 ((-1256 (-683 (-947 |#1|))) (-1256 (-683 |#1|)))) (-15 -4054 ((-1256 (-683 (-406 (-947 |#1|)))) (-1256 (-683 |#1|))))) (-171)) (T -188)) +((-4054 (*1 *2 *3) (-12 (-5 *3 (-1256 (-683 *4))) (-4 *4 (-171)) (-5 *2 (-1256 (-683 (-406 (-947 *4))))) (-5 *1 (-188 *4)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-1256 (-683 *4))) (-4 *4 (-171)) (-5 *2 (-1256 (-683 (-947 *4)))) (-5 *1 (-188 *4))))) +(-10 -7 (-15 -2861 ((-1256 (-683 (-947 |#1|))) (-1256 (-683 |#1|)))) (-15 -4054 ((-1256 (-683 (-406 (-947 |#1|)))) (-1256 (-683 |#1|))))) +((-3304 (((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562)))) 66)) (-3776 (((-1170 (-406 (-562))) (-639 (-562)) (-639 (-562))) 75)) (-4304 (((-1170 (-406 (-562))) (-562)) 40)) (-2789 (((-1170 (-406 (-562))) (-562)) 52)) (-1433 (((-406 (-562)) (-1170 (-406 (-562)))) 62)) (-3980 (((-1170 (-406 (-562))) (-562)) 32)) (-3255 (((-1170 (-406 (-562))) (-562)) 48)) (-2558 (((-1170 (-406 (-562))) (-562)) 46)) (-1474 (((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562)))) 60)) (-2256 (((-1170 (-406 (-562))) (-562)) 25)) (-2807 (((-406 (-562)) (-1170 (-406 (-562))) (-1170 (-406 (-562)))) 64)) (-3632 (((-1170 (-406 (-562))) (-562)) 30)) (-1964 (((-1170 (-406 (-562))) (-639 (-562))) 72))) +(((-189) (-10 -7 (-15 -2256 ((-1170 (-406 (-562))) (-562))) (-15 -4304 ((-1170 (-406 (-562))) (-562))) (-15 -3980 ((-1170 (-406 (-562))) (-562))) (-15 -3632 ((-1170 (-406 (-562))) (-562))) (-15 -2558 ((-1170 (-406 (-562))) (-562))) (-15 -3255 ((-1170 (-406 (-562))) (-562))) (-15 -2789 ((-1170 (-406 (-562))) (-562))) (-15 -2807 ((-406 (-562)) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1474 ((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1433 ((-406 (-562)) (-1170 (-406 (-562))))) (-15 -3304 ((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1964 ((-1170 (-406 (-562))) (-639 (-562)))) (-15 -3776 ((-1170 (-406 (-562))) (-639 (-562)) (-639 (-562)))))) (T -189)) +((-3776 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)))) (-3304 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-1170 (-406 (-562)))) (-5 *2 (-406 (-562))) (-5 *1 (-189)))) (-1474 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)))) (-2807 (*1 *2 *3 *3) (-12 (-5 *3 (-1170 (-406 (-562)))) (-5 *2 (-406 (-562))) (-5 *1 (-189)))) (-2789 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-3255 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-2558 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-3632 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-3980 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-4304 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) +(-10 -7 (-15 -2256 ((-1170 (-406 (-562))) (-562))) (-15 -4304 ((-1170 (-406 (-562))) (-562))) (-15 -3980 ((-1170 (-406 (-562))) (-562))) (-15 -3632 ((-1170 (-406 (-562))) (-562))) (-15 -2558 ((-1170 (-406 (-562))) (-562))) (-15 -3255 ((-1170 (-406 (-562))) (-562))) (-15 -2789 ((-1170 (-406 (-562))) (-562))) (-15 -2807 ((-406 (-562)) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1474 ((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1433 ((-406 (-562)) (-1170 (-406 (-562))))) (-15 -3304 ((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1964 ((-1170 (-406 (-562))) (-639 (-562)))) (-15 -3776 ((-1170 (-406 (-562))) (-639 (-562)) (-639 (-562))))) +((-3459 (((-417 (-1164 (-562))) (-562)) 28)) (-3706 (((-639 (-1164 (-562))) (-562)) 23)) (-2601 (((-1164 (-562)) (-562)) 21))) +(((-190) (-10 -7 (-15 -3706 ((-639 (-1164 (-562))) (-562))) (-15 -2601 ((-1164 (-562)) (-562))) (-15 -3459 ((-417 (-1164 (-562))) (-562))))) (T -190)) +((-3459 (*1 *2 *3) (-12 (-5 *2 (-417 (-1164 (-562)))) (-5 *1 (-190)) (-5 *3 (-562)))) (-2601 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-190)) (-5 *3 (-562)))) (-3706 (*1 *2 *3) (-12 (-5 *2 (-639 (-1164 (-562)))) (-5 *1 (-190)) (-5 *3 (-562))))) +(-10 -7 (-15 -3706 ((-639 (-1164 (-562))) (-562))) (-15 -2601 ((-1164 (-562)) (-562))) (-15 -3459 ((-417 (-1164 (-562))) (-562)))) +((-4163 (((-1148 (-224)) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 103)) (-2932 (((-639 (-1150)) (-1148 (-224))) NIL)) (-3015 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 79)) (-2025 (((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224)))) NIL)) (-3843 (((-639 (-1150)) (-639 (-224))) NIL)) (-2575 (((-224) (-1086 (-838 (-224)))) 24)) (-2300 (((-224) (-1086 (-838 (-224)))) 25)) (-1641 (((-378) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 96)) (-1739 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-2590 (((-1150) (-224)) NIL)) (-3428 (((-1150) (-639 (-1150))) 20)) (-3890 (((-1030) (-1168) (-1168) (-1030)) 13))) +(((-191) (-10 -7 (-15 -3015 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1739 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2575 ((-224) (-1086 (-838 (-224))))) (-15 -2300 ((-224) (-1086 (-838 (-224))))) (-15 -1641 ((-378) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2025 ((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224))))) (-15 -4163 ((-1148 (-224)) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2590 ((-1150) (-224))) (-15 -3843 ((-639 (-1150)) (-639 (-224)))) (-15 -2932 ((-639 (-1150)) (-1148 (-224)))) (-15 -3428 ((-1150) (-639 (-1150)))) (-15 -3890 ((-1030) (-1168) (-1168) (-1030))))) (T -191)) +((-3890 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1030)) (-5 *3 (-1168)) (-5 *1 (-191)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-191)))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-191)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-191)))) (-2590 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-191)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-191)))) (-2025 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1168)) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-191)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-191)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-191)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-191))))) +(-10 -7 (-15 -3015 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1739 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2575 ((-224) (-1086 (-838 (-224))))) (-15 -2300 ((-224) (-1086 (-838 (-224))))) (-15 -1641 ((-378) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2025 ((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224))))) (-15 -4163 ((-1148 (-224)) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2590 ((-1150) (-224))) (-15 -3843 ((-639 (-1150)) (-639 (-224)))) (-15 -2932 ((-639 (-1150)) (-1148 (-224)))) (-15 -3428 ((-1150) (-639 (-1150)))) (-15 -3890 ((-1030) (-1168) (-1168) (-1030)))) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 55) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-192) (-782)) (T -192)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 60) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-193) (-782)) (T -193)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 69) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-194) (-782)) (T -194)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 56) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-195) (-782)) (T -195)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 67) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 38) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-196) (-782)) (T -196)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 73) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-197) (-782)) (T -197)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 80) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 44) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-198) (-782)) (T -198)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 70) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-199) (-782)) (T -199)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 65)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-200) (-782)) (T -200)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 63)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-201) (-782)) (T -201)) +NIL +(-782) +((-4041 (((-112) $ $) NIL)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 90) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 78) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-202) (-782)) (T -202)) +NIL +(-782) +((-2536 (((-3 (-2 (|:| -2431 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 84)) (-3124 (((-562) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-4357 (((-3 (-639 (-224)) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 73))) +(((-203) (-10 -7 (-15 -2536 ((-3 (-2 (|:| -2431 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4357 ((-3 (-639 (-224)) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3124 ((-562) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -203)) +((-3124 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-562)) (-5 *1 (-203)))) (-4357 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-203)))) (-2536 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2431 (-114)) (|:| |w| (-224)))) (-5 *1 (-203))))) +(-10 -7 (-15 -2536 ((-3 (-2 (|:| -2431 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4357 ((-3 (-639 (-224)) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3124 ((-562) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) +((-2520 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-3490 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 128)) (-2745 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-683 (-315 (-224)))) 87)) (-3713 (((-378) (-683 (-315 (-224)))) 111)) (-4326 (((-683 (-315 (-224))) (-1256 (-315 (-224))) (-639 (-1168))) 108)) (-1466 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 30)) (-4382 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 43)) (-1433 (((-683 (-315 (-224))) (-683 (-315 (-224))) (-639 (-1168)) (-1256 (-315 (-224)))) 100)) (-1842 (((-378) (-378) (-639 (-378))) 105) (((-378) (-378) (-378)) 103)) (-2901 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36))) +(((-204) (-10 -7 (-15 -1842 ((-378) (-378) (-378))) (-15 -1842 ((-378) (-378) (-639 (-378)))) (-15 -3713 ((-378) (-683 (-315 (-224))))) (-15 -4326 ((-683 (-315 (-224))) (-1256 (-315 (-224))) (-639 (-1168)))) (-15 -1433 ((-683 (-315 (-224))) (-683 (-315 (-224))) (-639 (-1168)) (-1256 (-315 (-224))))) (-15 -2745 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-683 (-315 (-224))))) (-15 -3490 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2520 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4382 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2901 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1466 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -204)) +((-1466 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2520 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-683 (-315 (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-1433 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-683 (-315 (-224)))) (-5 *3 (-639 (-1168))) (-5 *4 (-1256 (-315 (-224)))) (-5 *1 (-204)))) (-4326 (*1 *2 *3 *4) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *4 (-639 (-1168))) (-5 *2 (-683 (-315 (-224)))) (-5 *1 (-204)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-683 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-1842 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))) (-1842 (*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204))))) +(-10 -7 (-15 -1842 ((-378) (-378) (-378))) (-15 -1842 ((-378) (-378) (-639 (-378)))) (-15 -3713 ((-378) (-683 (-315 (-224))))) (-15 -4326 ((-683 (-315 (-224))) (-1256 (-315 (-224))) (-639 (-1168)))) (-15 -1433 ((-683 (-315 (-224))) (-683 (-315 (-224))) (-639 (-1168)) (-1256 (-315 (-224))))) (-15 -2745 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-683 (-315 (-224))))) (-15 -3490 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2520 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4382 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2901 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1466 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) +((-4041 (((-112) $ $) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-3747 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 64)) (-1731 (((-112) $ $) NIL))) +(((-205) (-795)) (T -205)) +NIL +(-795) +((-4041 (((-112) $ $) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-3747 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 62)) (-1731 (((-112) $ $) NIL))) +(((-206) (-795)) (T -206)) +NIL +(-795) +((-4041 (((-112) $ $) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-3747 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 66)) (-1731 (((-112) $ $) NIL))) +(((-207) (-795)) (T -207)) +NIL +(-795) +((-4041 (((-112) $ $) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 46)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-3747 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 75)) (-1731 (((-112) $ $) NIL))) +(((-208) (-795)) (T -208)) +NIL +(-795) +((-2852 (((-639 (-1168)) (-1168) (-766)) 23)) (-1673 (((-315 (-224)) (-315 (-224))) 31)) (-2139 (((-112) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 73)) (-1993 (((-112) (-224) (-224) (-639 (-315 (-224)))) 44))) +(((-209) (-10 -7 (-15 -2852 ((-639 (-1168)) (-1168) (-766))) (-15 -1673 ((-315 (-224)) (-315 (-224)))) (-15 -1993 ((-112) (-224) (-224) (-639 (-315 (-224))))) (-15 -2139 ((-112) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))))) (T -209)) +((-2139 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *2 (-112)) (-5 *1 (-209)))) (-1993 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-639 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-209)))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-5 *2 (-639 (-1168))) (-5 *1 (-209)) (-5 *3 (-1168))))) +(-10 -7 (-15 -2852 ((-639 (-1168)) (-1168) (-766))) (-15 -1673 ((-315 (-224)) (-315 (-224)))) (-15 -1993 ((-112) (-224) (-224) (-639 (-315 (-224))))) (-15 -2139 ((-112) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))))) +((-4041 (((-112) $ $) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 26)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-2165 (((-1030) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 57)) (-1731 (((-112) $ $) NIL))) +(((-210) (-890)) (T -210)) +NIL +(-890) +((-4041 (((-112) $ $) NIL)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 21)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-2165 (((-1030) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) NIL)) (-1731 (((-112) $ $) NIL))) +(((-211) (-890)) (T -211)) +NIL +(-890) +((-4041 (((-112) $ $) NIL)) (-1431 ((|#2| $ (-766) |#2|) 11)) (-1420 ((|#2| $ (-766)) 10)) (-1458 (($) 8)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 18)) (-1731 (((-112) $ $) 13))) +(((-212 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -1458 ($)) (-15 -1420 (|#2| $ (-766))) (-15 -1431 (|#2| $ (-766) |#2|)))) (-916) (-1092)) (T -212)) +((-1458 (*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1092)))) (-1420 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *2 (-1092)) (-5 *1 (-212 *4 *2)) (-14 *4 (-916)))) (-1431 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-212 *4 *2)) (-14 *4 (-916)) (-4 *2 (-1092))))) +(-13 (-1092) (-10 -8 (-15 -1458 ($)) (-15 -1420 (|#2| $ (-766))) (-15 -1431 (|#2| $ (-766) |#2|)))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1966 (((-1261) $) 36) (((-1261) $ (-916) (-916)) 38)) (-2343 (($ $ (-984)) 19) (((-244 (-1150)) $ (-1168)) 15)) (-1479 (((-1261) $) 34)) (-4054 (((-857) $) 31) (($ (-639 |#1|)) 8)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $ $) 27)) (-1835 (($ $ $) 22))) +(((-213 |#1|) (-13 (-1092) (-612 (-639 |#1|)) (-10 -8 (-15 -2343 ($ $ (-984))) (-15 -2343 ((-244 (-1150)) $ (-1168))) (-15 -1835 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -1479 ((-1261) $)) (-15 -1966 ((-1261) $)) (-15 -1966 ((-1261) $ (-916) (-916))))) (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1966 ((-1261) $))))) (T -213)) +((-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-984)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1966 ((-1261) $))))))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-244 (-1150))) (-5 *1 (-213 *4)) (-4 *4 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ *3)) (-15 -1479 ((-1261) $)) (-15 -1966 ((-1261) $))))))) (-1835 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1966 ((-1261) $))))))) (-1848 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1966 ((-1261) $))))))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) (-15 -1966 (*2 $))))))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) (-15 -1966 (*2 $))))))) (-1966 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-213 *4)) (-4 *4 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) (-15 -1966 (*2 $)))))))) +(-13 (-1092) (-612 (-639 |#1|)) (-10 -8 (-15 -2343 ($ $ (-984))) (-15 -2343 ((-244 (-1150)) $ (-1168))) (-15 -1835 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -1479 ((-1261) $)) (-15 -1966 ((-1261) $)) (-15 -1966 ((-1261) $ (-916) (-916))))) +((-1770 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1770 (|#2| |#4| (-1 |#2| |#2|)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -214)) +((-1770 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1232 (-406 *2))) (-4 *2 (-1232 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6))))) +(-10 -7 (-15 -1770 (|#2| |#4| (-1 |#2| |#2|)))) +((-4181 ((|#2| |#2| (-766) |#2|) 42)) (-2383 ((|#2| |#2| (-766) |#2|) 38)) (-1797 (((-639 |#2|) (-639 (-2 (|:| |deg| (-766)) (|:| -2754 |#2|)))) 56)) (-3462 (((-639 (-2 (|:| |deg| (-766)) (|:| -2754 |#2|))) |#2|) 52)) (-4009 (((-112) |#2|) 49)) (-3696 (((-417 |#2|) |#2|) 76)) (-1635 (((-417 |#2|) |#2|) 75)) (-1293 ((|#2| |#2| (-766) |#2|) 36)) (-1659 (((-2 (|:| |cont| |#1|) (|:| -1510 (-639 (-2 (|:| |irr| |#2|) (|:| -2762 (-562)))))) |#2| (-112)) 68))) +(((-215 |#1| |#2|) (-10 -7 (-15 -1635 ((-417 |#2|) |#2|)) (-15 -3696 ((-417 |#2|) |#2|)) (-15 -1659 ((-2 (|:| |cont| |#1|) (|:| -1510 (-639 (-2 (|:| |irr| |#2|) (|:| -2762 (-562)))))) |#2| (-112))) (-15 -3462 ((-639 (-2 (|:| |deg| (-766)) (|:| -2754 |#2|))) |#2|)) (-15 -1797 ((-639 |#2|) (-639 (-2 (|:| |deg| (-766)) (|:| -2754 |#2|))))) (-15 -1293 (|#2| |#2| (-766) |#2|)) (-15 -2383 (|#2| |#2| (-766) |#2|)) (-15 -4181 (|#2| |#2| (-766) |#2|)) (-15 -4009 ((-112) |#2|))) (-348) (-1232 |#1|)) (T -215)) +((-4009 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4)))) (-4181 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1232 *4)))) (-2383 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1232 *4)))) (-1293 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1232 *4)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| |deg| (-766)) (|:| -2754 *5)))) (-4 *5 (-1232 *4)) (-4 *4 (-348)) (-5 *2 (-639 *5)) (-5 *1 (-215 *4 *5)))) (-3462 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-639 (-2 (|:| |deg| (-766)) (|:| -2754 *3)))) (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1510 (-639 (-2 (|:| |irr| *3) (|:| -2762 (-562))))))) (-5 *1 (-215 *5 *3)) (-4 *3 (-1232 *5)))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -1635 ((-417 |#2|) |#2|)) (-15 -3696 ((-417 |#2|) |#2|)) (-15 -1659 ((-2 (|:| |cont| |#1|) (|:| -1510 (-639 (-2 (|:| |irr| |#2|) (|:| -2762 (-562)))))) |#2| (-112))) (-15 -3462 ((-639 (-2 (|:| |deg| (-766)) (|:| -2754 |#2|))) |#2|)) (-15 -1797 ((-639 |#2|) (-639 (-2 (|:| |deg| (-766)) (|:| -2754 |#2|))))) (-15 -1293 (|#2| |#2| (-766) |#2|)) (-15 -2383 (|#2| |#2| (-766) |#2|)) (-15 -4181 (|#2| |#2| (-766) |#2|)) (-15 -4009 ((-112) |#2|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 (((-562) $) NIL (|has| (-562) (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL (|has| (-562) (-815)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-562) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-562) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-562) (-1033 (-562))))) (-3961 (((-562) $) NIL) (((-1168) $) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-562) (-1033 (-562)))) (((-562) $) NIL (|has| (-562) (-1033 (-562))))) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-562) (-544)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3519 (((-112) $) NIL (|has| (-562) (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-562) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-562) (-881 (-378))))) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL)) (-4065 (((-562) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| (-562) (-1143)))) (-3392 (((-112) $) NIL (|has| (-562) (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-562) (-845)))) (-4152 (($ (-1 (-562) (-562)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-562) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL (|has| (-562) (-306))) (((-406 (-562)) $) NIL)) (-4014 (((-562) $) NIL (|has| (-562) (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-562)) (-639 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-562) (-562)) NIL (|has| (-562) (-308 (-562)))) (($ $ (-293 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-293 (-562)))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-1168)) (-639 (-562))) NIL (|has| (-562) (-513 (-1168) (-562)))) (($ $ (-1168) (-562)) NIL (|has| (-562) (-513 (-1168) (-562))))) (-1577 (((-766) $) NIL)) (-2343 (($ $ (-562)) NIL (|has| (-562) (-285 (-562) (-562))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-3658 (($ $) NIL)) (-4076 (((-562) $) NIL)) (-3687 (($ (-406 (-562))) 9)) (-4208 (((-887 (-562)) $) NIL (|has| (-562) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-562) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-562) (-610 (-535)))) (((-378) $) NIL (|has| (-562) (-1017))) (((-224) $) NIL (|has| (-562) (-1017)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-562) (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 8) (($ (-562)) NIL) (($ (-1168)) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL) (((-999 10) $) 10)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-562) (-904))) (|has| (-562) (-144))))) (-2579 (((-766)) NIL)) (-2604 (((-562) $) NIL (|has| (-562) (-544)))) (-2922 (((-112) $ $) NIL)) (-3526 (($ $) NIL (|has| (-562) (-815)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1759 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1859 (($ $ $) NIL) (($ (-562) (-562)) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-562) $) NIL) (($ $ (-562)) NIL))) +(((-216) (-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 10)) (-10 -8 (-15 -2736 ((-406 (-562)) $)) (-15 -3687 ($ (-406 (-562))))))) (T -216)) +((-2736 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-216)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-216))))) +(-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 10)) (-10 -8 (-15 -2736 ((-406 (-562)) $)) (-15 -3687 ($ (-406 (-562)))))) +((-4041 (((-112) $ $) NIL)) (-2845 (((-1110) $) 13)) (-2913 (((-1150) $) NIL)) (-3063 (((-482) $) 10)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 25) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 15)) (-1731 (((-112) $ $) NIL))) +(((-217) (-13 (-1075) (-10 -8 (-15 -3063 ((-482) $)) (-15 -2845 ((-1110) $)) (-15 -3265 ((-1127) $))))) (T -217)) +((-3063 (*1 *2 *1) (-12 (-5 *2 (-482)) (-5 *1 (-217)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-217)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-217))))) +(-13 (-1075) (-10 -8 (-15 -3063 ((-482) $)) (-15 -2845 ((-1110) $)) (-15 -3265 ((-1127) $)))) +((-2667 (((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)) (-1150)) 28) (((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|))) 24)) (-2407 (((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1168) (-838 |#2|) (-838 |#2|) (-112)) 17))) +(((-218 |#1| |#2|) (-10 -7 (-15 -2667 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)))) (-15 -2667 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)) (-1150))) (-15 -2407 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1168) (-838 |#2|) (-838 |#2|) (-112)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-954) (-29 |#1|))) (T -218)) +((-2407 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1168)) (-5 *6 (-112)) (-4 *7 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-4 *3 (-13 (-1192) (-954) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *7 *3)) (-5 *5 (-838 *3)))) (-2667 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084 (-838 *3))) (-5 *5 (-1150)) (-4 *3 (-13 (-1192) (-954) (-29 *6))) (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *6 *3)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-838 *3))) (-4 *3 (-13 (-1192) (-954) (-29 *5))) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *5 *3))))) +(-10 -7 (-15 -2667 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)))) (-15 -2667 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)) (-1150))) (-15 -2407 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1168) (-838 |#2|) (-838 |#2|) (-112)))) +((-2667 (((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))) (-1150)) 46) (((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|))))) 43) (((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))) (-1150)) 47) (((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|)))) 20))) +(((-219 |#1|) (-10 -7 (-15 -2667 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))))) (-15 -2667 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))) (-1150))) (-15 -2667 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))))) (-15 -2667 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))) (-1150)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (T -219)) +((-2667 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084 (-838 (-406 (-947 *6))))) (-5 *5 (-1150)) (-5 *3 (-406 (-947 *6))) (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 (-315 *6))) (|:| |f2| (-639 (-838 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-838 (-406 (-947 *5))))) (-5 *3 (-406 (-947 *5))) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 (-315 *5))) (|:| |f2| (-639 (-838 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))) (-2667 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-406 (-947 *6))) (-5 *4 (-1084 (-838 (-315 *6)))) (-5 *5 (-1150)) (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 (-315 *6))) (|:| |f2| (-639 (-838 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1084 (-838 (-315 *5)))) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 (-315 *5))) (|:| |f2| (-639 (-838 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5))))) +(-10 -7 (-15 -2667 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))))) (-15 -2667 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))) (-1150))) (-15 -2667 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))))) (-15 -2667 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))) (-1150)))) +((-1955 (((-2 (|:| -4380 (-1164 |#1|)) (|:| |deg| (-916))) (-1164 |#1|)) 21)) (-3525 (((-639 (-315 |#2|)) (-315 |#2|) (-916)) 42))) +(((-220 |#1| |#2|) (-10 -7 (-15 -1955 ((-2 (|:| -4380 (-1164 |#1|)) (|:| |deg| (-916))) (-1164 |#1|))) (-15 -3525 ((-639 (-315 |#2|)) (-315 |#2|) (-916)))) (-1044) (-13 (-554) (-845))) (T -220)) +((-3525 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-4 *6 (-13 (-554) (-845))) (-5 *2 (-639 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1044)))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-2 (|:| -4380 (-1164 *4)) (|:| |deg| (-916)))) (-5 *1 (-220 *4 *5)) (-5 *3 (-1164 *4)) (-4 *5 (-13 (-554) (-845)))))) +(-10 -7 (-15 -1955 ((-2 (|:| -4380 (-1164 |#1|)) (|:| |deg| (-916))) (-1164 |#1|))) (-15 -3525 ((-639 (-315 |#2|)) (-315 |#2|) (-916)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2169 ((|#1| $) NIL)) (-2775 ((|#1| $) 25)) (-4336 (((-112) $ (-766)) NIL)) (-1800 (($) NIL T CONST)) (-3109 (($ $) NIL)) (-2447 (($ $) 31)) (-2737 ((|#1| |#1| $) NIL)) (-3064 ((|#1| $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-3641 (((-766) $) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3262 ((|#1| $) NIL)) (-3988 ((|#1| |#1| $) 28)) (-1381 ((|#1| |#1| $) 30)) (-4300 (($ |#1| $) NIL)) (-3060 (((-766) $) 27)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3516 ((|#1| $) NIL)) (-2840 ((|#1| $) 26)) (-3833 ((|#1| $) 24)) (-1904 ((|#1| $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2391 ((|#1| |#1| $) NIL)) (-2974 (((-112) $) 9)) (-4307 (($) NIL)) (-3872 ((|#1| $) NIL)) (-3543 (($) NIL) (($ (-639 |#1|)) 16)) (-2193 (((-766) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2549 ((|#1| $) 13)) (-1932 (($ (-639 |#1|)) NIL)) (-3686 ((|#1| $) NIL)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-221 |#1|) (-13 (-253 |#1|) (-10 -8 (-15 -3543 ($ (-639 |#1|))))) (-1092)) (T -221)) +((-3543 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-221 *3))))) +(-13 (-253 |#1|) (-10 -8 (-15 -3543 ($ (-639 |#1|))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4044 (($ (-315 |#1|)) 23)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-2585 (((-112) $) NIL)) (-4048 (((-3 (-315 |#1|) "failed") $) NIL)) (-3961 (((-315 |#1|) $) NIL)) (-1601 (($ $) 31)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-4152 (($ (-1 (-315 |#1|) (-315 |#1|)) $) NIL)) (-1573 (((-315 |#1|) $) NIL)) (-2765 (($ $) 30)) (-2913 (((-1150) $) NIL)) (-3083 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3148 (($ (-766)) NIL)) (-4160 (($ $) 32)) (-3598 (((-562) $) NIL)) (-4054 (((-857) $) 57) (($ (-562)) NIL) (($ (-315 |#1|)) NIL)) (-3906 (((-315 |#1|) $ $) NIL)) (-2579 (((-766)) NIL)) (-2286 (($) 25 T CONST)) (-2294 (($) 50 T CONST)) (-1731 (((-112) $ $) 28)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 19)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 24) (($ (-315 |#1|) $) 18))) +(((-222 |#1| |#2|) (-13 (-616 (-315 |#1|)) (-1033 (-315 |#1|)) (-10 -8 (-15 -1573 ((-315 |#1|) $)) (-15 -2765 ($ $)) (-15 -1601 ($ $)) (-15 -3906 ((-315 |#1|) $ $)) (-15 -3148 ($ (-766))) (-15 -3083 ((-112) $)) (-15 -2585 ((-112) $)) (-15 -3598 ((-562) $)) (-15 -4152 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -4044 ($ (-315 |#1|))) (-15 -4160 ($ $)))) (-13 (-1044) (-845)) (-639 (-1168))) (T -222)) +((-1573 (*1 *2 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-2765 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) (-14 *3 (-639 (-1168))))) (-1601 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) (-14 *3 (-639 (-1168))))) (-3906 (*1 *2 *1 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1044) (-845))) (-5 *1 (-222 *3 *4)) (-14 *4 (-639 (-1168))))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1044) (-845))) (-5 *1 (-222 *3 *4)) (-14 *4 (-639 (-1168))))) (-4160 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) (-14 *3 (-639 (-1168)))))) +(-13 (-616 (-315 |#1|)) (-1033 (-315 |#1|)) (-10 -8 (-15 -1573 ((-315 |#1|) $)) (-15 -2765 ($ $)) (-15 -1601 ($ $)) (-15 -3906 ((-315 |#1|) $ $)) (-15 -3148 ($ (-766))) (-15 -3083 ((-112) $)) (-15 -2585 ((-112) $)) (-15 -3598 ((-562) $)) (-15 -4152 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -4044 ($ (-315 |#1|))) (-15 -4160 ($ $)))) +((-1319 (((-112) (-1150)) 22)) (-2982 (((-3 (-838 |#2|) "failed") (-608 |#2|) |#2| (-838 |#2|) (-838 |#2|) (-112)) 32)) (-2692 (((-3 (-112) "failed") (-1164 |#2|) (-838 |#2|) (-838 |#2|) (-112)) 73) (((-3 (-112) "failed") (-947 |#1|) (-1168) (-838 |#2|) (-838 |#2|) (-112)) 74))) +(((-223 |#1| |#2|) (-10 -7 (-15 -1319 ((-112) (-1150))) (-15 -2982 ((-3 (-838 |#2|) "failed") (-608 |#2|) |#2| (-838 |#2|) (-838 |#2|) (-112))) (-15 -2692 ((-3 (-112) "failed") (-947 |#1|) (-1168) (-838 |#2|) (-838 |#2|) (-112))) (-15 -2692 ((-3 (-112) "failed") (-1164 |#2|) (-838 |#2|) (-838 |#2|) (-112)))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-29 |#1|))) (T -223)) +((-2692 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1164 *6)) (-5 *4 (-838 *6)) (-4 *6 (-13 (-1192) (-29 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-223 *5 *6)))) (-2692 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-947 *6)) (-5 *4 (-1168)) (-5 *5 (-838 *7)) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-4 *7 (-13 (-1192) (-29 *6))) (-5 *1 (-223 *6 *7)))) (-2982 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-838 *4)) (-5 *3 (-608 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1192) (-29 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-223 *6 *4)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1192) (-29 *4)))))) +(-10 -7 (-15 -1319 ((-112) (-1150))) (-15 -2982 ((-3 (-838 |#2|) "failed") (-608 |#2|) |#2| (-838 |#2|) (-838 |#2|) (-112))) (-15 -2692 ((-3 (-112) "failed") (-947 |#1|) (-1168) (-838 |#2|) (-838 |#2|) (-112))) (-15 -2692 ((-3 (-112) "failed") (-1164 |#2|) (-838 |#2|) (-838 |#2|) (-112)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 87)) (-4246 (((-562) $) 98)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2557 (($ $) NIL)) (-2988 (($ $) 75)) (-4097 (($ $) 63)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-1643 (($ $) 54)) (-2569 (((-112) $ $) NIL)) (-4207 (($ $) 73)) (-4074 (($ $) 61)) (-2277 (((-562) $) 115)) (-3014 (($ $) 78)) (-4119 (($ $) 65)) (-1800 (($) NIL T CONST)) (-4103 (($ $) NIL)) (-4048 (((-3 (-562) "failed") $) 114) (((-3 (-406 (-562)) "failed") $) 111)) (-3961 (((-562) $) 112) (((-406 (-562)) $) 109)) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) 91)) (-4248 (((-406 (-562)) $ (-766)) 107) (((-406 (-562)) $ (-766) (-766)) 106)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3327 (((-916)) 27) (((-916) (-916)) NIL (|has| $ (-6 -4393)))) (-3519 (((-112) $) NIL)) (-4100 (($) 37)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL)) (-1900 (((-562) $) 33)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL)) (-2247 (($ $) NIL)) (-3392 (((-112) $) 86)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) 51) (($) 32 (-12 (-2236 (|has| $ (-6 -4385))) (-2236 (|has| $ (-6 -4393)))))) (-2993 (($ $ $) 50) (($) 31 (-12 (-2236 (|has| $ (-6 -4385))) (-2236 (|has| $ (-6 -4393)))))) (-3946 (((-562) $) 25)) (-2572 (($ $) 28)) (-2983 (($ $) 55)) (-4365 (($ $) 60)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3544 (((-916) (-562)) NIL (|has| $ (-6 -4393)))) (-1709 (((-1112) $) 89)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL)) (-4014 (($ $) NIL)) (-4235 (($ (-562) (-562)) NIL) (($ (-562) (-562) (-916)) 99)) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1960 (((-562) $) 26)) (-3978 (($) 36)) (-3430 (($ $) 59)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3280 (((-916)) NIL) (((-916) (-916)) NIL (|has| $ (-6 -4393)))) (-4029 (($ $ (-766)) NIL) (($ $) 92)) (-2015 (((-916) (-562)) NIL (|has| $ (-6 -4393)))) (-3023 (($ $) 76)) (-4130 (($ $) 66)) (-3001 (($ $) 77)) (-4108 (($ $) 64)) (-2978 (($ $) 74)) (-4087 (($ $) 62)) (-4208 (((-378) $) 103) (((-224) $) 100) (((-887 (-378)) $) NIL) (((-535) $) 43)) (-4054 (((-857) $) 40) (($ (-562)) 58) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-562)) 58) (($ (-406 (-562))) NIL)) (-2579 (((-766)) NIL)) (-2604 (($ $) NIL)) (-3366 (((-916)) 30) (((-916) (-916)) NIL (|has| $ (-6 -4393)))) (-3241 (((-916)) 23)) (-3055 (($ $) 81)) (-4165 (($ $) 69) (($ $ $) 108)) (-2922 (((-112) $ $) NIL)) (-3033 (($ $) 79)) (-4138 (($ $) 67)) (-3078 (($ $) 84)) (-4182 (($ $) 72)) (-1566 (($ $) 82)) (-4195 (($ $) 70)) (-3066 (($ $) 83)) (-4174 (($ $) 71)) (-3044 (($ $) 80)) (-4151 (($ $) 68)) (-3526 (($ $) 116)) (-2286 (($) 34 T CONST)) (-2294 (($) 35 T CONST)) (-2833 (((-1150) $) 17) (((-1150) $ (-112)) 19) (((-1261) (-817) $) 20) (((-1261) (-817) $ (-112)) 21)) (-3819 (($ $) 95)) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-2088 (($ $ $) 97)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 52)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 44)) (-1859 (($ $ $) 85) (($ $ (-562)) 53)) (-1848 (($ $) 45) (($ $ $) 47)) (-1835 (($ $ $) 46)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 56) (($ $ (-406 (-562))) 127) (($ $ $) 57)) (* (($ (-916) $) 29) (($ (-766) $) NIL) (($ (-562) $) 49) (($ $ $) 48) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) +(((-224) (-13 (-403) (-232) (-823) (-1192) (-610 (-535)) (-10 -8 (-15 -1859 ($ $ (-562))) (-15 ** ($ $ $)) (-15 -3978 ($)) (-15 -2572 ($ $)) (-15 -2983 ($ $)) (-15 -4165 ($ $ $)) (-15 -3819 ($ $)) (-15 -2088 ($ $ $)) (-15 -4248 ((-406 (-562)) $ (-766))) (-15 -4248 ((-406 (-562)) $ (-766) (-766)))))) (T -224)) +((** (*1 *1 *1 *1) (-5 *1 (-224))) (-1859 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-224)))) (-3978 (*1 *1) (-5 *1 (-224))) (-2572 (*1 *1 *1) (-5 *1 (-224))) (-2983 (*1 *1 *1) (-5 *1 (-224))) (-4165 (*1 *1 *1 *1) (-5 *1 (-224))) (-3819 (*1 *1 *1) (-5 *1 (-224))) (-2088 (*1 *1 *1 *1) (-5 *1 (-224))) (-4248 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-224)))) (-4248 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-224))))) +(-13 (-403) (-232) (-823) (-1192) (-610 (-535)) (-10 -8 (-15 -1859 ($ $ (-562))) (-15 ** ($ $ $)) (-15 -3978 ($)) (-15 -2572 ($ $)) (-15 -2983 ($ $)) (-15 -4165 ($ $ $)) (-15 -3819 ($ $)) (-15 -2088 ($ $ $)) (-15 -4248 ((-406 (-562)) $ (-766))) (-15 -4248 ((-406 (-562)) $ (-766) (-766))))) +((-4230 (((-168 (-224)) (-766) (-168 (-224))) 11) (((-224) (-766) (-224)) 12)) (-2364 (((-168 (-224)) (-168 (-224))) 13) (((-224) (-224)) 14)) (-4030 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 19) (((-224) (-224) (-224)) 22)) (-2791 (((-168 (-224)) (-168 (-224))) 25) (((-224) (-224)) 24)) (-3690 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 43) (((-224) (-224) (-224)) 35)) (-1868 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 48) (((-224) (-224) (-224)) 45)) (-4266 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 15) (((-224) (-224) (-224)) 16)) (-3350 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 17) (((-224) (-224) (-224)) 18)) (-2190 (((-168 (-224)) (-168 (-224))) 60) (((-224) (-224)) 59)) (-3402 (((-224) (-224)) 54) (((-168 (-224)) (-168 (-224))) 58)) (-3819 (((-168 (-224)) (-168 (-224))) 8) (((-224) (-224)) 9)) (-2088 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 30) (((-224) (-224) (-224)) 26))) +(((-225) (-10 -7 (-15 -3819 ((-224) (-224))) (-15 -3819 ((-168 (-224)) (-168 (-224)))) (-15 -2088 ((-224) (-224) (-224))) (-15 -2088 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2364 ((-224) (-224))) (-15 -2364 ((-168 (-224)) (-168 (-224)))) (-15 -2791 ((-224) (-224))) (-15 -2791 ((-168 (-224)) (-168 (-224)))) (-15 -4230 ((-224) (-766) (-224))) (-15 -4230 ((-168 (-224)) (-766) (-168 (-224)))) (-15 -4266 ((-224) (-224) (-224))) (-15 -4266 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3690 ((-224) (-224) (-224))) (-15 -3690 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3350 ((-224) (-224) (-224))) (-15 -3350 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1868 ((-224) (-224) (-224))) (-15 -1868 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3402 ((-168 (-224)) (-168 (-224)))) (-15 -3402 ((-224) (-224))) (-15 -2190 ((-224) (-224))) (-15 -2190 ((-168 (-224)) (-168 (-224)))) (-15 -4030 ((-224) (-224) (-224))) (-15 -4030 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))) (T -225)) +((-4030 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-4030 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2190 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2190 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1868 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1868 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3350 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3350 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3690 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3690 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-4266 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-4266 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-4230 (*1 *2 *3 *2) (-12 (-5 *2 (-168 (-224))) (-5 *3 (-766)) (-5 *1 (-225)))) (-4230 (*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-766)) (-5 *1 (-225)))) (-2791 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2791 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2088 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2088 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))) +(-10 -7 (-15 -3819 ((-224) (-224))) (-15 -3819 ((-168 (-224)) (-168 (-224)))) (-15 -2088 ((-224) (-224) (-224))) (-15 -2088 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2364 ((-224) (-224))) (-15 -2364 ((-168 (-224)) (-168 (-224)))) (-15 -2791 ((-224) (-224))) (-15 -2791 ((-168 (-224)) (-168 (-224)))) (-15 -4230 ((-224) (-766) (-224))) (-15 -4230 ((-168 (-224)) (-766) (-168 (-224)))) (-15 -4266 ((-224) (-224) (-224))) (-15 -4266 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3690 ((-224) (-224) (-224))) (-15 -3690 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3350 ((-224) (-224) (-224))) (-15 -3350 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1868 ((-224) (-224) (-224))) (-15 -1868 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3402 ((-168 (-224)) (-168 (-224)))) (-15 -3402 ((-224) (-224))) (-15 -2190 ((-224) (-224))) (-15 -2190 ((-168 (-224)) (-168 (-224)))) (-15 -4030 ((-224) (-224) (-224))) (-15 -4030 ((-168 (-224)) (-168 (-224)) (-168 (-224))))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2911 (($ (-766) (-766)) NIL)) (-2654 (($ $ $) NIL)) (-2529 (($ (-1256 |#1|)) NIL) (($ $) NIL)) (-3817 (($ |#1| |#1| |#1|) 32)) (-2952 (((-112) $) NIL)) (-2188 (($ $ (-562) (-562)) NIL)) (-2467 (($ $ (-562) (-562)) NIL)) (-1593 (($ $ (-562) (-562) (-562) (-562)) NIL)) (-3886 (($ $) NIL)) (-3220 (((-112) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-4212 (($ $ (-562) (-562) $) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562)) $) NIL)) (-1928 (($ $ (-562) (-1256 |#1|)) NIL)) (-3003 (($ $ (-562) (-1256 |#1|)) NIL)) (-3878 (($ |#1| |#1| |#1|) 31)) (-2554 (($ (-766) |#1|) NIL)) (-1800 (($) NIL T CONST)) (-2522 (($ $) NIL (|has| |#1| (-306)))) (-3796 (((-1256 |#1|) $ (-562)) NIL)) (-2695 (($ |#1|) 30)) (-1318 (($ |#1|) 29)) (-3079 (($ |#1|) 28)) (-2173 (((-766) $) NIL (|has| |#1| (-554)))) (-1505 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-3922 (((-766) $) NIL (|has| |#1| (-554)))) (-2318 (((-639 (-1256 |#1|)) $) NIL (|has| |#1| (-554)))) (-2699 (((-766) $) NIL)) (-1458 (($ (-766) (-766) |#1|) NIL)) (-2709 (((-766) $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-2280 ((|#1| $) NIL (|has| |#1| (-6 (-4404 "*"))))) (-2783 (((-562) $) NIL)) (-4217 (((-562) $) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4088 (((-562) $) NIL)) (-2453 (((-562) $) NIL)) (-2885 (($ (-639 (-639 |#1|))) 11)) (-1490 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2824 (((-639 (-639 |#1|)) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3494 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-1768 (($) 12)) (-2309 (($ $ $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2716 (($ $ |#1|) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562))) NIL)) (-3448 (($ (-639 |#1|)) NIL) (($ (-639 $)) NIL)) (-1544 (((-112) $) NIL)) (-3770 ((|#1| $) NIL (|has| |#1| (-6 (-4404 "*"))))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2211 (((-1256 |#1|) $ (-562)) NIL)) (-4054 (($ (-1256 |#1|)) NIL) (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1335 (((-112) $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $ $) NIL) (($ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-562) $) NIL) (((-1256 |#1|) $ (-1256 |#1|)) 15) (((-1256 |#1|) (-1256 |#1|) $) NIL) (((-938 |#1|) $ (-938 |#1|)) 20)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-226 |#1|) (-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 * ((-938 |#1|) $ (-938 |#1|))) (-15 -1768 ($)) (-15 -3079 ($ |#1|)) (-15 -1318 ($ |#1|)) (-15 -2695 ($ |#1|)) (-15 -3878 ($ |#1| |#1| |#1|)) (-15 -3817 ($ |#1| |#1| |#1|)))) (-13 (-362) (-1192))) (T -226)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192))) (-5 *1 (-226 *3)))) (-1768 (*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-3079 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-1318 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-2695 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-3878 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-3817 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) +(-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 * ((-938 |#1|) $ (-938 |#1|))) (-15 -1768 ($)) (-15 -3079 ($ |#1|)) (-15 -1318 ($ |#1|)) (-15 -2695 ($ |#1|)) (-15 -3878 ($ |#1| |#1| |#1|)) (-15 -3817 ($ |#1| |#1| |#1|)))) +((-3111 (($ (-1 (-112) |#2|) $) 15)) (-4000 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-3564 (($) NIL) (($ (-639 |#2|)) 11)) (-1731 (((-112) $ $) 22))) +(((-227 |#1| |#2|) (-10 -8 (-15 -3111 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4000 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4000 (|#1| |#2| |#1|)) (-15 -3564 (|#1| (-639 |#2|))) (-15 -3564 (|#1|)) (-15 -1731 ((-112) |#1| |#1|))) (-228 |#2|) (-1092)) (T -227)) +NIL +(-10 -8 (-15 -3111 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4000 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4000 (|#1| |#2| |#1|)) (-15 -3564 (|#1| (-639 |#2|))) (-15 -3564 (|#1|)) (-15 -1731 ((-112) |#1| |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-3111 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ |#1| $) 47 (|has| $ (-6 -4402))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4402)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4402)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-3564 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 50)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) 42)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-228 |#1|) (-139) (-1092)) (T -228)) NIL (-13 (-234 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-4217 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) 11) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) 19) (($ $ (-765)) NIL) (($ $) 16)) (-3051 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-765)) 14) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL))) -(((-229 |#1| |#2|) (-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -3051 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3051 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3051 (|#1| |#1| (-1166))) (-15 -3051 (|#1| |#1| (-635 (-1166)))) (-15 -3051 (|#1| |#1| (-1166) (-765))) (-15 -3051 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3051 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3051 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|)))) (-230 |#2|) (-1042)) (T -229)) -NIL -(-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -3051 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3051 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3051 (|#1| |#1| (-1166))) (-15 -3051 (|#1| |#1| (-635 (-1166)))) (-15 -3051 (|#1| |#1| (-1166) (-765))) (-15 -3051 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3051 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -3051 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4217 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-765)) 51) (($ $ (-635 (-1166)) (-635 (-765))) 44 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 43 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 42 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 41 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 39 (|has| |#1| (-232))) (($ $) 37 (|has| |#1| (-232)))) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-765)) 49) (($ $ (-635 (-1166)) (-635 (-765))) 48 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 47 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 46 (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 45 (|has| |#1| (-893 (-1166)))) (($ $ (-765)) 40 (|has| |#1| (-232))) (($ $) 38 (|has| |#1| (-232)))) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-230 |#1|) (-139) (-1042)) (T -230)) -((-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) (-3051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042))))) -(-13 (-1042) (-10 -8 (-15 -4217 ($ $ (-1 |t#1| |t#1|))) (-15 -4217 ($ $ (-1 |t#1| |t#1|) (-765))) (-15 -3051 ($ $ (-1 |t#1| |t#1|))) (-15 -3051 ($ $ (-1 |t#1| |t#1|) (-765))) (IF (|has| |t#1| (-232)) (-6 (-232)) |%noBranch|) (IF (|has| |t#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-232) |has| |#1| (-232)) ((-641 $) . T) ((-720) . T) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-4217 (($ $) NIL) (($ $ (-765)) 10)) (-3051 (($ $) 8) (($ $ (-765)) 12))) -(((-231 |#1|) (-10 -8 (-15 -3051 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-765))) (-15 -3051 (|#1| |#1|)) (-15 -4217 (|#1| |#1|))) (-232)) (T -231)) -NIL -(-10 -8 (-15 -3051 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-765))) (-15 -3051 (|#1| |#1|)) (-15 -4217 (|#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4217 (($ $) 38) (($ $ (-765)) 36)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $) 37) (($ $ (-765)) 35)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-4029 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) 11) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) 19) (($ $ (-766)) NIL) (($ $) 16)) (-3114 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-766)) 14) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL))) +(((-229 |#1| |#2|) (-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3114 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3114 (|#1| |#1| (-1168))) (-15 -3114 (|#1| |#1| (-639 (-1168)))) (-15 -3114 (|#1| |#1| (-1168) (-766))) (-15 -3114 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3114 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -3114 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|)))) (-230 |#2|) (-1044)) (T -229)) +NIL +(-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3114 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3114 (|#1| |#1| (-1168))) (-15 -3114 (|#1| |#1| (-639 (-1168)))) (-15 -3114 (|#1| |#1| (-1168) (-766))) (-15 -3114 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3114 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -3114 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4029 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-766)) 51) (($ $ (-639 (-1168)) (-639 (-766))) 44 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 43 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 42 (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 41 (|has| |#1| (-895 (-1168)))) (($ $ (-766)) 39 (|has| |#1| (-232))) (($ $) 37 (|has| |#1| (-232)))) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-766)) 49) (($ $ (-639 (-1168)) (-639 (-766))) 48 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 47 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 46 (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 45 (|has| |#1| (-895 (-1168)))) (($ $ (-766)) 40 (|has| |#1| (-232))) (($ $) 38 (|has| |#1| (-232)))) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-230 |#1|) (-139) (-1044)) (T -230)) +((-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1044)))) (-4029 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *1 (-230 *4)) (-4 *4 (-1044)))) (-3114 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1044)))) (-3114 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *1 (-230 *4)) (-4 *4 (-1044))))) +(-13 (-1044) (-10 -8 (-15 -4029 ($ $ (-1 |t#1| |t#1|))) (-15 -4029 ($ $ (-1 |t#1| |t#1|) (-766))) (-15 -3114 ($ $ (-1 |t#1| |t#1|))) (-15 -3114 ($ $ (-1 |t#1| |t#1|) (-766))) (IF (|has| |t#1| (-232)) (-6 (-232)) |%noBranch|) (IF (|has| |t#1| (-895 (-1168))) (-6 (-895 (-1168))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-232) |has| |#1| (-232)) ((-642 $) . T) ((-721) . T) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4029 (($ $) NIL) (($ $ (-766)) 10)) (-3114 (($ $) 8) (($ $ (-766)) 12))) +(((-231 |#1|) (-10 -8 (-15 -3114 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-766))) (-15 -3114 (|#1| |#1|)) (-15 -4029 (|#1| |#1|))) (-232)) (T -231)) +NIL +(-10 -8 (-15 -3114 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-766))) (-15 -3114 (|#1| |#1|)) (-15 -4029 (|#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4029 (($ $) 38) (($ $ (-766)) 36)) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $) 37) (($ $ (-766)) 35)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-232) (-139)) (T -232)) -((-4217 (*1 *1 *1) (-4 *1 (-232))) (-3051 (*1 *1 *1) (-4 *1 (-232))) (-4217 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765)))) (-3051 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765))))) -(-13 (-1042) (-10 -8 (-15 -4217 ($ $)) (-15 -3051 ($ $)) (-15 -4217 ($ $ (-765))) (-15 -3051 ($ $ (-765))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-1550 (($) 12) (($ (-635 |#2|)) NIL)) (-3804 (($ $) 14)) (-3929 (($ (-635 |#2|)) 10)) (-4353 (((-857) $) 21))) -(((-233 |#1| |#2|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -1550 (|#1| (-635 |#2|))) (-15 -1550 (|#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -3804 (|#1| |#1|))) (-234 |#2|) (-1091)) (T -233)) -NIL -(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -1550 (|#1| (-635 |#2|))) (-15 -1550 (|#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -3804 (|#1| |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-234 |#1|) (-139) (-1091)) (T -234)) -((-1550 (*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1091)))) (-1550 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-234 *3)))) (-3809 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-234 *2)) (-4 *2 (-1091)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-234 *3)) (-4 *3 (-1091)))) (-1659 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-234 *3)) (-4 *3 (-1091))))) -(-13 (-107 |t#1|) (-150 |t#1|) (-10 -8 (-15 -1550 ($)) (-15 -1550 ($ (-635 |t#1|))) (IF (|has| $ (-6 -4400)) (PROGN (-15 -3809 ($ |t#1| $)) (-15 -3809 ($ (-1 (-112) |t#1|) $)) (-15 -1659 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-1551 (((-2 (|:| |varOrder| (-635 (-1166))) (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed")) (|:| |hom| (-635 (-1253 (-765))))) (-292 (-939 (-544)))) 27))) -(((-235) (-10 -7 (-15 -1551 ((-2 (|:| |varOrder| (-635 (-1166))) (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed")) (|:| |hom| (-635 (-1253 (-765))))) (-292 (-939 (-544))))))) (T -235)) -((-1551 (*1 *2 *3) (-12 (-5 *3 (-292 (-939 (-544)))) (-5 *2 (-2 (|:| |varOrder| (-635 (-1166))) (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed")) (|:| |hom| (-635 (-1253 (-765)))))) (-5 *1 (-235))))) -(-10 -7 (-15 -1551 ((-2 (|:| |varOrder| (-635 (-1166))) (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed")) (|:| |hom| (-635 (-1253 (-765))))) (-292 (-939 (-544)))))) -((-3521 (((-765)) 51)) (-2401 (((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) 49) (((-682 |#3|) (-682 $)) 41) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-4318 (((-133)) 57)) (-4217 (($ $ (-1 |#3| |#3|) (-765)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-4353 (((-1253 |#3|) $) NIL) (($ |#3|) NIL) (((-857) $) NIL) (($ (-544)) 12) (($ (-406 (-544))) NIL)) (-3511 (((-765)) 15)) (-4356 (($ $ |#3|) 54))) -(((-236 |#1| |#2| |#3|) (-10 -8 (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)) (-15 -3511 ((-765))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -4353 (|#1| |#3|)) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -2401 ((-682 |#3|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -3521 ((-765))) (-15 -4356 (|#1| |#1| |#3|)) (-15 -4318 ((-133))) (-15 -4353 ((-1253 |#3|) |#1|))) (-237 |#2| |#3|) (-765) (-1204)) (T -236)) -((-4318 (*1 *2) (-12 (-14 *4 (-765)) (-4 *5 (-1204)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-3521 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1204)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-3511 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1204)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))) -(-10 -8 (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|)) (-15 -3511 ((-765))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -4353 (|#1| |#3|)) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -2401 ((-682 |#3|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -3521 ((-765))) (-15 -4356 (|#1| |#1| |#3|)) (-15 -4318 ((-133))) (-15 -4353 ((-1253 |#3|) |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#2| (-1091)))) (-3589 (((-112) $) 72 (|has| |#2| (-130)))) (-4114 (($ (-912)) 125 (|has| |#2| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-2778 (($ $ $) 121 (|has| |#2| (-787)))) (-1391 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1293 (((-112) $ (-765)) 8)) (-3521 (((-765)) 107 (|has| |#2| (-367)))) (-4030 (((-544) $) 119 (|has| |#2| (-842)))) (-4194 ((|#2| $ (-544) |#2|) 52 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 67 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-3 (-406 (-544)) #1#) $) 64 (-3240 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1091)))) (-3557 (((-544) $) 66 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-406 (-544)) $) 63 (-3240 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) ((|#2| $) 62 (|has| |#2| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) 106 (-3240 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 105 (-3240 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 104 (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) 103 (|has| |#2| (-1042)))) (-3866 (((-3 $ "failed") $) 79 (|has| |#2| (-720)))) (-3377 (($) 110 (|has| |#2| (-367)))) (-1665 ((|#2| $ (-544) |#2|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ (-544)) 51)) (-3587 (((-112) $) 117 (|has| |#2| (-842)))) (-2096 (((-635 |#2|) $) 30 (|has| $ (-6 -4400)))) (-2545 (((-112) $) 81 (|has| |#2| (-720)))) (-3588 (((-112) $) 118 (|has| |#2| (-842)))) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 116 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-2554 (((-635 |#2|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 115 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-2100 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) 35)) (-2160 (((-912) $) 109 (|has| |#2| (-367)))) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#2| (-1091)))) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-2535 (($ (-912)) 108 (|has| |#2| (-367)))) (-3644 (((-1110) $) 21 (|has| |#2| (-1091)))) (-4207 ((|#2| $) 42 (|has| (-544) (-844)))) (-2345 (($ $ |#2|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#2| $ (-544) |#2|) 50) ((|#2| $ (-544)) 49)) (-4243 ((|#2| $ $) 124 (|has| |#2| (-1042)))) (-1552 (($ (-1253 |#2|)) 126)) (-4318 (((-133)) 123 (|has| |#2| (-362)))) (-4217 (($ $) 98 (-3240 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) 96 (-3240 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) 94 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) 93 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) 92 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) 91 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) 84 (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1042)))) (-2097 (((-765) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4400))) (((-765) |#2| $) 28 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-1253 |#2|) $) 127) (($ (-544)) 68 (-3936 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042)))) (($ (-406 (-544))) 65 (-3240 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (($ |#2|) 60 (|has| |#2| (-1091))) (((-857) $) 18 (|has| |#2| (-608 (-857))))) (-3511 (((-765)) 102 (|has| |#2| (-1042)))) (-2099 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4400)))) (-3787 (($ $) 120 (|has| |#2| (-842)))) (-3040 (($) 71 (|has| |#2| (-130)) CONST)) (-3046 (($) 82 (|has| |#2| (-720)) CONST)) (-3051 (($ $) 97 (-3240 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) 95 (-3240 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) 90 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) 89 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) 88 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) 87 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) 86 (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1042)))) (-2945 (((-112) $ $) 113 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-2946 (((-112) $ $) 112 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-3437 (((-112) $ $) 20 (|has| |#2| (-1091)))) (-3066 (((-112) $ $) 114 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-3067 (((-112) $ $) 111 (-3936 (|has| |#2| (-842)) (|has| |#2| (-787))))) (-4356 (($ $ |#2|) 122 (|has| |#2| (-362)))) (-4244 (($ $ $) 100 (|has| |#2| (-1042))) (($ $) 99 (|has| |#2| (-1042)))) (-4246 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-765)) 80 (|has| |#2| (-720))) (($ $ (-912)) 77 (|has| |#2| (-720)))) (* (($ (-544) $) 101 (|has| |#2| (-1042))) (($ $ $) 78 (|has| |#2| (-720))) (($ $ |#2|) 76 (|has| |#2| (-720))) (($ |#2| $) 75 (|has| |#2| (-720))) (($ (-765) $) 73 (|has| |#2| (-130))) (($ (-912) $) 70 (|has| |#2| (-25)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-237 |#1| |#2|) (-139) (-765) (-1204)) (T -237)) -((-1552 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1204)) (-4 *1 (-237 *3 *4)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1042)) (-4 *4 (-1204)))) (-4243 (*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-720))))) -(-13 (-599 (-544) |t#2|) (-608 (-1253 |t#2|)) (-10 -8 (-6 -4400) (-15 -1552 ($ (-1253 |t#2|))) (IF (|has| |t#2| (-1091)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1042)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-230 |t#2|)) (-6 (-376 |t#2|)) (-15 -4114 ($ (-912))) (-15 -4243 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-720)) (PROGN (-6 (-720)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#2| (-171)) (PROGN (-6 (-38 |t#2|)) (-6 (-171))) |%noBranch|) (IF (|has| |t#2| (-6 -4397)) (-6 -4397) |%noBranch|) (IF (|has| |t#2| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |t#2| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-1261 |t#2|)) |%noBranch|))) -(((-21) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-23) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-25) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) -3936 (|has| |#2| (-1091)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3936 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-111 $ $) |has| |#2| (-171)) ((-130) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-611 #1=(-406 (-544))) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))) ((-611 (-544)) -3936 (|has| |#2| (-1042)) (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-611 |#2|) -3936 (|has| |#2| (-1091)) (|has| |#2| (-171))) ((-608 (-857)) -3936 (|has| |#2| (-1091)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-608 (-857))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-608 (-1253 |#2|)) . T) ((-171) |has| |#2| (-171)) ((-230 |#2|) |has| |#2| (-1042)) ((-232) -12 (|has| |#2| (-232)) (|has| |#2| (-1042))) ((-285 #2=(-544) |#2|) . T) ((-287 #2# |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-367) |has| |#2| (-367)) ((-376 |#2|) |has| |#2| (-1042)) ((-411 |#2|) |has| |#2| (-1091)) ((-487 |#2|) . T) ((-599 #2# |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-641 |#2|) -3936 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-641 $) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-634 (-544)) -12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042))) ((-634 |#2|) |has| |#2| (-1042)) ((-711 |#2|) -3936 (|has| |#2| (-362)) (|has| |#2| (-171))) ((-720) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-720)) (|has| |#2| (-171))) ((-785) |has| |#2| (-842)) ((-786) -3936 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-787) |has| |#2| (-787)) ((-788) -3936 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-791) -3936 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-842) |has| |#2| (-842)) ((-844) -3936 (|has| |#2| (-842)) (|has| |#2| (-787))) ((-893 (-1166)) -12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042))) ((-1031 #1#) -12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091))) ((-1031 (-544)) -12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) ((-1031 |#2|) |has| |#2| (-1091)) ((-1048 |#2|) -3936 (|has| |#2| (-1042)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-1048 $) |has| |#2| (-171)) ((-1042) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-1049) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-171))) ((-1102) -3936 (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-720)) (|has| |#2| (-171))) ((-1091) -3936 (|has| |#2| (-1091)) (|has| |#2| (-1042)) (|has| |#2| (-842)) (|has| |#2| (-787)) (|has| |#2| (-720)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1204) . T) ((-1261 |#2|) |has| |#2| (-362))) -((-2947 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3589 (((-112) $) NIL (|has| |#2| (-130)))) (-4114 (($ (-912)) 56 (|has| |#2| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) 60 (|has| |#2| (-787)))) (-1391 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1293 (((-112) $ (-765)) 17)) (-3521 (((-765)) NIL (|has| |#2| (-367)))) (-4030 (((-544) $) NIL (|has| |#2| (-842)))) (-4194 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1091)))) (-3557 (((-544) $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) ((|#2| $) 27 (|has| |#2| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3866 (((-3 $ "failed") $) 53 (|has| |#2| (-720)))) (-3377 (($) NIL (|has| |#2| (-367)))) (-1665 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ (-544)) 51)) (-3587 (((-112) $) NIL (|has| |#2| (-842)))) (-2096 (((-635 |#2|) $) 15 (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (|has| |#2| (-720)))) (-3588 (((-112) $) NIL (|has| |#2| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 20 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 (((-544) $) 50 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) 41)) (-2160 (((-912) $) NIL (|has| |#2| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#2| (-1091)))) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#2| (-367)))) (-3644 (((-1110) $) NIL (|has| |#2| (-1091)))) (-4207 ((|#2| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-544)) 21)) (-4243 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1552 (($ (-1253 |#2|)) 18)) (-4318 (((-133)) NIL (|has| |#2| (-362)))) (-4217 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#2|) $) 10) (($ (-544)) NIL (-3936 (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (($ |#2|) 13 (|has| |#2| (-1091))) (((-857) $) NIL (|has| |#2| (-608 (-857))))) (-3511 (((-765)) NIL (|has| |#2| (-1042)))) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#2| (-842)))) (-3040 (($) 35 (|has| |#2| (-130)) CONST)) (-3046 (($) 38 (|has| |#2| (-720)) CONST)) (-3051 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3437 (((-112) $ $) 26 (|has| |#2| (-1091)))) (-3066 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3067 (((-112) $ $) 58 (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-4246 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-912)) NIL (|has| |#2| (-720)))) (* (($ (-544) $) NIL (|has| |#2| (-1042))) (($ $ $) 44 (|has| |#2| (-720))) (($ $ |#2|) 42 (|has| |#2| (-720))) (($ |#2| $) 43 (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-912) $) NIL (|has| |#2| (-25)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-238 |#1| |#2|) (-237 |#1| |#2|) (-765) (-1204)) (T -238)) +((-4029 (*1 *1 *1) (-4 *1 (-232))) (-3114 (*1 *1 *1) (-4 *1 (-232))) (-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-766)))) (-3114 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-766))))) +(-13 (-1044) (-10 -8 (-15 -4029 ($ $)) (-15 -3114 ($ $)) (-15 -4029 ($ $ (-766))) (-15 -3114 ($ $ (-766))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-3564 (($) 12) (($ (-639 |#2|)) NIL)) (-4220 (($ $) 14)) (-4066 (($ (-639 |#2|)) 10)) (-4054 (((-857) $) 21))) +(((-233 |#1| |#2|) (-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -3564 (|#1| (-639 |#2|))) (-15 -3564 (|#1|)) (-15 -4066 (|#1| (-639 |#2|))) (-15 -4220 (|#1| |#1|))) (-234 |#2|) (-1092)) (T -233)) +NIL +(-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -3564 (|#1| (-639 |#2|))) (-15 -3564 (|#1|)) (-15 -4066 (|#1| (-639 |#2|))) (-15 -4220 (|#1| |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-3111 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ |#1| $) 47 (|has| $ (-6 -4402))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4402)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4402)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-3564 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 50)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) 42)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-234 |#1|) (-139) (-1092)) (T -234)) +((-3564 (*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1092)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-234 *3)))) (-4000 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-234 *2)) (-4 *2 (-1092)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4402)) (-4 *1 (-234 *3)) (-4 *3 (-1092)))) (-3111 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4402)) (-4 *1 (-234 *3)) (-4 *3 (-1092))))) +(-13 (-107 |t#1|) (-150 |t#1|) (-10 -8 (-15 -3564 ($)) (-15 -3564 ($ (-639 |t#1|))) (IF (|has| $ (-6 -4402)) (PROGN (-15 -4000 ($ |t#1| $)) (-15 -4000 ($ (-1 (-112) |t#1|) $)) (-15 -3111 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-2147 (((-2 (|:| |varOrder| (-639 (-1168))) (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) (|:| |hom| (-639 (-1256 (-766))))) (-293 (-947 (-562)))) 27))) +(((-235) (-10 -7 (-15 -2147 ((-2 (|:| |varOrder| (-639 (-1168))) (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) (|:| |hom| (-639 (-1256 (-766))))) (-293 (-947 (-562))))))) (T -235)) +((-2147 (*1 *2 *3) (-12 (-5 *3 (-293 (-947 (-562)))) (-5 *2 (-2 (|:| |varOrder| (-639 (-1168))) (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) (|:| |hom| (-639 (-1256 (-766)))))) (-5 *1 (-235))))) +(-10 -7 (-15 -2147 ((-2 (|:| |varOrder| (-639 (-1168))) (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) (|:| |hom| (-639 (-1256 (-766))))) (-293 (-947 (-562)))))) +((-1382 (((-766)) 51)) (-2406 (((-2 (|:| -1545 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 $) (-1256 $)) 49) (((-683 |#3|) (-683 $)) 41) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-3627 (((-133)) 57)) (-4029 (($ $ (-1 |#3| |#3|) (-766)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-4054 (((-1256 |#3|) $) NIL) (($ |#3|) NIL) (((-857) $) NIL) (($ (-562)) 12) (($ (-406 (-562))) NIL)) (-2579 (((-766)) 15)) (-1859 (($ $ |#3|) 54))) +(((-236 |#1| |#2| |#3|) (-10 -8 (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|)) (-15 -2579 ((-766))) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -4054 (|#1| |#3|)) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|) (-766))) (-15 -2406 ((-683 |#3|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 |#1|) (-1256 |#1|))) (-15 -1382 ((-766))) (-15 -1859 (|#1| |#1| |#3|)) (-15 -3627 ((-133))) (-15 -4054 ((-1256 |#3|) |#1|))) (-237 |#2| |#3|) (-766) (-1207)) (T -236)) +((-3627 (*1 *2) (-12 (-14 *4 (-766)) (-4 *5 (-1207)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-1382 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-766)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-2579 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-766)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))) +(-10 -8 (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|)) (-15 -2579 ((-766))) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -4054 (|#1| |#3|)) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|) (-766))) (-15 -2406 ((-683 |#3|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 |#1|) (-1256 |#1|))) (-15 -1382 ((-766))) (-15 -1859 (|#1| |#1| |#3|)) (-15 -3627 ((-133))) (-15 -4054 ((-1256 |#3|) |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#2| (-1092)))) (-1952 (((-112) $) 72 (|has| |#2| (-130)))) (-3901 (($ (-916)) 125 (|has| |#2| (-1044)))) (-3052 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4403)))) (-3659 (($ $ $) 121 (|has| |#2| (-788)))) (-3214 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-4336 (((-112) $ (-766)) 8)) (-1382 (((-766)) 107 (|has| |#2| (-367)))) (-2277 (((-562) $) 119 (|has| |#2| (-843)))) (-4200 ((|#2| $ (-562) |#2|) 52 (|has| $ (-6 -4403)))) (-1800 (($) 7 T CONST)) (-4048 (((-3 (-562) "failed") $) 67 (-2246 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-3 (-406 (-562)) "failed") $) 64 (-2246 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1092)))) (-3961 (((-562) $) 66 (-2246 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-406 (-562)) $) 63 (-2246 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) ((|#2| $) 62 (|has| |#2| (-1092)))) (-2406 (((-683 (-562)) (-683 $)) 106 (-2246 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 105 (-2246 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 104 (|has| |#2| (-1044))) (((-683 |#2|) (-683 $)) 103 (|has| |#2| (-1044)))) (-3668 (((-3 $ "failed") $) 79 (|has| |#2| (-721)))) (-1448 (($) 110 (|has| |#2| (-367)))) (-1505 ((|#2| $ (-562) |#2|) 53 (|has| $ (-6 -4403)))) (-1420 ((|#2| $ (-562)) 51)) (-3519 (((-112) $) 117 (|has| |#2| (-843)))) (-1720 (((-639 |#2|) $) 30 (|has| $ (-6 -4402)))) (-1957 (((-112) $) 81 (|has| |#2| (-721)))) (-3392 (((-112) $) 118 (|has| |#2| (-843)))) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 116 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1912 (((-639 |#2|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 115 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1490 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#2| |#2|) $) 35)) (-1999 (((-916) $) 109 (|has| |#2| (-367)))) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#2| (-1092)))) (-2093 (((-639 (-562)) $) 46)) (-1570 (((-112) (-562) $) 47)) (-2466 (($ (-916)) 108 (|has| |#2| (-367)))) (-1709 (((-1112) $) 21 (|has| |#2| (-1092)))) (-1421 ((|#2| $) 42 (|has| (-562) (-845)))) (-2716 (($ $ |#2|) 41 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#2| $ (-562) |#2|) 50) ((|#2| $ (-562)) 49)) (-4177 ((|#2| $ $) 124 (|has| |#2| (-1044)))) (-1679 (($ (-1256 |#2|)) 126)) (-3627 (((-133)) 123 (|has| |#2| (-362)))) (-4029 (($ $) 98 (-2246 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) 96 (-2246 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) 94 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) 93 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) 92 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) 91 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) 84 (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1044)))) (-1723 (((-766) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4402))) (((-766) |#2| $) 28 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-1256 |#2|) $) 127) (($ (-562)) 68 (-4037 (-2246 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044)))) (($ (-406 (-562))) 65 (-2246 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (($ |#2|) 60 (|has| |#2| (-1092))) (((-857) $) 18 (|has| |#2| (-609 (-857))))) (-2579 (((-766)) 102 (|has| |#2| (-1044)))) (-1744 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4402)))) (-3526 (($ $) 120 (|has| |#2| (-843)))) (-2286 (($) 71 (|has| |#2| (-130)) CONST)) (-2294 (($) 82 (|has| |#2| (-721)) CONST)) (-3114 (($ $) 97 (-2246 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) 95 (-2246 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) 90 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) 89 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) 88 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) 87 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) 86 (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1044)))) (-1798 (((-112) $ $) 113 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1772 (((-112) $ $) 112 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1731 (((-112) $ $) 20 (|has| |#2| (-1092)))) (-1785 (((-112) $ $) 114 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1759 (((-112) $ $) 111 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1859 (($ $ |#2|) 122 (|has| |#2| (-362)))) (-1848 (($ $ $) 100 (|has| |#2| (-1044))) (($ $) 99 (|has| |#2| (-1044)))) (-1835 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-766)) 80 (|has| |#2| (-721))) (($ $ (-916)) 77 (|has| |#2| (-721)))) (* (($ (-562) $) 101 (|has| |#2| (-1044))) (($ $ $) 78 (|has| |#2| (-721))) (($ $ |#2|) 76 (|has| |#2| (-721))) (($ |#2| $) 75 (|has| |#2| (-721))) (($ (-766) $) 73 (|has| |#2| (-130))) (($ (-916) $) 70 (|has| |#2| (-25)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-237 |#1| |#2|) (-139) (-766) (-1207)) (T -237)) +((-1679 (*1 *1 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1207)) (-4 *1 (-237 *3 *4)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1044)) (-4 *4 (-1207)))) (-4177 (*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-1044)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-721))))) +(-13 (-600 (-562) |t#2|) (-609 (-1256 |t#2|)) (-10 -8 (-6 -4402) (-15 -1679 ($ (-1256 |t#2|))) (IF (|has| |t#2| (-1092)) (-6 (-410 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1044)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-230 |t#2|)) (-6 (-376 |t#2|)) (-15 -3901 ($ (-916))) (-15 -4177 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-721)) (PROGN (-6 (-721)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#2| (-171)) (PROGN (-6 (-38 |t#2|)) (-6 (-171))) |%noBranch|) (IF (|has| |t#2| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |t#2| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |t#2| (-788)) (-6 (-788)) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-1263 |t#2|)) |%noBranch|))) +(((-21) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-23) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-25) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) -4037 (|has| |#2| (-1092)) (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-721)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4037 (|has| |#2| (-1044)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-111 $ $) |has| |#2| (-171)) ((-130) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-612 #0=(-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092))) ((-612 (-562)) -4037 (|has| |#2| (-1044)) (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-843)) (|has| |#2| (-171))) ((-612 |#2|) -4037 (|has| |#2| (-1092)) (|has| |#2| (-171))) ((-609 (-857)) -4037 (|has| |#2| (-1092)) (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-721)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-609 (-857))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-609 (-1256 |#2|)) . T) ((-171) |has| |#2| (-171)) ((-230 |#2|) |has| |#2| (-1044)) ((-232) -12 (|has| |#2| (-232)) (|has| |#2| (-1044))) ((-285 #1=(-562) |#2|) . T) ((-287 #1# |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-367) |has| |#2| (-367)) ((-376 |#2|) |has| |#2| (-1044)) ((-410 |#2|) |has| |#2| (-1092)) ((-488 |#2|) . T) ((-600 #1# |#2|) . T) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-642 |#2|) -4037 (|has| |#2| (-1044)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-642 $) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-171))) ((-635 (-562)) -12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044))) ((-635 |#2|) |has| |#2| (-1044)) ((-712 |#2|) -4037 (|has| |#2| (-362)) (|has| |#2| (-171))) ((-721) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-721)) (|has| |#2| (-171))) ((-786) |has| |#2| (-843)) ((-787) -4037 (|has| |#2| (-843)) (|has| |#2| (-788))) ((-788) |has| |#2| (-788)) ((-789) -4037 (|has| |#2| (-843)) (|has| |#2| (-788))) ((-790) -4037 (|has| |#2| (-843)) (|has| |#2| (-788))) ((-843) |has| |#2| (-843)) ((-845) -4037 (|has| |#2| (-843)) (|has| |#2| (-788))) ((-895 (-1168)) -12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044))) ((-1033 #0#) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092))) ((-1033 (-562)) -12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) ((-1033 |#2|) |has| |#2| (-1092)) ((-1050 |#2|) -4037 (|has| |#2| (-1044)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-1050 $) |has| |#2| (-171)) ((-1044) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-171))) ((-1051) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-171))) ((-1104) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-721)) (|has| |#2| (-171))) ((-1092) -4037 (|has| |#2| (-1092)) (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-721)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1207) . T) ((-1263 |#2|) |has| |#2| (-362))) +((-2578 (((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 21)) (-1955 ((|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 23)) (-4152 (((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)) 18))) +(((-238 |#1| |#2| |#3|) (-10 -7 (-15 -2578 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -1955 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4152 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) (-766) (-1207) (-1207)) (T -238)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-766)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-5 *2 (-239 *5 *7)) (-5 *1 (-238 *5 *6 *7)))) (-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-766)) (-4 *6 (-1207)) (-4 *2 (-1207)) (-5 *1 (-238 *5 *6 *2)))) (-2578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-766)) (-4 *7 (-1207)) (-4 *5 (-1207)) (-5 *2 (-239 *6 *5)) (-5 *1 (-238 *6 *7 *5))))) +(-10 -7 (-15 -2578 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -1955 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4152 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) +((-4041 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-1952 (((-112) $) NIL (|has| |#2| (-130)))) (-3901 (($ (-916)) 56 (|has| |#2| (-1044)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-3659 (($ $ $) 60 (|has| |#2| (-788)))) (-3214 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-4336 (((-112) $ (-766)) 17)) (-1382 (((-766)) NIL (|has| |#2| (-367)))) (-2277 (((-562) $) NIL (|has| |#2| (-843)))) (-4200 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1092)))) (-3961 (((-562) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) ((|#2| $) 27 (|has| |#2| (-1092)))) (-2406 (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL (|has| |#2| (-1044))) (((-683 |#2|) (-683 $)) NIL (|has| |#2| (-1044)))) (-3668 (((-3 $ "failed") $) 53 (|has| |#2| (-721)))) (-1448 (($) NIL (|has| |#2| (-367)))) (-1505 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ (-562)) 51)) (-3519 (((-112) $) NIL (|has| |#2| (-843)))) (-1720 (((-639 |#2|) $) 15 (|has| $ (-6 -4402)))) (-1957 (((-112) $) NIL (|has| |#2| (-721)))) (-3392 (((-112) $) NIL (|has| |#2| (-843)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) 20 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1912 (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-3874 (((-562) $) 50 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1490 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#2| |#2|) $) 41)) (-1999 (((-916) $) NIL (|has| |#2| (-367)))) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#2| (-1092)))) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-2466 (($ (-916)) NIL (|has| |#2| (-367)))) (-1709 (((-1112) $) NIL (|has| |#2| (-1092)))) (-1421 ((|#2| $) NIL (|has| (-562) (-845)))) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-562)) 21)) (-4177 ((|#2| $ $) NIL (|has| |#2| (-1044)))) (-1679 (($ (-1256 |#2|)) 18)) (-3627 (((-133)) NIL (|has| |#2| (-362)))) (-4029 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-1256 |#2|) $) 10) (($ (-562)) NIL (-4037 (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (($ |#2|) 13 (|has| |#2| (-1092))) (((-857) $) NIL (|has| |#2| (-609 (-857))))) (-2579 (((-766)) NIL (|has| |#2| (-1044)))) (-1744 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-3526 (($ $) NIL (|has| |#2| (-843)))) (-2286 (($) 35 (|has| |#2| (-130)) CONST)) (-2294 (($) 38 (|has| |#2| (-721)) CONST)) (-3114 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1772 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1731 (((-112) $ $) 26 (|has| |#2| (-1092)))) (-1785 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1759 (((-112) $ $) 58 (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $ $) NIL (|has| |#2| (-1044))) (($ $) NIL (|has| |#2| (-1044)))) (-1835 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-766)) NIL (|has| |#2| (-721))) (($ $ (-916)) NIL (|has| |#2| (-721)))) (* (($ (-562) $) NIL (|has| |#2| (-1044))) (($ $ $) 44 (|has| |#2| (-721))) (($ $ |#2|) 42 (|has| |#2| (-721))) (($ |#2| $) 43 (|has| |#2| (-721))) (($ (-766) $) NIL (|has| |#2| (-130))) (($ (-916) $) NIL (|has| |#2| (-25)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-239 |#1| |#2|) (-237 |#1| |#2|) (-766) (-1207)) (T -239)) NIL (-237 |#1| |#2|) -((-4248 (((-238 |#1| |#3|) (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|) 21)) (-4249 ((|#3| (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|) 23)) (-4365 (((-238 |#1| |#3|) (-1 |#3| |#2|) (-238 |#1| |#2|)) 18))) -(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -4248 ((-238 |#1| |#3|) (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|)) (-15 -4249 (|#3| (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|)) (-15 -4365 ((-238 |#1| |#3|) (-1 |#3| |#2|) (-238 |#1| |#2|)))) (-765) (-1204) (-1204)) (T -239)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-238 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-5 *2 (-238 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-238 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1204)) (-4 *2 (-1204)) (-5 *1 (-239 *5 *6 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-238 *6 *7)) (-14 *6 (-765)) (-4 *7 (-1204)) (-4 *5 (-1204)) (-5 *2 (-238 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) -(-10 -7 (-15 -4248 ((-238 |#1| |#3|) (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|)) (-15 -4249 (|#3| (-1 |#3| |#2| |#3|) (-238 |#1| |#2|) |#3|)) (-15 -4365 ((-238 |#1| |#3|) (-1 |#3| |#2|) (-238 |#1| |#2|)))) -((-1556 (((-544) (-635 (-1148))) 24) (((-544) (-1148)) 19)) (-1555 (((-1259) (-635 (-1148))) 29) (((-1259) (-1148)) 28)) (-1553 (((-1148)) 14)) (-1554 (((-1148) (-544) (-1148)) 16)) (-4179 (((-635 (-1148)) (-635 (-1148)) (-544) (-1148)) 25) (((-1148) (-1148) (-544) (-1148)) 23)) (-2998 (((-635 (-1148)) (-635 (-1148))) 13) (((-635 (-1148)) (-1148)) 11))) -(((-240) (-10 -7 (-15 -2998 ((-635 (-1148)) (-1148))) (-15 -2998 ((-635 (-1148)) (-635 (-1148)))) (-15 -1553 ((-1148))) (-15 -1554 ((-1148) (-544) (-1148))) (-15 -4179 ((-1148) (-1148) (-544) (-1148))) (-15 -4179 ((-635 (-1148)) (-635 (-1148)) (-544) (-1148))) (-15 -1555 ((-1259) (-1148))) (-15 -1555 ((-1259) (-635 (-1148)))) (-15 -1556 ((-544) (-1148))) (-15 -1556 ((-544) (-635 (-1148)))))) (T -240)) -((-1556 (*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-544)) (-5 *1 (-240)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-544)) (-5 *1 (-240)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1259)) (-5 *1 (-240)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-240)))) (-4179 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-635 (-1148))) (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *1 (-240)))) (-4179 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-240)))) (-1554 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-240)))) (-1553 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-240)))) (-2998 (*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-240)))) (-2998 (*1 *2 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-240)) (-5 *3 (-1148))))) -(-10 -7 (-15 -2998 ((-635 (-1148)) (-1148))) (-15 -2998 ((-635 (-1148)) (-635 (-1148)))) (-15 -1553 ((-1148))) (-15 -1554 ((-1148) (-544) (-1148))) (-15 -4179 ((-1148) (-1148) (-544) (-1148))) (-15 -4179 ((-635 (-1148)) (-635 (-1148)) (-544) (-1148))) (-15 -1555 ((-1259) (-1148))) (-15 -1555 ((-1259) (-635 (-1148)))) (-15 -1556 ((-544) (-1148))) (-15 -1556 ((-544) (-635 (-1148))))) -((** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 16)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ (-406 (-544)) $) 23) (($ $ (-406 (-544))) NIL))) -(((-241 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-544))) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-242)) (T -241)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-544))) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 40)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 44)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 41)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ (-406 (-544)) $) 43) (($ $ (-406 (-544))) 42))) +((-2658 (((-562) (-639 (-1150))) 24) (((-562) (-1150)) 19)) (-2594 (((-1261) (-639 (-1150))) 29) (((-1261) (-1150)) 28)) (-1765 (((-1150)) 14)) (-4062 (((-1150) (-562) (-1150)) 16)) (-2328 (((-639 (-1150)) (-639 (-1150)) (-562) (-1150)) 25) (((-1150) (-1150) (-562) (-1150)) 23)) (-3983 (((-639 (-1150)) (-639 (-1150))) 13) (((-639 (-1150)) (-1150)) 11))) +(((-240) (-10 -7 (-15 -3983 ((-639 (-1150)) (-1150))) (-15 -3983 ((-639 (-1150)) (-639 (-1150)))) (-15 -1765 ((-1150))) (-15 -4062 ((-1150) (-562) (-1150))) (-15 -2328 ((-1150) (-1150) (-562) (-1150))) (-15 -2328 ((-639 (-1150)) (-639 (-1150)) (-562) (-1150))) (-15 -2594 ((-1261) (-1150))) (-15 -2594 ((-1261) (-639 (-1150)))) (-15 -2658 ((-562) (-1150))) (-15 -2658 ((-562) (-639 (-1150)))))) (T -240)) +((-2658 (*1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-562)) (-5 *1 (-240)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-562)) (-5 *1 (-240)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1261)) (-5 *1 (-240)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-240)))) (-2328 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-639 (-1150))) (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *1 (-240)))) (-2328 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-240)))) (-4062 (*1 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-240)))) (-1765 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-240)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-240)))) (-3983 (*1 *2 *3) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-240)) (-5 *3 (-1150))))) +(-10 -7 (-15 -3983 ((-639 (-1150)) (-1150))) (-15 -3983 ((-639 (-1150)) (-639 (-1150)))) (-15 -1765 ((-1150))) (-15 -4062 ((-1150) (-562) (-1150))) (-15 -2328 ((-1150) (-1150) (-562) (-1150))) (-15 -2328 ((-639 (-1150)) (-639 (-1150)) (-562) (-1150))) (-15 -2594 ((-1261) (-1150))) (-15 -2594 ((-1261) (-639 (-1150)))) (-15 -2658 ((-562) (-1150))) (-15 -2658 ((-562) (-639 (-1150))))) +((** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 16)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ (-406 (-562)) $) 23) (($ $ (-406 (-562))) NIL))) +(((-241 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-562))) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-242)) (T -241)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-562))) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 40)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 44)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 41)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ (-406 (-562)) $) 43) (($ $ (-406 (-562))) 42))) (((-242) (-139)) (T -242)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-544)))) (-2779 (*1 *1 *1) (-4 *1 (-242)))) -(-13 (-289) (-38 (-406 (-544))) (-10 -8 (-15 ** ($ $ (-544))) (-15 -2779 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-289) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-720) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4203 (($ $) 57)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-1558 (($ $ $) 53 (|has| $ (-6 -4401)))) (-1557 (($ $ $) 52 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-1560 (($ $) 56)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-1559 (($ $) 55)) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 59)) (-3579 (($ $) 58)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4197 (($ $ $) 54 (|has| $ (-6 -4401)))) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-243 |#1|) (-139) (-1204)) (T -243)) -((-4204 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-1560 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-1559 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-4197 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-1558 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204)))) (-1557 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204))))) -(-13 (-1003 |t#1|) (-10 -8 (-15 -4204 (|t#1| $)) (-15 -3579 ($ $)) (-15 -4203 ($ $)) (-15 -1560 ($ $)) (-15 -1559 ($ $)) (IF (|has| $ (-6 -4401)) (PROGN (-15 -4197 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -1557 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-4201 ((|#1| $) NIL)) (-4203 (($ $) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-3292 (($ $) 10 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) NIL (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) NIL)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4202 ((|#1| $) NIL)) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-4205 (($ $) NIL) (($ $ (-765)) NIL)) (-2498 (($ $) NIL (|has| |#1| (-1091)))) (-1424 (($ $) 7 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) NIL)) (-3810 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-3823 (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091))) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) (-1 (-112) |#1|) $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3917 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3941 (($ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4204 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-4014 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-3847 (((-112) $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1220 (-544))) NIL) ((|#1| $ (-544)) NIL) ((|#1| $ (-544) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-765) $ "count") 16)) (-3412 (((-544) $ $) NIL)) (-1660 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-1561 (($ (-635 |#1|)) 22)) (-4040 (((-112) $) NIL)) (-4198 (($ $) NIL)) (-4196 (($ $) NIL (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4197 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4208 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-4353 (($ (-635 |#1|)) 17) (((-635 |#1|) $) 18) (((-857) $) 21 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 14 (|has| $ (-6 -4400))))) -(((-244 |#1|) (-13 (-659 |#1|) (-488 (-635 |#1|)) (-10 -8 (-15 -1561 ($ (-635 |#1|))) (-15 -4206 ($ $ "unique")) (-15 -4206 ($ $ "sort")) (-15 -4206 ((-765) $ "count")))) (-844)) (T -244)) -((-1561 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-244 *3)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-844)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-844)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-765)) (-5 *1 (-244 *4)) (-4 *4 (-844))))) -(-13 (-659 |#1|) (-488 (-635 |#1|)) (-10 -8 (-15 -1561 ($ (-635 |#1|))) (-15 -4206 ($ $ "unique")) (-15 -4206 ($ $ "sort")) (-15 -4206 ((-765) $ "count")))) -((-1562 (((-3 (-765) "failed") |#1| |#1| (-765)) 26))) -(((-245 |#1|) (-10 -7 (-15 -1562 ((-3 (-765) "failed") |#1| |#1| (-765)))) (-13 (-720) (-367) (-10 -7 (-15 ** (|#1| |#1| (-544)))))) (T -245)) -((-1562 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-765)) (-4 *3 (-13 (-720) (-367) (-10 -7 (-15 ** (*3 *3 (-544)))))) (-5 *1 (-245 *3))))) -(-10 -7 (-15 -1562 ((-3 (-765) "failed") |#1| |#1| (-765)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-858 |#1|)) $) NIL)) (-3469 (((-1160 $) $ (-858 |#1|)) NIL) (((-1160 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-858 |#1|))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-858 |#1|) #2#) $) NIL)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-858 |#1|) $) NIL)) (-4163 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-2087 (($ $ (-635 (-544))) NIL)) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| (-238 (-4364 |#1|) (-765)) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#2|) (-858 |#1|)) NIL) (($ (-1160 $) (-858 |#1|)) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#2| (-238 (-4364 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-858 |#1|)) NIL)) (-3202 (((-238 (-4364 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 (-238 (-4364 |#1|) (-765)) (-238 (-4364 |#1|) (-765))) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-3 (-858 |#1|) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#2| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-635 (-858 |#1|)) (-635 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-635 (-858 |#1|)) (-635 $)) NIL)) (-4164 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4355 (((-238 (-4364 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-858 |#1|) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#2| (-554)))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-238 (-4364 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-246 |#1| |#2|) (-13 (-943 |#2| (-238 (-4364 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544)))))) (-635 (-1166)) (-1042)) (T -246)) -((-2087 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-246 *3 *4)) (-14 *3 (-635 (-1166))) (-4 *4 (-1042))))) -(-13 (-943 |#2| (-238 (-4364 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544)))))) -((-2947 (((-112) $ $) NIL)) (-1563 (((-1259) $) 17)) (-1565 (((-183) $) 11)) (-1564 (($ (-183)) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1566 (((-248) $) 7)) (-4353 (((-857) $) 9)) (-3437 (((-112) $ $) 15))) -(((-247) (-13 (-1091) (-10 -8 (-15 -1566 ((-248) $)) (-15 -1565 ((-183) $)) (-15 -1564 ($ (-183))) (-15 -1563 ((-1259) $))))) (T -247)) -((-1566 (*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-247)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-247)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-247))))) -(-13 (-1091) (-10 -8 (-15 -1566 ((-248) $)) (-15 -1565 ((-183) $)) (-15 -1564 ($ (-183))) (-15 -1563 ((-1259) $)))) -((-2947 (((-112) $ $) NIL)) (-3949 (((-504) $) NIL)) (-3643 (((-1148) $) NIL)) (-1493 (((-186) $) NIL)) (-3644 (((-1110) $) NIL)) (-1492 (((-635 (-112)) $) NIL)) (-4353 (((-857) $) NIL) (((-182) $) 6)) (-2900 (((-55) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-248) (-13 (-185) (-608 (-182)))) (T -248)) -NIL -(-13 (-185) (-608 (-182))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4114 (($ (-912)) NIL (|has| |#4| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#4| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#4| (-367)))) (-4030 (((-544) $) NIL (|has| |#4| (-842)))) (-4194 ((|#4| $ (-544) |#4|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1091))) (((-3 (-544) #1#) $) NIL (-12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091))))) (-3557 ((|#4| $) NIL (|has| |#4| (-1091))) (((-544) $) NIL (-12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091))))) (-2401 (((-2 (|:| -1728 (-682 |#4|)) (|:| |vec| (-1253 |#4|))) (-682 $) (-1253 $)) NIL (|has| |#4| (-1042))) (((-682 |#4|) (-682 $)) NIL (|has| |#4| (-1042))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))))) (-3866 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-3377 (($) NIL (|has| |#4| (-367)))) (-1665 ((|#4| $ (-544) |#4|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#4| $ (-544)) NIL)) (-3587 (((-112) $) NIL (|has| |#4| (-842)))) (-2096 (((-635 |#4|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-3588 (((-112) $) NIL (|has| |#4| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-2554 (((-635 |#4|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-2100 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#4| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#4| (-367)))) (-3644 (((-1110) $) NIL)) (-4207 ((|#4| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#4|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2351 (((-635 |#4|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#4| $ (-544) |#4|) NIL) ((|#4| $ (-544)) 12)) (-4243 ((|#4| $ $) NIL (|has| |#4| (-1042)))) (-1552 (($ (-1253 |#4|)) NIL)) (-4318 (((-133)) NIL (|has| |#4| (-362)))) (-4217 (($ $ (-1 |#4| |#4|) (-765)) NIL (|has| |#4| (-1042))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))))) (-2097 (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#4|) $) NIL) (((-857) $) NIL) (($ |#4|) NIL (|has| |#4| (-1091))) (($ (-544)) NIL (-3936 (-12 (|has| |#4| (-1031 (-544))) (|has| |#4| (-1091))) (|has| |#4| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#4| (-1031 (-406 (-544)))) (|has| |#4| (-1091))))) (-3511 (((-765)) NIL (|has| |#4| (-1042)))) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#4| (-842)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) CONST)) (-3051 (($ $ (-1 |#4| |#4|) (-765)) NIL (|has| |#4| (-1042))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-3067 (((-112) $ $) NIL (-3936 (|has| |#4| (-787)) (|has| |#4| (-842))))) (-4356 (($ $ |#4|) NIL (|has| |#4| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042))))) (($ $ (-912)) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (* (($ |#2| $) 14) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-720))) (($ |#4| $) NIL (|has| |#4| (-720))) (($ $ $) NIL (-3936 (-12 (|has| |#4| (-232)) (|has| |#4| (-1042))) (-12 (|has| |#4| (-634 (-544))) (|has| |#4| (-1042))) (|has| |#4| (-720)) (-12 (|has| |#4| (-893 (-1166))) (|has| |#4| (-1042)))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-249 |#1| |#2| |#3| |#4|) (-13 (-237 |#1| |#4|) (-641 |#2|) (-641 |#3|)) (-912) (-1042) (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-641 |#2|)) (T -249)) -NIL -(-13 (-237 |#1| |#4|) (-641 |#2|) (-641 |#3|)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4114 (($ (-912)) NIL (|has| |#3| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#3| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#3| (-367)))) (-4030 (((-544) $) NIL (|has| |#3| (-842)))) (-4194 ((|#3| $ (-544) |#3|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1091))) (((-3 (-544) #1#) $) NIL (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))) (-3557 ((|#3| $) NIL (|has| |#3| (-1091))) (((-544) $) NIL (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))) (-2401 (((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) NIL (|has| |#3| (-1042))) (((-682 |#3|) (-682 $)) NIL (|has| |#3| (-1042))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))))) (-3866 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-3377 (($) NIL (|has| |#3| (-367)))) (-1665 ((|#3| $ (-544) |#3|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#3| $ (-544)) NIL)) (-3587 (((-112) $) NIL (|has| |#3| (-842)))) (-2096 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-3588 (((-112) $) NIL (|has| |#3| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2554 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2100 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#3| |#3|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#3| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#3| (-367)))) (-3644 (((-1110) $) NIL)) (-4207 ((|#3| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#3|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-292 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-2351 (((-635 |#3|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#3| $ (-544) |#3|) NIL) ((|#3| $ (-544)) 11)) (-4243 ((|#3| $ $) NIL (|has| |#3| (-1042)))) (-1552 (($ (-1253 |#3|)) NIL)) (-4318 (((-133)) NIL (|has| |#3| (-362)))) (-4217 (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))))) (-2097 (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400))) (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#3|) $) NIL) (((-857) $) NIL) (($ |#3|) NIL (|has| |#3| (-1091))) (($ (-544)) NIL (-3936 (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (|has| |#3| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091))))) (-3511 (((-765)) NIL (|has| |#3| (-1042)))) (-2099 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#3| (-842)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) CONST)) (-3051 (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-3067 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-4356 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042))))) (($ $ (-912)) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (* (($ |#2| $) 13) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-720))) (($ |#3| $) NIL (|has| |#3| (-720))) (($ $ $) NIL (-3936 (-12 (|has| |#3| (-232)) (|has| |#3| (-1042))) (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042))) (|has| |#3| (-720)) (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-250 |#1| |#2| |#3|) (-13 (-237 |#1| |#3|) (-641 |#2|)) (-765) (-1042) (-641 |#2|)) (T -250)) -NIL -(-13 (-237 |#1| |#3|) (-641 |#2|)) -((-1571 (((-635 (-765)) $) 47) (((-635 (-765)) $ |#3|) 50)) (-1605 (((-765) $) 49) (((-765) $ |#3|) 52)) (-1567 (($ $) 65)) (-3558 (((-3 |#2| #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4178 (((-765) $ |#3|) 39) (((-765) $) 36)) (-1606 (((-1 $ (-765)) |#3|) 15) (((-1 $ (-765)) $) 77)) (-1569 ((|#4| $) 58)) (-1570 (((-112) $) 56)) (-1568 (($ $) 64)) (-4174 (($ $ (-635 (-292 $))) 97) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-635 |#4|) (-635 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-635 |#4|) (-635 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-635 |#3|) (-635 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-635 |#3|) (-635 |#2|)) 84)) (-4217 (($ $ |#4|) NIL) (($ $ (-635 |#4|)) NIL) (($ $ |#4| (-765)) NIL) (($ $ (-635 |#4|) (-635 (-765))) NIL) (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1572 (((-635 |#3|) $) 75)) (-4355 ((|#5| $) NIL) (((-765) $ |#4|) NIL) (((-635 (-765)) $ (-635 |#4|)) NIL) (((-765) $ |#3|) 44)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-406 (-544))) NIL) (($ $) NIL))) -(((-251 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4174 (|#1| |#1| (-635 |#3|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#3| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#3|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#3| |#1|)) (-15 -1606 ((-1 |#1| (-765)) |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1569 (|#4| |#1|)) (-15 -1570 ((-112) |#1|)) (-15 -1605 ((-765) |#1| |#3|)) (-15 -1571 ((-635 (-765)) |#1| |#3|)) (-15 -1605 ((-765) |#1|)) (-15 -1571 ((-635 (-765)) |#1|)) (-15 -4355 ((-765) |#1| |#3|)) (-15 -4178 ((-765) |#1|)) (-15 -4178 ((-765) |#1| |#3|)) (-15 -1572 ((-635 |#3|) |#1|)) (-15 -1606 ((-1 |#1| (-765)) |#3|)) (-15 -4353 (|#1| |#3|)) (-15 -3558 ((-3 |#3| #1="failed") |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -4355 ((-635 (-765)) |#1| (-635 |#4|))) (-15 -4355 ((-765) |#1| |#4|)) (-15 -4353 (|#1| |#4|)) (-15 -3558 ((-3 |#4| #1#) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#4| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4355 (|#5| |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4217 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -4217 (|#1| |#1| |#4| (-765))) (-15 -4217 (|#1| |#1| (-635 |#4|))) (-15 -4217 (|#1| |#1| |#4|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-252 |#2| |#3| |#4| |#5|) (-1042) (-844) (-265 |#3|) (-787)) (T -251)) -NIL -(-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4174 (|#1| |#1| (-635 |#3|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#3| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#3|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#3| |#1|)) (-15 -1606 ((-1 |#1| (-765)) |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1569 (|#4| |#1|)) (-15 -1570 ((-112) |#1|)) (-15 -1605 ((-765) |#1| |#3|)) (-15 -1571 ((-635 (-765)) |#1| |#3|)) (-15 -1605 ((-765) |#1|)) (-15 -1571 ((-635 (-765)) |#1|)) (-15 -4355 ((-765) |#1| |#3|)) (-15 -4178 ((-765) |#1|)) (-15 -4178 ((-765) |#1| |#3|)) (-15 -1572 ((-635 |#3|) |#1|)) (-15 -1606 ((-1 |#1| (-765)) |#3|)) (-15 -4353 (|#1| |#3|)) (-15 -3558 ((-3 |#3| #1="failed") |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -4355 ((-635 (-765)) |#1| (-635 |#4|))) (-15 -4355 ((-765) |#1| |#4|)) (-15 -4353 (|#1| |#4|)) (-15 -3558 ((-3 |#4| #1#) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#4| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4355 (|#5| |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4217 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -4217 (|#1| |#1| |#4| (-765))) (-15 -4217 (|#1| |#1| (-635 |#4|))) (-15 -4217 (|#1| |#1| |#4|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1571 (((-635 (-765)) $) 214) (((-635 (-765)) $ |#2|) 212)) (-1605 (((-765) $) 213) (((-765) $ |#2|) 211)) (-3467 (((-635 |#3|) $) 110)) (-3469 (((-1160 $) $ |#3|) 125) (((-1160 |#1|) $) 124)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2213 (($ $) 88 (|has| |#1| (-554)))) (-2211 (((-112) $) 90 (|has| |#1| (-554)))) (-3201 (((-765) $) 112) (((-765) $ (-635 |#3|)) 111)) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 100 (|has| |#1| (-903)))) (-4181 (($ $) 98 (|has| |#1| (-450)))) (-4376 (((-404 $) $) 97 (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 103 (|has| |#1| (-903)))) (-1567 (($ $) 207)) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 164) (((-3 (-406 (-544)) #2#) $) 161 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) 159 (|has| |#1| (-1031 (-544)))) (((-3 |#3| #2#) $) 136) (((-3 |#2| #2#) $) 221)) (-3557 ((|#1| $) 163) (((-406 (-544)) $) 162 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 160 (|has| |#1| (-1031 (-544)))) ((|#3| $) 137) ((|#2| $) 222)) (-4163 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-4366 (($ $) 154)) (-2401 (((-682 (-544)) (-682 $)) 134 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-3200 (((-635 $) $) 109)) (-4130 (((-112) $) 96 (|has| |#1| (-903)))) (-1749 (($ $ |#1| |#4| $) 172)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84 (-12 (|has| |#3| (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 83 (-12 (|has| |#3| (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ |#2|) 217) (((-765) $) 216)) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 169)) (-3470 (($ (-1160 |#1|) |#3|) 117) (($ (-1160 $) |#3|) 116)) (-3203 (((-635 $) $) 126)) (-4344 (((-112) $) 152)) (-3276 (($ |#1| |#4|) 153) (($ $ |#3| (-765)) 119) (($ $ (-635 |#3|) (-635 (-765))) 118)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) 120)) (-3202 ((|#4| $) 170) (((-765) $ |#3|) 122) (((-635 (-765)) $ (-635 |#3|)) 121)) (-2913 (($ $ $) 79 (|has| |#1| (-844)))) (-3242 (($ $ $) 78 (|has| |#1| (-844)))) (-1750 (($ (-1 |#4| |#4|) $) 171)) (-4365 (($ (-1 |#1| |#1|) $) 151)) (-1606 (((-1 $ (-765)) |#2|) 219) (((-1 $ (-765)) $) 206 (|has| |#1| (-232)))) (-3468 (((-3 |#3| #3="failed") $) 123)) (-3277 (($ $) 149)) (-3575 ((|#1| $) 148)) (-1569 ((|#3| $) 209)) (-2041 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3643 (((-1148) $) 9)) (-1570 (((-112) $) 210)) (-3205 (((-3 (-635 $) #3#) $) 114)) (-3204 (((-3 (-635 $) #3#) $) 115)) (-3206 (((-3 (-2 (|:| |var| |#3|) (|:| -2536 (-765))) #3#) $) 113)) (-1568 (($ $) 208)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 166)) (-1943 ((|#1| $) 167)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 95 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 102 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 101 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 99 (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) 145) (($ $ (-292 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 $)) 204 (|has| |#1| (-232))) (($ $ |#2| |#1|) 203 (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 |#1|)) 202 (|has| |#1| (-232)))) (-4164 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4217 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-635 |#3|) (-635 (-765))) 39) (($ $) 238 (|has| |#1| (-232))) (($ $ (-765)) 236 (|has| |#1| (-232))) (($ $ (-1166)) 234 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 233 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 232 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 231 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1572 (((-635 |#2|) $) 218)) (-4355 ((|#4| $) 150) (((-765) $ |#3|) 130) (((-635 (-765)) $ (-635 |#3|)) 129) (((-765) $ |#2|) 215)) (-4377 (((-883 (-377)) $) 82 (-12 (|has| |#3| (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) 81 (-12 (|has| |#3| (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) 80 (-12 (|has| |#3| (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 104 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-406 (-544))) 72 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544)))))) (($ $) 85 (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) 168)) (-4084 ((|#1| $ |#4|) 155) (($ $ |#3| (-765)) 128) (($ $ (-635 |#3|) (-635 (-765))) 127)) (-3084 (((-3 $ #1#) $) 73 (-3936 (-3240 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 89 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-635 |#3|) (-635 (-765))) 35) (($ $) 237 (|has| |#1| (-232))) (($ $ (-765)) 235 (|has| |#1| (-232))) (($ $ (-1166)) 230 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 229 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 228 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 227 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2945 (((-112) $ $) 76 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 75 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 77 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 74 (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 157 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-252 |#1| |#2| |#3| |#4|) (-139) (-1042) (-844) (-265 |t#2|) (-787)) (T -252)) -((-1606 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *4 *3 *5 *6)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-635 *4)))) (-4178 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) (-4355 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-1571 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-635 (-765))))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) (-1571 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-635 (-765))))) (-1605 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-112)))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-787)) (-4 *2 (-265 *4)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-265 *3)) (-4 *5 (-787)))) (-1567 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-265 *3)) (-4 *5 (-787)))) (-1606 (*1 *2 *1) (-12 (-4 *3 (-232)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *3 *4 *5 *6))))) -(-13 (-943 |t#1| |t#4| |t#3|) (-230 |t#1|) (-1031 |t#2|) (-10 -8 (-15 -1606 ((-1 $ (-765)) |t#2|)) (-15 -1572 ((-635 |t#2|) $)) (-15 -4178 ((-765) $ |t#2|)) (-15 -4178 ((-765) $)) (-15 -4355 ((-765) $ |t#2|)) (-15 -1571 ((-635 (-765)) $)) (-15 -1605 ((-765) $)) (-15 -1571 ((-635 (-765)) $ |t#2|)) (-15 -1605 ((-765) $ |t#2|)) (-15 -1570 ((-112) $)) (-15 -1569 (|t#3| $)) (-15 -1568 ($ $)) (-15 -1567 ($ $)) (IF (|has| |t#1| (-232)) (PROGN (-6 (-512 |t#2| |t#1|)) (-6 (-512 |t#2| $)) (-6 (-308 $)) (-15 -1606 ((-1 $ (-765)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 |#2|) . T) ((-611 |#3|) . T) ((-611 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544))))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-289) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#4|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-903)) (|has| |#1| (-450))) ((-512 |#2| |#1|) |has| |#1| (-232)) ((-512 |#2| $) |has| |#1| (-232)) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-554) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-893 |#3|) . T) ((-879 (-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))) ((-943 |#1| |#4| |#3|) . T) ((-903) |has| |#1| (-903)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1031 |#2|) . T) ((-1031 |#3|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) |has| |#1| (-903))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1578 ((|#1| $) 54)) (-3728 ((|#1| $) 44)) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-3385 (($ $) 60)) (-2416 (($ $) 48)) (-3730 ((|#1| |#1| $) 46)) (-3729 ((|#1| $) 45)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-4240 (((-765) $) 61)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-1576 ((|#1| |#1| $) 52)) (-1575 ((|#1| |#1| $) 51)) (-4014 (($ |#1| $) 40)) (-2982 (((-765) $) 55)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-3384 ((|#1| $) 62)) (-1574 ((|#1| $) 50)) (-1573 ((|#1| $) 49)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3387 ((|#1| |#1| $) 58)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3386 ((|#1| $) 59)) (-1579 (($) 57) (($ (-635 |#1|)) 56)) (-3727 (((-765) $) 43)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1577 ((|#1| $) 53)) (-1358 (($ (-635 |#1|)) 42)) (-3383 ((|#1| $) 63)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-253 |#1|) (-139) (-1204)) (T -253)) -((-1579 (*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1579 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-253 *3)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1576 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1575 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204))))) -(-13 (-1111 |t#1|) (-988 |t#1|) (-10 -8 (-15 -1579 ($)) (-15 -1579 ($ (-635 |t#1|))) (-15 -2982 ((-765) $)) (-15 -1578 (|t#1| $)) (-15 -1577 (|t#1| $)) (-15 -1576 (|t#1| |t#1| $)) (-15 -1575 (|t#1| |t#1| $)) (-15 -1574 (|t#1| $)) (-15 -1573 (|t#1| $)) (-15 -2416 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-988 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1111 |#1|) . T) ((-1204) . T)) -((-1580 (((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377))) 71) (((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260))) 70) (((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377))) 61) (((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260))) 60) (((-1123 (-224)) (-872 |#1|) (-1082 (-377))) 52) (((-1123 (-224)) (-872 |#1|) (-1082 (-377)) (-635 (-260))) 51)) (-1587 (((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377))) 74) (((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260))) 73) (((-1257) |#1| (-1082 (-377)) (-1082 (-377))) 64) (((-1257) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260))) 63) (((-1257) (-872 |#1|) (-1082 (-377))) 56) (((-1257) (-872 |#1|) (-1082 (-377)) (-635 (-260))) 55) (((-1256) (-870 |#1|) (-1082 (-377))) 43) (((-1256) (-870 |#1|) (-1082 (-377)) (-635 (-260))) 42) (((-1256) |#1| (-1082 (-377))) 35) (((-1256) |#1| (-1082 (-377)) (-635 (-260))) 34))) -(((-254 |#1|) (-10 -7 (-15 -1587 ((-1256) |#1| (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) |#1| (-1082 (-377)))) (-15 -1587 ((-1256) (-870 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-870 |#1|) (-1082 (-377)))) (-15 -1587 ((-1257) (-872 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-872 |#1|) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) (-872 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-872 |#1|) (-1082 (-377)))) (-15 -1587 ((-1257) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) |#1| (-1082 (-377)) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)))) (-15 -1587 ((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377))))) (-13 (-609 (-533)) (-1091))) (T -254)) -((-1580 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *5)))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *6)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *5)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *6)))) (-1580 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1257)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *5)))) (-1580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *6)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *5)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *6)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-870 *5)) (-5 *4 (-1082 (-377))) (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1256)) (-5 *1 (-254 *5)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-870 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1256)) (-5 *1 (-254 *6)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1256)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091)))))) -(-10 -7 (-15 -1587 ((-1256) |#1| (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) |#1| (-1082 (-377)))) (-15 -1587 ((-1256) (-870 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-870 |#1|) (-1082 (-377)))) (-15 -1587 ((-1257) (-872 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-872 |#1|) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) (-872 |#1|) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-872 |#1|) (-1082 (-377)))) (-15 -1587 ((-1257) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) |#1| (-1082 (-377)) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) |#1| (-1082 (-377)) (-1082 (-377)))) (-15 -1587 ((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-875 |#1|) (-1082 (-377)) (-1082 (-377)))) (-15 -1580 ((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-875 |#1|) (-1082 (-377)) (-1082 (-377))))) -((-1581 (((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 139)) (-1580 (((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377))) 160) (((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 158) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377))) 163) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 159) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377))) 150) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 149) (((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377))) 129) (((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260))) 127) (((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377))) 128) (((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260))) 125)) (-1587 (((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377))) 162) (((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 161) (((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377))) 165) (((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 164) (((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377))) 152) (((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260))) 151) (((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377))) 135) (((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260))) 134) (((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377))) 133) (((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260))) 132) (((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377))) 100) (((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260))) 99) (((-1256) (-1 (-224) (-224)) (-1079 (-377))) 96) (((-1256) (-1 (-224) (-224)) (-1079 (-377)) (-635 (-260))) 95))) -(((-255) (-10 -7 (-15 -1587 ((-1256) (-1 (-224) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-1 (-224) (-224)) (-1079 (-377)))) (-15 -1587 ((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1587 ((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1587 ((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)))) (-15 -1581 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -255)) -((-1581 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1256)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1256)) (-5 *1 (-255)))) (-1587 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-255))))) -(-10 -7 (-15 -1587 ((-1256) (-1 (-224) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-1 (-224) (-224)) (-1079 (-377)))) (-15 -1587 ((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1256) (-870 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1587 ((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-872 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-872 (-1 (-224) (-224))) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224)) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-377)) (-1079 (-377)))) (-15 -1587 ((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1587 ((-1257) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)))) (-15 -1580 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)) (-635 (-260)))) (-15 -1580 ((-1123 (-224)) (-875 (-1 (-224) (-224) (-224))) (-1079 (-377)) (-1079 (-377)))) (-15 -1581 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))))) -((-1587 (((-1256) (-292 |#2|) (-1166) (-1166) (-635 (-260))) 96))) -(((-256 |#1| |#2|) (-10 -7 (-15 -1587 ((-1256) (-292 |#2|) (-1166) (-1166) (-635 (-260))))) (-13 (-554) (-844) (-1031 (-544))) (-420 |#1|)) (T -256)) -((-1587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-292 *7)) (-5 *4 (-1166)) (-5 *5 (-635 (-260))) (-4 *7 (-420 *6)) (-4 *6 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-1256)) (-5 *1 (-256 *6 *7))))) -(-10 -7 (-15 -1587 ((-1256) (-292 |#2|) (-1166) (-1166) (-635 (-260))))) -((-1584 (((-544) (-544)) 50)) (-1585 (((-544) (-544)) 51)) (-1586 (((-224) (-224)) 52)) (-1583 (((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224))) 49)) (-1582 (((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)) (-112)) 47))) -(((-257) (-10 -7 (-15 -1582 ((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)) (-112))) (-15 -1583 ((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)))) (-15 -1584 ((-544) (-544))) (-15 -1585 ((-544) (-544))) (-15 -1586 ((-224) (-224))))) (T -257)) -((-1586 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-257)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-257)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-257)))) (-1583 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-224)) (-167 (-224)))) (-5 *4 (-1079 (-224))) (-5 *2 (-1257)) (-5 *1 (-257)))) (-1582 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-224)) (-167 (-224)))) (-5 *4 (-1079 (-224))) (-5 *5 (-112)) (-5 *2 (-1257)) (-5 *1 (-257))))) -(-10 -7 (-15 -1582 ((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)) (-112))) (-15 -1583 ((-1257) (-1 (-167 (-224)) (-167 (-224))) (-1079 (-224)) (-1079 (-224)))) (-15 -1584 ((-544) (-544))) (-15 -1585 ((-544) (-544))) (-15 -1586 ((-224) (-224)))) -((-4353 (((-1082 (-377)) (-1082 (-313 |#1|))) 16))) -(((-258 |#1|) (-10 -7 (-15 -4353 ((-1082 (-377)) (-1082 (-313 |#1|))))) (-13 (-844) (-554) (-609 (-377)))) (T -258)) -((-4353 (*1 *2 *3) (-12 (-5 *3 (-1082 (-313 *4))) (-4 *4 (-13 (-844) (-554) (-609 (-377)))) (-5 *2 (-1082 (-377))) (-5 *1 (-258 *4))))) -(-10 -7 (-15 -4353 ((-1082 (-377)) (-1082 (-313 |#1|))))) -((-1587 (((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-260))) 23) (((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224))) 24) (((-1256) (-635 (-936 (-224))) (-635 (-260))) 16) (((-1256) (-635 (-936 (-224)))) 17) (((-1256) (-635 (-224)) (-635 (-224)) (-635 (-260))) 20) (((-1256) (-635 (-224)) (-635 (-224))) 21))) -(((-259) (-10 -7 (-15 -1587 ((-1256) (-635 (-224)) (-635 (-224)))) (-15 -1587 ((-1256) (-635 (-224)) (-635 (-224)) (-635 (-260)))) (-15 -1587 ((-1256) (-635 (-936 (-224))))) (-15 -1587 ((-1256) (-635 (-936 (-224))) (-635 (-260)))) (-15 -1587 ((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)))) (-15 -1587 ((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-260)))))) (T -259)) -((-1587 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-1587 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *4 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-259)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *2 (-1256)) (-5 *1 (-259)))) (-1587 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-259)))) (-1587 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1256)) (-5 *1 (-259))))) -(-10 -7 (-15 -1587 ((-1256) (-635 (-224)) (-635 (-224)))) (-15 -1587 ((-1256) (-635 (-224)) (-635 (-224)) (-635 (-260)))) (-15 -1587 ((-1256) (-635 (-936 (-224))))) (-15 -1587 ((-1256) (-635 (-936 (-224))) (-635 (-260)))) (-15 -1587 ((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)))) (-15 -1587 ((-1257) (-635 (-224)) (-635 (-224)) (-635 (-224)) (-635 (-260))))) -((-2947 (((-112) $ $) NIL)) (-4288 (($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 15)) (-1600 (($ (-912)) 76)) (-1599 (($ (-912)) 75)) (-1920 (($ (-635 (-377))) 82)) (-1603 (($ (-377)) 58)) (-1602 (($ (-912)) 77)) (-1596 (($ (-112)) 23)) (-4290 (($ (-1148)) 18)) (-1595 (($ (-1148)) 19)) (-1601 (($ (-1123 (-224))) 71)) (-2078 (($ (-635 (-1079 (-377)))) 67)) (-1589 (($ (-635 (-1079 (-377)))) 59) (($ (-635 (-1079 (-406 (-544))))) 66)) (-1592 (($ (-377)) 29) (($ (-867)) 33)) (-1588 (((-112) (-635 $) (-1166)) 91)) (-1604 (((-3 (-51) "failed") (-635 $) (-1166)) 93)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1591 (($ (-377)) 34) (($ (-867)) 35)) (-3625 (($ (-1 (-936 (-224)) (-936 (-224)))) 57)) (-2389 (($ (-1 (-936 (-224)) (-936 (-224)))) 78)) (-1590 (($ (-1 (-224) (-224))) 39) (($ (-1 (-224) (-224) (-224))) 43) (($ (-1 (-224) (-224) (-224) (-224))) 47)) (-4353 (((-857) $) 87)) (-1593 (($ (-112)) 24) (($ (-635 (-1079 (-377)))) 52)) (-2073 (($ (-112)) 25)) (-3437 (((-112) $ $) 89))) -(((-260) (-13 (-1091) (-10 -8 (-15 -2073 ($ (-112))) (-15 -1593 ($ (-112))) (-15 -4288 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4290 ($ (-1148))) (-15 -1595 ($ (-1148))) (-15 -1596 ($ (-112))) (-15 -1593 ($ (-635 (-1079 (-377))))) (-15 -3625 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -1592 ($ (-377))) (-15 -1592 ($ (-867))) (-15 -1591 ($ (-377))) (-15 -1591 ($ (-867))) (-15 -1590 ($ (-1 (-224) (-224)))) (-15 -1590 ($ (-1 (-224) (-224) (-224)))) (-15 -1590 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1603 ($ (-377))) (-15 -1589 ($ (-635 (-1079 (-377))))) (-15 -1589 ($ (-635 (-1079 (-406 (-544)))))) (-15 -2078 ($ (-635 (-1079 (-377))))) (-15 -1601 ($ (-1123 (-224)))) (-15 -1599 ($ (-912))) (-15 -1600 ($ (-912))) (-15 -1602 ($ (-912))) (-15 -2389 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -1920 ($ (-635 (-377)))) (-15 -1604 ((-3 (-51) "failed") (-635 $) (-1166))) (-15 -1588 ((-112) (-635 $) (-1166)))))) (T -260)) -((-2073 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260)))) (-1593 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260)))) (-4288 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-260)))) (-4290 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-260)))) (-1595 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-260)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260)))) (-1593 (*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260)))) (-3625 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-260)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-260)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-260)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-260)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-260)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-260)))) (-1603 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-406 (-544))))) (-5 *1 (-260)))) (-2078 (*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260)))) (-1601 (*1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-260)))) (-1599 (*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260)))) (-1602 (*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-260)))) (-1920 (*1 *1 *2) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-260)))) (-1604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *2 (-51)) (-5 *1 (-260)))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *2 (-112)) (-5 *1 (-260))))) -(-13 (-1091) (-10 -8 (-15 -2073 ($ (-112))) (-15 -1593 ($ (-112))) (-15 -4288 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4290 ($ (-1148))) (-15 -1595 ($ (-1148))) (-15 -1596 ($ (-112))) (-15 -1593 ($ (-635 (-1079 (-377))))) (-15 -3625 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -1592 ($ (-377))) (-15 -1592 ($ (-867))) (-15 -1591 ($ (-377))) (-15 -1591 ($ (-867))) (-15 -1590 ($ (-1 (-224) (-224)))) (-15 -1590 ($ (-1 (-224) (-224) (-224)))) (-15 -1590 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1603 ($ (-377))) (-15 -1589 ($ (-635 (-1079 (-377))))) (-15 -1589 ($ (-635 (-1079 (-406 (-544)))))) (-15 -2078 ($ (-635 (-1079 (-377))))) (-15 -1601 ($ (-1123 (-224)))) (-15 -1599 ($ (-912))) (-15 -1600 ($ (-912))) (-15 -1602 ($ (-912))) (-15 -2389 ($ (-1 (-936 (-224)) (-936 (-224))))) (-15 -1920 ($ (-635 (-377)))) (-15 -1604 ((-3 (-51) "failed") (-635 $) (-1166))) (-15 -1588 ((-112) (-635 $) (-1166))))) -((-4288 (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-260)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 26)) (-1600 (((-912) (-635 (-260)) (-912)) 53)) (-1599 (((-912) (-635 (-260)) (-912)) 52)) (-4258 (((-635 (-377)) (-635 (-260)) (-635 (-377))) 69)) (-1603 (((-377) (-635 (-260)) (-377)) 58)) (-1602 (((-912) (-635 (-260)) (-912)) 54)) (-1596 (((-112) (-635 (-260)) (-112)) 28)) (-4290 (((-1148) (-635 (-260)) (-1148)) 20)) (-1595 (((-1148) (-635 (-260)) (-1148)) 27)) (-1601 (((-1123 (-224)) (-635 (-260))) 47)) (-2078 (((-635 (-1079 (-377))) (-635 (-260)) (-635 (-1079 (-377)))) 41)) (-1597 (((-867) (-635 (-260)) (-867)) 33)) (-1598 (((-867) (-635 (-260)) (-867)) 34)) (-2389 (((-1 (-936 (-224)) (-936 (-224))) (-635 (-260)) (-1 (-936 (-224)) (-936 (-224)))) 64)) (-1594 (((-112) (-635 (-260)) (-112)) 16)) (-2073 (((-112) (-635 (-260)) (-112)) 15))) -(((-261) (-10 -7 (-15 -2073 ((-112) (-635 (-260)) (-112))) (-15 -1594 ((-112) (-635 (-260)) (-112))) (-15 -4288 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-260)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4290 ((-1148) (-635 (-260)) (-1148))) (-15 -1595 ((-1148) (-635 (-260)) (-1148))) (-15 -1596 ((-112) (-635 (-260)) (-112))) (-15 -1597 ((-867) (-635 (-260)) (-867))) (-15 -1598 ((-867) (-635 (-260)) (-867))) (-15 -2078 ((-635 (-1079 (-377))) (-635 (-260)) (-635 (-1079 (-377))))) (-15 -1599 ((-912) (-635 (-260)) (-912))) (-15 -1600 ((-912) (-635 (-260)) (-912))) (-15 -1601 ((-1123 (-224)) (-635 (-260)))) (-15 -1602 ((-912) (-635 (-260)) (-912))) (-15 -1603 ((-377) (-635 (-260)) (-377))) (-15 -2389 ((-1 (-936 (-224)) (-936 (-224))) (-635 (-260)) (-1 (-936 (-224)) (-936 (-224))))) (-15 -4258 ((-635 (-377)) (-635 (-260)) (-635 (-377)))))) (T -261)) -((-4258 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-377))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-2389 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1603 (*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1602 (*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-261)))) (-1600 (*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1599 (*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-2078 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1598 (*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1597 (*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1596 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1595 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-4290 (*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-4288 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-1594 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) (-2073 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(-10 -7 (-15 -2073 ((-112) (-635 (-260)) (-112))) (-15 -1594 ((-112) (-635 (-260)) (-112))) (-15 -4288 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-635 (-260)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4290 ((-1148) (-635 (-260)) (-1148))) (-15 -1595 ((-1148) (-635 (-260)) (-1148))) (-15 -1596 ((-112) (-635 (-260)) (-112))) (-15 -1597 ((-867) (-635 (-260)) (-867))) (-15 -1598 ((-867) (-635 (-260)) (-867))) (-15 -2078 ((-635 (-1079 (-377))) (-635 (-260)) (-635 (-1079 (-377))))) (-15 -1599 ((-912) (-635 (-260)) (-912))) (-15 -1600 ((-912) (-635 (-260)) (-912))) (-15 -1601 ((-1123 (-224)) (-635 (-260)))) (-15 -1602 ((-912) (-635 (-260)) (-912))) (-15 -1603 ((-377) (-635 (-260)) (-377))) (-15 -2389 ((-1 (-936 (-224)) (-936 (-224))) (-635 (-260)) (-1 (-936 (-224)) (-936 (-224))))) (-15 -4258 ((-635 (-377)) (-635 (-260)) (-635 (-377))))) -((-1604 (((-3 |#1| "failed") (-635 (-260)) (-1166)) 17))) -(((-262 |#1|) (-10 -7 (-15 -1604 ((-3 |#1| "failed") (-635 (-260)) (-1166)))) (-1204)) (T -262)) -((-1604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *1 (-262 *2)) (-4 *2 (-1204))))) -(-10 -7 (-15 -1604 ((-3 |#1| "failed") (-635 (-260)) (-1166)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1571 (((-635 (-765)) $) NIL) (((-635 (-765)) $ |#2|) NIL)) (-1605 (((-765) $) NIL) (((-765) $ |#2|) NIL)) (-3467 (((-635 |#3|) $) NIL)) (-3469 (((-1160 $) $ |#3|) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 |#3|)) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1567 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1115 |#1| |#2|) #2#) $) 21)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1115 |#1| |#2|) $) NIL)) (-4163 (($ $ $ |#3|) NIL (|has| |#1| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 |#3|) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))))) (-4178 (((-765) $ |#2|) NIL) (((-765) $) 10)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#1|) |#3|) NIL) (($ (-1160 $) |#3|) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-635 |#3|) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) NIL)) (-3202 (((-529 |#3|) $) NIL) (((-765) $ |#3|) NIL) (((-635 (-765)) $ (-635 |#3|)) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 |#3|) (-529 |#3|)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1606 (((-1 $ (-765)) |#2|) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-3468 (((-3 |#3| #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-1569 ((|#3| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-1570 (((-112) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| |#3|) (|:| -2536 (-765))) #3#) $) NIL)) (-1568 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-635 |#3|) (-635 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-635 |#3|) (-635 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 $)) NIL (|has| |#1| (-232))) (($ $ |#2| |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 |#2|) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-4164 (($ $ |#3|) NIL (|has| |#1| (-171)))) (-4217 (($ $ |#3|) NIL) (($ $ (-635 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-635 |#3|) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1572 (((-635 |#2|) $) NIL)) (-4355 (((-529 |#3|) $) NIL) (((-765) $ |#3|) NIL) (((-635 (-765)) $ (-635 |#3|)) NIL) (((-765) $ |#2|) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ |#3|) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1115 |#1| |#2|)) 30) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-635 |#3|) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ |#3|) NIL) (($ $ (-635 |#3|)) NIL) (($ $ |#3| (-765)) NIL) (($ $ (-635 |#3|) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-263 |#1| |#2| |#3|) (-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1031 (-1115 |#1| |#2|))) (-1042) (-844) (-265 |#2|)) (T -263)) -NIL -(-13 (-252 |#1| |#2| |#3| (-529 |#3|)) (-1031 (-1115 |#1| |#2|))) -((-1605 (((-765) $) 30)) (-3558 (((-3 |#2| "failed") $) 17)) (-3557 ((|#2| $) 27)) (-4217 (($ $) 12) (($ $ (-765)) 15)) (-4353 (((-857) $) 26) (($ |#2|) 10)) (-3437 (((-112) $ $) 20)) (-3067 (((-112) $ $) 29))) -(((-264 |#1| |#2|) (-10 -8 (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -1605 ((-765) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| "failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-265 |#2|) (-844)) (T -264)) -NIL -(-10 -8 (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -1605 ((-765) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| "failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-1605 (((-765) $) 22)) (-4238 ((|#1| $) 23)) (-3558 (((-3 |#1| "failed") $) 27)) (-3557 ((|#1| $) 28)) (-4178 (((-765) $) 24)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-1606 (($ |#1| (-765)) 25)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4217 (($ $) 21) (($ $ (-765)) 20)) (-4353 (((-857) $) 11) (($ |#1|) 26)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18))) -(((-265 |#1|) (-139) (-844)) (T -265)) -((-4353 (*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-1606 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4217 (*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-265 *3)) (-4 *3 (-844))))) -(-13 (-844) (-1031 |t#1|) (-10 -8 (-15 -1606 ($ |t#1| (-765))) (-15 -4178 ((-765) $)) (-15 -4238 (|t#1| $)) (-15 -1605 ((-765) $)) (-15 -4217 ($ $)) (-15 -4217 ($ $ (-765))) (-15 -4353 ($ |t#1|)))) -(((-102) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-844) . T) ((-1031 |#1|) . T) ((-1091) . T)) -((-3467 (((-635 (-1166)) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 41)) (-4341 (((-635 (-1166)) (-313 (-224)) (-765)) 80)) (-1609 (((-3 (-313 (-224)) "failed") (-313 (-224))) 51)) (-1610 (((-313 (-224)) (-313 (-224))) 67)) (-1608 (((-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 26)) (-1611 (((-112) (-635 (-313 (-224)))) 84)) (-1615 (((-112) (-313 (-224))) 24)) (-1617 (((-635 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) 105)) (-1614 (((-635 (-313 (-224))) (-635 (-313 (-224)))) 87)) (-1613 (((-635 (-313 (-224))) (-635 (-313 (-224)))) 86)) (-1612 (((-682 (-224)) (-635 (-313 (-224))) (-765)) 94)) (-3310 (((-112) (-313 (-224))) 20) (((-112) (-635 (-313 (-224)))) 85)) (-1607 (((-635 (-224)) (-635 (-836 (-224))) (-224)) 14)) (-1705 (((-377) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 100)) (-1616 (((-1028) (-1166) (-1028)) 34))) -(((-266) (-10 -7 (-15 -1607 ((-635 (-224)) (-635 (-836 (-224))) (-224))) (-15 -1608 ((-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -1609 ((-3 (-313 (-224)) "failed") (-313 (-224)))) (-15 -1610 ((-313 (-224)) (-313 (-224)))) (-15 -1611 ((-112) (-635 (-313 (-224))))) (-15 -3310 ((-112) (-635 (-313 (-224))))) (-15 -3310 ((-112) (-313 (-224)))) (-15 -1612 ((-682 (-224)) (-635 (-313 (-224))) (-765))) (-15 -1613 ((-635 (-313 (-224))) (-635 (-313 (-224))))) (-15 -1614 ((-635 (-313 (-224))) (-635 (-313 (-224))))) (-15 -1615 ((-112) (-313 (-224)))) (-15 -3467 ((-635 (-1166)) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -4341 ((-635 (-1166)) (-313 (-224)) (-765))) (-15 -1616 ((-1028) (-1166) (-1028))) (-15 -1705 ((-377) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -1617 ((-635 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))))) (T -266)) -((-1617 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) (-5 *2 (-635 (-1148))) (-5 *1 (-266)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *2 (-377)) (-5 *1 (-266)))) (-1616 (*1 *2 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-266)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-765)) (-5 *2 (-635 (-1166))) (-5 *1 (-266)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *2 (-635 (-1166))) (-5 *1 (-266)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-635 (-313 (-224)))) (-5 *1 (-266)))) (-1613 (*1 *2 *2) (-12 (-5 *2 (-635 (-313 (-224)))) (-5 *1 (-266)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) (-5 *1 (-266)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1610 (*1 *2 *2) (-12 (-5 *2 (-313 (-224))) (-5 *1 (-266)))) (-1609 (*1 *2 *2) (|partial| -12 (-5 *2 (-313 (-224))) (-5 *1 (-266)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (-5 *1 (-266)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-836 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 *4)) (-5 *1 (-266))))) -(-10 -7 (-15 -1607 ((-635 (-224)) (-635 (-836 (-224))) (-224))) (-15 -1608 ((-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -1609 ((-3 (-313 (-224)) "failed") (-313 (-224)))) (-15 -1610 ((-313 (-224)) (-313 (-224)))) (-15 -1611 ((-112) (-635 (-313 (-224))))) (-15 -3310 ((-112) (-635 (-313 (-224))))) (-15 -3310 ((-112) (-313 (-224)))) (-15 -1612 ((-682 (-224)) (-635 (-313 (-224))) (-765))) (-15 -1613 ((-635 (-313 (-224))) (-635 (-313 (-224))))) (-15 -1614 ((-635 (-313 (-224))) (-635 (-313 (-224))))) (-15 -1615 ((-112) (-313 (-224)))) (-15 -3467 ((-635 (-1166)) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -4341 ((-635 (-1166)) (-313 (-224)) (-765))) (-15 -1616 ((-1028) (-1166) (-1028))) (-15 -1705 ((-377) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -1617 ((-635 (-1148)) (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))))) -((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 44)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 26) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-267) (-833)) (T -267)) -NIL -(-833) -((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 58) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 54)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 34) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 36)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-268) (-833)) (T -268)) -NIL -(-833) -((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 76) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 73)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 44) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 55)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-269) (-833)) (T -269)) -NIL -(-833) -((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 50)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 31) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-270) (-833)) (T -270)) -NIL -(-833) -((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 50)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 28) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-271) (-833)) (T -271)) -NIL -(-833) -((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 73)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 28) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-272) (-833)) (T -272)) -NIL -(-833) -((-2947 (((-112) $ $) NIL)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 77)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 25) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-273) (-833)) (T -273)) -NIL -(-833) -((-2947 (((-112) $ $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1619 (((-635 (-544)) $) 18)) (-4355 (((-765) $) 16)) (-4353 (((-857) $) 22) (($ (-635 (-544))) 14)) (-1618 (($ (-765)) 19)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 9)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 10))) -(((-274) (-13 (-844) (-10 -8 (-15 -4353 ($ (-635 (-544)))) (-15 -4355 ((-765) $)) (-15 -1619 ((-635 (-544)) $)) (-15 -1618 ($ (-765)))))) (T -274)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-274)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-274)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-274)))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-274))))) -(-13 (-844) (-10 -8 (-15 -4353 ($ (-635 (-544)))) (-15 -4355 ((-765) $)) (-15 -1619 ((-635 (-544)) $)) (-15 -1618 ($ (-765))))) -((-3891 ((|#2| |#2|) 77)) (-4046 ((|#2| |#2|) 65)) (-1648 (((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3889 ((|#2| |#2|) 75)) (-4045 ((|#2| |#2|) 63)) (-3893 ((|#2| |#2|) 79)) (-4044 ((|#2| |#2|) 67)) (-4034 ((|#2|) 46)) (-3430 (((-113) (-113)) 95)) (-4349 ((|#2| |#2|) 61)) (-1649 (((-112) |#2|) 134)) (-1638 ((|#2| |#2|) 181)) (-1626 ((|#2| |#2|) 157)) (-1621 ((|#2|) 59)) (-1620 ((|#2|) 58)) (-1636 ((|#2| |#2|) 177)) (-1624 ((|#2| |#2|) 153)) (-1640 ((|#2| |#2|) 185)) (-1628 ((|#2| |#2|) 161)) (-1623 ((|#2| |#2|) 149)) (-1622 ((|#2| |#2|) 151)) (-1641 ((|#2| |#2|) 187)) (-1629 ((|#2| |#2|) 163)) (-1639 ((|#2| |#2|) 183)) (-1627 ((|#2| |#2|) 159)) (-1637 ((|#2| |#2|) 179)) (-1625 ((|#2| |#2|) 155)) (-1644 ((|#2| |#2|) 193)) (-1632 ((|#2| |#2|) 169)) (-1642 ((|#2| |#2|) 189)) (-1630 ((|#2| |#2|) 165)) (-1646 ((|#2| |#2|) 197)) (-1634 ((|#2| |#2|) 173)) (-1647 ((|#2| |#2|) 199)) (-1635 ((|#2| |#2|) 175)) (-1645 ((|#2| |#2|) 195)) (-1633 ((|#2| |#2|) 171)) (-1643 ((|#2| |#2|) 191)) (-1631 ((|#2| |#2|) 167)) (-4350 ((|#2| |#2|) 62)) (-3894 ((|#2| |#2|) 80)) (-4043 ((|#2| |#2|) 68)) (-3892 ((|#2| |#2|) 78)) (-4042 ((|#2| |#2|) 66)) (-3890 ((|#2| |#2|) 76)) (-4041 ((|#2| |#2|) 64)) (-2377 (((-112) (-113)) 93)) (-3897 ((|#2| |#2|) 83)) (-3885 ((|#2| |#2|) 71)) (-3895 ((|#2| |#2|) 81)) (-3883 ((|#2| |#2|) 69)) (-3899 ((|#2| |#2|) 85)) (-3887 ((|#2| |#2|) 73)) (-3900 ((|#2| |#2|) 86)) (-3888 ((|#2| |#2|) 74)) (-3898 ((|#2| |#2|) 84)) (-3886 ((|#2| |#2|) 72)) (-3896 ((|#2| |#2|) 82)) (-3884 ((|#2| |#2|) 70))) -(((-275 |#1| |#2|) (-10 -7 (-15 -4350 (|#2| |#2|)) (-15 -4349 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -4046 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3884 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3889 (|#2| |#2|)) (-15 -3890 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -3896 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -4034 (|#2|)) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1620 (|#2|)) (-15 -1621 (|#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1623 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -1627 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1629 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1631 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1637 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 ((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1649 ((-112) |#2|))) (-13 (-844) (-554)) (-13 (-420 |#1|) (-995))) (T -275)) -((-1649 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) (-4 *3 (-13 (-420 *4) (-995))))) (-1648 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-635 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-420 *4) (-995))) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-275 *4 *2)))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1645 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1638 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1637 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1636 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1634 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1633 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1631 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1629 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1627 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1625 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1624 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-1621 (*1 *2) (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-554))))) (-1620 (*1 *2) (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-554))))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *4)) (-4 *4 (-13 (-420 *3) (-995))))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-420 *4) (-995))))) (-4034 (*1 *2) (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-844) (-554))))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3884 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4042 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4349 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995))))) (-4350 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-420 *3) (-995)))))) -(-10 -7 (-15 -4350 (|#2| |#2|)) (-15 -4349 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -4046 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3884 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -3888 (|#2| |#2|)) (-15 -3889 (|#2| |#2|)) (-15 -3890 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -3896 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -4034 (|#2|)) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1620 (|#2|)) (-15 -1621 (|#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1623 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -1627 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1629 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1631 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -1634 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1637 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1639 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 ((-3 |#2| "failed") |#2| (-635 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1649 ((-112) |#2|))) -((-1652 (((-3 |#2| "failed") (-635 (-606 |#2|)) |#2| (-1166)) 135)) (-1654 ((|#2| (-406 (-544)) |#2|) 51)) (-1653 ((|#2| |#2| (-606 |#2|)) 128)) (-1650 (((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-606 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1166)) 127)) (-1651 ((|#2| |#2| (-1166)) 20) ((|#2| |#2|) 23)) (-2737 ((|#2| |#2| (-1166)) 141) ((|#2| |#2|) 139))) -(((-276 |#1| |#2|) (-10 -7 (-15 -2737 (|#2| |#2|)) (-15 -2737 (|#2| |#2| (-1166))) (-15 -1650 ((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-606 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1166))) (-15 -1651 (|#2| |#2|)) (-15 -1651 (|#2| |#2| (-1166))) (-15 -1652 ((-3 |#2| "failed") (-635 (-606 |#2|)) |#2| (-1166))) (-15 -1653 (|#2| |#2| (-606 |#2|))) (-15 -1654 (|#2| (-406 (-544)) |#2|))) (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -276)) -((-1654 (*1 *2 *3 *2) (-12 (-5 *3 (-406 (-544))) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-1653 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *4 *2)))) (-1652 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-635 (-606 *2))) (-5 *4 (-1166)) (-4 *2 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *5 *2)))) (-1651 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-1650 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-635 (-606 *3))) (|:| |vals| (-635 *3)))) (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2737 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))))) -(-10 -7 (-15 -2737 (|#2| |#2|)) (-15 -2737 (|#2| |#2| (-1166))) (-15 -1650 ((-2 (|:| |func| |#2|) (|:| |kers| (-635 (-606 |#2|))) (|:| |vals| (-635 |#2|))) |#2| (-1166))) (-15 -1651 (|#2| |#2|)) (-15 -1651 (|#2| |#2| (-1166))) (-15 -1652 ((-3 |#2| "failed") (-635 (-606 |#2|)) |#2| (-1166))) (-15 -1653 (|#2| |#2| (-606 |#2|))) (-15 -1654 (|#2| (-406 (-544)) |#2|))) -((-3358 (((-3 |#3| #1="failed") |#3|) 110)) (-3891 ((|#3| |#3|) 131)) (-3346 (((-3 |#3| #1#) |#3|) 82)) (-4046 ((|#3| |#3|) 121)) (-3356 (((-3 |#3| #1#) |#3|) 58)) (-3889 ((|#3| |#3|) 129)) (-3344 (((-3 |#3| #1#) |#3|) 46)) (-4045 ((|#3| |#3|) 119)) (-3360 (((-3 |#3| #1#) |#3|) 112)) (-3893 ((|#3| |#3|) 133)) (-3348 (((-3 |#3| #1#) |#3|) 84)) (-4044 ((|#3| |#3|) 123)) (-3341 (((-3 |#3| #1#) |#3| (-765)) 36)) (-3343 (((-3 |#3| #1#) |#3|) 74)) (-4349 ((|#3| |#3|) 118)) (-3342 (((-3 |#3| #1#) |#3|) 44)) (-4350 ((|#3| |#3|) 117)) (-3361 (((-3 |#3| #1#) |#3|) 113)) (-3894 ((|#3| |#3|) 134)) (-3349 (((-3 |#3| #1#) |#3|) 85)) (-4043 ((|#3| |#3|) 124)) (-3359 (((-3 |#3| #1#) |#3|) 111)) (-3892 ((|#3| |#3|) 132)) (-3347 (((-3 |#3| #1#) |#3|) 83)) (-4042 ((|#3| |#3|) 122)) (-3357 (((-3 |#3| #1#) |#3|) 60)) (-3890 ((|#3| |#3|) 130)) (-3345 (((-3 |#3| #1#) |#3|) 48)) (-4041 ((|#3| |#3|) 120)) (-3364 (((-3 |#3| #1#) |#3|) 66)) (-3897 ((|#3| |#3|) 137)) (-3352 (((-3 |#3| #1#) |#3|) 104)) (-3885 ((|#3| |#3|) 142)) (-3362 (((-3 |#3| #1#) |#3|) 62)) (-3895 ((|#3| |#3|) 135)) (-3350 (((-3 |#3| #1#) |#3|) 50)) (-3883 ((|#3| |#3|) 125)) (-3366 (((-3 |#3| #1#) |#3|) 70)) (-3899 ((|#3| |#3|) 139)) (-3354 (((-3 |#3| #1#) |#3|) 54)) (-3887 ((|#3| |#3|) 127)) (-3367 (((-3 |#3| #1#) |#3|) 72)) (-3900 ((|#3| |#3|) 140)) (-3355 (((-3 |#3| #1#) |#3|) 56)) (-3888 ((|#3| |#3|) 128)) (-3365 (((-3 |#3| #1#) |#3|) 68)) (-3898 ((|#3| |#3|) 138)) (-3353 (((-3 |#3| #1#) |#3|) 107)) (-3886 ((|#3| |#3|) 143)) (-3363 (((-3 |#3| #1#) |#3|) 64)) (-3896 ((|#3| |#3|) 136)) (-3351 (((-3 |#3| #1#) |#3|) 52)) (-3884 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-406 (-544))) 40 (|has| |#1| (-362))))) -(((-277 |#1| |#2| |#3|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-544)))) |%noBranch|) (-15 -4350 (|#3| |#3|)) (-15 -4349 (|#3| |#3|)) (-15 -4045 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4046 (|#3| |#3|)) (-15 -4042 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4043 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3884 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)))) (-38 (-406 (-544))) (-1246 |#1|) (-1217 |#1| |#2|)) (T -277)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-544))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1246 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1217 *4 *5)))) (-4350 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4349 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4042 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3884 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1217 *3 *4))))) -(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-544)))) |%noBranch|) (-15 -4350 (|#3| |#3|)) (-15 -4349 (|#3| |#3|)) (-15 -4045 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4046 (|#3| |#3|)) (-15 -4042 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4043 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3884 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)))) -((-3358 (((-3 |#3| #1="failed") |#3|) 66)) (-3891 ((|#3| |#3|) 129)) (-3346 (((-3 |#3| #1#) |#3|) 50)) (-4046 ((|#3| |#3|) 117)) (-3356 (((-3 |#3| #1#) |#3|) 62)) (-3889 ((|#3| |#3|) 127)) (-3344 (((-3 |#3| #1#) |#3|) 46)) (-4045 ((|#3| |#3|) 115)) (-3360 (((-3 |#3| #1#) |#3|) 70)) (-3893 ((|#3| |#3|) 131)) (-3348 (((-3 |#3| #1#) |#3|) 54)) (-4044 ((|#3| |#3|) 119)) (-3341 (((-3 |#3| #1#) |#3| (-765)) 35)) (-3343 (((-3 |#3| #1#) |#3|) 44)) (-4349 ((|#3| |#3|) 104)) (-3342 (((-3 |#3| #1#) |#3|) 42)) (-4350 ((|#3| |#3|) 114)) (-3361 (((-3 |#3| #1#) |#3|) 72)) (-3894 ((|#3| |#3|) 132)) (-3349 (((-3 |#3| #1#) |#3|) 56)) (-4043 ((|#3| |#3|) 120)) (-3359 (((-3 |#3| #1#) |#3|) 68)) (-3892 ((|#3| |#3|) 130)) (-3347 (((-3 |#3| #1#) |#3|) 52)) (-4042 ((|#3| |#3|) 118)) (-3357 (((-3 |#3| #1#) |#3|) 64)) (-3890 ((|#3| |#3|) 128)) (-3345 (((-3 |#3| #1#) |#3|) 48)) (-4041 ((|#3| |#3|) 116)) (-3364 (((-3 |#3| #1#) |#3|) 74)) (-3897 ((|#3| |#3|) 135)) (-3352 (((-3 |#3| #1#) |#3|) 58)) (-3885 ((|#3| |#3|) 123)) (-3362 (((-3 |#3| #1#) |#3|) 105)) (-3895 ((|#3| |#3|) 133)) (-3350 (((-3 |#3| #1#) |#3|) 94)) (-3883 ((|#3| |#3|) 121)) (-3366 (((-3 |#3| #1#) |#3|) 109)) (-3899 ((|#3| |#3|) 137)) (-3354 (((-3 |#3| #1#) |#3|) 101)) (-3887 ((|#3| |#3|) 125)) (-3367 (((-3 |#3| #1#) |#3|) 110)) (-3900 ((|#3| |#3|) 138)) (-3355 (((-3 |#3| #1#) |#3|) 103)) (-3888 ((|#3| |#3|) 126)) (-3365 (((-3 |#3| #1#) |#3|) 76)) (-3898 ((|#3| |#3|) 136)) (-3353 (((-3 |#3| #1#) |#3|) 60)) (-3886 ((|#3| |#3|) 124)) (-3363 (((-3 |#3| #1#) |#3|) 106)) (-3896 ((|#3| |#3|) 134)) (-3351 (((-3 |#3| #1#) |#3|) 97)) (-3884 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-406 (-544))) 40 (|has| |#1| (-362))))) -(((-278 |#1| |#2| |#3| |#4|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-544)))) |%noBranch|) (-15 -4350 (|#3| |#3|)) (-15 -4349 (|#3| |#3|)) (-15 -4045 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4046 (|#3| |#3|)) (-15 -4042 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4043 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3884 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)))) (-38 (-406 (-544))) (-1215 |#1|) (-1238 |#1| |#2|) (-976 |#2|)) (T -278)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-544))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1215 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1238 *4 *5)) (-4 *6 (-976 *5)))) (-4350 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4349 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4042 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3884 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3888 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3889 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4))))) -(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-544)))) |%noBranch|) (-15 -4350 (|#3| |#3|)) (-15 -4349 (|#3| |#3|)) (-15 -4045 (|#3| |#3|)) (-15 -4041 (|#3| |#3|)) (-15 -4046 (|#3| |#3|)) (-15 -4042 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4043 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3884 (|#3| |#3|)) (-15 -3885 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3888 (|#3| |#3|)) (-15 -3889 (|#3| |#3|)) (-15 -3890 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3896 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3898 (|#3| |#3|)) (-15 -3899 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)))) -((-3234 (((-112) $) 18)) (-1658 (((-183) $) 7)) (-3976 (((-3 (-1166) "failed") $) 14)) (-3975 (((-3 (-635 $) "failed") $) NIL)) (-1656 (((-3 (-1166) "failed") $) 20)) (-1657 (((-3 (-1093) "failed") $) 17)) (-4360 (((-112) $) 15)) (-4353 (((-857) $) NIL)) (-1655 (((-112) $) 9))) -(((-279) (-13 (-608 (-857)) (-10 -8 (-15 -1658 ((-183) $)) (-15 -4360 ((-112) $)) (-15 -1657 ((-3 (-1093) "failed") $)) (-15 -3234 ((-112) $)) (-15 -1656 ((-3 (-1166) "failed") $)) (-15 -1655 ((-112) $)) (-15 -3976 ((-3 (-1166) "failed") $)) (-15 -3975 ((-3 (-635 $) "failed") $))))) (T -279)) -((-1658 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-279)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-1657 (*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-279)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-1656 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-3976 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))) (-3975 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-279))) (-5 *1 (-279))))) -(-13 (-608 (-857)) (-10 -8 (-15 -1658 ((-183) $)) (-15 -4360 ((-112) $)) (-15 -1657 ((-3 (-1093) "failed") $)) (-15 -3234 ((-112) $)) (-15 -1656 ((-3 (-1166) "failed") $)) (-15 -1655 ((-112) $)) (-15 -3976 ((-3 (-1166) "failed") $)) (-15 -3975 ((-3 (-635 $) "failed") $)))) -((-4117 (($ (-1 (-112) |#2|) $) 24)) (-1424 (($ $) 36)) (-3809 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3810 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3241 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2421 (($ |#2| $ (-544)) 20) (($ $ $ (-544)) 22)) (-2422 (($ $ (-544)) 11) (($ $ (-1220 (-544))) 14)) (-4197 (($ $ |#2|) 30) (($ $ $) NIL)) (-4208 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-635 $)) NIL))) -(((-280 |#1| |#2|) (-10 -8 (-15 -3241 (|#1| |#1| |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -3241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| |#2|)) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -3810 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4117 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3810 (|#1| |#2| |#1|)) (-15 -1424 (|#1| |#1|))) (-281 |#2|) (-1204)) (T -280)) -NIL -(-10 -8 (-15 -3241 (|#1| |#1| |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -3241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| |#2|)) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -3810 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4117 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3810 (|#1| |#2| |#1|)) (-15 -1424 (|#1| |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) 85)) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2498 (($ $) 83 (|has| |#1| (-1091)))) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1091)))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-3241 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4014 (($ |#1| $ (-544)) 88) (($ $ $ (-544)) 87)) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-1660 (($ $ (-544)) 91) (($ $ (-1220 (-544))) 90)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4197 (($ $ |#1|) 93) (($ $ $) 92)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-281 |#1|) (-139) (-1204)) (T -281)) -((-4197 (*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-4014 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-281 *2)) (-4 *2 (-1204)))) (-4014 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-3241 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-1659 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) (-3809 (*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-1091)))) (-2498 (*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-1091)))) (-3241 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-844))))) -(-13 (-644 |t#1|) (-10 -8 (-6 -4401) (-15 -4197 ($ $ |t#1|)) (-15 -4197 ($ $ $)) (-15 -1660 ($ $ (-544))) (-15 -1660 ($ $ (-1220 (-544)))) (-15 -3809 ($ (-1 (-112) |t#1|) $)) (-15 -4014 ($ |t#1| $ (-544))) (-15 -4014 ($ $ $ (-544))) (-15 -3241 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1659 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -3809 ($ |t#1| $)) (-15 -2498 ($ $))) |%noBranch|) (IF (|has| |t#1| (-844)) (-15 -3241 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-562)))) (-1525 (*1 *1 *1) (-4 *1 (-242)))) +(-13 (-289) (-38 (-406 (-562))) (-10 -8 (-15 ** ($ $ (-562))) (-15 -1525 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-289) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-721) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2534 ((|#1| $) 48)) (-3121 (($ $) 57)) (-4336 (((-112) $ (-766)) 8)) (-1512 ((|#1| $ |#1|) 39 (|has| $ (-6 -4403)))) (-3914 (($ $ $) 53 (|has| $ (-6 -4403)))) (-4319 (($ $ $) 52 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 41 (|has| $ (-6 -4403)))) (-1800 (($) 7 T CONST)) (-3364 (($ $) 56)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 50)) (-4379 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-4335 (($ $) 55)) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-4007 (((-639 |#1|) $) 45)) (-3449 (((-112) $) 49)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 59)) (-3063 (($ $) 58)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ "value") 47)) (-2568 (((-562) $ $) 44)) (-2424 (((-112) $) 46)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4142 (($ $ $) 54 (|has| $ (-6 -4403)))) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) 51)) (-4055 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-243 |#1|) (-139) (-1207)) (T -243)) +((-1504 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-3121 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-3364 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-4335 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-4142 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-3914 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-4319 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-243 *2)) (-4 *2 (-1207))))) +(-13 (-1005 |t#1|) (-10 -8 (-15 -1504 (|t#1| $)) (-15 -3063 ($ $)) (-15 -3121 ($ $)) (-15 -3364 ($ $)) (-15 -4335 ($ $)) (IF (|has| $ (-6 -4403)) (PROGN (-15 -4142 ($ $ $)) (-15 -3914 ($ $ $)) (-15 -4319 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) NIL)) (-2359 ((|#1| $) NIL)) (-3121 (($ $) NIL)) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-2254 (($ $ (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) $) NIL (|has| |#1| (-845))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3381 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1395 (($ $) 10 (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-1512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-3012 (($ $ $) NIL (|has| $ (-6 -4403)))) (-3950 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-2687 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4403))) (($ $ "rest" $) NIL (|has| $ (-6 -4403))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-3111 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-2350 ((|#1| $) NIL)) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1434 (($ $) NIL) (($ $ (-766)) NIL)) (-4354 (($ $) NIL (|has| |#1| (-1092)))) (-1459 (($ $) 7 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4000 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-3266 (((-112) $) NIL)) (-4264 (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092))) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) (-1 (-112) |#1|) $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2673 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1610 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3716 (($ |#1|) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-4007 (((-639 |#1|) $) NIL)) (-3449 (((-112) $) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1504 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-4300 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3297 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-2017 (((-112) $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1223 (-562))) NIL) ((|#1| $ (-562)) NIL) ((|#1| $ (-562) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-766) $ "count") 16)) (-2568 (((-562) $ $) NIL)) (-2878 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-3264 (($ (-639 |#1|)) 22)) (-2424 (((-112) $) NIL)) (-2613 (($ $) NIL)) (-4327 (($ $) NIL (|has| $ (-6 -4403)))) (-2296 (((-766) $) NIL)) (-3913 (($ $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) NIL)) (-4142 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2767 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-639 $)) NIL) (($ $ |#1|) NIL)) (-4054 (($ (-639 |#1|)) 17) (((-639 |#1|) $) 18) (((-857) $) 21 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 14 (|has| $ (-6 -4402))))) +(((-244 |#1|) (-13 (-660 |#1|) (-489 (-639 |#1|)) (-10 -8 (-15 -3264 ($ (-639 |#1|))) (-15 -2343 ($ $ "unique")) (-15 -2343 ($ $ "sort")) (-15 -2343 ((-766) $ "count")))) (-845)) (T -244)) +((-3264 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-244 *3)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-845)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-845)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-766)) (-5 *1 (-244 *4)) (-4 *4 (-845))))) +(-13 (-660 |#1|) (-489 (-639 |#1|)) (-10 -8 (-15 -3264 ($ (-639 |#1|))) (-15 -2343 ($ $ "unique")) (-15 -2343 ($ $ "sort")) (-15 -2343 ((-766) $ "count")))) +((-2412 (((-3 (-766) "failed") |#1| |#1| (-766)) 26))) +(((-245 |#1|) (-10 -7 (-15 -2412 ((-3 (-766) "failed") |#1| |#1| (-766)))) (-13 (-721) (-367) (-10 -7 (-15 ** (|#1| |#1| (-562)))))) (T -245)) +((-2412 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-766)) (-4 *3 (-13 (-721) (-367) (-10 -7 (-15 ** (*3 *3 (-562)))))) (-5 *1 (-245 *3))))) +(-10 -7 (-15 -2412 ((-3 (-766) "failed") |#1| |#1| (-766)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-859 |#1|)) $) NIL)) (-1599 (((-1164 $) $ (-859 |#1|)) NIL) (((-1164 |#2|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2796 (($ $) NIL (|has| |#2| (-554)))) (-4370 (((-112) $) NIL (|has| |#2| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-859 |#1|))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-2798 (($ $) NIL (|has| |#2| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#2| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-859 |#1|) "failed") $) NIL)) (-3961 ((|#2| $) NIL) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-859 |#1|) $) NIL)) (-2835 (($ $ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-2040 (($ $ (-639 (-562))) NIL)) (-1601 (($ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#2| (-904)))) (-3122 (($ $ |#2| (-239 (-3492 |#1|) (-766)) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1390 (($ (-1164 |#2|) (-859 |#1|)) NIL) (($ (-1164 $) (-859 |#1|)) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#2| (-239 (-3492 |#1|) (-766))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-859 |#1|)) NIL)) (-2076 (((-239 (-3492 |#1|) (-766)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2836 (($ (-1 (-239 (-3492 |#1|) (-766)) (-239 (-3492 |#1|) (-766))) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3372 (((-3 (-859 |#1|) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-2913 (((-1150) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-859 |#1|)) (|:| -1960 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#2| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-859 |#1|) |#2|) NIL) (($ $ (-639 (-859 |#1|)) (-639 |#2|)) NIL) (($ $ (-859 |#1|) $) NIL) (($ $ (-639 (-859 |#1|)) (-639 $)) NIL)) (-2455 (($ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-3598 (((-239 (-3492 |#1|) (-766)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-859 |#1|) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-3900 ((|#2| $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-859 |#1|)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#2| (-554)))) (-4358 (((-639 |#2|) $) NIL)) (-3906 ((|#2| $ (-239 (-3492 |#1|) (-766))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-246 |#1| |#2|) (-13 (-944 |#2| (-239 (-3492 |#1|) (-766)) (-859 |#1|)) (-10 -8 (-15 -2040 ($ $ (-639 (-562)))))) (-639 (-1168)) (-1044)) (T -246)) +((-2040 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-246 *3 *4)) (-14 *3 (-639 (-1168))) (-4 *4 (-1044))))) +(-13 (-944 |#2| (-239 (-3492 |#1|) (-766)) (-859 |#1|)) (-10 -8 (-15 -2040 ($ $ (-639 (-562)))))) +((-4041 (((-112) $ $) NIL)) (-1688 (((-1261) $) 17)) (-4210 (((-182) $) 11)) (-2653 (($ (-182)) 12)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1876 (((-248) $) 7)) (-4054 (((-857) $) 9)) (-1731 (((-112) $ $) 15))) +(((-247) (-13 (-1092) (-10 -8 (-15 -1876 ((-248) $)) (-15 -4210 ((-182) $)) (-15 -2653 ($ (-182))) (-15 -1688 ((-1261) $))))) (T -247)) +((-1876 (*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-2653 (*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-247))))) +(-13 (-1092) (-10 -8 (-15 -1876 ((-248) $)) (-15 -4210 ((-182) $)) (-15 -2653 ($ (-182))) (-15 -1688 ((-1261) $)))) +((-4041 (((-112) $ $) NIL)) (-3254 (((-505) $) NIL)) (-2913 (((-1150) $) NIL)) (-2421 (((-185) $) NIL)) (-1709 (((-1112) $) NIL)) (-3212 (((-639 (-112)) $) NIL)) (-4054 (((-857) $) NIL) (((-186) $) 6)) (-3087 (((-55) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-248) (-13 (-184) (-609 (-186)))) (T -248)) +NIL +(-13 (-184) (-609 (-186))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3901 (($ (-916)) NIL (|has| |#4| (-1044)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-3659 (($ $ $) NIL (|has| |#4| (-788)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#4| (-367)))) (-2277 (((-562) $) NIL (|has| |#4| (-843)))) (-4200 ((|#4| $ (-562) |#4|) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1092))) (((-3 (-562) "failed") $) NIL (-12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092))))) (-3961 ((|#4| $) NIL (|has| |#4| (-1092))) (((-562) $) NIL (-12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092))))) (-2406 (((-2 (|:| -1545 (-683 |#4|)) (|:| |vec| (-1256 |#4|))) (-683 $) (-1256 $)) NIL (|has| |#4| (-1044))) (((-683 |#4|) (-683 $)) NIL (|has| |#4| (-1044))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))))) (-3668 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))))) (-1448 (($) NIL (|has| |#4| (-367)))) (-1505 ((|#4| $ (-562) |#4|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#4| $ (-562)) NIL)) (-3519 (((-112) $) NIL (|has| |#4| (-843)))) (-1720 (((-639 |#4|) $) NIL (|has| $ (-6 -4402)))) (-1957 (((-112) $) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))))) (-3392 (((-112) $) NIL (|has| |#4| (-843)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1912 (((-639 |#4|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1490 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) NIL)) (-1999 (((-916) $) NIL (|has| |#4| (-367)))) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-2466 (($ (-916)) NIL (|has| |#4| (-367)))) (-1709 (((-1112) $) NIL)) (-1421 ((|#4| $) NIL (|has| (-562) (-845)))) (-2716 (($ $ |#4|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-2411 (((-639 |#4|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#4| $ (-562) |#4|) NIL) ((|#4| $ (-562)) 12)) (-4177 ((|#4| $ $) NIL (|has| |#4| (-1044)))) (-1679 (($ (-1256 |#4|)) NIL)) (-3627 (((-133)) NIL (|has| |#4| (-362)))) (-4029 (($ $ (-1 |#4| |#4|) (-766)) NIL (|has| |#4| (-1044))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1044)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))))) (-1723 (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402))) (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-1256 |#4|) $) NIL) (((-857) $) NIL) (($ |#4|) NIL (|has| |#4| (-1092))) (($ (-562)) NIL (-4037 (-12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092))) (|has| |#4| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092))))) (-2579 (((-766)) NIL (|has| |#4| (-1044)))) (-1744 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-3526 (($ $) NIL (|has| |#4| (-843)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) CONST)) (-3114 (($ $ (-1 |#4| |#4|) (-766)) NIL (|has| |#4| (-1044))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1044)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1772 (((-112) $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1759 (((-112) $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1859 (($ $ |#4|) NIL (|has| |#4| (-362)))) (-1848 (($ $ $) NIL) (($ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-766)) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044))))) (($ $ (-916)) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))))) (* (($ |#2| $) 14) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-721))) (($ |#4| $) NIL (|has| |#4| (-721))) (($ $ $) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-249 |#1| |#2| |#3| |#4|) (-13 (-237 |#1| |#4|) (-642 |#2|) (-642 |#3|)) (-916) (-1044) (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-642 |#2|)) (T -249)) +NIL +(-13 (-237 |#1| |#4|) (-642 |#2|) (-642 |#3|)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3901 (($ (-916)) NIL (|has| |#3| (-1044)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-3659 (($ $ $) NIL (|has| |#3| (-788)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#3| (-367)))) (-2277 (((-562) $) NIL (|has| |#3| (-843)))) (-4200 ((|#3| $ (-562) |#3|) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1092))) (((-3 (-562) "failed") $) NIL (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092))))) (-3961 ((|#3| $) NIL (|has| |#3| (-1092))) (((-562) $) NIL (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092))))) (-2406 (((-2 (|:| -1545 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 $) (-1256 $)) NIL (|has| |#3| (-1044))) (((-683 |#3|) (-683 $)) NIL (|has| |#3| (-1044))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))))) (-3668 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))))) (-1448 (($) NIL (|has| |#3| (-367)))) (-1505 ((|#3| $ (-562) |#3|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#3| $ (-562)) NIL)) (-3519 (((-112) $) NIL (|has| |#3| (-843)))) (-1720 (((-639 |#3|) $) NIL (|has| $ (-6 -4402)))) (-1957 (((-112) $) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))))) (-3392 (((-112) $) NIL (|has| |#3| (-843)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1912 (((-639 |#3|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#3| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1490 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#3| |#3|) $) NIL)) (-1999 (((-916) $) NIL (|has| |#3| (-367)))) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-2466 (($ (-916)) NIL (|has| |#3| (-367)))) (-1709 (((-1112) $) NIL)) (-1421 ((|#3| $) NIL (|has| (-562) (-845)))) (-2716 (($ $ |#3|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-639 |#3|) (-639 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#3| (-1092))))) (-2411 (((-639 |#3|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#3| $ (-562) |#3|) NIL) ((|#3| $ (-562)) 11)) (-4177 ((|#3| $ $) NIL (|has| |#3| (-1044)))) (-1679 (($ (-1256 |#3|)) NIL)) (-3627 (((-133)) NIL (|has| |#3| (-362)))) (-4029 (($ $ (-1 |#3| |#3|) (-766)) NIL (|has| |#3| (-1044))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))))) (-1723 (((-766) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4402))) (((-766) |#3| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#3| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-1256 |#3|) $) NIL) (((-857) $) NIL) (($ |#3|) NIL (|has| |#3| (-1092))) (($ (-562)) NIL (-4037 (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (|has| |#3| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092))))) (-2579 (((-766)) NIL (|has| |#3| (-1044)))) (-1744 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4402)))) (-3526 (($ $) NIL (|has| |#3| (-843)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) CONST)) (-3114 (($ $ (-1 |#3| |#3|) (-766)) NIL (|has| |#3| (-1044))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1772 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1759 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1859 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1848 (($ $ $) NIL) (($ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-766)) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044))))) (($ $ (-916)) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))))) (* (($ |#2| $) 13) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-721))) (($ |#3| $) NIL (|has| |#3| (-721))) (($ $ $) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-250 |#1| |#2| |#3|) (-13 (-237 |#1| |#3|) (-642 |#2|)) (-766) (-1044) (-642 |#2|)) (T -250)) +NIL +(-13 (-237 |#1| |#3|) (-642 |#2|)) +((-1880 (((-639 (-766)) $) 47) (((-639 (-766)) $ |#3|) 50)) (-1929 (((-766) $) 49) (((-766) $ |#3|) 52)) (-3677 (($ $) 65)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1900 (((-766) $ |#3|) 39) (((-766) $) 36)) (-3603 (((-1 $ (-766)) |#3|) 15) (((-1 $ (-766)) $) 77)) (-3736 ((|#4| $) 58)) (-3349 (((-112) $) 56)) (-3592 (($ $) 64)) (-1433 (($ $ (-639 (-293 $))) 97) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-639 |#4|) (-639 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-639 |#4|) (-639 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-639 |#3|) (-639 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-639 |#3|) (-639 |#2|)) 84)) (-4029 (($ $ |#4|) NIL) (($ $ (-639 |#4|)) NIL) (($ $ |#4| (-766)) NIL) (($ $ (-639 |#4|) (-639 (-766))) NIL) (($ $) NIL) (($ $ (-766)) NIL) (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4333 (((-639 |#3|) $) 75)) (-3598 ((|#5| $) NIL) (((-766) $ |#4|) NIL) (((-639 (-766)) $ (-639 |#4|)) NIL) (((-766) $ |#3|) 44)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-406 (-562))) NIL) (($ $) NIL))) +(((-251 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4054 (|#1| |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -1433 (|#1| |#1| (-639 |#3|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#3| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#3|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#3| |#1|)) (-15 -3603 ((-1 |#1| (-766)) |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3736 (|#4| |#1|)) (-15 -3349 ((-112) |#1|)) (-15 -1929 ((-766) |#1| |#3|)) (-15 -1880 ((-639 (-766)) |#1| |#3|)) (-15 -1929 ((-766) |#1|)) (-15 -1880 ((-639 (-766)) |#1|)) (-15 -3598 ((-766) |#1| |#3|)) (-15 -1900 ((-766) |#1|)) (-15 -1900 ((-766) |#1| |#3|)) (-15 -4333 ((-639 |#3|) |#1|)) (-15 -3603 ((-1 |#1| (-766)) |#3|)) (-15 -4054 (|#1| |#3|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -3598 ((-639 (-766)) |#1| (-639 |#4|))) (-15 -3598 ((-766) |#1| |#4|)) (-15 -4054 (|#1| |#4|)) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#4| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3598 (|#5| |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4029 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -4029 (|#1| |#1| |#4| (-766))) (-15 -4029 (|#1| |#1| (-639 |#4|))) (-15 -4029 (|#1| |#1| |#4|)) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) (-252 |#2| |#3| |#4| |#5|) (-1044) (-845) (-265 |#3|) (-788)) (T -251)) +NIL +(-10 -8 (-15 -4054 (|#1| |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -1433 (|#1| |#1| (-639 |#3|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#3| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#3|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#3| |#1|)) (-15 -3603 ((-1 |#1| (-766)) |#1|)) (-15 -3677 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3736 (|#4| |#1|)) (-15 -3349 ((-112) |#1|)) (-15 -1929 ((-766) |#1| |#3|)) (-15 -1880 ((-639 (-766)) |#1| |#3|)) (-15 -1929 ((-766) |#1|)) (-15 -1880 ((-639 (-766)) |#1|)) (-15 -3598 ((-766) |#1| |#3|)) (-15 -1900 ((-766) |#1|)) (-15 -1900 ((-766) |#1| |#3|)) (-15 -4333 ((-639 |#3|) |#1|)) (-15 -3603 ((-1 |#1| (-766)) |#3|)) (-15 -4054 (|#1| |#3|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -3598 ((-639 (-766)) |#1| (-639 |#4|))) (-15 -3598 ((-766) |#1| |#4|)) (-15 -4054 (|#1| |#4|)) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#4| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3598 (|#5| |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4029 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -4029 (|#1| |#1| |#4| (-766))) (-15 -4029 (|#1| |#1| (-639 |#4|))) (-15 -4029 (|#1| |#1| |#4|)) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1880 (((-639 (-766)) $) 214) (((-639 (-766)) $ |#2|) 212)) (-1929 (((-766) $) 213) (((-766) $ |#2|) 211)) (-1402 (((-639 |#3|) $) 110)) (-1599 (((-1164 $) $ |#3|) 125) (((-1164 |#1|) $) 124)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2796 (($ $) 88 (|has| |#1| (-554)))) (-4370 (((-112) $) 90 (|has| |#1| (-554)))) (-1986 (((-766) $) 112) (((-766) $ (-639 |#3|)) 111)) (-3214 (((-3 $ "failed") $ $) 19)) (-3026 (((-417 (-1164 $)) (-1164 $)) 100 (|has| |#1| (-904)))) (-2798 (($ $) 98 (|has| |#1| (-451)))) (-2921 (((-417 $) $) 97 (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 103 (|has| |#1| (-904)))) (-3677 (($ $) 207)) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-562)) "failed") $) 161 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 159 (|has| |#1| (-1033 (-562)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3961 ((|#1| $) 163) (((-406 (-562)) $) 162 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 160 (|has| |#1| (-1033 (-562)))) ((|#3| $) 137) ((|#2| $) 222)) (-2835 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-1601 (($ $) 154)) (-2406 (((-683 (-562)) (-683 $)) 134 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 133 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 132) (((-683 |#1|) (-683 $)) 131)) (-3668 (((-3 $ "failed") $) 33)) (-1498 (($ $) 176 (|has| |#1| (-451))) (($ $ |#3|) 105 (|has| |#1| (-451)))) (-1586 (((-639 $) $) 109)) (-2717 (((-112) $) 96 (|has| |#1| (-904)))) (-3122 (($ $ |#1| |#4| $) 172)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84 (-12 (|has| |#3| (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 83 (-12 (|has| |#3| (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1900 (((-766) $ |#2|) 217) (((-766) $) 216)) (-1957 (((-112) $) 31)) (-1694 (((-766) $) 169)) (-1390 (($ (-1164 |#1|) |#3|) 117) (($ (-1164 $) |#3|) 116)) (-1889 (((-639 $) $) 126)) (-3536 (((-112) $) 152)) (-1378 (($ |#1| |#4|) 153) (($ $ |#3| (-766)) 119) (($ $ (-639 |#3|) (-639 (-766))) 118)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ |#3|) 120)) (-2076 ((|#4| $) 170) (((-766) $ |#3|) 122) (((-639 (-766)) $ (-639 |#3|)) 121)) (-1551 (($ $ $) 79 (|has| |#1| (-845)))) (-2993 (($ $ $) 78 (|has| |#1| (-845)))) (-2836 (($ (-1 |#4| |#4|) $) 171)) (-4152 (($ (-1 |#1| |#1|) $) 151)) (-3603 (((-1 $ (-766)) |#2|) 219) (((-1 $ (-766)) $) 206 (|has| |#1| (-232)))) (-3372 (((-3 |#3| "failed") $) 123)) (-1560 (($ $) 149)) (-1573 ((|#1| $) 148)) (-3736 ((|#3| $) 209)) (-1564 (($ (-639 $)) 94 (|has| |#1| (-451))) (($ $ $) 93 (|has| |#1| (-451)))) (-2913 (((-1150) $) 9)) (-3349 (((-112) $) 210)) (-2042 (((-3 (-639 $) "failed") $) 114)) (-1546 (((-3 (-639 $) "failed") $) 115)) (-1628 (((-3 (-2 (|:| |var| |#3|) (|:| -1960 (-766))) "failed") $) 113)) (-3592 (($ $) 208)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 166)) (-1547 ((|#1| $) 167)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 95 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) 92 (|has| |#1| (-451))) (($ $ $) 91 (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) 102 (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) 101 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 99 (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-639 $) (-639 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-639 |#3|) (-639 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-639 |#3|) (-639 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-232))) (($ $ (-639 |#2|) (-639 $)) 204 (|has| |#1| (-232))) (($ $ |#2| |#1|) 203 (|has| |#1| (-232))) (($ $ (-639 |#2|) (-639 |#1|)) 202 (|has| |#1| (-232)))) (-2455 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4029 (($ $ |#3|) 42) (($ $ (-639 |#3|)) 41) (($ $ |#3| (-766)) 40) (($ $ (-639 |#3|) (-639 (-766))) 39) (($ $) 238 (|has| |#1| (-232))) (($ $ (-766)) 236 (|has| |#1| (-232))) (($ $ (-1168)) 234 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 233 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 232 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 231 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-4333 (((-639 |#2|) $) 218)) (-3598 ((|#4| $) 150) (((-766) $ |#3|) 130) (((-639 (-766)) $ (-639 |#3|)) 129) (((-766) $ |#2|) 215)) (-4208 (((-887 (-378)) $) 82 (-12 (|has| |#3| (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) 81 (-12 (|has| |#3| (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) 80 (-12 (|has| |#3| (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-3900 ((|#1| $) 175 (|has| |#1| (-451))) (($ $ |#3|) 106 (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 104 (-2246 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-406 (-562))) 72 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562)))))) (($ $) 85 (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) 168)) (-3906 ((|#1| $ |#4|) 155) (($ $ |#3| (-766)) 128) (($ $ (-639 |#3|) (-639 (-766))) 127)) (-2805 (((-3 $ "failed") $) 73 (-4037 (-2246 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) 28)) (-3548 (($ $ $ (-766)) 173 (|has| |#1| (-171)))) (-2922 (((-112) $ $) 89 (|has| |#1| (-554)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ |#3|) 38) (($ $ (-639 |#3|)) 37) (($ $ |#3| (-766)) 36) (($ $ (-639 |#3|) (-639 (-766))) 35) (($ $) 237 (|has| |#1| (-232))) (($ $ (-766)) 235 (|has| |#1| (-232))) (($ $ (-1168)) 230 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 229 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 228 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 227 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1798 (((-112) $ $) 76 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 75 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 77 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 74 (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 157 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-252 |#1| |#2| |#3| |#4|) (-139) (-1044) (-845) (-265 |t#2|) (-788)) (T -252)) +((-3603 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-1 *1 (-766))) (-4 *1 (-252 *4 *3 *5 *6)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-639 *4)))) (-1900 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-766)))) (-3598 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-639 (-766))))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-766)))) (-1880 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-639 (-766))))) (-1929 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-112)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-788)) (-4 *2 (-265 *4)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1044)) (-4 *3 (-845)) (-4 *4 (-265 *3)) (-4 *5 (-788)))) (-3677 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1044)) (-4 *3 (-845)) (-4 *4 (-265 *3)) (-4 *5 (-788)))) (-3603 (*1 *2 *1) (-12 (-4 *3 (-232)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-1 *1 (-766))) (-4 *1 (-252 *3 *4 *5 *6))))) +(-13 (-944 |t#1| |t#4| |t#3|) (-230 |t#1|) (-1033 |t#2|) (-10 -8 (-15 -3603 ((-1 $ (-766)) |t#2|)) (-15 -4333 ((-639 |t#2|) $)) (-15 -1900 ((-766) $ |t#2|)) (-15 -1900 ((-766) $)) (-15 -3598 ((-766) $ |t#2|)) (-15 -1880 ((-639 (-766)) $)) (-15 -1929 ((-766) $)) (-15 -1880 ((-639 (-766)) $ |t#2|)) (-15 -1929 ((-766) $ |t#2|)) (-15 -3349 ((-112) $)) (-15 -3736 (|t#3| $)) (-15 -3592 ($ $)) (-15 -3677 ($ $)) (IF (|has| |t#1| (-232)) (PROGN (-6 (-513 |t#2| |t#1|)) (-6 (-513 |t#2| $)) (-6 (-308 $)) (-15 -3603 ((-1 $ (-766)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 |#2|) . T) ((-612 |#3|) . T) ((-612 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-610 (-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562))))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-289) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-308 $) . T) ((-325 |#1| |#4|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-904)) (|has| |#1| (-451))) ((-513 |#2| |#1|) |has| |#1| (-232)) ((-513 |#2| $) |has| |#1| (-232)) ((-513 |#3| |#1|) . T) ((-513 |#3| $) . T) ((-513 $ $) . T) ((-554) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-895 |#3|) . T) ((-881 (-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378)))) ((-881 (-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))) ((-944 |#1| |#4| |#3|) . T) ((-904) |has| |#1| (-904)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1033 |#2|) . T) ((-1033 |#3|) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) |has| |#1| (-904))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2169 ((|#1| $) 54)) (-2775 ((|#1| $) 44)) (-4336 (((-112) $ (-766)) 8)) (-1800 (($) 7 T CONST)) (-3109 (($ $) 60)) (-2447 (($ $) 48)) (-2737 ((|#1| |#1| $) 46)) (-3064 ((|#1| $) 45)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-3641 (((-766) $) 61)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3262 ((|#1| $) 39)) (-3988 ((|#1| |#1| $) 52)) (-1381 ((|#1| |#1| $) 51)) (-4300 (($ |#1| $) 40)) (-3060 (((-766) $) 55)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3516 ((|#1| $) 62)) (-2840 ((|#1| $) 50)) (-3833 ((|#1| $) 49)) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2391 ((|#1| |#1| $) 58)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-3872 ((|#1| $) 59)) (-3543 (($) 57) (($ (-639 |#1|)) 56)) (-2193 (((-766) $) 43)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2549 ((|#1| $) 53)) (-1932 (($ (-639 |#1|)) 42)) (-3686 ((|#1| $) 63)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-253 |#1|) (-139) (-1207)) (T -253)) +((-3543 (*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-253 *3)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-2549 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-3988 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-1381 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-2447 (*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) +(-13 (-1113 |t#1|) (-990 |t#1|) (-10 -8 (-15 -3543 ($)) (-15 -3543 ($ (-639 |t#1|))) (-15 -3060 ((-766) $)) (-15 -2169 (|t#1| $)) (-15 -2549 (|t#1| $)) (-15 -3988 (|t#1| |t#1| $)) (-15 -1381 (|t#1| |t#1| $)) (-15 -2840 (|t#1| $)) (-15 -3833 (|t#1| $)) (-15 -2447 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-990 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1113 |#1|) . T) ((-1207) . T)) +((-3168 (((-1 (-938 (-224)) (-224) (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 139)) (-4199 (((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378))) 160) (((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 158) (((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378))) 163) (((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 159) (((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378))) 150) (((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 149) (((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378))) 129) (((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262))) 127) (((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378))) 128) (((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262))) 125)) (-4155 (((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378))) 162) (((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 161) (((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378))) 165) (((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 164) (((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378))) 152) (((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 151) (((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378))) 135) (((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262))) 134) (((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378))) 133) (((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262))) 132) (((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378))) 100) (((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262))) 99) (((-1257) (-1 (-224) (-224)) (-1086 (-378))) 96) (((-1257) (-1 (-224) (-224)) (-1086 (-378)) (-639 (-262))) 95))) +(((-254) (-10 -7 (-15 -4155 ((-1257) (-1 (-224) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-1 (-224) (-224)) (-1086 (-378)))) (-15 -4155 ((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4155 ((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4155 ((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)))) (-15 -3168 ((-1 (-938 (-224)) (-224) (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -254)) +((-3168 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224) (-224))) (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1257)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1257)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-254))))) +(-10 -7 (-15 -4155 ((-1257) (-1 (-224) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-1 (-224) (-224)) (-1086 (-378)))) (-15 -4155 ((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4155 ((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4155 ((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)))) (-15 -3168 ((-1 (-938 (-224)) (-224) (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))))) +((-4155 (((-1257) (-293 |#2|) (-1168) (-1168) (-639 (-262))) 96))) +(((-255 |#1| |#2|) (-10 -7 (-15 -4155 ((-1257) (-293 |#2|) (-1168) (-1168) (-639 (-262))))) (-13 (-554) (-845) (-1033 (-562))) (-429 |#1|)) (T -255)) +((-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-1168)) (-5 *5 (-639 (-262))) (-4 *7 (-429 *6)) (-4 *6 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-1257)) (-5 *1 (-255 *6 *7))))) +(-10 -7 (-15 -4155 ((-1257) (-293 |#2|) (-1168) (-1168) (-639 (-262))))) +((-3226 (((-562) (-562)) 50)) (-2636 (((-562) (-562)) 51)) (-4178 (((-224) (-224)) 52)) (-3877 (((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224))) 49)) (-1509 (((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)) (-112)) 47))) +(((-256) (-10 -7 (-15 -1509 ((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)) (-112))) (-15 -3877 ((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)))) (-15 -3226 ((-562) (-562))) (-15 -2636 ((-562) (-562))) (-15 -4178 ((-224) (-224))))) (T -256)) +((-4178 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-256)))) (-3226 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-256)))) (-3877 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1086 (-224))) (-5 *2 (-1258)) (-5 *1 (-256)))) (-1509 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1086 (-224))) (-5 *5 (-112)) (-5 *2 (-1258)) (-5 *1 (-256))))) +(-10 -7 (-15 -1509 ((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)) (-112))) (-15 -3877 ((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)))) (-15 -3226 ((-562) (-562))) (-15 -2636 ((-562) (-562))) (-15 -4178 ((-224) (-224)))) +((-4054 (((-1084 (-378)) (-1084 (-315 |#1|))) 16))) +(((-257 |#1|) (-10 -7 (-15 -4054 ((-1084 (-378)) (-1084 (-315 |#1|))))) (-13 (-845) (-554) (-610 (-378)))) (T -257)) +((-4054 (*1 *2 *3) (-12 (-5 *3 (-1084 (-315 *4))) (-4 *4 (-13 (-845) (-554) (-610 (-378)))) (-5 *2 (-1084 (-378))) (-5 *1 (-257 *4))))) +(-10 -7 (-15 -4054 ((-1084 (-378)) (-1084 (-315 |#1|))))) +((-4199 (((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378))) 71) (((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262))) 70) (((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378))) 61) (((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262))) 60) (((-1125 (-224)) (-874 |#1|) (-1084 (-378))) 52) (((-1125 (-224)) (-874 |#1|) (-1084 (-378)) (-639 (-262))) 51)) (-4155 (((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378))) 74) (((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262))) 73) (((-1258) |#1| (-1084 (-378)) (-1084 (-378))) 64) (((-1258) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262))) 63) (((-1258) (-874 |#1|) (-1084 (-378))) 56) (((-1258) (-874 |#1|) (-1084 (-378)) (-639 (-262))) 55) (((-1257) (-872 |#1|) (-1084 (-378))) 43) (((-1257) (-872 |#1|) (-1084 (-378)) (-639 (-262))) 42) (((-1257) |#1| (-1084 (-378))) 35) (((-1257) |#1| (-1084 (-378)) (-639 (-262))) 34))) +(((-258 |#1|) (-10 -7 (-15 -4155 ((-1257) |#1| (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) |#1| (-1084 (-378)))) (-15 -4155 ((-1257) (-872 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-872 |#1|) (-1084 (-378)))) (-15 -4155 ((-1258) (-874 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-874 |#1|) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) (-874 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-874 |#1|) (-1084 (-378)))) (-15 -4155 ((-1258) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) |#1| (-1084 (-378)) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)))) (-15 -4155 ((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378))))) (-13 (-610 (-535)) (-1092))) (T -258)) +((-4199 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *5)))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *6)))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) (-5 *1 (-258 *5)))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) (-5 *1 (-258 *6)))) (-4199 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1258)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *5)))) (-4199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) (-5 *1 (-258 *5)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) (-5 *1 (-258 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1257)) (-5 *1 (-258 *5)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1257)) (-5 *1 (-258 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1257)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092)))))) +(-10 -7 (-15 -4155 ((-1257) |#1| (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) |#1| (-1084 (-378)))) (-15 -4155 ((-1257) (-872 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-872 |#1|) (-1084 (-378)))) (-15 -4155 ((-1258) (-874 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-874 |#1|) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) (-874 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-874 |#1|) (-1084 (-378)))) (-15 -4155 ((-1258) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) |#1| (-1084 (-378)) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)))) (-15 -4155 ((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378))))) +((-4155 (((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)) (-639 (-262))) 23) (((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224))) 24) (((-1257) (-639 (-938 (-224))) (-639 (-262))) 16) (((-1257) (-639 (-938 (-224)))) 17) (((-1257) (-639 (-224)) (-639 (-224)) (-639 (-262))) 20) (((-1257) (-639 (-224)) (-639 (-224))) 21))) +(((-259) (-10 -7 (-15 -4155 ((-1257) (-639 (-224)) (-639 (-224)))) (-15 -4155 ((-1257) (-639 (-224)) (-639 (-224)) (-639 (-262)))) (-15 -4155 ((-1257) (-639 (-938 (-224))))) (-15 -4155 ((-1257) (-639 (-938 (-224))) (-639 (-262)))) (-15 -4155 ((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)))) (-15 -4155 ((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)) (-639 (-262)))))) (T -259)) +((-4155 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-639 (-224))) (-5 *4 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-259)))) (-4155 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1258)) (-5 *1 (-259)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *4 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-4155 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-639 (-224))) (-5 *4 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-4155 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1257)) (-5 *1 (-259))))) +(-10 -7 (-15 -4155 ((-1257) (-639 (-224)) (-639 (-224)))) (-15 -4155 ((-1257) (-639 (-224)) (-639 (-224)) (-639 (-262)))) (-15 -4155 ((-1257) (-639 (-938 (-224))))) (-15 -4155 ((-1257) (-639 (-938 (-224))) (-639 (-262)))) (-15 -4155 ((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)))) (-15 -4155 ((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)) (-639 (-262))))) +((-3891 (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-639 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 26)) (-3016 (((-916) (-639 (-262)) (-916)) 53)) (-4244 (((-916) (-639 (-262)) (-916)) 52)) (-3426 (((-639 (-378)) (-639 (-262)) (-639 (-378))) 69)) (-1552 (((-378) (-639 (-262)) (-378)) 58)) (-4275 (((-916) (-639 (-262)) (-916)) 54)) (-4231 (((-112) (-639 (-262)) (-112)) 28)) (-3563 (((-1150) (-639 (-262)) (-1150)) 20)) (-1979 (((-1150) (-639 (-262)) (-1150)) 27)) (-3566 (((-1125 (-224)) (-639 (-262))) 47)) (-3545 (((-639 (-1086 (-378))) (-639 (-262)) (-639 (-1086 (-378)))) 41)) (-3724 (((-869) (-639 (-262)) (-869)) 33)) (-2385 (((-869) (-639 (-262)) (-869)) 34)) (-1715 (((-1 (-938 (-224)) (-938 (-224))) (-639 (-262)) (-1 (-938 (-224)) (-938 (-224)))) 64)) (-2853 (((-112) (-639 (-262)) (-112)) 16)) (-3470 (((-112) (-639 (-262)) (-112)) 15))) +(((-260) (-10 -7 (-15 -3470 ((-112) (-639 (-262)) (-112))) (-15 -2853 ((-112) (-639 (-262)) (-112))) (-15 -3891 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-639 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3563 ((-1150) (-639 (-262)) (-1150))) (-15 -1979 ((-1150) (-639 (-262)) (-1150))) (-15 -4231 ((-112) (-639 (-262)) (-112))) (-15 -3724 ((-869) (-639 (-262)) (-869))) (-15 -2385 ((-869) (-639 (-262)) (-869))) (-15 -3545 ((-639 (-1086 (-378))) (-639 (-262)) (-639 (-1086 (-378))))) (-15 -4244 ((-916) (-639 (-262)) (-916))) (-15 -3016 ((-916) (-639 (-262)) (-916))) (-15 -3566 ((-1125 (-224)) (-639 (-262)))) (-15 -4275 ((-916) (-639 (-262)) (-916))) (-15 -1552 ((-378) (-639 (-262)) (-378))) (-15 -1715 ((-1 (-938 (-224)) (-938 (-224))) (-639 (-262)) (-1 (-938 (-224)) (-938 (-224))))) (-15 -3426 ((-639 (-378)) (-639 (-262)) (-639 (-378)))))) (T -260)) +((-3426 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-378))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-1715 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-1552 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-4275 (*1 *2 *3 *2) (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-260)))) (-3016 (*1 *2 *3 *2) (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-4244 (*1 *2 *3 *2) (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3545 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-2385 (*1 *2 *3 *2) (-12 (-5 *2 (-869)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3724 (*1 *2 *3 *2) (-12 (-5 *2 (-869)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-4231 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-1979 (*1 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3563 (*1 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3891 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-2853 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3470 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260))))) +(-10 -7 (-15 -3470 ((-112) (-639 (-262)) (-112))) (-15 -2853 ((-112) (-639 (-262)) (-112))) (-15 -3891 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-639 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3563 ((-1150) (-639 (-262)) (-1150))) (-15 -1979 ((-1150) (-639 (-262)) (-1150))) (-15 -4231 ((-112) (-639 (-262)) (-112))) (-15 -3724 ((-869) (-639 (-262)) (-869))) (-15 -2385 ((-869) (-639 (-262)) (-869))) (-15 -3545 ((-639 (-1086 (-378))) (-639 (-262)) (-639 (-1086 (-378))))) (-15 -4244 ((-916) (-639 (-262)) (-916))) (-15 -3016 ((-916) (-639 (-262)) (-916))) (-15 -3566 ((-1125 (-224)) (-639 (-262)))) (-15 -4275 ((-916) (-639 (-262)) (-916))) (-15 -1552 ((-378) (-639 (-262)) (-378))) (-15 -1715 ((-1 (-938 (-224)) (-938 (-224))) (-639 (-262)) (-1 (-938 (-224)) (-938 (-224))))) (-15 -3426 ((-639 (-378)) (-639 (-262)) (-639 (-378))))) +((-1895 (((-3 |#1| "failed") (-639 (-262)) (-1168)) 17))) +(((-261 |#1|) (-10 -7 (-15 -1895 ((-3 |#1| "failed") (-639 (-262)) (-1168)))) (-1207)) (T -261)) +((-1895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *1 (-261 *2)) (-4 *2 (-1207))))) +(-10 -7 (-15 -1895 ((-3 |#1| "failed") (-639 (-262)) (-1168)))) +((-4041 (((-112) $ $) NIL)) (-3891 (($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 15)) (-3016 (($ (-916)) 76)) (-4244 (($ (-916)) 75)) (-3931 (($ (-639 (-378))) 82)) (-1552 (($ (-378)) 58)) (-4275 (($ (-916)) 77)) (-4231 (($ (-112)) 23)) (-3563 (($ (-1150)) 18)) (-1979 (($ (-1150)) 19)) (-3566 (($ (-1125 (-224))) 71)) (-3545 (($ (-639 (-1086 (-378)))) 67)) (-1590 (($ (-639 (-1086 (-378)))) 59) (($ (-639 (-1086 (-406 (-562))))) 66)) (-1613 (($ (-378)) 29) (($ (-869)) 33)) (-4005 (((-112) (-639 $) (-1168)) 91)) (-1895 (((-3 (-52) "failed") (-639 $) (-1168)) 93)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1807 (($ (-378)) 34) (($ (-869)) 35)) (-3593 (($ (-1 (-938 (-224)) (-938 (-224)))) 57)) (-1715 (($ (-1 (-938 (-224)) (-938 (-224)))) 78)) (-3185 (($ (-1 (-224) (-224))) 39) (($ (-1 (-224) (-224) (-224))) 43) (($ (-1 (-224) (-224) (-224) (-224))) 47)) (-4054 (((-857) $) 87)) (-3201 (($ (-112)) 24) (($ (-639 (-1086 (-378)))) 52)) (-3470 (($ (-112)) 25)) (-1731 (((-112) $ $) 89))) +(((-262) (-13 (-1092) (-10 -8 (-15 -3470 ($ (-112))) (-15 -3201 ($ (-112))) (-15 -3891 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3563 ($ (-1150))) (-15 -1979 ($ (-1150))) (-15 -4231 ($ (-112))) (-15 -3201 ($ (-639 (-1086 (-378))))) (-15 -3593 ($ (-1 (-938 (-224)) (-938 (-224))))) (-15 -1613 ($ (-378))) (-15 -1613 ($ (-869))) (-15 -1807 ($ (-378))) (-15 -1807 ($ (-869))) (-15 -3185 ($ (-1 (-224) (-224)))) (-15 -3185 ($ (-1 (-224) (-224) (-224)))) (-15 -3185 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1552 ($ (-378))) (-15 -1590 ($ (-639 (-1086 (-378))))) (-15 -1590 ($ (-639 (-1086 (-406 (-562)))))) (-15 -3545 ($ (-639 (-1086 (-378))))) (-15 -3566 ($ (-1125 (-224)))) (-15 -4244 ($ (-916))) (-15 -3016 ($ (-916))) (-15 -4275 ($ (-916))) (-15 -1715 ($ (-1 (-938 (-224)) (-938 (-224))))) (-15 -3931 ($ (-639 (-378)))) (-15 -1895 ((-3 (-52) "failed") (-639 $) (-1168))) (-15 -4005 ((-112) (-639 $) (-1168)))))) (T -262)) +((-3470 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-3201 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-262)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-262)))) (-1979 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-262)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-3201 (*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *1 (-262)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-262)))) (-1807 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-1807 (*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-262)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-406 (-562))))) (-5 *1 (-262)))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-262)))) (-4244 (*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262)))) (-3016 (*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262)))) (-4275 (*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262)))) (-1715 (*1 *1 *2) (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *1 (-262)))) (-3931 (*1 *1 *2) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-262)))) (-1895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *2 (-52)) (-5 *1 (-262)))) (-4005 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *2 (-112)) (-5 *1 (-262))))) +(-13 (-1092) (-10 -8 (-15 -3470 ($ (-112))) (-15 -3201 ($ (-112))) (-15 -3891 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3563 ($ (-1150))) (-15 -1979 ($ (-1150))) (-15 -4231 ($ (-112))) (-15 -3201 ($ (-639 (-1086 (-378))))) (-15 -3593 ($ (-1 (-938 (-224)) (-938 (-224))))) (-15 -1613 ($ (-378))) (-15 -1613 ($ (-869))) (-15 -1807 ($ (-378))) (-15 -1807 ($ (-869))) (-15 -3185 ($ (-1 (-224) (-224)))) (-15 -3185 ($ (-1 (-224) (-224) (-224)))) (-15 -3185 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1552 ($ (-378))) (-15 -1590 ($ (-639 (-1086 (-378))))) (-15 -1590 ($ (-639 (-1086 (-406 (-562)))))) (-15 -3545 ($ (-639 (-1086 (-378))))) (-15 -3566 ($ (-1125 (-224)))) (-15 -4244 ($ (-916))) (-15 -3016 ($ (-916))) (-15 -4275 ($ (-916))) (-15 -1715 ($ (-1 (-938 (-224)) (-938 (-224))))) (-15 -3931 ($ (-639 (-378)))) (-15 -1895 ((-3 (-52) "failed") (-639 $) (-1168))) (-15 -4005 ((-112) (-639 $) (-1168))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1880 (((-639 (-766)) $) NIL) (((-639 (-766)) $ |#2|) NIL)) (-1929 (((-766) $) NIL) (((-766) $ |#2|) NIL)) (-1402 (((-639 |#3|) $) NIL)) (-1599 (((-1164 $) $ |#3|) NIL) (((-1164 |#1|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 |#3|)) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2798 (($ $) NIL (|has| |#1| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3677 (($ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1117 |#1| |#2|) "failed") $) 21)) (-3961 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1117 |#1| |#2|) $) NIL)) (-2835 (($ $ $ |#3|) NIL (|has| |#1| (-171)))) (-1601 (($ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-451))) (($ $ |#3|) NIL (|has| |#1| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#1| (-904)))) (-3122 (($ $ |#1| (-530 |#3|) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))))) (-1900 (((-766) $ |#2|) NIL) (((-766) $) 10)) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1390 (($ (-1164 |#1|) |#3|) NIL) (($ (-1164 $) |#3|) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-530 |#3|)) NIL) (($ $ |#3| (-766)) NIL) (($ $ (-639 |#3|) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ |#3|) NIL)) (-2076 (((-530 |#3|) $) NIL) (((-766) $ |#3|) NIL) (((-639 (-766)) $ (-639 |#3|)) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2836 (($ (-1 (-530 |#3|) (-530 |#3|)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3603 (((-1 $ (-766)) |#2|) NIL) (((-1 $ (-766)) $) NIL (|has| |#1| (-232)))) (-3372 (((-3 |#3| "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3736 ((|#3| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-2913 (((-1150) $) NIL)) (-3349 (((-112) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| |#3|) (|:| -1960 (-766))) "failed") $) NIL)) (-3592 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-639 |#3|) (-639 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-639 |#3|) (-639 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-232))) (($ $ (-639 |#2|) (-639 $)) NIL (|has| |#1| (-232))) (($ $ |#2| |#1|) NIL (|has| |#1| (-232))) (($ $ (-639 |#2|) (-639 |#1|)) NIL (|has| |#1| (-232)))) (-2455 (($ $ |#3|) NIL (|has| |#1| (-171)))) (-4029 (($ $ |#3|) NIL) (($ $ (-639 |#3|)) NIL) (($ $ |#3| (-766)) NIL) (($ $ (-639 |#3|) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4333 (((-639 |#2|) $) NIL)) (-3598 (((-530 |#3|) $) NIL) (((-766) $ |#3|) NIL) (((-639 (-766)) $ (-639 |#3|)) NIL) (((-766) $ |#2|) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535)))))) (-3900 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ |#3|) NIL (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1117 |#1| |#2|)) 30) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-530 |#3|)) NIL) (($ $ |#3| (-766)) NIL) (($ $ (-639 |#3|) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ |#3|) NIL) (($ $ (-639 |#3|)) NIL) (($ $ |#3| (-766)) NIL) (($ $ (-639 |#3|) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-263 |#1| |#2| |#3|) (-13 (-252 |#1| |#2| |#3| (-530 |#3|)) (-1033 (-1117 |#1| |#2|))) (-1044) (-845) (-265 |#2|)) (T -263)) +NIL +(-13 (-252 |#1| |#2| |#3| (-530 |#3|)) (-1033 (-1117 |#1| |#2|))) +((-1929 (((-766) $) 30)) (-4048 (((-3 |#2| "failed") $) 17)) (-3961 ((|#2| $) 27)) (-4029 (($ $) 12) (($ $ (-766)) 15)) (-4054 (((-857) $) 26) (($ |#2|) 10)) (-1731 (((-112) $ $) 20)) (-1759 (((-112) $ $) 29))) +(((-264 |#1| |#2|) (-10 -8 (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -1929 ((-766) |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -1759 ((-112) |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) (-265 |#2|) (-845)) (T -264)) +NIL +(-10 -8 (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -1929 ((-766) |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -1759 ((-112) |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1929 (((-766) $) 22)) (-2444 ((|#1| $) 23)) (-4048 (((-3 |#1| "failed") $) 27)) (-3961 ((|#1| $) 28)) (-1900 (((-766) $) 24)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3603 (($ |#1| (-766)) 25)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4029 (($ $) 21) (($ $ (-766)) 20)) (-4054 (((-857) $) 11) (($ |#1|) 26)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18))) +(((-265 |#1|) (-139) (-845)) (T -265)) +((-4054 (*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) (-3603 (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-265 *2)) (-4 *2 (-845)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-845)) (-5 *2 (-766)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-845)) (-5 *2 (-766)))) (-4029 (*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-265 *3)) (-4 *3 (-845))))) +(-13 (-845) (-1033 |t#1|) (-10 -8 (-15 -3603 ($ |t#1| (-766))) (-15 -1900 ((-766) $)) (-15 -2444 (|t#1| $)) (-15 -1929 ((-766) $)) (-15 -4029 ($ $)) (-15 -4029 ($ $ (-766))) (-15 -4054 ($ |t#1|)))) +(((-102) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-845) . T) ((-1033 |#1|) . T) ((-1092) . T)) +((-1402 (((-639 (-1168)) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) 41)) (-2852 (((-639 (-1168)) (-315 (-224)) (-766)) 80)) (-3859 (((-3 (-315 (-224)) "failed") (-315 (-224))) 51)) (-1642 (((-315 (-224)) (-315 (-224))) 67)) (-2214 (((-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 26)) (-3093 (((-112) (-639 (-315 (-224)))) 84)) (-2592 (((-112) (-315 (-224))) 24)) (-4017 (((-639 (-1150)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))))) 105)) (-4001 (((-639 (-315 (-224))) (-639 (-315 (-224)))) 87)) (-4302 (((-639 (-315 (-224))) (-639 (-315 (-224)))) 86)) (-2757 (((-683 (-224)) (-639 (-315 (-224))) (-766)) 94)) (-2605 (((-112) (-315 (-224))) 20) (((-112) (-639 (-315 (-224)))) 85)) (-2317 (((-639 (-224)) (-639 (-838 (-224))) (-224)) 14)) (-2787 (((-378) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) 100)) (-4278 (((-1030) (-1168) (-1030)) 34))) +(((-266) (-10 -7 (-15 -2317 ((-639 (-224)) (-639 (-838 (-224))) (-224))) (-15 -2214 ((-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -3859 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1642 ((-315 (-224)) (-315 (-224)))) (-15 -3093 ((-112) (-639 (-315 (-224))))) (-15 -2605 ((-112) (-639 (-315 (-224))))) (-15 -2605 ((-112) (-315 (-224)))) (-15 -2757 ((-683 (-224)) (-639 (-315 (-224))) (-766))) (-15 -4302 ((-639 (-315 (-224))) (-639 (-315 (-224))))) (-15 -4001 ((-639 (-315 (-224))) (-639 (-315 (-224))))) (-15 -2592 ((-112) (-315 (-224)))) (-15 -1402 ((-639 (-1168)) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) (-15 -2852 ((-639 (-1168)) (-315 (-224)) (-766))) (-15 -4278 ((-1030) (-1168) (-1030))) (-15 -2787 ((-378) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) (-15 -4017 ((-639 (-1150)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))))))) (T -266)) +((-4017 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))))) (-5 *2 (-639 (-1150))) (-5 *1 (-266)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) (-5 *2 (-378)) (-5 *1 (-266)))) (-4278 (*1 *2 *3 *2) (-12 (-5 *2 (-1030)) (-5 *3 (-1168)) (-5 *1 (-266)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-766)) (-5 *2 (-639 (-1168))) (-5 *1 (-266)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) (-5 *2 (-639 (-1168))) (-5 *1 (-266)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-639 (-315 (-224)))) (-5 *1 (-266)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-639 (-315 (-224)))) (-5 *1 (-266)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *4 (-766)) (-5 *2 (-683 (-224))) (-5 *1 (-266)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-3859 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-2214 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (-5 *1 (-266)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-838 (-224)))) (-5 *4 (-224)) (-5 *2 (-639 *4)) (-5 *1 (-266))))) +(-10 -7 (-15 -2317 ((-639 (-224)) (-639 (-838 (-224))) (-224))) (-15 -2214 ((-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -3859 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1642 ((-315 (-224)) (-315 (-224)))) (-15 -3093 ((-112) (-639 (-315 (-224))))) (-15 -2605 ((-112) (-639 (-315 (-224))))) (-15 -2605 ((-112) (-315 (-224)))) (-15 -2757 ((-683 (-224)) (-639 (-315 (-224))) (-766))) (-15 -4302 ((-639 (-315 (-224))) (-639 (-315 (-224))))) (-15 -4001 ((-639 (-315 (-224))) (-639 (-315 (-224))))) (-15 -2592 ((-112) (-315 (-224)))) (-15 -1402 ((-639 (-1168)) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) (-15 -2852 ((-639 (-1168)) (-315 (-224)) (-766))) (-15 -4278 ((-1030) (-1168) (-1030))) (-15 -2787 ((-378) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) (-15 -4017 ((-639 (-1150)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))))))) +((-4041 (((-112) $ $) NIL)) (-3508 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 44)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 26) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-267) (-834)) (T -267)) +NIL +(-834) +((-4041 (((-112) $ $) NIL)) (-3508 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) 58) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 54)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 34) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) 36)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-268) (-834)) (T -268)) +NIL +(-834) +((-4041 (((-112) $ $) NIL)) (-3508 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) 76) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 73)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 44) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) 55)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-269) (-834)) (T -269)) +NIL +(-834) +((-4041 (((-112) $ $) NIL)) (-3508 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 50)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 31) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-270) (-834)) (T -270)) +NIL +(-834) +((-4041 (((-112) $ $) NIL)) (-3508 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 50)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 28) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-271) (-834)) (T -271)) +NIL +(-834) +((-4041 (((-112) $ $) NIL)) (-3508 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 73)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 28) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-272) (-834)) (T -272)) +NIL +(-834) +((-4041 (((-112) $ $) NIL)) (-3508 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 77)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 25) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-273) (-834)) (T -273)) +NIL +(-834) +((-4041 (((-112) $ $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1328 (((-639 (-562)) $) 18)) (-3598 (((-766) $) 16)) (-4054 (((-857) $) 22) (($ (-639 (-562))) 14)) (-2685 (($ (-766)) 19)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 9)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 10))) +(((-274) (-13 (-845) (-10 -8 (-15 -4054 ($ (-639 (-562)))) (-15 -3598 ((-766) $)) (-15 -1328 ((-639 (-562)) $)) (-15 -2685 ($ (-766)))))) (T -274)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-274)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-274)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-274)))) (-2685 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-274))))) +(-13 (-845) (-10 -8 (-15 -4054 ($ (-639 (-562)))) (-15 -3598 ((-766) $)) (-15 -1328 ((-639 (-562)) $)) (-15 -2685 ($ (-766))))) +((-2988 ((|#2| |#2|) 77)) (-4097 ((|#2| |#2|) 65)) (-1701 (((-3 |#2| "failed") |#2| (-639 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-4207 ((|#2| |#2|) 75)) (-4074 ((|#2| |#2|) 63)) (-3014 ((|#2| |#2|) 79)) (-4119 ((|#2| |#2|) 67)) (-4100 ((|#2|) 46)) (-2876 (((-114) (-114)) 95)) (-4365 ((|#2| |#2|) 61)) (-3388 (((-112) |#2|) 134)) (-3532 ((|#2| |#2|) 181)) (-3146 ((|#2| |#2|) 157)) (-3633 ((|#2|) 59)) (-3183 ((|#2|) 58)) (-2353 ((|#2| |#2|) 177)) (-1296 ((|#2| |#2|) 153)) (-3613 ((|#2| |#2|) 185)) (-4186 ((|#2| |#2|) 161)) (-1878 ((|#2| |#2|) 149)) (-3302 ((|#2| |#2|) 151)) (-2043 ((|#2| |#2|) 187)) (-3861 ((|#2| |#2|) 163)) (-2027 ((|#2| |#2|) 183)) (-2816 ((|#2| |#2|) 159)) (-2057 ((|#2| |#2|) 179)) (-4116 ((|#2| |#2|) 155)) (-3737 ((|#2| |#2|) 193)) (-1557 ((|#2| |#2|) 169)) (-2340 ((|#2| |#2|) 189)) (-2470 ((|#2| |#2|) 165)) (-3058 ((|#2| |#2|) 197)) (-2226 ((|#2| |#2|) 173)) (-1781 ((|#2| |#2|) 199)) (-3634 ((|#2| |#2|) 175)) (-1320 ((|#2| |#2|) 195)) (-3417 ((|#2| |#2|) 171)) (-2148 ((|#2| |#2|) 191)) (-2081 ((|#2| |#2|) 167)) (-3430 ((|#2| |#2|) 62)) (-3023 ((|#2| |#2|) 80)) (-4130 ((|#2| |#2|) 68)) (-3001 ((|#2| |#2|) 78)) (-4108 ((|#2| |#2|) 66)) (-2978 ((|#2| |#2|) 76)) (-4087 ((|#2| |#2|) 64)) (-2803 (((-112) (-114)) 93)) (-3055 ((|#2| |#2|) 83)) (-4165 ((|#2| |#2|) 71)) (-3033 ((|#2| |#2|) 81)) (-4138 ((|#2| |#2|) 69)) (-3078 ((|#2| |#2|) 85)) (-4182 ((|#2| |#2|) 73)) (-1566 ((|#2| |#2|) 86)) (-4195 ((|#2| |#2|) 74)) (-3066 ((|#2| |#2|) 84)) (-4174 ((|#2| |#2|) 72)) (-3044 ((|#2| |#2|) 82)) (-4151 ((|#2| |#2|) 70))) +(((-275 |#1| |#2|) (-10 -7 (-15 -3430 (|#2| |#2|)) (-15 -4365 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4108 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -4138 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -4207 (|#2| |#2|)) (-15 -2978 (|#2| |#2|)) (-15 -2988 (|#2| |#2|)) (-15 -3001 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -3044 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -4100 (|#2|)) (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -3183 (|#2|)) (-15 -3633 (|#2|)) (-15 -3302 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -1296 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -2816 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -3861 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)) (-15 -2081 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -3417 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2057 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -2027 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2148 (|#2| |#2|)) (-15 -3737 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -3058 (|#2| |#2|)) (-15 -1781 (|#2| |#2|)) (-15 -1701 ((-3 |#2| "failed") |#2| (-639 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3388 ((-112) |#2|))) (-13 (-845) (-554)) (-13 (-429 |#1|) (-997))) (T -275)) +((-3388 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) (-4 *3 (-13 (-429 *4) (-997))))) (-1701 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-639 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-429 *4) (-997))) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-275 *4 *2)))) (-1781 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3058 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1320 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2148 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2043 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2027 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2057 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2353 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3417 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2081 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2470 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2816 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1296 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3302 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3633 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-845) (-554))))) (-3183 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-845) (-554))))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *4)) (-4 *4 (-13 (-429 *3) (-997))))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-997))))) (-4100 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-845) (-554))))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3078 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3044 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3001 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2988 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4207 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4138 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4365 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997)))))) +(-10 -7 (-15 -3430 (|#2| |#2|)) (-15 -4365 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4108 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -4138 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -4207 (|#2| |#2|)) (-15 -2978 (|#2| |#2|)) (-15 -2988 (|#2| |#2|)) (-15 -3001 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -3044 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -4100 (|#2|)) (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -3183 (|#2|)) (-15 -3633 (|#2|)) (-15 -3302 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -1296 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -3146 (|#2| |#2|)) (-15 -2816 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -3861 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)) (-15 -2081 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -3417 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -2353 (|#2| |#2|)) (-15 -2057 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -2027 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2148 (|#2| |#2|)) (-15 -3737 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -3058 (|#2| |#2|)) (-15 -1781 (|#2| |#2|)) (-15 -1701 ((-3 |#2| "failed") |#2| (-639 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3388 ((-112) |#2|))) +((-2521 (((-3 |#2| "failed") (-639 (-608 |#2|)) |#2| (-1168)) 135)) (-3958 ((|#2| (-406 (-562)) |#2|) 51)) (-4171 ((|#2| |#2| (-608 |#2|)) 128)) (-3050 (((-2 (|:| |func| |#2|) (|:| |kers| (-639 (-608 |#2|))) (|:| |vals| (-639 |#2|))) |#2| (-1168)) 127)) (-3919 ((|#2| |#2| (-1168)) 20) ((|#2| |#2|) 23)) (-3270 ((|#2| |#2| (-1168)) 141) ((|#2| |#2|) 139))) +(((-276 |#1| |#2|) (-10 -7 (-15 -3270 (|#2| |#2|)) (-15 -3270 (|#2| |#2| (-1168))) (-15 -3050 ((-2 (|:| |func| |#2|) (|:| |kers| (-639 (-608 |#2|))) (|:| |vals| (-639 |#2|))) |#2| (-1168))) (-15 -3919 (|#2| |#2|)) (-15 -3919 (|#2| |#2| (-1168))) (-15 -2521 ((-3 |#2| "failed") (-639 (-608 |#2|)) |#2| (-1168))) (-15 -4171 (|#2| |#2| (-608 |#2|))) (-15 -3958 (|#2| (-406 (-562)) |#2|))) (-13 (-554) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -276)) +((-3958 (*1 *2 *3 *2) (-12 (-5 *3 (-406 (-562))) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-4171 (*1 *2 *2 *3) (-12 (-5 *3 (-608 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *4 *2)))) (-2521 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-639 (-608 *2))) (-5 *4 (-1168)) (-4 *2 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *5 *2)))) (-3919 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-639 (-608 *3))) (|:| |vals| (-639 *3)))) (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-3270 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-3270 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) +(-10 -7 (-15 -3270 (|#2| |#2|)) (-15 -3270 (|#2| |#2| (-1168))) (-15 -3050 ((-2 (|:| |func| |#2|) (|:| |kers| (-639 (-608 |#2|))) (|:| |vals| (-639 |#2|))) |#2| (-1168))) (-15 -3919 (|#2| |#2|)) (-15 -3919 (|#2| |#2| (-1168))) (-15 -2521 ((-3 |#2| "failed") (-639 (-608 |#2|)) |#2| (-1168))) (-15 -4171 (|#2| |#2| (-608 |#2|))) (-15 -3958 (|#2| (-406 (-562)) |#2|))) +((-3200 (((-3 |#3| "failed") |#3|) 110)) (-2988 ((|#3| |#3|) 131)) (-1898 (((-3 |#3| "failed") |#3|) 82)) (-4097 ((|#3| |#3|) 121)) (-4353 (((-3 |#3| "failed") |#3|) 58)) (-4207 ((|#3| |#3|) 129)) (-3458 (((-3 |#3| "failed") |#3|) 46)) (-4074 ((|#3| |#3|) 119)) (-4312 (((-3 |#3| "failed") |#3|) 112)) (-3014 ((|#3| |#3|) 133)) (-3145 (((-3 |#3| "failed") |#3|) 84)) (-4119 ((|#3| |#3|) 123)) (-2571 (((-3 |#3| "failed") |#3| (-766)) 36)) (-3810 (((-3 |#3| "failed") |#3|) 74)) (-4365 ((|#3| |#3|) 118)) (-2314 (((-3 |#3| "failed") |#3|) 44)) (-3430 ((|#3| |#3|) 117)) (-4027 (((-3 |#3| "failed") |#3|) 113)) (-3023 ((|#3| |#3|) 134)) (-2930 (((-3 |#3| "failed") |#3|) 85)) (-4130 ((|#3| |#3|) 124)) (-2777 (((-3 |#3| "failed") |#3|) 111)) (-3001 ((|#3| |#3|) 132)) (-1543 (((-3 |#3| "failed") |#3|) 83)) (-4108 ((|#3| |#3|) 122)) (-4059 (((-3 |#3| "failed") |#3|) 60)) (-2978 ((|#3| |#3|) 130)) (-3387 (((-3 |#3| "failed") |#3|) 48)) (-4087 ((|#3| |#3|) 120)) (-2938 (((-3 |#3| "failed") |#3|) 66)) (-3055 ((|#3| |#3|) 137)) (-3940 (((-3 |#3| "failed") |#3|) 104)) (-4165 ((|#3| |#3|) 142)) (-2603 (((-3 |#3| "failed") |#3|) 62)) (-3033 ((|#3| |#3|) 135)) (-1442 (((-3 |#3| "failed") |#3|) 50)) (-4138 ((|#3| |#3|) 125)) (-3577 (((-3 |#3| "failed") |#3|) 70)) (-3078 ((|#3| |#3|) 139)) (-3080 (((-3 |#3| "failed") |#3|) 54)) (-4182 ((|#3| |#3|) 127)) (-2390 (((-3 |#3| "failed") |#3|) 72)) (-1566 ((|#3| |#3|) 140)) (-1699 (((-3 |#3| "failed") |#3|) 56)) (-4195 ((|#3| |#3|) 128)) (-1760 (((-3 |#3| "failed") |#3|) 68)) (-3066 ((|#3| |#3|) 138)) (-3506 (((-3 |#3| "failed") |#3|) 107)) (-4174 ((|#3| |#3|) 143)) (-2374 (((-3 |#3| "failed") |#3|) 64)) (-3044 ((|#3| |#3|) 136)) (-3170 (((-3 |#3| "failed") |#3|) 52)) (-4151 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-406 (-562))) 40 (|has| |#1| (-362))))) +(((-277 |#1| |#2| |#3|) (-13 (-978 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-562)))) |%noBranch|) (-15 -3430 (|#3| |#3|)) (-15 -4365 (|#3| |#3|)) (-15 -4074 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4108 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4138 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4174 (|#3| |#3|)) (-15 -4182 (|#3| |#3|)) (-15 -4195 (|#3| |#3|)) (-15 -4207 (|#3| |#3|)) (-15 -2978 (|#3| |#3|)) (-15 -2988 (|#3| |#3|)) (-15 -3001 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3044 (|#3| |#3|)) (-15 -3055 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3078 (|#3| |#3|)) (-15 -1566 (|#3| |#3|)))) (-38 (-406 (-562))) (-1247 |#1|) (-1218 |#1| |#2|)) (T -277)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-562))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1247 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1218 *4 *5)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4365 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4138 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4207 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-2988 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3001 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3044 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3078 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4))))) +(-13 (-978 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-562)))) |%noBranch|) (-15 -3430 (|#3| |#3|)) (-15 -4365 (|#3| |#3|)) (-15 -4074 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4108 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4138 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4174 (|#3| |#3|)) (-15 -4182 (|#3| |#3|)) (-15 -4195 (|#3| |#3|)) (-15 -4207 (|#3| |#3|)) (-15 -2978 (|#3| |#3|)) (-15 -2988 (|#3| |#3|)) (-15 -3001 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3044 (|#3| |#3|)) (-15 -3055 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3078 (|#3| |#3|)) (-15 -1566 (|#3| |#3|)))) +((-3200 (((-3 |#3| "failed") |#3|) 66)) (-2988 ((|#3| |#3|) 129)) (-1898 (((-3 |#3| "failed") |#3|) 50)) (-4097 ((|#3| |#3|) 117)) (-4353 (((-3 |#3| "failed") |#3|) 62)) (-4207 ((|#3| |#3|) 127)) (-3458 (((-3 |#3| "failed") |#3|) 46)) (-4074 ((|#3| |#3|) 115)) (-4312 (((-3 |#3| "failed") |#3|) 70)) (-3014 ((|#3| |#3|) 131)) (-3145 (((-3 |#3| "failed") |#3|) 54)) (-4119 ((|#3| |#3|) 119)) (-2571 (((-3 |#3| "failed") |#3| (-766)) 35)) (-3810 (((-3 |#3| "failed") |#3|) 44)) (-4365 ((|#3| |#3|) 104)) (-2314 (((-3 |#3| "failed") |#3|) 42)) (-3430 ((|#3| |#3|) 114)) (-4027 (((-3 |#3| "failed") |#3|) 72)) (-3023 ((|#3| |#3|) 132)) (-2930 (((-3 |#3| "failed") |#3|) 56)) (-4130 ((|#3| |#3|) 120)) (-2777 (((-3 |#3| "failed") |#3|) 68)) (-3001 ((|#3| |#3|) 130)) (-1543 (((-3 |#3| "failed") |#3|) 52)) (-4108 ((|#3| |#3|) 118)) (-4059 (((-3 |#3| "failed") |#3|) 64)) (-2978 ((|#3| |#3|) 128)) (-3387 (((-3 |#3| "failed") |#3|) 48)) (-4087 ((|#3| |#3|) 116)) (-2938 (((-3 |#3| "failed") |#3|) 74)) (-3055 ((|#3| |#3|) 135)) (-3940 (((-3 |#3| "failed") |#3|) 58)) (-4165 ((|#3| |#3|) 123)) (-2603 (((-3 |#3| "failed") |#3|) 105)) (-3033 ((|#3| |#3|) 133)) (-1442 (((-3 |#3| "failed") |#3|) 94)) (-4138 ((|#3| |#3|) 121)) (-3577 (((-3 |#3| "failed") |#3|) 109)) (-3078 ((|#3| |#3|) 137)) (-3080 (((-3 |#3| "failed") |#3|) 101)) (-4182 ((|#3| |#3|) 125)) (-2390 (((-3 |#3| "failed") |#3|) 110)) (-1566 ((|#3| |#3|) 138)) (-1699 (((-3 |#3| "failed") |#3|) 103)) (-4195 ((|#3| |#3|) 126)) (-1760 (((-3 |#3| "failed") |#3|) 76)) (-3066 ((|#3| |#3|) 136)) (-3506 (((-3 |#3| "failed") |#3|) 60)) (-4174 ((|#3| |#3|) 124)) (-2374 (((-3 |#3| "failed") |#3|) 106)) (-3044 ((|#3| |#3|) 134)) (-3170 (((-3 |#3| "failed") |#3|) 97)) (-4151 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-406 (-562))) 40 (|has| |#1| (-362))))) +(((-278 |#1| |#2| |#3| |#4|) (-13 (-978 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-562)))) |%noBranch|) (-15 -3430 (|#3| |#3|)) (-15 -4365 (|#3| |#3|)) (-15 -4074 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4108 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4138 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4174 (|#3| |#3|)) (-15 -4182 (|#3| |#3|)) (-15 -4195 (|#3| |#3|)) (-15 -4207 (|#3| |#3|)) (-15 -2978 (|#3| |#3|)) (-15 -2988 (|#3| |#3|)) (-15 -3001 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3044 (|#3| |#3|)) (-15 -3055 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3078 (|#3| |#3|)) (-15 -1566 (|#3| |#3|)))) (-38 (-406 (-562))) (-1216 |#1|) (-1239 |#1| |#2|) (-978 |#2|)) (T -278)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-562))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1216 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1239 *4 *5)) (-4 *6 (-978 *5)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4365 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4138 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4207 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-2988 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3001 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3044 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3078 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4))))) +(-13 (-978 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-562)))) |%noBranch|) (-15 -3430 (|#3| |#3|)) (-15 -4365 (|#3| |#3|)) (-15 -4074 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4097 (|#3| |#3|)) (-15 -4108 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4138 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4174 (|#3| |#3|)) (-15 -4182 (|#3| |#3|)) (-15 -4195 (|#3| |#3|)) (-15 -4207 (|#3| |#3|)) (-15 -2978 (|#3| |#3|)) (-15 -2988 (|#3| |#3|)) (-15 -3001 (|#3| |#3|)) (-15 -3014 (|#3| |#3|)) (-15 -3023 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3044 (|#3| |#3|)) (-15 -3055 (|#3| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3078 (|#3| |#3|)) (-15 -1566 (|#3| |#3|)))) +((-3400 (((-112) $) 18)) (-3681 (((-182) $) 7)) (-4068 (((-3 (-1168) "failed") $) 14)) (-2369 (((-3 (-639 $) "failed") $) NIL)) (-2867 (((-3 (-1168) "failed") $) 20)) (-1476 (((-3 (-1096) "failed") $) 17)) (-3989 (((-112) $) 15)) (-4054 (((-857) $) NIL)) (-2525 (((-112) $) 9))) +(((-279) (-13 (-609 (-857)) (-10 -8 (-15 -3681 ((-182) $)) (-15 -3989 ((-112) $)) (-15 -1476 ((-3 (-1096) "failed") $)) (-15 -3400 ((-112) $)) (-15 -2867 ((-3 (-1168) "failed") $)) (-15 -2525 ((-112) $)) (-15 -4068 ((-3 (-1168) "failed") $)) (-15 -2369 ((-3 (-639 $) "failed") $))))) (T -279)) +((-3681 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-1476 (*1 *2 *1) (|partial| -12 (-5 *2 (-1096)) (-5 *1 (-279)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-2867 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-279)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-4068 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-279)))) (-2369 (*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-279))) (-5 *1 (-279))))) +(-13 (-609 (-857)) (-10 -8 (-15 -3681 ((-182) $)) (-15 -3989 ((-112) $)) (-15 -1476 ((-3 (-1096) "failed") $)) (-15 -3400 ((-112) $)) (-15 -2867 ((-3 (-1168) "failed") $)) (-15 -2525 ((-112) $)) (-15 -4068 ((-3 (-1168) "failed") $)) (-15 -2369 ((-3 (-639 $) "failed") $)))) +((-3556 (($ (-1 (-112) |#2|) $) 24)) (-1459 (($ $) 36)) (-4000 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1475 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-2673 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3297 (($ |#2| $ (-562)) 20) (($ $ $ (-562)) 22)) (-2880 (($ $ (-562)) 11) (($ $ (-1223 (-562))) 14)) (-4142 (($ $ |#2|) 30) (($ $ $) NIL)) (-2767 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-639 $)) NIL))) +(((-280 |#1| |#2|) (-10 -8 (-15 -2673 (|#1| |#1| |#1|)) (-15 -4000 (|#1| |#2| |#1|)) (-15 -2673 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4000 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1| |#2|)) (-15 -3297 (|#1| |#1| |#1| (-562))) (-15 -3297 (|#1| |#2| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1459 (|#1| |#1|))) (-281 |#2|) (-1207)) (T -280)) +NIL +(-10 -8 (-15 -2673 (|#1| |#1| |#1|)) (-15 -4000 (|#1| |#2| |#1|)) (-15 -2673 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4000 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1| |#2|)) (-15 -3297 (|#1| |#1| |#1| (-562))) (-15 -3297 (|#1| |#2| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1459 (|#1| |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3052 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4403)))) (-3111 (($ (-1 (-112) |#1|) $) 85)) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-4354 (($ $) 83 (|has| |#1| (-1092)))) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1092)))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 51)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-1458 (($ (-766) |#1|) 69)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 43 (|has| (-562) (-845)))) (-2673 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 44 (|has| (-562) (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-4300 (($ |#1| $ (-562)) 88) (($ $ $ (-562)) 87)) (-3297 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-2093 (((-639 (-562)) $) 46)) (-1570 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2716 (($ $ |#1|) 41 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-2878 (($ $ (-562)) 91) (($ $ (-1223 (-562))) 90)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 70)) (-4142 (($ $ |#1|) 93) (($ $ $) 92)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-281 |#1|) (-139) (-1207)) (T -281)) +((-4142 (*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)))) (-4142 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)))) (-2878 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-2878 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-4300 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-281 *2)) (-4 *2 (-1207)))) (-4300 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-2673 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-3111 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-4000 (*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) (-4354 (*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) (-2673 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-845))))) +(-13 (-645 |t#1|) (-10 -8 (-6 -4403) (-15 -4142 ($ $ |t#1|)) (-15 -4142 ($ $ $)) (-15 -2878 ($ $ (-562))) (-15 -2878 ($ $ (-1223 (-562)))) (-15 -4000 ($ (-1 (-112) |t#1|) $)) (-15 -4300 ($ |t#1| $ (-562))) (-15 -4300 ($ $ $ (-562))) (-15 -2673 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3111 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -4000 ($ |t#1| $)) (-15 -4354 ($ $))) |%noBranch|) (IF (|has| |t#1| (-845)) (-15 -2673 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) ((** (($ $ $) 10))) (((-282 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-283)) (T -282)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-4349 (($ $) 6)) (-4350 (($ $) 7)) (** (($ $ $) 8))) +((-4365 (($ $) 6)) (-3430 (($ $) 7)) (** (($ $ $) 8))) (((-283) (-139)) (T -283)) -((** (*1 *1 *1 *1) (-4 *1 (-283))) (-4350 (*1 *1 *1) (-4 *1 (-283))) (-4349 (*1 *1 *1) (-4 *1 (-283)))) -(-13 (-10 -8 (-15 -4349 ($ $)) (-15 -4350 ($ $)) (-15 ** ($ $ $)))) -((-1664 (((-635 (-1143 |#1|)) (-1143 |#1|) |#1|) 35)) (-1661 ((|#2| |#2| |#1|) 38)) (-1663 ((|#2| |#2| |#1|) 40)) (-1662 ((|#2| |#2| |#1|) 39))) -(((-284 |#1| |#2|) (-10 -7 (-15 -1661 (|#2| |#2| |#1|)) (-15 -1662 (|#2| |#2| |#1|)) (-15 -1663 (|#2| |#2| |#1|)) (-15 -1664 ((-635 (-1143 |#1|)) (-1143 |#1|) |#1|))) (-362) (-1246 |#1|)) (T -284)) -((-1664 (*1 *2 *3 *4) (-12 (-4 *4 (-362)) (-5 *2 (-635 (-1143 *4))) (-5 *1 (-284 *4 *5)) (-5 *3 (-1143 *4)) (-4 *5 (-1246 *4)))) (-1663 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3)))) (-1662 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3)))) (-1661 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3))))) -(-10 -7 (-15 -1661 (|#2| |#2| |#1|)) (-15 -1662 (|#2| |#2| |#1|)) (-15 -1663 (|#2| |#2| |#1|)) (-15 -1664 ((-635 (-1143 |#1|)) (-1143 |#1|) |#1|))) -((-4206 ((|#2| $ |#1|) 6))) -(((-285 |#1| |#2|) (-139) (-1091) (-1204)) (T -285)) -((-4206 (*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204))))) -(-13 (-10 -8 (-15 -4206 (|t#2| $ |t#1|)))) -((-1665 ((|#3| $ |#2| |#3|) 12)) (-3498 ((|#3| $ |#2|) 10))) -(((-286 |#1| |#2| |#3|) (-10 -8 (-15 -1665 (|#3| |#1| |#2| |#3|)) (-15 -3498 (|#3| |#1| |#2|))) (-287 |#2| |#3|) (-1091) (-1204)) (T -286)) -NIL -(-10 -8 (-15 -1665 (|#3| |#1| |#2| |#3|)) (-15 -3498 (|#3| |#1| |#2|))) -((-4194 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4401)))) (-1665 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) 11)) (-4206 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-287 |#1| |#2|) (-139) (-1091) (-1204)) (T -287)) -((-4206 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) (-3498 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) (-1665 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204))))) -(-13 (-285 |t#1| |t#2|) (-10 -8 (-15 -4206 (|t#2| $ |t#1| |t#2|)) (-15 -3498 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4401)) (PROGN (-15 -4194 (|t#2| $ |t#1| |t#2|)) (-15 -1665 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((** (*1 *1 *1 *1) (-4 *1 (-283))) (-3430 (*1 *1 *1) (-4 *1 (-283))) (-4365 (*1 *1 *1) (-4 *1 (-283)))) +(-13 (-10 -8 (-15 -4365 ($ $)) (-15 -3430 ($ $)) (-15 ** ($ $ $)))) +((-1339 (((-639 (-1148 |#1|)) (-1148 |#1|) |#1|) 35)) (-1438 ((|#2| |#2| |#1|) 38)) (-2335 ((|#2| |#2| |#1|) 40)) (-3071 ((|#2| |#2| |#1|) 39))) +(((-284 |#1| |#2|) (-10 -7 (-15 -1438 (|#2| |#2| |#1|)) (-15 -3071 (|#2| |#2| |#1|)) (-15 -2335 (|#2| |#2| |#1|)) (-15 -1339 ((-639 (-1148 |#1|)) (-1148 |#1|) |#1|))) (-362) (-1247 |#1|)) (T -284)) +((-1339 (*1 *2 *3 *4) (-12 (-4 *4 (-362)) (-5 *2 (-639 (-1148 *4))) (-5 *1 (-284 *4 *5)) (-5 *3 (-1148 *4)) (-4 *5 (-1247 *4)))) (-2335 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3)))) (-3071 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3)))) (-1438 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3))))) +(-10 -7 (-15 -1438 (|#2| |#2| |#1|)) (-15 -3071 (|#2| |#2| |#1|)) (-15 -2335 (|#2| |#2| |#1|)) (-15 -1339 ((-639 (-1148 |#1|)) (-1148 |#1|) |#1|))) +((-2343 ((|#2| $ |#1|) 6))) +(((-285 |#1| |#2|) (-139) (-1092) (-1207)) (T -285)) +((-2343 (*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207))))) +(-13 (-10 -8 (-15 -2343 (|t#2| $ |t#1|)))) +((-1505 ((|#3| $ |#2| |#3|) 12)) (-1420 ((|#3| $ |#2|) 10))) +(((-286 |#1| |#2| |#3|) (-10 -8 (-15 -1505 (|#3| |#1| |#2| |#3|)) (-15 -1420 (|#3| |#1| |#2|))) (-287 |#2| |#3|) (-1092) (-1207)) (T -286)) +NIL +(-10 -8 (-15 -1505 (|#3| |#1| |#2| |#3|)) (-15 -1420 (|#3| |#1| |#2|))) +((-4200 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4403)))) (-1505 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) 11)) (-2343 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-287 |#1| |#2|) (-139) (-1092) (-1207)) (T -287)) +((-2343 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) (-1420 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) (-1505 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207))))) +(-13 (-285 |t#1| |t#2|) (-10 -8 (-15 -2343 (|t#2| $ |t#1| |t#2|)) (-15 -1420 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4403)) (PROGN (-15 -4200 (|t#2| $ |t#1| |t#2|)) (-15 -1505 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-285 |#1| |#2|) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 34)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 39)) (-2213 (($ $) 37)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) 32)) (-4249 (($ |#2| |#3|) 19)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 ((|#3| $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 20)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2537 (((-3 $ "failed") $ $) NIL)) (-1732 (((-765) $) 33)) (-4206 ((|#2| $ |#2|) 41)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 24)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 28 T CONST)) (-3046 (($) 35 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 36))) -(((-288 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-306) (-10 -8 (-15 -2992 (|#3| $)) (-15 -4353 (|#2| $)) (-15 -4249 ($ |#2| |#3|)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -3866 ((-3 $ "failed") $)) (-15 -2779 ($ $)) (-15 -4206 (|#2| $ |#2|)))) (-171) (-1229 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -288)) -((-3866 (*1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2992 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1229 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4353 (*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4249 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1229 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2779 (*1 *1 *1) (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4206 (*1 *2 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1229 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) -(-13 (-306) (-10 -8 (-15 -2992 (|#3| $)) (-15 -4353 (|#2| $)) (-15 -4249 ($ |#2| |#3|)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -3866 ((-3 $ "failed") $)) (-15 -2779 ($ $)) (-15 -4206 (|#2| $ |#2|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 34)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 39)) (-2796 (($ $) 37)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-1811 (($ $ $) 32)) (-1955 (($ |#2| |#3|) 19)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-1957 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3518 ((|#3| $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 20)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2302 (((-3 $ "failed") $ $) NIL)) (-1577 (((-766) $) 33)) (-2343 ((|#2| $ |#2|) 41)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 24)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2579 (((-766)) NIL)) (-2922 (((-112) $ $) NIL)) (-2286 (($) 28 T CONST)) (-2294 (($) 35 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 36))) +(((-288 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-306) (-10 -8 (-15 -3518 (|#3| $)) (-15 -4054 (|#2| $)) (-15 -1955 ($ |#2| |#3|)) (-15 -2302 ((-3 $ "failed") $ $)) (-15 -3668 ((-3 $ "failed") $)) (-15 -1525 ($ $)) (-15 -2343 (|#2| $ |#2|)))) (-171) (-1232 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -288)) +((-3668 (*1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3518 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1232 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4054 (*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1955 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1232 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2302 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1525 (*1 *1 *1) (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2343 (*1 *2 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1232 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-306) (-10 -8 (-15 -3518 (|#3| $)) (-15 -4054 (|#2| $)) (-15 -1955 ($ |#2| |#3|)) (-15 -2302 ((-3 $ "failed") $ $)) (-15 -3668 ((-3 $ "failed") $)) (-15 -1525 ($ $)) (-15 -2343 (|#2| $ |#2|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-289) (-139)) (T -289)) NIL -(-13 (-1042) (-111 $ $) (-10 -7 (-6 -4393))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-1670 (($ (-1166) (-1166) (-1093) $) 17)) (-1668 (($ (-1166) (-635 (-958)) $) 22)) (-1672 (((-635 (-1075)) $) 10)) (-1671 (((-3 (-1093) "failed") (-1166) (-1166) $) 16)) (-1669 (((-3 (-635 (-958)) "failed") (-1166) $) 21)) (-3972 (($) 7)) (-1667 (($) 23)) (-4353 (((-857) $) 27)) (-1666 (($) 24))) -(((-290) (-13 (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -1672 ((-635 (-1075)) $)) (-15 -1671 ((-3 (-1093) "failed") (-1166) (-1166) $)) (-15 -1670 ($ (-1166) (-1166) (-1093) $)) (-15 -1669 ((-3 (-635 (-958)) "failed") (-1166) $)) (-15 -1668 ($ (-1166) (-635 (-958)) $)) (-15 -1667 ($)) (-15 -1666 ($))))) (T -290)) -((-3972 (*1 *1) (-5 *1 (-290))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-635 (-1075))) (-5 *1 (-290)))) (-1671 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-290)))) (-1670 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-1093)) (-5 *1 (-290)))) (-1669 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-635 (-958))) (-5 *1 (-290)))) (-1668 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-958))) (-5 *1 (-290)))) (-1667 (*1 *1) (-5 *1 (-290))) (-1666 (*1 *1) (-5 *1 (-290)))) -(-13 (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -1672 ((-635 (-1075)) $)) (-15 -1671 ((-3 (-1093) "failed") (-1166) (-1166) $)) (-15 -1670 ($ (-1166) (-1166) (-1093) $)) (-15 -1669 ((-3 (-635 (-958)) "failed") (-1166) $)) (-15 -1668 ($ (-1166) (-635 (-958)) $)) (-15 -1667 ($)) (-15 -1666 ($)))) -((-1676 (((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |geneigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|)))) 85)) (-1675 (((-635 (-682 (-406 (-939 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|)))))) (-682 (-406 (-939 |#1|)))) 80) (((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))) (-765) (-765)) 38)) (-1677 (((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|)))) 82)) (-1674 (((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|)))) 62)) (-1673 (((-635 (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (-682 (-406 (-939 |#1|)))) 61)) (-2743 (((-939 |#1|) (-682 (-406 (-939 |#1|)))) 50) (((-939 |#1|) (-682 (-406 (-939 |#1|))) (-1166)) 51))) -(((-291 |#1|) (-10 -7 (-15 -2743 ((-939 |#1|) (-682 (-406 (-939 |#1|))) (-1166))) (-15 -2743 ((-939 |#1|) (-682 (-406 (-939 |#1|))))) (-15 -1673 ((-635 (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (-682 (-406 (-939 |#1|))))) (-15 -1674 ((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))))) (-15 -1675 ((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))) (-765) (-765))) (-15 -1675 ((-635 (-682 (-406 (-939 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|)))))) (-682 (-406 (-939 |#1|))))) (-15 -1676 ((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |geneigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|))))) (-15 -1677 ((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|)))))) (-450)) (T -291)) -((-1677 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-635 (-2 (|:| |eigval| (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-939 *4)))))) (-1676 (*1 *2 *3) (-12 (-4 *4 (-450)) (-5 *2 (-635 (-2 (|:| |eigval| (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4)))) (|:| |geneigvec| (-635 (-682 (-406 (-939 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-939 *4)))))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-406 (-939 *5)) (-1155 (-1166) (-939 *5)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 *4)))) (-4 *5 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-939 *5)))))) (-1675 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-406 (-939 *6)) (-1155 (-1166) (-939 *6)))) (-5 *5 (-765)) (-4 *6 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *6))))) (-5 *1 (-291 *6)) (-5 *4 (-682 (-406 (-939 *6)))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-406 (-939 *5)) (-1155 (-1166) (-939 *5)))) (-4 *5 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-682 (-406 (-939 *5)))))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 *4)))) (-4 *4 (-450)) (-5 *2 (-635 (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4))))) (-5 *1 (-291 *4)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 *4)))) (-5 *2 (-939 *4)) (-5 *1 (-291 *4)) (-4 *4 (-450)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-939 *5)))) (-5 *4 (-1166)) (-5 *2 (-939 *5)) (-5 *1 (-291 *5)) (-4 *5 (-450))))) -(-10 -7 (-15 -2743 ((-939 |#1|) (-682 (-406 (-939 |#1|))) (-1166))) (-15 -2743 ((-939 |#1|) (-682 (-406 (-939 |#1|))))) (-15 -1673 ((-635 (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (-682 (-406 (-939 |#1|))))) (-15 -1674 ((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))))) (-15 -1675 ((-635 (-682 (-406 (-939 |#1|)))) (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|))) (-682 (-406 (-939 |#1|))) (-765) (-765))) (-15 -1675 ((-635 (-682 (-406 (-939 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|)))))) (-682 (-406 (-939 |#1|))))) (-15 -1676 ((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |geneigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|))))) (-15 -1677 ((-635 (-2 (|:| |eigval| (-3 (-406 (-939 |#1|)) (-1155 (-1166) (-939 |#1|)))) (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 |#1|))))))) (-682 (-406 (-939 |#1|)))))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3589 (((-112) $) NIL (|has| |#1| (-21)))) (-1683 (($ $) 12)) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1692 (($ $ $) 94 (|has| |#1| (-297)))) (-4131 (($) NIL (-3936 (|has| |#1| (-21)) (|has| |#1| (-720))) CONST)) (-1681 (($ $) 50 (|has| |#1| (-21)))) (-1679 (((-3 $ "failed") $) 61 (|has| |#1| (-720)))) (-3927 ((|#1| $) 11)) (-3866 (((-3 $ "failed") $) 59 (|has| |#1| (-720)))) (-2545 (((-112) $) NIL (|has| |#1| (-720)))) (-4365 (($ (-1 |#1| |#1|) $) 14)) (-3928 ((|#1| $) 10)) (-1682 (($ $) 49 (|has| |#1| (-21)))) (-1680 (((-3 $ "failed") $) 60 (|has| |#1| (-720)))) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2779 (($ $) 63 (-3936 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1678 (((-635 $) $) 84 (|has| |#1| (-554)))) (-4174 (($ $ $) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 $)) 28 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-1166) |#1|) 17 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 21 (|has| |#1| (-512 (-1166) |#1|)))) (-3627 (($ |#1| |#1|) 9)) (-4318 (((-133)) 89 (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) 86 (|has| |#1| (-893 (-1166))))) (-3392 (($ $ $) NIL (|has| |#1| (-471)))) (-2729 (($ $ $) NIL (|has| |#1| (-471)))) (-4353 (($ (-544)) NIL (|has| |#1| (-1042))) (((-112) $) 36 (|has| |#1| (-1091))) (((-857) $) 35 (|has| |#1| (-1091)))) (-3511 (((-765)) 66 (|has| |#1| (-1042)))) (-3040 (($) 46 (|has| |#1| (-21)) CONST)) (-3046 (($) 56 (|has| |#1| (-720)) CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166))))) (-3437 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 91 (-3936 (|has| |#1| (-362)) (|has| |#1| (-471))))) (-4244 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4246 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-544)) NIL (|has| |#1| (-471))) (($ $ (-765)) NIL (|has| |#1| (-720))) (($ $ (-912)) NIL (|has| |#1| (-1102)))) (* (($ $ |#1|) 54 (|has| |#1| (-1102))) (($ |#1| $) 53 (|has| |#1| (-1102))) (($ $ $) 52 (|has| |#1| (-1102))) (($ (-544) $) 69 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-912) $) NIL (|has| |#1| (-25))))) -(((-292 |#1|) (-13 (-1204) (-10 -8 (-15 -3437 ($ |#1| |#1|)) (-15 -3627 ($ |#1| |#1|)) (-15 -1683 ($ $)) (-15 -3928 (|#1| $)) (-15 -3927 (|#1| $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1166) |#1|)) (-6 (-512 (-1166) |#1|)) |%noBranch|) (IF (|has| |#1| (-1091)) (PROGN (-6 (-1091)) (-6 (-608 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -4174 ($ $ $)) (-15 -4174 ($ $ (-635 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4246 ($ |#1| $)) (-15 -4246 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1682 ($ $)) (-15 -1681 ($ $)) (-15 -4244 ($ |#1| $)) (-15 -4244 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-720)) (PROGN (-6 (-720)) (-15 -1680 ((-3 $ "failed") $)) (-15 -1679 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -1680 ((-3 $ "failed") $)) (-15 -1679 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -1678 ((-635 $) $)) |%noBranch|) (IF (|has| |#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1261 |#1|)) (-15 -4356 ($ $ $)) (-15 -2779 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -1692 ($ $ $)) |%noBranch|))) (-1204)) (T -292)) -((-3437 (*1 *1 *2 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-3627 (*1 *1 *2 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-1683 (*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-3928 (*1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-3927 (*1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-292 *3)))) (-4174 (*1 *1 *1 *1) (-12 (-4 *2 (-308 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)) (-5 *1 (-292 *2)))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-292 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1091)) (-4 *3 (-1204)) (-5 *1 (-292 *3)))) (-4246 (*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-25)) (-4 *2 (-1204)))) (-4246 (*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-25)) (-4 *2 (-1204)))) (-1682 (*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) (-1681 (*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) (-4244 (*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) (-1680 (*1 *1 *1) (|partial| -12 (-5 *1 (-292 *2)) (-4 *2 (-720)) (-4 *2 (-1204)))) (-1679 (*1 *1 *1) (|partial| -12 (-5 *1 (-292 *2)) (-4 *2 (-720)) (-4 *2 (-1204)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-635 (-292 *3))) (-5 *1 (-292 *3)) (-4 *3 (-554)) (-4 *3 (-1204)))) (-1692 (*1 *1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-297)) (-4 *2 (-1204)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1102)) (-4 *2 (-1204)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1102)) (-4 *2 (-1204)))) (-4356 (*1 *1 *1 *1) (-3936 (-12 (-5 *1 (-292 *2)) (-4 *2 (-362)) (-4 *2 (-1204))) (-12 (-5 *1 (-292 *2)) (-4 *2 (-471)) (-4 *2 (-1204))))) (-2779 (*1 *1 *1) (-3936 (-12 (-5 *1 (-292 *2)) (-4 *2 (-362)) (-4 *2 (-1204))) (-12 (-5 *1 (-292 *2)) (-4 *2 (-471)) (-4 *2 (-1204)))))) -(-13 (-1204) (-10 -8 (-15 -3437 ($ |#1| |#1|)) (-15 -3627 ($ |#1| |#1|)) (-15 -1683 ($ $)) (-15 -3928 (|#1| $)) (-15 -3927 (|#1| $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-512 (-1166) |#1|)) (-6 (-512 (-1166) |#1|)) |%noBranch|) (IF (|has| |#1| (-1091)) (PROGN (-6 (-1091)) (-6 (-608 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -4174 ($ $ $)) (-15 -4174 ($ $ (-635 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4246 ($ |#1| $)) (-15 -4246 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1682 ($ $)) (-15 -1681 ($ $)) (-15 -4244 ($ |#1| $)) (-15 -4244 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-720)) (PROGN (-6 (-720)) (-15 -1680 ((-3 $ "failed") $)) (-15 -1679 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -1680 ((-3 $ "failed") $)) (-15 -1679 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -1678 ((-635 $) $)) |%noBranch|) (IF (|has| |#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1261 |#1|)) (-15 -4356 ($ $ $)) (-15 -2779 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -1692 ($ $ $)) |%noBranch|))) -((-4365 (((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)) 14))) -(((-293 |#1| |#2|) (-10 -7 (-15 -4365 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)))) (-1204) (-1204)) (T -293)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-292 *6)) (-5 *1 (-293 *5 *6))))) -(-10 -7 (-15 -4365 ((-292 |#2|) (-1 |#2| |#1|) (-292 |#1|)))) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) NIL)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-294 |#1| |#2|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) (-1091) (-1091)) (T -294)) -NIL -(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) -((-1684 (((-310) (-1148) (-635 (-1148))) 16) (((-310) (-1148) (-1148)) 15) (((-310) (-635 (-1148))) 14) (((-310) (-1148)) 12))) -(((-295) (-10 -7 (-15 -1684 ((-310) (-1148))) (-15 -1684 ((-310) (-635 (-1148)))) (-15 -1684 ((-310) (-1148) (-1148))) (-15 -1684 ((-310) (-1148) (-635 (-1148)))))) (T -295)) -((-1684 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1148))) (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295)))) (-1684 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-310)) (-5 *1 (-295)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295))))) -(-10 -7 (-15 -1684 ((-310) (-1148))) (-15 -1684 ((-310) (-635 (-1148)))) (-15 -1684 ((-310) (-1148) (-1148))) (-15 -1684 ((-310) (-1148) (-635 (-1148))))) -((-1688 (((-635 (-606 $)) $) 30)) (-1692 (($ $ (-292 $)) 80) (($ $ (-635 (-292 $))) 122) (($ $ (-635 (-606 $)) (-635 $)) NIL)) (-3558 (((-3 (-606 $) "failed") $) 112)) (-3557 (((-606 $) $) 111)) (-2952 (($ $) 19) (($ (-635 $)) 55)) (-1687 (((-635 (-113)) $) 38)) (-3430 (((-113) (-113)) 90)) (-3055 (((-112) $) 130)) (-4365 (($ (-1 $ $) (-606 $)) 88)) (-1690 (((-3 (-606 $) "failed") $) 92)) (-2356 (($ (-113) $) 60) (($ (-113) (-635 $)) 99)) (-3013 (((-112) $ (-113)) 116) (((-112) $ (-1166)) 115)) (-2982 (((-765) $) 46)) (-1686 (((-112) $ $) 58) (((-112) $ (-1166)) 50)) (-3056 (((-112) $) 128)) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL) (($ $ (-635 (-292 $))) 120) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) 83) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) 68) (($ $ (-1166) (-1 $ $)) 74) (($ $ (-635 (-113)) (-635 (-1 $ $))) 82) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) 84) (($ $ (-113) (-1 $ (-635 $))) 70) (($ $ (-113) (-1 $ $)) 76)) (-4206 (($ (-113) $) 61) (($ (-113) $ $) 62) (($ (-113) $ $ $) 63) (($ (-113) $ $ $ $) 64) (($ (-113) (-635 $)) 108)) (-1691 (($ $) 52) (($ $ $) 118)) (-2969 (($ $) 17) (($ (-635 $)) 54)) (-2377 (((-112) (-113)) 22))) -(((-296 |#1|) (-10 -8 (-15 -3055 ((-112) |#1|)) (-15 -3056 ((-112) |#1|)) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| |#1|)))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| |#1|)))) (-15 -1686 ((-112) |#1| (-1166))) (-15 -1686 ((-112) |#1| |#1|)) (-15 -4365 (|#1| (-1 |#1| |#1|) (-606 |#1|))) (-15 -2356 (|#1| (-113) (-635 |#1|))) (-15 -2356 (|#1| (-113) |#1|)) (-15 -3013 ((-112) |#1| (-1166))) (-15 -3013 ((-112) |#1| (-113))) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1687 ((-635 (-113)) |#1|)) (-15 -1688 ((-635 (-606 |#1|)) |#1|)) (-15 -1690 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2982 ((-765) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -2952 (|#1| (-635 |#1|))) (-15 -2952 (|#1| |#1|)) (-15 -2969 (|#1| (-635 |#1|))) (-15 -2969 (|#1| |#1|)) (-15 -1692 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -1692 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -1692 (|#1| |#1| (-292 |#1|))) (-15 -4206 (|#1| (-113) (-635 |#1|))) (-15 -4206 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-606 |#1|) |#1|)) (-15 -3558 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -3557 ((-606 |#1|) |#1|))) (-297)) (T -296)) -((-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-296 *3)) (-4 *3 (-297)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297))))) -(-10 -8 (-15 -3055 ((-112) |#1|)) (-15 -3056 ((-112) |#1|)) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| |#1|)))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| |#1|)))) (-15 -1686 ((-112) |#1| (-1166))) (-15 -1686 ((-112) |#1| |#1|)) (-15 -4365 (|#1| (-1 |#1| |#1|) (-606 |#1|))) (-15 -2356 (|#1| (-113) (-635 |#1|))) (-15 -2356 (|#1| (-113) |#1|)) (-15 -3013 ((-112) |#1| (-1166))) (-15 -3013 ((-112) |#1| (-113))) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1687 ((-635 (-113)) |#1|)) (-15 -1688 ((-635 (-606 |#1|)) |#1|)) (-15 -1690 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2982 ((-765) |#1|)) (-15 -1691 (|#1| |#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -2952 (|#1| (-635 |#1|))) (-15 -2952 (|#1| |#1|)) (-15 -2969 (|#1| (-635 |#1|))) (-15 -2969 (|#1| |#1|)) (-15 -1692 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -1692 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -1692 (|#1| |#1| (-292 |#1|))) (-15 -4206 (|#1| (-113) (-635 |#1|))) (-15 -4206 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-606 |#1|) |#1|)) (-15 -3558 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -3557 ((-606 |#1|) |#1|))) -((-2947 (((-112) $ $) 7)) (-1688 (((-635 (-606 $)) $) 44)) (-1692 (($ $ (-292 $)) 56) (($ $ (-635 (-292 $))) 55) (($ $ (-635 (-606 $)) (-635 $)) 54)) (-3558 (((-3 (-606 $) "failed") $) 69)) (-3557 (((-606 $) $) 70)) (-2952 (($ $) 51) (($ (-635 $)) 50)) (-1687 (((-635 (-113)) $) 43)) (-3430 (((-113) (-113)) 42)) (-3055 (((-112) $) 22 (|has| $ (-1031 (-544))))) (-1685 (((-1160 $) (-606 $)) 25 (|has| $ (-1042)))) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-4365 (($ (-1 $ $) (-606 $)) 36)) (-1690 (((-3 (-606 $) "failed") $) 46)) (-3643 (((-1148) $) 9)) (-1689 (((-635 (-606 $)) $) 45)) (-2356 (($ (-113) $) 38) (($ (-113) (-635 $)) 37)) (-3013 (((-112) $ (-113)) 40) (((-112) $ (-1166)) 39)) (-2982 (((-765) $) 47)) (-3644 (((-1110) $) 10)) (-1686 (((-112) $ $) 35) (((-112) $ (-1166)) 34)) (-3056 (((-112) $) 23 (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) 67) (($ $ (-635 (-606 $)) (-635 $)) 66) (($ $ (-635 (-292 $))) 65) (($ $ (-292 $)) 64) (($ $ $ $) 63) (($ $ (-635 $) (-635 $)) 62) (($ $ (-635 (-1166)) (-635 (-1 $ $))) 33) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) 32) (($ $ (-1166) (-1 $ (-635 $))) 31) (($ $ (-1166) (-1 $ $)) 30) (($ $ (-635 (-113)) (-635 (-1 $ $))) 29) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) 28) (($ $ (-113) (-1 $ (-635 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-4206 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-635 $)) 57)) (-1691 (($ $) 49) (($ $ $) 48)) (-3586 (($ $) 24 (|has| $ (-1042)))) (-4353 (((-857) $) 11) (($ (-606 $)) 68)) (-2969 (($ $) 53) (($ (-635 $)) 52)) (-2377 (((-112) (-113)) 41)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18))) -(((-297) (-139)) (T -297)) -((-4206 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-4206 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-4206 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-4206 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 *1)) (-4 *1 (-297)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-292 *1)) (-4 *1 (-297)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-292 *1))) (-4 *1 (-297)))) (-1692 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-606 *1))) (-5 *3 (-635 *1)) (-4 *1 (-297)))) (-2969 (*1 *1 *1) (-4 *1 (-297))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-297)))) (-2952 (*1 *1 *1) (-4 *1 (-297))) (-2952 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-297)))) (-1691 (*1 *1 *1) (-4 *1 (-297))) (-1691 (*1 *1 *1 *1) (-4 *1 (-297))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-765)))) (-1690 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-297)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-635 (-606 *1))) (-4 *1 (-297)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-635 (-606 *1))) (-4 *1 (-297)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-635 (-113))))) (-3430 (*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-2377 (*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3013 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3013 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1166)) (-5 *2 (-112)))) (-2356 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) (-2356 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 *1)) (-4 *1 (-297)))) (-4365 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-606 *1)) (-4 *1 (-297)))) (-1686 (*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112)))) (-1686 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1166)) (-5 *2 (-112)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-297)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1042)) (-4 *1 (-297)) (-5 *2 (-1160 *1)))) (-3586 (*1 *1 *1) (-12 (-4 *1 (-1042)) (-4 *1 (-297)))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-1031 (-544))) (-4 *1 (-297)) (-5 *2 (-112)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-1031 (-544))) (-4 *1 (-297)) (-5 *2 (-112))))) -(-13 (-844) (-1031 (-606 $)) (-512 (-606 $) $) (-308 $) (-10 -8 (-15 -4206 ($ (-113) $)) (-15 -4206 ($ (-113) $ $)) (-15 -4206 ($ (-113) $ $ $)) (-15 -4206 ($ (-113) $ $ $ $)) (-15 -4206 ($ (-113) (-635 $))) (-15 -1692 ($ $ (-292 $))) (-15 -1692 ($ $ (-635 (-292 $)))) (-15 -1692 ($ $ (-635 (-606 $)) (-635 $))) (-15 -2969 ($ $)) (-15 -2969 ($ (-635 $))) (-15 -2952 ($ $)) (-15 -2952 ($ (-635 $))) (-15 -1691 ($ $)) (-15 -1691 ($ $ $)) (-15 -2982 ((-765) $)) (-15 -1690 ((-3 (-606 $) "failed") $)) (-15 -1689 ((-635 (-606 $)) $)) (-15 -1688 ((-635 (-606 $)) $)) (-15 -1687 ((-635 (-113)) $)) (-15 -3430 ((-113) (-113))) (-15 -2377 ((-112) (-113))) (-15 -3013 ((-112) $ (-113))) (-15 -3013 ((-112) $ (-1166))) (-15 -2356 ($ (-113) $)) (-15 -2356 ($ (-113) (-635 $))) (-15 -4365 ($ (-1 $ $) (-606 $))) (-15 -1686 ((-112) $ $)) (-15 -1686 ((-112) $ (-1166))) (-15 -4174 ($ $ (-635 (-1166)) (-635 (-1 $ $)))) (-15 -4174 ($ $ (-635 (-1166)) (-635 (-1 $ (-635 $))))) (-15 -4174 ($ $ (-1166) (-1 $ (-635 $)))) (-15 -4174 ($ $ (-1166) (-1 $ $))) (-15 -4174 ($ $ (-635 (-113)) (-635 (-1 $ $)))) (-15 -4174 ($ $ (-635 (-113)) (-635 (-1 $ (-635 $))))) (-15 -4174 ($ $ (-113) (-1 $ (-635 $)))) (-15 -4174 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1042)) (PROGN (-15 -1685 ((-1160 $) (-606 $))) (-15 -3586 ($ $))) |%noBranch|) (IF (|has| $ (-1031 (-544))) (PROGN (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-611 #1=(-606 $)) . T) ((-608 (-857)) . T) ((-308 $) . T) ((-512 (-606 $) $) . T) ((-512 $ $) . T) ((-844) . T) ((-1031 #1#) . T) ((-1091) . T)) -((-4365 ((|#2| (-1 |#2| |#1|) (-1148) (-606 |#1|)) 18))) -(((-298 |#1| |#2|) (-10 -7 (-15 -4365 (|#2| (-1 |#2| |#1|) (-1148) (-606 |#1|)))) (-297) (-1204)) (T -298)) -((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1148)) (-5 *5 (-606 *6)) (-4 *6 (-297)) (-4 *2 (-1204)) (-5 *1 (-298 *6 *2))))) -(-10 -7 (-15 -4365 (|#2| (-1 |#2| |#1|) (-1148) (-606 |#1|)))) -((-4365 ((|#2| (-1 |#2| |#1|) (-606 |#1|)) 17))) -(((-299 |#1| |#2|) (-10 -7 (-15 -4365 (|#2| (-1 |#2| |#1|) (-606 |#1|)))) (-297) (-297)) (T -299)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-606 *5)) (-4 *5 (-297)) (-4 *2 (-297)) (-5 *1 (-299 *5 *2))))) -(-10 -7 (-15 -4365 (|#2| (-1 |#2| |#1|) (-606 |#1|)))) -((-1695 (((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224)))) 92)) (-1696 (((-1143 (-224)) (-1253 (-313 (-224))) (-635 (-1166)) (-1079 (-836 (-224)))) 106) (((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224)))) 61)) (-1717 (((-635 (-1148)) (-1143 (-224))) NIL)) (-1694 (((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224)))) 58)) (-1697 (((-635 (-224)) (-939 (-406 (-544))) (-1166) (-1079 (-836 (-224)))) 49)) (-1716 (((-635 (-1148)) (-635 (-224))) NIL)) (-1718 (((-224) (-1079 (-836 (-224)))) 25)) (-1719 (((-224) (-1079 (-836 (-224)))) 26)) (-1693 (((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 54)) (-1714 (((-1148) (-224)) NIL))) -(((-300) (-10 -7 (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -1693 ((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1694 ((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224))))) (-15 -1695 ((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-1253 (-313 (-224))) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1697 ((-635 (-224)) (-939 (-406 (-544))) (-1166) (-1079 (-836 (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))))) (T -300)) -((-1717 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-300)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-300)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-300)))) (-1697 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-300)))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *4 (-635 (-1166))) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300)))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-635 (-1166))) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300)))) (-1695 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-635 (-1166))) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-224))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-300)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-300)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-300))))) -(-10 -7 (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -1693 ((-112) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1694 ((-635 (-224)) (-313 (-224)) (-1166) (-1079 (-836 (-224))))) (-15 -1695 ((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-313 (-224)) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1696 ((-1143 (-224)) (-1253 (-313 (-224))) (-635 (-1166)) (-1079 (-836 (-224))))) (-15 -1697 ((-635 (-224)) (-939 (-406 (-544))) (-1166) (-1079 (-836 (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224))))) -((-2127 (((-112) (-224)) 10))) -(((-301 |#1| |#2|) (-10 -7 (-15 -2127 ((-112) (-224)))) (-224) (-224)) (T -301)) -((-2127 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-301 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2127 ((-112) (-224)))) -((-1713 (((-1253 (-313 (-377))) (-1253 (-313 (-224)))) 105)) (-1701 (((-1079 (-836 (-224))) (-1079 (-836 (-377)))) 40)) (-1717 (((-635 (-1148)) (-1143 (-224))) 87)) (-1724 (((-313 (-377)) (-939 (-224))) 50)) (-1725 (((-224) (-939 (-224))) 46)) (-1720 (((-1148) (-377)) 169)) (-1700 (((-836 (-224)) (-836 (-377))) 34)) (-1706 (((-2 (|:| |additions| (-544)) (|:| |multiplications| (-544)) (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544))) (-1253 (-313 (-224)))) 143)) (-1721 (((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) 181) (((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) 179)) (-1728 (((-682 (-224)) (-635 (-224)) (-765)) 14)) (-1711 (((-1253 (-692)) (-635 (-224))) 94)) (-1716 (((-635 (-1148)) (-635 (-224))) 75)) (-3038 (((-3 (-313 (-224)) "failed") (-313 (-224))) 120)) (-2127 (((-112) (-224) (-1079 (-836 (-224)))) 109)) (-1723 (((-1028) (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))) 198)) (-1718 (((-224) (-1079 (-836 (-224)))) 107)) (-1719 (((-224) (-1079 (-836 (-224)))) 108)) (-1727 (((-224) (-406 (-544))) 27)) (-1715 (((-1148) (-377)) 73)) (-1698 (((-224) (-377)) 17)) (-1705 (((-377) (-1253 (-313 (-224)))) 154)) (-1699 (((-313 (-224)) (-313 (-377))) 23)) (-1703 (((-406 (-544)) (-313 (-224))) 53)) (-1707 (((-313 (-406 (-544))) (-313 (-224))) 69)) (-1712 (((-313 (-377)) (-313 (-224))) 98)) (-1704 (((-224) (-313 (-224))) 54)) (-1709 (((-635 (-224)) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) 64)) (-1708 (((-1079 (-836 (-224))) (-1079 (-836 (-224)))) 61)) (-1714 (((-1148) (-224)) 72)) (-1710 (((-692) (-224)) 90)) (-1702 (((-406 (-544)) (-224)) 55)) (-1726 (((-313 (-377)) (-224)) 49)) (-4377 (((-635 (-1079 (-836 (-224)))) (-635 (-1079 (-836 (-377))))) 43)) (-4208 (((-1028) (-635 (-1028))) 165) (((-1028) (-1028) (-1028)) 162)) (-1722 (((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-302) (-10 -7 (-15 -1698 ((-224) (-377))) (-15 -1699 ((-313 (-224)) (-313 (-377)))) (-15 -1700 ((-836 (-224)) (-836 (-377)))) (-15 -1701 ((-1079 (-836 (-224))) (-1079 (-836 (-377))))) (-15 -4377 ((-635 (-1079 (-836 (-224)))) (-635 (-1079 (-836 (-377)))))) (-15 -1702 ((-406 (-544)) (-224))) (-15 -1703 ((-406 (-544)) (-313 (-224)))) (-15 -1704 ((-224) (-313 (-224)))) (-15 -3038 ((-3 (-313 (-224)) "failed") (-313 (-224)))) (-15 -1705 ((-377) (-1253 (-313 (-224))))) (-15 -1706 ((-2 (|:| |additions| (-544)) (|:| |multiplications| (-544)) (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544))) (-1253 (-313 (-224))))) (-15 -1707 ((-313 (-406 (-544))) (-313 (-224)))) (-15 -1708 ((-1079 (-836 (-224))) (-1079 (-836 (-224))))) (-15 -1709 ((-635 (-224)) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-15 -1710 ((-692) (-224))) (-15 -1711 ((-1253 (-692)) (-635 (-224)))) (-15 -1712 ((-313 (-377)) (-313 (-224)))) (-15 -1713 ((-1253 (-313 (-377))) (-1253 (-313 (-224))))) (-15 -2127 ((-112) (-224) (-1079 (-836 (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1715 ((-1148) (-377))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))) (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -4208 ((-1028) (-1028) (-1028))) (-15 -4208 ((-1028) (-635 (-1028)))) (-15 -1720 ((-1148) (-377))) (-15 -1721 ((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))))) (-15 -1721 ((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))))) (-15 -1722 ((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1723 ((-1028) (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))) (-15 -1724 ((-313 (-377)) (-939 (-224)))) (-15 -1725 ((-224) (-939 (-224)))) (-15 -1726 ((-313 (-377)) (-224))) (-15 -1727 ((-224) (-406 (-544)))) (-15 -1728 ((-682 (-224)) (-635 (-224)) (-765))))) (T -302)) -((-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-224))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) (-5 *1 (-302)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-406 (-544))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-313 (-377))) (-5 *1 (-302)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-939 (-224))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-939 (-224))) (-5 *2 (-313 (-377))) (-5 *1 (-302)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1148)) (-5 *1 (-302)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-635 (-1028))) (-5 *2 (-1028)) (-5 *1 (-302)))) (-4208 (*1 *2 *2 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-302)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-302)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-302)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1148)) (-5 *1 (-302)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-302)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *4 (-1079 (-836 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-302)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-1253 (-313 (-377)))) (-5 *1 (-302)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-313 (-377))) (-5 *1 (-302)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1253 (-692))) (-5 *1 (-302)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-692)) (-5 *1 (-302)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *2 (-635 (-224))) (-5 *1 (-302)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-1079 (-836 (-224)))) (-5 *1 (-302)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-313 (-406 (-544)))) (-5 *1 (-302)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-2 (|:| |additions| (-544)) (|:| |multiplications| (-544)) (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544)))) (-5 *1 (-302)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-377)) (-5 *1 (-302)))) (-3038 (*1 *2 *2) (|partial| -12 (-5 *2 (-313 (-224))) (-5 *1 (-302)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-224)) (-5 *1 (-302)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-406 (-544))) (-5 *1 (-302)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-544))) (-5 *1 (-302)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-635 (-1079 (-836 (-377))))) (-5 *2 (-635 (-1079 (-836 (-224))))) (-5 *1 (-302)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-377)))) (-5 *2 (-1079 (-836 (-224)))) (-5 *1 (-302)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-836 (-377))) (-5 *2 (-836 (-224))) (-5 *1 (-302)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-313 (-377))) (-5 *2 (-313 (-224))) (-5 *1 (-302)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-224)) (-5 *1 (-302))))) -(-10 -7 (-15 -1698 ((-224) (-377))) (-15 -1699 ((-313 (-224)) (-313 (-377)))) (-15 -1700 ((-836 (-224)) (-836 (-377)))) (-15 -1701 ((-1079 (-836 (-224))) (-1079 (-836 (-377))))) (-15 -4377 ((-635 (-1079 (-836 (-224)))) (-635 (-1079 (-836 (-377)))))) (-15 -1702 ((-406 (-544)) (-224))) (-15 -1703 ((-406 (-544)) (-313 (-224)))) (-15 -1704 ((-224) (-313 (-224)))) (-15 -3038 ((-3 (-313 (-224)) "failed") (-313 (-224)))) (-15 -1705 ((-377) (-1253 (-313 (-224))))) (-15 -1706 ((-2 (|:| |additions| (-544)) (|:| |multiplications| (-544)) (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544))) (-1253 (-313 (-224))))) (-15 -1707 ((-313 (-406 (-544))) (-313 (-224)))) (-15 -1708 ((-1079 (-836 (-224))) (-1079 (-836 (-224))))) (-15 -1709 ((-635 (-224)) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-15 -1710 ((-692) (-224))) (-15 -1711 ((-1253 (-692)) (-635 (-224)))) (-15 -1712 ((-313 (-377)) (-313 (-224)))) (-15 -1713 ((-1253 (-313 (-377))) (-1253 (-313 (-224))))) (-15 -2127 ((-112) (-224) (-1079 (-836 (-224))))) (-15 -1714 ((-1148) (-224))) (-15 -1715 ((-1148) (-377))) (-15 -1716 ((-635 (-1148)) (-635 (-224)))) (-15 -1717 ((-635 (-1148)) (-1143 (-224)))) (-15 -1718 ((-224) (-1079 (-836 (-224))))) (-15 -1719 ((-224) (-1079 (-836 (-224))))) (-15 -4208 ((-1028) (-1028) (-1028))) (-15 -4208 ((-1028) (-635 (-1028)))) (-15 -1720 ((-1148) (-377))) (-15 -1721 ((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))))) (-15 -1721 ((-1028) (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))))) (-15 -1722 ((-1028) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1723 ((-1028) (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))) (-15 -1724 ((-313 (-377)) (-939 (-224)))) (-15 -1725 ((-224) (-939 (-224)))) (-15 -1726 ((-313 (-377)) (-224))) (-15 -1727 ((-224) (-406 (-544)))) (-15 -1728 ((-682 (-224)) (-635 (-224)) (-765)))) -((-1729 (((-635 |#1|) (-635 |#1|)) 10))) -(((-303 |#1|) (-10 -7 (-15 -1729 ((-635 |#1|) (-635 |#1|)))) (-842)) (T -303)) -((-1729 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-842)) (-5 *1 (-303 *3))))) -(-10 -7 (-15 -1729 ((-635 |#1|) (-635 |#1|)))) -((-4365 (((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|)) 17))) -(((-304 |#1| |#2|) (-10 -7 (-15 -4365 ((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|)))) (-1042) (-1042)) (T -304)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-682 *6)) (-5 *1 (-304 *5 *6))))) -(-10 -7 (-15 -4365 ((-682 |#2|) (-1 |#2| |#1|) (-682 |#1|)))) -((-1733 (((-112) $ $) 11)) (-2943 (($ $ $) 15)) (-2942 (($ $ $) 14)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 43)) (-1730 (((-3 (-635 $) "failed") (-635 $) $) 52)) (-3545 (($ $ $) 20) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-3865 (((-3 $ "failed") $ $) 17)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 45))) -(((-305 |#1|) (-10 -8 (-15 -1730 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -1731 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1731 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3122 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3123 ((-2 (|:| -4361 (-635 |#1|)) (|:| -2544 |#1|)) (-635 |#1|))) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|))) (-306)) (T -305)) -NIL -(-10 -8 (-15 -1730 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -1731 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1731 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3122 ((-3 (-635 |#1|) "failed") (-635 |#1|) |#1|)) (-15 -3123 ((-2 (|:| -4361 (-635 |#1|)) (|:| -2544 |#1|)) (-635 |#1|))) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) "failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) +(-13 (-1044) (-111 $ $) (-10 -7 (-6 -4395))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-2301 (($ (-1168) (-1168) (-1096) $) 17)) (-2209 (($ (-1168) (-639 (-960)) $) 22)) (-1529 (((-639 (-1077)) $) 10)) (-3911 (((-3 (-1096) "failed") (-1168) (-1168) $) 16)) (-3865 (((-3 (-639 (-960)) "failed") (-1168) $) 21)) (-4307 (($) 7)) (-1368 (($) 23)) (-4054 (((-857) $) 27)) (-2331 (($) 24))) +(((-290) (-13 (-609 (-857)) (-10 -8 (-15 -4307 ($)) (-15 -1529 ((-639 (-1077)) $)) (-15 -3911 ((-3 (-1096) "failed") (-1168) (-1168) $)) (-15 -2301 ($ (-1168) (-1168) (-1096) $)) (-15 -3865 ((-3 (-639 (-960)) "failed") (-1168) $)) (-15 -2209 ($ (-1168) (-639 (-960)) $)) (-15 -1368 ($)) (-15 -2331 ($))))) (T -290)) +((-4307 (*1 *1) (-5 *1 (-290))) (-1529 (*1 *2 *1) (-12 (-5 *2 (-639 (-1077))) (-5 *1 (-290)))) (-3911 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-290)))) (-2301 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1168)) (-5 *3 (-1096)) (-5 *1 (-290)))) (-3865 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-639 (-960))) (-5 *1 (-290)))) (-2209 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-960))) (-5 *1 (-290)))) (-1368 (*1 *1) (-5 *1 (-290))) (-2331 (*1 *1) (-5 *1 (-290)))) +(-13 (-609 (-857)) (-10 -8 (-15 -4307 ($)) (-15 -1529 ((-639 (-1077)) $)) (-15 -3911 ((-3 (-1096) "failed") (-1168) (-1168) $)) (-15 -2301 ($ (-1168) (-1168) (-1096) $)) (-15 -3865 ((-3 (-639 (-960)) "failed") (-1168) $)) (-15 -2209 ($ (-1168) (-639 (-960)) $)) (-15 -1368 ($)) (-15 -2331 ($)))) +((-1517 (((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |geneigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|)))) 85)) (-3925 (((-639 (-683 (-406 (-947 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|)))))) (-683 (-406 (-947 |#1|)))) 80) (((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))) (-766) (-766)) 38)) (-3229 (((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|)))) 82)) (-4125 (((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|)))) 62)) (-2499 (((-639 (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (-683 (-406 (-947 |#1|)))) 61)) (-3376 (((-947 |#1|) (-683 (-406 (-947 |#1|)))) 50) (((-947 |#1|) (-683 (-406 (-947 |#1|))) (-1168)) 51))) +(((-291 |#1|) (-10 -7 (-15 -3376 ((-947 |#1|) (-683 (-406 (-947 |#1|))) (-1168))) (-15 -3376 ((-947 |#1|) (-683 (-406 (-947 |#1|))))) (-15 -2499 ((-639 (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (-683 (-406 (-947 |#1|))))) (-15 -4125 ((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))))) (-15 -3925 ((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))) (-766) (-766))) (-15 -3925 ((-639 (-683 (-406 (-947 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|)))))) (-683 (-406 (-947 |#1|))))) (-15 -1517 ((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |geneigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|))))) (-15 -3229 ((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|)))))) (-451)) (T -291)) +((-3229 (*1 *2 *3) (-12 (-4 *4 (-451)) (-5 *2 (-639 (-2 (|:| |eigval| (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-683 (-406 (-947 *4)))))) (-1517 (*1 *2 *3) (-12 (-4 *4 (-451)) (-5 *2 (-639 (-2 (|:| |eigval| (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4)))) (|:| |geneigvec| (-639 (-683 (-406 (-947 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-683 (-406 (-947 *4)))))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-406 (-947 *5)) (-1157 (-1168) (-947 *5)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 *4)))) (-4 *5 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-683 (-406 (-947 *5)))))) (-3925 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-406 (-947 *6)) (-1157 (-1168) (-947 *6)))) (-5 *5 (-766)) (-4 *6 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *6))))) (-5 *1 (-291 *6)) (-5 *4 (-683 (-406 (-947 *6)))))) (-4125 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-406 (-947 *5)) (-1157 (-1168) (-947 *5)))) (-4 *5 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-683 (-406 (-947 *5)))))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 *4)))) (-4 *4 (-451)) (-5 *2 (-639 (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4))))) (-5 *1 (-291 *4)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 *4)))) (-5 *2 (-947 *4)) (-5 *1 (-291 *4)) (-4 *4 (-451)))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-406 (-947 *5)))) (-5 *4 (-1168)) (-5 *2 (-947 *5)) (-5 *1 (-291 *5)) (-4 *5 (-451))))) +(-10 -7 (-15 -3376 ((-947 |#1|) (-683 (-406 (-947 |#1|))) (-1168))) (-15 -3376 ((-947 |#1|) (-683 (-406 (-947 |#1|))))) (-15 -2499 ((-639 (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (-683 (-406 (-947 |#1|))))) (-15 -4125 ((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))))) (-15 -3925 ((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))) (-766) (-766))) (-15 -3925 ((-639 (-683 (-406 (-947 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|)))))) (-683 (-406 (-947 |#1|))))) (-15 -1517 ((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |geneigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|))))) (-15 -3229 ((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|)))))) +((-4152 (((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)) 14))) +(((-292 |#1| |#2|) (-10 -7 (-15 -4152 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)))) (-1207) (-1207)) (T -292)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6))))) +(-10 -7 (-15 -4152 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1952 (((-112) $) NIL (|has| |#1| (-21)))) (-2291 (($ $) 12)) (-3214 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3165 (($ $ $) 94 (|has| |#1| (-301)))) (-1800 (($) NIL (-4037 (|has| |#1| (-21)) (|has| |#1| (-721))) CONST)) (-4124 (($ $) 50 (|has| |#1| (-21)))) (-3695 (((-3 $ "failed") $) 61 (|has| |#1| (-721)))) (-4328 ((|#1| $) 11)) (-3668 (((-3 $ "failed") $) 59 (|has| |#1| (-721)))) (-1957 (((-112) $) NIL (|has| |#1| (-721)))) (-4152 (($ (-1 |#1| |#1|) $) 14)) (-4316 ((|#1| $) 10)) (-3335 (($ $) 49 (|has| |#1| (-21)))) (-3505 (((-3 $ "failed") $) 60 (|has| |#1| (-721)))) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1525 (($ $) 63 (-4037 (|has| |#1| (-362)) (|has| |#1| (-472))))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2014 (((-639 $) $) 84 (|has| |#1| (-554)))) (-1433 (($ $ $) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 $)) 28 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-1168) |#1|) 17 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 21 (|has| |#1| (-513 (-1168) |#1|)))) (-3680 (($ |#1| |#1|) 9)) (-3627 (((-133)) 89 (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 86 (|has| |#1| (-895 (-1168))))) (-3665 (($ $ $) NIL (|has| |#1| (-472)))) (-1911 (($ $ $) NIL (|has| |#1| (-472)))) (-4054 (($ (-562)) NIL (|has| |#1| (-1044))) (((-112) $) 36 (|has| |#1| (-1092))) (((-857) $) 35 (|has| |#1| (-1092)))) (-2579 (((-766)) 66 (|has| |#1| (-1044)))) (-2286 (($) 46 (|has| |#1| (-21)) CONST)) (-2294 (($) 56 (|has| |#1| (-721)) CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168))))) (-1731 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 91 (-4037 (|has| |#1| (-362)) (|has| |#1| (-472))))) (-1848 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1835 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-562)) NIL (|has| |#1| (-472))) (($ $ (-766)) NIL (|has| |#1| (-721))) (($ $ (-916)) NIL (|has| |#1| (-1104)))) (* (($ $ |#1|) 54 (|has| |#1| (-1104))) (($ |#1| $) 53 (|has| |#1| (-1104))) (($ $ $) 52 (|has| |#1| (-1104))) (($ (-562) $) 69 (|has| |#1| (-21))) (($ (-766) $) NIL (|has| |#1| (-21))) (($ (-916) $) NIL (|has| |#1| (-25))))) +(((-293 |#1|) (-13 (-1207) (-10 -8 (-15 -1731 ($ |#1| |#1|)) (-15 -3680 ($ |#1| |#1|)) (-15 -2291 ($ $)) (-15 -4316 (|#1| $)) (-15 -4328 (|#1| $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-513 (-1168) |#1|)) (-6 (-513 (-1168) |#1|)) |%noBranch|) (IF (|has| |#1| (-1092)) (PROGN (-6 (-1092)) (-6 (-609 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1433 ($ $ $)) (-15 -1433 ($ $ (-639 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1835 ($ |#1| $)) (-15 -1835 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3335 ($ $)) (-15 -4124 ($ $)) (-15 -1848 ($ |#1| $)) (-15 -1848 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1104)) (PROGN (-6 (-1104)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-721)) (PROGN (-6 (-721)) (-15 -3505 ((-3 $ "failed") $)) (-15 -3695 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-472)) (PROGN (-6 (-472)) (-15 -3505 ((-3 $ "failed") $)) (-15 -3695 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-6 (-1044)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-712 |#1|)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -2014 ((-639 $) $)) |%noBranch|) (IF (|has| |#1| (-895 (-1168))) (-6 (-895 (-1168))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1263 |#1|)) (-15 -1859 ($ $ $)) (-15 -1525 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -3165 ($ $ $)) |%noBranch|))) (-1207)) (T -293)) +((-1731 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-3680 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-2291 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-4316 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-4328 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-293 *3)))) (-1433 (*1 *1 *1 *1) (-12 (-4 *2 (-308 *2)) (-4 *2 (-1092)) (-4 *2 (-1207)) (-5 *1 (-293 *2)))) (-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1092)) (-4 *3 (-1207)) (-5 *1 (-293 *3)))) (-1835 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) (-1835 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) (-3335 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-4124 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-1848 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-1848 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-3505 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-721)) (-4 *2 (-1207)))) (-3695 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-721)) (-4 *2 (-1207)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-639 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-554)) (-4 *3 (-1207)))) (-3165 (*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1207)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1104)) (-4 *2 (-1207)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1104)) (-4 *2 (-1207)))) (-1859 (*1 *1 *1 *1) (-4037 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1207))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-472)) (-4 *2 (-1207))))) (-1525 (*1 *1 *1) (-4037 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1207))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-472)) (-4 *2 (-1207)))))) +(-13 (-1207) (-10 -8 (-15 -1731 ($ |#1| |#1|)) (-15 -3680 ($ |#1| |#1|)) (-15 -2291 ($ $)) (-15 -4316 (|#1| $)) (-15 -4328 (|#1| $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-513 (-1168) |#1|)) (-6 (-513 (-1168) |#1|)) |%noBranch|) (IF (|has| |#1| (-1092)) (PROGN (-6 (-1092)) (-6 (-609 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1433 ($ $ $)) (-15 -1433 ($ $ (-639 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1835 ($ |#1| $)) (-15 -1835 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3335 ($ $)) (-15 -4124 ($ $)) (-15 -1848 ($ |#1| $)) (-15 -1848 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1104)) (PROGN (-6 (-1104)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-721)) (PROGN (-6 (-721)) (-15 -3505 ((-3 $ "failed") $)) (-15 -3695 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-472)) (PROGN (-6 (-472)) (-15 -3505 ((-3 $ "failed") $)) (-15 -3695 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-6 (-1044)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-712 |#1|)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -2014 ((-639 $) $)) |%noBranch|) (IF (|has| |#1| (-895 (-1168))) (-6 (-895 (-1168))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1263 |#1|)) (-15 -1859 ($ $ $)) (-15 -1525 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -3165 ($ $ $)) |%noBranch|))) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-3052 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) NIL)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 |#2| "failed") |#1| $) NIL)) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 ((|#1| $) NIL (|has| |#1| (-845)))) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-3874 ((|#1| $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1520 (((-639 |#1|) $) NIL)) (-4265 (((-112) |#1| $) NIL)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-2093 (((-639 |#1|) $) NIL)) (-1570 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-4054 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-294 |#1| |#2|) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4402))) (-1092) (-1092)) (T -294)) +NIL +(-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4402))) +((-3964 (((-311) (-1150) (-639 (-1150))) 16) (((-311) (-1150) (-1150)) 15) (((-311) (-639 (-1150))) 14) (((-311) (-1150)) 12))) +(((-295) (-10 -7 (-15 -3964 ((-311) (-1150))) (-15 -3964 ((-311) (-639 (-1150)))) (-15 -3964 ((-311) (-1150) (-1150))) (-15 -3964 ((-311) (-1150) (-639 (-1150)))))) (T -295)) +((-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-1150))) (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3964 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-311)) (-5 *1 (-295)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295))))) +(-10 -7 (-15 -3964 ((-311) (-1150))) (-15 -3964 ((-311) (-639 (-1150)))) (-15 -3964 ((-311) (-1150) (-1150))) (-15 -3964 ((-311) (-1150) (-639 (-1150))))) +((-4152 ((|#2| (-1 |#2| |#1|) (-1150) (-608 |#1|)) 18))) +(((-296 |#1| |#2|) (-10 -7 (-15 -4152 (|#2| (-1 |#2| |#1|) (-1150) (-608 |#1|)))) (-301) (-1207)) (T -296)) +((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1150)) (-5 *5 (-608 *6)) (-4 *6 (-301)) (-4 *2 (-1207)) (-5 *1 (-296 *6 *2))))) +(-10 -7 (-15 -4152 (|#2| (-1 |#2| |#1|) (-1150) (-608 |#1|)))) +((-4152 ((|#2| (-1 |#2| |#1|) (-608 |#1|)) 17))) +(((-297 |#1| |#2|) (-10 -7 (-15 -4152 (|#2| (-1 |#2| |#1|) (-608 |#1|)))) (-301) (-301)) (T -297)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-608 *5)) (-4 *5 (-301)) (-4 *2 (-301)) (-5 *1 (-297 *5 *2))))) +(-10 -7 (-15 -4152 (|#2| (-1 |#2| |#1|) (-608 |#1|)))) +((-3601 (((-112) (-224)) 10))) +(((-298 |#1| |#2|) (-10 -7 (-15 -3601 ((-112) (-224)))) (-224) (-224)) (T -298)) +((-3601 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3601 ((-112) (-224)))) +((-1404 (((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224)))) 92)) (-4163 (((-1148 (-224)) (-1256 (-315 (-224))) (-639 (-1168)) (-1086 (-838 (-224)))) 106) (((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224)))) 61)) (-2932 (((-639 (-1150)) (-1148 (-224))) NIL)) (-2025 (((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224)))) 58)) (-2556 (((-639 (-224)) (-947 (-406 (-562))) (-1168) (-1086 (-838 (-224)))) 49)) (-3843 (((-639 (-1150)) (-639 (-224))) NIL)) (-2575 (((-224) (-1086 (-838 (-224)))) 25)) (-2300 (((-224) (-1086 (-838 (-224)))) 26)) (-3445 (((-112) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 54)) (-2590 (((-1150) (-224)) NIL))) +(((-299) (-10 -7 (-15 -2575 ((-224) (-1086 (-838 (-224))))) (-15 -2300 ((-224) (-1086 (-838 (-224))))) (-15 -3445 ((-112) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2025 ((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224))))) (-15 -1404 ((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -4163 ((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -4163 ((-1148 (-224)) (-1256 (-315 (-224))) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -2556 ((-639 (-224)) (-947 (-406 (-562))) (-1168) (-1086 (-838 (-224))))) (-15 -2590 ((-1150) (-224))) (-15 -3843 ((-639 (-1150)) (-639 (-224)))) (-15 -2932 ((-639 (-1150)) (-1148 (-224)))))) (T -299)) +((-2932 (*1 *2 *3) (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-299)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-299)))) (-2590 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-299)))) (-2556 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *4 (-1168)) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-299)))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *4 (-639 (-1168))) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299)))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-639 (-1168))) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-639 (-1168))) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299)))) (-2025 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1168)) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-299)))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-112)) (-5 *1 (-299)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))) +(-10 -7 (-15 -2575 ((-224) (-1086 (-838 (-224))))) (-15 -2300 ((-224) (-1086 (-838 (-224))))) (-15 -3445 ((-112) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2025 ((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224))))) (-15 -1404 ((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -4163 ((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -4163 ((-1148 (-224)) (-1256 (-315 (-224))) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -2556 ((-639 (-224)) (-947 (-406 (-562))) (-1168) (-1086 (-838 (-224))))) (-15 -2590 ((-1150) (-224))) (-15 -3843 ((-639 (-1150)) (-639 (-224)))) (-15 -2932 ((-639 (-1150)) (-1148 (-224))))) +((-1495 (((-639 (-608 $)) $) 30)) (-3165 (($ $ (-293 $)) 80) (($ $ (-639 (-293 $))) 122) (($ $ (-639 (-608 $)) (-639 $)) NIL)) (-4048 (((-3 (-608 $) "failed") $) 112)) (-3961 (((-608 $) $) 111)) (-1383 (($ $) 19) (($ (-639 $)) 55)) (-3936 (((-639 (-114)) $) 38)) (-2876 (((-114) (-114)) 90)) (-3130 (((-112) $) 130)) (-4152 (($ (-1 $ $) (-608 $)) 88)) (-4367 (((-3 (-608 $) "failed") $) 92)) (-4141 (($ (-114) $) 60) (($ (-114) (-639 $)) 99)) (-1776 (((-112) $ (-114)) 116) (((-112) $ (-1168)) 115)) (-3060 (((-766) $) 46)) (-4296 (((-112) $ $) 58) (((-112) $ (-1168)) 50)) (-3803 (((-112) $) 128)) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL) (($ $ (-639 (-293 $))) 120) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) 83) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) 68) (($ $ (-1168) (-1 $ $)) 74) (($ $ (-639 (-114)) (-639 (-1 $ $))) 82) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) 84) (($ $ (-114) (-1 $ (-639 $))) 70) (($ $ (-114) (-1 $ $)) 76)) (-2343 (($ (-114) $) 61) (($ (-114) $ $) 62) (($ (-114) $ $ $) 63) (($ (-114) $ $ $ $) 64) (($ (-114) (-639 $)) 108)) (-3790 (($ $) 52) (($ $ $) 118)) (-2746 (($ $) 17) (($ (-639 $)) 54)) (-2803 (((-112) (-114)) 22))) +(((-300 |#1|) (-10 -8 (-15 -3130 ((-112) |#1|)) (-15 -3803 ((-112) |#1|)) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| |#1|)))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| |#1|)))) (-15 -4296 ((-112) |#1| (-1168))) (-15 -4296 ((-112) |#1| |#1|)) (-15 -4152 (|#1| (-1 |#1| |#1|) (-608 |#1|))) (-15 -4141 (|#1| (-114) (-639 |#1|))) (-15 -4141 (|#1| (-114) |#1|)) (-15 -1776 ((-112) |#1| (-1168))) (-15 -1776 ((-112) |#1| (-114))) (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -3936 ((-639 (-114)) |#1|)) (-15 -1495 ((-639 (-608 |#1|)) |#1|)) (-15 -4367 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3060 ((-766) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -1383 (|#1| (-639 |#1|))) (-15 -1383 (|#1| |#1|)) (-15 -2746 (|#1| (-639 |#1|))) (-15 -2746 (|#1| |#1|)) (-15 -3165 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -3165 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3165 (|#1| |#1| (-293 |#1|))) (-15 -2343 (|#1| (-114) (-639 |#1|))) (-15 -2343 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4048 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3961 ((-608 |#1|) |#1|))) (-301)) (T -300)) +((-2876 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301))))) +(-10 -8 (-15 -3130 ((-112) |#1|)) (-15 -3803 ((-112) |#1|)) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| |#1|)))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| |#1|)))) (-15 -4296 ((-112) |#1| (-1168))) (-15 -4296 ((-112) |#1| |#1|)) (-15 -4152 (|#1| (-1 |#1| |#1|) (-608 |#1|))) (-15 -4141 (|#1| (-114) (-639 |#1|))) (-15 -4141 (|#1| (-114) |#1|)) (-15 -1776 ((-112) |#1| (-1168))) (-15 -1776 ((-112) |#1| (-114))) (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -3936 ((-639 (-114)) |#1|)) (-15 -1495 ((-639 (-608 |#1|)) |#1|)) (-15 -4367 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3060 ((-766) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -1383 (|#1| (-639 |#1|))) (-15 -1383 (|#1| |#1|)) (-15 -2746 (|#1| (-639 |#1|))) (-15 -2746 (|#1| |#1|)) (-15 -3165 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -3165 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3165 (|#1| |#1| (-293 |#1|))) (-15 -2343 (|#1| (-114) (-639 |#1|))) (-15 -2343 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4048 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3961 ((-608 |#1|) |#1|))) +((-4041 (((-112) $ $) 7)) (-1495 (((-639 (-608 $)) $) 44)) (-3165 (($ $ (-293 $)) 56) (($ $ (-639 (-293 $))) 55) (($ $ (-639 (-608 $)) (-639 $)) 54)) (-4048 (((-3 (-608 $) "failed") $) 69)) (-3961 (((-608 $) $) 70)) (-1383 (($ $) 51) (($ (-639 $)) 50)) (-3936 (((-639 (-114)) $) 43)) (-2876 (((-114) (-114)) 42)) (-3130 (((-112) $) 22 (|has| $ (-1033 (-562))))) (-1677 (((-1164 $) (-608 $)) 25 (|has| $ (-1044)))) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-4152 (($ (-1 $ $) (-608 $)) 36)) (-4367 (((-3 (-608 $) "failed") $) 46)) (-2913 (((-1150) $) 9)) (-1583 (((-639 (-608 $)) $) 45)) (-4141 (($ (-114) $) 38) (($ (-114) (-639 $)) 37)) (-1776 (((-112) $ (-114)) 40) (((-112) $ (-1168)) 39)) (-3060 (((-766) $) 47)) (-1709 (((-1112) $) 10)) (-4296 (((-112) $ $) 35) (((-112) $ (-1168)) 34)) (-3803 (((-112) $) 23 (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) 67) (($ $ (-639 (-608 $)) (-639 $)) 66) (($ $ (-639 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-639 $) (-639 $)) 62) (($ $ (-639 (-1168)) (-639 (-1 $ $))) 33) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) 32) (($ $ (-1168) (-1 $ (-639 $))) 31) (($ $ (-1168) (-1 $ $)) 30) (($ $ (-639 (-114)) (-639 (-1 $ $))) 29) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) 28) (($ $ (-114) (-1 $ (-639 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2343 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-639 $)) 57)) (-3790 (($ $) 49) (($ $ $) 48)) (-2096 (($ $) 24 (|has| $ (-1044)))) (-4054 (((-857) $) 11) (($ (-608 $)) 68)) (-2746 (($ $) 53) (($ (-639 $)) 52)) (-2803 (((-112) (-114)) 41)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18))) +(((-301) (-139)) (T -301)) +((-2343 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2343 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2343 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2343 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2343 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 *1)) (-4 *1 (-301)))) (-3165 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))) (-3165 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-293 *1))) (-4 *1 (-301)))) (-3165 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-608 *1))) (-5 *3 (-639 *1)) (-4 *1 (-301)))) (-2746 (*1 *1 *1) (-4 *1 (-301))) (-2746 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-301)))) (-1383 (*1 *1 *1) (-4 *1 (-301))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-301)))) (-3790 (*1 *1 *1) (-4 *1 (-301))) (-3790 (*1 *1 *1 *1) (-4 *1 (-301))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-766)))) (-4367 (*1 *2 *1) (|partial| -12 (-5 *2 (-608 *1)) (-4 *1 (-301)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-639 (-608 *1))) (-4 *1 (-301)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-639 (-608 *1))) (-4 *1 (-301)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-639 (-114))))) (-2876 (*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2803 (*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1776 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1776 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1168)) (-5 *2 (-112)))) (-4141 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-4141 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 *1)) (-4 *1 (-301)))) (-4152 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-608 *1)) (-4 *1 (-301)))) (-4296 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))) (-4296 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1168)) (-5 *2 (-112)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-1 *1 *1))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-1 *1 (-639 *1)))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1 *1 (-639 *1))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 (-1 *1 *1))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 (-1 *1 (-639 *1)))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-639 *1))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-608 *1)) (-4 *1 (-1044)) (-4 *1 (-301)) (-5 *2 (-1164 *1)))) (-2096 (*1 *1 *1) (-12 (-4 *1 (-1044)) (-4 *1 (-301)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1033 (-562))) (-4 *1 (-301)) (-5 *2 (-112)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-1033 (-562))) (-4 *1 (-301)) (-5 *2 (-112))))) +(-13 (-845) (-1033 (-608 $)) (-513 (-608 $) $) (-308 $) (-10 -8 (-15 -2343 ($ (-114) $)) (-15 -2343 ($ (-114) $ $)) (-15 -2343 ($ (-114) $ $ $)) (-15 -2343 ($ (-114) $ $ $ $)) (-15 -2343 ($ (-114) (-639 $))) (-15 -3165 ($ $ (-293 $))) (-15 -3165 ($ $ (-639 (-293 $)))) (-15 -3165 ($ $ (-639 (-608 $)) (-639 $))) (-15 -2746 ($ $)) (-15 -2746 ($ (-639 $))) (-15 -1383 ($ $)) (-15 -1383 ($ (-639 $))) (-15 -3790 ($ $)) (-15 -3790 ($ $ $)) (-15 -3060 ((-766) $)) (-15 -4367 ((-3 (-608 $) "failed") $)) (-15 -1583 ((-639 (-608 $)) $)) (-15 -1495 ((-639 (-608 $)) $)) (-15 -3936 ((-639 (-114)) $)) (-15 -2876 ((-114) (-114))) (-15 -2803 ((-112) (-114))) (-15 -1776 ((-112) $ (-114))) (-15 -1776 ((-112) $ (-1168))) (-15 -4141 ($ (-114) $)) (-15 -4141 ($ (-114) (-639 $))) (-15 -4152 ($ (-1 $ $) (-608 $))) (-15 -4296 ((-112) $ $)) (-15 -4296 ((-112) $ (-1168))) (-15 -1433 ($ $ (-639 (-1168)) (-639 (-1 $ $)))) (-15 -1433 ($ $ (-639 (-1168)) (-639 (-1 $ (-639 $))))) (-15 -1433 ($ $ (-1168) (-1 $ (-639 $)))) (-15 -1433 ($ $ (-1168) (-1 $ $))) (-15 -1433 ($ $ (-639 (-114)) (-639 (-1 $ $)))) (-15 -1433 ($ $ (-639 (-114)) (-639 (-1 $ (-639 $))))) (-15 -1433 ($ $ (-114) (-1 $ (-639 $)))) (-15 -1433 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1044)) (PROGN (-15 -1677 ((-1164 $) (-608 $))) (-15 -2096 ($ $))) |%noBranch|) (IF (|has| $ (-1033 (-562))) (PROGN (-15 -3803 ((-112) $)) (-15 -3130 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-612 #0=(-608 $)) . T) ((-609 (-857)) . T) ((-308 $) . T) ((-513 (-608 $) $) . T) ((-513 $ $) . T) ((-845) . T) ((-1033 #0#) . T) ((-1092) . T)) +((-2934 (((-639 |#1|) (-639 |#1|)) 10))) +(((-302 |#1|) (-10 -7 (-15 -2934 ((-639 |#1|) (-639 |#1|)))) (-843)) (T -302)) +((-2934 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-843)) (-5 *1 (-302 *3))))) +(-10 -7 (-15 -2934 ((-639 |#1|) (-639 |#1|)))) +((-4152 (((-683 |#2|) (-1 |#2| |#1|) (-683 |#1|)) 17))) +(((-303 |#1| |#2|) (-10 -7 (-15 -4152 ((-683 |#2|) (-1 |#2| |#1|) (-683 |#1|)))) (-1044) (-1044)) (T -303)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-683 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-683 *6)) (-5 *1 (-303 *5 *6))))) +(-10 -7 (-15 -4152 ((-683 |#2|) (-1 |#2| |#1|) (-683 |#1|)))) +((-2894 (((-1256 (-315 (-378))) (-1256 (-315 (-224)))) 105)) (-2023 (((-1086 (-838 (-224))) (-1086 (-838 (-378)))) 40)) (-2932 (((-639 (-1150)) (-1148 (-224))) 87)) (-2705 (((-315 (-378)) (-947 (-224))) 50)) (-1461 (((-224) (-947 (-224))) 46)) (-3804 (((-1150) (-378)) 169)) (-3434 (((-838 (-224)) (-838 (-378))) 34)) (-4284 (((-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562))) (-1256 (-315 (-224)))) 143)) (-2418 (((-1030) (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) 181) (((-1030) (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))))) 179)) (-1545 (((-683 (-224)) (-639 (-224)) (-766)) 14)) (-3753 (((-1256 (-693)) (-639 (-224))) 94)) (-3843 (((-639 (-1150)) (-639 (-224))) 75)) (-3007 (((-3 (-315 (-224)) "failed") (-315 (-224))) 120)) (-3601 (((-112) (-224) (-1086 (-838 (-224)))) 109)) (-3902 (((-1030) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) 198)) (-2575 (((-224) (-1086 (-838 (-224)))) 107)) (-2300 (((-224) (-1086 (-838 (-224)))) 108)) (-1879 (((-224) (-406 (-562))) 27)) (-4180 (((-1150) (-378)) 73)) (-3213 (((-224) (-378)) 17)) (-2787 (((-378) (-1256 (-315 (-224)))) 154)) (-3731 (((-315 (-224)) (-315 (-378))) 23)) (-3188 (((-406 (-562)) (-315 (-224))) 53)) (-4063 (((-315 (-406 (-562))) (-315 (-224))) 69)) (-3321 (((-315 (-378)) (-315 (-224))) 98)) (-2842 (((-224) (-315 (-224))) 54)) (-4308 (((-639 (-224)) (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) 64)) (-2630 (((-1086 (-838 (-224))) (-1086 (-838 (-224)))) 61)) (-2590 (((-1150) (-224)) 72)) (-4070 (((-693) (-224)) 90)) (-1653 (((-406 (-562)) (-224)) 55)) (-3312 (((-315 (-378)) (-224)) 49)) (-4208 (((-639 (-1086 (-838 (-224)))) (-639 (-1086 (-838 (-378))))) 43)) (-2767 (((-1030) (-639 (-1030))) 165) (((-1030) (-1030) (-1030)) 162)) (-2201 (((-1030) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-304) (-10 -7 (-15 -3213 ((-224) (-378))) (-15 -3731 ((-315 (-224)) (-315 (-378)))) (-15 -3434 ((-838 (-224)) (-838 (-378)))) (-15 -2023 ((-1086 (-838 (-224))) (-1086 (-838 (-378))))) (-15 -4208 ((-639 (-1086 (-838 (-224)))) (-639 (-1086 (-838 (-378)))))) (-15 -1653 ((-406 (-562)) (-224))) (-15 -3188 ((-406 (-562)) (-315 (-224)))) (-15 -2842 ((-224) (-315 (-224)))) (-15 -3007 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -2787 ((-378) (-1256 (-315 (-224))))) (-15 -4284 ((-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562))) (-1256 (-315 (-224))))) (-15 -4063 ((-315 (-406 (-562))) (-315 (-224)))) (-15 -2630 ((-1086 (-838 (-224))) (-1086 (-838 (-224))))) (-15 -4308 ((-639 (-224)) (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))))) (-15 -4070 ((-693) (-224))) (-15 -3753 ((-1256 (-693)) (-639 (-224)))) (-15 -3321 ((-315 (-378)) (-315 (-224)))) (-15 -2894 ((-1256 (-315 (-378))) (-1256 (-315 (-224))))) (-15 -3601 ((-112) (-224) (-1086 (-838 (-224))))) (-15 -2590 ((-1150) (-224))) (-15 -4180 ((-1150) (-378))) (-15 -3843 ((-639 (-1150)) (-639 (-224)))) (-15 -2932 ((-639 (-1150)) (-1148 (-224)))) (-15 -2575 ((-224) (-1086 (-838 (-224))))) (-15 -2300 ((-224) (-1086 (-838 (-224))))) (-15 -2767 ((-1030) (-1030) (-1030))) (-15 -2767 ((-1030) (-639 (-1030)))) (-15 -3804 ((-1150) (-378))) (-15 -2418 ((-1030) (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))))) (-15 -2418 ((-1030) (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))))) (-15 -2201 ((-1030) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3902 ((-1030) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -2705 ((-315 (-378)) (-947 (-224)))) (-15 -1461 ((-224) (-947 (-224)))) (-15 -3312 ((-315 (-378)) (-224))) (-15 -1879 ((-224) (-406 (-562)))) (-15 -1545 ((-683 (-224)) (-639 (-224)) (-766))))) (T -304)) +((-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-224))) (-5 *4 (-766)) (-5 *2 (-683 (-224))) (-5 *1 (-304)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-406 (-562))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-947 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-947 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1150)) (-5 *1 (-304)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-639 (-1030))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-2767 (*1 *2 *2 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-304)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-304)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-304)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1150)) (-5 *1 (-304)))) (-2590 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-304)))) (-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-838 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-304)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-1256 (-315 (-378)))) (-5 *1 (-304)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1256 (-693))) (-5 *1 (-304)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-693)) (-5 *1 (-304)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-5 *2 (-639 (-224))) (-5 *1 (-304)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-1086 (-838 (-224)))) (-5 *1 (-304)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-562)))) (-5 *1 (-304)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562)))) (-5 *1 (-304)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))) (-3007 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-562))) (-5 *1 (-304)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-562))) (-5 *1 (-304)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-639 (-1086 (-838 (-378))))) (-5 *2 (-639 (-1086 (-838 (-224))))) (-5 *1 (-304)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-378)))) (-5 *2 (-1086 (-838 (-224)))) (-5 *1 (-304)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-838 (-378))) (-5 *2 (-838 (-224))) (-5 *1 (-304)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304))))) +(-10 -7 (-15 -3213 ((-224) (-378))) (-15 -3731 ((-315 (-224)) (-315 (-378)))) (-15 -3434 ((-838 (-224)) (-838 (-378)))) (-15 -2023 ((-1086 (-838 (-224))) (-1086 (-838 (-378))))) (-15 -4208 ((-639 (-1086 (-838 (-224)))) (-639 (-1086 (-838 (-378)))))) (-15 -1653 ((-406 (-562)) (-224))) (-15 -3188 ((-406 (-562)) (-315 (-224)))) (-15 -2842 ((-224) (-315 (-224)))) (-15 -3007 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -2787 ((-378) (-1256 (-315 (-224))))) (-15 -4284 ((-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562))) (-1256 (-315 (-224))))) (-15 -4063 ((-315 (-406 (-562))) (-315 (-224)))) (-15 -2630 ((-1086 (-838 (-224))) (-1086 (-838 (-224))))) (-15 -4308 ((-639 (-224)) (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))))) (-15 -4070 ((-693) (-224))) (-15 -3753 ((-1256 (-693)) (-639 (-224)))) (-15 -3321 ((-315 (-378)) (-315 (-224)))) (-15 -2894 ((-1256 (-315 (-378))) (-1256 (-315 (-224))))) (-15 -3601 ((-112) (-224) (-1086 (-838 (-224))))) (-15 -2590 ((-1150) (-224))) (-15 -4180 ((-1150) (-378))) (-15 -3843 ((-639 (-1150)) (-639 (-224)))) (-15 -2932 ((-639 (-1150)) (-1148 (-224)))) (-15 -2575 ((-224) (-1086 (-838 (-224))))) (-15 -2300 ((-224) (-1086 (-838 (-224))))) (-15 -2767 ((-1030) (-1030) (-1030))) (-15 -2767 ((-1030) (-639 (-1030)))) (-15 -3804 ((-1150) (-378))) (-15 -2418 ((-1030) (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))))) (-15 -2418 ((-1030) (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))))) (-15 -2201 ((-1030) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3902 ((-1030) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -2705 ((-315 (-378)) (-947 (-224)))) (-15 -1461 ((-224) (-947 (-224)))) (-15 -3312 ((-315 (-378)) (-224))) (-15 -1879 ((-224) (-406 (-562)))) (-15 -1545 ((-683 (-224)) (-639 (-224)) (-766)))) +((-2569 (((-112) $ $) 11)) (-1811 (($ $ $) 15)) (-1787 (($ $ $) 14)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 43)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 52)) (-1606 (($ $ $) 20) (($ (-639 $)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-1762 (((-3 $ "failed") $ $) 17)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 45))) +(((-305 |#1|) (-10 -8 (-15 -1312 ((-3 (-639 |#1|) "failed") (-639 |#1|) |#1|)) (-15 -4102 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4102 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3148 |#1|)) |#1| |#1|)) (-15 -1811 (|#1| |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -2569 ((-112) |#1| |#1|)) (-15 -3870 ((-3 (-639 |#1|) "failed") (-639 |#1|) |#1|)) (-15 -2527 ((-2 (|:| -4221 (-639 |#1|)) (|:| -3148 |#1|)) (-639 |#1|))) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|))) (-306)) (T -305)) +NIL +(-10 -8 (-15 -1312 ((-3 (-639 |#1|) "failed") (-639 |#1|) |#1|)) (-15 -4102 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4102 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3148 |#1|)) |#1| |#1|)) (-15 -1811 (|#1| |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -2569 ((-112) |#1| |#1|)) (-15 -3870 ((-3 (-639 |#1|) "failed") (-639 |#1|) |#1|)) (-15 -2527 ((-2 (|:| -4221 (-639 |#1|)) (|:| -3148 |#1|)) (-639 |#1|))) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-2569 (((-112) $ $) 60)) (-1800 (($) 17 T CONST)) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-1957 (((-112) $) 31)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-306) (-139)) (T -306)) -((-1733 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-765)))) (-3264 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-306)))) (-2942 (*1 *1 *1 *1) (-4 *1 (-306))) (-2943 (*1 *1 *1 *1) (-4 *1 (-306))) (-1731 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1))) (-4 *1 (-306)))) (-1731 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-306)))) (-1730 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-306))))) -(-13 (-914) (-10 -8 (-15 -1733 ((-112) $ $)) (-15 -1732 ((-765) $)) (-15 -3264 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2942 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -1731 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $)) (-15 -1731 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1730 ((-3 (-635 $) "failed") (-635 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-4174 (($ $ (-635 |#2|) (-635 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-292 |#2|)) 11) (($ $ (-635 (-292 |#2|))) NIL))) -(((-307 |#1| |#2|) (-10 -8 (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|)))) (-308 |#2|) (-1091)) (T -307)) -NIL -(-10 -8 (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|)))) -((-4174 (($ $ (-635 |#1|) (-635 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-292 |#1|)) 11) (($ $ (-635 (-292 |#1|))) 10))) -(((-308 |#1|) (-139) (-1091)) (T -308)) -((-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-292 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1091)))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-292 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1091))))) -(-13 (-512 |t#1| |t#1|) (-10 -8 (-15 -4174 ($ $ (-292 |t#1|))) (-15 -4174 ($ $ (-635 (-292 |t#1|)))))) -(((-512 |#1| |#1|) . T)) -((-4174 ((|#1| (-1 |#1| (-544)) (-1168 (-406 (-544)))) 25))) -(((-309 |#1|) (-10 -7 (-15 -4174 (|#1| (-1 |#1| (-544)) (-1168 (-406 (-544)))))) (-38 (-406 (-544)))) (T -309)) -((-4174 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-544))) (-5 *4 (-1168 (-406 (-544)))) (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-544))))))) -(-10 -7 (-15 -4174 (|#1| (-1 |#1| (-544)) (-1168 (-406 (-544)))))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 7)) (-3437 (((-112) $ $) 9))) -(((-310) (-1091)) (T -310)) -NIL -(-1091) -((-2947 (((-112) $ $) NIL)) (-3905 (((-544) $) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 9)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-311) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3905 ((-544) $))))) (T -311)) -((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-311)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-311))))) -(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3905 ((-544) $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 62)) (-3514 (((-1240 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1240 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-544)))) (((-3 (-1234 |#2| |#3| |#4|) #2#) $) 25)) (-3557 (((-1240 |#1| |#2| |#3| |#4|) $) NIL) (((-1166) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-544)))) (((-544) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-544)))) (((-1234 |#2| |#3| |#4|) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-1240 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1253 (-1240 |#1| |#2| |#3| |#4|)))) (-682 $) (-1253 $)) NIL) (((-682 (-1240 |#1| |#2| |#3| |#4|)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-1240 |#1| |#2| |#3| |#4|) $) 21)) (-3848 (((-3 $ "failed") $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1141)))) (-3588 (((-112) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-3242 (($ $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-4365 (($ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) $) NIL)) (-4190 (((-3 (-836 |#2|) "failed") $) 78)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-306)))) (-3515 (((-1240 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-1240 |#1| |#2| |#3| |#4|)) (-635 (-1240 |#1| |#2| |#3| |#4|))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-292 (-1240 |#1| |#2| |#3| |#4|))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-635 (-292 (-1240 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-308 (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-635 (-1166)) (-635 (-1240 |#1| |#2| |#3| |#4|))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-512 (-1166) (-1240 |#1| |#2| |#3| |#4|)))) (($ $ (-1166) (-1240 |#1| |#2| |#3| |#4|)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-512 (-1166) (-1240 |#1| |#2| |#3| |#4|))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-1240 |#1| |#2| |#3| |#4|)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-285 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1166)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) (-765)) NIL) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-1240 |#1| |#2| |#3| |#4|) $) 17)) (-4377 (((-883 (-544)) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-609 (-533)))) (((-377) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1013))) (((-224) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1240 |#1| |#2| |#3| |#4|) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-1240 |#1| |#2| |#3| |#4|)) 29) (($ (-1166)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-1031 (-1166)))) (($ (-1234 |#2| |#3| |#4|)) 36)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-1240 |#1| |#2| |#3| |#4|) (-903))) (|has| (-1240 |#1| |#2| |#3| |#4|) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-1240 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-814)))) (-3040 (($) 41 T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1166)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-893 (-1166)))) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) (-765)) NIL) (($ $ (-1 (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-1240 |#1| |#2| |#3| |#4|) (-844)))) (-4356 (($ $ $) 34) (($ (-1240 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|)) 31)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-1240 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1240 |#1| |#2| |#3| |#4|)) NIL))) -(((-312 |#1| |#2| |#3| |#4|) (-13 (-984 (-1240 |#1| |#2| |#3| |#4|)) (-1031 (-1234 |#2| |#3| |#4|)) (-10 -8 (-15 -4190 ((-3 (-836 |#2|) "failed") $)) (-15 -4353 ($ (-1234 |#2| |#3| |#4|))))) (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450)) (-13 (-27) (-1190) (-420 |#1|)) (-1166) |#2|) (T -312)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1234 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4) (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) (-5 *1 (-312 *3 *4 *5 *6)))) (-4190 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) (-5 *2 (-836 *4)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4)))) -(-13 (-984 (-1240 |#1| |#2| |#3| |#4|)) (-1031 (-1234 |#2| |#3| |#4|)) (-10 -8 (-15 -4190 ((-3 (-836 |#2|) "failed") $)) (-15 -4353 ($ (-1234 |#2| |#3| |#4|))))) -((-2947 (((-112) $ $) NIL)) (-1695 (((-635 $) $ (-1166)) NIL (|has| |#1| (-554))) (((-635 $) $) NIL (|has| |#1| (-554))) (((-635 $) (-1160 $) (-1166)) NIL (|has| |#1| (-554))) (((-635 $) (-1160 $)) NIL (|has| |#1| (-554))) (((-635 $) (-939 $)) NIL (|has| |#1| (-554)))) (-1287 (($ $ (-1166)) NIL (|has| |#1| (-554))) (($ $) NIL (|has| |#1| (-554))) (($ (-1160 $) (-1166)) NIL (|has| |#1| (-554))) (($ (-1160 $)) NIL (|has| |#1| (-554))) (($ (-939 $)) NIL (|has| |#1| (-554)))) (-3589 (((-112) $) 27 (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (-3467 (((-635 (-1166)) $) 349)) (-3469 (((-406 (-1160 $)) $ (-606 $)) NIL (|has| |#1| (-554)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-1688 (((-635 (-606 $)) $) NIL)) (-3891 (($ $) 159 (|has| |#1| (-554)))) (-4046 (($ $) 135 (|has| |#1| (-554)))) (-1443 (($ $ (-1082 $)) 220 (|has| |#1| (-554))) (($ $ (-1166)) 216 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL (-3936 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) 366) (($ $ (-635 (-606 $)) (-635 $)) 410)) (-3089 (((-404 (-1160 $)) (-1160 $)) 294 (-12 (|has| |#1| (-450)) (|has| |#1| (-554))))) (-4181 (($ $) NIL (|has| |#1| (-554)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-554)))) (-3420 (($ $) NIL (|has| |#1| (-554)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3889 (($ $) 155 (|has| |#1| (-554)))) (-4045 (($ $) 131 (|has| |#1| (-554)))) (-1734 (($ $ (-544)) 69 (|has| |#1| (-554)))) (-3893 (($ $) 163 (|has| |#1| (-554)))) (-4044 (($ $) 139 (|has| |#1| (-554)))) (-4131 (($) NIL (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))) CONST)) (-1288 (((-635 $) $ (-1166)) NIL (|has| |#1| (-554))) (((-635 $) $) NIL (|has| |#1| (-554))) (((-635 $) (-1160 $) (-1166)) NIL (|has| |#1| (-554))) (((-635 $) (-1160 $)) NIL (|has| |#1| (-554))) (((-635 $) (-939 $)) NIL (|has| |#1| (-554)))) (-3584 (($ $ (-1166)) NIL (|has| |#1| (-554))) (($ $) NIL (|has| |#1| (-554))) (($ (-1160 $) (-1166)) 122 (|has| |#1| (-554))) (($ (-1160 $)) NIL (|has| |#1| (-554))) (($ (-939 $)) NIL (|has| |#1| (-554)))) (-3558 (((-3 (-606 $) #1="failed") $) 17) (((-3 (-1166) #1#) $) NIL) (((-3 |#1| #1#) $) 419) (((-3 (-48) #1#) $) 322 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) (((-3 (-544) #1#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-939 |#1|)) #1#) $) NIL (|has| |#1| (-554))) (((-3 (-939 |#1|) #1#) $) NIL (|has| |#1| (-1042))) (((-3 (-406 (-544)) #1#) $) 46 (-3936 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-3557 (((-606 $) $) 11) (((-1166) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-939 |#1|)) $) NIL (|has| |#1| (-554))) (((-939 |#1|) $) NIL (|has| |#1| (-1042))) (((-406 (-544)) $) 305 (-3936 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-2943 (($ $ $) NIL (|has| |#1| (-554)))) (-2401 (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 115 (|has| |#1| (-1042))) (((-682 |#1|) (-682 $)) 105 (|has| |#1| (-1042))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (-4249 (($ $) 87 (|has| |#1| (-554)))) (-3866 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (-2942 (($ $ $) NIL (|has| |#1| (-554)))) (-4351 (($ $ (-1082 $)) 224 (|has| |#1| (-554))) (($ $ (-1166)) 222 (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-554)))) (-4130 (((-112) $) NIL (|has| |#1| (-554)))) (-3790 (($ $ $) 190 (|has| |#1| (-554)))) (-4034 (($) 125 (|has| |#1| (-554)))) (-1440 (($ $ $) 210 (|has| |#1| (-554)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 372 (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 379 (|has| |#1| (-879 (-377))))) (-2952 (($ $) NIL) (($ (-635 $)) NIL)) (-1687 (((-635 (-113)) $) NIL)) (-3430 (((-113) (-113)) 265)) (-2545 (((-112) $) 25 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (-3055 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-3379 (($ $) 68 (|has| |#1| (-1042)))) (-3381 (((-1115 |#1| (-606 $)) $) 82 (|has| |#1| (-1042)))) (-1735 (((-112) $) 61 (|has| |#1| (-554)))) (-3394 (($ $ (-544)) NIL (|has| |#1| (-554)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-554)))) (-1685 (((-1160 $) (-606 $)) 266 (|has| $ (-1042)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 $ $) (-606 $)) 406)) (-1690 (((-3 (-606 $) "failed") $) NIL)) (-4349 (($ $) 129 (|has| |#1| (-554)))) (-2380 (($ $) 235 (|has| |#1| (-554)))) (-2041 (($ (-635 $)) NIL (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-3643 (((-1148) $) NIL)) (-1689 (((-635 (-606 $)) $) 49)) (-2356 (($ (-113) $) NIL) (($ (-113) (-635 $)) 411)) (-3205 (((-3 (-635 $) #3="failed") $) NIL (|has| |#1| (-1102)))) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) #3#) $) NIL (|has| |#1| (-1042)))) (-3204 (((-3 (-635 $) #3#) $) 414 (|has| |#1| (-25)))) (-1941 (((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) #3#) $) 418 (|has| |#1| (-25)))) (-3206 (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $) NIL (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $ (-113)) NIL (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) #3#) $ (-1166)) NIL (|has| |#1| (-1042)))) (-3013 (((-112) $ (-113)) NIL) (((-112) $ (-1166)) 53)) (-2779 (($ $) NIL (-3936 (|has| |#1| (-471)) (|has| |#1| (-554))))) (-3214 (($ $ (-1166)) 239 (|has| |#1| (-554))) (($ $ (-1082 $)) 241 (|has| |#1| (-554)))) (-2982 (((-765) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 43)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 287 (|has| |#1| (-554)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-1686 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-1444 (($ $ (-1166)) 214 (|has| |#1| (-554))) (($ $) 212 (|has| |#1| (-554)))) (-1438 (($ $) 206 (|has| |#1| (-554)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 292 (-12 (|has| |#1| (-450)) (|has| |#1| (-554))))) (-4139 (((-404 $) $) NIL (|has| |#1| (-554)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-554))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-554)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-554)))) (-4350 (($ $) 127 (|has| |#1| (-554)))) (-3056 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) 405) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) 359) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1166)) NIL (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-609 (-533)))) (($ $) NIL (|has| |#1| (-609 (-533)))) (($ $ (-113) $ (-1166)) 347 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-113)) (-635 $) (-1166)) 346 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $))) NIL (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $)))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-635 $))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ $)) NIL (|has| |#1| (-1042)))) (-1732 (((-765) $) NIL (|has| |#1| (-554)))) (-2378 (($ $) 227 (|has| |#1| (-554)))) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-1691 (($ $) NIL) (($ $ $) NIL)) (-2379 (($ $) 237 (|has| |#1| (-554)))) (-3789 (($ $) 188 (|has| |#1| (-554)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-1042))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-1042))) (($ $ (-1166)) NIL (|has| |#1| (-1042)))) (-3378 (($ $) 70 (|has| |#1| (-554)))) (-3380 (((-1115 |#1| (-606 $)) $) 84 (|has| |#1| (-554)))) (-3586 (($ $) 303 (|has| $ (-1042)))) (-3894 (($ $) 165 (|has| |#1| (-554)))) (-4043 (($ $) 141 (|has| |#1| (-554)))) (-3892 (($ $) 161 (|has| |#1| (-554)))) (-4042 (($ $) 137 (|has| |#1| (-554)))) (-3890 (($ $) 157 (|has| |#1| (-554)))) (-4041 (($ $) 133 (|has| |#1| (-554)))) (-4377 (((-883 (-544)) $) NIL (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| |#1| (-609 (-883 (-377))))) (($ (-404 $)) NIL (|has| |#1| (-554))) (((-533) $) 344 (|has| |#1| (-609 (-533))))) (-3392 (($ $ $) NIL (|has| |#1| (-471)))) (-2729 (($ $ $) NIL (|has| |#1| (-471)))) (-4353 (((-857) $) 404) (($ (-606 $)) 395) (($ (-1166)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-554))) (($ (-48)) 298 (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) (($ (-1115 |#1| (-606 $))) 86 (|has| |#1| (-1042))) (($ (-406 |#1|)) NIL (|has| |#1| (-554))) (($ (-939 (-406 |#1|))) NIL (|has| |#1| (-554))) (($ (-406 (-939 (-406 |#1|)))) NIL (|has| |#1| (-554))) (($ (-406 (-939 |#1|))) NIL (|has| |#1| (-554))) (($ (-939 |#1|)) NIL (|has| |#1| (-1042))) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-554)) (|has| |#1| (-1031 (-406 (-544)))))) (($ (-544)) 34 (-3936 (|has| |#1| (-1031 (-544))) (|has| |#1| (-1042))))) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL (|has| |#1| (-1042)))) (-2969 (($ $) NIL) (($ (-635 $)) NIL)) (-3487 (($ $ $) 208 (|has| |#1| (-554)))) (-3793 (($ $ $) 194 (|has| |#1| (-554)))) (-3795 (($ $ $) 198 (|has| |#1| (-554)))) (-3792 (($ $ $) 192 (|has| |#1| (-554)))) (-3794 (($ $ $) 196 (|has| |#1| (-554)))) (-2377 (((-112) (-113)) 9)) (-3897 (($ $) 171 (|has| |#1| (-554)))) (-3885 (($ $) 147 (|has| |#1| (-554)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 167 (|has| |#1| (-554)))) (-3883 (($ $) 143 (|has| |#1| (-554)))) (-3899 (($ $) 175 (|has| |#1| (-554)))) (-3887 (($ $) 151 (|has| |#1| (-554)))) (-1942 (($ (-1166) $) NIL) (($ (-1166) $ $) NIL) (($ (-1166) $ $ $) NIL) (($ (-1166) $ $ $ $) NIL) (($ (-1166) (-635 $)) NIL)) (-3797 (($ $) 202 (|has| |#1| (-554)))) (-3796 (($ $) 200 (|has| |#1| (-554)))) (-3900 (($ $) 177 (|has| |#1| (-554)))) (-3888 (($ $) 153 (|has| |#1| (-554)))) (-3898 (($ $) 173 (|has| |#1| (-554)))) (-3886 (($ $) 149 (|has| |#1| (-554)))) (-3896 (($ $) 169 (|has| |#1| (-554)))) (-3884 (($ $) 145 (|has| |#1| (-554)))) (-3787 (($ $) 180 (|has| |#1| (-554)))) (-3040 (($) 20 (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))) CONST)) (-2382 (($ $) 231 (|has| |#1| (-554)))) (-3046 (($) 22 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))) CONST)) (-3791 (($ $) 182 (|has| |#1| (-554))) (($ $ $) 184 (|has| |#1| (-554)))) (-2383 (($ $) 229 (|has| |#1| (-554)))) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-1042))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-1042))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-1042))) (($ $ (-1166)) NIL (|has| |#1| (-1042)))) (-2381 (($ $) 233 (|has| |#1| (-554)))) (-3788 (($ $ $) 186 (|has| |#1| (-554)))) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 79)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 78)) (-4356 (($ (-1115 |#1| (-606 $)) (-1115 |#1| (-606 $))) 96 (|has| |#1| (-554))) (($ $ $) 42 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554))))) (-4244 (($ $ $) 40 (-3936 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (($ $) 29 (-3936 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (-4246 (($ $ $) 38 (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))))) (** (($ $ $) 63 (|has| |#1| (-554))) (($ $ (-406 (-544))) 300 (|has| |#1| (-554))) (($ $ (-544)) 74 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554)))) (($ $ (-765)) 71 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102)))) (($ $ (-912)) 76 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102))))) (* (($ (-406 (-544)) $) NIL (|has| |#1| (-554))) (($ $ (-406 (-544))) NIL (|has| |#1| (-554))) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))) (($ $ $) 36 (-3936 (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) (|has| |#1| (-1102)))) (($ (-544) $) 32 (-3936 (|has| |#1| (-21)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (($ (-765) $) NIL (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))) (($ (-912) $) NIL (-3936 (|has| |#1| (-25)) (-12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))))))) -(((-313 |#1|) (-13 (-420 |#1|) (-10 -8 (IF (|has| |#1| (-554)) (PROGN (-6 (-29 |#1|)) (-6 (-1190)) (-6 (-159)) (-6 (-625)) (-6 (-1129)) (-15 -4249 ($ $)) (-15 -1735 ((-112) $)) (-15 -1734 ($ $ (-544))) (IF (|has| |#1| (-450)) (PROGN (-15 -3088 ((-404 (-1160 $)) (-1160 $))) (-15 -3089 ((-404 (-1160 $)) (-1160 $)))) |%noBranch|) (IF (|has| |#1| (-1031 (-544))) (-6 (-1031 (-48))) |%noBranch|)) |%noBranch|))) (-844)) (T -313)) -((-4249 (*1 *1 *1) (-12 (-5 *1 (-313 *2)) (-4 *2 (-554)) (-4 *2 (-844)))) (-1735 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-313 *3)) (-4 *3 (-554)) (-4 *3 (-844)))) (-1734 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-313 *3)) (-4 *3 (-554)) (-4 *3 (-844)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-404 (-1160 *1))) (-5 *1 (-313 *4)) (-5 *3 (-1160 *1)) (-4 *4 (-450)) (-4 *4 (-554)) (-4 *4 (-844)))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-404 (-1160 *1))) (-5 *1 (-313 *4)) (-5 *3 (-1160 *1)) (-4 *4 (-450)) (-4 *4 (-554)) (-4 *4 (-844))))) -(-13 (-420 |#1|) (-10 -8 (IF (|has| |#1| (-554)) (PROGN (-6 (-29 |#1|)) (-6 (-1190)) (-6 (-159)) (-6 (-625)) (-6 (-1129)) (-15 -4249 ($ $)) (-15 -1735 ((-112) $)) (-15 -1734 ($ $ (-544))) (IF (|has| |#1| (-450)) (PROGN (-15 -3088 ((-404 (-1160 $)) (-1160 $))) (-15 -3089 ((-404 (-1160 $)) (-1160 $)))) |%noBranch|) (IF (|has| |#1| (-1031 (-544))) (-6 (-1031 (-48))) |%noBranch|)) |%noBranch|))) -((-4365 (((-313 |#2|) (-1 |#2| |#1|) (-313 |#1|)) 13))) -(((-314 |#1| |#2|) (-10 -7 (-15 -4365 ((-313 |#2|) (-1 |#2| |#1|) (-313 |#1|)))) (-844) (-844)) (T -314)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-313 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-5 *2 (-313 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -4365 ((-313 |#2|) (-1 |#2| |#1|) (-313 |#1|)))) -((-4136 (((-51) |#2| (-292 |#2|) (-765)) 33) (((-51) |#2| (-292 |#2|)) 24) (((-51) |#2| (-765)) 28) (((-51) |#2|) 25) (((-51) (-1166)) 21)) (-4225 (((-51) |#2| (-292 |#2|) (-406 (-544))) 51) (((-51) |#2| (-292 |#2|)) 48) (((-51) |#2| (-406 (-544))) 50) (((-51) |#2|) 49) (((-51) (-1166)) 47)) (-4188 (((-51) |#2| (-292 |#2|) (-406 (-544))) 46) (((-51) |#2| (-292 |#2|)) 43) (((-51) |#2| (-406 (-544))) 45) (((-51) |#2|) 44) (((-51) (-1166)) 42)) (-4185 (((-51) |#2| (-292 |#2|) (-544)) 39) (((-51) |#2| (-292 |#2|)) 35) (((-51) |#2| (-544)) 38) (((-51) |#2|) 36) (((-51) (-1166)) 34))) -(((-315 |#1| |#2|) (-10 -7 (-15 -4136 ((-51) (-1166))) (-15 -4136 ((-51) |#2|)) (-15 -4136 ((-51) |#2| (-765))) (-15 -4136 ((-51) |#2| (-292 |#2|))) (-15 -4136 ((-51) |#2| (-292 |#2|) (-765))) (-15 -4185 ((-51) (-1166))) (-15 -4185 ((-51) |#2|)) (-15 -4185 ((-51) |#2| (-544))) (-15 -4185 ((-51) |#2| (-292 |#2|))) (-15 -4185 ((-51) |#2| (-292 |#2|) (-544))) (-15 -4188 ((-51) (-1166))) (-15 -4188 ((-51) |#2|)) (-15 -4188 ((-51) |#2| (-406 (-544)))) (-15 -4188 ((-51) |#2| (-292 |#2|))) (-15 -4188 ((-51) |#2| (-292 |#2|) (-406 (-544)))) (-15 -4225 ((-51) (-1166))) (-15 -4225 ((-51) |#2|)) (-15 -4225 ((-51) |#2| (-406 (-544)))) (-15 -4225 ((-51) |#2| (-292 |#2|))) (-15 -4225 ((-51) |#2| (-292 |#2|) (-406 (-544))))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -315)) -((-4225 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-292 *3)) (-5 *5 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *6 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-544))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-4225 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) (-4188 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-292 *3)) (-5 *5 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *6 *3)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-544))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-4188 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) (-4185 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 *5) (-634 *5))) (-5 *5 (-544)) (-5 *2 (-51)) (-5 *1 (-315 *6 *3)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-4 *5 (-13 (-450) (-844) (-1031 *4) (-634 *4))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-4185 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) (-4136 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-292 *3)) (-5 *5 (-765)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *6 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-4136 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4)))))) -(-10 -7 (-15 -4136 ((-51) (-1166))) (-15 -4136 ((-51) |#2|)) (-15 -4136 ((-51) |#2| (-765))) (-15 -4136 ((-51) |#2| (-292 |#2|))) (-15 -4136 ((-51) |#2| (-292 |#2|) (-765))) (-15 -4185 ((-51) (-1166))) (-15 -4185 ((-51) |#2|)) (-15 -4185 ((-51) |#2| (-544))) (-15 -4185 ((-51) |#2| (-292 |#2|))) (-15 -4185 ((-51) |#2| (-292 |#2|) (-544))) (-15 -4188 ((-51) (-1166))) (-15 -4188 ((-51) |#2|)) (-15 -4188 ((-51) |#2| (-406 (-544)))) (-15 -4188 ((-51) |#2| (-292 |#2|))) (-15 -4188 ((-51) |#2| (-292 |#2|) (-406 (-544)))) (-15 -4225 ((-51) (-1166))) (-15 -4225 ((-51) |#2|)) (-15 -4225 ((-51) |#2| (-406 (-544)))) (-15 -4225 ((-51) |#2| (-292 |#2|))) (-15 -4225 ((-51) |#2| (-292 |#2|) (-406 (-544))))) -((-1736 (((-51) |#2| (-113) (-292 |#2|) (-635 |#2|)) 88) (((-51) |#2| (-113) (-292 |#2|) (-292 |#2|)) 84) (((-51) |#2| (-113) (-292 |#2|) |#2|) 86) (((-51) (-292 |#2|) (-113) (-292 |#2|) |#2|) 87) (((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|))) 80) (((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 |#2|)) 82) (((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 |#2|)) 83) (((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|))) 81) (((-51) (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|)) 89) (((-51) (-292 |#2|) (-113) (-292 |#2|) (-292 |#2|)) 85))) -(((-316 |#1| |#2|) (-10 -7 (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) (-292 |#2|))) (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|)))) (-15 -1736 ((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|)))) (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) |#2|)) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) |#2|)) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) (-292 |#2|))) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) (-635 |#2|)))) (-13 (-844) (-554) (-609 (-533))) (-420 |#1|)) (T -316)) -((-1736 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-5 *6 (-635 *3)) (-4 *3 (-420 *7)) (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *7 *3)))) (-1736 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-4 *3 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *3)))) (-1736 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-4 *3 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *3)))) (-1736 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-292 *5)) (-5 *4 (-113)) (-4 *5 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *5)))) (-1736 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-113))) (-5 *6 (-635 (-292 *8))) (-4 *8 (-420 *7)) (-5 *5 (-292 *8)) (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *7 *8)))) (-1736 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-113))) (-5 *5 (-292 *7)) (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *7)))) (-1736 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 (-292 *8))) (-5 *4 (-635 (-113))) (-5 *5 (-292 *8)) (-5 *6 (-635 *8)) (-4 *8 (-420 *7)) (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *7 *8)))) (-1736 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-635 (-292 *7))) (-5 *4 (-635 (-113))) (-5 *5 (-292 *7)) (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *7)))) (-1736 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-292 *7)) (-5 *4 (-113)) (-5 *5 (-635 *7)) (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *6 *7)))) (-1736 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-292 *6)) (-5 *4 (-113)) (-4 *6 (-420 *5)) (-4 *5 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) (-5 *1 (-316 *5 *6))))) -(-10 -7 (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) (-292 |#2|))) (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|)))) (-15 -1736 ((-51) (-635 (-292 |#2|)) (-635 (-113)) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 |#2|))) (-15 -1736 ((-51) (-635 |#2|) (-635 (-113)) (-292 |#2|) (-635 (-292 |#2|)))) (-15 -1736 ((-51) (-292 |#2|) (-113) (-292 |#2|) |#2|)) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) |#2|)) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) (-292 |#2|))) (-15 -1736 ((-51) |#2| (-113) (-292 |#2|) (-635 |#2|)))) -((-1738 (((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544) (-1148)) 45) (((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544)) 46) (((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544) (-1148)) 42) (((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544)) 43)) (-1737 (((-1 (-224) (-224)) (-224)) 44))) -(((-317) (-10 -7 (-15 -1737 ((-1 (-224) (-224)) (-224))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544) (-1148))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544) (-1148))))) (T -317)) -((-1738 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-224)) (-5 *7 (-544)) (-5 *8 (-1148)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) (-1738 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-224)) (-5 *7 (-544)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) (-1738 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-544)) (-5 *7 (-1148)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) (-1738 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-544)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) (-1737 (*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224))))) -(-10 -7 (-15 -1737 ((-1 (-224) (-224)) (-224))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-1 (-224) (-224)) (-544) (-1148))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544))) (-15 -1738 ((-1200 (-920)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-224) (-544) (-1148)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 25)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) NIL) (($ $ (-406 (-544)) (-406 (-544))) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) 20)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 31)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) NIL) (((-406 (-544)) $ (-406 (-544))) 16)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL) (($ $ (-406 (-544))) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) NIL) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1739 (((-406 (-544)) $) 17)) (-3476 (($ (-1234 |#1| |#2| |#3|)) 11)) (-2536 (((-1234 |#1| |#2| |#3|) $) 12)) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) NIL) (($ $ $) NIL (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-4355 (((-406 (-544)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 10)) (-4353 (((-857) $) 37) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) 29)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) NIL)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 27)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 32)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-318 |#1| |#2| |#3|) (-13 (-1236 |#1|) (-786) (-10 -8 (-15 -3476 ($ (-1234 |#1| |#2| |#3|))) (-15 -2536 ((-1234 |#1| |#2| |#3|) $)) (-15 -1739 ((-406 (-544)) $)))) (-13 (-362) (-844)) (-1166) |#1|) (T -318)) -((-3476 (*1 *1 *2) (-12 (-5 *2 (-1234 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-1234 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3)))) -(-13 (-1236 |#1|) (-786) (-10 -8 (-15 -3476 ($ (-1234 |#1| |#2| |#3|))) (-15 -2536 ((-1234 |#1| |#2| |#3|) $)) (-15 -1739 ((-406 (-544)) $)))) -((-3394 (((-2 (|:| -2536 (-765)) (|:| -4361 |#1|) (|:| |radicand| (-635 |#1|))) (-404 |#1|) (-765)) 24)) (-4349 (((-635 (-2 (|:| -4361 (-765)) (|:| |logand| |#1|))) (-404 |#1|)) 28))) -(((-319 |#1|) (-10 -7 (-15 -3394 ((-2 (|:| -2536 (-765)) (|:| -4361 |#1|) (|:| |radicand| (-635 |#1|))) (-404 |#1|) (-765))) (-15 -4349 ((-635 (-2 (|:| -4361 (-765)) (|:| |logand| |#1|))) (-404 |#1|)))) (-554)) (T -319)) -((-4349 (*1 *2 *3) (-12 (-5 *3 (-404 *4)) (-4 *4 (-554)) (-5 *2 (-635 (-2 (|:| -4361 (-765)) (|:| |logand| *4)))) (-5 *1 (-319 *4)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *3 (-404 *5)) (-4 *5 (-554)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *5) (|:| |radicand| (-635 *5)))) (-5 *1 (-319 *5)) (-5 *4 (-765))))) -(-10 -7 (-15 -3394 ((-2 (|:| -2536 (-765)) (|:| -4361 |#1|) (|:| |radicand| (-635 |#1|))) (-404 |#1|) (-765))) (-15 -4349 ((-635 (-2 (|:| -4361 (-765)) (|:| |logand| |#1|))) (-404 |#1|)))) -((-3467 (((-635 |#2|) (-1160 |#4|)) 43)) (-1744 ((|#3| (-544)) 46)) (-1742 (((-1160 |#4|) (-1160 |#3|)) 30)) (-1743 (((-1160 |#4|) (-1160 |#4|) (-544)) 55)) (-1741 (((-1160 |#3|) (-1160 |#4|)) 21)) (-4355 (((-635 (-765)) (-1160 |#4|) (-635 |#2|)) 40)) (-1740 (((-1160 |#3|) (-1160 |#4|) (-635 |#2|) (-635 |#3|)) 35))) -(((-320 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1740 ((-1160 |#3|) (-1160 |#4|) (-635 |#2|) (-635 |#3|))) (-15 -4355 ((-635 (-765)) (-1160 |#4|) (-635 |#2|))) (-15 -3467 ((-635 |#2|) (-1160 |#4|))) (-15 -1741 ((-1160 |#3|) (-1160 |#4|))) (-15 -1742 ((-1160 |#4|) (-1160 |#3|))) (-15 -1743 ((-1160 |#4|) (-1160 |#4|) (-544))) (-15 -1744 (|#3| (-544)))) (-787) (-844) (-1042) (-943 |#3| |#1| |#2|)) (T -320)) -((-1744 (*1 *2 *3) (-12 (-5 *3 (-544)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1042)) (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-943 *2 *4 *5)))) (-1743 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 *7)) (-5 *3 (-544)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *1 (-320 *4 *5 *6 *7)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-1160 *6)) (-4 *6 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-1160 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1160 *7)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-1160 *6)) (-5 *1 (-320 *4 *5 *6 *7)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-1160 *7)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *2 (-635 *5)) (-5 *1 (-320 *4 *5 *6 *7)))) (-4355 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *8)) (-5 *4 (-635 *6)) (-4 *6 (-844)) (-4 *8 (-943 *7 *5 *6)) (-4 *5 (-787)) (-4 *7 (-1042)) (-5 *2 (-635 (-765))) (-5 *1 (-320 *5 *6 *7 *8)))) (-1740 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 *8)) (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-1160 *8)) (-5 *1 (-320 *6 *7 *8 *9))))) -(-10 -7 (-15 -1740 ((-1160 |#3|) (-1160 |#4|) (-635 |#2|) (-635 |#3|))) (-15 -4355 ((-635 (-765)) (-1160 |#4|) (-635 |#2|))) (-15 -3467 ((-635 |#2|) (-1160 |#4|))) (-15 -1741 ((-1160 |#3|) (-1160 |#4|))) (-15 -1742 ((-1160 |#4|) (-1160 |#3|))) (-15 -1743 ((-1160 |#4|) (-1160 |#4|) (-544))) (-15 -1744 (|#3| (-544)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 14)) (-4180 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-544)))) $) 18)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-2813 ((|#1| $ (-544)) NIL)) (-1747 (((-544) $ (-544)) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2410 (($ (-1 |#1| |#1|) $) NIL)) (-1746 (($ (-1 (-544) (-544)) $) 10)) (-3643 (((-1148) $) NIL)) (-1745 (($ $ $) NIL (|has| (-544) (-786)))) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-4084 (((-544) |#1| $) NIL)) (-3040 (($) 15 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) 21 (|has| |#1| (-844)))) (-4244 (($ $) 11) (($ $ $) 20)) (-4246 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ (-544)) NIL) (($ (-544) |#1|) 19))) -(((-321 |#1|) (-13 (-21) (-711 (-544)) (-322 |#1| (-544)) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1091)) (T -321)) -NIL -(-13 (-21) (-711 (-544)) (-322 |#1| (-544)) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4180 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $) 27)) (-1391 (((-3 $ "failed") $ $) 19)) (-3521 (((-765) $) 28)) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| "failed") $) 32)) (-3557 ((|#1| $) 33)) (-2813 ((|#1| $ (-544)) 25)) (-1747 ((|#2| $ (-544)) 26)) (-2410 (($ (-1 |#1| |#1|) $) 22)) (-1746 (($ (-1 |#2| |#2|) $) 23)) (-3643 (((-1148) $) 9)) (-1745 (($ $ $) 21 (|has| |#2| (-786)))) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ |#1|) 31)) (-4084 ((|#2| |#1| $) 24)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ |#2| |#1|) 29))) -(((-322 |#1| |#2|) (-139) (-1091) (-130)) (T -322)) -((-4246 (*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-130)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)) (-5 *2 (-765)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)) (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))))) (-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1091)) (-4 *2 (-130)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1091)))) (-4084 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-130)))) (-1746 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)))) (-2410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)))) (-1745 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-130)) (-4 *3 (-786))))) -(-13 (-130) (-1031 |t#1|) (-10 -8 (-15 -4246 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3521 ((-765) $)) (-15 -4180 ((-635 (-2 (|:| |gen| |t#1|) (|:| -4350 |t#2|))) $)) (-15 -1747 (|t#2| $ (-544))) (-15 -2813 (|t#1| $ (-544))) (-15 -4084 (|t#2| |t#1| $)) (-15 -1746 ($ (-1 |t#2| |t#2|) $)) (-15 -2410 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-786)) (-15 -1745 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-1031 |#1|) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4180 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-2813 ((|#1| $ (-544)) NIL)) (-1747 (((-765) $ (-544)) NIL)) (-2410 (($ (-1 |#1| |#1|) $) NIL)) (-1746 (($ (-1 (-765) (-765)) $) NIL)) (-3643 (((-1148) $) NIL)) (-1745 (($ $ $) NIL (|has| (-765) (-786)))) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-4084 (((-765) |#1| $) NIL)) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-765) |#1|) NIL))) -(((-323 |#1|) (-322 |#1| (-765)) (-1091)) (T -323)) -NIL -(-322 |#1| (-765)) -((-3902 (($ $) 52)) (-1749 (($ $ |#2| |#3| $) 14)) (-1750 (($ (-1 |#3| |#3|) $) 33)) (-1944 (((-112) $) 24)) (-1943 ((|#2| $) 26)) (-3865 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-3199 ((|#2| $) 48)) (-4224 (((-635 |#2|) $) 36)) (-1748 (($ $ $ (-765)) 20)) (-4356 (($ $ |#2|) 40))) -(((-324 |#1| |#2| |#3|) (-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1748 (|#1| |#1| |#1| (-765))) (-15 -1749 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1750 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4224 ((-635 |#2|) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1944 ((-112) |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4356 (|#1| |#1| |#2|))) (-325 |#2| |#3|) (-1042) (-786)) (T -324)) -NIL -(-10 -8 (-15 -3902 (|#1| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1748 (|#1| |#1| |#1| (-765))) (-15 -1749 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1750 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4224 ((-635 |#2|) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1944 ((-112) |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4356 (|#1| |#1| |#2|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 91 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 89 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 86)) (-3557 (((-544) $) 90 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 88 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 87)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 75 (|has| |#1| (-450)))) (-1749 (($ $ |#1| |#2| $) 79)) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 82)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| |#2|) 64)) (-3202 ((|#2| $) 81)) (-1750 (($ (-1 |#2| |#2|) $) 80)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 85)) (-1943 ((|#1| $) 84)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-554)))) (-4355 ((|#2| $) 67)) (-3199 ((|#1| $) 76 (|has| |#1| (-450)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50) (($ (-406 (-544))) 60 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))))) (-4224 (((-635 |#1|) $) 83)) (-4084 ((|#1| $ |#2|) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 78 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544))))))) -(((-325 |#1| |#2|) (-139) (-1042) (-786)) (T -325)) -((-1944 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-635 *3)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-765)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-1750 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-1749 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) (-1748 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *3 (-171)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-554)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-3902 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-450))))) -(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -1944 ((-112) $)) (-15 -1943 (|t#1| $)) (-15 -4224 ((-635 |t#1|) $)) (-15 -2553 ((-765) $)) (-15 -3202 (|t#2| $)) (-15 -1750 ($ (-1 |t#2| |t#2|) $)) (-15 -1749 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-171)) (-15 -1748 ($ $ $ (-765))) |%noBranch|) (IF (|has| |t#1| (-554)) (-15 -3865 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3199 (|t#1| $)) (-15 -3902 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-411 |#1|) . T) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-2135 (((-112) (-112)) NIL)) (-4194 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) NIL)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-2498 (($ $) NIL (|has| |#1| (-1091)))) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) NIL)) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2136 (($ $ (-544)) NIL)) (-2137 (((-765) $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4014 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2138 (($ (-635 |#1|)) NIL)) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-1660 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4197 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-326 |#1|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2138 ($ (-635 |#1|))) (-15 -2137 ((-765) $)) (-15 -2136 ($ $ (-544))) (-15 -2135 ((-112) (-112))))) (-1204)) (T -326)) -((-2138 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-326 *3)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-326 *3)) (-4 *3 (-1204)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-326 *3)) (-4 *3 (-1204)))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1204))))) -(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2138 ($ (-635 |#1|))) (-15 -2137 ((-765) $)) (-15 -2136 ($ $ (-544))) (-15 -2135 ((-112) (-112))))) -((-4339 (((-112) $) 42)) (-4336 (((-765)) 22)) (-3734 ((|#2| $) 46) (($ $ (-912)) 100)) (-3521 (((-765)) 101)) (-1939 (($ (-1253 |#2|)) 20)) (-2161 (((-112) $) 114)) (-3517 ((|#2| $) 48) (($ $ (-912)) 98)) (-2164 (((-1160 |#2|) $) NIL) (((-1160 $) $ (-912)) 94)) (-1752 (((-1160 |#2|) $) 82)) (-1751 (((-1160 |#2|) $) 79) (((-3 (-1160 |#2|) "failed") $ $) 76)) (-1753 (($ $ (-1160 |#2|)) 53)) (-4337 (((-826 (-912))) 28) (((-912)) 43)) (-4318 (((-133)) 25)) (-4355 (((-826 (-912)) $) 30) (((-912) $) 116)) (-1754 (($) 107)) (-3625 (((-1253 |#2|) $) NIL) (((-682 |#2|) (-1253 $)) 39)) (-3084 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4340 (((-112) $) 41))) -(((-327 |#1| |#2|) (-10 -8 (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3521 ((-765))) (-15 -3084 (|#1| |#1|)) (-15 -1751 ((-3 (-1160 |#2|) "failed") |#1| |#1|)) (-15 -1751 ((-1160 |#2|) |#1|)) (-15 -1752 ((-1160 |#2|) |#1|)) (-15 -1753 (|#1| |#1| (-1160 |#2|))) (-15 -2161 ((-112) |#1|)) (-15 -1754 (|#1|)) (-15 -3734 (|#1| |#1| (-912))) (-15 -3517 (|#1| |#1| (-912))) (-15 -2164 ((-1160 |#1|) |#1| (-912))) (-15 -3734 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -4355 ((-912) |#1|)) (-15 -4337 ((-912))) (-15 -2164 ((-1160 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -4336 ((-765))) (-15 -4337 ((-826 (-912)))) (-15 -4355 ((-826 (-912)) |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4340 ((-112) |#1|)) (-15 -4318 ((-133)))) (-328 |#2|) (-362)) (T -327)) -((-4318 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4337 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-826 (-912))) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4336 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4337 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-912)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-3521 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4))))) -(-10 -8 (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3521 ((-765))) (-15 -3084 (|#1| |#1|)) (-15 -1751 ((-3 (-1160 |#2|) "failed") |#1| |#1|)) (-15 -1751 ((-1160 |#2|) |#1|)) (-15 -1752 ((-1160 |#2|) |#1|)) (-15 -1753 (|#1| |#1| (-1160 |#2|))) (-15 -2161 ((-112) |#1|)) (-15 -1754 (|#1|)) (-15 -3734 (|#1| |#1| (-912))) (-15 -3517 (|#1| |#1| (-912))) (-15 -2164 ((-1160 |#1|) |#1| (-912))) (-15 -3734 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -4355 ((-912) |#1|)) (-15 -4337 ((-912))) (-15 -2164 ((-1160 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -4336 ((-765))) (-15 -4337 ((-826 (-912)))) (-15 -4355 ((-826 (-912)) |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4340 ((-112) |#1|)) (-15 -4318 ((-133)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-4339 (((-112) $) 95)) (-4336 (((-765)) 91)) (-3734 ((|#1| $) 141) (($ $ (-912)) 138 (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) 123 (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-3521 (((-765)) 113 (|has| |#1| (-367)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| "failed") $) 102)) (-3557 ((|#1| $) 103)) (-1939 (($ (-1253 |#1|)) 147)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-367)))) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-3377 (($) 110 (|has| |#1| (-367)))) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-3215 (($) 125 (|has| |#1| (-367)))) (-1824 (((-112) $) 126 (|has| |#1| (-367)))) (-1914 (($ $ (-765)) 88 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) 72)) (-4178 (((-912) $) 128 (|has| |#1| (-367))) (((-826 (-912)) $) 85 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) 31)) (-2163 (($) 136 (|has| |#1| (-367)))) (-2161 (((-112) $) 135 (|has| |#1| (-367)))) (-3517 ((|#1| $) 142) (($ $ (-912)) 139 (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) 114 (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2164 (((-1160 |#1|) $) 146) (((-1160 $) $ (-912)) 140 (|has| |#1| (-367)))) (-2160 (((-912) $) 111 (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) 132 (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) 131 (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) 130 (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) 133 (|has| |#1| (-367)))) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3849 (($) 115 (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) 112 (|has| |#1| (-367)))) (-4338 (((-112) $) 94)) (-3644 (((-1110) $) 10)) (-2544 (($) 134 (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 122 (|has| |#1| (-367)))) (-4139 (((-404 $) $) 75)) (-4337 (((-826 (-912))) 92) (((-912)) 144)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1915 (((-765) $) 127 (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) 86 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) 100)) (-4217 (($ $) 119 (|has| |#1| (-367))) (($ $ (-765)) 117 (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) 93) (((-912) $) 143)) (-3586 (((-1160 |#1|)) 145)) (-1818 (($) 124 (|has| |#1| (-367)))) (-1754 (($) 137 (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) 149) (((-682 |#1|) (-1253 $)) 148)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 121 (|has| |#1| (-367)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ |#1|) 101)) (-3084 (($ $) 120 (|has| |#1| (-367))) (((-3 $ "failed") $) 84 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 28)) (-2162 (((-1253 $)) 151) (((-1253 $) (-912)) 150)) (-2212 (((-112) $ $) 40)) (-4340 (((-112) $) 96)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-4335 (($ $) 90 (|has| |#1| (-367))) (($ $ (-765)) 89 (|has| |#1| (-367)))) (-3051 (($ $) 118 (|has| |#1| (-367))) (($ $ (-765)) 116 (|has| |#1| (-367)))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66) (($ $ |#1|) 99)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +((-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-766)))) (-2080 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-306)))) (-1787 (*1 *1 *1 *1) (-4 *1 (-306))) (-1811 (*1 *1 *1 *1) (-4 *1 (-306))) (-4102 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3148 *1))) (-4 *1 (-306)))) (-4102 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-306)))) (-1312 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-639 *1)) (-4 *1 (-306))))) +(-13 (-915) (-10 -8 (-15 -2569 ((-112) $ $)) (-15 -1577 ((-766) $)) (-15 -2080 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -1787 ($ $ $)) (-15 -1811 ($ $ $)) (-15 -4102 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $)) (-15 -4102 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1312 ((-3 (-639 $) "failed") (-639 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-1433 (($ $ (-639 |#2|) (-639 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-293 |#2|)) 11) (($ $ (-639 (-293 |#2|))) NIL))) +(((-307 |#1| |#2|) (-10 -8 (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|)))) (-308 |#2|) (-1092)) (T -307)) +NIL +(-10 -8 (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|)))) +((-1433 (($ $ (-639 |#1|) (-639 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-293 |#1|)) 11) (($ $ (-639 (-293 |#1|))) 10))) +(((-308 |#1|) (-139) (-1092)) (T -308)) +((-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1092)))) (-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1092))))) +(-13 (-513 |t#1| |t#1|) (-10 -8 (-15 -1433 ($ $ (-293 |t#1|))) (-15 -1433 ($ $ (-639 (-293 |t#1|)))))) +(((-513 |#1| |#1|) . T)) +((-1433 ((|#1| (-1 |#1| (-562)) (-1170 (-406 (-562)))) 25))) +(((-309 |#1|) (-10 -7 (-15 -1433 (|#1| (-1 |#1| (-562)) (-1170 (-406 (-562)))))) (-38 (-406 (-562)))) (T -309)) +((-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-562))) (-5 *4 (-1170 (-406 (-562)))) (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-562))))))) +(-10 -7 (-15 -1433 (|#1| (-1 |#1| (-562)) (-1170 (-406 (-562)))))) +((-4041 (((-112) $ $) NIL)) (-3328 (((-562) $) 12)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 9)) (-4054 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-310) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -3328 ((-562) $))))) (T -310)) +((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-310)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-310))))) +(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -3328 ((-562) $)))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 7)) (-1731 (((-112) $ $) 9))) +(((-311) (-1092)) (T -311)) +NIL +(-1092) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 62)) (-4246 (((-1242 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-904)))) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-904)))) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-815)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-1242 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-562)))) (((-3 (-1241 |#2| |#3| |#4|) "failed") $) 25)) (-3961 (((-1242 |#1| |#2| |#3| |#4|) $) NIL) (((-1168) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-562)))) (((-562) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-562)))) (((-1241 |#2| |#3| |#4|) $) NIL)) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-1242 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1256 (-1242 |#1| |#2| |#3| |#4|)))) (-683 $) (-1256 $)) NIL) (((-683 (-1242 |#1| |#2| |#3| |#4|)) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-544)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3519 (((-112) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-881 (-378))))) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL)) (-4065 (((-1242 |#1| |#2| |#3| |#4|) $) 21)) (-3699 (((-3 $ "failed") $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1143)))) (-3392 (((-112) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-2993 (($ $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-4152 (($ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) $) NIL)) (-2332 (((-3 (-838 |#2|) "failed") $) 78)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-306)))) (-4014 (((-1242 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-904)))) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-1242 |#1| |#2| |#3| |#4|)) (-639 (-1242 |#1| |#2| |#3| |#4|))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-308 (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-308 (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-293 (-1242 |#1| |#2| |#3| |#4|))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-308 (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-639 (-293 (-1242 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-308 (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-639 (-1168)) (-639 (-1242 |#1| |#2| |#3| |#4|))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-513 (-1168) (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-1168) (-1242 |#1| |#2| |#3| |#4|)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-513 (-1168) (-1242 |#1| |#2| |#3| |#4|))))) (-1577 (((-766) $) NIL)) (-2343 (($ $ (-1242 |#1| |#2| |#3| |#4|)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-285 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-766)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1168)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) (-766)) NIL) (($ $ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|))) NIL)) (-3658 (($ $) NIL)) (-4076 (((-1242 |#1| |#2| |#3| |#4|) $) 17)) (-4208 (((-887 (-562)) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-610 (-535)))) (((-378) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1017))) (((-224) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1017)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-1242 |#1| |#2| |#3| |#4|) (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-1242 |#1| |#2| |#3| |#4|)) 29) (($ (-1168)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-1168)))) (($ (-1241 |#2| |#3| |#4|)) 36)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-1242 |#1| |#2| |#3| |#4|) (-904))) (|has| (-1242 |#1| |#2| |#3| |#4|) (-144))))) (-2579 (((-766)) NIL)) (-2604 (((-1242 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-544)))) (-2922 (((-112) $ $) NIL)) (-3526 (($ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-815)))) (-2286 (($) 41 T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-766)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1168)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) (-766)) NIL) (($ $ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-1759 (((-112) $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-1859 (($ $ $) 34) (($ (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) 31)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-1242 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1242 |#1| |#2| |#3| |#4|)) NIL))) +(((-312 |#1| |#2| |#3| |#4|) (-13 (-987 (-1242 |#1| |#2| |#3| |#4|)) (-1033 (-1241 |#2| |#3| |#4|)) (-10 -8 (-15 -2332 ((-3 (-838 |#2|) "failed") $)) (-15 -4054 ($ (-1241 |#2| |#3| |#4|))))) (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451)) (-13 (-27) (-1192) (-429 |#1|)) (-1168) |#2|) (T -312)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1241 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) (-14 *6 *4) (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) (-5 *1 (-312 *3 *4 *5 *6)))) (-2332 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) (-5 *2 (-838 *4)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) (-14 *6 *4)))) +(-13 (-987 (-1242 |#1| |#2| |#3| |#4|)) (-1033 (-1241 |#2| |#3| |#4|)) (-10 -8 (-15 -2332 ((-3 (-838 |#2|) "failed") $)) (-15 -4054 ($ (-1241 |#2| |#3| |#4|))))) +((-4152 (((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)) 13))) +(((-313 |#1| |#2|) (-10 -7 (-15 -4152 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) (-845) (-845)) (T -313)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-845)) (-4 *6 (-845)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6))))) +(-10 -7 (-15 -4152 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) +((-1469 (((-52) |#2| (-293 |#2|) (-766)) 33) (((-52) |#2| (-293 |#2|)) 24) (((-52) |#2| (-766)) 28) (((-52) |#2|) 25) (((-52) (-1168)) 21)) (-1503 (((-52) |#2| (-293 |#2|) (-406 (-562))) 51) (((-52) |#2| (-293 |#2|)) 48) (((-52) |#2| (-406 (-562))) 50) (((-52) |#2|) 49) (((-52) (-1168)) 47)) (-1499 (((-52) |#2| (-293 |#2|) (-406 (-562))) 46) (((-52) |#2| (-293 |#2|)) 43) (((-52) |#2| (-406 (-562))) 45) (((-52) |#2|) 44) (((-52) (-1168)) 42)) (-1485 (((-52) |#2| (-293 |#2|) (-562)) 39) (((-52) |#2| (-293 |#2|)) 35) (((-52) |#2| (-562)) 38) (((-52) |#2|) 36) (((-52) (-1168)) 34))) +(((-314 |#1| |#2|) (-10 -7 (-15 -1469 ((-52) (-1168))) (-15 -1469 ((-52) |#2|)) (-15 -1469 ((-52) |#2| (-766))) (-15 -1469 ((-52) |#2| (-293 |#2|))) (-15 -1469 ((-52) |#2| (-293 |#2|) (-766))) (-15 -1485 ((-52) (-1168))) (-15 -1485 ((-52) |#2|)) (-15 -1485 ((-52) |#2| (-562))) (-15 -1485 ((-52) |#2| (-293 |#2|))) (-15 -1485 ((-52) |#2| (-293 |#2|) (-562))) (-15 -1499 ((-52) (-1168))) (-15 -1499 ((-52) |#2|)) (-15 -1499 ((-52) |#2| (-406 (-562)))) (-15 -1499 ((-52) |#2| (-293 |#2|))) (-15 -1499 ((-52) |#2| (-293 |#2|) (-406 (-562)))) (-15 -1503 ((-52) (-1168))) (-15 -1503 ((-52) |#2|)) (-15 -1503 ((-52) |#2| (-406 (-562)))) (-15 -1503 ((-52) |#2| (-293 |#2|))) (-15 -1503 ((-52) |#2| (-293 |#2|) (-406 (-562))))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -314)) +((-1503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-562))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1503 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1192) (-429 *4))))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-562))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1499 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1192) (-429 *4))))) (-1485 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 *5) (-635 *5))) (-5 *5 (-562)) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1485 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1485 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-4 *5 (-13 (-451) (-845) (-1033 *4) (-635 *4))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1485 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1192) (-429 *4))))) (-1469 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-766)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1469 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1192) (-429 *4)))))) +(-10 -7 (-15 -1469 ((-52) (-1168))) (-15 -1469 ((-52) |#2|)) (-15 -1469 ((-52) |#2| (-766))) (-15 -1469 ((-52) |#2| (-293 |#2|))) (-15 -1469 ((-52) |#2| (-293 |#2|) (-766))) (-15 -1485 ((-52) (-1168))) (-15 -1485 ((-52) |#2|)) (-15 -1485 ((-52) |#2| (-562))) (-15 -1485 ((-52) |#2| (-293 |#2|))) (-15 -1485 ((-52) |#2| (-293 |#2|) (-562))) (-15 -1499 ((-52) (-1168))) (-15 -1499 ((-52) |#2|)) (-15 -1499 ((-52) |#2| (-406 (-562)))) (-15 -1499 ((-52) |#2| (-293 |#2|))) (-15 -1499 ((-52) |#2| (-293 |#2|) (-406 (-562)))) (-15 -1503 ((-52) (-1168))) (-15 -1503 ((-52) |#2|)) (-15 -1503 ((-52) |#2| (-406 (-562)))) (-15 -1503 ((-52) |#2| (-293 |#2|))) (-15 -1503 ((-52) |#2| (-293 |#2|) (-406 (-562))))) +((-4041 (((-112) $ $) NIL)) (-1404 (((-639 $) $ (-1168)) NIL (|has| |#1| (-554))) (((-639 $) $) NIL (|has| |#1| (-554))) (((-639 $) (-1164 $) (-1168)) NIL (|has| |#1| (-554))) (((-639 $) (-1164 $)) NIL (|has| |#1| (-554))) (((-639 $) (-947 $)) NIL (|has| |#1| (-554)))) (-1821 (($ $ (-1168)) NIL (|has| |#1| (-554))) (($ $) NIL (|has| |#1| (-554))) (($ (-1164 $) (-1168)) NIL (|has| |#1| (-554))) (($ (-1164 $)) NIL (|has| |#1| (-554))) (($ (-947 $)) NIL (|has| |#1| (-554)))) (-1952 (((-112) $) 27 (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (-1402 (((-639 (-1168)) $) 349)) (-1599 (((-406 (-1164 $)) $ (-608 $)) NIL (|has| |#1| (-554)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1495 (((-639 (-608 $)) $) NIL)) (-2988 (($ $) 159 (|has| |#1| (-554)))) (-4097 (($ $) 135 (|has| |#1| (-554)))) (-3717 (($ $ (-1084 $)) 220 (|has| |#1| (-554))) (($ $ (-1168)) 216 (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) NIL (-4037 (|has| |#1| (-21)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (-3165 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) 366) (($ $ (-639 (-608 $)) (-639 $)) 410)) (-3026 (((-417 (-1164 $)) (-1164 $)) 294 (-12 (|has| |#1| (-451)) (|has| |#1| (-554))))) (-2798 (($ $) NIL (|has| |#1| (-554)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-554)))) (-1643 (($ $) NIL (|has| |#1| (-554)))) (-2569 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4207 (($ $) 155 (|has| |#1| (-554)))) (-4074 (($ $) 131 (|has| |#1| (-554)))) (-4305 (($ $ (-562)) 69 (|has| |#1| (-554)))) (-3014 (($ $) 163 (|has| |#1| (-554)))) (-4119 (($ $) 139 (|has| |#1| (-554)))) (-1800 (($) NIL (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))) CONST)) (-3646 (((-639 $) $ (-1168)) NIL (|has| |#1| (-554))) (((-639 $) $) NIL (|has| |#1| (-554))) (((-639 $) (-1164 $) (-1168)) NIL (|has| |#1| (-554))) (((-639 $) (-1164 $)) NIL (|has| |#1| (-554))) (((-639 $) (-947 $)) NIL (|has| |#1| (-554)))) (-1502 (($ $ (-1168)) NIL (|has| |#1| (-554))) (($ $) NIL (|has| |#1| (-554))) (($ (-1164 $) (-1168)) 122 (|has| |#1| (-554))) (($ (-1164 $)) NIL (|has| |#1| (-554))) (($ (-947 $)) NIL (|has| |#1| (-554)))) (-4048 (((-3 (-608 $) "failed") $) 17) (((-3 (-1168) "failed") $) NIL) (((-3 |#1| "failed") $) 419) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-947 |#1|)) "failed") $) NIL (|has| |#1| (-554))) (((-3 (-947 |#1|) "failed") $) NIL (|has| |#1| (-1044))) (((-3 (-406 (-562)) "failed") $) 46 (-4037 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-3961 (((-608 $) $) 11) (((-1168) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-947 |#1|)) $) NIL (|has| |#1| (-554))) (((-947 |#1|) $) NIL (|has| |#1| (-1044))) (((-406 (-562)) $) 305 (-4037 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-1811 (($ $ $) NIL (|has| |#1| (-554)))) (-2406 (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 115 (|has| |#1| (-1044))) (((-683 |#1|) (-683 $)) 105 (|has| |#1| (-1044))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (-1955 (($ $) 87 (|has| |#1| (-554)))) (-3668 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))))) (-1787 (($ $ $) NIL (|has| |#1| (-554)))) (-1397 (($ $ (-1084 $)) 224 (|has| |#1| (-554))) (($ $ (-1168)) 222 (|has| |#1| (-554)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-554)))) (-2717 (((-112) $) NIL (|has| |#1| (-554)))) (-4230 (($ $ $) 190 (|has| |#1| (-554)))) (-4100 (($) 125 (|has| |#1| (-554)))) (-2794 (($ $ $) 210 (|has| |#1| (-554)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 372 (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 379 (|has| |#1| (-881 (-378))))) (-1383 (($ $) NIL) (($ (-639 $)) NIL)) (-3936 (((-639 (-114)) $) NIL)) (-2876 (((-114) (-114)) 265)) (-1957 (((-112) $) 25 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))))) (-3130 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-3425 (($ $) 68 (|has| |#1| (-1044)))) (-4065 (((-1117 |#1| (-608 $)) $) 82 (|has| |#1| (-1044)))) (-1934 (((-112) $) 61 (|has| |#1| (-554)))) (-1891 (($ $ (-562)) NIL (|has| |#1| (-554)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-554)))) (-1677 (((-1164 $) (-608 $)) 266 (|has| $ (-1044)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 $ $) (-608 $)) 406)) (-4367 (((-3 (-608 $) "failed") $) NIL)) (-4365 (($ $) 129 (|has| |#1| (-554)))) (-2033 (($ $) 235 (|has| |#1| (-554)))) (-1564 (($ (-639 $)) NIL (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-2913 (((-1150) $) NIL)) (-1583 (((-639 (-608 $)) $) 49)) (-4141 (($ (-114) $) NIL) (($ (-114) (-639 $)) 411)) (-2042 (((-3 (-639 $) "failed") $) NIL (|has| |#1| (-1104)))) (-3218 (((-3 (-2 (|:| |val| $) (|:| -1960 (-562))) "failed") $) NIL (|has| |#1| (-1044)))) (-1546 (((-3 (-639 $) "failed") $) 414 (|has| |#1| (-25)))) (-3853 (((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $) 418 (|has| |#1| (-25)))) (-1628 (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $) NIL (|has| |#1| (-1104))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-114)) NIL (|has| |#1| (-1044))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-1168)) NIL (|has| |#1| (-1044)))) (-1776 (((-112) $ (-114)) NIL) (((-112) $ (-1168)) 53)) (-1525 (($ $) NIL (-4037 (|has| |#1| (-472)) (|has| |#1| (-554))))) (-1982 (($ $ (-1168)) 239 (|has| |#1| (-554))) (($ $ (-1084 $)) 241 (|has| |#1| (-554)))) (-3060 (((-766) $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 43)) (-1547 ((|#1| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 287 (|has| |#1| (-554)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-4296 (((-112) $ $) NIL) (((-112) $ (-1168)) NIL)) (-3072 (($ $ (-1168)) 214 (|has| |#1| (-554))) (($ $) 212 (|has| |#1| (-554)))) (-1351 (($ $) 206 (|has| |#1| (-554)))) (-3480 (((-417 (-1164 $)) (-1164 $)) 292 (-12 (|has| |#1| (-451)) (|has| |#1| (-554))))) (-1635 (((-417 $) $) NIL (|has| |#1| (-554)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-554))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-554)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-554)))) (-3430 (($ $) 127 (|has| |#1| (-554)))) (-3803 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) 405) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) 359) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1168)) NIL (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-610 (-535)))) (($ $) NIL (|has| |#1| (-610 (-535)))) (($ $ (-114) $ (-1168)) 347 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-114)) (-639 $) (-1168)) 346 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $))) NIL (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $)))) NIL (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ (-639 $))) NIL (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ $)) NIL (|has| |#1| (-1044)))) (-1577 (((-766) $) NIL (|has| |#1| (-554)))) (-4021 (($ $) 227 (|has| |#1| (-554)))) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-554)))) (-3790 (($ $) NIL) (($ $ $) NIL)) (-4056 (($ $) 237 (|has| |#1| (-554)))) (-2791 (($ $) 188 (|has| |#1| (-554)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-1044))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-1044))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-1044))) (($ $ (-1168)) NIL (|has| |#1| (-1044)))) (-3658 (($ $) 70 (|has| |#1| (-554)))) (-4076 (((-1117 |#1| (-608 $)) $) 84 (|has| |#1| (-554)))) (-2096 (($ $) 303 (|has| $ (-1044)))) (-3023 (($ $) 165 (|has| |#1| (-554)))) (-4130 (($ $) 141 (|has| |#1| (-554)))) (-3001 (($ $) 161 (|has| |#1| (-554)))) (-4108 (($ $) 137 (|has| |#1| (-554)))) (-2978 (($ $) 157 (|has| |#1| (-554)))) (-4087 (($ $) 133 (|has| |#1| (-554)))) (-4208 (((-887 (-562)) $) NIL (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| |#1| (-610 (-887 (-378))))) (($ (-417 $)) NIL (|has| |#1| (-554))) (((-535) $) 344 (|has| |#1| (-610 (-535))))) (-3665 (($ $ $) NIL (|has| |#1| (-472)))) (-1911 (($ $ $) NIL (|has| |#1| (-472)))) (-4054 (((-857) $) 404) (($ (-608 $)) 395) (($ (-1168)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-554))) (($ (-48)) 298 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) (($ (-1117 |#1| (-608 $))) 86 (|has| |#1| (-1044))) (($ (-406 |#1|)) NIL (|has| |#1| (-554))) (($ (-947 (-406 |#1|))) NIL (|has| |#1| (-554))) (($ (-406 (-947 (-406 |#1|)))) NIL (|has| |#1| (-554))) (($ (-406 (-947 |#1|))) NIL (|has| |#1| (-554))) (($ (-947 |#1|)) NIL (|has| |#1| (-1044))) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-554)) (|has| |#1| (-1033 (-406 (-562)))))) (($ (-562)) 34 (-4037 (|has| |#1| (-1033 (-562))) (|has| |#1| (-1044))))) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL (|has| |#1| (-1044)))) (-2746 (($ $) NIL) (($ (-639 $)) NIL)) (-3261 (($ $ $) 208 (|has| |#1| (-554)))) (-3690 (($ $ $) 194 (|has| |#1| (-554)))) (-1868 (($ $ $) 198 (|has| |#1| (-554)))) (-4266 (($ $ $) 192 (|has| |#1| (-554)))) (-3350 (($ $ $) 196 (|has| |#1| (-554)))) (-2803 (((-112) (-114)) 9)) (-3055 (($ $) 171 (|has| |#1| (-554)))) (-4165 (($ $) 147 (|has| |#1| (-554)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 167 (|has| |#1| (-554)))) (-4138 (($ $) 143 (|has| |#1| (-554)))) (-3078 (($ $) 175 (|has| |#1| (-554)))) (-4182 (($ $) 151 (|has| |#1| (-554)))) (-3105 (($ (-1168) $) NIL) (($ (-1168) $ $) NIL) (($ (-1168) $ $ $) NIL) (($ (-1168) $ $ $ $) NIL) (($ (-1168) (-639 $)) NIL)) (-2190 (($ $) 202 (|has| |#1| (-554)))) (-3402 (($ $) 200 (|has| |#1| (-554)))) (-1566 (($ $) 177 (|has| |#1| (-554)))) (-4195 (($ $) 153 (|has| |#1| (-554)))) (-3066 (($ $) 173 (|has| |#1| (-554)))) (-4174 (($ $) 149 (|has| |#1| (-554)))) (-3044 (($ $) 169 (|has| |#1| (-554)))) (-4151 (($ $) 145 (|has| |#1| (-554)))) (-3526 (($ $) 180 (|has| |#1| (-554)))) (-2286 (($) 20 (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) CONST)) (-4083 (($ $) 231 (|has| |#1| (-554)))) (-2294 (($) 22 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))) CONST)) (-3819 (($ $) 182 (|has| |#1| (-554))) (($ $ $) 184 (|has| |#1| (-554)))) (-2537 (($ $) 229 (|has| |#1| (-554)))) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-1044))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-1044))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-1044))) (($ $ (-1168)) NIL (|has| |#1| (-1044)))) (-4361 (($ $) 233 (|has| |#1| (-554)))) (-2088 (($ $ $) 186 (|has| |#1| (-554)))) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 79)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 78)) (-1859 (($ (-1117 |#1| (-608 $)) (-1117 |#1| (-608 $))) 96 (|has| |#1| (-554))) (($ $ $) 42 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554))))) (-1848 (($ $ $) 40 (-4037 (|has| |#1| (-21)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (($ $) 29 (-4037 (|has| |#1| (-21)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (-1835 (($ $ $) 38 (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (** (($ $ $) 63 (|has| |#1| (-554))) (($ $ (-406 (-562))) 300 (|has| |#1| (-554))) (($ $ (-562)) 74 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554)))) (($ $ (-766)) 71 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104)))) (($ $ (-916)) 76 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))))) (* (($ (-406 (-562)) $) NIL (|has| |#1| (-554))) (($ $ (-406 (-562))) NIL (|has| |#1| (-554))) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))) (($ $ $) 36 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104)))) (($ (-562) $) 32 (-4037 (|has| |#1| (-21)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (($ (-766) $) NIL (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (($ (-916) $) NIL (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))))) +(((-315 |#1|) (-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-554)) (PROGN (-6 (-29 |#1|)) (-6 (-1192)) (-6 (-159)) (-6 (-625)) (-6 (-1131)) (-15 -1955 ($ $)) (-15 -1934 ((-112) $)) (-15 -4305 ($ $ (-562))) (IF (|has| |#1| (-451)) (PROGN (-15 -3480 ((-417 (-1164 $)) (-1164 $))) (-15 -3026 ((-417 (-1164 $)) (-1164 $)))) |%noBranch|) (IF (|has| |#1| (-1033 (-562))) (-6 (-1033 (-48))) |%noBranch|)) |%noBranch|))) (-845)) (T -315)) +((-1955 (*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-554)) (-4 *2 (-845)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-554)) (-4 *3 (-845)))) (-4305 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-315 *3)) (-4 *3 (-554)) (-4 *3 (-845)))) (-3480 (*1 *2 *3) (-12 (-5 *2 (-417 (-1164 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-451)) (-4 *4 (-554)) (-4 *4 (-845)))) (-3026 (*1 *2 *3) (-12 (-5 *2 (-417 (-1164 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-451)) (-4 *4 (-554)) (-4 *4 (-845))))) +(-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-554)) (PROGN (-6 (-29 |#1|)) (-6 (-1192)) (-6 (-159)) (-6 (-625)) (-6 (-1131)) (-15 -1955 ($ $)) (-15 -1934 ((-112) $)) (-15 -4305 ($ $ (-562))) (IF (|has| |#1| (-451)) (PROGN (-15 -3480 ((-417 (-1164 $)) (-1164 $))) (-15 -3026 ((-417 (-1164 $)) (-1164 $)))) |%noBranch|) (IF (|has| |#1| (-1033 (-562))) (-6 (-1033 (-48))) |%noBranch|)) |%noBranch|))) +((-1617 (((-52) |#2| (-114) (-293 |#2|) (-639 |#2|)) 88) (((-52) |#2| (-114) (-293 |#2|) (-293 |#2|)) 84) (((-52) |#2| (-114) (-293 |#2|) |#2|) 86) (((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|) 87) (((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|))) 80) (((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 |#2|)) 82) (((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 |#2|)) 83) (((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|))) 81) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|)) 89) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|)) 85))) +(((-316 |#1| |#2|) (-10 -7 (-15 -1617 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -1617 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|))) (-15 -1617 ((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|)))) (-15 -1617 ((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 |#2|))) (-15 -1617 ((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 |#2|))) (-15 -1617 ((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|)))) (-15 -1617 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -1617 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -1617 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -1617 ((-52) |#2| (-114) (-293 |#2|) (-639 |#2|)))) (-13 (-845) (-554) (-610 (-535))) (-429 |#1|)) (T -316)) +((-1617 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-639 *3)) (-4 *3 (-429 *7)) (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))) (-1617 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1617 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1617 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *5)))) (-1617 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-114))) (-5 *6 (-639 (-293 *8))) (-4 *8 (-429 *7)) (-5 *5 (-293 *8)) (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-1617 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-639 *7)) (-5 *4 (-639 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-1617 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 (-293 *8))) (-5 *4 (-639 (-114))) (-5 *5 (-293 *8)) (-5 *6 (-639 *8)) (-4 *8 (-429 *7)) (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-1617 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-639 (-293 *7))) (-5 *4 (-639 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-1617 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-639 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-1617 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5)) (-4 *5 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *6))))) +(-10 -7 (-15 -1617 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -1617 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|))) (-15 -1617 ((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|)))) (-15 -1617 ((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 |#2|))) (-15 -1617 ((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 |#2|))) (-15 -1617 ((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|)))) (-15 -1617 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -1617 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -1617 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -1617 ((-52) |#2| (-114) (-293 |#2|) (-639 |#2|)))) +((-1817 (((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562) (-1150)) 45) (((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562)) 46) (((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562) (-1150)) 42) (((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562)) 43)) (-3203 (((-1 (-224) (-224)) (-224)) 44))) +(((-317) (-10 -7 (-15 -3203 ((-1 (-224) (-224)) (-224))) (-15 -1817 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562))) (-15 -1817 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562) (-1150))) (-15 -1817 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562))) (-15 -1817 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562) (-1150))))) (T -317)) +((-1817 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-224)) (-5 *7 (-562)) (-5 *8 (-1150)) (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) (-1817 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-224)) (-5 *7 (-562)) (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) (-1817 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-562)) (-5 *7 (-1150)) (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) (-1817 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-562)) (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) (-3203 (*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224))))) +(-10 -7 (-15 -3203 ((-1 (-224) (-224)) (-224))) (-15 -1817 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562))) (-15 -1817 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562) (-1150))) (-15 -1817 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562))) (-15 -1817 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562) (-1150)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 25)) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2557 (($ $ (-406 (-562))) NIL) (($ $ (-406 (-562)) (-406 (-562))) NIL)) (-1938 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) 20)) (-2988 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| |#1| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4207 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) 31)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2717 (((-112) $) NIL (|has| |#1| (-362)))) (-1756 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-406 (-562)) $) NIL) (((-406 (-562)) $ (-406 (-562))) 16)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) NIL) (($ $ (-406 (-562))) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-406 (-562))) NIL) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-2667 (($ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192)))))) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ (-406 (-562))) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1631 (((-406 (-562)) $) 17)) (-3876 (($ (-1241 |#1| |#2| |#3|)) 11)) (-1960 (((-1241 |#1| |#2| |#3|) $) 12)) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) NIL) (($ $ $) NIL (|has| (-406 (-562)) (-1104)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-3598 (((-406 (-562)) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) 10)) (-4054 (((-857) $) 37) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-3906 ((|#1| $ (-406 (-562))) 29)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-2328 ((|#1| $) NIL)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 27)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 32)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-318 |#1| |#2| |#3|) (-13 (-1237 |#1|) (-787) (-10 -8 (-15 -3876 ($ (-1241 |#1| |#2| |#3|))) (-15 -1960 ((-1241 |#1| |#2| |#3|) $)) (-15 -1631 ((-406 (-562)) $)))) (-13 (-362) (-845)) (-1168) |#1|) (T -318)) +((-3876 (*1 *1 *2) (-12 (-5 *2 (-1241 *3 *4 *5)) (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-1241 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3)))) +(-13 (-1237 |#1|) (-787) (-10 -8 (-15 -3876 ($ (-1241 |#1| |#2| |#3|))) (-15 -1960 ((-1241 |#1| |#2| |#3|) $)) (-15 -1631 ((-406 (-562)) $)))) +((-1891 (((-2 (|:| -1960 (-766)) (|:| -4221 |#1|) (|:| |radicand| (-639 |#1|))) (-417 |#1|) (-766)) 24)) (-4365 (((-639 (-2 (|:| -4221 (-766)) (|:| |logand| |#1|))) (-417 |#1|)) 28))) +(((-319 |#1|) (-10 -7 (-15 -1891 ((-2 (|:| -1960 (-766)) (|:| -4221 |#1|) (|:| |radicand| (-639 |#1|))) (-417 |#1|) (-766))) (-15 -4365 ((-639 (-2 (|:| -4221 (-766)) (|:| |logand| |#1|))) (-417 |#1|)))) (-554)) (T -319)) +((-4365 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-554)) (-5 *2 (-639 (-2 (|:| -4221 (-766)) (|:| |logand| *4)))) (-5 *1 (-319 *4)))) (-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-554)) (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *5) (|:| |radicand| (-639 *5)))) (-5 *1 (-319 *5)) (-5 *4 (-766))))) +(-10 -7 (-15 -1891 ((-2 (|:| -1960 (-766)) (|:| -4221 |#1|) (|:| |radicand| (-639 |#1|))) (-417 |#1|) (-766))) (-15 -4365 ((-639 (-2 (|:| -4221 (-766)) (|:| |logand| |#1|))) (-417 |#1|)))) +((-1402 (((-639 |#2|) (-1164 |#4|)) 43)) (-1987 ((|#3| (-562)) 46)) (-3769 (((-1164 |#4|) (-1164 |#3|)) 30)) (-3520 (((-1164 |#4|) (-1164 |#4|) (-562)) 55)) (-2215 (((-1164 |#3|) (-1164 |#4|)) 21)) (-3598 (((-639 (-766)) (-1164 |#4|) (-639 |#2|)) 40)) (-3333 (((-1164 |#3|) (-1164 |#4|) (-639 |#2|) (-639 |#3|)) 35))) +(((-320 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3333 ((-1164 |#3|) (-1164 |#4|) (-639 |#2|) (-639 |#3|))) (-15 -3598 ((-639 (-766)) (-1164 |#4|) (-639 |#2|))) (-15 -1402 ((-639 |#2|) (-1164 |#4|))) (-15 -2215 ((-1164 |#3|) (-1164 |#4|))) (-15 -3769 ((-1164 |#4|) (-1164 |#3|))) (-15 -3520 ((-1164 |#4|) (-1164 |#4|) (-562))) (-15 -1987 (|#3| (-562)))) (-788) (-845) (-1044) (-944 |#3| |#1| |#2|)) (T -320)) +((-1987 (*1 *2 *3) (-12 (-5 *3 (-562)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1044)) (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-944 *2 *4 *5)))) (-3520 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *7)) (-5 *3 (-562)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *1 (-320 *4 *5 *6 *7)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-1164 *6)) (-4 *6 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-1164 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-1164 *7)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *2 (-1164 *6)) (-5 *1 (-320 *4 *5 *6 *7)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-1164 *7)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *2 (-639 *5)) (-5 *1 (-320 *4 *5 *6 *7)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *8)) (-5 *4 (-639 *6)) (-4 *6 (-845)) (-4 *8 (-944 *7 *5 *6)) (-4 *5 (-788)) (-4 *7 (-1044)) (-5 *2 (-639 (-766))) (-5 *1 (-320 *5 *6 *7 *8)))) (-3333 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-5 *5 (-639 *8)) (-4 *7 (-845)) (-4 *8 (-1044)) (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) (-5 *2 (-1164 *8)) (-5 *1 (-320 *6 *7 *8 *9))))) +(-10 -7 (-15 -3333 ((-1164 |#3|) (-1164 |#4|) (-639 |#2|) (-639 |#3|))) (-15 -3598 ((-639 (-766)) (-1164 |#4|) (-639 |#2|))) (-15 -1402 ((-639 |#2|) (-1164 |#4|))) (-15 -2215 ((-1164 |#3|) (-1164 |#4|))) (-15 -3769 ((-1164 |#4|) (-1164 |#3|))) (-15 -3520 ((-1164 |#4|) (-1164 |#4|) (-562))) (-15 -1987 (|#3| (-562)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 14)) (-1938 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-562)))) $) 18)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766) $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-3126 ((|#1| $ (-562)) NIL)) (-4173 (((-562) $ (-562)) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1304 (($ (-1 |#1| |#1|) $) NIL)) (-3344 (($ (-1 (-562) (-562)) $) 10)) (-2913 (((-1150) $) NIL)) (-1755 (($ $ $) NIL (|has| (-562) (-787)))) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL) (($ |#1|) NIL)) (-3906 (((-562) |#1| $) NIL)) (-2286 (($) 15 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) 21 (|has| |#1| (-845)))) (-1848 (($ $) 11) (($ $ $) 20)) (-1835 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ (-562)) NIL) (($ (-562) |#1|) 19))) +(((-321 |#1|) (-13 (-21) (-712 (-562)) (-322 |#1| (-562)) (-10 -7 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) (-1092)) (T -321)) +NIL +(-13 (-21) (-712 (-562)) (-322 |#1| (-562)) (-10 -7 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1938 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $) 27)) (-3214 (((-3 $ "failed") $ $) 19)) (-1382 (((-766) $) 28)) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 32)) (-3961 ((|#1| $) 33)) (-3126 ((|#1| $ (-562)) 25)) (-4173 ((|#2| $ (-562)) 26)) (-1304 (($ (-1 |#1| |#1|) $) 22)) (-3344 (($ (-1 |#2| |#2|) $) 23)) (-2913 (((-1150) $) 9)) (-1755 (($ $ $) 21 (|has| |#2| (-787)))) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ |#1|) 31)) (-3906 ((|#2| |#1| $) 24)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1835 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ |#2| |#1|) 29))) +(((-322 |#1| |#2|) (-139) (-1092) (-130)) (T -322)) +((-1835 (*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-130)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)) (-5 *2 (-766)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)) (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1092)) (-4 *2 (-130)))) (-3126 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1092)))) (-3906 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-130)))) (-3344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)))) (-1304 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)))) (-1755 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-130)) (-4 *3 (-787))))) +(-13 (-130) (-1033 |t#1|) (-10 -8 (-15 -1835 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1382 ((-766) $)) (-15 -1938 ((-639 (-2 (|:| |gen| |t#1|) (|:| -3430 |t#2|))) $)) (-15 -4173 (|t#2| $ (-562))) (-15 -3126 (|t#1| $ (-562))) (-15 -3906 (|t#2| |t#1| $)) (-15 -3344 ($ (-1 |t#2| |t#2|) $)) (-15 -1304 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-787)) (-15 -1755 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-1033 |#1|) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1938 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766) $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-3126 ((|#1| $ (-562)) NIL)) (-4173 (((-766) $ (-562)) NIL)) (-1304 (($ (-1 |#1| |#1|) $) NIL)) (-3344 (($ (-1 (-766) (-766)) $) NIL)) (-2913 (((-1150) $) NIL)) (-1755 (($ $ $) NIL (|has| (-766) (-787)))) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL) (($ |#1|) NIL)) (-3906 (((-766) |#1| $) NIL)) (-2286 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1835 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-766) |#1|) NIL))) +(((-323 |#1|) (-322 |#1| (-766)) (-1092)) (T -323)) +NIL +(-322 |#1| (-766)) +((-1498 (($ $) 52)) (-3122 (($ $ |#2| |#3| $) 14)) (-2836 (($ (-1 |#3| |#3|) $) 33)) (-1534 (((-112) $) 24)) (-1547 ((|#2| $) 26)) (-1762 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-3900 ((|#2| $) 48)) (-4358 (((-639 |#2|) $) 36)) (-3548 (($ $ $ (-766)) 20)) (-1859 (($ $ |#2|) 40))) +(((-324 |#1| |#2| |#3|) (-10 -8 (-15 -1498 (|#1| |#1|)) (-15 -3900 (|#2| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3548 (|#1| |#1| |#1| (-766))) (-15 -3122 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2836 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4358 ((-639 |#2|) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1859 (|#1| |#1| |#2|))) (-325 |#2| |#3|) (-1044) (-787)) (T -324)) +NIL +(-10 -8 (-15 -1498 (|#1| |#1|)) (-15 -3900 (|#2| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3548 (|#1| |#1| |#1| (-766))) (-15 -3122 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2836 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4358 ((-639 |#2|) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1859 (|#1| |#1| |#2|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2796 (($ $) 55 (|has| |#1| (-554)))) (-4370 (((-112) $) 57 (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 91 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 89 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 86)) (-3961 (((-562) $) 90 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 88 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 87)) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-1498 (($ $) 75 (|has| |#1| (-451)))) (-3122 (($ $ |#1| |#2| $) 79)) (-1957 (((-112) $) 31)) (-1694 (((-766) $) 82)) (-3536 (((-112) $) 65)) (-1378 (($ |#1| |#2|) 64)) (-2076 ((|#2| $) 81)) (-2836 (($ (-1 |#2| |#2|) $) 80)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 85)) (-1547 ((|#1| $) 84)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-554)))) (-3598 ((|#2| $) 67)) (-3900 ((|#1| $) 76 (|has| |#1| (-451)))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50) (($ (-406 (-562))) 60 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))))) (-4358 (((-639 |#1|) $) 83)) (-3906 ((|#1| $ |#2|) 62)) (-2805 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-3548 (($ $ $ (-766)) 78 (|has| |#1| (-171)))) (-2922 (((-112) $ $) 56 (|has| |#1| (-554)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) +(((-325 |#1| |#2|) (-139) (-1044) (-787)) (T -325)) +((-1534 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-112)))) (-1547 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-639 *3)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-766)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-2836 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)))) (-3122 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) (-3548 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-4 *3 (-171)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *2 (-554)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)) (-4 *2 (-451)))) (-1498 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *2 (-451))))) +(-13 (-47 |t#1| |t#2|) (-410 |t#1|) (-10 -8 (-15 -1534 ((-112) $)) (-15 -1547 (|t#1| $)) (-15 -4358 ((-639 |t#1|) $)) (-15 -1694 ((-766) $)) (-15 -2076 (|t#2| $)) (-15 -2836 ($ (-1 |t#2| |t#2|) $)) (-15 -3122 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-171)) (-15 -3548 ($ $ $ (-766))) |%noBranch|) (IF (|has| |t#1| (-554)) (-15 -1762 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-451)) (PROGN (-15 -3900 (|t#1| $)) (-15 -1498 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-410 |#1|) . T) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4250 (((-112) (-112)) NIL)) (-4200 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403)))) (-3111 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-4354 (($ $) NIL (|has| |#1| (-1092)))) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4000 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-4264 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-2933 (($ $ (-562)) NIL)) (-3189 (((-766) $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1458 (($ (-766) |#1|) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2673 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-4300 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3297 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2851 (($ (-639 |#1|)) NIL)) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-2878 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) NIL)) (-4142 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-326 |#1|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2851 ($ (-639 |#1|))) (-15 -3189 ((-766) $)) (-15 -2933 ($ $ (-562))) (-15 -4250 ((-112) (-112))))) (-1207)) (T -326)) +((-2851 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-326 *3)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) (-2933 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) (-4250 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1207))))) +(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2851 ($ (-639 |#1|))) (-15 -3189 ((-766) $)) (-15 -2933 ($ $ (-562))) (-15 -4250 ((-112) (-112))))) +((-2024 (((-112) $) 42)) (-3285 (((-766)) 22)) (-1748 ((|#2| $) 46) (($ $ (-916)) 100)) (-1382 (((-766)) 101)) (-4018 (($ (-1256 |#2|)) 20)) (-1316 (((-112) $) 114)) (-2247 ((|#2| $) 48) (($ $ (-916)) 98)) (-1565 (((-1164 |#2|) $) NIL) (((-1164 $) $ (-916)) 94)) (-3892 (((-1164 |#2|) $) 82)) (-4203 (((-1164 |#2|) $) 79) (((-3 (-1164 |#2|) "failed") $ $) 76)) (-2393 (($ $ (-1164 |#2|)) 53)) (-4121 (((-828 (-916))) 28) (((-916)) 43)) (-3627 (((-133)) 25)) (-3598 (((-828 (-916)) $) 30) (((-916) $) 116)) (-2624 (($) 107)) (-3593 (((-1256 |#2|) $) NIL) (((-683 |#2|) (-1256 $)) 39)) (-2805 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3694 (((-112) $) 41))) +(((-327 |#1| |#2|) (-10 -8 (-15 -2805 ((-3 |#1| "failed") |#1|)) (-15 -1382 ((-766))) (-15 -2805 (|#1| |#1|)) (-15 -4203 ((-3 (-1164 |#2|) "failed") |#1| |#1|)) (-15 -4203 ((-1164 |#2|) |#1|)) (-15 -3892 ((-1164 |#2|) |#1|)) (-15 -2393 (|#1| |#1| (-1164 |#2|))) (-15 -1316 ((-112) |#1|)) (-15 -2624 (|#1|)) (-15 -1748 (|#1| |#1| (-916))) (-15 -2247 (|#1| |#1| (-916))) (-15 -1565 ((-1164 |#1|) |#1| (-916))) (-15 -1748 (|#2| |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -3598 ((-916) |#1|)) (-15 -4121 ((-916))) (-15 -1565 ((-1164 |#2|) |#1|)) (-15 -4018 (|#1| (-1256 |#2|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1|)) (-15 -3285 ((-766))) (-15 -4121 ((-828 (-916)))) (-15 -3598 ((-828 (-916)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -3694 ((-112) |#1|)) (-15 -3627 ((-133)))) (-328 |#2|) (-362)) (T -327)) +((-3627 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4121 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-828 (-916))) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-3285 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-4121 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-916)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-1382 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4))))) +(-10 -8 (-15 -2805 ((-3 |#1| "failed") |#1|)) (-15 -1382 ((-766))) (-15 -2805 (|#1| |#1|)) (-15 -4203 ((-3 (-1164 |#2|) "failed") |#1| |#1|)) (-15 -4203 ((-1164 |#2|) |#1|)) (-15 -3892 ((-1164 |#2|) |#1|)) (-15 -2393 (|#1| |#1| (-1164 |#2|))) (-15 -1316 ((-112) |#1|)) (-15 -2624 (|#1|)) (-15 -1748 (|#1| |#1| (-916))) (-15 -2247 (|#1| |#1| (-916))) (-15 -1565 ((-1164 |#1|) |#1| (-916))) (-15 -1748 (|#2| |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -3598 ((-916) |#1|)) (-15 -4121 ((-916))) (-15 -1565 ((-1164 |#2|) |#1|)) (-15 -4018 (|#1| (-1256 |#2|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1|)) (-15 -3285 ((-766))) (-15 -4121 ((-828 (-916)))) (-15 -3598 ((-828 (-916)) |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -3694 ((-112) |#1|)) (-15 -3627 ((-133)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-2024 (((-112) $) 95)) (-3285 (((-766)) 91)) (-1748 ((|#1| $) 141) (($ $ (-916)) 138 (|has| |#1| (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) 123 (|has| |#1| (-367)))) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-2569 (((-112) $ $) 60)) (-1382 (((-766)) 113 (|has| |#1| (-367)))) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 102)) (-3961 ((|#1| $) 103)) (-4018 (($ (-1256 |#1|)) 147)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-367)))) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-1448 (($) 110 (|has| |#1| (-367)))) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-3529 (($) 125 (|has| |#1| (-367)))) (-1322 (((-112) $) 126 (|has| |#1| (-367)))) (-3589 (($ $ (-766)) 88 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2717 (((-112) $) 72)) (-1900 (((-916) $) 128 (|has| |#1| (-367))) (((-828 (-916)) $) 85 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1957 (((-112) $) 31)) (-1846 (($) 136 (|has| |#1| (-367)))) (-1316 (((-112) $) 135 (|has| |#1| (-367)))) (-2247 ((|#1| $) 142) (($ $ (-916)) 139 (|has| |#1| (-367)))) (-3699 (((-3 $ "failed") $) 114 (|has| |#1| (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1565 (((-1164 |#1|) $) 146) (((-1164 $) $ (-916)) 140 (|has| |#1| (-367)))) (-1999 (((-916) $) 111 (|has| |#1| (-367)))) (-3892 (((-1164 |#1|) $) 132 (|has| |#1| (-367)))) (-4203 (((-1164 |#1|) $) 131 (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) 130 (|has| |#1| (-367)))) (-2393 (($ $ (-1164 |#1|)) 133 (|has| |#1| (-367)))) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71)) (-3729 (($) 115 (|has| |#1| (-367)) CONST)) (-2466 (($ (-916)) 112 (|has| |#1| (-367)))) (-3113 (((-112) $) 94)) (-1709 (((-1112) $) 10)) (-3148 (($) 134 (|has| |#1| (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) 122 (|has| |#1| (-367)))) (-1635 (((-417 $) $) 75)) (-4121 (((-828 (-916))) 92) (((-916)) 144)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-3362 (((-766) $) 127 (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) 86 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3627 (((-133)) 100)) (-4029 (($ $) 119 (|has| |#1| (-367))) (($ $ (-766)) 117 (|has| |#1| (-367)))) (-3598 (((-828 (-916)) $) 93) (((-916) $) 143)) (-2096 (((-1164 |#1|)) 145)) (-2283 (($) 124 (|has| |#1| (-367)))) (-2624 (($) 137 (|has| |#1| (-367)))) (-3593 (((-1256 |#1|) $) 149) (((-683 |#1|) (-1256 $)) 148)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 121 (|has| |#1| (-367)))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ |#1|) 101)) (-2805 (($ $) 120 (|has| |#1| (-367))) (((-3 $ "failed") $) 84 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2579 (((-766)) 28)) (-3928 (((-1256 $)) 151) (((-1256 $) (-916)) 150)) (-2922 (((-112) $ $) 40)) (-3694 (((-112) $) 96)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-4374 (($ $) 90 (|has| |#1| (-367))) (($ $ (-766)) 89 (|has| |#1| (-367)))) (-3114 (($ $) 118 (|has| |#1| (-367))) (($ $ (-766)) 116 (|has| |#1| (-367)))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ $) 66) (($ $ |#1|) 99)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) (((-328 |#1|) (-139) (-362)) (T -328)) -((-2162 (*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *3)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-912)) (-4 *4 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *4)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1253 *3)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1160 *3)))) (-3586 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1160 *3)))) (-4337 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-912)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-912)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-2164 (*1 *2 *1 *3) (-12 (-5 *3 (-912)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1160 *1)) (-4 *1 (-328 *4)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-1754 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2163 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2161 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) (-2544 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-1753 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3)))) (-1751 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3))))) -(-13 (-1272 |t#1|) (-1031 |t#1|) (-10 -8 (-15 -2162 ((-1253 $))) (-15 -2162 ((-1253 $) (-912))) (-15 -3625 ((-1253 |t#1|) $)) (-15 -3625 ((-682 |t#1|) (-1253 $))) (-15 -1939 ($ (-1253 |t#1|))) (-15 -2164 ((-1160 |t#1|) $)) (-15 -3586 ((-1160 |t#1|))) (-15 -4337 ((-912))) (-15 -4355 ((-912) $)) (-15 -3517 (|t#1| $)) (-15 -3734 (|t#1| $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-349)) (-15 -2164 ((-1160 $) $ (-912))) (-15 -3517 ($ $ (-912))) (-15 -3734 ($ $ (-912))) (-15 -1754 ($)) (-15 -2163 ($)) (-15 -2161 ((-112) $)) (-15 -2544 ($)) (-15 -1753 ($ $ (-1160 |t#1|))) (-15 -1752 ((-1160 |t#1|) $)) (-15 -1751 ((-1160 |t#1|) $)) (-15 -1751 ((-3 (-1160 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-232) |has| |#1| (-367)) ((-242) . T) ((-289) . T) ((-306) . T) ((-1272 |#1|) . T) ((-362) . T) ((-401) -3936 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-367) |has| |#1| (-367)) ((-349) |has| |#1| (-367)) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1031 |#1|) . T) ((-1048 #1#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-367)) ((-1209) . T) ((-1261 |#1|) . T)) -((-2947 (((-112) $ $) NIL)) (-1772 (($ (-1165) $) 87)) (-1763 (($) 76)) (-1755 (((-1110) (-1110)) 9)) (-1762 (($) 77)) (-1766 (($) 89) (($ (-313 (-692))) 97) (($ (-313 (-694))) 93) (($ (-313 (-687))) 101) (($ (-313 (-377))) 108) (($ (-313 (-544))) 104) (($ (-313 (-167 (-377)))) 112)) (-1771 (($ (-1165) $) 88)) (-1761 (($ (-635 (-857))) 78)) (-1757 (((-1259) $) 74)) (-1759 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1770 (($ (-1110)) 50)) (-1756 (((-1093) $) 24)) (-1773 (($ (-1082 (-939 (-544))) $) 84) (($ (-1082 (-939 (-544))) (-939 (-544)) $) 85)) (-1769 (($ (-1110)) 86)) (-1765 (($ (-1165) $) 114) (($ (-1165) $ $) 115)) (-1760 (($ (-1166) (-635 (-1166))) 75)) (-1768 (($ (-1148)) 81) (($ (-635 (-1148))) 79)) (-4353 (((-857) $) 117)) (-1758 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3807 (-112)) (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544))) (|:| -3634 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 $))) (|:| |commonBranch| (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166))))) (|:| |printBranch| (-635 (-857)))) $) 43)) (-1767 (($ (-1148)) 186)) (-1764 (($ (-635 $)) 113)) (-2965 (($ (-1166) (-1148)) 119) (($ (-1166) (-313 (-694))) 159) (($ (-1166) (-313 (-692))) 160) (($ (-1166) (-313 (-687))) 161) (($ (-1166) (-682 (-694))) 122) (($ (-1166) (-682 (-692))) 125) (($ (-1166) (-682 (-687))) 128) (($ (-1166) (-1253 (-694))) 131) (($ (-1166) (-1253 (-692))) 134) (($ (-1166) (-1253 (-687))) 137) (($ (-1166) (-682 (-313 (-694)))) 140) (($ (-1166) (-682 (-313 (-692)))) 143) (($ (-1166) (-682 (-313 (-687)))) 146) (($ (-1166) (-1253 (-313 (-694)))) 149) (($ (-1166) (-1253 (-313 (-692)))) 152) (($ (-1166) (-1253 (-313 (-687)))) 155) (($ (-1166) (-635 (-939 (-544))) (-313 (-694))) 156) (($ (-1166) (-635 (-939 (-544))) (-313 (-692))) 157) (($ (-1166) (-635 (-939 (-544))) (-313 (-687))) 158) (($ (-1166) (-313 (-544))) 183) (($ (-1166) (-313 (-377))) 184) (($ (-1166) (-313 (-167 (-377)))) 185) (($ (-1166) (-682 (-313 (-544)))) 164) (($ (-1166) (-682 (-313 (-377)))) 167) (($ (-1166) (-682 (-313 (-167 (-377))))) 170) (($ (-1166) (-1253 (-313 (-544)))) 173) (($ (-1166) (-1253 (-313 (-377)))) 176) (($ (-1166) (-1253 (-313 (-167 (-377))))) 179) (($ (-1166) (-635 (-939 (-544))) (-313 (-544))) 180) (($ (-1166) (-635 (-939 (-544))) (-313 (-377))) 181) (($ (-1166) (-635 (-939 (-544))) (-313 (-167 (-377)))) 182)) (-3437 (((-112) $ $) NIL))) -(((-329) (-13 (-1091) (-10 -8 (-15 -1773 ($ (-1082 (-939 (-544))) $)) (-15 -1773 ($ (-1082 (-939 (-544))) (-939 (-544)) $)) (-15 -1772 ($ (-1165) $)) (-15 -1771 ($ (-1165) $)) (-15 -1770 ($ (-1110))) (-15 -1769 ($ (-1110))) (-15 -1768 ($ (-1148))) (-15 -1768 ($ (-635 (-1148)))) (-15 -1767 ($ (-1148))) (-15 -1766 ($)) (-15 -1766 ($ (-313 (-692)))) (-15 -1766 ($ (-313 (-694)))) (-15 -1766 ($ (-313 (-687)))) (-15 -1766 ($ (-313 (-377)))) (-15 -1766 ($ (-313 (-544)))) (-15 -1766 ($ (-313 (-167 (-377))))) (-15 -1765 ($ (-1165) $)) (-15 -1765 ($ (-1165) $ $)) (-15 -2965 ($ (-1166) (-1148))) (-15 -2965 ($ (-1166) (-313 (-694)))) (-15 -2965 ($ (-1166) (-313 (-692)))) (-15 -2965 ($ (-1166) (-313 (-687)))) (-15 -2965 ($ (-1166) (-682 (-694)))) (-15 -2965 ($ (-1166) (-682 (-692)))) (-15 -2965 ($ (-1166) (-682 (-687)))) (-15 -2965 ($ (-1166) (-1253 (-694)))) (-15 -2965 ($ (-1166) (-1253 (-692)))) (-15 -2965 ($ (-1166) (-1253 (-687)))) (-15 -2965 ($ (-1166) (-682 (-313 (-694))))) (-15 -2965 ($ (-1166) (-682 (-313 (-692))))) (-15 -2965 ($ (-1166) (-682 (-313 (-687))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-694))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-692))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-687))))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-694)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-692)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-687)))) (-15 -2965 ($ (-1166) (-313 (-544)))) (-15 -2965 ($ (-1166) (-313 (-377)))) (-15 -2965 ($ (-1166) (-313 (-167 (-377))))) (-15 -2965 ($ (-1166) (-682 (-313 (-544))))) (-15 -2965 ($ (-1166) (-682 (-313 (-377))))) (-15 -2965 ($ (-1166) (-682 (-313 (-167 (-377)))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-544))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-377))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-167 (-377)))))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-544)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-377)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-167 (-377))))) (-15 -1764 ($ (-635 $))) (-15 -1763 ($)) (-15 -1762 ($)) (-15 -1761 ($ (-635 (-857)))) (-15 -1760 ($ (-1166) (-635 (-1166)))) (-15 -1759 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1758 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3807 (-112)) (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544))) (|:| -3634 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 $))) (|:| |commonBranch| (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166))))) (|:| |printBranch| (-635 (-857)))) $)) (-15 -1757 ((-1259) $)) (-15 -1756 ((-1093) $)) (-15 -1755 ((-1110) (-1110)))))) (T -329)) -((-1773 (*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-939 (-544)))) (-5 *1 (-329)))) (-1773 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1082 (-939 (-544)))) (-5 *3 (-939 (-544))) (-5 *1 (-329)))) (-1772 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-1771 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-1770 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329)))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-329)))) (-1767 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329)))) (-1766 (*1 *1) (-5 *1 (-329))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-692))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-694))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-687))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-5 *1 (-329)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-313 (-167 (-377)))) (-5 *1 (-329)))) (-1765 (*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-1765 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-694))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-692))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-687))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-694))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-692))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-687))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-694))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-692))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-687))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-694)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-692)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-687)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-694)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-692)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-687)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-694))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-692))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-687))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-544))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-377))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-167 (-377)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-544)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-377)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-167 (-377))))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-544)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-377)))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-167 (-377))))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-544))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-377))) (-5 *1 (-329)))) (-2965 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-167 (-377)))) (-5 *1 (-329)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-329)))) (-1763 (*1 *1) (-5 *1 (-329))) (-1762 (*1 *1) (-5 *1 (-329))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-329)))) (-1760 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1166)) (-5 *1 (-329)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-329)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| (-329)) (|:| |elseClause| (-329)))) (|:| |returnBranch| (-2 (|:| -3807 (-112)) (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |blockBranch| (-635 (-329))) (|:| |commentBranch| (-635 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544))) (|:| -3634 (-329)))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 (-329)))) (|:| |commonBranch| (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166))))) (|:| |printBranch| (-635 (-857))))) (-5 *1 (-329)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-329)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-329)))) (-1755 (*1 *2 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329))))) -(-13 (-1091) (-10 -8 (-15 -1773 ($ (-1082 (-939 (-544))) $)) (-15 -1773 ($ (-1082 (-939 (-544))) (-939 (-544)) $)) (-15 -1772 ($ (-1165) $)) (-15 -1771 ($ (-1165) $)) (-15 -1770 ($ (-1110))) (-15 -1769 ($ (-1110))) (-15 -1768 ($ (-1148))) (-15 -1768 ($ (-635 (-1148)))) (-15 -1767 ($ (-1148))) (-15 -1766 ($)) (-15 -1766 ($ (-313 (-692)))) (-15 -1766 ($ (-313 (-694)))) (-15 -1766 ($ (-313 (-687)))) (-15 -1766 ($ (-313 (-377)))) (-15 -1766 ($ (-313 (-544)))) (-15 -1766 ($ (-313 (-167 (-377))))) (-15 -1765 ($ (-1165) $)) (-15 -1765 ($ (-1165) $ $)) (-15 -2965 ($ (-1166) (-1148))) (-15 -2965 ($ (-1166) (-313 (-694)))) (-15 -2965 ($ (-1166) (-313 (-692)))) (-15 -2965 ($ (-1166) (-313 (-687)))) (-15 -2965 ($ (-1166) (-682 (-694)))) (-15 -2965 ($ (-1166) (-682 (-692)))) (-15 -2965 ($ (-1166) (-682 (-687)))) (-15 -2965 ($ (-1166) (-1253 (-694)))) (-15 -2965 ($ (-1166) (-1253 (-692)))) (-15 -2965 ($ (-1166) (-1253 (-687)))) (-15 -2965 ($ (-1166) (-682 (-313 (-694))))) (-15 -2965 ($ (-1166) (-682 (-313 (-692))))) (-15 -2965 ($ (-1166) (-682 (-313 (-687))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-694))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-692))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-687))))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-694)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-692)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-687)))) (-15 -2965 ($ (-1166) (-313 (-544)))) (-15 -2965 ($ (-1166) (-313 (-377)))) (-15 -2965 ($ (-1166) (-313 (-167 (-377))))) (-15 -2965 ($ (-1166) (-682 (-313 (-544))))) (-15 -2965 ($ (-1166) (-682 (-313 (-377))))) (-15 -2965 ($ (-1166) (-682 (-313 (-167 (-377)))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-544))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-377))))) (-15 -2965 ($ (-1166) (-1253 (-313 (-167 (-377)))))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-544)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-377)))) (-15 -2965 ($ (-1166) (-635 (-939 (-544))) (-313 (-167 (-377))))) (-15 -1764 ($ (-635 $))) (-15 -1763 ($)) (-15 -1762 ($)) (-15 -1761 ($ (-635 (-857)))) (-15 -1760 ($ (-1166) (-635 (-1166)))) (-15 -1759 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1758 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1166)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1165)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3807 (-112)) (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) (|:| |blockBranch| (-635 $)) (|:| |commentBranch| (-635 (-1148))) (|:| |callBranch| (-1148)) (|:| |forBranch| (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544))) (|:| -3634 $))) (|:| |labelBranch| (-1110)) (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 $))) (|:| |commonBranch| (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166))))) (|:| |printBranch| (-635 (-857)))) $)) (-15 -1757 ((-1259) $)) (-15 -1756 ((-1093) $)) (-15 -1755 ((-1110) (-1110))))) -((-2947 (((-112) $ $) NIL)) (-1774 (((-112) $) 11)) (-4045 (($ |#1|) 8)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4041 (($ |#1|) 9)) (-4353 (((-857) $) 17)) (-2357 ((|#1| $) 12)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 19))) -(((-330 |#1|) (-13 (-844) (-10 -8 (-15 -4045 ($ |#1|)) (-15 -4041 ($ |#1|)) (-15 -1774 ((-112) $)) (-15 -2357 (|#1| $)))) (-844)) (T -330)) -((-4045 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) (-4041 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-844)))) (-2357 (*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844))))) -(-13 (-844) (-10 -8 (-15 -4045 ($ |#1|)) (-15 -4041 ($ |#1|)) (-15 -1774 ((-112) $)) (-15 -2357 (|#1| $)))) -((-1775 (((-329) (-1166) (-939 (-544))) 23)) (-1776 (((-329) (-1166) (-939 (-544))) 27)) (-2451 (((-329) (-1166) (-1082 (-939 (-544))) (-1082 (-939 (-544)))) 26) (((-329) (-1166) (-939 (-544)) (-939 (-544))) 24)) (-1777 (((-329) (-1166) (-939 (-544))) 31))) -(((-331) (-10 -7 (-15 -1775 ((-329) (-1166) (-939 (-544)))) (-15 -2451 ((-329) (-1166) (-939 (-544)) (-939 (-544)))) (-15 -2451 ((-329) (-1166) (-1082 (-939 (-544))) (-1082 (-939 (-544))))) (-15 -1776 ((-329) (-1166) (-939 (-544)))) (-15 -1777 ((-329) (-1166) (-939 (-544)))))) (T -331)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2451 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1082 (-939 (-544)))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2451 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1775 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331))))) -(-10 -7 (-15 -1775 ((-329) (-1166) (-939 (-544)))) (-15 -2451 ((-329) (-1166) (-939 (-544)) (-939 (-544)))) (-15 -2451 ((-329) (-1166) (-1082 (-939 (-544))) (-1082 (-939 (-544))))) (-15 -1776 ((-329) (-1166) (-939 (-544)))) (-15 -1777 ((-329) (-1166) (-939 (-544))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4249 (($ $) 33)) (-1780 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-1778 (((-1253 |#4|) $) 125)) (-2120 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 31)) (-3644 (((-1110) $) NIL)) (-2544 (((-3 |#4| "failed") $) 36)) (-1779 (((-1253 |#4|) $) 118)) (-1781 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-544)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3839 (((-2 (|:| -2459 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4353 (((-857) $) 17)) (-3040 (($) 14 T CONST)) (-3437 (((-112) $ $) 20)) (-4244 (($ $) 27) (($ $ $) NIL)) (-4246 (($ $ $) 25)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 23))) -(((-332 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1779 ((-1253 |#4|) $)) (-15 -1778 ((-1253 |#4|) $)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -332)) -((-1779 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *6)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))) (-1778 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *6)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5))))) -(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1779 ((-1253 |#4|) $)) (-15 -1778 ((-1253 |#4|) $)))) -((-4365 (((-332 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-332 |#1| |#2| |#3| |#4|)) 33))) -(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4365 ((-332 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-332 |#1| |#2| |#3| |#4|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-362) (-1229 |#5|) (-1229 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -333)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-332 *5 *6 *7 *8)) (-4 *5 (-362)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *9 (-362)) (-4 *10 (-1229 *9)) (-4 *11 (-1229 (-406 *10))) (-5 *2 (-332 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-341 *9 *10 *11))))) -(-10 -7 (-15 -4365 ((-332 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-332 |#1| |#2| |#3| |#4|)))) -((-1780 (((-112) $) 14))) -(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1780 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-362) (-1229 |#2|) (-1229 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -334)) -NIL -(-10 -8 (-15 -1780 ((-112) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4249 (($ $) 26)) (-1780 (((-112) $) 25)) (-3643 (((-1148) $) 9)) (-2120 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 32)) (-3644 (((-1110) $) 10)) (-2544 (((-3 |#4| "failed") $) 24)) (-1781 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-544)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3839 (((-2 (|:| -2459 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20))) -(((-335 |#1| |#2| |#3| |#4|) (-139) (-362) (-1229 |t#1|) (-1229 (-406 |t#2|)) (-341 |t#1| |t#2| |t#3|)) (T -335)) -((-2120 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-412 *4 (-406 *4) *5 *6)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) (-4 *1 (-335 *3 *4 *5 *6)))) (-1781 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) (-1781 (*1 *1 *2 *2) (-12 (-4 *2 (-362)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) (-1781 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-544)) (-4 *2 (-362)) (-4 *4 (-1229 *2)) (-4 *5 (-1229 (-406 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-341 *2 *4 *5)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-2 (|:| -2459 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) (-4249 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))) (-2544 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *2 (-341 *3 *4 *5)))) (-1781 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-362)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2120 ((-412 |t#2| (-406 |t#2|) |t#3| |t#4|) $)) (-15 -1781 ($ (-412 |t#2| (-406 |t#2|) |t#3| |t#4|))) (-15 -1781 ($ |t#4|)) (-15 -1781 ($ |t#1| |t#1|)) (-15 -1781 ($ |t#1| |t#1| (-544))) (-15 -3839 ((-2 (|:| -2459 (-412 |t#2| (-406 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4249 ($ $)) (-15 -1780 ((-112) $)) (-15 -2544 ((-3 |t#4| "failed") $)) (-15 -1781 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-4174 (($ $ (-1166) |#2|) NIL) (($ $ (-635 (-1166)) (-635 |#2|)) 20) (($ $ (-635 (-292 |#2|))) 15) (($ $ (-292 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-635 |#2|) (-635 |#2|)) NIL)) (-4206 (($ $ |#2|) 11))) -(((-336 |#1| |#2|) (-10 -8 (-15 -4206 (|#1| |#1| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 |#2|))) (-15 -4174 (|#1| |#1| (-1166) |#2|))) (-337 |#2|) (-1091)) (T -336)) -NIL -(-10 -8 (-15 -4206 (|#1| |#1| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 |#2|))) (-15 -4174 (|#1| |#1| (-1166) |#2|))) -((-4365 (($ (-1 |#1| |#1|) $) 6)) (-4174 (($ $ (-1166) |#1|) 17 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 16 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-635 (-292 |#1|))) 15 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 14 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-308 |#1|))) (($ $ (-635 |#1|) (-635 |#1|)) 12 (|has| |#1| (-308 |#1|)))) (-4206 (($ $ |#1|) 11 (|has| |#1| (-285 |#1| |#1|))))) -(((-337 |#1|) (-139) (-1091)) (T -337)) -((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1091))))) -(-13 (-10 -8 (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-285 |t#1| |t#1|)) (-6 (-285 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-512 (-1166) |t#1|)) (-6 (-512 (-1166) |t#1|)) |%noBranch|))) -(((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1166)) $) NIL)) (-1782 (((-112)) 90) (((-112) (-112)) 91)) (-1688 (((-635 (-606 $)) $) NIL)) (-3891 (($ $) NIL)) (-4046 (($ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL)) (-3420 (($ $) NIL)) (-3889 (($ $) NIL)) (-4045 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-606 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-313 |#3|)) 70) (((-3 $ "failed") (-1166)) 96) (((-3 $ "failed") (-313 (-544))) 58 (|has| |#3| (-1031 (-544)))) (((-3 $ "failed") (-406 (-939 (-544)))) 64 (|has| |#3| (-1031 (-544)))) (((-3 $ "failed") (-939 (-544))) 59 (|has| |#3| (-1031 (-544)))) (((-3 $ "failed") (-313 (-377))) 88 (|has| |#3| (-1031 (-377)))) (((-3 $ "failed") (-406 (-939 (-377)))) 82 (|has| |#3| (-1031 (-377)))) (((-3 $ "failed") (-939 (-377))) 77 (|has| |#3| (-1031 (-377))))) (-3557 (((-606 $) $) NIL) ((|#3| $) NIL) (($ (-313 |#3|)) 71) (($ (-1166)) 97) (($ (-313 (-544))) 60 (|has| |#3| (-1031 (-544)))) (($ (-406 (-939 (-544)))) 65 (|has| |#3| (-1031 (-544)))) (($ (-939 (-544))) 61 (|has| |#3| (-1031 (-544)))) (($ (-313 (-377))) 89 (|has| |#3| (-1031 (-377)))) (($ (-406 (-939 (-377)))) 83 (|has| |#3| (-1031 (-377)))) (($ (-939 (-377))) 79 (|has| |#3| (-1031 (-377))))) (-3866 (((-3 $ "failed") $) NIL)) (-4034 (($) 10)) (-2952 (($ $) NIL) (($ (-635 $)) NIL)) (-1687 (((-635 (-113)) $) NIL)) (-3430 (((-113) (-113)) NIL)) (-2545 (((-112) $) NIL)) (-3055 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-1685 (((-1160 $) (-606 $)) NIL (|has| $ (-1042)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 $ $) (-606 $)) NIL)) (-1690 (((-3 (-606 $) "failed") $) NIL)) (-1886 (($ $) 93)) (-4349 (($ $) NIL)) (-3643 (((-1148) $) NIL)) (-1689 (((-635 (-606 $)) $) NIL)) (-2356 (($ (-113) $) 92) (($ (-113) (-635 $)) NIL)) (-3013 (((-112) $ (-113)) NIL) (((-112) $ (-1166)) NIL)) (-2982 (((-765) $) NIL)) (-3644 (((-1110) $) NIL)) (-1686 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-4350 (($ $) NIL)) (-3056 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL)) (-3586 (($ $) NIL (|has| $ (-1042)))) (-3890 (($ $) NIL)) (-4041 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-606 $)) NIL) (($ |#3|) NIL) (($ (-544)) NIL) (((-313 |#3|) $) 95)) (-3511 (((-765)) NIL)) (-2969 (($ $) NIL) (($ (-635 $)) NIL)) (-2377 (((-112) (-113)) NIL)) (-3885 (($ $) NIL)) (-3883 (($ $) NIL)) (-3884 (($ $) NIL)) (-3787 (($ $) NIL)) (-3040 (($) 94 T CONST)) (-3046 (($) 24 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL))) -(((-338 |#1| |#2| |#3|) (-13 (-297) (-38 |#3|) (-1031 |#3|) (-893 (-1166)) (-10 -8 (-15 -3557 ($ (-313 |#3|))) (-15 -3558 ((-3 $ "failed") (-313 |#3|))) (-15 -3557 ($ (-1166))) (-15 -3558 ((-3 $ "failed") (-1166))) (-15 -4353 ((-313 |#3|) $)) (IF (|has| |#3| (-1031 (-544))) (PROGN (-15 -3557 ($ (-313 (-544)))) (-15 -3558 ((-3 $ "failed") (-313 (-544)))) (-15 -3557 ($ (-406 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-544))))) (-15 -3557 ($ (-939 (-544)))) (-15 -3558 ((-3 $ "failed") (-939 (-544))))) |%noBranch|) (IF (|has| |#3| (-1031 (-377))) (PROGN (-15 -3557 ($ (-313 (-377)))) (-15 -3558 ((-3 $ "failed") (-313 (-377)))) (-15 -3557 ($ (-406 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-377))))) (-15 -3557 ($ (-939 (-377)))) (-15 -3558 ((-3 $ "failed") (-939 (-377))))) |%noBranch|) (-15 -3787 ($ $)) (-15 -3420 ($ $)) (-15 -4350 ($ $)) (-15 -4349 ($ $)) (-15 -1886 ($ $)) (-15 -4045 ($ $)) (-15 -4041 ($ $)) (-15 -4046 ($ $)) (-15 -3883 ($ $)) (-15 -3884 ($ $)) (-15 -3885 ($ $)) (-15 -3889 ($ $)) (-15 -3890 ($ $)) (-15 -3891 ($ $)) (-15 -4034 ($)) (-15 -3467 ((-635 (-1166)) $)) (-15 -1782 ((-112))) (-15 -1782 ((-112) (-112))))) (-635 (-1166)) (-635 (-1166)) (-386)) (T -338)) -((-3557 (*1 *1 *2) (-12 (-5 *2 (-313 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) (-14 *4 (-635 *2)) (-4 *5 (-386)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-313 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-544)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-544)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-377)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-377)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-3787 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3420 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4350 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4349 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-1886 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4045 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4041 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4046 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3884 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3885 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3889 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-4034 (*1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) (-4 *4 (-386)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-386)))) (-1782 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) (-1782 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386))))) -(-13 (-297) (-38 |#3|) (-1031 |#3|) (-893 (-1166)) (-10 -8 (-15 -3557 ($ (-313 |#3|))) (-15 -3558 ((-3 $ "failed") (-313 |#3|))) (-15 -3557 ($ (-1166))) (-15 -3558 ((-3 $ "failed") (-1166))) (-15 -4353 ((-313 |#3|) $)) (IF (|has| |#3| (-1031 (-544))) (PROGN (-15 -3557 ($ (-313 (-544)))) (-15 -3558 ((-3 $ "failed") (-313 (-544)))) (-15 -3557 ($ (-406 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-544))))) (-15 -3557 ($ (-939 (-544)))) (-15 -3558 ((-3 $ "failed") (-939 (-544))))) |%noBranch|) (IF (|has| |#3| (-1031 (-377))) (PROGN (-15 -3557 ($ (-313 (-377)))) (-15 -3558 ((-3 $ "failed") (-313 (-377)))) (-15 -3557 ($ (-406 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-377))))) (-15 -3557 ($ (-939 (-377)))) (-15 -3558 ((-3 $ "failed") (-939 (-377))))) |%noBranch|) (-15 -3787 ($ $)) (-15 -3420 ($ $)) (-15 -4350 ($ $)) (-15 -4349 ($ $)) (-15 -1886 ($ $)) (-15 -4045 ($ $)) (-15 -4041 ($ $)) (-15 -4046 ($ $)) (-15 -3883 ($ $)) (-15 -3884 ($ $)) (-15 -3885 ($ $)) (-15 -3889 ($ $)) (-15 -3890 ($ $)) (-15 -3891 ($ $)) (-15 -4034 ($)) (-15 -3467 ((-635 (-1166)) $)) (-15 -1782 ((-112))) (-15 -1782 ((-112) (-112))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-899 |#1|) (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| (-899 |#1|) (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-899 |#1|) "failed") $) NIL)) (-3557 (((-899 |#1|) $) NIL)) (-1939 (($ (-1253 (-899 |#1|))) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-899 |#1|) (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-899 |#1|) (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| (-899 |#1|) (-367)))) (-1824 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367)))) (($ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| (-899 |#1|) (-367))) (((-826 (-912)) $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| (-899 |#1|) (-367)))) (-2161 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-3517 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-899 |#1|) (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 (-899 |#1|)) $) NIL) (((-1160 $) $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-2160 (((-912) $) NIL (|has| (-899 |#1|) (-367)))) (-1752 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367)))) (-1751 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-1160 (-899 |#1|)) "failed") $ $) NIL (|has| (-899 |#1|) (-367)))) (-1753 (($ $ (-1160 (-899 |#1|))) NIL (|has| (-899 |#1|) (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-899 |#1|) (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL (|has| (-899 |#1|) (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-899 |#1|) (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 (-899 |#1|))) NIL)) (-1818 (($) NIL (|has| (-899 |#1|) (-367)))) (-1754 (($) NIL (|has| (-899 |#1|) (-367)))) (-3625 (((-1253 (-899 |#1|)) $) NIL) (((-682 (-899 |#1|)) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-899 |#1|) (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-899 |#1|)) NIL)) (-3084 (($ $) NIL (|has| (-899 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3051 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ (-899 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-899 |#1|)) NIL) (($ (-899 |#1|) $) NIL))) -(((-339 |#1| |#2|) (-328 (-899 |#1|)) (-912) (-912)) (T -339)) -NIL -(-328 (-899 |#1|)) -((-1791 (((-2 (|:| |num| (-1253 |#3|)) (|:| |den| |#3|)) $) 38)) (-1939 (($ (-1253 (-406 |#3|)) (-1253 $)) NIL) (($ (-1253 (-406 |#3|))) NIL) (($ (-1253 |#3|) |#3|) 160)) (-1796 (((-1253 $) (-1253 $)) 144)) (-1783 (((-635 (-635 |#2|))) 118)) (-1808 (((-112) |#2| |#2|) 73)) (-3902 (($ $) 138)) (-3781 (((-765)) 31)) (-1797 (((-1253 $) (-1253 $)) 197)) (-1784 (((-635 (-939 |#2|)) (-1166)) 110)) (-1800 (((-112) $) 157)) (-1799 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-1786 (((-3 |#3| "failed")) 50)) (-1810 (((-765)) 169)) (-4206 ((|#2| $ |#2| |#2|) 131)) (-1787 (((-3 |#3| "failed")) 68)) (-4217 (($ $ (-1 (-406 |#3|) (-406 |#3|)) (-765)) NIL) (($ $ (-1 (-406 |#3|) (-406 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-1798 (((-1253 $) (-1253 $)) 150)) (-1785 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1809 (((-112)) 33))) -(((-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -1783 ((-635 (-635 |#2|)))) (-15 -1784 ((-635 (-939 |#2|)) (-1166))) (-15 -1785 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1786 ((-3 |#3| "failed"))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -4206 (|#2| |#1| |#2| |#2|)) (-15 -3902 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1799 ((-112) |#1| |#3|)) (-15 -1799 ((-112) |#1| |#2|)) (-15 -1939 (|#1| (-1253 |#3|) |#3|)) (-15 -1791 ((-2 (|:| |num| (-1253 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1796 ((-1253 |#1|) (-1253 |#1|))) (-15 -1797 ((-1253 |#1|) (-1253 |#1|))) (-15 -1798 ((-1253 |#1|) (-1253 |#1|))) (-15 -1799 ((-112) |#1|)) (-15 -1800 ((-112) |#1|)) (-15 -1808 ((-112) |#2| |#2|)) (-15 -1809 ((-112))) (-15 -1810 ((-765))) (-15 -3781 ((-765))) (-15 -4217 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -4217 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-765))) (-15 -1939 (|#1| (-1253 (-406 |#3|)))) (-15 -1939 (|#1| (-1253 (-406 |#3|)) (-1253 |#1|)))) (-341 |#2| |#3| |#4|) (-1209) (-1229 |#2|) (-1229 (-406 |#3|))) (T -340)) -((-3781 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-1810 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-1809 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-1808 (*1 *2 *3 *3) (-12 (-4 *3 (-1209)) (-4 *5 (-1229 *3)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) (-1787 (*1 *2) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-1786 (*1 *2) (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *5 (-1209)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-5 *2 (-635 (-939 *5))) (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) (-1783 (*1 *2) (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-635 (-635 *4))) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))) -(-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -1783 ((-635 (-635 |#2|)))) (-15 -1784 ((-635 (-939 |#2|)) (-1166))) (-15 -1785 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1786 ((-3 |#3| "failed"))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -4206 (|#2| |#1| |#2| |#2|)) (-15 -3902 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1799 ((-112) |#1| |#3|)) (-15 -1799 ((-112) |#1| |#2|)) (-15 -1939 (|#1| (-1253 |#3|) |#3|)) (-15 -1791 ((-2 (|:| |num| (-1253 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1796 ((-1253 |#1|) (-1253 |#1|))) (-15 -1797 ((-1253 |#1|) (-1253 |#1|))) (-15 -1798 ((-1253 |#1|) (-1253 |#1|))) (-15 -1799 ((-112) |#1|)) (-15 -1800 ((-112) |#1|)) (-15 -1808 ((-112) |#2| |#2|)) (-15 -1809 ((-112))) (-15 -1810 ((-765))) (-15 -3781 ((-765))) (-15 -4217 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -4217 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-765))) (-15 -1939 (|#1| (-1253 (-406 |#3|)))) (-15 -1939 (|#1| (-1253 (-406 |#3|)) (-1253 |#1|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1791 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 195)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 93 (|has| (-406 |#2|) (-362)))) (-2213 (($ $) 94 (|has| (-406 |#2|) (-362)))) (-2211 (((-112) $) 96 (|has| (-406 |#2|) (-362)))) (-1929 (((-682 (-406 |#2|)) (-1253 $)) 47) (((-682 (-406 |#2|))) 62)) (-3734 (((-406 |#2|) $) 53)) (-1819 (((-1177 (-912) (-765)) (-544)) 146 (|has| (-406 |#2|) (-349)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 113 (|has| (-406 |#2|) (-362)))) (-4376 (((-404 $) $) 114 (|has| (-406 |#2|) (-362)))) (-1733 (((-112) $ $) 104 (|has| (-406 |#2|) (-362)))) (-3521 (((-765)) 87 (|has| (-406 |#2|) (-367)))) (-1805 (((-112)) 212)) (-1804 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 169 (|has| (-406 |#2|) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 167 (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-3 (-406 |#2|) #1#) $) 164)) (-3557 (((-544) $) 168 (|has| (-406 |#2|) (-1031 (-544)))) (((-406 (-544)) $) 166 (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-406 |#2|) $) 165)) (-1939 (($ (-1253 (-406 |#2|)) (-1253 $)) 49) (($ (-1253 (-406 |#2|))) 65) (($ (-1253 |#2|) |#2|) 194)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-406 |#2|) (-349)))) (-2943 (($ $ $) 108 (|has| (-406 |#2|) (-362)))) (-1928 (((-682 (-406 |#2|)) $ (-1253 $)) 54) (((-682 (-406 |#2|)) $) 60)) (-2401 (((-682 (-544)) (-682 $)) 163 (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 162 (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-406 |#2|))) (|:| |vec| (-1253 (-406 |#2|)))) (-682 $) (-1253 $)) 161) (((-682 (-406 |#2|)) (-682 $)) 160)) (-1796 (((-1253 $) (-1253 $)) 200)) (-4249 (($ |#3|) 157) (((-3 $ "failed") (-406 |#3|)) 154 (|has| (-406 |#2|) (-362)))) (-3866 (((-3 $ "failed") $) 33)) (-1783 (((-635 (-635 |#1|))) 181 (|has| |#1| (-367)))) (-1808 (((-112) |#1| |#1|) 216)) (-3494 (((-912)) 55)) (-3377 (($) 90 (|has| (-406 |#2|) (-367)))) (-1803 (((-112)) 209)) (-1802 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-2942 (($ $ $) 107 (|has| (-406 |#2|) (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 102 (|has| (-406 |#2|) (-362)))) (-3902 (($ $) 187)) (-3215 (($) 148 (|has| (-406 |#2|) (-349)))) (-1824 (((-112) $) 149 (|has| (-406 |#2|) (-349)))) (-1914 (($ $ (-765)) 140 (|has| (-406 |#2|) (-349))) (($ $) 139 (|has| (-406 |#2|) (-349)))) (-4130 (((-112) $) 115 (|has| (-406 |#2|) (-362)))) (-4178 (((-912) $) 151 (|has| (-406 |#2|) (-349))) (((-826 (-912)) $) 137 (|has| (-406 |#2|) (-349)))) (-2545 (((-112) $) 31)) (-3781 (((-765)) 219)) (-1797 (((-1253 $) (-1253 $)) 201)) (-3517 (((-406 |#2|) $) 52)) (-1784 (((-635 (-939 |#1|)) (-1166)) 182 (|has| |#1| (-362)))) (-3848 (((-3 $ "failed") $) 141 (|has| (-406 |#2|) (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 111 (|has| (-406 |#2|) (-362)))) (-2164 ((|#3| $) 45 (|has| (-406 |#2|) (-362)))) (-2160 (((-912) $) 89 (|has| (-406 |#2|) (-367)))) (-3463 ((|#3| $) 155)) (-2041 (($ (-635 $)) 100 (|has| (-406 |#2|) (-362))) (($ $ $) 99 (|has| (-406 |#2|) (-362)))) (-3643 (((-1148) $) 9)) (-1792 (((-682 (-406 |#2|))) 196)) (-1794 (((-682 (-406 |#2|))) 198)) (-2779 (($ $) 116 (|has| (-406 |#2|) (-362)))) (-1789 (($ (-1253 |#2|) |#2|) 192)) (-1793 (((-682 (-406 |#2|))) 197)) (-1795 (((-682 (-406 |#2|))) 199)) (-1788 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-1790 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 193)) (-1801 (((-1253 $)) 205)) (-4325 (((-1253 $)) 206)) (-1800 (((-112) $) 204)) (-1799 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3849 (($) 142 (|has| (-406 |#2|) (-349)) CONST)) (-2535 (($ (-912)) 88 (|has| (-406 |#2|) (-367)))) (-1786 (((-3 |#2| "failed")) 184)) (-3644 (((-1110) $) 10)) (-1810 (((-765)) 218)) (-2544 (($) 159)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 101 (|has| (-406 |#2|) (-362)))) (-3545 (($ (-635 $)) 98 (|has| (-406 |#2|) (-362))) (($ $ $) 97 (|has| (-406 |#2|) (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 145 (|has| (-406 |#2|) (-349)))) (-4139 (((-404 $) $) 112 (|has| (-406 |#2|) (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 109 (|has| (-406 |#2|) (-362)))) (-3865 (((-3 $ "failed") $ $) 92 (|has| (-406 |#2|) (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| (-406 |#2|) (-362)))) (-1732 (((-765) $) 105 (|has| (-406 |#2|) (-362)))) (-4206 ((|#1| $ |#1| |#1|) 186)) (-1787 (((-3 |#2| "failed")) 185)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 106 (|has| (-406 |#2|) (-362)))) (-4164 (((-406 |#2|) (-1253 $)) 48) (((-406 |#2|)) 61)) (-1915 (((-765) $) 150 (|has| (-406 |#2|) (-349))) (((-3 (-765) "failed") $ $) 138 (|has| (-406 |#2|) (-349)))) (-4217 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) 122 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 121 (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-635 (-1166)) (-635 (-765))) 129 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166) (-765)) 130 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-635 (-1166))) 131 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166)) 132 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-765)) 134 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-3240 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) 136 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-3240 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-2543 (((-682 (-406 |#2|)) (-1253 $) (-1 (-406 |#2|) (-406 |#2|))) 153 (|has| (-406 |#2|) (-362)))) (-3586 ((|#3|) 158)) (-1818 (($) 147 (|has| (-406 |#2|) (-349)))) (-3625 (((-1253 (-406 |#2|)) $ (-1253 $)) 51) (((-682 (-406 |#2|)) (-1253 $) (-1253 $)) 50) (((-1253 (-406 |#2|)) $) 67) (((-682 (-406 |#2|)) (-1253 $)) 66)) (-4377 (((-1253 (-406 |#2|)) $) 64) (($ (-1253 (-406 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 144 (|has| (-406 |#2|) (-349)))) (-1798 (((-1253 $) (-1253 $)) 202)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 |#2|)) 38) (($ (-406 (-544))) 86 (-3936 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1031 (-406 (-544)))))) (($ $) 91 (|has| (-406 |#2|) (-362)))) (-3084 (($ $) 143 (|has| (-406 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-406 |#2|) (-144)))) (-2743 ((|#3| $) 46)) (-3511 (((-765)) 28)) (-1807 (((-112)) 215)) (-1806 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-2162 (((-1253 $)) 68)) (-2212 (((-112) $ $) 95 (|has| (-406 |#2|) (-362)))) (-1785 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-1809 (((-112)) 217)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) 124 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 123 (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1166)) (-635 (-765))) 125 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166) (-765)) 126 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-635 (-1166))) 127 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-1166)) 128 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) (-3240 (|has| (-406 |#2|) (-893 (-1166))) (|has| (-406 |#2|) (-362))))) (($ $ (-765)) 133 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-3240 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) 135 (-3936 (-3240 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-3240 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 120 (|has| (-406 |#2|) (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 117 (|has| (-406 |#2|) (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 |#2|)) 40) (($ (-406 |#2|) $) 39) (($ (-406 (-544)) $) 119 (|has| (-406 |#2|) (-362))) (($ $ (-406 (-544))) 118 (|has| (-406 |#2|) (-362))))) -(((-341 |#1| |#2| |#3|) (-139) (-1209) (-1229 |t#1|) (-1229 (-406 |t#2|))) (T -341)) -((-3781 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765)))) (-1810 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765)))) (-1809 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1808 (*1 *2 *3 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1807 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1806 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1806 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-1805 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1804 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1804 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-1803 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1802 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1802 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-4325 (*1 *2) (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)))) (-1801 (*1 *2) (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-1797 (*1 *2 *2) (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-1795 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-1794 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-1793 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-1792 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4))))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))) (-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3))))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4))))) (-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3))))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-2 (|:| |num| (-682 *5)) (|:| |den| *5))))) (-1799 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) (-1799 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) (-3902 (*1 *1 *1) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))))) (-4206 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))))) (-1787 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))) (-1786 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1209)) (-4 *6 (-1229 (-406 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-341 *4 *5 *6)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *4 (-362)) (-5 *2 (-635 (-939 *4))))) (-1783 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-635 (-635 *3)))))) -(-13 (-718 (-406 |t#2|) |t#3|) (-10 -8 (-15 -3781 ((-765))) (-15 -1810 ((-765))) (-15 -1809 ((-112))) (-15 -1808 ((-112) |t#1| |t#1|)) (-15 -1807 ((-112))) (-15 -1806 ((-112) |t#1|)) (-15 -1806 ((-112) |t#2|)) (-15 -1805 ((-112))) (-15 -1804 ((-112) |t#1|)) (-15 -1804 ((-112) |t#2|)) (-15 -1803 ((-112))) (-15 -1802 ((-112) |t#1|)) (-15 -1802 ((-112) |t#2|)) (-15 -4325 ((-1253 $))) (-15 -1801 ((-1253 $))) (-15 -1800 ((-112) $)) (-15 -1799 ((-112) $)) (-15 -1798 ((-1253 $) (-1253 $))) (-15 -1797 ((-1253 $) (-1253 $))) (-15 -1796 ((-1253 $) (-1253 $))) (-15 -1795 ((-682 (-406 |t#2|)))) (-15 -1794 ((-682 (-406 |t#2|)))) (-15 -1793 ((-682 (-406 |t#2|)))) (-15 -1792 ((-682 (-406 |t#2|)))) (-15 -1791 ((-2 (|:| |num| (-1253 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1939 ($ (-1253 |t#2|) |t#2|)) (-15 -1790 ((-2 (|:| |num| (-1253 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1789 ($ (-1253 |t#2|) |t#2|)) (-15 -1788 ((-2 (|:| |num| (-682 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1799 ((-112) $ |t#1|)) (-15 -1799 ((-112) $ |t#2|)) (-15 -4217 ($ $ (-1 |t#2| |t#2|))) (-15 -3902 ($ $)) (-15 -4206 (|t#1| $ |t#1| |t#1|)) (-15 -1787 ((-3 |t#2| "failed"))) (-15 -1786 ((-3 |t#2| "failed"))) (-15 -1785 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-362)) (-15 -1784 ((-635 (-939 |t#1|)) (-1166))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -1783 ((-635 (-635 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-38 #2=(-406 |#2|)) . T) ((-38 $) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-102) . T) ((-111 #1# #1#) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-144))) ((-146) |has| (-406 |#2|) (-146)) ((-611 #1#) -3936 (|has| (-406 |#2|) (-1031 (-406 (-544)))) (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-611 #2#) . T) ((-611 (-544)) . T) ((-611 $) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-608 (-857)) . T) ((-171) . T) ((-609 |#3|) . T) ((-230 #2#) |has| (-406 |#2|) (-362)) ((-232) -3936 (|has| (-406 |#2|) (-349)) (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362)))) ((-242) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-289) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-306) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-362) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-401) |has| (-406 |#2|) (-349)) ((-367) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-367))) ((-349) |has| (-406 |#2|) (-349)) ((-369 #2# |#3|) . T) ((-409 #2# |#3|) . T) ((-376 #2#) . T) ((-411 #2#) . T) ((-450) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-554) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-641 #1#) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-641 #2#) . T) ((-641 $) . T) ((-634 #2#) . T) ((-634 (-544)) |has| (-406 |#2|) (-634 (-544))) ((-711 #1#) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-711 #2#) . T) ((-711 $) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-718 #2# |#3|) . T) ((-720) . T) ((-893 (-1166)) -12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166)))) ((-914) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-1031 (-406 (-544))) |has| (-406 |#2|) (-1031 (-406 (-544)))) ((-1031 #2#) . T) ((-1031 (-544)) |has| (-406 |#2|) (-1031 (-544))) ((-1048 #1#) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362))) ((-1048 #2#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| (-406 |#2|) (-349)) ((-1209) -3936 (|has| (-406 |#2|) (-349)) (|has| (-406 |#2|) (-362)))) -((-4365 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4365 (|#8| (-1 |#5| |#1|) |#4|))) (-1209) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-1209) (-1229 |#5|) (-1229 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -342)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1209)) (-4 *8 (-1209)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *9 (-1229 *8)) (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1229 (-406 *9)))))) -(-10 -7 (-15 -4365 (|#8| (-1 |#5| |#1|) |#4|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-899 |#1|) (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| (-899 |#1|) (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-899 |#1|) "failed") $) NIL)) (-3557 (((-899 |#1|) $) NIL)) (-1939 (($ (-1253 (-899 |#1|))) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-899 |#1|) (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-899 |#1|) (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| (-899 |#1|) (-367)))) (-1824 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367)))) (($ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| (-899 |#1|) (-367))) (((-826 (-912)) $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| (-899 |#1|) (-367)))) (-2161 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-3517 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-899 |#1|) (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 (-899 |#1|)) $) NIL) (((-1160 $) $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-2160 (((-912) $) NIL (|has| (-899 |#1|) (-367)))) (-1752 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367)))) (-1751 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-1160 (-899 |#1|)) "failed") $ $) NIL (|has| (-899 |#1|) (-367)))) (-1753 (($ $ (-1160 (-899 |#1|))) NIL (|has| (-899 |#1|) (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-899 |#1|) (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-1811 (((-951 (-1110))) NIL)) (-2544 (($) NIL (|has| (-899 |#1|) (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-899 |#1|) (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 (-899 |#1|))) NIL)) (-1818 (($) NIL (|has| (-899 |#1|) (-367)))) (-1754 (($) NIL (|has| (-899 |#1|) (-367)))) (-3625 (((-1253 (-899 |#1|)) $) NIL) (((-682 (-899 |#1|)) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-899 |#1|) (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-899 |#1|)) NIL)) (-3084 (($ $) NIL (|has| (-899 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3051 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ (-899 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-899 |#1|)) NIL) (($ (-899 |#1|) $) NIL))) -(((-343 |#1| |#2|) (-13 (-328 (-899 |#1|)) (-10 -7 (-15 -1811 ((-951 (-1110)))))) (-912) (-912)) (T -343)) -((-1811 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-343 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912))))) -(-13 (-328 (-899 |#1|)) (-10 -7 (-15 -1811 ((-951 (-1110)))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 43)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) 40 (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) 114)) (-3557 ((|#1| $) 85)) (-1939 (($ (-1253 |#1|)) 103)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) 97 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) 128 (|has| |#1| (-367)))) (-1824 (((-112) $) 47 (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) 44 (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) 130 (|has| |#1| (-367)))) (-2161 (((-112) $) NIL (|has| |#1| (-367)))) (-3517 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) 89) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) 138 (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 145)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) 70 (|has| |#1| (-367)))) (-4338 (((-112) $) 117)) (-3644 (((-1110) $) NIL)) (-1811 (((-951 (-1110))) 41)) (-2544 (($) 126 (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 92 (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) 66) (((-912)) 67)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) 129 (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) 124 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 |#1|)) 95)) (-1818 (($) 127 (|has| |#1| (-367)))) (-1754 (($) 135 (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) 58) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) 141) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 74)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 137)) (-2162 (((-1253 $)) 116) (((-1253 $) (-912)) 72)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) 48 T CONST)) (-3046 (($) 45 T CONST)) (-4335 (($ $) 80 (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) 46)) (-4356 (($ $ $) 143) (($ $ |#1|) 144)) (-4244 (($ $) 125) (($ $ $) NIL)) (-4246 (($ $ $) 60)) (** (($ $ (-912)) 147) (($ $ (-765)) 148) (($ $ (-544)) 146)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 76) (($ $ $) 75) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142))) -(((-344 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1811 ((-951 (-1110)))))) (-349) (-1160 |#1|)) (T -344)) -((-1811 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1160 *3))))) -(-13 (-328 |#1|) (-10 -7 (-15 -1811 ((-951 (-1110)))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| |#1| (-367)))) (-2161 (((-112) $) NIL (|has| |#1| (-367)))) (-3517 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) NIL) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-1811 (((-951 (-1110))) NIL)) (-2544 (($) NIL (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 |#1|)) NIL)) (-1818 (($) NIL (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) NIL)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-345 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1811 ((-951 (-1110)))))) (-349) (-912)) (T -345)) -((-1811 (*1 *2) (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912))))) -(-13 (-328 |#1|) (-10 -7 (-15 -1811 ((-951 (-1110)))))) -((-1821 (((-765) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) 42)) (-1812 (((-951 (-1110)) (-1160 |#1|)) 85)) (-1813 (((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) (-1160 |#1|)) 78)) (-1814 (((-682 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) 86)) (-1815 (((-3 (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) "failed") (-912)) 13)) (-1816 (((-3 (-1160 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) (-912)) 18))) -(((-346 |#1|) (-10 -7 (-15 -1812 ((-951 (-1110)) (-1160 |#1|))) (-15 -1813 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) (-1160 |#1|))) (-15 -1814 ((-682 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1821 ((-765) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1815 ((-3 (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) "failed") (-912))) (-15 -1816 ((-3 (-1160 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) (-912)))) (-349)) (T -346)) -((-1816 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-3 (-1160 *4) (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1815 (*1 *2 *3) (|partial| -12 (-5 *3 (-912)) (-5 *2 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-4 *4 (-349)) (-5 *2 (-765)) (-5 *1 (-346 *4)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-4 *4 (-349)) (-5 *2 (-682 *4)) (-5 *1 (-346 *4)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-5 *1 (-346 *4)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-951 (-1110))) (-5 *1 (-346 *4))))) -(-10 -7 (-15 -1812 ((-951 (-1110)) (-1160 |#1|))) (-15 -1813 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) (-1160 |#1|))) (-15 -1814 ((-682 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1821 ((-765) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1815 ((-3 (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) "failed") (-912))) (-15 -1816 ((-3 (-1160 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) (-912)))) -((-4353 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -4353 (|#3| |#1|)) (-15 -4353 (|#1| |#3|))) (-328 |#2|) (-349) (-328 |#2|)) (T -347)) -((-4353 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-328 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-328 *4)))) (-4353 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-328 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-328 *4))))) -(-10 -7 (-15 -4353 (|#3| |#1|)) (-15 -4353 (|#1| |#3|))) -((-1824 (((-112) $) 50)) (-4178 (((-826 (-912)) $) 21) (((-912) $) 51)) (-3848 (((-3 $ "failed") $) 16)) (-3849 (($) 9)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 92)) (-1915 (((-3 (-765) "failed") $ $) 70) (((-765) $) 59)) (-4217 (($ $ (-765)) NIL) (($ $) 8)) (-1818 (($) 43)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 34)) (-3084 (((-3 $ "failed") $) 38) (($ $) 37))) -(((-348 |#1|) (-10 -8 (-15 -4178 ((-912) |#1|)) (-15 -1915 ((-765) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -1818 (|#1|)) (-15 -3085 ((-3 (-1253 |#1|) "failed") (-682 |#1|))) (-15 -3084 (|#1| |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -1915 ((-3 (-765) "failed") |#1| |#1|)) (-15 -4178 ((-826 (-912)) |#1|)) (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)))) (-349)) (T -348)) -NIL -(-10 -8 (-15 -4178 ((-912) |#1|)) (-15 -1915 ((-765) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -1818 (|#1|)) (-15 -3085 ((-3 (-1253 |#1|) "failed") (-682 |#1|))) (-15 -3084 (|#1| |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -1915 ((-3 (-765) "failed") |#1| |#1|)) (-15 -4178 ((-826 (-912)) |#1|)) (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1819 (((-1177 (-912) (-765)) (-544)) 94)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-3521 (((-765)) 104)) (-4131 (($) 17 T CONST)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-3377 (($) 107)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-3215 (($) 92)) (-1824 (((-112) $) 91)) (-1914 (($ $) 80) (($ $ (-765)) 79)) (-4130 (((-112) $) 72)) (-4178 (((-826 (-912)) $) 82) (((-912) $) 89)) (-2545 (((-112) $) 31)) (-3848 (((-3 $ "failed") $) 103)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2160 (((-912) $) 106)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3849 (($) 102 T CONST)) (-2535 (($ (-912)) 105)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 95)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1915 (((-3 (-765) "failed") $ $) 81) (((-765) $) 90)) (-4217 (($ $ (-765)) 100) (($ $) 98)) (-1818 (($) 93)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 96)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67)) (-3084 (((-3 $ "failed") $) 83) (($ $) 97)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-765)) 101) (($ $) 99)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68))) -(((-349) (-139)) (T -349)) -((-3084 (*1 *1 *1) (-4 *1 (-349))) (-3085 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-349)) (-5 *2 (-1253 *1)))) (-1820 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))))) (-1819 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-544)) (-5 *2 (-1177 (-912) (-765))))) (-1818 (*1 *1) (-4 *1 (-349))) (-3215 (*1 *1) (-4 *1 (-349))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-765)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-912)))) (-1817 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-401) (-367) (-1141) (-232) (-10 -8 (-15 -3084 ($ $)) (-15 -3085 ((-3 (-1253 $) "failed") (-682 $))) (-15 -1820 ((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544)))))) (-15 -1819 ((-1177 (-912) (-765)) (-544))) (-15 -1818 ($)) (-15 -3215 ($)) (-15 -1824 ((-112) $)) (-15 -1915 ((-765) $)) (-15 -4178 ((-912) $)) (-15 -1817 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-232) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) . T) ((-367) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) . T) ((-1209) . T)) -((-4326 (((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|) 53)) (-4325 (((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))) 51))) -(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|))) (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))) (-1229 |#1|) (-409 |#1| |#2|)) (T -350)) -((-4326 (*1 *2 *3) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4325 (*1 *2) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) |#1|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-899 |#1|) (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1821 (((-765)) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| (-899 |#1|) (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-899 |#1|) "failed") $) NIL)) (-3557 (((-899 |#1|) $) NIL)) (-1939 (($ (-1253 (-899 |#1|))) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-899 |#1|) (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-899 |#1|) (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| (-899 |#1|) (-367)))) (-1824 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367)))) (($ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| (-899 |#1|) (-367))) (((-826 (-912)) $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| (-899 |#1|) (-367)))) (-2161 (((-112) $) NIL (|has| (-899 |#1|) (-367)))) (-3517 (((-899 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-899 |#1|) (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 (-899 |#1|)) $) NIL) (((-1160 $) $ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-2160 (((-912) $) NIL (|has| (-899 |#1|) (-367)))) (-1752 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367)))) (-1751 (((-1160 (-899 |#1|)) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-1160 (-899 |#1|)) "failed") $ $) NIL (|has| (-899 |#1|) (-367)))) (-1753 (($ $ (-1160 (-899 |#1|))) NIL (|has| (-899 |#1|) (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-899 |#1|) (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| (-899 |#1|) (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-1823 (((-1253 (-635 (-2 (|:| -3806 (-899 |#1|)) (|:| -2535 (-1110)))))) NIL)) (-1822 (((-682 (-899 |#1|))) NIL)) (-2544 (($) NIL (|has| (-899 |#1|) (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-899 |#1|) (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| (-899 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 (-899 |#1|))) NIL)) (-1818 (($) NIL (|has| (-899 |#1|) (-367)))) (-1754 (($) NIL (|has| (-899 |#1|) (-367)))) (-3625 (((-1253 (-899 |#1|)) $) NIL) (((-682 (-899 |#1|)) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-899 |#1|) (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-899 |#1|)) NIL)) (-3084 (($ $) NIL (|has| (-899 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| (-899 |#1|) (-144)) (|has| (-899 |#1|) (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3051 (($ $) NIL (|has| (-899 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-899 |#1|) (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ (-899 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-899 |#1|)) NIL) (($ (-899 |#1|) $) NIL))) -(((-351 |#1| |#2|) (-13 (-328 (-899 |#1|)) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 (-899 |#1|)) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 (-899 |#1|)))) (-15 -1821 ((-765))))) (-912) (-912)) (T -351)) -((-1823 (*1 *2) (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 (-899 *3)) (|:| -2535 (-1110)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-1822 (*1 *2) (-12 (-5 *2 (-682 (-899 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-1821 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912))))) -(-13 (-328 (-899 |#1|)) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 (-899 |#1|)) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 (-899 |#1|)))) (-15 -1821 ((-765))))) -((-2947 (((-112) $ $) 61)) (-3589 (((-112) $) 74)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) 92) (($ $ (-912)) 90 (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) 148 (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1821 (((-765)) 89)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) 162 (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) 112)) (-3557 ((|#1| $) 91)) (-1939 (($ (-1253 |#1|)) 58)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) 158 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) 149 (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) 98 (|has| |#1| (-367)))) (-2161 (((-112) $) 175 (|has| |#1| (-367)))) (-3517 ((|#1| $) 94) (($ $ (-912)) 93 (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) 189) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) 134 (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) 73 (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) 70 (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) 82 (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) 69 (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 192)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) 137 (|has| |#1| (-367)))) (-4338 (((-112) $) 108)) (-3644 (((-1110) $) NIL)) (-1823 (((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) 83)) (-1822 (((-682 |#1|)) 87)) (-2544 (($) 96 (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 150 (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) 151)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) 62)) (-3586 (((-1160 |#1|)) 152)) (-1818 (($) 133 (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) 106) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) 124) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 57)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 156)) (-2162 (((-1253 $)) 172) (((-1253 $) (-912)) 101)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) 117 T CONST)) (-3046 (($) 33 T CONST)) (-4335 (($ $) 107 (|has| |#1| (-367))) (($ $ (-765)) 99 (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) 183)) (-4356 (($ $ $) 104) (($ $ |#1|) 105)) (-4244 (($ $) 177) (($ $ $) 181)) (-4246 (($ $ $) 179)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 138)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 186) (($ $ $) 142) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-352 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 |#1|))) (-15 -1821 ((-765))))) (-349) (-3 (-1160 |#1|) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (T -352)) -((-1823 (*1 *2) (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1160 *3) *2)))) (-1822 (*1 *2) (-12 (-5 *2 (-682 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1160 *3) (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110))))))))) (-1821 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1160 *3) (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110)))))))))) -(-13 (-328 |#1|) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 |#1|))) (-15 -1821 ((-765))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1821 (((-765)) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| |#1| (-367)))) (-2161 (((-112) $) NIL (|has| |#1| (-367)))) (-3517 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) NIL) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-1823 (((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110)))))) NIL)) (-1822 (((-682 |#1|)) NIL)) (-2544 (($) NIL (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 |#1|)) NIL)) (-1818 (($) NIL (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) NIL)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-353 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 |#1|))) (-15 -1821 ((-765))))) (-349) (-912)) (T -353)) -((-1823 (*1 *2) (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912)))) (-1822 (*1 *2) (-12 (-5 *2 (-682 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912)))) (-1821 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912))))) -(-13 (-328 |#1|) (-10 -7 (-15 -1823 ((-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))))) (-15 -1822 ((-682 |#1|))) (-15 -1821 ((-765))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) 120 (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) 139 (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) 93)) (-3557 ((|#1| $) 90)) (-1939 (($ (-1253 |#1|)) 85)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) 82 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) 42 (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) 121 (|has| |#1| (-367)))) (-2161 (((-112) $) 74 (|has| |#1| (-367)))) (-3517 ((|#1| $) 39) (($ $ (-912)) 43 (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) 65) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) 97 (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) 95 (|has| |#1| (-367)))) (-4338 (((-112) $) 141)) (-3644 (((-1110) $) NIL)) (-2544 (($) 36 (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 115 (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) 138)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) 59)) (-3586 (((-1160 |#1|)) 88)) (-1818 (($) 126 (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) 53) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) 137) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 87)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 143)) (-2162 (((-1253 $)) 109) (((-1253 $) (-912)) 49)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) 111 T CONST)) (-3046 (($) 32 T CONST)) (-4335 (($ $) 68 (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) 107)) (-4356 (($ $ $) 99) (($ $ |#1|) 100)) (-4244 (($ $) 80) (($ $ $) 105)) (-4246 (($ $ $) 103)) (** (($ $ (-912)) NIL) (($ $ (-765)) 44) (($ $ (-544)) 129)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 78) (($ $ $) 56) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-354 |#1| |#2|) (-328 |#1|) (-349) (-1160 |#1|)) (T -354)) +((-3928 (*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1256 *1)) (-4 *1 (-328 *3)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-916)) (-4 *4 (-362)) (-5 *2 (-1256 *1)) (-4 *1 (-328 *4)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1256 *3)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-683 *4)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) (-1565 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1164 *3)))) (-2096 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1164 *3)))) (-4121 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-916)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-916)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1565 (*1 *2 *1 *3) (-12 (-5 *3 (-916)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1164 *1)) (-4 *1 (-328 *4)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-1748 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-2624 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-1846 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) (-3148 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1164 *3)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1164 *3)))) (-4203 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1164 *3))))) +(-13 (-1275 |t#1|) (-1033 |t#1|) (-10 -8 (-15 -3928 ((-1256 $))) (-15 -3928 ((-1256 $) (-916))) (-15 -3593 ((-1256 |t#1|) $)) (-15 -3593 ((-683 |t#1|) (-1256 $))) (-15 -4018 ($ (-1256 |t#1|))) (-15 -1565 ((-1164 |t#1|) $)) (-15 -2096 ((-1164 |t#1|))) (-15 -4121 ((-916))) (-15 -3598 ((-916) $)) (-15 -2247 (|t#1| $)) (-15 -1748 (|t#1| $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-348)) (-15 -1565 ((-1164 $) $ (-916))) (-15 -2247 ($ $ (-916))) (-15 -1748 ($ $ (-916))) (-15 -2624 ($)) (-15 -1846 ($)) (-15 -1316 ((-112) $)) (-15 -3148 ($)) (-15 -2393 ($ $ (-1164 |t#1|))) (-15 -3892 ((-1164 |t#1|) $)) (-15 -4203 ((-1164 |t#1|) $)) (-15 -4203 ((-3 (-1164 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-232) |has| |#1| (-367)) ((-242) . T) ((-289) . T) ((-306) . T) ((-1275 |#1|) . T) ((-362) . T) ((-401) -4037 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-367) |has| |#1| (-367)) ((-348) |has| |#1| (-367)) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 |#1|) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1033 |#1|) . T) ((-1050 #0#) . T) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-367)) ((-1211) . T) ((-1263 |#1|) . T)) +((-4041 (((-112) $ $) NIL)) (-2731 (($ (-1167) $) 87)) (-3290 (($) 76)) (-2269 (((-1112) (-1112)) 9)) (-2683 (($) 77)) (-2307 (($) 89) (($ (-315 (-693))) 97) (($ (-315 (-695))) 93) (($ (-315 (-688))) 101) (($ (-315 (-378))) 108) (($ (-315 (-562))) 104) (($ (-315 (-168 (-378)))) 112)) (-4011 (($ (-1167) $) 88)) (-1991 (($ (-639 (-857))) 78)) (-3422 (((-1261) $) 74)) (-3581 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4131 (($ (-1112)) 50)) (-3759 (((-1096) $) 24)) (-1297 (($ (-1084 (-947 (-562))) $) 84) (($ (-1084 (-947 (-562))) (-947 (-562)) $) 85)) (-4109 (($ (-1112)) 86)) (-2943 (($ (-1167) $) 114) (($ (-1167) $ $) 115)) (-3075 (($ (-1168) (-639 (-1168))) 75)) (-2718 (($ (-1150)) 81) (($ (-639 (-1150))) 79)) (-4054 (((-857) $) 117)) (-3473 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1168)) (|:| |arrayIndex| (-639 (-947 (-562)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1167)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2974 (-112)) (|:| -2534 (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) (|:| |blockBranch| (-639 $)) (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) (|:| |forBranch| (-2 (|:| -1590 (-1084 (-947 (-562)))) (|:| |span| (-947 (-562))) (|:| -3265 $))) (|:| |labelBranch| (-1112)) (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 $))) (|:| |commonBranch| (-2 (|:| -3254 (-1168)) (|:| |contents| (-639 (-1168))))) (|:| |printBranch| (-639 (-857)))) $) 43)) (-1385 (($ (-1150)) 186)) (-1488 (($ (-639 $)) 113)) (-1855 (($ (-1168) (-1150)) 119) (($ (-1168) (-315 (-695))) 159) (($ (-1168) (-315 (-693))) 160) (($ (-1168) (-315 (-688))) 161) (($ (-1168) (-683 (-695))) 122) (($ (-1168) (-683 (-693))) 125) (($ (-1168) (-683 (-688))) 128) (($ (-1168) (-1256 (-695))) 131) (($ (-1168) (-1256 (-693))) 134) (($ (-1168) (-1256 (-688))) 137) (($ (-1168) (-683 (-315 (-695)))) 140) (($ (-1168) (-683 (-315 (-693)))) 143) (($ (-1168) (-683 (-315 (-688)))) 146) (($ (-1168) (-1256 (-315 (-695)))) 149) (($ (-1168) (-1256 (-315 (-693)))) 152) (($ (-1168) (-1256 (-315 (-688)))) 155) (($ (-1168) (-639 (-947 (-562))) (-315 (-695))) 156) (($ (-1168) (-639 (-947 (-562))) (-315 (-693))) 157) (($ (-1168) (-639 (-947 (-562))) (-315 (-688))) 158) (($ (-1168) (-315 (-562))) 183) (($ (-1168) (-315 (-378))) 184) (($ (-1168) (-315 (-168 (-378)))) 185) (($ (-1168) (-683 (-315 (-562)))) 164) (($ (-1168) (-683 (-315 (-378)))) 167) (($ (-1168) (-683 (-315 (-168 (-378))))) 170) (($ (-1168) (-1256 (-315 (-562)))) 173) (($ (-1168) (-1256 (-315 (-378)))) 176) (($ (-1168) (-1256 (-315 (-168 (-378))))) 179) (($ (-1168) (-639 (-947 (-562))) (-315 (-562))) 180) (($ (-1168) (-639 (-947 (-562))) (-315 (-378))) 181) (($ (-1168) (-639 (-947 (-562))) (-315 (-168 (-378)))) 182)) (-1731 (((-112) $ $) NIL))) +(((-329) (-13 (-1092) (-10 -8 (-15 -1297 ($ (-1084 (-947 (-562))) $)) (-15 -1297 ($ (-1084 (-947 (-562))) (-947 (-562)) $)) (-15 -2731 ($ (-1167) $)) (-15 -4011 ($ (-1167) $)) (-15 -4131 ($ (-1112))) (-15 -4109 ($ (-1112))) (-15 -2718 ($ (-1150))) (-15 -2718 ($ (-639 (-1150)))) (-15 -1385 ($ (-1150))) (-15 -2307 ($)) (-15 -2307 ($ (-315 (-693)))) (-15 -2307 ($ (-315 (-695)))) (-15 -2307 ($ (-315 (-688)))) (-15 -2307 ($ (-315 (-378)))) (-15 -2307 ($ (-315 (-562)))) (-15 -2307 ($ (-315 (-168 (-378))))) (-15 -2943 ($ (-1167) $)) (-15 -2943 ($ (-1167) $ $)) (-15 -1855 ($ (-1168) (-1150))) (-15 -1855 ($ (-1168) (-315 (-695)))) (-15 -1855 ($ (-1168) (-315 (-693)))) (-15 -1855 ($ (-1168) (-315 (-688)))) (-15 -1855 ($ (-1168) (-683 (-695)))) (-15 -1855 ($ (-1168) (-683 (-693)))) (-15 -1855 ($ (-1168) (-683 (-688)))) (-15 -1855 ($ (-1168) (-1256 (-695)))) (-15 -1855 ($ (-1168) (-1256 (-693)))) (-15 -1855 ($ (-1168) (-1256 (-688)))) (-15 -1855 ($ (-1168) (-683 (-315 (-695))))) (-15 -1855 ($ (-1168) (-683 (-315 (-693))))) (-15 -1855 ($ (-1168) (-683 (-315 (-688))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-695))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-693))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-688))))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-695)))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-693)))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-688)))) (-15 -1855 ($ (-1168) (-315 (-562)))) (-15 -1855 ($ (-1168) (-315 (-378)))) (-15 -1855 ($ (-1168) (-315 (-168 (-378))))) (-15 -1855 ($ (-1168) (-683 (-315 (-562))))) (-15 -1855 ($ (-1168) (-683 (-315 (-378))))) (-15 -1855 ($ (-1168) (-683 (-315 (-168 (-378)))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-562))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-378))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-168 (-378)))))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-562)))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-378)))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-168 (-378))))) (-15 -1488 ($ (-639 $))) (-15 -3290 ($)) (-15 -2683 ($)) (-15 -1991 ($ (-639 (-857)))) (-15 -3075 ($ (-1168) (-639 (-1168)))) (-15 -3581 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3473 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1168)) (|:| |arrayIndex| (-639 (-947 (-562)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1167)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2974 (-112)) (|:| -2534 (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) (|:| |blockBranch| (-639 $)) (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) (|:| |forBranch| (-2 (|:| -1590 (-1084 (-947 (-562)))) (|:| |span| (-947 (-562))) (|:| -3265 $))) (|:| |labelBranch| (-1112)) (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 $))) (|:| |commonBranch| (-2 (|:| -3254 (-1168)) (|:| |contents| (-639 (-1168))))) (|:| |printBranch| (-639 (-857)))) $)) (-15 -3422 ((-1261) $)) (-15 -3759 ((-1096) $)) (-15 -2269 ((-1112) (-1112)))))) (T -329)) +((-1297 (*1 *1 *2 *1) (-12 (-5 *2 (-1084 (-947 (-562)))) (-5 *1 (-329)))) (-1297 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1084 (-947 (-562)))) (-5 *3 (-947 (-562))) (-5 *1 (-329)))) (-2731 (*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) (-4011 (*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) (-4131 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-329)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-329)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-329)))) (-2307 (*1 *1) (-5 *1 (-329))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-315 (-693))) (-5 *1 (-329)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-315 (-695))) (-5 *1 (-329)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-315 (-688))) (-5 *1 (-329)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-5 *1 (-329)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2943 (*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) (-2943 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1150)) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-695))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-693))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-688))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-695))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-693))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-688))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-695))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-693))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-688))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-695)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-693)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-688)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-695)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-693)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-688)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-695))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-693))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-688))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-562))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-378))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-562)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-378)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-562)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-378)))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-562))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-378))) (-5 *1 (-329)))) (-1855 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-1488 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-5 *1 (-329)))) (-3290 (*1 *1) (-5 *1 (-329))) (-2683 (*1 *1) (-5 *1 (-329))) (-1991 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-329)))) (-3075 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1168)) (-5 *1 (-329)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-329)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1168)) (|:| |arrayIndex| (-639 (-947 (-562)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1167)) (|:| |thenClause| (-329)) (|:| |elseClause| (-329)))) (|:| |returnBranch| (-2 (|:| -2974 (-112)) (|:| -2534 (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) (|:| |blockBranch| (-639 (-329))) (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) (|:| |forBranch| (-2 (|:| -1590 (-1084 (-947 (-562)))) (|:| |span| (-947 (-562))) (|:| -3265 (-329)))) (|:| |labelBranch| (-1112)) (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 (-329)))) (|:| |commonBranch| (-2 (|:| -3254 (-1168)) (|:| |contents| (-639 (-1168))))) (|:| |printBranch| (-639 (-857))))) (-5 *1 (-329)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-329)))) (-3759 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-329)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329))))) +(-13 (-1092) (-10 -8 (-15 -1297 ($ (-1084 (-947 (-562))) $)) (-15 -1297 ($ (-1084 (-947 (-562))) (-947 (-562)) $)) (-15 -2731 ($ (-1167) $)) (-15 -4011 ($ (-1167) $)) (-15 -4131 ($ (-1112))) (-15 -4109 ($ (-1112))) (-15 -2718 ($ (-1150))) (-15 -2718 ($ (-639 (-1150)))) (-15 -1385 ($ (-1150))) (-15 -2307 ($)) (-15 -2307 ($ (-315 (-693)))) (-15 -2307 ($ (-315 (-695)))) (-15 -2307 ($ (-315 (-688)))) (-15 -2307 ($ (-315 (-378)))) (-15 -2307 ($ (-315 (-562)))) (-15 -2307 ($ (-315 (-168 (-378))))) (-15 -2943 ($ (-1167) $)) (-15 -2943 ($ (-1167) $ $)) (-15 -1855 ($ (-1168) (-1150))) (-15 -1855 ($ (-1168) (-315 (-695)))) (-15 -1855 ($ (-1168) (-315 (-693)))) (-15 -1855 ($ (-1168) (-315 (-688)))) (-15 -1855 ($ (-1168) (-683 (-695)))) (-15 -1855 ($ (-1168) (-683 (-693)))) (-15 -1855 ($ (-1168) (-683 (-688)))) (-15 -1855 ($ (-1168) (-1256 (-695)))) (-15 -1855 ($ (-1168) (-1256 (-693)))) (-15 -1855 ($ (-1168) (-1256 (-688)))) (-15 -1855 ($ (-1168) (-683 (-315 (-695))))) (-15 -1855 ($ (-1168) (-683 (-315 (-693))))) (-15 -1855 ($ (-1168) (-683 (-315 (-688))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-695))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-693))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-688))))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-695)))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-693)))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-688)))) (-15 -1855 ($ (-1168) (-315 (-562)))) (-15 -1855 ($ (-1168) (-315 (-378)))) (-15 -1855 ($ (-1168) (-315 (-168 (-378))))) (-15 -1855 ($ (-1168) (-683 (-315 (-562))))) (-15 -1855 ($ (-1168) (-683 (-315 (-378))))) (-15 -1855 ($ (-1168) (-683 (-315 (-168 (-378)))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-562))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-378))))) (-15 -1855 ($ (-1168) (-1256 (-315 (-168 (-378)))))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-562)))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-378)))) (-15 -1855 ($ (-1168) (-639 (-947 (-562))) (-315 (-168 (-378))))) (-15 -1488 ($ (-639 $))) (-15 -3290 ($)) (-15 -2683 ($)) (-15 -1991 ($ (-639 (-857)))) (-15 -3075 ($ (-1168) (-639 (-1168)))) (-15 -3581 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3473 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1168)) (|:| |arrayIndex| (-639 (-947 (-562)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1167)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2974 (-112)) (|:| -2534 (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) (|:| |blockBranch| (-639 $)) (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) (|:| |forBranch| (-2 (|:| -1590 (-1084 (-947 (-562)))) (|:| |span| (-947 (-562))) (|:| -3265 $))) (|:| |labelBranch| (-1112)) (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 $))) (|:| |commonBranch| (-2 (|:| -3254 (-1168)) (|:| |contents| (-639 (-1168))))) (|:| |printBranch| (-639 (-857)))) $)) (-15 -3422 ((-1261) $)) (-15 -3759 ((-1096) $)) (-15 -2269 ((-1112) (-1112))))) +((-4041 (((-112) $ $) NIL)) (-4006 (((-112) $) 11)) (-4074 (($ |#1|) 8)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4087 (($ |#1|) 9)) (-4054 (((-857) $) 17)) (-2828 ((|#1| $) 12)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 19))) +(((-330 |#1|) (-13 (-845) (-10 -8 (-15 -4074 ($ |#1|)) (-15 -4087 ($ |#1|)) (-15 -4006 ((-112) $)) (-15 -2828 (|#1| $)))) (-845)) (T -330)) +((-4074 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) (-4087 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-845)))) (-2828 (*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845))))) +(-13 (-845) (-10 -8 (-15 -4074 ($ |#1|)) (-15 -4087 ($ |#1|)) (-15 -4006 ((-112) $)) (-15 -2828 (|#1| $)))) +((-2360 (((-329) (-1168) (-947 (-562))) 23)) (-3841 (((-329) (-1168) (-947 (-562))) 27)) (-2496 (((-329) (-1168) (-1084 (-947 (-562))) (-1084 (-947 (-562)))) 26) (((-329) (-1168) (-947 (-562)) (-947 (-562))) 24)) (-2213 (((-329) (-1168) (-947 (-562))) 31))) +(((-331) (-10 -7 (-15 -2360 ((-329) (-1168) (-947 (-562)))) (-15 -2496 ((-329) (-1168) (-947 (-562)) (-947 (-562)))) (-15 -2496 ((-329) (-1168) (-1084 (-947 (-562))) (-1084 (-947 (-562))))) (-15 -3841 ((-329) (-1168) (-947 (-562)))) (-15 -2213 ((-329) (-1168) (-947 (-562)))))) (T -331)) +((-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) (-5 *1 (-331)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-1084 (-947 (-562)))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2496 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2360 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) (-5 *1 (-331))))) +(-10 -7 (-15 -2360 ((-329) (-1168) (-947 (-562)))) (-15 -2496 ((-329) (-1168) (-947 (-562)) (-947 (-562)))) (-15 -2496 ((-329) (-1168) (-1084 (-947 (-562))) (-1084 (-947 (-562))))) (-15 -3841 ((-329) (-1168) (-947 (-562)))) (-15 -2213 ((-329) (-1168) (-947 (-562))))) +((-4152 (((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)) 33))) +(((-332 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4152 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-362) (-1232 |#5|) (-1232 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -332)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *9 (-362)) (-4 *10 (-1232 *9)) (-4 *11 (-1232 (-406 *10))) (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-341 *9 *10 *11))))) +(-10 -7 (-15 -4152 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) +((-2875 (((-112) $) 14))) +(((-333 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2875 ((-112) |#1|))) (-334 |#2| |#3| |#4| |#5|) (-362) (-1232 |#2|) (-1232 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -333)) +NIL +(-10 -8 (-15 -2875 ((-112) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-1955 (($ $) 26)) (-2875 (((-112) $) 25)) (-2913 (((-1150) $) 9)) (-1366 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 32)) (-1709 (((-1112) $) 10)) (-3148 (((-3 |#4| "failed") $) 24)) (-1329 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-562)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2018 (((-2 (|:| -1416 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20))) +(((-334 |#1| |#2| |#3| |#4|) (-139) (-362) (-1232 |t#1|) (-1232 (-406 |t#2|)) (-341 |t#1| |t#2| |t#3|)) (T -334)) +((-1366 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-412 *4 (-406 *4) *5 *6)))) (-1329 (*1 *1 *2) (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) (-4 *1 (-334 *3 *4 *5 *6)))) (-1329 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) (-1329 (*1 *1 *2 *2) (-12 (-4 *2 (-362)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))) (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) (-1329 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-562)) (-4 *2 (-362)) (-4 *4 (-1232 *2)) (-4 *5 (-1232 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6)) (-4 *6 (-341 *2 *4 *5)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-2 (|:| -1416 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) (-1955 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))) (-3148 (*1 *2 *1) (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *2 (-341 *3 *4 *5)))) (-1329 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-362)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1366 ((-412 |t#2| (-406 |t#2|) |t#3| |t#4|) $)) (-15 -1329 ($ (-412 |t#2| (-406 |t#2|) |t#3| |t#4|))) (-15 -1329 ($ |t#4|)) (-15 -1329 ($ |t#1| |t#1|)) (-15 -1329 ($ |t#1| |t#1| (-562))) (-15 -2018 ((-2 (|:| -1416 (-412 |t#2| (-406 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1955 ($ $)) (-15 -2875 ((-112) $)) (-15 -3148 ((-3 |t#4| "failed") $)) (-15 -1329 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1955 (($ $) 33)) (-2875 (((-112) $) NIL)) (-2913 (((-1150) $) NIL)) (-2519 (((-1256 |#4|) $) 125)) (-1366 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 31)) (-1709 (((-1112) $) NIL)) (-3148 (((-3 |#4| "failed") $) 36)) (-4159 (((-1256 |#4|) $) 118)) (-1329 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-562)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2018 (((-2 (|:| -1416 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4054 (((-857) $) 17)) (-2286 (($) 14 T CONST)) (-1731 (((-112) $ $) 20)) (-1848 (($ $) 27) (($ $ $) NIL)) (-1835 (($ $ $) 25)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 23))) +(((-335 |#1| |#2| |#3| |#4|) (-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4159 ((-1256 |#4|) $)) (-15 -2519 ((-1256 |#4|) $)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -335)) +((-4159 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-1256 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))) (-2519 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-1256 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5))))) +(-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4159 ((-1256 |#4|) $)) (-15 -2519 ((-1256 |#4|) $)))) +((-1433 (($ $ (-1168) |#2|) NIL) (($ $ (-639 (-1168)) (-639 |#2|)) 20) (($ $ (-639 (-293 |#2|))) 15) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-639 |#2|) (-639 |#2|)) NIL)) (-2343 (($ $ |#2|) 11))) +(((-336 |#1| |#2|) (-10 -8 (-15 -2343 (|#1| |#1| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 |#2|))) (-15 -1433 (|#1| |#1| (-1168) |#2|))) (-337 |#2|) (-1092)) (T -336)) +NIL +(-10 -8 (-15 -2343 (|#1| |#1| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 |#2|))) (-15 -1433 (|#1| |#1| (-1168) |#2|))) +((-4152 (($ (-1 |#1| |#1|) $) 6)) (-1433 (($ $ (-1168) |#1|) 17 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 16 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-639 (-293 |#1|))) 15 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 14 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-308 |#1|))) (($ $ (-639 |#1|) (-639 |#1|)) 12 (|has| |#1| (-308 |#1|)))) (-2343 (($ $ |#1|) 11 (|has| |#1| (-285 |#1| |#1|))))) +(((-337 |#1|) (-139) (-1092)) (T -337)) +((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1092))))) +(-13 (-10 -8 (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-285 |t#1| |t#1|)) (-6 (-285 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-513 (-1168) |t#1|)) (-6 (-513 (-1168) |t#1|)) |%noBranch|))) +(((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-1168)) $) NIL)) (-2955 (((-112)) 90) (((-112) (-112)) 91)) (-1495 (((-639 (-608 $)) $) NIL)) (-2988 (($ $) NIL)) (-4097 (($ $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3165 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL)) (-1643 (($ $) NIL)) (-4207 (($ $) NIL)) (-4074 (($ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-608 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-315 |#3|)) 70) (((-3 $ "failed") (-1168)) 96) (((-3 $ "failed") (-315 (-562))) 58 (|has| |#3| (-1033 (-562)))) (((-3 $ "failed") (-406 (-947 (-562)))) 64 (|has| |#3| (-1033 (-562)))) (((-3 $ "failed") (-947 (-562))) 59 (|has| |#3| (-1033 (-562)))) (((-3 $ "failed") (-315 (-378))) 88 (|has| |#3| (-1033 (-378)))) (((-3 $ "failed") (-406 (-947 (-378)))) 82 (|has| |#3| (-1033 (-378)))) (((-3 $ "failed") (-947 (-378))) 77 (|has| |#3| (-1033 (-378))))) (-3961 (((-608 $) $) NIL) ((|#3| $) NIL) (($ (-315 |#3|)) 71) (($ (-1168)) 97) (($ (-315 (-562))) 60 (|has| |#3| (-1033 (-562)))) (($ (-406 (-947 (-562)))) 65 (|has| |#3| (-1033 (-562)))) (($ (-947 (-562))) 61 (|has| |#3| (-1033 (-562)))) (($ (-315 (-378))) 89 (|has| |#3| (-1033 (-378)))) (($ (-406 (-947 (-378)))) 83 (|has| |#3| (-1033 (-378)))) (($ (-947 (-378))) 79 (|has| |#3| (-1033 (-378))))) (-3668 (((-3 $ "failed") $) NIL)) (-4100 (($) 10)) (-1383 (($ $) NIL) (($ (-639 $)) NIL)) (-3936 (((-639 (-114)) $) NIL)) (-2876 (((-114) (-114)) NIL)) (-1957 (((-112) $) NIL)) (-3130 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-1677 (((-1164 $) (-608 $)) NIL (|has| $ (-1044)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 $ $) (-608 $)) NIL)) (-4367 (((-3 (-608 $) "failed") $) NIL)) (-2983 (($ $) 93)) (-4365 (($ $) NIL)) (-2913 (((-1150) $) NIL)) (-1583 (((-639 (-608 $)) $) NIL)) (-4141 (($ (-114) $) 92) (($ (-114) (-639 $)) NIL)) (-1776 (((-112) $ (-114)) NIL) (((-112) $ (-1168)) NIL)) (-3060 (((-766) $) NIL)) (-1709 (((-1112) $) NIL)) (-4296 (((-112) $ $) NIL) (((-112) $ (-1168)) NIL)) (-3430 (($ $) NIL)) (-3803 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) NIL)) (-3790 (($ $) NIL) (($ $ $) NIL)) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL)) (-2096 (($ $) NIL (|has| $ (-1044)))) (-2978 (($ $) NIL)) (-4087 (($ $) NIL)) (-4054 (((-857) $) NIL) (($ (-608 $)) NIL) (($ |#3|) NIL) (($ (-562)) NIL) (((-315 |#3|) $) 95)) (-2579 (((-766)) NIL)) (-2746 (($ $) NIL) (($ (-639 $)) NIL)) (-2803 (((-112) (-114)) NIL)) (-4165 (($ $) NIL)) (-4138 (($ $) NIL)) (-4151 (($ $) NIL)) (-3526 (($ $) NIL)) (-2286 (($) 94 T CONST)) (-2294 (($) 24 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1848 (($ $ $) NIL) (($ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL))) +(((-338 |#1| |#2| |#3|) (-13 (-301) (-38 |#3|) (-1033 |#3|) (-895 (-1168)) (-10 -8 (-15 -3961 ($ (-315 |#3|))) (-15 -4048 ((-3 $ "failed") (-315 |#3|))) (-15 -3961 ($ (-1168))) (-15 -4048 ((-3 $ "failed") (-1168))) (-15 -4054 ((-315 |#3|) $)) (IF (|has| |#3| (-1033 (-562))) (PROGN (-15 -3961 ($ (-315 (-562)))) (-15 -4048 ((-3 $ "failed") (-315 (-562)))) (-15 -3961 ($ (-406 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-562))))) (-15 -3961 ($ (-947 (-562)))) (-15 -4048 ((-3 $ "failed") (-947 (-562))))) |%noBranch|) (IF (|has| |#3| (-1033 (-378))) (PROGN (-15 -3961 ($ (-315 (-378)))) (-15 -4048 ((-3 $ "failed") (-315 (-378)))) (-15 -3961 ($ (-406 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-378))))) (-15 -3961 ($ (-947 (-378)))) (-15 -4048 ((-3 $ "failed") (-947 (-378))))) |%noBranch|) (-15 -3526 ($ $)) (-15 -1643 ($ $)) (-15 -3430 ($ $)) (-15 -4365 ($ $)) (-15 -2983 ($ $)) (-15 -4074 ($ $)) (-15 -4087 ($ $)) (-15 -4097 ($ $)) (-15 -4138 ($ $)) (-15 -4151 ($ $)) (-15 -4165 ($ $)) (-15 -4207 ($ $)) (-15 -2978 ($ $)) (-15 -2988 ($ $)) (-15 -4100 ($)) (-15 -1402 ((-639 (-1168)) $)) (-15 -2955 ((-112))) (-15 -2955 ((-112) (-112))))) (-639 (-1168)) (-639 (-1168)) (-386)) (T -338)) +((-3961 (*1 *1 *2) (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 *2)) (-14 *4 (-639 *2)) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 *2)) (-14 *4 (-639 *2)) (-4 *5 (-386)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-562))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-562)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-947 (-562)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-947 (-562))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-562))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-947 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-947 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3526 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-1643 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-3430 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4365 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-2983 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4074 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4087 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4097 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4138 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4165 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4207 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-2978 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-2988 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4100 (*1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-386)))) (-2955 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-2955 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386))))) +(-13 (-301) (-38 |#3|) (-1033 |#3|) (-895 (-1168)) (-10 -8 (-15 -3961 ($ (-315 |#3|))) (-15 -4048 ((-3 $ "failed") (-315 |#3|))) (-15 -3961 ($ (-1168))) (-15 -4048 ((-3 $ "failed") (-1168))) (-15 -4054 ((-315 |#3|) $)) (IF (|has| |#3| (-1033 (-562))) (PROGN (-15 -3961 ($ (-315 (-562)))) (-15 -4048 ((-3 $ "failed") (-315 (-562)))) (-15 -3961 ($ (-406 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-562))))) (-15 -3961 ($ (-947 (-562)))) (-15 -4048 ((-3 $ "failed") (-947 (-562))))) |%noBranch|) (IF (|has| |#3| (-1033 (-378))) (PROGN (-15 -3961 ($ (-315 (-378)))) (-15 -4048 ((-3 $ "failed") (-315 (-378)))) (-15 -3961 ($ (-406 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-378))))) (-15 -3961 ($ (-947 (-378)))) (-15 -4048 ((-3 $ "failed") (-947 (-378))))) |%noBranch|) (-15 -3526 ($ $)) (-15 -1643 ($ $)) (-15 -3430 ($ $)) (-15 -4365 ($ $)) (-15 -2983 ($ $)) (-15 -4074 ($ $)) (-15 -4087 ($ $)) (-15 -4097 ($ $)) (-15 -4138 ($ $)) (-15 -4151 ($ $)) (-15 -4165 ($ $)) (-15 -4207 ($ $)) (-15 -2978 ($ $)) (-15 -2988 ($ $)) (-15 -4100 ($)) (-15 -1402 ((-639 (-1168)) $)) (-15 -2955 ((-112))) (-15 -2955 ((-112) (-112))))) +((-4152 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-339 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4152 (|#8| (-1 |#5| |#1|) |#4|))) (-1211) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-1211) (-1232 |#5|) (-1232 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -339)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1211)) (-4 *8 (-1211)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *9 (-1232 *8)) (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1232 (-406 *9)))))) +(-10 -7 (-15 -4152 (|#8| (-1 |#5| |#1|) |#4|))) +((-3971 (((-2 (|:| |num| (-1256 |#3|)) (|:| |den| |#3|)) $) 38)) (-4018 (($ (-1256 (-406 |#3|)) (-1256 $)) NIL) (($ (-1256 (-406 |#3|))) NIL) (($ (-1256 |#3|) |#3|) 160)) (-2435 (((-1256 $) (-1256 $)) 144)) (-2753 (((-639 (-639 |#2|))) 118)) (-1877 (((-112) |#2| |#2|) 73)) (-1498 (($ $) 138)) (-3684 (((-766)) 31)) (-2142 (((-1256 $) (-1256 $)) 197)) (-1336 (((-639 (-947 |#2|)) (-1168)) 110)) (-4346 (((-112) $) 157)) (-2472 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-2676 (((-3 |#3| "failed")) 50)) (-2116 (((-766)) 169)) (-2343 ((|#2| $ |#2| |#2|) 131)) (-3441 (((-3 |#3| "failed")) 68)) (-4029 (($ $ (-1 (-406 |#3|) (-406 |#3|)) (-766)) NIL) (($ $ (-1 (-406 |#3|) (-406 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-1624 (((-1256 $) (-1256 $)) 150)) (-4193 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2386 (((-112)) 33))) +(((-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -2753 ((-639 (-639 |#2|)))) (-15 -1336 ((-639 (-947 |#2|)) (-1168))) (-15 -4193 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2676 ((-3 |#3| "failed"))) (-15 -3441 ((-3 |#3| "failed"))) (-15 -2343 (|#2| |#1| |#2| |#2|)) (-15 -1498 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2472 ((-112) |#1| |#3|)) (-15 -2472 ((-112) |#1| |#2|)) (-15 -4018 (|#1| (-1256 |#3|) |#3|)) (-15 -3971 ((-2 (|:| |num| (-1256 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2435 ((-1256 |#1|) (-1256 |#1|))) (-15 -2142 ((-1256 |#1|) (-1256 |#1|))) (-15 -1624 ((-1256 |#1|) (-1256 |#1|))) (-15 -2472 ((-112) |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -1877 ((-112) |#2| |#2|)) (-15 -2386 ((-112))) (-15 -2116 ((-766))) (-15 -3684 ((-766))) (-15 -4029 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -4029 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-766))) (-15 -4018 (|#1| (-1256 (-406 |#3|)))) (-15 -4018 (|#1| (-1256 (-406 |#3|)) (-1256 |#1|)))) (-341 |#2| |#3| |#4|) (-1211) (-1232 |#2|) (-1232 (-406 |#3|))) (T -340)) +((-3684 (*1 *2) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-766)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-2116 (*1 *2) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-766)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-2386 (*1 *2) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-1877 (*1 *2 *3 *3) (-12 (-4 *3 (-1211)) (-4 *5 (-1232 *3)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) (-3441 (*1 *2) (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-2676 (*1 *2) (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *5 (-1211)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-5 *2 (-639 (-947 *5))) (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) (-2753 (*1 *2) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-639 (-639 *4))) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))) +(-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -2753 ((-639 (-639 |#2|)))) (-15 -1336 ((-639 (-947 |#2|)) (-1168))) (-15 -4193 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2676 ((-3 |#3| "failed"))) (-15 -3441 ((-3 |#3| "failed"))) (-15 -2343 (|#2| |#1| |#2| |#2|)) (-15 -1498 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2472 ((-112) |#1| |#3|)) (-15 -2472 ((-112) |#1| |#2|)) (-15 -4018 (|#1| (-1256 |#3|) |#3|)) (-15 -3971 ((-2 (|:| |num| (-1256 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2435 ((-1256 |#1|) (-1256 |#1|))) (-15 -2142 ((-1256 |#1|) (-1256 |#1|))) (-15 -1624 ((-1256 |#1|) (-1256 |#1|))) (-15 -2472 ((-112) |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -1877 ((-112) |#2| |#2|)) (-15 -2386 ((-112))) (-15 -2116 ((-766))) (-15 -3684 ((-766))) (-15 -4029 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -4029 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-766))) (-15 -4018 (|#1| (-1256 (-406 |#3|)))) (-15 -4018 (|#1| (-1256 (-406 |#3|)) (-1256 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3971 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 195)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 93 (|has| (-406 |#2|) (-362)))) (-2796 (($ $) 94 (|has| (-406 |#2|) (-362)))) (-4370 (((-112) $) 96 (|has| (-406 |#2|) (-362)))) (-1636 (((-683 (-406 |#2|)) (-1256 $)) 47) (((-683 (-406 |#2|))) 62)) (-1748 (((-406 |#2|) $) 53)) (-3984 (((-1180 (-916) (-766)) (-562)) 146 (|has| (-406 |#2|) (-348)))) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 113 (|has| (-406 |#2|) (-362)))) (-2921 (((-417 $) $) 114 (|has| (-406 |#2|) (-362)))) (-2569 (((-112) $ $) 104 (|has| (-406 |#2|) (-362)))) (-1382 (((-766)) 87 (|has| (-406 |#2|) (-367)))) (-2083 (((-112)) 212)) (-3797 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-1800 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 169 (|has| (-406 |#2|) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 167 (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-3 (-406 |#2|) "failed") $) 164)) (-3961 (((-562) $) 168 (|has| (-406 |#2|) (-1033 (-562)))) (((-406 (-562)) $) 166 (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-406 |#2|) $) 165)) (-4018 (($ (-1256 (-406 |#2|)) (-1256 $)) 49) (($ (-1256 (-406 |#2|))) 65) (($ (-1256 |#2|) |#2|) 194)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-406 |#2|) (-348)))) (-1811 (($ $ $) 108 (|has| (-406 |#2|) (-362)))) (-1958 (((-683 (-406 |#2|)) $ (-1256 $)) 54) (((-683 (-406 |#2|)) $) 60)) (-2406 (((-683 (-562)) (-683 $)) 163 (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 162 (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-406 |#2|))) (|:| |vec| (-1256 (-406 |#2|)))) (-683 $) (-1256 $)) 161) (((-683 (-406 |#2|)) (-683 $)) 160)) (-2435 (((-1256 $) (-1256 $)) 200)) (-1955 (($ |#3|) 157) (((-3 $ "failed") (-406 |#3|)) 154 (|has| (-406 |#2|) (-362)))) (-3668 (((-3 $ "failed") $) 33)) (-2753 (((-639 (-639 |#1|))) 181 (|has| |#1| (-367)))) (-1877 (((-112) |#1| |#1|) 216)) (-2173 (((-916)) 55)) (-1448 (($) 90 (|has| (-406 |#2|) (-367)))) (-4240 (((-112)) 209)) (-2792 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-1787 (($ $ $) 107 (|has| (-406 |#2|) (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 102 (|has| (-406 |#2|) (-362)))) (-1498 (($ $) 187)) (-3529 (($) 148 (|has| (-406 |#2|) (-348)))) (-1322 (((-112) $) 149 (|has| (-406 |#2|) (-348)))) (-3589 (($ $ (-766)) 140 (|has| (-406 |#2|) (-348))) (($ $) 139 (|has| (-406 |#2|) (-348)))) (-2717 (((-112) $) 115 (|has| (-406 |#2|) (-362)))) (-1900 (((-916) $) 151 (|has| (-406 |#2|) (-348))) (((-828 (-916)) $) 137 (|has| (-406 |#2|) (-348)))) (-1957 (((-112) $) 31)) (-3684 (((-766)) 219)) (-2142 (((-1256 $) (-1256 $)) 201)) (-2247 (((-406 |#2|) $) 52)) (-1336 (((-639 (-947 |#1|)) (-1168)) 182 (|has| |#1| (-362)))) (-3699 (((-3 $ "failed") $) 141 (|has| (-406 |#2|) (-348)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 111 (|has| (-406 |#2|) (-362)))) (-1565 ((|#3| $) 45 (|has| (-406 |#2|) (-362)))) (-1999 (((-916) $) 89 (|has| (-406 |#2|) (-367)))) (-1943 ((|#3| $) 155)) (-1564 (($ (-639 $)) 100 (|has| (-406 |#2|) (-362))) (($ $ $) 99 (|has| (-406 |#2|) (-362)))) (-2913 (((-1150) $) 9)) (-2452 (((-683 (-406 |#2|))) 196)) (-4245 (((-683 (-406 |#2|))) 198)) (-1525 (($ $) 116 (|has| (-406 |#2|) (-362)))) (-2679 (($ (-1256 |#2|) |#2|) 192)) (-2696 (((-683 (-406 |#2|))) 197)) (-3933 (((-683 (-406 |#2|))) 199)) (-2979 (((-2 (|:| |num| (-683 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-4270 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 193)) (-2980 (((-1256 $)) 205)) (-3826 (((-1256 $)) 206)) (-4346 (((-112) $) 204)) (-2472 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3729 (($) 142 (|has| (-406 |#2|) (-348)) CONST)) (-2466 (($ (-916)) 88 (|has| (-406 |#2|) (-367)))) (-2676 (((-3 |#2| "failed")) 184)) (-1709 (((-1112) $) 10)) (-2116 (((-766)) 218)) (-3148 (($) 159)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 101 (|has| (-406 |#2|) (-362)))) (-1606 (($ (-639 $)) 98 (|has| (-406 |#2|) (-362))) (($ $ $) 97 (|has| (-406 |#2|) (-362)))) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) 145 (|has| (-406 |#2|) (-348)))) (-1635 (((-417 $) $) 112 (|has| (-406 |#2|) (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 109 (|has| (-406 |#2|) (-362)))) (-1762 (((-3 $ "failed") $ $) 92 (|has| (-406 |#2|) (-362)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 103 (|has| (-406 |#2|) (-362)))) (-1577 (((-766) $) 105 (|has| (-406 |#2|) (-362)))) (-2343 ((|#1| $ |#1| |#1|) 186)) (-3441 (((-3 |#2| "failed")) 185)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 106 (|has| (-406 |#2|) (-362)))) (-2455 (((-406 |#2|) (-1256 $)) 48) (((-406 |#2|)) 61)) (-3362 (((-766) $) 150 (|has| (-406 |#2|) (-348))) (((-3 (-766) "failed") $ $) 138 (|has| (-406 |#2|) (-348)))) (-4029 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) 122 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 121 (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-639 (-1168)) (-639 (-766))) 129 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2246 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-1168) (-766)) 130 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2246 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-639 (-1168))) 131 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2246 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-1168)) 132 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2246 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-766)) 134 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2246 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 136 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2246 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-3187 (((-683 (-406 |#2|)) (-1256 $) (-1 (-406 |#2|) (-406 |#2|))) 153 (|has| (-406 |#2|) (-362)))) (-2096 ((|#3|) 158)) (-2283 (($) 147 (|has| (-406 |#2|) (-348)))) (-3593 (((-1256 (-406 |#2|)) $ (-1256 $)) 51) (((-683 (-406 |#2|)) (-1256 $) (-1256 $)) 50) (((-1256 (-406 |#2|)) $) 67) (((-683 (-406 |#2|)) (-1256 $)) 66)) (-4208 (((-1256 (-406 |#2|)) $) 64) (($ (-1256 (-406 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 144 (|has| (-406 |#2|) (-348)))) (-1624 (((-1256 $) (-1256 $)) 202)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 |#2|)) 38) (($ (-406 (-562))) 86 (-4037 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1033 (-406 (-562)))))) (($ $) 91 (|has| (-406 |#2|) (-362)))) (-2805 (($ $) 143 (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) 44 (|has| (-406 |#2|) (-144)))) (-3376 ((|#3| $) 46)) (-2579 (((-766)) 28)) (-1946 (((-112)) 215)) (-1719 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-3928 (((-1256 $)) 68)) (-2922 (((-112) $ $) 95 (|has| (-406 |#2|) (-362)))) (-4193 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-2386 (((-112)) 217)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) 124 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 123 (|has| (-406 |#2|) (-362))) (($ $ (-639 (-1168)) (-639 (-766))) 125 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2246 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-1168) (-766)) 126 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2246 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-639 (-1168))) 127 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2246 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-1168)) 128 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2246 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-766)) 133 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2246 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 135 (-4037 (-2246 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2246 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ $) 120 (|has| (-406 |#2|) (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 117 (|has| (-406 |#2|) (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 |#2|)) 40) (($ (-406 |#2|) $) 39) (($ (-406 (-562)) $) 119 (|has| (-406 |#2|) (-362))) (($ $ (-406 (-562))) 118 (|has| (-406 |#2|) (-362))))) +(((-341 |#1| |#2| |#3|) (-139) (-1211) (-1232 |t#1|) (-1232 (-406 |t#2|))) (T -341)) +((-3684 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-766)))) (-2116 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-766)))) (-2386 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-1877 (*1 *2 *3 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-1946 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-1719 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-1719 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) (-2083 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-3797 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-3797 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) (-4240 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-2792 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-2792 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) (-3826 (*1 *2) (-12 (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)))) (-2980 (*1 *2) (-12 (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) (-2142 (*1 *2 *2) (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) (-2435 (*1 *2 *2) (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) (-3933 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4))))) (-4245 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4))))) (-2696 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4))))) (-2452 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4))))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4))))) (-4018 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1211)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1232 (-406 *3))))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4))))) (-2679 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1211)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1232 (-406 *3))))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-2 (|:| |num| (-683 *5)) (|:| |den| *5))))) (-2472 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-2472 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) (-1498 (*1 *1 *1) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1211)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))))) (-2343 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1211)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))))) (-3441 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1211)) (-4 *4 (-1232 (-406 *2))) (-4 *2 (-1232 *3)))) (-2676 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1211)) (-4 *4 (-1232 (-406 *2))) (-4 *2 (-1232 *3)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1211)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-341 *4 *5 *6)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-4 *4 (-362)) (-5 *2 (-639 (-947 *4))))) (-2753 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-639 (-639 *3)))))) +(-13 (-719 (-406 |t#2|) |t#3|) (-10 -8 (-15 -3684 ((-766))) (-15 -2116 ((-766))) (-15 -2386 ((-112))) (-15 -1877 ((-112) |t#1| |t#1|)) (-15 -1946 ((-112))) (-15 -1719 ((-112) |t#1|)) (-15 -1719 ((-112) |t#2|)) (-15 -2083 ((-112))) (-15 -3797 ((-112) |t#1|)) (-15 -3797 ((-112) |t#2|)) (-15 -4240 ((-112))) (-15 -2792 ((-112) |t#1|)) (-15 -2792 ((-112) |t#2|)) (-15 -3826 ((-1256 $))) (-15 -2980 ((-1256 $))) (-15 -4346 ((-112) $)) (-15 -2472 ((-112) $)) (-15 -1624 ((-1256 $) (-1256 $))) (-15 -2142 ((-1256 $) (-1256 $))) (-15 -2435 ((-1256 $) (-1256 $))) (-15 -3933 ((-683 (-406 |t#2|)))) (-15 -4245 ((-683 (-406 |t#2|)))) (-15 -2696 ((-683 (-406 |t#2|)))) (-15 -2452 ((-683 (-406 |t#2|)))) (-15 -3971 ((-2 (|:| |num| (-1256 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4018 ($ (-1256 |t#2|) |t#2|)) (-15 -4270 ((-2 (|:| |num| (-1256 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2679 ($ (-1256 |t#2|) |t#2|)) (-15 -2979 ((-2 (|:| |num| (-683 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2472 ((-112) $ |t#1|)) (-15 -2472 ((-112) $ |t#2|)) (-15 -4029 ($ $ (-1 |t#2| |t#2|))) (-15 -1498 ($ $)) (-15 -2343 (|t#1| $ |t#1| |t#1|)) (-15 -3441 ((-3 |t#2| "failed"))) (-15 -2676 ((-3 |t#2| "failed"))) (-15 -4193 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-362)) (-15 -1336 ((-639 (-947 |t#1|)) (-1168))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -2753 ((-639 (-639 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-38 #1=(-406 |#2|)) . T) ((-38 $) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-102) . T) ((-111 #0# #0#) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-144))) ((-146) |has| (-406 |#2|) (-146)) ((-612 #0#) -4037 (|has| (-406 |#2|) (-1033 (-406 (-562)))) (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-612 #1#) . T) ((-612 (-562)) . T) ((-612 $) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-609 (-857)) . T) ((-171) . T) ((-610 |#3|) . T) ((-230 #1#) |has| (-406 |#2|) (-362)) ((-232) -4037 (|has| (-406 |#2|) (-348)) (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362)))) ((-242) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-289) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-306) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-362) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-401) |has| (-406 |#2|) (-348)) ((-367) -4037 (|has| (-406 |#2|) (-367)) (|has| (-406 |#2|) (-348))) ((-348) |has| (-406 |#2|) (-348)) ((-369 #1# |#3|) . T) ((-408 #1# |#3|) . T) ((-376 #1#) . T) ((-410 #1#) . T) ((-451) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-554) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-642 #0#) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-642 #1#) . T) ((-642 $) . T) ((-635 #1#) . T) ((-635 (-562)) |has| (-406 |#2|) (-635 (-562))) ((-712 #0#) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-712 #1#) . T) ((-712 $) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-719 #1# |#3|) . T) ((-721) . T) ((-895 (-1168)) -12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) ((-915) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1033 (-406 (-562))) |has| (-406 |#2|) (-1033 (-406 (-562)))) ((-1033 #1#) . T) ((-1033 (-562)) |has| (-406 |#2|) (-1033 (-562))) ((-1050 #0#) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1050 #1#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| (-406 |#2|) (-348)) ((-1211) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-905 |#1|) (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| (-905 |#1|) (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-905 |#1|) "failed") $) NIL)) (-3961 (((-905 |#1|) $) NIL)) (-4018 (($ (-1256 (-905 |#1|))) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-905 |#1|) (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-905 |#1|) (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) NIL (|has| (-905 |#1|) (-367)))) (-1322 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367)))) (($ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) NIL (|has| (-905 |#1|) (-367))) (((-828 (-916)) $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) NIL (|has| (-905 |#1|) (-367)))) (-1316 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-2247 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| (-905 |#1|) (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 (-905 |#1|)) $) NIL) (((-1164 $) $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-1999 (((-916) $) NIL (|has| (-905 |#1|) (-367)))) (-3892 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367)))) (-4203 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-1164 (-905 |#1|)) "failed") $ $) NIL (|has| (-905 |#1|) (-367)))) (-2393 (($ $ (-1164 (-905 |#1|))) NIL (|has| (-905 |#1|) (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-905 |#1|) (-367)) CONST)) (-2466 (($ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3113 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3873 (((-953 (-1112))) NIL)) (-3148 (($) NIL (|has| (-905 |#1|) (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| (-905 |#1|) (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) NIL) (((-916)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-2096 (((-1164 (-905 |#1|))) NIL)) (-2283 (($) NIL (|has| (-905 |#1|) (-367)))) (-2624 (($) NIL (|has| (-905 |#1|) (-367)))) (-3593 (((-1256 (-905 |#1|)) $) NIL) (((-683 (-905 |#1|)) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-905 |#1|) (-367)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-905 |#1|)) NIL)) (-2805 (($ $) NIL (|has| (-905 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4374 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-3114 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ (-905 |#1|)) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-905 |#1|)) NIL) (($ (-905 |#1|) $) NIL))) +(((-342 |#1| |#2|) (-13 (-328 (-905 |#1|)) (-10 -7 (-15 -3873 ((-953 (-1112)))))) (-916) (-916)) (T -342)) +((-3873 (*1 *2) (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-342 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916))))) +(-13 (-328 (-905 |#1|)) (-10 -7 (-15 -3873 ((-953 (-1112)))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 43)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) 40 (|has| |#1| (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 114)) (-3961 ((|#1| $) 85)) (-4018 (($ (-1256 |#1|)) 103)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) 97 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) 128 (|has| |#1| (-367)))) (-1322 (((-112) $) 47 (|has| |#1| (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) 44 (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) 130 (|has| |#1| (-367)))) (-1316 (((-112) $) NIL (|has| |#1| (-367)))) (-2247 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 |#1|) $) 89) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-1999 (((-916) $) 138 (|has| |#1| (-367)))) (-3892 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-4203 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2393 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 145)) (-3729 (($) NIL (|has| |#1| (-367)) CONST)) (-2466 (($ (-916)) 70 (|has| |#1| (-367)))) (-3113 (((-112) $) 117)) (-1709 (((-1112) $) NIL)) (-3873 (((-953 (-1112))) 41)) (-3148 (($) 126 (|has| |#1| (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) 92 (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) 66) (((-916)) 67)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) 129 (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) 124 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-2096 (((-1164 |#1|)) 95)) (-2283 (($) 127 (|has| |#1| (-367)))) (-2624 (($) 135 (|has| |#1| (-367)))) (-3593 (((-1256 |#1|) $) 58) (((-683 |#1|) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4054 (((-857) $) 141) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 74)) (-2805 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2579 (((-766)) 137)) (-3928 (((-1256 $)) 116) (((-1256 $) (-916)) 72)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) 48 T CONST)) (-2294 (($) 45 T CONST)) (-4374 (($ $) 80 (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3114 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1731 (((-112) $ $) 46)) (-1859 (($ $ $) 143) (($ $ |#1|) 144)) (-1848 (($ $) 125) (($ $ $) NIL)) (-1835 (($ $ $) 60)) (** (($ $ (-916)) 147) (($ $ (-766)) 148) (($ $ (-562)) 146)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 76) (($ $ $) 75) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142))) +(((-343 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3873 ((-953 (-1112)))))) (-348) (-1164 |#1|)) (T -343)) +((-3873 (*1 *2) (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348)) (-14 *4 (-1164 *3))))) +(-13 (-328 |#1|) (-10 -7 (-15 -3873 ((-953 (-1112)))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-4018 (($ (-1256 |#1|)) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) NIL (|has| |#1| (-367)))) (-1322 (((-112) $) NIL (|has| |#1| (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) NIL (|has| |#1| (-367)))) (-1316 (((-112) $) NIL (|has| |#1| (-367)))) (-2247 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 |#1|) $) NIL) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-1999 (((-916) $) NIL (|has| |#1| (-367)))) (-3892 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-4203 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2393 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| |#1| (-367)) CONST)) (-2466 (($ (-916)) NIL (|has| |#1| (-367)))) (-3113 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3873 (((-953 (-1112))) NIL)) (-3148 (($) NIL (|has| |#1| (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) NIL) (((-916)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-2096 (((-1164 |#1|)) NIL)) (-2283 (($) NIL (|has| |#1| (-367)))) (-2624 (($) NIL (|has| |#1| (-367)))) (-3593 (((-1256 |#1|) $) NIL) (((-683 |#1|) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) NIL)) (-2805 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4374 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3114 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-344 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -3873 ((-953 (-1112)))))) (-348) (-916)) (T -344)) +((-3873 (*1 *2) (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916))))) +(-13 (-328 |#1|) (-10 -7 (-15 -3873 ((-953 (-1112)))))) +((-2050 (((-766) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112)))))) 42)) (-2681 (((-953 (-1112)) (-1164 |#1|)) 85)) (-4363 (((-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))) (-1164 |#1|)) 78)) (-1467 (((-683 |#1|) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112)))))) 86)) (-4149 (((-3 (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))) "failed") (-916)) 13)) (-3644 (((-3 (-1164 |#1|) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112)))))) (-916)) 18))) +(((-345 |#1|) (-10 -7 (-15 -2681 ((-953 (-1112)) (-1164 |#1|))) (-15 -4363 ((-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))) (-1164 |#1|))) (-15 -1467 ((-683 |#1|) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))))) (-15 -2050 ((-766) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))))) (-15 -4149 ((-3 (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))) "failed") (-916))) (-15 -3644 ((-3 (-1164 |#1|) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112)))))) (-916)))) (-348)) (T -345)) +((-3644 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-3 (-1164 *4) (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112))))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-4149 (*1 *2 *3) (|partial| -12 (-5 *3 (-916)) (-5 *2 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-2050 (*1 *2 *3) (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) (-4 *4 (-348)) (-5 *2 (-766)) (-5 *1 (-345 *4)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) (-4 *4 (-348)) (-5 *2 (-683 *4)) (-5 *1 (-345 *4)))) (-4363 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) (-5 *1 (-345 *4)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-953 (-1112))) (-5 *1 (-345 *4))))) +(-10 -7 (-15 -2681 ((-953 (-1112)) (-1164 |#1|))) (-15 -4363 ((-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))) (-1164 |#1|))) (-15 -1467 ((-683 |#1|) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))))) (-15 -2050 ((-766) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))))) (-15 -4149 ((-3 (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))) "failed") (-916))) (-15 -3644 ((-3 (-1164 |#1|) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112)))))) (-916)))) +((-4054 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-346 |#1| |#2| |#3|) (-10 -7 (-15 -4054 (|#3| |#1|)) (-15 -4054 (|#1| |#3|))) (-328 |#2|) (-348) (-328 |#2|)) (T -346)) +((-4054 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3)) (-4 *3 (-328 *4)))) (-4054 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2)) (-4 *3 (-328 *4))))) +(-10 -7 (-15 -4054 (|#3| |#1|)) (-15 -4054 (|#1| |#3|))) +((-1322 (((-112) $) 50)) (-1900 (((-828 (-916)) $) 21) (((-916) $) 51)) (-3699 (((-3 $ "failed") $) 16)) (-3729 (($) 9)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 92)) (-3362 (((-3 (-766) "failed") $ $) 70) (((-766) $) 59)) (-4029 (($ $ (-766)) NIL) (($ $) 8)) (-2283 (($) 43)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 34)) (-2805 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-347 |#1|) (-10 -8 (-15 -1900 ((-916) |#1|)) (-15 -3362 ((-766) |#1|)) (-15 -1322 ((-112) |#1|)) (-15 -2283 (|#1|)) (-15 -1289 ((-3 (-1256 |#1|) "failed") (-683 |#1|))) (-15 -2805 (|#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3729 (|#1|)) (-15 -3699 ((-3 |#1| "failed") |#1|)) (-15 -3362 ((-3 (-766) "failed") |#1| |#1|)) (-15 -1900 ((-828 (-916)) |#1|)) (-15 -2805 ((-3 |#1| "failed") |#1|)) (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)))) (-348)) (T -347)) +NIL +(-10 -8 (-15 -1900 ((-916) |#1|)) (-15 -3362 ((-766) |#1|)) (-15 -1322 ((-112) |#1|)) (-15 -2283 (|#1|)) (-15 -1289 ((-3 (-1256 |#1|) "failed") (-683 |#1|))) (-15 -2805 (|#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3729 (|#1|)) (-15 -3699 ((-3 |#1| "failed") |#1|)) (-15 -3362 ((-3 (-766) "failed") |#1| |#1|)) (-15 -1900 ((-828 (-916)) |#1|)) (-15 -2805 ((-3 |#1| "failed") |#1|)) (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3984 (((-1180 (-916) (-766)) (-562)) 94)) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-2569 (((-112) $ $) 60)) (-1382 (((-766)) 104)) (-1800 (($) 17 T CONST)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-1448 (($) 107)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-3529 (($) 92)) (-1322 (((-112) $) 91)) (-3589 (($ $) 80) (($ $ (-766)) 79)) (-2717 (((-112) $) 72)) (-1900 (((-828 (-916)) $) 82) (((-916) $) 89)) (-1957 (((-112) $) 31)) (-3699 (((-3 $ "failed") $) 103)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1999 (((-916) $) 106)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71)) (-3729 (($) 102 T CONST)) (-2466 (($ (-916)) 105)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) 95)) (-1635 (((-417 $) $) 75)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-3362 (((-3 (-766) "failed") $ $) 81) (((-766) $) 90)) (-4029 (($ $ (-766)) 100) (($ $) 98)) (-2283 (($) 93)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 96)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67)) (-2805 (((-3 $ "failed") $) 83) (($ $) 97)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-766)) 101) (($ $) 99)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ $) 66)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) +(((-348) (-139)) (T -348)) +((-2805 (*1 *1 *1) (-4 *1 (-348))) (-1289 (*1 *2 *3) (|partial| -12 (-5 *3 (-683 *1)) (-4 *1 (-348)) (-5 *2 (-1256 *1)))) (-3233 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))))) (-3984 (*1 *2 *3) (-12 (-4 *1 (-348)) (-5 *3 (-562)) (-5 *2 (-1180 (-916) (-766))))) (-2283 (*1 *1) (-4 *1 (-348))) (-3529 (*1 *1) (-4 *1 (-348))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-766)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-916)))) (-2370 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-401) (-367) (-1143) (-232) (-10 -8 (-15 -2805 ($ $)) (-15 -1289 ((-3 (-1256 $) "failed") (-683 $))) (-15 -3233 ((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562)))))) (-15 -3984 ((-1180 (-916) (-766)) (-562))) (-15 -2283 ($)) (-15 -3529 ($)) (-15 -1322 ((-112) $)) (-15 -3362 ((-766) $)) (-15 -1900 ((-916) $)) (-15 -2370 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-232) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) . T) ((-367) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) . T) ((-1211) . T)) +((-2438 (((-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) |#1|) 53)) (-3826 (((-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|)))) 51))) +(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -3826 ((-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))))) (-15 -2438 ((-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) |#1|))) (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $)))) (-1232 |#1|) (-408 |#1| |#2|)) (T -349)) +((-2438 (*1 *2 *3) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *2 (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3826 (*1 *2) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *2 (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) +(-10 -7 (-15 -3826 ((-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))))) (-15 -2438 ((-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-905 |#1|) (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2050 (((-766)) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| (-905 |#1|) (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-905 |#1|) "failed") $) NIL)) (-3961 (((-905 |#1|) $) NIL)) (-4018 (($ (-1256 (-905 |#1|))) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-905 |#1|) (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-905 |#1|) (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) NIL (|has| (-905 |#1|) (-367)))) (-1322 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367)))) (($ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) NIL (|has| (-905 |#1|) (-367))) (((-828 (-916)) $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) NIL (|has| (-905 |#1|) (-367)))) (-1316 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-2247 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| (-905 |#1|) (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 (-905 |#1|)) $) NIL) (((-1164 $) $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-1999 (((-916) $) NIL (|has| (-905 |#1|) (-367)))) (-3892 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367)))) (-4203 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-1164 (-905 |#1|)) "failed") $ $) NIL (|has| (-905 |#1|) (-367)))) (-2393 (($ $ (-1164 (-905 |#1|))) NIL (|has| (-905 |#1|) (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-905 |#1|) (-367)) CONST)) (-2466 (($ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3113 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-2551 (((-1256 (-639 (-2 (|:| -2534 (-905 |#1|)) (|:| -2466 (-1112)))))) NIL)) (-3850 (((-683 (-905 |#1|))) NIL)) (-3148 (($) NIL (|has| (-905 |#1|) (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| (-905 |#1|) (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) NIL) (((-916)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-2096 (((-1164 (-905 |#1|))) NIL)) (-2283 (($) NIL (|has| (-905 |#1|) (-367)))) (-2624 (($) NIL (|has| (-905 |#1|) (-367)))) (-3593 (((-1256 (-905 |#1|)) $) NIL) (((-683 (-905 |#1|)) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-905 |#1|) (-367)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-905 |#1|)) NIL)) (-2805 (($ $) NIL (|has| (-905 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4374 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-3114 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ (-905 |#1|)) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-905 |#1|)) NIL) (($ (-905 |#1|) $) NIL))) +(((-350 |#1| |#2|) (-13 (-328 (-905 |#1|)) (-10 -7 (-15 -2551 ((-1256 (-639 (-2 (|:| -2534 (-905 |#1|)) (|:| -2466 (-1112))))))) (-15 -3850 ((-683 (-905 |#1|)))) (-15 -2050 ((-766))))) (-916) (-916)) (T -350)) +((-2551 (*1 *2) (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2534 (-905 *3)) (|:| -2466 (-1112)))))) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-3850 (*1 *2) (-12 (-5 *2 (-683 (-905 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-2050 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916))))) +(-13 (-328 (-905 |#1|)) (-10 -7 (-15 -2551 ((-1256 (-639 (-2 (|:| -2534 (-905 |#1|)) (|:| -2466 (-1112))))))) (-15 -3850 ((-683 (-905 |#1|)))) (-15 -2050 ((-766))))) +((-4041 (((-112) $ $) 61)) (-1952 (((-112) $) 74)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 ((|#1| $) 92) (($ $ (-916)) 90 (|has| |#1| (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) 148 (|has| |#1| (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2050 (((-766)) 89)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) 162 (|has| |#1| (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 112)) (-3961 ((|#1| $) 91)) (-4018 (($ (-1256 |#1|)) 58)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) 158 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) 149 (|has| |#1| (-367)))) (-1322 (((-112) $) NIL (|has| |#1| (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) 98 (|has| |#1| (-367)))) (-1316 (((-112) $) 175 (|has| |#1| (-367)))) (-2247 ((|#1| $) 94) (($ $ (-916)) 93 (|has| |#1| (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 |#1|) $) 189) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-1999 (((-916) $) 134 (|has| |#1| (-367)))) (-3892 (((-1164 |#1|) $) 73 (|has| |#1| (-367)))) (-4203 (((-1164 |#1|) $) 70 (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) 82 (|has| |#1| (-367)))) (-2393 (($ $ (-1164 |#1|)) 69 (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 192)) (-3729 (($) NIL (|has| |#1| (-367)) CONST)) (-2466 (($ (-916)) 137 (|has| |#1| (-367)))) (-3113 (((-112) $) 108)) (-1709 (((-1112) $) NIL)) (-2551 (((-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112)))))) 83)) (-3850 (((-683 |#1|)) 87)) (-3148 (($) 96 (|has| |#1| (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) 150 (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) NIL) (((-916)) 151)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) 62)) (-2096 (((-1164 |#1|)) 152)) (-2283 (($) 133 (|has| |#1| (-367)))) (-2624 (($) NIL (|has| |#1| (-367)))) (-3593 (((-1256 |#1|) $) 106) (((-683 |#1|) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4054 (((-857) $) 124) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 57)) (-2805 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2579 (((-766)) 156)) (-3928 (((-1256 $)) 172) (((-1256 $) (-916)) 101)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) 117 T CONST)) (-2294 (($) 33 T CONST)) (-4374 (($ $) 107 (|has| |#1| (-367))) (($ $ (-766)) 99 (|has| |#1| (-367)))) (-3114 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1731 (((-112) $ $) 183)) (-1859 (($ $ $) 104) (($ $ |#1|) 105)) (-1848 (($ $) 177) (($ $ $) 181)) (-1835 (($ $ $) 179)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 138)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 186) (($ $ $) 142) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-351 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -2551 ((-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))))) (-15 -3850 ((-683 |#1|))) (-15 -2050 ((-766))))) (-348) (-3 (-1164 |#1|) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))))) (T -351)) +((-2551 (*1 *2) (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2534 *3) (|:| -2466 (-1112)))))) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1164 *3) *2)))) (-3850 (*1 *2) (-12 (-5 *2 (-683 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1164 *3) (-1256 (-639 (-2 (|:| -2534 *3) (|:| -2466 (-1112))))))))) (-2050 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1164 *3) (-1256 (-639 (-2 (|:| -2534 *3) (|:| -2466 (-1112)))))))))) +(-13 (-328 |#1|) (-10 -7 (-15 -2551 ((-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))))) (-15 -3850 ((-683 |#1|))) (-15 -2050 ((-766))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2050 (((-766)) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-4018 (($ (-1256 |#1|)) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) NIL (|has| |#1| (-367)))) (-1322 (((-112) $) NIL (|has| |#1| (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) NIL (|has| |#1| (-367)))) (-1316 (((-112) $) NIL (|has| |#1| (-367)))) (-2247 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 |#1|) $) NIL) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-1999 (((-916) $) NIL (|has| |#1| (-367)))) (-3892 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-4203 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2393 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| |#1| (-367)) CONST)) (-2466 (($ (-916)) NIL (|has| |#1| (-367)))) (-3113 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-2551 (((-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112)))))) NIL)) (-3850 (((-683 |#1|)) NIL)) (-3148 (($) NIL (|has| |#1| (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) NIL) (((-916)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-2096 (((-1164 |#1|)) NIL)) (-2283 (($) NIL (|has| |#1| (-367)))) (-2624 (($) NIL (|has| |#1| (-367)))) (-3593 (((-1256 |#1|) $) NIL) (((-683 |#1|) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) NIL)) (-2805 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4374 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3114 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-352 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -2551 ((-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))))) (-15 -3850 ((-683 |#1|))) (-15 -2050 ((-766))))) (-348) (-916)) (T -352)) +((-2551 (*1 *2) (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2534 *3) (|:| -2466 (-1112)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916)))) (-3850 (*1 *2) (-12 (-5 *2 (-683 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916)))) (-2050 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916))))) +(-13 (-328 |#1|) (-10 -7 (-15 -2551 ((-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))))) (-15 -3850 ((-683 |#1|))) (-15 -2050 ((-766))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-905 |#1|) (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| (-905 |#1|) (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-905 |#1|) "failed") $) NIL)) (-3961 (((-905 |#1|) $) NIL)) (-4018 (($ (-1256 (-905 |#1|))) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-905 |#1|) (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-905 |#1|) (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) NIL (|has| (-905 |#1|) (-367)))) (-1322 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367)))) (($ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) NIL (|has| (-905 |#1|) (-367))) (((-828 (-916)) $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) NIL (|has| (-905 |#1|) (-367)))) (-1316 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-2247 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| (-905 |#1|) (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 (-905 |#1|)) $) NIL) (((-1164 $) $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-1999 (((-916) $) NIL (|has| (-905 |#1|) (-367)))) (-3892 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367)))) (-4203 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-1164 (-905 |#1|)) "failed") $ $) NIL (|has| (-905 |#1|) (-367)))) (-2393 (($ $ (-1164 (-905 |#1|))) NIL (|has| (-905 |#1|) (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-905 |#1|) (-367)) CONST)) (-2466 (($ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3113 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3148 (($) NIL (|has| (-905 |#1|) (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| (-905 |#1|) (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) NIL) (((-916)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-2096 (((-1164 (-905 |#1|))) NIL)) (-2283 (($) NIL (|has| (-905 |#1|) (-367)))) (-2624 (($) NIL (|has| (-905 |#1|) (-367)))) (-3593 (((-1256 (-905 |#1|)) $) NIL) (((-683 (-905 |#1|)) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-905 |#1|) (-367)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-905 |#1|)) NIL)) (-2805 (($ $) NIL (|has| (-905 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4374 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-3114 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ (-905 |#1|)) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-905 |#1|)) NIL) (($ (-905 |#1|) $) NIL))) +(((-353 |#1| |#2|) (-328 (-905 |#1|)) (-916) (-916)) (T -353)) +NIL +(-328 (-905 |#1|)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) 120 (|has| |#1| (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) 139 (|has| |#1| (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 93)) (-3961 ((|#1| $) 90)) (-4018 (($ (-1256 |#1|)) 85)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) 82 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) 42 (|has| |#1| (-367)))) (-1322 (((-112) $) NIL (|has| |#1| (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) 121 (|has| |#1| (-367)))) (-1316 (((-112) $) 74 (|has| |#1| (-367)))) (-2247 ((|#1| $) 39) (($ $ (-916)) 43 (|has| |#1| (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 |#1|) $) 65) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-1999 (((-916) $) 97 (|has| |#1| (-367)))) (-3892 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-4203 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2393 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| |#1| (-367)) CONST)) (-2466 (($ (-916)) 95 (|has| |#1| (-367)))) (-3113 (((-112) $) 141)) (-1709 (((-1112) $) NIL)) (-3148 (($) 36 (|has| |#1| (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) 115 (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) NIL) (((-916)) 138)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) 59)) (-2096 (((-1164 |#1|)) 88)) (-2283 (($) 126 (|has| |#1| (-367)))) (-2624 (($) NIL (|has| |#1| (-367)))) (-3593 (((-1256 |#1|) $) 53) (((-683 |#1|) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4054 (((-857) $) 137) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 87)) (-2805 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2579 (((-766)) 143)) (-3928 (((-1256 $)) 109) (((-1256 $) (-916)) 49)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) 111 T CONST)) (-2294 (($) 32 T CONST)) (-4374 (($ $) 68 (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3114 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1731 (((-112) $ $) 107)) (-1859 (($ $ $) 99) (($ $ |#1|) 100)) (-1848 (($ $) 80) (($ $ $) 105)) (-1835 (($ $ $) 103)) (** (($ $ (-916)) NIL) (($ $ (-766)) 44) (($ $ (-562)) 129)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 78) (($ $ $) 56) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-354 |#1| |#2|) (-328 |#1|) (-348) (-1164 |#1|)) (T -354)) NIL (-328 |#1|) -((-1839 (((-951 (-1160 |#1|)) (-1160 |#1|)) 36)) (-3377 (((-1160 |#1|) (-912) (-912)) 112) (((-1160 |#1|) (-912)) 111)) (-1824 (((-112) (-1160 |#1|)) 84)) (-1826 (((-912) (-912)) 71)) (-1827 (((-912) (-912)) 74)) (-1825 (((-912) (-912)) 69)) (-2161 (((-112) (-1160 |#1|)) 88)) (-1834 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 100)) (-1837 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 103)) (-1836 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 102)) (-1835 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 101)) (-1833 (((-3 (-1160 |#1|) "failed") (-1160 |#1|)) 97)) (-1838 (((-1160 |#1|) (-1160 |#1|)) 62)) (-1829 (((-1160 |#1|) (-912)) 106)) (-1832 (((-1160 |#1|) (-912)) 109)) (-1831 (((-1160 |#1|) (-912)) 108)) (-1830 (((-1160 |#1|) (-912)) 107)) (-1828 (((-1160 |#1|) (-912)) 104))) -(((-355 |#1|) (-10 -7 (-15 -1824 ((-112) (-1160 |#1|))) (-15 -2161 ((-112) (-1160 |#1|))) (-15 -1825 ((-912) (-912))) (-15 -1826 ((-912) (-912))) (-15 -1827 ((-912) (-912))) (-15 -1828 ((-1160 |#1|) (-912))) (-15 -1829 ((-1160 |#1|) (-912))) (-15 -1830 ((-1160 |#1|) (-912))) (-15 -1831 ((-1160 |#1|) (-912))) (-15 -1832 ((-1160 |#1|) (-912))) (-15 -1833 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1834 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1835 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1836 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1837 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -3377 ((-1160 |#1|) (-912))) (-15 -3377 ((-1160 |#1|) (-912) (-912))) (-15 -1838 ((-1160 |#1|) (-1160 |#1|))) (-15 -1839 ((-951 (-1160 |#1|)) (-1160 |#1|)))) (-349)) (T -355)) -((-1839 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-951 (-1160 *4))) (-5 *1 (-355 *4)) (-5 *3 (-1160 *4)))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-3377 (*1 *2 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1837 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1836 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1835 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1834 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1833 (*1 *2 *2) (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349)))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-355 *4)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-355 *4))))) -(-10 -7 (-15 -1824 ((-112) (-1160 |#1|))) (-15 -2161 ((-112) (-1160 |#1|))) (-15 -1825 ((-912) (-912))) (-15 -1826 ((-912) (-912))) (-15 -1827 ((-912) (-912))) (-15 -1828 ((-1160 |#1|) (-912))) (-15 -1829 ((-1160 |#1|) (-912))) (-15 -1830 ((-1160 |#1|) (-912))) (-15 -1831 ((-1160 |#1|) (-912))) (-15 -1832 ((-1160 |#1|) (-912))) (-15 -1833 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1834 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1835 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1836 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -1837 ((-3 (-1160 |#1|) "failed") (-1160 |#1|))) (-15 -3377 ((-1160 |#1|) (-912))) (-15 -3377 ((-1160 |#1|) (-912) (-912))) (-15 -1838 ((-1160 |#1|) (-1160 |#1|))) (-15 -1839 ((-951 (-1160 |#1|)) (-1160 |#1|)))) -((-1840 ((|#1| (-1160 |#2|)) 52))) -(((-356 |#1| |#2|) (-10 -7 (-15 -1840 (|#1| (-1160 |#2|)))) (-13 (-401) (-10 -7 (-15 -4353 (|#1| |#2|)) (-15 -2160 ((-912) |#1|)) (-15 -2162 ((-1253 |#1|) (-912))) (-15 -4335 (|#1| |#1|)))) (-349)) (T -356)) -((-1840 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-401) (-10 -7 (-15 -4353 (*2 *4)) (-15 -2160 ((-912) *2)) (-15 -2162 ((-1253 *2) (-912))) (-15 -4335 (*2 *2))))) (-5 *1 (-356 *2 *4))))) -(-10 -7 (-15 -1840 (|#1| (-1160 |#2|)))) -((-3086 (((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|) 33))) -(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -3086 ((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|))) (-349) (-1229 |#1|) (-1229 |#2|)) (T -357)) -((-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-349)) (-5 *1 (-357 *4 *5 *3))))) -(-10 -7 (-15 -3086 ((-3 (-635 |#3|) "failed") (-635 |#3|) |#3|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| |#1| (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| |#1| (-367)))) (-1824 (((-112) $) NIL (|has| |#1| (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| |#1| (-367))) (((-826 (-912)) $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| |#1| (-367)))) (-2161 (((-112) $) NIL (|has| |#1| (-367)))) (-3517 ((|#1| $) NIL) (($ $ (-912)) NIL (|has| |#1| (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 |#1|) $) NIL) (((-1160 $) $ (-912)) NIL (|has| |#1| (-367)))) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-1752 (((-1160 |#1|) $) NIL (|has| |#1| (-367)))) (-1751 (((-1160 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1160 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-1753 (($ $ (-1160 |#1|)) NIL (|has| |#1| (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL (|has| |#1| (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| |#1| (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 |#1|)) NIL)) (-1818 (($) NIL (|has| |#1| (-367)))) (-1754 (($) NIL (|has| |#1| (-367)))) (-3625 (((-1253 |#1|) $) NIL) (((-682 |#1|) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) NIL)) (-3084 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3051 (($ $) NIL (|has| |#1| (-367))) (($ $ (-765)) NIL (|has| |#1| (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-358 |#1| |#2|) (-328 |#1|) (-349) (-912)) (T -358)) +((-3334 ((|#1| (-1164 |#2|)) 52))) +(((-355 |#1| |#2|) (-10 -7 (-15 -3334 (|#1| (-1164 |#2|)))) (-13 (-401) (-10 -7 (-15 -4054 (|#1| |#2|)) (-15 -1999 ((-916) |#1|)) (-15 -3928 ((-1256 |#1|) (-916))) (-15 -4374 (|#1| |#1|)))) (-348)) (T -355)) +((-3334 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-4 *2 (-13 (-401) (-10 -7 (-15 -4054 (*2 *4)) (-15 -1999 ((-916) *2)) (-15 -3928 ((-1256 *2) (-916))) (-15 -4374 (*2 *2))))) (-5 *1 (-355 *2 *4))))) +(-10 -7 (-15 -3334 (|#1| (-1164 |#2|)))) +((-3597 (((-953 (-1164 |#1|)) (-1164 |#1|)) 36)) (-1448 (((-1164 |#1|) (-916) (-916)) 112) (((-1164 |#1|) (-916)) 111)) (-1322 (((-112) (-1164 |#1|)) 84)) (-4140 (((-916) (-916)) 71)) (-3123 (((-916) (-916)) 74)) (-3306 (((-916) (-916)) 69)) (-1316 (((-112) (-1164 |#1|)) 88)) (-2432 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 100)) (-2920 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 103)) (-4168 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 102)) (-2348 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 101)) (-2700 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 97)) (-3607 (((-1164 |#1|) (-1164 |#1|)) 62)) (-2507 (((-1164 |#1|) (-916)) 106)) (-2508 (((-1164 |#1|) (-916)) 109)) (-3935 (((-1164 |#1|) (-916)) 108)) (-2271 (((-1164 |#1|) (-916)) 107)) (-2035 (((-1164 |#1|) (-916)) 104))) +(((-356 |#1|) (-10 -7 (-15 -1322 ((-112) (-1164 |#1|))) (-15 -1316 ((-112) (-1164 |#1|))) (-15 -3306 ((-916) (-916))) (-15 -4140 ((-916) (-916))) (-15 -3123 ((-916) (-916))) (-15 -2035 ((-1164 |#1|) (-916))) (-15 -2507 ((-1164 |#1|) (-916))) (-15 -2271 ((-1164 |#1|) (-916))) (-15 -3935 ((-1164 |#1|) (-916))) (-15 -2508 ((-1164 |#1|) (-916))) (-15 -2700 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2432 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2348 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -4168 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2920 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -1448 ((-1164 |#1|) (-916))) (-15 -1448 ((-1164 |#1|) (-916) (-916))) (-15 -3607 ((-1164 |#1|) (-1164 |#1|))) (-15 -3597 ((-953 (-1164 |#1|)) (-1164 |#1|)))) (-348)) (T -356)) +((-3597 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-953 (-1164 *4))) (-5 *1 (-356 *4)) (-5 *3 (-1164 *4)))) (-3607 (*1 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-1448 (*1 *2 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2920 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-4168 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2348 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2432 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2700 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3123 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-3306 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4))))) +(-10 -7 (-15 -1322 ((-112) (-1164 |#1|))) (-15 -1316 ((-112) (-1164 |#1|))) (-15 -3306 ((-916) (-916))) (-15 -4140 ((-916) (-916))) (-15 -3123 ((-916) (-916))) (-15 -2035 ((-1164 |#1|) (-916))) (-15 -2507 ((-1164 |#1|) (-916))) (-15 -2271 ((-1164 |#1|) (-916))) (-15 -3935 ((-1164 |#1|) (-916))) (-15 -2508 ((-1164 |#1|) (-916))) (-15 -2700 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2432 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2348 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -4168 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2920 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -1448 ((-1164 |#1|) (-916))) (-15 -1448 ((-1164 |#1|) (-916) (-916))) (-15 -3607 ((-1164 |#1|) (-1164 |#1|))) (-15 -3597 ((-953 (-1164 |#1|)) (-1164 |#1|)))) +((-4150 (((-3 (-639 |#3|) "failed") (-639 |#3|) |#3|) 33))) +(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -4150 ((-3 (-639 |#3|) "failed") (-639 |#3|) |#3|))) (-348) (-1232 |#1|) (-1232 |#2|)) (T -357)) +((-4150 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3))))) +(-10 -7 (-15 -4150 ((-3 (-639 |#3|) "failed") (-639 |#3|) |#3|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-4018 (($ (-1256 |#1|)) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) NIL (|has| |#1| (-367)))) (-1322 (((-112) $) NIL (|has| |#1| (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) NIL (|has| |#1| (-367)))) (-1316 (((-112) $) NIL (|has| |#1| (-367)))) (-2247 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 |#1|) $) NIL) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-1999 (((-916) $) NIL (|has| |#1| (-367)))) (-3892 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-4203 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-2393 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| |#1| (-367)) CONST)) (-2466 (($ (-916)) NIL (|has| |#1| (-367)))) (-3113 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3148 (($) NIL (|has| |#1| (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) NIL) (((-916)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-2096 (((-1164 |#1|)) NIL)) (-2283 (($) NIL (|has| |#1| (-367)))) (-2624 (($) NIL (|has| |#1| (-367)))) (-3593 (((-1256 |#1|) $) NIL) (((-683 |#1|) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) NIL)) (-2805 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4374 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3114 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-358 |#1| |#2|) (-328 |#1|) (-348) (-916)) (T -358)) NIL (-328 |#1|) -((-2372 (((-112) (-635 (-939 |#1|))) 33)) (-2374 (((-635 (-939 |#1|)) (-635 (-939 |#1|))) 45)) (-2373 (((-3 (-635 (-939 |#1|)) "failed") (-635 (-939 |#1|))) 40))) -(((-359 |#1| |#2|) (-10 -7 (-15 -2372 ((-112) (-635 (-939 |#1|)))) (-15 -2373 ((-3 (-635 (-939 |#1|)) "failed") (-635 (-939 |#1|)))) (-15 -2374 ((-635 (-939 |#1|)) (-635 (-939 |#1|))))) (-450) (-635 (-1166))) (T -359)) -((-2374 (*1 *2 *2) (-12 (-5 *2 (-635 (-939 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1166))))) (-2373 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-939 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) (-14 *4 (-635 (-1166))))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-450)) (-5 *2 (-112)) (-5 *1 (-359 *4 *5)) (-14 *5 (-635 (-1166)))))) -(-10 -7 (-15 -2372 ((-112) (-635 (-939 |#1|)))) (-15 -2373 ((-3 (-635 (-939 |#1|)) "failed") (-635 (-939 |#1|)))) (-15 -2374 ((-635 (-939 |#1|)) (-635 (-939 |#1|))))) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) 15)) (-2813 ((|#1| $ (-544)) NIL)) (-2814 (((-544) $ (-544)) NIL)) (-2410 (($ (-1 |#1| |#1|) $) 32)) (-2411 (($ (-1 (-544) (-544)) $) 24)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 26)) (-3644 (((-1110) $) NIL)) (-2812 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-544)))) $) 28)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 38) (($ |#1|) NIL)) (-3046 (($) 9 T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL) (($ |#1| (-544)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-360 |#1|) (-13 (-471) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-544))) (-15 -3521 ((-765) $)) (-15 -2814 ((-544) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2411 ($ (-1 (-544) (-544)) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-544)))) $)))) (-1091)) (T -360)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1091)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1091)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-360 *2)) (-4 *2 (-1091)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-360 *3)) (-4 *3 (-1091)))) (-2814 (*1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-360 *3)) (-4 *3 (-1091)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-360 *2)) (-4 *2 (-1091)))) (-2411 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-544) (-544))) (-5 *1 (-360 *3)) (-4 *3 (-1091)))) (-2410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-360 *3)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-544))))) (-5 *1 (-360 *3)) (-4 *3 (-1091))))) -(-13 (-471) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-544))) (-15 -3521 ((-765) $)) (-15 -2814 ((-544) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2411 ($ (-1 (-544) (-544)) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-544)))) $)))) -((-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 13)) (-2213 (($ $) 14)) (-4376 (((-404 $) $) 29)) (-4130 (((-112) $) 25)) (-2779 (($ $) 18)) (-3545 (($ $ $) 22) (($ (-635 $)) NIL)) (-4139 (((-404 $) $) 30)) (-3865 (((-3 $ "failed") $ $) 21)) (-1732 (((-765) $) 24)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 34)) (-2212 (((-112) $ $) 15)) (-4356 (($ $ $) 32))) -(((-361 |#1|) (-10 -8 (-15 -4356 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -4130 ((-112) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -1732 ((-765) |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|)) (-15 -2212 ((-112) |#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|))) (-362)) (T -361)) -NIL -(-10 -8 (-15 -4356 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -4130 ((-112) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -1732 ((-765) |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|)) (-15 -2212 ((-112) |#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68))) +((-1453 (((-112) (-639 (-947 |#1|))) 33)) (-2769 (((-639 (-947 |#1|)) (-639 (-947 |#1|))) 45)) (-3065 (((-3 (-639 (-947 |#1|)) "failed") (-639 (-947 |#1|))) 40))) +(((-359 |#1| |#2|) (-10 -7 (-15 -1453 ((-112) (-639 (-947 |#1|)))) (-15 -3065 ((-3 (-639 (-947 |#1|)) "failed") (-639 (-947 |#1|)))) (-15 -2769 ((-639 (-947 |#1|)) (-639 (-947 |#1|))))) (-451) (-639 (-1168))) (T -359)) +((-2769 (*1 *2 *2) (-12 (-5 *2 (-639 (-947 *3))) (-4 *3 (-451)) (-5 *1 (-359 *3 *4)) (-14 *4 (-639 (-1168))))) (-3065 (*1 *2 *2) (|partial| -12 (-5 *2 (-639 (-947 *3))) (-4 *3 (-451)) (-5 *1 (-359 *3 *4)) (-14 *4 (-639 (-1168))))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-451)) (-5 *2 (-112)) (-5 *1 (-359 *4 *5)) (-14 *5 (-639 (-1168)))))) +(-10 -7 (-15 -1453 ((-112) (-639 (-947 |#1|)))) (-15 -3065 ((-3 (-639 (-947 |#1|)) "failed") (-639 (-947 |#1|)))) (-15 -2769 ((-639 (-947 |#1|)) (-639 (-947 |#1|))))) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766) $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) 15)) (-3126 ((|#1| $ (-562)) NIL)) (-1870 (((-562) $ (-562)) NIL)) (-1304 (($ (-1 |#1| |#1|) $) 32)) (-2866 (($ (-1 (-562) (-562)) $) 24)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 26)) (-1709 (((-1112) $) NIL)) (-1510 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-562)))) $) 28)) (-3665 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-4054 (((-857) $) 38) (($ |#1|) NIL)) (-2294 (($) 9 T CONST)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL) (($ |#1| (-562)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-360 |#1|) (-13 (-472) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-562))) (-15 -1382 ((-766) $)) (-15 -1870 ((-562) $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -2866 ($ (-1 (-562) (-562)) $)) (-15 -1304 ($ (-1 |#1| |#1|) $)) (-15 -1510 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-562)))) $)))) (-1092)) (T -360)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1092)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1092)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-360 *2)) (-4 *2 (-1092)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) (-1870 (*1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) (-3126 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-360 *2)) (-4 *2 (-1092)))) (-2866 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-562) (-562))) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) (-1304 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-360 *3)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-562))))) (-5 *1 (-360 *3)) (-4 *3 (-1092))))) +(-13 (-472) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-562))) (-15 -1382 ((-766) $)) (-15 -1870 ((-562) $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -2866 ($ (-1 (-562) (-562)) $)) (-15 -1304 ($ (-1 |#1| |#1|) $)) (-15 -1510 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-562)))) $)))) +((-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 13)) (-2796 (($ $) 14)) (-2921 (((-417 $) $) 29)) (-2717 (((-112) $) 25)) (-1525 (($ $) 18)) (-1606 (($ $ $) 22) (($ (-639 $)) NIL)) (-1635 (((-417 $) $) 30)) (-1762 (((-3 $ "failed") $ $) 21)) (-1577 (((-766) $) 24)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 34)) (-2922 (((-112) $ $) 15)) (-1859 (($ $ $) 32))) +(((-361 |#1|) (-10 -8 (-15 -1859 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -2717 ((-112) |#1|)) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -2080 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -1577 ((-766) |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|)) (-15 -2922 ((-112) |#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -1445 ((-2 (|:| -3931 |#1|) (|:| -4389 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|))) (-362)) (T -361)) +NIL +(-10 -8 (-15 -1859 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -2717 ((-112) |#1|)) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -2080 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -1577 ((-766) |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|)) (-15 -2922 ((-112) |#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -1445 ((-2 (|:| -3931 |#1|) (|:| -4389 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-2569 (((-112) $ $) 60)) (-1800 (($) 17 T CONST)) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-2717 (((-112) $) 72)) (-1957 (((-112) $) 31)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 75)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ $) 66)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) (((-362) (-139)) (T -362)) -((-4356 (*1 *1 *1 *1) (-4 *1 (-362)))) -(-13 (-306) (-1209) (-242) (-10 -8 (-15 -4356 ($ $ $)) (-6 -4398) (-6 -4392))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T)) -((-2947 (((-112) $ $) NIL)) (-1841 ((|#1| $ |#1|) 30)) (-1845 (($ $ (-1148)) 22)) (-4026 (((-3 |#1| "failed") $) 29)) (-1842 ((|#1| $) 27)) (-1846 (($ (-387)) 21) (($ (-387) (-1148)) 20)) (-3949 (((-387) $) 24)) (-3643 (((-1148) $) NIL)) (-1843 (((-1148) $) 25)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19)) (-1844 (($ $) 23)) (-3437 (((-112) $ $) 18))) -(((-363 |#1|) (-13 (-364 (-387) |#1|) (-10 -8 (-15 -4026 ((-3 |#1| "failed") $)))) (-1091)) (T -363)) -((-4026 (*1 *2 *1) (|partial| -12 (-5 *1 (-363 *2)) (-4 *2 (-1091))))) -(-13 (-364 (-387) |#1|) (-10 -8 (-15 -4026 ((-3 |#1| "failed") $)))) -((-2947 (((-112) $ $) 7)) (-1841 ((|#2| $ |#2|) 13)) (-1845 (($ $ (-1148)) 18)) (-1842 ((|#2| $) 14)) (-1846 (($ |#1|) 20) (($ |#1| (-1148)) 19)) (-3949 ((|#1| $) 16)) (-3643 (((-1148) $) 9)) (-1843 (((-1148) $) 15)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-1844 (($ $) 17)) (-3437 (((-112) $ $) 6))) -(((-364 |#1| |#2|) (-139) (-1091) (-1091)) (T -364)) -((-1846 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-1846 (*1 *1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1091)) (-4 *4 (-1091)))) (-1845 (*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-1844 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-1148)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-1841 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091))))) -(-13 (-1091) (-10 -8 (-15 -1846 ($ |t#1|)) (-15 -1846 ($ |t#1| (-1148))) (-15 -1845 ($ $ (-1148))) (-15 -1844 ($ $)) (-15 -3949 (|t#1| $)) (-15 -1843 ((-1148) $)) (-15 -1842 (|t#2| $)) (-15 -1841 (|t#2| $ |t#2|)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-3624 (((-1253 (-682 |#2|)) (-1253 $)) 61)) (-1935 (((-682 |#2|) (-1253 $)) 120)) (-1871 ((|#2| $) 32)) (-1933 (((-682 |#2|) $ (-1253 $)) 123)) (-2539 (((-3 $ "failed") $) 75)) (-1869 ((|#2| $) 35)) (-1849 (((-1160 |#2|) $) 83)) (-1937 ((|#2| (-1253 $)) 106)) (-1867 (((-1160 |#2|) $) 28)) (-1861 (((-112)) 100)) (-1939 (($ (-1253 |#2|) (-1253 $)) 113)) (-3866 (((-3 $ "failed") $) 79)) (-1854 (((-112)) 95)) (-1852 (((-112)) 90)) (-1856 (((-112)) 53)) (-1936 (((-682 |#2|) (-1253 $)) 118)) (-1872 ((|#2| $) 31)) (-1934 (((-682 |#2|) $ (-1253 $)) 122)) (-2540 (((-3 $ "failed") $) 73)) (-1870 ((|#2| $) 34)) (-1850 (((-1160 |#2|) $) 82)) (-1938 ((|#2| (-1253 $)) 104)) (-1868 (((-1160 |#2|) $) 26)) (-1862 (((-112)) 99)) (-1853 (((-112)) 92)) (-1855 (((-112)) 51)) (-1857 (((-112)) 87)) (-1860 (((-112)) 101)) (-3625 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) 111)) (-1866 (((-112)) 97)) (-1851 (((-635 (-1253 |#2|))) 86)) (-1864 (((-112)) 98)) (-1865 (((-112)) 96)) (-1863 (((-112)) 46)) (-1859 (((-112)) 102))) -(((-365 |#1| |#2|) (-10 -8 (-15 -1849 ((-1160 |#2|) |#1|)) (-15 -1850 ((-1160 |#2|) |#1|)) (-15 -1851 ((-635 (-1253 |#2|)))) (-15 -2539 ((-3 |#1| "failed") |#1|)) (-15 -2540 ((-3 |#1| "failed") |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 -1852 ((-112))) (-15 -1853 ((-112))) (-15 -1854 ((-112))) (-15 -1855 ((-112))) (-15 -1856 ((-112))) (-15 -1857 ((-112))) (-15 -1859 ((-112))) (-15 -1860 ((-112))) (-15 -1861 ((-112))) (-15 -1862 ((-112))) (-15 -1863 ((-112))) (-15 -1864 ((-112))) (-15 -1865 ((-112))) (-15 -1866 ((-112))) (-15 -1867 ((-1160 |#2|) |#1|)) (-15 -1868 ((-1160 |#2|) |#1|)) (-15 -1935 ((-682 |#2|) (-1253 |#1|))) (-15 -1936 ((-682 |#2|) (-1253 |#1|))) (-15 -1937 (|#2| (-1253 |#1|))) (-15 -1938 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1869 (|#2| |#1|)) (-15 -1870 (|#2| |#1|)) (-15 -1871 (|#2| |#1|)) (-15 -1872 (|#2| |#1|)) (-15 -1933 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1934 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -3624 ((-1253 (-682 |#2|)) (-1253 |#1|)))) (-366 |#2|) (-171)) (T -365)) -((-1866 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1865 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1864 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1863 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1862 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1861 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1860 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1859 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1857 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1856 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1855 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1854 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1853 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1852 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1851 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-635 (-1253 *4))) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))) -(-10 -8 (-15 -1849 ((-1160 |#2|) |#1|)) (-15 -1850 ((-1160 |#2|) |#1|)) (-15 -1851 ((-635 (-1253 |#2|)))) (-15 -2539 ((-3 |#1| "failed") |#1|)) (-15 -2540 ((-3 |#1| "failed") |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 -1852 ((-112))) (-15 -1853 ((-112))) (-15 -1854 ((-112))) (-15 -1855 ((-112))) (-15 -1856 ((-112))) (-15 -1857 ((-112))) (-15 -1859 ((-112))) (-15 -1860 ((-112))) (-15 -1861 ((-112))) (-15 -1862 ((-112))) (-15 -1863 ((-112))) (-15 -1864 ((-112))) (-15 -1865 ((-112))) (-15 -1866 ((-112))) (-15 -1867 ((-1160 |#2|) |#1|)) (-15 -1868 ((-1160 |#2|) |#1|)) (-15 -1935 ((-682 |#2|) (-1253 |#1|))) (-15 -1936 ((-682 |#2|) (-1253 |#1|))) (-15 -1937 (|#2| (-1253 |#1|))) (-15 -1938 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1869 (|#2| |#1|)) (-15 -1870 (|#2| |#1|)) (-15 -1871 (|#2| |#1|)) (-15 -1872 (|#2| |#1|)) (-15 -1933 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1934 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -3624 ((-1253 (-682 |#2|)) (-1253 |#1|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1920 (((-3 $ "failed")) 37 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-3624 (((-1253 (-682 |#1|)) (-1253 $)) 78)) (-1873 (((-1253 $)) 81)) (-4131 (($) 17 T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed")) 40 (|has| |#1| (-554)))) (-1847 (((-3 $ "failed")) 38 (|has| |#1| (-554)))) (-1935 (((-682 |#1|) (-1253 $)) 65)) (-1871 ((|#1| $) 74)) (-1933 (((-682 |#1|) $ (-1253 $)) 76)) (-2539 (((-3 $ "failed") $) 45 (|has| |#1| (-554)))) (-2542 (($ $ (-912)) 28)) (-1869 ((|#1| $) 72)) (-1849 (((-1160 |#1|) $) 42 (|has| |#1| (-554)))) (-1937 ((|#1| (-1253 $)) 67)) (-1867 (((-1160 |#1|) $) 63)) (-1861 (((-112)) 57)) (-1939 (($ (-1253 |#1|) (-1253 $)) 69)) (-3866 (((-3 $ "failed") $) 47 (|has| |#1| (-554)))) (-3494 (((-912)) 80)) (-1858 (((-112)) 54)) (-2567 (($ $ (-912)) 33)) (-1854 (((-112)) 50)) (-1852 (((-112)) 48)) (-1856 (((-112)) 52)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed")) 41 (|has| |#1| (-554)))) (-1848 (((-3 $ "failed")) 39 (|has| |#1| (-554)))) (-1936 (((-682 |#1|) (-1253 $)) 66)) (-1872 ((|#1| $) 75)) (-1934 (((-682 |#1|) $ (-1253 $)) 77)) (-2540 (((-3 $ "failed") $) 46 (|has| |#1| (-554)))) (-2541 (($ $ (-912)) 29)) (-1870 ((|#1| $) 73)) (-1850 (((-1160 |#1|) $) 43 (|has| |#1| (-554)))) (-1938 ((|#1| (-1253 $)) 68)) (-1868 (((-1160 |#1|) $) 64)) (-1862 (((-112)) 58)) (-3643 (((-1148) $) 9)) (-1853 (((-112)) 49)) (-1855 (((-112)) 51)) (-1857 (((-112)) 53)) (-3644 (((-1110) $) 10)) (-1860 (((-112)) 56)) (-3625 (((-1253 |#1|) $ (-1253 $)) 71) (((-682 |#1|) (-1253 $) (-1253 $)) 70)) (-2042 (((-635 (-939 |#1|)) (-1253 $)) 79)) (-2729 (($ $ $) 25)) (-1866 (((-112)) 62)) (-4353 (((-857) $) 11)) (-1851 (((-635 (-1253 |#1|))) 44 (|has| |#1| (-554)))) (-2730 (($ $ $ $) 26)) (-1864 (((-112)) 60)) (-2728 (($ $ $) 24)) (-1865 (((-112)) 61)) (-1863 (((-112)) 59)) (-1859 (((-112)) 55)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-1859 (*1 *1 *1 *1) (-4 *1 (-362)))) +(-13 (-306) (-1211) (-242) (-10 -8 (-15 -1859 ($ $ $)) (-6 -4400) (-6 -4394))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) +((-4041 (((-112) $ $) 7)) (-3067 ((|#2| $ |#2|) 13)) (-2413 (($ $ (-1150)) 18)) (-1805 ((|#2| $) 14)) (-3316 (($ |#1|) 20) (($ |#1| (-1150)) 19)) (-3254 ((|#1| $) 16)) (-2913 (((-1150) $) 9)) (-3523 (((-1150) $) 15)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-3948 (($ $) 17)) (-1731 (((-112) $ $) 6))) +(((-363 |#1| |#2|) (-139) (-1092) (-1092)) (T -363)) +((-3316 (*1 *1 *2) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-3316 (*1 *1 *2 *3) (-12 (-5 *3 (-1150)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1092)) (-4 *4 (-1092)))) (-2413 (*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-3948 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-5 *2 (-1150)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-3067 (*1 *2 *1 *2) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) +(-13 (-1092) (-10 -8 (-15 -3316 ($ |t#1|)) (-15 -3316 ($ |t#1| (-1150))) (-15 -2413 ($ $ (-1150))) (-15 -3948 ($ $)) (-15 -3254 (|t#1| $)) (-15 -3523 ((-1150) $)) (-15 -1805 (|t#2| $)) (-15 -3067 (|t#2| $ |t#2|)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-3067 ((|#1| $ |#1|) 30)) (-2413 (($ $ (-1150)) 22)) (-1861 (((-3 |#1| "failed") $) 29)) (-1805 ((|#1| $) 27)) (-3316 (($ (-387)) 21) (($ (-387) (-1150)) 20)) (-3254 (((-387) $) 24)) (-2913 (((-1150) $) NIL)) (-3523 (((-1150) $) 25)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 19)) (-3948 (($ $) 23)) (-1731 (((-112) $ $) 18))) +(((-364 |#1|) (-13 (-363 (-387) |#1|) (-10 -8 (-15 -1861 ((-3 |#1| "failed") $)))) (-1092)) (T -364)) +((-1861 (*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1092))))) +(-13 (-363 (-387) |#1|) (-10 -8 (-15 -1861 ((-3 |#1| "failed") $)))) +((-1902 (((-1256 (-683 |#2|)) (-1256 $)) 61)) (-4356 (((-683 |#2|) (-1256 $)) 120)) (-2422 ((|#2| $) 32)) (-2966 (((-683 |#2|) $ (-1256 $)) 123)) (-2545 (((-3 $ "failed") $) 75)) (-2355 ((|#2| $) 35)) (-3474 (((-1164 |#2|) $) 83)) (-2819 ((|#2| (-1256 $)) 106)) (-2964 (((-1164 |#2|) $) 28)) (-2380 (((-112)) 100)) (-4018 (($ (-1256 |#2|) (-1256 $)) 113)) (-3668 (((-3 $ "failed") $) 79)) (-3813 (((-112)) 95)) (-3375 (((-112)) 90)) (-4258 (((-112)) 53)) (-3025 (((-683 |#2|) (-1256 $)) 118)) (-4153 ((|#2| $) 31)) (-1671 (((-683 |#2|) $ (-1256 $)) 122)) (-4238 (((-3 $ "failed") $) 73)) (-1680 ((|#2| $) 34)) (-2026 (((-1164 |#2|) $) 82)) (-1305 ((|#2| (-1256 $)) 104)) (-2670 (((-1164 |#2|) $) 26)) (-2090 (((-112)) 99)) (-2144 (((-112)) 92)) (-2580 (((-112)) 51)) (-2809 (((-112)) 87)) (-4323 (((-112)) 101)) (-3593 (((-1256 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) 111)) (-1396 (((-112)) 97)) (-3553 (((-639 (-1256 |#2|))) 86)) (-2850 (((-112)) 98)) (-1981 (((-112)) 96)) (-3199 (((-112)) 46)) (-4114 (((-112)) 102))) +(((-365 |#1| |#2|) (-10 -8 (-15 -3474 ((-1164 |#2|) |#1|)) (-15 -2026 ((-1164 |#2|) |#1|)) (-15 -3553 ((-639 (-1256 |#2|)))) (-15 -2545 ((-3 |#1| "failed") |#1|)) (-15 -4238 ((-3 |#1| "failed") |#1|)) (-15 -3668 ((-3 |#1| "failed") |#1|)) (-15 -3375 ((-112))) (-15 -2144 ((-112))) (-15 -3813 ((-112))) (-15 -2580 ((-112))) (-15 -4258 ((-112))) (-15 -2809 ((-112))) (-15 -4114 ((-112))) (-15 -4323 ((-112))) (-15 -2380 ((-112))) (-15 -2090 ((-112))) (-15 -3199 ((-112))) (-15 -2850 ((-112))) (-15 -1981 ((-112))) (-15 -1396 ((-112))) (-15 -2964 ((-1164 |#2|) |#1|)) (-15 -2670 ((-1164 |#2|) |#1|)) (-15 -4356 ((-683 |#2|) (-1256 |#1|))) (-15 -3025 ((-683 |#2|) (-1256 |#1|))) (-15 -2819 (|#2| (-1256 |#1|))) (-15 -1305 (|#2| (-1256 |#1|))) (-15 -4018 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2355 (|#2| |#1|)) (-15 -1680 (|#2| |#1|)) (-15 -2422 (|#2| |#1|)) (-15 -4153 (|#2| |#1|)) (-15 -2966 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1671 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1902 ((-1256 (-683 |#2|)) (-1256 |#1|)))) (-366 |#2|) (-171)) (T -365)) +((-1396 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1981 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2850 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3199 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2090 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2380 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-4323 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-4114 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2809 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-4258 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2580 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3813 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2144 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3375 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3553 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-639 (-1256 *4))) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))) +(-10 -8 (-15 -3474 ((-1164 |#2|) |#1|)) (-15 -2026 ((-1164 |#2|) |#1|)) (-15 -3553 ((-639 (-1256 |#2|)))) (-15 -2545 ((-3 |#1| "failed") |#1|)) (-15 -4238 ((-3 |#1| "failed") |#1|)) (-15 -3668 ((-3 |#1| "failed") |#1|)) (-15 -3375 ((-112))) (-15 -2144 ((-112))) (-15 -3813 ((-112))) (-15 -2580 ((-112))) (-15 -4258 ((-112))) (-15 -2809 ((-112))) (-15 -4114 ((-112))) (-15 -4323 ((-112))) (-15 -2380 ((-112))) (-15 -2090 ((-112))) (-15 -3199 ((-112))) (-15 -2850 ((-112))) (-15 -1981 ((-112))) (-15 -1396 ((-112))) (-15 -2964 ((-1164 |#2|) |#1|)) (-15 -2670 ((-1164 |#2|) |#1|)) (-15 -4356 ((-683 |#2|) (-1256 |#1|))) (-15 -3025 ((-683 |#2|) (-1256 |#1|))) (-15 -2819 (|#2| (-1256 |#1|))) (-15 -1305 (|#2| (-1256 |#1|))) (-15 -4018 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2355 (|#2| |#1|)) (-15 -1680 (|#2| |#1|)) (-15 -2422 (|#2| |#1|)) (-15 -4153 (|#2| |#1|)) (-15 -2966 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1671 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1902 ((-1256 (-683 |#2|)) (-1256 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3931 (((-3 $ "failed")) 37 (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) 19)) (-1902 (((-1256 (-683 |#1|)) (-1256 $)) 78)) (-3655 (((-1256 $)) 81)) (-1800 (($) 17 T CONST)) (-2874 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) 40 (|has| |#1| (-554)))) (-2117 (((-3 $ "failed")) 38 (|has| |#1| (-554)))) (-4356 (((-683 |#1|) (-1256 $)) 65)) (-2422 ((|#1| $) 74)) (-2966 (((-683 |#1|) $ (-1256 $)) 76)) (-2545 (((-3 $ "failed") $) 45 (|has| |#1| (-554)))) (-1379 (($ $ (-916)) 28)) (-2355 ((|#1| $) 72)) (-3474 (((-1164 |#1|) $) 42 (|has| |#1| (-554)))) (-2819 ((|#1| (-1256 $)) 67)) (-2964 (((-1164 |#1|) $) 63)) (-2380 (((-112)) 57)) (-4018 (($ (-1256 |#1|) (-1256 $)) 69)) (-3668 (((-3 $ "failed") $) 47 (|has| |#1| (-554)))) (-2173 (((-916)) 80)) (-1321 (((-112)) 54)) (-3650 (($ $ (-916)) 33)) (-3813 (((-112)) 50)) (-3375 (((-112)) 48)) (-4258 (((-112)) 52)) (-1681 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) 41 (|has| |#1| (-554)))) (-3700 (((-3 $ "failed")) 39 (|has| |#1| (-554)))) (-3025 (((-683 |#1|) (-1256 $)) 66)) (-4153 ((|#1| $) 75)) (-1671 (((-683 |#1|) $ (-1256 $)) 77)) (-4238 (((-3 $ "failed") $) 46 (|has| |#1| (-554)))) (-2991 (($ $ (-916)) 29)) (-1680 ((|#1| $) 73)) (-2026 (((-1164 |#1|) $) 43 (|has| |#1| (-554)))) (-1305 ((|#1| (-1256 $)) 68)) (-2670 (((-1164 |#1|) $) 64)) (-2090 (((-112)) 58)) (-2913 (((-1150) $) 9)) (-2144 (((-112)) 49)) (-2580 (((-112)) 51)) (-2809 (((-112)) 53)) (-1709 (((-1112) $) 10)) (-4323 (((-112)) 56)) (-3593 (((-1256 |#1|) $ (-1256 $)) 71) (((-683 |#1|) (-1256 $) (-1256 $)) 70)) (-4136 (((-639 (-947 |#1|)) (-1256 $)) 79)) (-1911 (($ $ $) 25)) (-1396 (((-112)) 62)) (-4054 (((-857) $) 11)) (-3553 (((-639 (-1256 |#1|))) 44 (|has| |#1| (-554)))) (-2436 (($ $ $ $) 26)) (-2850 (((-112)) 60)) (-3626 (($ $ $) 24)) (-1981 (((-112)) 61)) (-3199 (((-112)) 59)) (-4114 (((-112)) 55)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-366 |#1|) (-139) (-171)) (T -366)) -((-1873 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-366 *3)))) (-3494 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-912)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-635 (-939 *4))))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1253 (-682 *4))))) (-1934 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1933 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3625 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1253 *4)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1160 *3)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1160 *3)))) (-1866 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1865 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1864 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1863 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1862 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1861 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1860 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1859 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1858 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1857 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1856 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1855 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1854 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1853 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1852 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3866 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-2540 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-2539 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-1851 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-635 (-1253 *3))))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1160 *3)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1160 *3)))) (-2057 (*1 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2162 (-635 *1)))) (-4 *1 (-366 *3)))) (-2056 (*1 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2162 (-635 *1)))) (-4 *1 (-366 *3)))) (-1848 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) (-1847 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) (-1920 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))) -(-13 (-738 |t#1|) (-10 -8 (-15 -1873 ((-1253 $))) (-15 -3494 ((-912))) (-15 -2042 ((-635 (-939 |t#1|)) (-1253 $))) (-15 -3624 ((-1253 (-682 |t#1|)) (-1253 $))) (-15 -1934 ((-682 |t#1|) $ (-1253 $))) (-15 -1933 ((-682 |t#1|) $ (-1253 $))) (-15 -1872 (|t#1| $)) (-15 -1871 (|t#1| $)) (-15 -1870 (|t#1| $)) (-15 -1869 (|t#1| $)) (-15 -3625 ((-1253 |t#1|) $ (-1253 $))) (-15 -3625 ((-682 |t#1|) (-1253 $) (-1253 $))) (-15 -1939 ($ (-1253 |t#1|) (-1253 $))) (-15 -1938 (|t#1| (-1253 $))) (-15 -1937 (|t#1| (-1253 $))) (-15 -1936 ((-682 |t#1|) (-1253 $))) (-15 -1935 ((-682 |t#1|) (-1253 $))) (-15 -1868 ((-1160 |t#1|) $)) (-15 -1867 ((-1160 |t#1|) $)) (-15 -1866 ((-112))) (-15 -1865 ((-112))) (-15 -1864 ((-112))) (-15 -1863 ((-112))) (-15 -1862 ((-112))) (-15 -1861 ((-112))) (-15 -1860 ((-112))) (-15 -1859 ((-112))) (-15 -1858 ((-112))) (-15 -1857 ((-112))) (-15 -1856 ((-112))) (-15 -1855 ((-112))) (-15 -1854 ((-112))) (-15 -1853 ((-112))) (-15 -1852 ((-112))) (IF (|has| |t#1| (-554)) (PROGN (-15 -3866 ((-3 $ "failed") $)) (-15 -2540 ((-3 $ "failed") $)) (-15 -2539 ((-3 $ "failed") $)) (-15 -1851 ((-635 (-1253 |t#1|)))) (-15 -1850 ((-1160 |t#1|) $)) (-15 -1849 ((-1160 |t#1|) $)) (-15 -2057 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2056 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -1848 ((-3 $ "failed"))) (-15 -1847 ((-3 $ "failed"))) (-15 -1920 ((-3 $ "failed"))) (-6 -4397)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-738 |#1|) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 7)) (-3521 (((-765)) 16)) (-3377 (($) 13)) (-2160 (((-912) $) 14)) (-3643 (((-1148) $) 9)) (-2535 (($ (-912)) 15)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6))) +((-3655 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1256 *1)) (-4 *1 (-366 *3)))) (-2173 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-916)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-639 (-947 *4))))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1256 (-683 *4))))) (-1671 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-2966 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2355 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3593 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1256 *4)))) (-3593 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-4018 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-4356 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1164 *3)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1164 *3)))) (-1396 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1981 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2850 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3199 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2090 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2380 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-4323 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-4114 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1321 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2809 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-4258 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2580 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3813 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2144 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3375 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3668 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-4238 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-2545 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-3553 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-639 (-1256 *3))))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1164 *3)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1164 *3)))) (-1681 (*1 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3928 (-639 *1)))) (-4 *1 (-366 *3)))) (-2874 (*1 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3928 (-639 *1)))) (-4 *1 (-366 *3)))) (-3700 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) (-2117 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) (-3931 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))) +(-13 (-739 |t#1|) (-10 -8 (-15 -3655 ((-1256 $))) (-15 -2173 ((-916))) (-15 -4136 ((-639 (-947 |t#1|)) (-1256 $))) (-15 -1902 ((-1256 (-683 |t#1|)) (-1256 $))) (-15 -1671 ((-683 |t#1|) $ (-1256 $))) (-15 -2966 ((-683 |t#1|) $ (-1256 $))) (-15 -4153 (|t#1| $)) (-15 -2422 (|t#1| $)) (-15 -1680 (|t#1| $)) (-15 -2355 (|t#1| $)) (-15 -3593 ((-1256 |t#1|) $ (-1256 $))) (-15 -3593 ((-683 |t#1|) (-1256 $) (-1256 $))) (-15 -4018 ($ (-1256 |t#1|) (-1256 $))) (-15 -1305 (|t#1| (-1256 $))) (-15 -2819 (|t#1| (-1256 $))) (-15 -3025 ((-683 |t#1|) (-1256 $))) (-15 -4356 ((-683 |t#1|) (-1256 $))) (-15 -2670 ((-1164 |t#1|) $)) (-15 -2964 ((-1164 |t#1|) $)) (-15 -1396 ((-112))) (-15 -1981 ((-112))) (-15 -2850 ((-112))) (-15 -3199 ((-112))) (-15 -2090 ((-112))) (-15 -2380 ((-112))) (-15 -4323 ((-112))) (-15 -4114 ((-112))) (-15 -1321 ((-112))) (-15 -2809 ((-112))) (-15 -4258 ((-112))) (-15 -2580 ((-112))) (-15 -3813 ((-112))) (-15 -2144 ((-112))) (-15 -3375 ((-112))) (IF (|has| |t#1| (-554)) (PROGN (-15 -3668 ((-3 $ "failed") $)) (-15 -4238 ((-3 $ "failed") $)) (-15 -2545 ((-3 $ "failed") $)) (-15 -3553 ((-639 (-1256 |t#1|)))) (-15 -2026 ((-1164 |t#1|) $)) (-15 -3474 ((-1164 |t#1|) $)) (-15 -1681 ((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed"))) (-15 -2874 ((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed"))) (-15 -3700 ((-3 $ "failed"))) (-15 -2117 ((-3 $ "failed"))) (-15 -3931 ((-3 $ "failed"))) (-6 -4399)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-715) . T) ((-739 |#1|) . T) ((-756) . T) ((-1050 |#1|) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 7)) (-1382 (((-766)) 16)) (-1448 (($) 13)) (-1999 (((-916) $) 14)) (-2913 (((-1150) $) 9)) (-2466 (($ (-916)) 15)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6))) (((-367) (-139)) (T -367)) -((-3521 (*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-765)))) (-2535 (*1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-367)))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-912)))) (-3377 (*1 *1) (-4 *1 (-367)))) -(-13 (-1091) (-10 -8 (-15 -3521 ((-765))) (-15 -2535 ($ (-912))) (-15 -2160 ((-912) $)) (-15 -3377 ($)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-1929 (((-682 |#2|) (-1253 $)) 40)) (-1939 (($ (-1253 |#2|) (-1253 $)) 34)) (-1928 (((-682 |#2|) $ (-1253 $)) 42)) (-4164 ((|#2| (-1253 $)) 13)) (-3625 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) 25))) -(((-368 |#1| |#2| |#3|) (-10 -8 (-15 -1929 ((-682 |#2|) (-1253 |#1|))) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1928 ((-682 |#2|) |#1| (-1253 |#1|)))) (-369 |#2| |#3|) (-171) (-1229 |#2|)) (T -368)) -NIL -(-10 -8 (-15 -1929 ((-682 |#2|) (-1253 |#1|))) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1928 ((-682 |#2|) |#1| (-1253 |#1|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1929 (((-682 |#1|) (-1253 $)) 47)) (-3734 ((|#1| $) 53)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-1939 (($ (-1253 |#1|) (-1253 $)) 49)) (-1928 (((-682 |#1|) $ (-1253 $)) 54)) (-3866 (((-3 $ "failed") $) 33)) (-3494 (((-912)) 55)) (-2545 (((-112) $) 31)) (-3517 ((|#1| $) 52)) (-2164 ((|#2| $) 45 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4164 ((|#1| (-1253 $)) 48)) (-3625 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38)) (-3084 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2743 ((|#2| $) 46)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-369 |#1| |#2|) (-139) (-171) (-1229 |t#1|)) (T -369)) -((-3494 (*1 *2) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-912)))) (-1928 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) (-3625 (*1 *2 *1 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *4)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171)) (-4 *1 (-369 *4 *5)) (-4 *5 (-1229 *4)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1229 *2)) (-4 *2 (-171)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1229 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3494 ((-912))) (-15 -1928 ((-682 |t#1|) $ (-1253 $))) (-15 -3734 (|t#1| $)) (-15 -3517 (|t#1| $)) (-15 -3625 ((-1253 |t#1|) $ (-1253 $))) (-15 -3625 ((-682 |t#1|) (-1253 $) (-1253 $))) (-15 -1939 ($ (-1253 |t#1|) (-1253 $))) (-15 -4164 (|t#1| (-1253 $))) (-15 -1929 ((-682 |t#1|) (-1253 $))) (-15 -2743 (|t#2| $)) (IF (|has| |t#1| (-362)) (-15 -2164 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-1876 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1874 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3292 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2417 (($ $) 25)) (-3823 (((-544) (-1 (-112) |#2|) $) NIL) (((-544) |#2| $) 11) (((-544) |#2| $ (-544)) NIL)) (-3917 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-370 |#1| |#2|) (-10 -8 (-15 -1874 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1876 ((-112) |#1|)) (-15 -3292 (|#1| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3292 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-371 |#2|) (-1204)) (T -370)) -NIL -(-10 -8 (-15 -1874 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1876 ((-112) |#1|)) (-15 -3292 (|#1| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3292 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-3823 (((-544) (-1 (-112) |#1|) $) 97) (((-544) |#1| $) 96 (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) 95 (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 83 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 85 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 82 (|has| |#1| (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-371 |#1|) (-139) (-1204)) (T -371)) -((-3917 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) (-2417 (*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)))) (-3292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) (-1876 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-371 *4)) (-4 *4 (-1204)) (-5 *2 (-112)))) (-3823 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-371 *4)) (-4 *4 (-1204)) (-5 *2 (-544)))) (-3823 (*1 *2 *3 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-544)))) (-3823 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))) (-1876 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-844)) (-5 *2 (-112)))) (-1875 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (|has| *1 (-6 -4401)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) (-2416 (*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-371 *2)) (-4 *2 (-1204)))) (-1874 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4401)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) (-1874 (*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844))))) -(-13 (-644 |t#1|) (-10 -8 (-6 -4400) (-15 -3917 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2417 ($ $)) (-15 -3292 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1876 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3823 ((-544) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -3823 ((-544) |t#1| $)) (-15 -3823 ((-544) |t#1| $ (-544)))) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-6 (-844)) (-15 -3917 ($ $ $)) (-15 -3292 ($ $)) (-15 -1876 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4401)) (PROGN (-15 -1875 ($ $ $ (-544))) (-15 -2416 ($ $)) (-15 -1874 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-844)) (-15 -1874 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1204) . T)) -((-4248 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4249 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4365 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-372 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4249 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4248 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1204) (-371 |#1|) (-1204) (-371 |#3|)) (T -372)) -((-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-4 *2 (-371 *5)) (-5 *1 (-372 *6 *4 *5 *2)) (-4 *4 (-371 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-372 *5 *4 *2 *6)) (-4 *4 (-371 *5)) (-4 *6 (-371 *2)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *2 (-371 *6)) (-5 *1 (-372 *5 *4 *6 *2)) (-4 *4 (-371 *5))))) -(-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4249 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4248 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4341 (((-635 |#1|) $) 32)) (-4354 (($ $ (-765)) 33)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4346 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 36)) (-4343 (($ $) 34)) (-4347 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 37)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4174 (($ $ |#1| $) 31) (($ $ (-635 |#1|) (-635 $)) 30)) (-4355 (((-765) $) 38)) (-3929 (($ $ $) 29)) (-4353 (((-857) $) 11) (($ |#1|) 41) (((-1269 |#1| |#2|) $) 40) (((-1278 |#1| |#2|) $) 39)) (-4361 ((|#2| (-1278 |#1| |#2|) $) 42)) (-3040 (($) 18 T CONST)) (-1877 (($ (-665 |#1|)) 35)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#2|) 28 (|has| |#2| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-373 |#1| |#2|) (-139) (-844) (-171)) (T -373)) -((-4361 (*1 *2 *3 *1) (-12 (-5 *3 (-1278 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-844)) (-4 *2 (-171)))) (-4353 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-1269 *3 *4)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-1278 *3 *4)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-765)))) (-4347 (*1 *2 *2 *1) (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4346 (*1 *2 *2 *1) (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-1877 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171)))) (-4343 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4354 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-635 *3)))) (-4174 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-844)) (-4 *5 (-171))))) -(-13 (-630 |t#2|) (-10 -8 (-15 -4361 (|t#2| (-1278 |t#1| |t#2|) $)) (-15 -4353 ($ |t#1|)) (-15 -4353 ((-1269 |t#1| |t#2|) $)) (-15 -4353 ((-1278 |t#1| |t#2|) $)) (-15 -4355 ((-765) $)) (-15 -4347 ((-1278 |t#1| |t#2|) (-1278 |t#1| |t#2|) $)) (-15 -4346 ((-1278 |t#1| |t#2|) (-1278 |t#1| |t#2|) $)) (-15 -1877 ($ (-665 |t#1|))) (-15 -4343 ($ $)) (-15 -4354 ($ $ (-765))) (-15 -4341 ((-635 |t#1|) $)) (-15 -4174 ($ $ |t#1| $)) (-15 -4174 ($ $ (-635 |t#1|) (-635 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#2|) . T) ((-630 |#2|) . T) ((-711 |#2|) . T) ((-1048 |#2|) . T) ((-1091) . T)) -((-1880 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-1878 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1879 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) -(((-374 |#1| |#2|) (-10 -7 (-15 -1878 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1879 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1880 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1204) (-13 (-371 |#1|) (-10 -7 (-6 -4401)))) (T -374)) -((-1880 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))))) (-1879 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))))) (-1878 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401))))))) -(-10 -7 (-15 -1878 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1879 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1880 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2401 (((-682 |#2|) (-682 $)) NIL) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 22) (((-682 (-544)) (-682 $)) 14))) -(((-375 |#1| |#2|) (-10 -8 (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 |#2|) (-682 |#1|)))) (-376 |#2|) (-1042)) (T -375)) -NIL -(-10 -8 (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 |#2|) (-682 |#1|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2401 (((-682 |#1|) (-682 $)) 36) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 35) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 43 (|has| |#1| (-634 (-544)))) (((-682 (-544)) (-682 $)) 42 (|has| |#1| (-634 (-544))))) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-376 |#1|) (-139) (-1042)) (T -376)) -NIL -(-13 (-634 |t#1|) (-10 -7 (IF (|has| |t#1| (-634 (-544))) (-6 (-634 (-544))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 33)) (-3514 (((-544) $) 55)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4177 (($ $) 110)) (-3891 (($ $) 82)) (-4046 (($ $) 71)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) 44)) (-1733 (((-112) $ $) NIL)) (-3889 (($ $) 80)) (-4045 (($ $) 69)) (-4030 (((-544) $) 64)) (-2735 (($ $ (-544)) 62)) (-3893 (($ $) NIL)) (-4044 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3512 (($ $) 112)) (-3558 (((-3 (-544) #1="failed") $) 189) (((-3 (-406 (-544)) #1#) $) 185)) (-3557 (((-544) $) 187) (((-406 (-544)) $) 183)) (-2943 (($ $ $) NIL)) (-1889 (((-544) $ $) 102)) (-3866 (((-3 $ "failed") $) 114)) (-1888 (((-406 (-544)) $ (-765)) 190) (((-406 (-544)) $ (-765) (-765)) 182)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2509 (((-912)) 73) (((-912) (-912)) 98 (|has| $ (-6 -4391)))) (-3587 (((-112) $) 106)) (-4034 (($) 40)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL)) (-1881 (((-1259) (-765)) 152)) (-1882 (((-1259)) 157) (((-1259) (-765)) 158)) (-1884 (((-1259)) 159) (((-1259) (-765)) 160)) (-1883 (((-1259)) 155) (((-1259) (-765)) 156)) (-4178 (((-544) $) 58)) (-2545 (((-112) $) 104)) (-3394 (($ $ (-544)) NIL)) (-2737 (($ $) 48)) (-3517 (($ $) NIL)) (-3588 (((-112) $) 35)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL) (($) NIL (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-3242 (($ $ $) NIL) (($) 99 (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-2510 (((-544) $) 17)) (-1887 (($) 87) (($ $) 92)) (-1886 (($) 91) (($ $) 93)) (-4349 (($ $) 83)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 116)) (-1917 (((-912) (-544)) 43 (|has| $ (-6 -4391)))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) 53)) (-3515 (($ $) 109)) (-3655 (($ (-544) (-544)) 107) (($ (-544) (-544) (-912)) 108)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2536 (((-544) $) 19)) (-1885 (($) 94)) (-4350 (($ $) 79)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2993 (((-912)) 100) (((-912) (-912)) 101 (|has| $ (-6 -4391)))) (-4217 (($ $ (-765)) NIL) (($ $) 115)) (-1916 (((-912) (-544)) 47 (|has| $ (-6 -4391)))) (-3894 (($ $) NIL)) (-4043 (($ $) NIL)) (-3892 (($ $) NIL)) (-4042 (($ $) NIL)) (-3890 (($ $) 81)) (-4041 (($ $) 70)) (-4377 (((-377) $) 175) (((-224) $) 177) (((-883 (-377)) $) NIL) (((-1148) $) 162) (((-533) $) 173) (($ (-224)) 181)) (-4353 (((-857) $) 164) (($ (-544)) 186) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-544)) 186) (($ (-406 (-544))) NIL) (((-224) $) 178)) (-3511 (((-765)) NIL)) (-3516 (($ $) 111)) (-1918 (((-912)) 54) (((-912) (-912)) 66 (|has| $ (-6 -4391)))) (-3076 (((-912)) 103)) (-3897 (($ $) 86)) (-3885 (($ $) 46) (($ $ $) 52)) (-2212 (((-112) $ $) NIL)) (-3895 (($ $) 84)) (-3883 (($ $) 37)) (-3899 (($ $) NIL)) (-3887 (($ $) NIL)) (-3900 (($ $) NIL)) (-3888 (($ $) NIL)) (-3898 (($ $) NIL)) (-3886 (($ $) NIL)) (-3896 (($ $) 85)) (-3884 (($ $) 49)) (-3787 (($ $) 51)) (-3040 (($) 34 T CONST)) (-3046 (($) 38 T CONST)) (-2879 (((-1148) $) 27) (((-1148) $ (-112)) 29) (((-1259) (-817) $) 30) (((-1259) (-817) $ (-112)) 31)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 39)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 42)) (-4356 (($ $ $) 45) (($ $ (-544)) 41)) (-4244 (($ $) 36) (($ $ $) 50)) (-4246 (($ $ $) 61)) (** (($ $ (-912)) 67) (($ $ (-765)) NIL) (($ $ (-544)) 88) (($ $ (-406 (-544))) 125) (($ $ $) 117)) (* (($ (-912) $) 65) (($ (-765) $) NIL) (($ (-544) $) 68) (($ $ $) 60) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL))) -(((-377) (-13 (-403) (-232) (-609 (-1148)) (-815) (-608 (-224)) (-1190) (-609 (-533)) (-613 (-224)) (-10 -8 (-15 -4356 ($ $ (-544))) (-15 ** ($ $ $)) (-15 -2737 ($ $)) (-15 -1889 ((-544) $ $)) (-15 -2735 ($ $ (-544))) (-15 -1888 ((-406 (-544)) $ (-765))) (-15 -1888 ((-406 (-544)) $ (-765) (-765))) (-15 -1887 ($)) (-15 -1886 ($)) (-15 -1885 ($)) (-15 -3885 ($ $ $)) (-15 -1887 ($ $)) (-15 -1886 ($ $)) (-15 -1884 ((-1259))) (-15 -1884 ((-1259) (-765))) (-15 -1883 ((-1259))) (-15 -1883 ((-1259) (-765))) (-15 -1882 ((-1259))) (-15 -1882 ((-1259) (-765))) (-15 -1881 ((-1259) (-765))) (-6 -4391) (-6 -4383)))) (T -377)) -((** (*1 *1 *1 *1) (-5 *1 (-377))) (-4356 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-377)))) (-2737 (*1 *1 *1) (-5 *1 (-377))) (-1889 (*1 *2 *1 *1) (-12 (-5 *2 (-544)) (-5 *1 (-377)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-377)))) (-1888 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-377)))) (-1888 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-377)))) (-1887 (*1 *1) (-5 *1 (-377))) (-1886 (*1 *1) (-5 *1 (-377))) (-1885 (*1 *1) (-5 *1 (-377))) (-3885 (*1 *1 *1 *1) (-5 *1 (-377))) (-1887 (*1 *1 *1) (-5 *1 (-377))) (-1886 (*1 *1 *1) (-5 *1 (-377))) (-1884 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))) (-1883 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))) (-1882 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377))))) -(-13 (-403) (-232) (-609 (-1148)) (-815) (-608 (-224)) (-1190) (-609 (-533)) (-613 (-224)) (-10 -8 (-15 -4356 ($ $ (-544))) (-15 ** ($ $ $)) (-15 -2737 ($ $)) (-15 -1889 ((-544) $ $)) (-15 -2735 ($ $ (-544))) (-15 -1888 ((-406 (-544)) $ (-765))) (-15 -1888 ((-406 (-544)) $ (-765) (-765))) (-15 -1887 ($)) (-15 -1886 ($)) (-15 -1885 ($)) (-15 -3885 ($ $ $)) (-15 -1887 ($ $)) (-15 -1886 ($ $)) (-15 -1884 ((-1259))) (-15 -1884 ((-1259) (-765))) (-15 -1883 ((-1259))) (-15 -1883 ((-1259) (-765))) (-15 -1882 ((-1259))) (-15 -1882 ((-1259) (-765))) (-15 -1881 ((-1259) (-765))) (-6 -4391) (-6 -4383))) -((-1890 (((-635 (-292 (-939 (-167 |#1|)))) (-292 (-406 (-939 (-167 (-544))))) |#1|) 51) (((-635 (-292 (-939 (-167 |#1|)))) (-406 (-939 (-167 (-544)))) |#1|) 50) (((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-292 (-406 (-939 (-167 (-544)))))) |#1|) 47) (((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-406 (-939 (-167 (-544))))) |#1|) 41)) (-1891 (((-635 (-635 (-167 |#1|))) (-635 (-406 (-939 (-167 (-544))))) (-635 (-1166)) |#1|) 30) (((-635 (-167 |#1|)) (-406 (-939 (-167 (-544)))) |#1|) 18))) -(((-378 |#1|) (-10 -7 (-15 -1890 ((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-406 (-939 (-167 (-544))))) |#1|)) (-15 -1890 ((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-292 (-406 (-939 (-167 (-544)))))) |#1|)) (-15 -1890 ((-635 (-292 (-939 (-167 |#1|)))) (-406 (-939 (-167 (-544)))) |#1|)) (-15 -1890 ((-635 (-292 (-939 (-167 |#1|)))) (-292 (-406 (-939 (-167 (-544))))) |#1|)) (-15 -1891 ((-635 (-167 |#1|)) (-406 (-939 (-167 (-544)))) |#1|)) (-15 -1891 ((-635 (-635 (-167 |#1|))) (-635 (-406 (-939 (-167 (-544))))) (-635 (-1166)) |#1|))) (-13 (-362) (-842))) (T -378)) -((-1891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-406 (-939 (-167 (-544)))))) (-5 *4 (-635 (-1166))) (-5 *2 (-635 (-635 (-167 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-362) (-842))))) (-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-167 (-544))))) (-5 *2 (-635 (-167 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-406 (-939 (-167 (-544)))))) (-5 *2 (-635 (-292 (-939 (-167 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-167 (-544))))) (-5 *2 (-635 (-292 (-939 (-167 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-292 (-406 (-939 (-167 (-544))))))) (-5 *2 (-635 (-635 (-292 (-939 (-167 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 (-167 (-544)))))) (-5 *2 (-635 (-635 (-292 (-939 (-167 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842)))))) -(-10 -7 (-15 -1890 ((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-406 (-939 (-167 (-544))))) |#1|)) (-15 -1890 ((-635 (-635 (-292 (-939 (-167 |#1|))))) (-635 (-292 (-406 (-939 (-167 (-544)))))) |#1|)) (-15 -1890 ((-635 (-292 (-939 (-167 |#1|)))) (-406 (-939 (-167 (-544)))) |#1|)) (-15 -1890 ((-635 (-292 (-939 (-167 |#1|)))) (-292 (-406 (-939 (-167 (-544))))) |#1|)) (-15 -1891 ((-635 (-167 |#1|)) (-406 (-939 (-167 (-544)))) |#1|)) (-15 -1891 ((-635 (-635 (-167 |#1|))) (-635 (-406 (-939 (-167 (-544))))) (-635 (-1166)) |#1|))) -((-3980 (((-635 (-292 (-939 |#1|))) (-292 (-406 (-939 (-544)))) |#1|) 46) (((-635 (-292 (-939 |#1|))) (-406 (-939 (-544))) |#1|) 45) (((-635 (-635 (-292 (-939 |#1|)))) (-635 (-292 (-406 (-939 (-544))))) |#1|) 42) (((-635 (-635 (-292 (-939 |#1|)))) (-635 (-406 (-939 (-544)))) |#1|) 36)) (-1892 (((-635 |#1|) (-406 (-939 (-544))) |#1|) 20) (((-635 (-635 |#1|)) (-635 (-406 (-939 (-544)))) (-635 (-1166)) |#1|) 30))) -(((-379 |#1|) (-10 -7 (-15 -3980 ((-635 (-635 (-292 (-939 |#1|)))) (-635 (-406 (-939 (-544)))) |#1|)) (-15 -3980 ((-635 (-635 (-292 (-939 |#1|)))) (-635 (-292 (-406 (-939 (-544))))) |#1|)) (-15 -3980 ((-635 (-292 (-939 |#1|))) (-406 (-939 (-544))) |#1|)) (-15 -3980 ((-635 (-292 (-939 |#1|))) (-292 (-406 (-939 (-544)))) |#1|)) (-15 -1892 ((-635 (-635 |#1|)) (-635 (-406 (-939 (-544)))) (-635 (-1166)) |#1|)) (-15 -1892 ((-635 |#1|) (-406 (-939 (-544))) |#1|))) (-13 (-842) (-362))) (T -379)) -((-1892 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-544)))) (-5 *2 (-635 *4)) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-1892 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-406 (-939 (-544))))) (-5 *4 (-635 (-1166))) (-5 *2 (-635 (-635 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-842) (-362))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-406 (-939 (-544))))) (-5 *2 (-635 (-292 (-939 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-544)))) (-5 *2 (-635 (-292 (-939 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-292 (-406 (-939 (-544)))))) (-5 *2 (-635 (-635 (-292 (-939 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 (-544))))) (-5 *2 (-635 (-635 (-292 (-939 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362)))))) -(-10 -7 (-15 -3980 ((-635 (-635 (-292 (-939 |#1|)))) (-635 (-406 (-939 (-544)))) |#1|)) (-15 -3980 ((-635 (-635 (-292 (-939 |#1|)))) (-635 (-292 (-406 (-939 (-544))))) |#1|)) (-15 -3980 ((-635 (-292 (-939 |#1|))) (-406 (-939 (-544))) |#1|)) (-15 -3980 ((-635 (-292 (-939 |#1|))) (-292 (-406 (-939 (-544)))) |#1|)) (-15 -1892 ((-635 (-635 |#1|)) (-635 (-406 (-939 (-544)))) (-635 (-1166)) |#1|)) (-15 -1892 ((-635 |#1|) (-406 (-939 (-544))) |#1|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 28)) (-3040 (($) 12 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-380 |#1| |#2|) (-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|))) (-1042) (-844)) (T -380)) -NIL -(-13 (-111 |#1| |#1|) (-507 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-711 |#1|)) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| "failed") $) 26)) (-3557 ((|#2| $) 28)) (-4366 (($ $) NIL)) (-2553 (((-765) $) 10)) (-3203 (((-635 $) $) 20)) (-4344 (((-112) $) NIL)) (-4345 (($ |#2| |#1|) 18)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3277 ((|#2| $) 15)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 44) (($ |#2|) 27)) (-4224 (((-635 |#1|) $) 17)) (-4084 ((|#1| $ |#2|) 46)) (-3040 (($) 29 T CONST)) (-3045 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35))) -(((-381 |#1| |#2|) (-13 (-383 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1042) (-844)) (T -381)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844))))) -(-13 (-383 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-682 (-692))) 14) (($ (-635 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 11))) +((-1382 (*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-766)))) (-2466 (*1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-367)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-916)))) (-1448 (*1 *1) (-4 *1 (-367)))) +(-13 (-1092) (-10 -8 (-15 -1382 ((-766))) (-15 -2466 ($ (-916))) (-15 -1999 ((-916) $)) (-15 -1448 ($)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-1636 (((-683 |#2|) (-1256 $)) 40)) (-4018 (($ (-1256 |#2|) (-1256 $)) 34)) (-1958 (((-683 |#2|) $ (-1256 $)) 42)) (-2455 ((|#2| (-1256 $)) 13)) (-3593 (((-1256 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) 25))) +(((-368 |#1| |#2| |#3|) (-10 -8 (-15 -1636 ((-683 |#2|) (-1256 |#1|))) (-15 -2455 (|#2| (-1256 |#1|))) (-15 -4018 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1958 ((-683 |#2|) |#1| (-1256 |#1|)))) (-369 |#2| |#3|) (-171) (-1232 |#2|)) (T -368)) +NIL +(-10 -8 (-15 -1636 ((-683 |#2|) (-1256 |#1|))) (-15 -2455 (|#2| (-1256 |#1|))) (-15 -4018 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1958 ((-683 |#2|) |#1| (-1256 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1636 (((-683 |#1|) (-1256 $)) 47)) (-1748 ((|#1| $) 53)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-4018 (($ (-1256 |#1|) (-1256 $)) 49)) (-1958 (((-683 |#1|) $ (-1256 $)) 54)) (-3668 (((-3 $ "failed") $) 33)) (-2173 (((-916)) 55)) (-1957 (((-112) $) 31)) (-2247 ((|#1| $) 52)) (-1565 ((|#2| $) 45 (|has| |#1| (-362)))) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2455 ((|#1| (-1256 $)) 48)) (-3593 (((-1256 |#1|) $ (-1256 $)) 51) (((-683 |#1|) (-1256 $) (-1256 $)) 50)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38)) (-2805 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-3376 ((|#2| $) 46)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-369 |#1| |#2|) (-139) (-171) (-1232 |t#1|)) (T -369)) +((-2173 (*1 *2) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-916)))) (-1958 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) (-3593 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *4)))) (-3593 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) (-4018 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-171)) (-4 *1 (-369 *4 *5)) (-4 *5 (-1232 *4)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1232 *2)) (-4 *2 (-171)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) (-1565 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1232 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -2173 ((-916))) (-15 -1958 ((-683 |t#1|) $ (-1256 $))) (-15 -1748 (|t#1| $)) (-15 -2247 (|t#1| $)) (-15 -3593 ((-1256 |t#1|) $ (-1256 $))) (-15 -3593 ((-683 |t#1|) (-1256 $) (-1256 $))) (-15 -4018 ($ (-1256 |t#1|) (-1256 $))) (-15 -2455 (|t#1| (-1256 $))) (-15 -1636 ((-683 |t#1|) (-1256 $))) (-15 -3376 (|t#2| $)) (IF (|has| |t#1| (-362)) (-15 -1565 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) . T) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-2578 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1955 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4152 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1955 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2578 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1207) (-372 |#1|) (-1207) (-372 |#3|)) (T -370)) +((-2578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6)))) (-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5))))) +(-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1955 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2578 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1399 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3381 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1395 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2677 (($ $) 25)) (-4264 (((-562) (-1 (-112) |#2|) $) NIL) (((-562) |#2| $) 11) (((-562) |#2| $ (-562)) NIL)) (-1610 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-371 |#1| |#2|) (-10 -8 (-15 -3381 (|#1| |#1|)) (-15 -3381 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1399 ((-112) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -1610 (|#1| |#1| |#1|)) (-15 -4264 ((-562) |#2| |#1| (-562))) (-15 -4264 ((-562) |#2| |#1|)) (-15 -4264 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -1399 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1395 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2677 (|#1| |#1|)) (-15 -1610 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-372 |#2|) (-1207)) (T -371)) +NIL +(-10 -8 (-15 -3381 (|#1| |#1|)) (-15 -3381 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1399 ((-112) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -1610 (|#1| |#1| |#1|)) (-15 -4264 ((-562) |#2| |#1| (-562))) (-15 -4264 ((-562) |#2| |#1|)) (-15 -4264 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -1399 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1395 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2677 (|#1| |#1|)) (-15 -1610 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3052 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4403))) (($ $) 88 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4403))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-2447 (($ $) 90 (|has| $ (-6 -4403)))) (-2677 (($ $) 100)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 51)) (-4264 (((-562) (-1 (-112) |#1|) $) 97) (((-562) |#1| $) 96 (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) 95 (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-1458 (($ (-766) |#1|) 69)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-2093 (((-639 (-562)) $) 46)) (-1570 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2716 (($ $ |#1|) 41 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1853 (($ $ $ (-562)) 91 (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) 84 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 83 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 85 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 82 (|has| |#1| (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-372 |#1|) (-139) (-1207)) (T -372)) +((-1610 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-2677 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)))) (-1395 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-1399 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-4264 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) (-5 *2 (-562)))) (-4264 (*1 *2 *3 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-562)))) (-4264 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)))) (-1610 (*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) (-1395 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-845)) (-5 *2 (-112)))) (-1853 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-562)) (|has| *1 (-6 -4403)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-2447 (*1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-372 *2)) (-4 *2 (-1207)))) (-3381 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4403)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-3381 (*1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845))))) +(-13 (-645 |t#1|) (-10 -8 (-6 -4402) (-15 -1610 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2677 ($ $)) (-15 -1395 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1399 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4264 ((-562) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -4264 ((-562) |t#1| $)) (-15 -4264 ((-562) |t#1| $ (-562)))) |%noBranch|) (IF (|has| |t#1| (-845)) (PROGN (-6 (-845)) (-15 -1610 ($ $ $)) (-15 -1395 ($ $)) (-15 -1399 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4403)) (PROGN (-15 -1853 ($ $ $ (-562))) (-15 -2447 ($ $)) (-15 -3381 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-845)) (-15 -3381 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1207) . T)) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-2852 (((-639 |#1|) $) 32)) (-1881 (($ $ (-766)) 33)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2415 (((-1280 |#1| |#2|) (-1280 |#1| |#2|) $) 36)) (-3818 (($ $) 34)) (-2221 (((-1280 |#1| |#2|) (-1280 |#1| |#2|) $) 37)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1433 (($ $ |#1| $) 31) (($ $ (-639 |#1|) (-639 $)) 30)) (-3598 (((-766) $) 38)) (-4066 (($ $ $) 29)) (-4054 (((-857) $) 11) (($ |#1|) 41) (((-1271 |#1| |#2|) $) 40) (((-1280 |#1| |#2|) $) 39)) (-4221 ((|#2| (-1280 |#1| |#2|) $) 42)) (-2286 (($) 18 T CONST)) (-4031 (($ (-666 |#1|)) 35)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#2|) 28 (|has| |#2| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-373 |#1| |#2|) (-139) (-845) (-171)) (T -373)) +((-4221 (*1 *2 *3 *1) (-12 (-5 *3 (-1280 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-845)) (-4 *2 (-171)))) (-4054 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *2 (-1271 *3 *4)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *2 (-1280 *3 *4)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *2 (-766)))) (-2221 (*1 *2 *2 *1) (-12 (-5 *2 (-1280 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-2415 (*1 *2 *2 *1) (-12 (-5 *2 (-1280 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-2852 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *2 (-639 *3)))) (-1433 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-845)) (-4 *5 (-171))))) +(-13 (-630 |t#2|) (-10 -8 (-15 -4221 (|t#2| (-1280 |t#1| |t#2|) $)) (-15 -4054 ($ |t#1|)) (-15 -4054 ((-1271 |t#1| |t#2|) $)) (-15 -4054 ((-1280 |t#1| |t#2|) $)) (-15 -3598 ((-766) $)) (-15 -2221 ((-1280 |t#1| |t#2|) (-1280 |t#1| |t#2|) $)) (-15 -2415 ((-1280 |t#1| |t#2|) (-1280 |t#1| |t#2|) $)) (-15 -4031 ($ (-666 |t#1|))) (-15 -3818 ($ $)) (-15 -1881 ($ $ (-766))) (-15 -2852 ((-639 |t#1|) $)) (-15 -1433 ($ $ |t#1| $)) (-15 -1433 ($ $ (-639 |t#1|) (-639 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#2|) . T) ((-630 |#2|) . T) ((-712 |#2|) . T) ((-1050 |#2|) . T) ((-1092) . T)) +((-2065 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-2379 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3863 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) +(((-374 |#1| |#2|) (-10 -7 (-15 -2379 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3863 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2065 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1207) (-13 (-372 |#1|) (-10 -7 (-6 -4403)))) (T -374)) +((-2065 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4403)))))) (-3863 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4403)))))) (-2379 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4403))))))) +(-10 -7 (-15 -2379 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3863 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2065 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2406 (((-683 |#2|) (-683 $)) NIL) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 22) (((-683 (-562)) (-683 $)) 14))) +(((-375 |#1| |#2|) (-10 -8 (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 |#2|) (-683 |#1|)))) (-376 |#2|) (-1044)) (T -375)) +NIL +(-10 -8 (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 |#2|) (-683 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2406 (((-683 |#1|) (-683 $)) 36) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 35) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 43 (|has| |#1| (-635 (-562)))) (((-683 (-562)) (-683 $)) 42 (|has| |#1| (-635 (-562))))) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-376 |#1|) (-139) (-1044)) (T -376)) +NIL +(-13 (-635 |t#1|) (-10 -7 (IF (|has| |t#1| (-635 (-562))) (-6 (-635 (-562))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-2538 (((-639 (-293 (-947 (-168 |#1|)))) (-293 (-406 (-947 (-168 (-562))))) |#1|) 51) (((-639 (-293 (-947 (-168 |#1|)))) (-406 (-947 (-168 (-562)))) |#1|) 50) (((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-293 (-406 (-947 (-168 (-562)))))) |#1|) 47) (((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-406 (-947 (-168 (-562))))) |#1|) 41)) (-1646 (((-639 (-639 (-168 |#1|))) (-639 (-406 (-947 (-168 (-562))))) (-639 (-1168)) |#1|) 30) (((-639 (-168 |#1|)) (-406 (-947 (-168 (-562)))) |#1|) 18))) +(((-377 |#1|) (-10 -7 (-15 -2538 ((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-406 (-947 (-168 (-562))))) |#1|)) (-15 -2538 ((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-293 (-406 (-947 (-168 (-562)))))) |#1|)) (-15 -2538 ((-639 (-293 (-947 (-168 |#1|)))) (-406 (-947 (-168 (-562)))) |#1|)) (-15 -2538 ((-639 (-293 (-947 (-168 |#1|)))) (-293 (-406 (-947 (-168 (-562))))) |#1|)) (-15 -1646 ((-639 (-168 |#1|)) (-406 (-947 (-168 (-562)))) |#1|)) (-15 -1646 ((-639 (-639 (-168 |#1|))) (-639 (-406 (-947 (-168 (-562))))) (-639 (-1168)) |#1|))) (-13 (-362) (-843))) (T -377)) +((-1646 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-406 (-947 (-168 (-562)))))) (-5 *4 (-639 (-1168))) (-5 *2 (-639 (-639 (-168 *5)))) (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-843))))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-168 (-562))))) (-5 *2 (-639 (-168 *4))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) (-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-947 (-168 (-562)))))) (-5 *2 (-639 (-293 (-947 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) (-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-168 (-562))))) (-5 *2 (-639 (-293 (-947 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) (-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-293 (-406 (-947 (-168 (-562))))))) (-5 *2 (-639 (-639 (-293 (-947 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) (-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 (-168 (-562)))))) (-5 *2 (-639 (-639 (-293 (-947 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843)))))) +(-10 -7 (-15 -2538 ((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-406 (-947 (-168 (-562))))) |#1|)) (-15 -2538 ((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-293 (-406 (-947 (-168 (-562)))))) |#1|)) (-15 -2538 ((-639 (-293 (-947 (-168 |#1|)))) (-406 (-947 (-168 (-562)))) |#1|)) (-15 -2538 ((-639 (-293 (-947 (-168 |#1|)))) (-293 (-406 (-947 (-168 (-562))))) |#1|)) (-15 -1646 ((-639 (-168 |#1|)) (-406 (-947 (-168 (-562)))) |#1|)) (-15 -1646 ((-639 (-639 (-168 |#1|))) (-639 (-406 (-947 (-168 (-562))))) (-639 (-1168)) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 33)) (-4246 (((-562) $) 55)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2557 (($ $) 110)) (-2988 (($ $) 82)) (-4097 (($ $) 71)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-1643 (($ $) 44)) (-2569 (((-112) $ $) NIL)) (-4207 (($ $) 80)) (-4074 (($ $) 69)) (-2277 (((-562) $) 64)) (-3358 (($ $ (-562)) 62)) (-3014 (($ $) NIL)) (-4119 (($ $) NIL)) (-1800 (($) NIL T CONST)) (-4103 (($ $) 112)) (-4048 (((-3 (-562) "failed") $) 189) (((-3 (-406 (-562)) "failed") $) 185)) (-3961 (((-562) $) 187) (((-406 (-562)) $) 183)) (-1811 (($ $ $) NIL)) (-3997 (((-562) $ $) 102)) (-3668 (((-3 $ "failed") $) 114)) (-4248 (((-406 (-562)) $ (-766)) 190) (((-406 (-562)) $ (-766) (-766)) 182)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3327 (((-916)) 73) (((-916) (-916)) 98 (|has| $ (-6 -4393)))) (-3519 (((-112) $) 106)) (-4100 (($) 40)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL)) (-2282 (((-1261) (-766)) 152)) (-1963 (((-1261)) 157) (((-1261) (-766)) 158)) (-4218 (((-1261)) 159) (((-1261) (-766)) 160)) (-3533 (((-1261)) 155) (((-1261) (-766)) 156)) (-1900 (((-562) $) 58)) (-1957 (((-112) $) 104)) (-1891 (($ $ (-562)) NIL)) (-3270 (($ $) 48)) (-2247 (($ $) NIL)) (-3392 (((-112) $) 35)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL) (($) NIL (-12 (-2236 (|has| $ (-6 -4385))) (-2236 (|has| $ (-6 -4393)))))) (-2993 (($ $ $) NIL) (($) 99 (-12 (-2236 (|has| $ (-6 -4385))) (-2236 (|has| $ (-6 -4393)))))) (-3946 (((-562) $) 17)) (-2572 (($) 87) (($ $) 92)) (-2983 (($) 91) (($ $) 93)) (-4365 (($ $) 83)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 116)) (-3544 (((-916) (-562)) 43 (|has| $ (-6 -4393)))) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) 53)) (-4014 (($ $) 109)) (-4235 (($ (-562) (-562)) 107) (($ (-562) (-562) (-916)) 108)) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1960 (((-562) $) 19)) (-3978 (($) 94)) (-3430 (($ $) 79)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3280 (((-916)) 100) (((-916) (-916)) 101 (|has| $ (-6 -4393)))) (-4029 (($ $ (-766)) NIL) (($ $) 115)) (-2015 (((-916) (-562)) 47 (|has| $ (-6 -4393)))) (-3023 (($ $) NIL)) (-4130 (($ $) NIL)) (-3001 (($ $) NIL)) (-4108 (($ $) NIL)) (-2978 (($ $) 81)) (-4087 (($ $) 70)) (-4208 (((-378) $) 175) (((-224) $) 177) (((-887 (-378)) $) NIL) (((-1150) $) 162) (((-535) $) 173) (($ (-224)) 181)) (-4054 (((-857) $) 164) (($ (-562)) 186) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-562)) 186) (($ (-406 (-562))) NIL) (((-224) $) 178)) (-2579 (((-766)) NIL)) (-2604 (($ $) 111)) (-3366 (((-916)) 54) (((-916) (-916)) 66 (|has| $ (-6 -4393)))) (-3241 (((-916)) 103)) (-3055 (($ $) 86)) (-4165 (($ $) 46) (($ $ $) 52)) (-2922 (((-112) $ $) NIL)) (-3033 (($ $) 84)) (-4138 (($ $) 37)) (-3078 (($ $) NIL)) (-4182 (($ $) NIL)) (-1566 (($ $) NIL)) (-4195 (($ $) NIL)) (-3066 (($ $) NIL)) (-4174 (($ $) NIL)) (-3044 (($ $) 85)) (-4151 (($ $) 49)) (-3526 (($ $) 51)) (-2286 (($) 34 T CONST)) (-2294 (($) 38 T CONST)) (-2833 (((-1150) $) 27) (((-1150) $ (-112)) 29) (((-1261) (-817) $) 30) (((-1261) (-817) $ (-112)) 31)) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 39)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 42)) (-1859 (($ $ $) 45) (($ $ (-562)) 41)) (-1848 (($ $) 36) (($ $ $) 50)) (-1835 (($ $ $) 61)) (** (($ $ (-916)) 67) (($ $ (-766)) NIL) (($ $ (-562)) 88) (($ $ (-406 (-562))) 125) (($ $ $) 117)) (* (($ (-916) $) 65) (($ (-766) $) NIL) (($ (-562) $) 68) (($ $ $) 60) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) +(((-378) (-13 (-403) (-232) (-610 (-1150)) (-823) (-609 (-224)) (-1192) (-610 (-535)) (-614 (-224)) (-10 -8 (-15 -1859 ($ $ (-562))) (-15 ** ($ $ $)) (-15 -3270 ($ $)) (-15 -3997 ((-562) $ $)) (-15 -3358 ($ $ (-562))) (-15 -4248 ((-406 (-562)) $ (-766))) (-15 -4248 ((-406 (-562)) $ (-766) (-766))) (-15 -2572 ($)) (-15 -2983 ($)) (-15 -3978 ($)) (-15 -4165 ($ $ $)) (-15 -2572 ($ $)) (-15 -2983 ($ $)) (-15 -4218 ((-1261))) (-15 -4218 ((-1261) (-766))) (-15 -3533 ((-1261))) (-15 -3533 ((-1261) (-766))) (-15 -1963 ((-1261))) (-15 -1963 ((-1261) (-766))) (-15 -2282 ((-1261) (-766))) (-6 -4393) (-6 -4385)))) (T -378)) +((** (*1 *1 *1 *1) (-5 *1 (-378))) (-1859 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) (-3270 (*1 *1 *1) (-5 *1 (-378))) (-3997 (*1 *2 *1 *1) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) (-3358 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) (-4248 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-378)))) (-4248 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-378)))) (-2572 (*1 *1) (-5 *1 (-378))) (-2983 (*1 *1) (-5 *1 (-378))) (-3978 (*1 *1) (-5 *1 (-378))) (-4165 (*1 *1 *1 *1) (-5 *1 (-378))) (-2572 (*1 *1 *1) (-5 *1 (-378))) (-2983 (*1 *1 *1) (-5 *1 (-378))) (-4218 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) (-3533 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) (-1963 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378))))) +(-13 (-403) (-232) (-610 (-1150)) (-823) (-609 (-224)) (-1192) (-610 (-535)) (-614 (-224)) (-10 -8 (-15 -1859 ($ $ (-562))) (-15 ** ($ $ $)) (-15 -3270 ($ $)) (-15 -3997 ((-562) $ $)) (-15 -3358 ($ $ (-562))) (-15 -4248 ((-406 (-562)) $ (-766))) (-15 -4248 ((-406 (-562)) $ (-766) (-766))) (-15 -2572 ($)) (-15 -2983 ($)) (-15 -3978 ($)) (-15 -4165 ($ $ $)) (-15 -2572 ($ $)) (-15 -2983 ($ $)) (-15 -4218 ((-1261))) (-15 -4218 ((-1261) (-766))) (-15 -3533 ((-1261))) (-15 -3533 ((-1261) (-766))) (-15 -1963 ((-1261))) (-15 -1963 ((-1261) (-766))) (-15 -2282 ((-1261) (-766))) (-6 -4393) (-6 -4385))) +((-4351 (((-639 (-293 (-947 |#1|))) (-293 (-406 (-947 (-562)))) |#1|) 46) (((-639 (-293 (-947 |#1|))) (-406 (-947 (-562))) |#1|) 45) (((-639 (-639 (-293 (-947 |#1|)))) (-639 (-293 (-406 (-947 (-562))))) |#1|) 42) (((-639 (-639 (-293 (-947 |#1|)))) (-639 (-406 (-947 (-562)))) |#1|) 36)) (-2016 (((-639 |#1|) (-406 (-947 (-562))) |#1|) 20) (((-639 (-639 |#1|)) (-639 (-406 (-947 (-562)))) (-639 (-1168)) |#1|) 30))) +(((-379 |#1|) (-10 -7 (-15 -4351 ((-639 (-639 (-293 (-947 |#1|)))) (-639 (-406 (-947 (-562)))) |#1|)) (-15 -4351 ((-639 (-639 (-293 (-947 |#1|)))) (-639 (-293 (-406 (-947 (-562))))) |#1|)) (-15 -4351 ((-639 (-293 (-947 |#1|))) (-406 (-947 (-562))) |#1|)) (-15 -4351 ((-639 (-293 (-947 |#1|))) (-293 (-406 (-947 (-562)))) |#1|)) (-15 -2016 ((-639 (-639 |#1|)) (-639 (-406 (-947 (-562)))) (-639 (-1168)) |#1|)) (-15 -2016 ((-639 |#1|) (-406 (-947 (-562))) |#1|))) (-13 (-843) (-362))) (T -379)) +((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-562)))) (-5 *2 (-639 *4)) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) (-2016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-406 (-947 (-562))))) (-5 *4 (-639 (-1168))) (-5 *2 (-639 (-639 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-843) (-362))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-947 (-562))))) (-5 *2 (-639 (-293 (-947 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-562)))) (-5 *2 (-639 (-293 (-947 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-293 (-406 (-947 (-562)))))) (-5 *2 (-639 (-639 (-293 (-947 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 (-562))))) (-5 *2 (-639 (-639 (-293 (-947 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362)))))) +(-10 -7 (-15 -4351 ((-639 (-639 (-293 (-947 |#1|)))) (-639 (-406 (-947 (-562)))) |#1|)) (-15 -4351 ((-639 (-639 (-293 (-947 |#1|)))) (-639 (-293 (-406 (-947 (-562))))) |#1|)) (-15 -4351 ((-639 (-293 (-947 |#1|))) (-406 (-947 (-562))) |#1|)) (-15 -4351 ((-639 (-293 (-947 |#1|))) (-293 (-406 (-947 (-562)))) |#1|)) (-15 -2016 ((-639 (-639 |#1|)) (-639 (-406 (-947 (-562)))) (-639 (-1168)) |#1|)) (-15 -2016 ((-639 |#1|) (-406 (-947 (-562))) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) 26)) (-3961 ((|#2| $) 28)) (-1601 (($ $) NIL)) (-1694 (((-766) $) 10)) (-1889 (((-639 $) $) 20)) (-3536 (((-112) $) NIL)) (-3045 (($ |#2| |#1|) 18)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1468 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1560 ((|#2| $) 15)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 44) (($ |#2|) 27)) (-4358 (((-639 |#1|) $) 17)) (-3906 ((|#1| $ |#2|) 46)) (-2286 (($) 29 T CONST)) (-2516 (((-639 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35))) +(((-380 |#1| |#2|) (-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1044) (-845)) (T -380)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-845))))) +(-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#2| "failed") $) 44)) (-3961 ((|#2| $) 45)) (-1601 (($ $) 30)) (-1694 (((-766) $) 34)) (-1889 (((-639 $) $) 35)) (-3536 (((-112) $) 38)) (-3045 (($ |#2| |#1|) 39)) (-4152 (($ (-1 |#1| |#1|) $) 40)) (-1468 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1560 ((|#2| $) 33)) (-1573 ((|#1| $) 32)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ |#2|) 43)) (-4358 (((-639 |#1|) $) 36)) (-3906 ((|#1| $ |#2|) 41)) (-2286 (($) 18 T CONST)) (-2516 (((-639 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-381 |#1| |#2|) (-139) (-1044) (-1092)) (T -381)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1092)))) (-3906 (*1 *2 *1 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1044)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)))) (-3045 (*1 *1 *2 *3) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1092)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-112)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-639 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-639 *3)))) (-1889 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-639 *1)) (-4 *1 (-381 *3 *4)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-766)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1092)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1044)))) (-1468 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1601 (*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1092))))) +(-13 (-111 |t#1| |t#1|) (-1033 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3906 (|t#1| $ |t#2|)) (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (-15 -3045 ($ |t#2| |t#1|)) (-15 -3536 ((-112) $)) (-15 -2516 ((-639 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4358 ((-639 |t#1|) $)) (-15 -1889 ((-639 $) $)) (-15 -1694 ((-766) $)) (-15 -1560 (|t#2| $)) (-15 -1573 (|t#1| $)) (-15 -1468 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1601 ($ $)) (IF (|has| |t#1| (-171)) (-6 (-712 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 |#2|) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) |has| |#1| (-171)) ((-1033 |#2|) . T) ((-1050 |#1|) . T) ((-1092) . T)) +((-3219 (((-1261) $) 7)) (-4054 (((-857) $) 8) (($ (-683 (-693))) 14) (($ (-639 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 11))) (((-382) (-139)) (T -382)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-682 (-692))) (-4 *1 (-382)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-382)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-382))))) -(-13 (-395) (-10 -8 (-15 -4353 ($ (-682 (-692)))) (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))))) -(((-608 (-857)) . T) ((-395) . T) ((-1204) . T)) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#2| "failed") $) 44)) (-3557 ((|#2| $) 45)) (-4366 (($ $) 30)) (-2553 (((-765) $) 34)) (-3203 (((-635 $) $) 35)) (-4344 (((-112) $) 38)) (-4345 (($ |#2| |#1|) 39)) (-4365 (($ (-1 |#1| |#1|) $) 40)) (-1893 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3277 ((|#2| $) 33)) (-3575 ((|#1| $) 32)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ |#2|) 43)) (-4224 (((-635 |#1|) $) 36)) (-4084 ((|#1| $ |#2|) 41)) (-3040 (($) 18 T CONST)) (-3045 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-383 |#1| |#2|) (-139) (-1042) (-1091)) (T -383)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1091)))) (-4084 (*1 *2 *1 *3) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1042)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)))) (-4345 (*1 *1 *2 *3) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1091)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-112)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 *3)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 *1)) (-4 *1 (-383 *3 *4)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-765)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1091)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1042)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1091))))) -(-13 (-111 |t#1| |t#1|) (-1031 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4084 (|t#1| $ |t#2|)) (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (-15 -4345 ($ |t#2| |t#1|)) (-15 -4344 ((-112) $)) (-15 -3045 ((-635 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4224 ((-635 |t#1|) $)) (-15 -3203 ((-635 $) $)) (-15 -2553 ((-765) $)) (-15 -3277 (|t#2| $)) (-15 -3575 (|t#1| $)) (-15 -1893 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4366 ($ $)) (IF (|has| |t#1| (-171)) (-6 (-711 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 |#2|) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) |has| |#1| (-171)) ((-1031 |#2|) . T) ((-1048 |#1|) . T) ((-1091) . T)) -((-3558 (((-3 $ "failed") (-682 (-313 (-377)))) 21) (((-3 $ "failed") (-682 (-313 (-544)))) 19) (((-3 $ "failed") (-682 (-939 (-377)))) 17) (((-3 $ "failed") (-682 (-939 (-544)))) 15) (((-3 $ "failed") (-682 (-406 (-939 (-377))))) 13) (((-3 $ "failed") (-682 (-406 (-939 (-544))))) 11)) (-3557 (($ (-682 (-313 (-377)))) 22) (($ (-682 (-313 (-544)))) 20) (($ (-682 (-939 (-377)))) 18) (($ (-682 (-939 (-544)))) 16) (($ (-682 (-406 (-939 (-377))))) 14) (($ (-682 (-406 (-939 (-544))))) 12)) (-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 23))) -(((-384) (-139)) (T -384)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-384)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-384)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-313 (-377)))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-313 (-377)))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-313 (-544)))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-313 (-544)))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-939 (-377)))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-939 (-377)))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-939 (-544)))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-939 (-544)))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-939 (-377))))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-406 (-939 (-377))))) (-4 *1 (-384)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-939 (-544))))) (-4 *1 (-384)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-406 (-939 (-544))))) (-4 *1 (-384))))) -(-13 (-395) (-10 -8 (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -3557 ($ (-682 (-313 (-377))))) (-15 -3558 ((-3 $ "failed") (-682 (-313 (-377))))) (-15 -3557 ($ (-682 (-313 (-544))))) (-15 -3558 ((-3 $ "failed") (-682 (-313 (-544))))) (-15 -3557 ($ (-682 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-682 (-939 (-377))))) (-15 -3557 ($ (-682 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-682 (-939 (-544))))) (-15 -3557 ($ (-682 (-406 (-939 (-377)))))) (-15 -3558 ((-3 $ "failed") (-682 (-406 (-939 (-377)))))) (-15 -3557 ($ (-682 (-406 (-939 (-544)))))) (-15 -3558 ((-3 $ "failed") (-682 (-406 (-939 (-544)))))))) -(((-608 (-857)) . T) ((-395) . T) ((-1204) . T)) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765) $) 58)) (-4131 (($) NIL T CONST)) (-4346 (((-3 $ "failed") $ $) 60)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2815 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-2545 (((-112) $) 15)) (-2813 ((|#1| $ (-544)) NIL)) (-2814 (((-765) $ (-544)) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2410 (($ (-1 |#1| |#1|) $) 38)) (-2411 (($ (-1 (-765) (-765)) $) 35)) (-4347 (((-3 $ "failed") $ $) 49)) (-3643 (((-1148) $) NIL)) (-2816 (($ $ $) 26)) (-2817 (($ $ $) 24)) (-3644 (((-1110) $) NIL)) (-2812 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $) 32)) (-3264 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-4353 (((-857) $) 22) (($ |#1|) NIL)) (-3046 (($) 9 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 41)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) 62 (|has| |#1| (-844)))) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ |#1| (-765)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-385 |#1|) (-13 (-720) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -2817 ($ $ $)) (-15 -2816 ($ $ $)) (-15 -4347 ((-3 $ "failed") $ $)) (-15 -4346 ((-3 $ "failed") $ $)) (-15 -3264 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2815 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3521 ((-765) $)) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $)) (-15 -2814 ((-765) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2411 ($ (-1 (-765) (-765)) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1091)) (T -385)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-2817 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-2816 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-4347 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-4346 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-3264 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-2815 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-765))))) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-2814 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-765)) (-5 *1 (-385 *4)) (-4 *4 (-1091)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-385 *2)) (-4 *2 (-1091)))) (-2411 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) (-2410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-385 *3))))) -(-13 (-720) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -2817 ($ $ $)) (-15 -2816 ($ $ $)) (-15 -4347 ((-3 $ "failed") $ $)) (-15 -4346 ((-3 $ "failed") $ $)) (-15 -3264 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2815 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3521 ((-765) $)) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $)) (-15 -2814 ((-765) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2411 ($ (-1 (-765) (-765)) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) "failed") $) 48)) (-3557 (((-544) $) 49)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-2913 (($ $ $) 55)) (-3242 (($ $ $) 54)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-544)) 47)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 52)) (-2946 (((-112) $ $) 51)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 53)) (-3067 (((-112) $ $) 50)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-683 (-693))) (-4 *1 (-382)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-382)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-382))))) +(-13 (-394) (-10 -8 (-15 -4054 ($ (-683 (-693)))) (-15 -4054 ($ (-639 (-329)))) (-15 -4054 ($ (-329))) (-15 -4054 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))))) +(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) +((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 21) (((-3 $ "failed") (-683 (-315 (-562)))) 19) (((-3 $ "failed") (-683 (-947 (-378)))) 17) (((-3 $ "failed") (-683 (-947 (-562)))) 15) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 13) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 11)) (-3961 (($ (-683 (-315 (-378)))) 22) (($ (-683 (-315 (-562)))) 20) (($ (-683 (-947 (-378)))) 18) (($ (-683 (-947 (-562)))) 16) (($ (-683 (-406 (-947 (-378))))) 14) (($ (-683 (-406 (-947 (-562))))) 12)) (-3219 (((-1261) $) 7)) (-4054 (((-857) $) 8) (($ (-639 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 23))) +(((-383) (-139)) (T -383)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-383)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-383)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-683 (-315 (-378)))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-315 (-378)))) (-4 *1 (-383)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-683 (-315 (-562)))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-315 (-562)))) (-4 *1 (-383)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-683 (-947 (-378)))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-947 (-378)))) (-4 *1 (-383)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-683 (-947 (-562)))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-947 (-562)))) (-4 *1 (-383)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-683 (-406 (-947 (-378))))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-406 (-947 (-378))))) (-4 *1 (-383)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-683 (-406 (-947 (-562))))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-406 (-947 (-562))))) (-4 *1 (-383))))) +(-13 (-394) (-10 -8 (-15 -4054 ($ (-639 (-329)))) (-15 -4054 ($ (-329))) (-15 -4054 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -3961 ($ (-683 (-315 (-378))))) (-15 -4048 ((-3 $ "failed") (-683 (-315 (-378))))) (-15 -3961 ($ (-683 (-315 (-562))))) (-15 -4048 ((-3 $ "failed") (-683 (-315 (-562))))) (-15 -3961 ($ (-683 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-683 (-947 (-378))))) (-15 -3961 ($ (-683 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-683 (-947 (-562))))) (-15 -3961 ($ (-683 (-406 (-947 (-378)))))) (-15 -4048 ((-3 $ "failed") (-683 (-406 (-947 (-378)))))) (-15 -3961 ($ (-683 (-406 (-947 (-562)))))) (-15 -4048 ((-3 $ "failed") (-683 (-406 (-947 (-562)))))))) +(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-1378 (($ |#1| |#2|) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2500 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 28)) (-2286 (($) 12 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-384 |#1| |#2|) (-13 (-111 |#1| |#1|) (-508 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-712 |#1|)) |%noBranch|))) (-1044) (-845)) (T -384)) +NIL +(-13 (-111 |#1| |#1|) (-508 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-712 |#1|)) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766) $) 58)) (-1800 (($) NIL T CONST)) (-2415 (((-3 $ "failed") $ $) 60)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1605 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-1957 (((-112) $) 15)) (-3126 ((|#1| $ (-562)) NIL)) (-1870 (((-766) $ (-562)) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1304 (($ (-1 |#1| |#1|) $) 38)) (-2866 (($ (-1 (-766) (-766)) $) 35)) (-2221 (((-3 $ "failed") $ $) 49)) (-2913 (((-1150) $) NIL)) (-3423 (($ $ $) 26)) (-1989 (($ $ $) 24)) (-1709 (((-1112) $) NIL)) (-1510 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $) 32)) (-2080 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-4054 (((-857) $) 22) (($ |#1|) NIL)) (-2294 (($) 9 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) 41)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) 62 (|has| |#1| (-845)))) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ |#1| (-766)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-385 |#1|) (-13 (-721) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-766))) (-15 -1989 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -2221 ((-3 $ "failed") $ $)) (-15 -2415 ((-3 $ "failed") $ $)) (-15 -2080 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1605 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1382 ((-766) $)) (-15 -1510 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $)) (-15 -1870 ((-766) $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -2866 ($ (-1 (-766) (-766)) $)) (-15 -1304 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) (-1092)) (T -385)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-1989 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-3423 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-2221 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-2415 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-2080 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-1605 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-766))))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-1870 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-766)) (-5 *1 (-385 *4)) (-4 *4 (-1092)))) (-3126 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-2866 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-766) (-766))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-1304 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-385 *3))))) +(-13 (-721) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-766))) (-15 -1989 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -2221 ((-3 $ "failed") $ $)) (-15 -2415 ((-3 $ "failed") $ $)) (-15 -2080 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1605 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1382 ((-766) $)) (-15 -1510 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $)) (-15 -1870 ((-766) $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -2866 ($ (-1 (-766) (-766)) $)) (-15 -1304 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 48)) (-3961 (((-562) $) 49)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-1551 (($ $ $) 55)) (-2993 (($ $ $) 54)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 43)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-562)) 47)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 52)) (-1772 (((-112) $ $) 51)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 53)) (-1759 (((-112) $ $) 50)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-386) (-139)) (T -386)) NIL -(-13 (-554) (-844) (-1031 (-544))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-1031 (-544)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-1894 (((-112) $) 20)) (-1895 (((-112) $) 19)) (-4021 (($ (-1148) (-1148) (-1148)) 21)) (-3949 (((-1148) $) 16)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1899 (($ (-1148) (-1148) (-1148)) 14)) (-1897 (((-1148) $) 17)) (-1896 (((-112) $) 18)) (-1898 (((-1148) $) 15)) (-4353 (((-857) $) 12) (($ (-1148)) 13) (((-1148) $) 9)) (-3437 (((-112) $ $) 7))) +(-13 (-554) (-845) (-1033 (-562))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-845) . T) ((-1033 (-562)) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-3094 (((-112) $) 20)) (-1933 (((-112) $) 19)) (-1458 (($ (-1150) (-1150) (-1150)) 21)) (-3254 (((-1150) $) 16)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2336 (($ (-1150) (-1150) (-1150)) 14)) (-2817 (((-1150) $) 17)) (-3732 (((-112) $) 18)) (-2684 (((-1150) $) 15)) (-4054 (((-857) $) 12) (($ (-1150)) 13) (((-1150) $) 9)) (-1731 (((-112) $ $) 7))) (((-387) (-388)) (T -387)) NIL (-388) -((-2947 (((-112) $ $) 7)) (-1894 (((-112) $) 16)) (-1895 (((-112) $) 17)) (-4021 (($ (-1148) (-1148) (-1148)) 15)) (-3949 (((-1148) $) 20)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-1899 (($ (-1148) (-1148) (-1148)) 22)) (-1897 (((-1148) $) 19)) (-1896 (((-112) $) 18)) (-1898 (((-1148) $) 21)) (-4353 (((-857) $) 11) (($ (-1148)) 24) (((-1148) $) 23)) (-3437 (((-112) $ $) 6))) +((-4041 (((-112) $ $) 7)) (-3094 (((-112) $) 16)) (-1933 (((-112) $) 17)) (-1458 (($ (-1150) (-1150) (-1150)) 15)) (-3254 (((-1150) $) 20)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2336 (($ (-1150) (-1150) (-1150)) 22)) (-2817 (((-1150) $) 19)) (-3732 (((-112) $) 18)) (-2684 (((-1150) $) 21)) (-4054 (((-857) $) 11) (($ (-1150)) 24) (((-1150) $) 23)) (-1731 (((-112) $ $) 6))) (((-388) (-139)) (T -388)) -((-1899 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))) (-1898 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-1897 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-4021 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388))))) -(-13 (-1091) (-488 (-1148)) (-10 -8 (-15 -1899 ($ (-1148) (-1148) (-1148))) (-15 -1898 ((-1148) $)) (-15 -3949 ((-1148) $)) (-15 -1897 ((-1148) $)) (-15 -1896 ((-112) $)) (-15 -1895 ((-112) $)) (-15 -1894 ((-112) $)) (-15 -4021 ($ (-1148) (-1148) (-1148))))) -(((-102) . T) ((-611 #1=(-1148)) . T) ((-608 (-857)) . T) ((-608 #1#) . T) ((-488 #1#) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1900 (((-857) $) 50)) (-4131 (($) NIL T CONST)) (-2542 (($ $ (-912)) NIL)) (-2567 (($ $ (-912)) NIL)) (-2541 (($ $ (-912)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($ (-765)) 26)) (-4318 (((-765)) 17)) (-1901 (((-857) $) 52)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) NIL)) (-2730 (($ $ $ $) NIL)) (-2728 (($ $ $) NIL)) (-3040 (($) 20 T CONST)) (-3437 (((-112) $ $) 28)) (-4244 (($ $) 34) (($ $ $) 36)) (-4246 (($ $ $) 37)) (** (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-389 |#1| |#2| |#3|) (-13 (-738 |#3|) (-10 -8 (-15 -4318 ((-765))) (-15 -1901 ((-857) $)) (-15 -1900 ((-857) $)) (-15 -2544 ($ (-765))))) (-765) (-765) (-171)) (T -389)) -((-4318 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) (-4 *5 (-171)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) (-4 *5 (-171)))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171))))) -(-13 (-738 |#3|) (-10 -8 (-15 -4318 ((-765))) (-15 -1901 ((-857) $)) (-15 -1900 ((-857) $)) (-15 -2544 ($ (-765))))) -((-1906 (((-1148)) 10)) (-1903 (((-1137 (-1148))) 28)) (-1905 (((-1259) (-1148)) 25) (((-1259) (-387)) 24)) (-1904 (((-1259)) 26)) (-1902 (((-1137 (-1148))) 27))) -(((-390) (-10 -7 (-15 -1902 ((-1137 (-1148)))) (-15 -1903 ((-1137 (-1148)))) (-15 -1904 ((-1259))) (-15 -1905 ((-1259) (-387))) (-15 -1905 ((-1259) (-1148))) (-15 -1906 ((-1148))))) (T -390)) -((-1906 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-390)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-390)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-390)))) (-1904 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-390)))) (-1903 (*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390)))) (-1902 (*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390))))) -(-10 -7 (-15 -1902 ((-1137 (-1148)))) (-15 -1903 ((-1137 (-1148)))) (-15 -1904 ((-1259))) (-15 -1905 ((-1259) (-387))) (-15 -1905 ((-1259) (-1148))) (-15 -1906 ((-1148)))) -((-4178 (((-765) (-332 |#1| |#2| |#3| |#4|)) 16))) -(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4178 ((-765) (-332 |#1| |#2| |#3| |#4|)))) (-13 (-367) (-362)) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -391)) -((-4178 (*1 *2 *3) (-12 (-5 *3 (-332 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) (-5 *2 (-765)) (-5 *1 (-391 *4 *5 *6 *7))))) -(-10 -7 (-15 -4178 ((-765) (-332 |#1| |#2| |#3| |#4|)))) -((-2947 (((-112) $ $) NIL)) (-4017 (((-635 (-1148)) $ (-635 (-1148))) 38)) (-1907 (((-635 (-1148)) $ (-635 (-1148))) 39)) (-4019 (((-635 (-1148)) $ (-635 (-1148))) 40)) (-4020 (((-635 (-1148)) $) 35)) (-4021 (($) 23)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1908 (((-635 (-1148)) $) 36)) (-4023 (((-635 (-1148)) $) 37)) (-4024 (((-1259) $ (-544)) 33) (((-1259) $) 34)) (-4377 (($ (-857) (-544)) 30)) (-4353 (((-857) $) 42) (($ (-857)) 25)) (-3437 (((-112) $ $) NIL))) -(((-392) (-13 (-1091) (-611 (-857)) (-10 -8 (-15 -4377 ($ (-857) (-544))) (-15 -4024 ((-1259) $ (-544))) (-15 -4024 ((-1259) $)) (-15 -4023 ((-635 (-1148)) $)) (-15 -1908 ((-635 (-1148)) $)) (-15 -4021 ($)) (-15 -4020 ((-635 (-1148)) $)) (-15 -4019 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -1907 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4017 ((-635 (-1148)) $ (-635 (-1148))))))) (T -392)) -((-4377 (*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-392)))) (-4024 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-392)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-392)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-4021 (*1 *1) (-5 *1 (-392))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-4019 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-1907 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) (-4017 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392))))) -(-13 (-1091) (-611 (-857)) (-10 -8 (-15 -4377 ($ (-857) (-544))) (-15 -4024 ((-1259) $ (-544))) (-15 -4024 ((-1259) $)) (-15 -4023 ((-635 (-1148)) $)) (-15 -1908 ((-635 (-1148)) $)) (-15 -4021 ($)) (-15 -4020 ((-635 (-1148)) $)) (-15 -4019 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -1907 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4017 ((-635 (-1148)) $ (-635 (-1148)))))) -((-4353 (((-392) |#1|) 11))) -(((-393 |#1|) (-10 -7 (-15 -4353 ((-392) |#1|))) (-1091)) (T -393)) -((-4353 (*1 *2 *3) (-12 (-5 *2 (-392)) (-5 *1 (-393 *3)) (-4 *3 (-1091))))) -(-10 -7 (-15 -4353 ((-392) |#1|))) -((-1910 (((-635 (-1148)) (-635 (-1148))) 9)) (-3784 (((-1259) (-387)) 27)) (-1909 (((-1093) (-1166) (-635 (-1166)) (-1169) (-635 (-1166))) 60) (((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)) (-1166)) 35) (((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166))) 34))) -(((-394) (-10 -7 (-15 -1909 ((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)))) (-15 -1909 ((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)) (-1166))) (-15 -1909 ((-1093) (-1166) (-635 (-1166)) (-1169) (-635 (-1166)))) (-15 -3784 ((-1259) (-387))) (-15 -1910 ((-635 (-1148)) (-635 (-1148)))))) (T -394)) -((-1910 (*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-394)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-394)))) (-1909 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-635 (-1166))) (-5 *5 (-1169)) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394)))) (-1909 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1166))))) (-5 *6 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394)))) (-1909 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1166))))) (-5 *6 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394))))) -(-10 -7 (-15 -1909 ((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)))) (-15 -1909 ((-1093) (-1166) (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166)))) (-635 (-635 (-3 (|:| |array| (-635 (-1166))) (|:| |scalar| (-1166))))) (-635 (-1166)) (-1166))) (-15 -1909 ((-1093) (-1166) (-635 (-1166)) (-1169) (-635 (-1166)))) (-15 -3784 ((-1259) (-387))) (-15 -1910 ((-635 (-1148)) (-635 (-1148))))) -((-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8))) +((-2336 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-388)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1458 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-388))))) +(-13 (-1092) (-489 (-1150)) (-10 -8 (-15 -2336 ($ (-1150) (-1150) (-1150))) (-15 -2684 ((-1150) $)) (-15 -3254 ((-1150) $)) (-15 -2817 ((-1150) $)) (-15 -3732 ((-112) $)) (-15 -1933 ((-112) $)) (-15 -3094 ((-112) $)) (-15 -1458 ($ (-1150) (-1150) (-1150))))) +(((-102) . T) ((-612 #0=(-1150)) . T) ((-609 (-857)) . T) ((-609 #0#) . T) ((-489 #0#) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1440 (((-857) $) 50)) (-1800 (($) NIL T CONST)) (-1379 (($ $ (-916)) NIL)) (-3650 (($ $ (-916)) NIL)) (-2991 (($ $ (-916)) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3148 (($ (-766)) 26)) (-3627 (((-766)) 17)) (-1705 (((-857) $) 52)) (-1911 (($ $ $) NIL)) (-4054 (((-857) $) NIL)) (-2436 (($ $ $ $) NIL)) (-3626 (($ $ $) NIL)) (-2286 (($) 20 T CONST)) (-1731 (((-112) $ $) 28)) (-1848 (($ $) 34) (($ $ $) 36)) (-1835 (($ $ $) 37)) (** (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-389 |#1| |#2| |#3|) (-13 (-739 |#3|) (-10 -8 (-15 -3627 ((-766))) (-15 -1705 ((-857) $)) (-15 -1440 ((-857) $)) (-15 -3148 ($ (-766))))) (-766) (-766) (-171)) (T -389)) +((-3627 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-766)) (-14 *4 (-766)) (-4 *5 (-171)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-766)) (-14 *4 (-766)) (-4 *5 (-171)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171))))) +(-13 (-739 |#3|) (-10 -8 (-15 -3627 ((-766))) (-15 -1705 ((-857) $)) (-15 -1440 ((-857) $)) (-15 -3148 ($ (-766))))) +((-2995 (((-1150)) 10)) (-1854 (((-1139 (-1150))) 28)) (-3177 (((-1261) (-1150)) 25) (((-1261) (-387)) 24)) (-3196 (((-1261)) 26)) (-2559 (((-1139 (-1150))) 27))) +(((-390) (-10 -7 (-15 -2559 ((-1139 (-1150)))) (-15 -1854 ((-1139 (-1150)))) (-15 -3196 ((-1261))) (-15 -3177 ((-1261) (-387))) (-15 -3177 ((-1261) (-1150))) (-15 -2995 ((-1150))))) (T -390)) +((-2995 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-390)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-390)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1261)) (-5 *1 (-390)))) (-3196 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-390)))) (-1854 (*1 *2) (-12 (-5 *2 (-1139 (-1150))) (-5 *1 (-390)))) (-2559 (*1 *2) (-12 (-5 *2 (-1139 (-1150))) (-5 *1 (-390))))) +(-10 -7 (-15 -2559 ((-1139 (-1150)))) (-15 -1854 ((-1139 (-1150)))) (-15 -3196 ((-1261))) (-15 -3177 ((-1261) (-387))) (-15 -3177 ((-1261) (-1150))) (-15 -2995 ((-1150)))) +((-1900 (((-766) (-335 |#1| |#2| |#3| |#4|)) 16))) +(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1900 ((-766) (-335 |#1| |#2| |#3| |#4|)))) (-13 (-367) (-362)) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -391)) +((-1900 (*1 *2 *3) (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) (-5 *2 (-766)) (-5 *1 (-391 *4 *5 *6 *7))))) +(-10 -7 (-15 -1900 ((-766) (-335 |#1| |#2| |#3| |#4|)))) +((-4054 (((-393) |#1|) 11))) +(((-392 |#1|) (-10 -7 (-15 -4054 ((-393) |#1|))) (-1092)) (T -392)) +((-4054 (*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1092))))) +(-10 -7 (-15 -4054 ((-393) |#1|))) +((-4041 (((-112) $ $) NIL)) (-3491 (((-639 (-1150)) $ (-639 (-1150))) 38)) (-1692 (((-639 (-1150)) $ (-639 (-1150))) 39)) (-1916 (((-639 (-1150)) $ (-639 (-1150))) 40)) (-3515 (((-639 (-1150)) $) 35)) (-1458 (($) 23)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2656 (((-639 (-1150)) $) 36)) (-3108 (((-639 (-1150)) $) 37)) (-1479 (((-1261) $ (-562)) 33) (((-1261) $) 34)) (-4208 (($ (-857) (-562)) 30)) (-4054 (((-857) $) 42) (($ (-857)) 25)) (-1731 (((-112) $ $) NIL))) +(((-393) (-13 (-1092) (-612 (-857)) (-10 -8 (-15 -4208 ($ (-857) (-562))) (-15 -1479 ((-1261) $ (-562))) (-15 -1479 ((-1261) $)) (-15 -3108 ((-639 (-1150)) $)) (-15 -2656 ((-639 (-1150)) $)) (-15 -1458 ($)) (-15 -3515 ((-639 (-1150)) $)) (-15 -1916 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -1692 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -3491 ((-639 (-1150)) $ (-639 (-1150))))))) (T -393)) +((-4208 (*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-393)))) (-1479 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-393)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-393)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-1458 (*1 *1) (-5 *1 (-393))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-1916 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-1692 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-3491 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393))))) +(-13 (-1092) (-612 (-857)) (-10 -8 (-15 -4208 ($ (-857) (-562))) (-15 -1479 ((-1261) $ (-562))) (-15 -1479 ((-1261) $)) (-15 -3108 ((-639 (-1150)) $)) (-15 -2656 ((-639 (-1150)) $)) (-15 -1458 ($)) (-15 -3515 ((-639 (-1150)) $)) (-15 -1916 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -1692 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -3491 ((-639 (-1150)) $ (-639 (-1150)))))) +((-3219 (((-1261) $) 7)) (-4054 (((-857) $) 8))) +(((-394) (-139)) (T -394)) +((-3219 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1261))))) +(-13 (-1207) (-609 (-857)) (-10 -8 (-15 -3219 ((-1261) $)))) +(((-609 (-857)) . T) ((-1207) . T)) +((-4048 (((-3 $ "failed") (-315 (-378))) 21) (((-3 $ "failed") (-315 (-562))) 19) (((-3 $ "failed") (-947 (-378))) 17) (((-3 $ "failed") (-947 (-562))) 15) (((-3 $ "failed") (-406 (-947 (-378)))) 13) (((-3 $ "failed") (-406 (-947 (-562)))) 11)) (-3961 (($ (-315 (-378))) 22) (($ (-315 (-562))) 20) (($ (-947 (-378))) 18) (($ (-947 (-562))) 16) (($ (-406 (-947 (-378)))) 14) (($ (-406 (-947 (-562)))) 12)) (-3219 (((-1261) $) 7)) (-4054 (((-857) $) 8) (($ (-639 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 23))) (((-395) (-139)) (T -395)) -((-3784 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1259))))) -(-13 (-1204) (-608 (-857)) (-10 -8 (-15 -3784 ((-1259) $)))) -(((-608 (-857)) . T) ((-1204) . T)) -((-3558 (((-3 $ "failed") (-313 (-377))) 21) (((-3 $ "failed") (-313 (-544))) 19) (((-3 $ "failed") (-939 (-377))) 17) (((-3 $ "failed") (-939 (-544))) 15) (((-3 $ "failed") (-406 (-939 (-377)))) 13) (((-3 $ "failed") (-406 (-939 (-544)))) 11)) (-3557 (($ (-313 (-377))) 22) (($ (-313 (-544))) 20) (($ (-939 (-377))) 18) (($ (-939 (-544))) 16) (($ (-406 (-939 (-377)))) 14) (($ (-406 (-939 (-544)))) 12)) (-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 23))) -(((-396) (-139)) (T -396)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-396)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-396)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-377))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-544))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-377))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-377))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-544))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-377)))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-377)))) (-4 *1 (-396)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-544)))) (-4 *1 (-396)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-544)))) (-4 *1 (-396))))) -(-13 (-395) (-10 -8 (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -3557 ($ (-313 (-377)))) (-15 -3558 ((-3 $ "failed") (-313 (-377)))) (-15 -3557 ($ (-313 (-544)))) (-15 -3558 ((-3 $ "failed") (-313 (-544)))) (-15 -3557 ($ (-939 (-377)))) (-15 -3558 ((-3 $ "failed") (-939 (-377)))) (-15 -3557 ($ (-939 (-544)))) (-15 -3558 ((-3 $ "failed") (-939 (-544)))) (-15 -3557 ($ (-406 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-377))))) (-15 -3557 ($ (-406 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-406 (-939 (-544))))))) -(((-608 (-857)) . T) ((-395) . T) ((-1204) . T)) -((-3784 (((-1259) $) 36)) (-4353 (((-857) $) 96) (($ (-329)) 98) (($ (-635 (-329))) 97) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 95) (($ (-313 (-694))) 52) (($ (-313 (-692))) 71) (($ (-313 (-687))) 84) (($ (-292 (-313 (-694)))) 66) (($ (-292 (-313 (-692)))) 79) (($ (-292 (-313 (-687)))) 92) (($ (-313 (-544))) 103) (($ (-313 (-377))) 116) (($ (-313 (-167 (-377)))) 129) (($ (-292 (-313 (-544)))) 111) (($ (-292 (-313 (-377)))) 124) (($ (-292 (-313 (-167 (-377))))) 137))) -(((-397 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -4353 ($ (-329))) (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -4353 ($ (-313 (-694)))) (-15 -4353 ($ (-313 (-692)))) (-15 -4353 ($ (-313 (-687)))) (-15 -4353 ($ (-292 (-313 (-694))))) (-15 -4353 ($ (-292 (-313 (-692))))) (-15 -4353 ($ (-292 (-313 (-687))))) (-15 -4353 ($ (-313 (-544)))) (-15 -4353 ($ (-313 (-377)))) (-15 -4353 ($ (-313 (-167 (-377))))) (-15 -4353 ($ (-292 (-313 (-544))))) (-15 -4353 ($ (-292 (-313 (-377))))) (-15 -4353 ($ (-292 (-313 (-167 (-377)))))))) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 "void")) (-635 (-1166)) (-1170)) (T -397)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-694))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-692))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-687))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-694)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-692)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-687)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-313 (-167 (-377)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-544)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-377)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-292 (-313 (-167 (-377))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) (-14 *6 (-1170))))) -(-13 (-395) (-10 -8 (-15 -4353 ($ (-329))) (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -4353 ($ (-313 (-694)))) (-15 -4353 ($ (-313 (-692)))) (-15 -4353 ($ (-313 (-687)))) (-15 -4353 ($ (-292 (-313 (-694))))) (-15 -4353 ($ (-292 (-313 (-692))))) (-15 -4353 ($ (-292 (-313 (-687))))) (-15 -4353 ($ (-313 (-544)))) (-15 -4353 ($ (-313 (-377)))) (-15 -4353 ($ (-313 (-167 (-377))))) (-15 -4353 ($ (-292 (-313 (-544))))) (-15 -4353 ($ (-292 (-313 (-377))))) (-15 -4353 ($ (-292 (-313 (-167 (-377)))))))) -((-2947 (((-112) $ $) NIL)) (-1912 ((|#2| $) 36)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1913 (($ (-406 |#2|)) 85)) (-1911 (((-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))) $) 37)) (-4217 (($ $) 32) (($ $ (-765)) 34)) (-4377 (((-406 |#2|) $) 46)) (-3929 (($ (-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|)))) 31)) (-4353 (((-857) $) 120)) (-3051 (($ $) 33) (($ $ (-765)) 35)) (-3437 (((-112) $ $) NIL)) (-4246 (($ |#2| $) 39))) -(((-398 |#1| |#2|) (-13 (-1091) (-609 (-406 |#2|)) (-10 -8 (-15 -4246 ($ |#2| $)) (-15 -1913 ($ (-406 |#2|))) (-15 -1912 (|#2| $)) (-15 -1911 ((-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))) $)) (-15 -3929 ($ (-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))))) (-15 -4217 ($ $)) (-15 -3051 ($ $)) (-15 -4217 ($ $ (-765))) (-15 -3051 ($ $ (-765))))) (-13 (-362) (-146)) (-1229 |#1|)) (T -398)) -((-4246 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1229 *3)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-1912 (*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146))))) (-1911 (*1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *2 (-635 (-2 (|:| -2536 (-765)) (|:| -4179 *4) (|:| |num| *4)))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -2536 (-765)) (|:| -4179 *4) (|:| |num| *4)))) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-4217 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2)))) (-3051 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3))))) -(-13 (-1091) (-609 (-406 |#2|)) (-10 -8 (-15 -4246 ($ |#2| $)) (-15 -1913 ($ (-406 |#2|))) (-15 -1912 (|#2| $)) (-15 -1911 ((-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))) $)) (-15 -3929 ($ (-635 (-2 (|:| -2536 (-765)) (|:| -4179 |#2|) (|:| |num| |#2|))))) (-15 -4217 ($ $)) (-15 -3051 ($ $)) (-15 -4217 ($ $ (-765))) (-15 -3051 ($ $ (-765))))) -((-2947 (((-112) $ $) 9 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 15 (|has| |#1| (-879 (-377)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 14 (|has| |#1| (-879 (-544))))) (-3643 (((-1148) $) 13 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))))) (-3644 (((-1110) $) 12 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))))) (-4353 (((-857) $) 11 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))))) (-3437 (((-112) $ $) 10 (-3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377))))))) -(((-399 |#1|) (-139) (-1204)) (T -399)) -NIL -(-13 (-1204) (-10 -7 (IF (|has| |t#1| (-879 (-544))) (-6 (-879 (-544))) |%noBranch|) (IF (|has| |t#1| (-879 (-377))) (-6 (-879 (-377))) |%noBranch|))) -(((-102) -3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))) ((-608 (-857)) -3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-1091) -3936 (|has| |#1| (-879 (-544))) (|has| |#1| (-879 (-377)))) ((-1204) . T)) -((-1914 (($ $) 10) (($ $ (-765)) 11))) -(((-400 |#1|) (-10 -8 (-15 -1914 (|#1| |#1| (-765))) (-15 -1914 (|#1| |#1|))) (-401)) (T -400)) -NIL -(-10 -8 (-15 -1914 (|#1| |#1| (-765))) (-15 -1914 (|#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-1914 (($ $) 80) (($ $ (-765)) 79)) (-4130 (((-112) $) 72)) (-4178 (((-826 (-912)) $) 82)) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1915 (((-3 (-765) "failed") $ $) 81)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67)) (-3084 (((-3 $ "failed") $) 83)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68))) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-395)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-395)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-562))) (-4 *1 (-395)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-947 (-378))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-378))) (-4 *1 (-395)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-562))) (-4 *1 (-395)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-378)))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-947 (-378)))) (-4 *1 (-395)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-562)))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-947 (-562)))) (-4 *1 (-395))))) +(-13 (-394) (-10 -8 (-15 -4054 ($ (-639 (-329)))) (-15 -4054 ($ (-329))) (-15 -4054 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -3961 ($ (-315 (-378)))) (-15 -4048 ((-3 $ "failed") (-315 (-378)))) (-15 -3961 ($ (-315 (-562)))) (-15 -4048 ((-3 $ "failed") (-315 (-562)))) (-15 -3961 ($ (-947 (-378)))) (-15 -4048 ((-3 $ "failed") (-947 (-378)))) (-15 -3961 ($ (-947 (-562)))) (-15 -4048 ((-3 $ "failed") (-947 (-562)))) (-15 -3961 ($ (-406 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-378))))) (-15 -3961 ($ (-406 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-562))))))) +(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) +((-3260 (((-639 (-1150)) (-639 (-1150))) 9)) (-3219 (((-1261) (-387)) 27)) (-1540 (((-1096) (-1168) (-639 (-1168)) (-1171) (-639 (-1168))) 60) (((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)) (-1168)) 35) (((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168))) 34))) +(((-396) (-10 -7 (-15 -1540 ((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)))) (-15 -1540 ((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)) (-1168))) (-15 -1540 ((-1096) (-1168) (-639 (-1168)) (-1171) (-639 (-1168)))) (-15 -3219 ((-1261) (-387))) (-15 -3260 ((-639 (-1150)) (-639 (-1150)))))) (T -396)) +((-3260 (*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-396)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1261)) (-5 *1 (-396)))) (-1540 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-639 (-1168))) (-5 *5 (-1171)) (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-396)))) (-1540 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-639 (-639 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-639 (-3 (|:| |array| (-639 *3)) (|:| |scalar| (-1168))))) (-5 *6 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-396)))) (-1540 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-639 (-639 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-639 (-3 (|:| |array| (-639 *3)) (|:| |scalar| (-1168))))) (-5 *6 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-396))))) +(-10 -7 (-15 -1540 ((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)))) (-15 -1540 ((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)) (-1168))) (-15 -1540 ((-1096) (-1168) (-639 (-1168)) (-1171) (-639 (-1168)))) (-15 -3219 ((-1261) (-387))) (-15 -3260 ((-639 (-1150)) (-639 (-1150))))) +((-3219 (((-1261) $) 36)) (-4054 (((-857) $) 96) (($ (-329)) 98) (($ (-639 (-329))) 97) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 95) (($ (-315 (-695))) 52) (($ (-315 (-693))) 71) (($ (-315 (-688))) 84) (($ (-293 (-315 (-695)))) 66) (($ (-293 (-315 (-693)))) 79) (($ (-293 (-315 (-688)))) 92) (($ (-315 (-562))) 103) (($ (-315 (-378))) 116) (($ (-315 (-168 (-378)))) 129) (($ (-293 (-315 (-562)))) 111) (($ (-293 (-315 (-378)))) 124) (($ (-293 (-315 (-168 (-378))))) 137))) +(((-397 |#1| |#2| |#3| |#4|) (-13 (-394) (-10 -8 (-15 -4054 ($ (-329))) (-15 -4054 ($ (-639 (-329)))) (-15 -4054 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -4054 ($ (-315 (-695)))) (-15 -4054 ($ (-315 (-693)))) (-15 -4054 ($ (-315 (-688)))) (-15 -4054 ($ (-293 (-315 (-695))))) (-15 -4054 ($ (-293 (-315 (-693))))) (-15 -4054 ($ (-293 (-315 (-688))))) (-15 -4054 ($ (-315 (-562)))) (-15 -4054 ($ (-315 (-378)))) (-15 -4054 ($ (-315 (-168 (-378))))) (-15 -4054 ($ (-293 (-315 (-562))))) (-15 -4054 ($ (-293 (-315 (-378))))) (-15 -4054 ($ (-293 (-315 (-168 (-378)))))))) (-1168) (-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-639 (-1168)) (-1172)) (T -397)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-315 (-695))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-315 (-693))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-315 (-688))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-695)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-693)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-688)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-562)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172))))) +(-13 (-394) (-10 -8 (-15 -4054 ($ (-329))) (-15 -4054 ($ (-639 (-329)))) (-15 -4054 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -4054 ($ (-315 (-695)))) (-15 -4054 ($ (-315 (-693)))) (-15 -4054 ($ (-315 (-688)))) (-15 -4054 ($ (-293 (-315 (-695))))) (-15 -4054 ($ (-293 (-315 (-693))))) (-15 -4054 ($ (-293 (-315 (-688))))) (-15 -4054 ($ (-315 (-562)))) (-15 -4054 ($ (-315 (-378)))) (-15 -4054 ($ (-315 (-168 (-378))))) (-15 -4054 ($ (-293 (-315 (-562))))) (-15 -4054 ($ (-293 (-315 (-378))))) (-15 -4054 ($ (-293 (-315 (-168 (-378)))))))) +((-4041 (((-112) $ $) NIL)) (-2401 ((|#2| $) 36)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2107 (($ (-406 |#2|)) 85)) (-3937 (((-639 (-2 (|:| -1960 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))) $) 37)) (-4029 (($ $) 32) (($ $ (-766)) 34)) (-4208 (((-406 |#2|) $) 46)) (-4066 (($ (-639 (-2 (|:| -1960 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|)))) 31)) (-4054 (((-857) $) 120)) (-3114 (($ $) 33) (($ $ (-766)) 35)) (-1731 (((-112) $ $) NIL)) (-1835 (($ |#2| $) 39))) +(((-398 |#1| |#2|) (-13 (-1092) (-610 (-406 |#2|)) (-10 -8 (-15 -1835 ($ |#2| $)) (-15 -2107 ($ (-406 |#2|))) (-15 -2401 (|#2| $)) (-15 -3937 ((-639 (-2 (|:| -1960 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))) $)) (-15 -4066 ($ (-639 (-2 (|:| -1960 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))))) (-15 -4029 ($ $)) (-15 -3114 ($ $)) (-15 -4029 ($ $ (-766))) (-15 -3114 ($ $ (-766))))) (-13 (-362) (-146)) (-1232 |#1|)) (T -398)) +((-1835 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1232 *3)))) (-2107 (*1 *1 *2) (-12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146))))) (-3937 (*1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *2 (-639 (-2 (|:| -1960 (-766)) (|:| -2328 *4) (|:| |num| *4)))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1232 *3)))) (-4066 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -1960 (-766)) (|:| -2328 *4) (|:| |num| *4)))) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-4029 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1232 *2)))) (-3114 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1232 *2)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1232 *3)))) (-3114 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1232 *3))))) +(-13 (-1092) (-610 (-406 |#2|)) (-10 -8 (-15 -1835 ($ |#2| $)) (-15 -2107 ($ (-406 |#2|))) (-15 -2401 (|#2| $)) (-15 -3937 ((-639 (-2 (|:| -1960 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))) $)) (-15 -4066 ($ (-639 (-2 (|:| -1960 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))))) (-15 -4029 ($ $)) (-15 -3114 ($ $)) (-15 -4029 ($ $ (-766))) (-15 -3114 ($ $ (-766))))) +((-4041 (((-112) $ $) 9 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))))) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 15 (|has| |#1| (-881 (-378)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 14 (|has| |#1| (-881 (-562))))) (-2913 (((-1150) $) 13 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))))) (-1709 (((-1112) $) 12 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))))) (-4054 (((-857) $) 11 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))))) (-1731 (((-112) $ $) 10 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378))))))) +(((-399 |#1|) (-139) (-1207)) (T -399)) +NIL +(-13 (-1207) (-10 -7 (IF (|has| |t#1| (-881 (-562))) (-6 (-881 (-562))) |%noBranch|) (IF (|has| |t#1| (-881 (-378))) (-6 (-881 (-378))) |%noBranch|))) +(((-102) -4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))) ((-609 (-857)) -4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-1092) -4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))) ((-1207) . T)) +((-3589 (($ $) 10) (($ $ (-766)) 11))) +(((-400 |#1|) (-10 -8 (-15 -3589 (|#1| |#1| (-766))) (-15 -3589 (|#1| |#1|))) (-401)) (T -400)) +NIL +(-10 -8 (-15 -3589 (|#1| |#1| (-766))) (-15 -3589 (|#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-2569 (((-112) $ $) 60)) (-1800 (($) 17 T CONST)) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-3589 (($ $) 80) (($ $ (-766)) 79)) (-2717 (((-112) $) 72)) (-1900 (((-828 (-916)) $) 82)) (-1957 (((-112) $) 31)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 75)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-3362 (((-3 (-766) "failed") $ $) 81)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67)) (-2805 (((-3 $ "failed") $) 83)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ $) 66)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) (((-401) (-139)) (T -401)) -((-4178 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-826 (-912))))) (-1915 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-765)))) (-1914 (*1 *1 *1) (-4 *1 (-401))) (-1914 (*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-765))))) -(-13 (-362) (-144) (-10 -8 (-15 -4178 ((-826 (-912)) $)) (-15 -1915 ((-3 (-765) "failed") $ $)) (-15 -1914 ($ $)) (-15 -1914 ($ $ (-765))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T)) -((-3655 (($ (-544) (-544)) 11) (($ (-544) (-544) (-912)) NIL)) (-2993 (((-912)) 16) (((-912) (-912)) NIL))) -(((-402 |#1|) (-10 -8 (-15 -2993 ((-912) (-912))) (-15 -2993 ((-912))) (-15 -3655 (|#1| (-544) (-544) (-912))) (-15 -3655 (|#1| (-544) (-544)))) (-403)) (T -402)) -((-2993 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) (-2993 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-402 *3)) (-4 *3 (-403))))) -(-10 -8 (-15 -2993 ((-912) (-912))) (-15 -2993 ((-912))) (-15 -3655 (|#1| (-544) (-544) (-912))) (-15 -3655 (|#1| (-544) (-544)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3514 (((-544) $) 90)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-4177 (($ $) 88)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3420 (($ $) 98)) (-1733 (((-112) $ $) 60)) (-4030 (((-544) $) 115)) (-4131 (($) 17 T CONST)) (-3512 (($ $) 87)) (-3558 (((-3 (-544) #1="failed") $) 103) (((-3 (-406 (-544)) #1#) $) 100)) (-3557 (((-544) $) 104) (((-406 (-544)) $) 101)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-2509 (((-912)) 131) (((-912) (-912)) 128 (|has| $ (-6 -4391)))) (-3587 (((-112) $) 113)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 94)) (-4178 (((-544) $) 137)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 97)) (-3517 (($ $) 93)) (-3588 (((-112) $) 114)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 53)) (-2913 (($ $ $) 112) (($) 125 (-12 (-3726 (|has| $ (-6 -4391))) (-3726 (|has| $ (-6 -4383)))))) (-3242 (($ $ $) 111) (($) 124 (-12 (-3726 (|has| $ (-6 -4391))) (-3726 (|has| $ (-6 -4383)))))) (-2510 (((-544) $) 134)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-1917 (((-912) (-544)) 127 (|has| $ (-6 -4391)))) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3513 (($ $) 89)) (-3515 (($ $) 91)) (-3655 (($ (-544) (-544)) 139) (($ (-544) (-544) (-912)) 138)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-2536 (((-544) $) 135)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-2993 (((-912)) 132) (((-912) (-912)) 129 (|has| $ (-6 -4391)))) (-1916 (((-912) (-544)) 126 (|has| $ (-6 -4391)))) (-4377 (((-377) $) 106) (((-224) $) 105) (((-883 (-377)) $) 95)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ (-544)) 102) (($ (-406 (-544))) 99)) (-3511 (((-765)) 28)) (-3516 (($ $) 92)) (-1918 (((-912)) 133) (((-912) (-912)) 130 (|has| $ (-6 -4391)))) (-3076 (((-912)) 136)) (-2212 (((-112) $ $) 40)) (-3787 (($ $) 116)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 109)) (-2946 (((-112) $ $) 108)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 110)) (-3067 (((-112) $ $) 107)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70) (($ $ (-406 (-544))) 96)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68))) +((-1900 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-828 (-916))))) (-3362 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-766)))) (-3589 (*1 *1 *1) (-4 *1 (-401))) (-3589 (*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-766))))) +(-13 (-362) (-144) (-10 -8 (-15 -1900 ((-828 (-916)) $)) (-15 -3362 ((-3 (-766) "failed") $ $)) (-15 -3589 ($ $)) (-15 -3589 ($ $ (-766))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) +((-4235 (($ (-562) (-562)) 11) (($ (-562) (-562) (-916)) NIL)) (-3280 (((-916)) 16) (((-916) (-916)) NIL))) +(((-402 |#1|) (-10 -8 (-15 -3280 ((-916) (-916))) (-15 -3280 ((-916))) (-15 -4235 (|#1| (-562) (-562) (-916))) (-15 -4235 (|#1| (-562) (-562)))) (-403)) (T -402)) +((-3280 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-402 *3)) (-4 *3 (-403))))) +(-10 -8 (-15 -3280 ((-916) (-916))) (-15 -3280 ((-916))) (-15 -4235 (|#1| (-562) (-562) (-916))) (-15 -4235 (|#1| (-562) (-562)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-4246 (((-562) $) 90)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-2557 (($ $) 88)) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-1643 (($ $) 98)) (-2569 (((-112) $ $) 60)) (-2277 (((-562) $) 115)) (-1800 (($) 17 T CONST)) (-4103 (($ $) 87)) (-4048 (((-3 (-562) "failed") $) 103) (((-3 (-406 (-562)) "failed") $) 100)) (-3961 (((-562) $) 104) (((-406 (-562)) $) 101)) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-2717 (((-112) $) 72)) (-3327 (((-916)) 131) (((-916) (-916)) 128 (|has| $ (-6 -4393)))) (-3519 (((-112) $) 113)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 94)) (-1900 (((-562) $) 137)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 97)) (-2247 (($ $) 93)) (-3392 (((-112) $) 114)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1551 (($ $ $) 112) (($) 125 (-12 (-2236 (|has| $ (-6 -4393))) (-2236 (|has| $ (-6 -4385)))))) (-2993 (($ $ $) 111) (($) 124 (-12 (-2236 (|has| $ (-6 -4393))) (-2236 (|has| $ (-6 -4385)))))) (-3946 (((-562) $) 134)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71)) (-3544 (((-916) (-562)) 127 (|has| $ (-6 -4393)))) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-2736 (($ $) 89)) (-4014 (($ $) 91)) (-4235 (($ (-562) (-562)) 139) (($ (-562) (-562) (-916)) 138)) (-1635 (((-417 $) $) 75)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1960 (((-562) $) 135)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-3280 (((-916)) 132) (((-916) (-916)) 129 (|has| $ (-6 -4393)))) (-2015 (((-916) (-562)) 126 (|has| $ (-6 -4393)))) (-4208 (((-378) $) 106) (((-224) $) 105) (((-887 (-378)) $) 95)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ (-562)) 102) (($ (-406 (-562))) 99)) (-2579 (((-766)) 28)) (-2604 (($ $) 92)) (-3366 (((-916)) 133) (((-916) (-916)) 130 (|has| $ (-6 -4393)))) (-3241 (((-916)) 136)) (-2922 (((-112) $ $) 40)) (-3526 (($ $) 116)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 109)) (-1772 (((-112) $ $) 108)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 110)) (-1759 (((-112) $ $) 107)) (-1859 (($ $ $) 66)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70) (($ $ (-406 (-562))) 96)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) (((-403) (-139)) (T -403)) -((-3655 (*1 *1 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-403)))) (-3655 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-912)) (-4 *1 (-403)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544)))) (-3076 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544)))) (-1918 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) (-2993 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) (-2509 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403)))) (-2993 (*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-544)) (|has| *1 (-6 -4391)) (-4 *1 (-403)) (-5 *2 (-912)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-544)) (|has| *1 (-6 -4391)) (-4 *1 (-403)) (-5 *2 (-912)))) (-2913 (*1 *1) (-12 (-4 *1 (-403)) (-3726 (|has| *1 (-6 -4391))) (-3726 (|has| *1 (-6 -4383))))) (-3242 (*1 *1) (-12 (-4 *1 (-403)) (-3726 (|has| *1 (-6 -4391))) (-3726 (|has| *1 (-6 -4383)))))) -(-13 (-1051) (-10 -8 (-6 -4176) (-15 -3655 ($ (-544) (-544))) (-15 -3655 ($ (-544) (-544) (-912))) (-15 -4178 ((-544) $)) (-15 -3076 ((-912))) (-15 -2536 ((-544) $)) (-15 -2510 ((-544) $)) (-15 -1918 ((-912))) (-15 -2993 ((-912))) (-15 -2509 ((-912))) (IF (|has| $ (-6 -4391)) (PROGN (-15 -1918 ((-912) (-912))) (-15 -2993 ((-912) (-912))) (-15 -2509 ((-912) (-912))) (-15 -1917 ((-912) (-544))) (-15 -1916 ((-912) (-544)))) |%noBranch|) (IF (|has| $ (-6 -4383)) |%noBranch| (IF (|has| $ (-6 -4391)) |%noBranch| (PROGN (-15 -2913 ($)) (-15 -3242 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-377)) . T) ((-609 (-883 (-377))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-842) . T) ((-844) . T) ((-879 (-377)) . T) ((-914) . T) ((-995) . T) ((-1013) . T) ((-1051) . T) ((-1031 (-406 (-544))) . T) ((-1031 (-544)) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 44)) (-1919 (($ $) 59)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 147)) (-2213 (($ $) NIL)) (-2211 (((-112) $) 38)) (-1920 ((|#1| $) 13)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-1209)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-1209)))) (-1922 (($ |#1| (-544)) 34)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 117)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 57)) (-3866 (((-3 $ "failed") $) 132)) (-3407 (((-3 (-406 (-544)) "failed") $) 65 (|has| |#1| (-543)))) (-3406 (((-112) $) 61 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 72 (|has| |#1| (-543)))) (-1923 (($ |#1| (-544)) 36)) (-4130 (((-112) $) 153 (|has| |#1| (-1209)))) (-2545 (((-112) $) 45)) (-1984 (((-765) $) 40)) (-1924 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-544)) 138)) (-2813 ((|#1| $ (-544)) 137)) (-1925 (((-544) $ (-544)) 136)) (-1927 (($ |#1| (-544)) 33)) (-4365 (($ (-1 |#1| |#1|) $) 144)) (-1981 (($ |#1| (-635 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-544))))) 60)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-1926 (($ |#1| (-544)) 35)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) 148 (|has| |#1| (-450)))) (-1921 (($ |#1| (-544) (-3 #2# #3# #4# #5#)) 32)) (-2812 (((-635 (-2 (|:| -4139 |#1|) (|:| -2536 (-544)))) $) 56)) (-2103 (((-635 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))) $) 12)) (-4139 (((-404 $) $) NIL (|has| |#1| (-1209)))) (-3865 (((-3 $ "failed") $ $) 139)) (-2536 (((-544) $) 133)) (-4370 ((|#1| $) 58)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 81 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 87 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) $) NIL (|has| |#1| (-512 (-1166) $))) (($ $ (-635 (-1166)) (-635 $)) 88 (|has| |#1| (-512 (-1166) $))) (($ $ (-635 (-292 $))) 84 (|has| |#1| (-308 $))) (($ $ (-292 $)) NIL (|has| |#1| (-308 $))) (($ $ $ $) NIL (|has| |#1| (-308 $))) (($ $ (-635 $) (-635 $)) NIL (|has| |#1| (-308 $)))) (-4206 (($ $ |#1|) 73 (|has| |#1| (-285 |#1| |#1|))) (($ $ $) 74 (|has| |#1| (-285 $ $)))) (-4217 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) 143)) (-4377 (((-533) $) 30 (|has| |#1| (-609 (-533)))) (((-377) $) 94 (|has| |#1| (-1013))) (((-224) $) 97 (|has| |#1| (-1013)))) (-4353 (((-857) $) 115) (($ (-544)) 48) (($ $) NIL) (($ |#1|) 47) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544)))))) (-3511 (((-765)) 50)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 42 T CONST)) (-3046 (($) 41 T CONST)) (-3051 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3437 (((-112) $ $) 98)) (-4244 (($ $) 129) (($ $ $) NIL)) (-4246 (($ $ $) 141)) (** (($ $ (-912)) NIL) (($ $ (-765)) 104)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 52) (($ $ $) 51) (($ |#1| $) 53) (($ $ |#1|) NIL))) -(((-404 |#1|) (-13 (-554) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-411 |#1|) (-10 -8 (-15 -4370 (|#1| $)) (-15 -2536 ((-544) $)) (-15 -1981 ($ |#1| (-635 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))))) (-15 -2103 ((-635 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))) $)) (-15 -1927 ($ |#1| (-544))) (-15 -2812 ((-635 (-2 (|:| -4139 |#1|) (|:| -2536 (-544)))) $)) (-15 -1926 ($ |#1| (-544))) (-15 -1925 ((-544) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -1924 ((-3 #1# #2# #3# #4#) $ (-544))) (-15 -1984 ((-765) $)) (-15 -1923 ($ |#1| (-544))) (-15 -1922 ($ |#1| (-544))) (-15 -1921 ($ |#1| (-544) (-3 #1# #2# #3# #4#))) (-15 -1920 (|#1| $)) (-15 -1919 ($ $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-1209)) (-6 (-1209)) |%noBranch|) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1166) $)) (-6 (-512 (-1166) $)) |%noBranch|))) (-554)) (T -404)) -((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-554)) (-5 *1 (-404 *3)))) (-4370 (*1 *2 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-1981 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-544))))) (-4 *2 (-554)) (-5 *1 (-404 *2)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-544))))) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-1927 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -4139 *3) (|:| -2536 (-544))))) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-1926 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1925 (*1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1924 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-404 *4)) (-4 *4 (-554)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-404 *3)) (-4 *3 (-554)))) (-1923 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1922 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1921 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-544)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1920 (*1 *2 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-1919 (*1 *1 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554)))) (-3407 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554))))) -(-13 (-554) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-411 |#1|) (-10 -8 (-15 -4370 (|#1| $)) (-15 -2536 ((-544) $)) (-15 -1981 ($ |#1| (-635 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))))) (-15 -2103 ((-635 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-544)))) $)) (-15 -1927 ($ |#1| (-544))) (-15 -2812 ((-635 (-2 (|:| -4139 |#1|) (|:| -2536 (-544)))) $)) (-15 -1926 ($ |#1| (-544))) (-15 -1925 ((-544) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -1924 ((-3 #1# #2# #3# #4#) $ (-544))) (-15 -1984 ((-765) $)) (-15 -1923 ($ |#1| (-544))) (-15 -1922 ($ |#1| (-544))) (-15 -1921 ($ |#1| (-544) (-3 #1# #2# #3# #4#))) (-15 -1920 (|#1| $)) (-15 -1919 ($ $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-1209)) (-6 (-1209)) |%noBranch|) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-512 (-1166) $)) (-6 (-512 (-1166) $)) |%noBranch|))) -((-4365 (((-404 |#2|) (-1 |#2| |#1|) (-404 |#1|)) 20))) -(((-405 |#1| |#2|) (-10 -7 (-15 -4365 ((-404 |#2|) (-1 |#2| |#1|) (-404 |#1|)))) (-554) (-554)) (T -405)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-404 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-5 *2 (-404 *6)) (-5 *1 (-405 *5 *6))))) -(-10 -7 (-15 -4365 ((-404 |#2|) (-1 |#2| |#1|) (-404 |#1|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 13)) (-3514 ((|#1| $) 21 (|has| |#1| (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| |#1| (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) 17) (((-3 (-1166) #2#) $) NIL (|has| |#1| (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) 70 (|has| |#1| (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544))))) (-3557 ((|#1| $) 15) (((-1166) $) NIL (|has| |#1| (-1031 (-1166)))) (((-406 (-544)) $) 67 (|has| |#1| (-1031 (-544)))) (((-544) $) NIL (|has| |#1| (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) 50)) (-3377 (($) NIL (|has| |#1| (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| |#1| (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| |#1| (-879 (-377))))) (-2545 (((-112) $) 64)) (-3379 (($ $) NIL)) (-3381 ((|#1| $) 71)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-3588 (((-112) $) NIL (|has| |#1| (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 97)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| |#1| (-306)))) (-3515 ((|#1| $) 28 (|has| |#1| (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 135 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 131 (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-1732 (((-765) $) NIL)) (-4206 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3378 (($ $) NIL)) (-3380 ((|#1| $) 73)) (-4377 (((-883 (-544)) $) NIL (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| |#1| (-609 (-883 (-377))))) (((-533) $) NIL (|has| |#1| (-609 (-533)))) (((-377) $) NIL (|has| |#1| (-1013))) (((-224) $) NIL (|has| |#1| (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 115 (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 10) (($ (-1166)) NIL (|has| |#1| (-1031 (-1166))))) (-3084 (((-3 $ #1#) $) 99 (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 100)) (-3516 ((|#1| $) 26 (|has| |#1| (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| |#1| (-814)))) (-3040 (($) 22 T CONST)) (-3046 (($) 8 T CONST)) (-2879 (((-1148) $) 43 (-12 (|has| |#1| (-543)) (|has| |#1| (-815)))) (((-1148) $ (-112)) 44 (-12 (|has| |#1| (-543)) (|has| |#1| (-815)))) (((-1259) (-817) $) 45 (-12 (|has| |#1| (-543)) (|has| |#1| (-815)))) (((-1259) (-817) $ (-112)) 46 (-12 (|has| |#1| (-543)) (|has| |#1| (-815))))) (-3051 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 56)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) 24 (|has| |#1| (-844)))) (-4356 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4244 (($ $) 25) (($ $ $) 55)) (-4246 (($ $ $) 53)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 125)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 60) (($ $ $) 57) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-406 |#1|) (-13 (-984 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4387)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4398)) (-6 -4387) |%noBranch|) |%noBranch|) |%noBranch|))) (-554)) (T -406)) -NIL -(-13 (-984 |#1|) (-10 -7 (IF (|has| |#1| (-543)) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4387)) (IF (|has| |#1| (-450)) (IF (|has| |#1| (-6 -4398)) (-6 -4387) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4365 (((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)) 13))) -(((-407 |#1| |#2|) (-10 -7 (-15 -4365 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) (-554) (-554)) (T -407)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-5 *2 (-406 *6)) (-5 *1 (-407 *5 *6))))) -(-10 -7 (-15 -4365 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) -((-1929 (((-682 |#2|) (-1253 $)) NIL) (((-682 |#2|)) 18)) (-1939 (($ (-1253 |#2|) (-1253 $)) NIL) (($ (-1253 |#2|)) 24)) (-1928 (((-682 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) $) 38)) (-2164 ((|#3| $) 60)) (-4164 ((|#2| (-1253 $)) NIL) ((|#2|) 20)) (-3625 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $) 22) (((-682 |#2|) (-1253 $)) 36)) (-4377 (((-1253 |#2|) $) 11) (($ (-1253 |#2|)) 13)) (-2743 ((|#3| $) 52))) -(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -1928 ((-682 |#2|) |#1|)) (-15 -4164 (|#2|)) (-15 -1929 ((-682 |#2|))) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -2164 (|#3| |#1|)) (-15 -2743 (|#3| |#1|)) (-15 -1929 ((-682 |#2|) (-1253 |#1|))) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1928 ((-682 |#2|) |#1| (-1253 |#1|)))) (-409 |#2| |#3|) (-171) (-1229 |#2|)) (T -408)) -((-1929 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-4164 (*1 *2) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-171)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4))))) -(-10 -8 (-15 -1928 ((-682 |#2|) |#1|)) (-15 -4164 (|#2|)) (-15 -1929 ((-682 |#2|))) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -2164 (|#3| |#1|)) (-15 -2743 (|#3| |#1|)) (-15 -1929 ((-682 |#2|) (-1253 |#1|))) (-15 -4164 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1928 ((-682 |#2|) |#1| (-1253 |#1|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1929 (((-682 |#1|) (-1253 $)) 47) (((-682 |#1|)) 62)) (-3734 ((|#1| $) 53)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-1939 (($ (-1253 |#1|) (-1253 $)) 49) (($ (-1253 |#1|)) 65)) (-1928 (((-682 |#1|) $ (-1253 $)) 54) (((-682 |#1|) $) 60)) (-3866 (((-3 $ "failed") $) 33)) (-3494 (((-912)) 55)) (-2545 (((-112) $) 31)) (-3517 ((|#1| $) 52)) (-2164 ((|#2| $) 45 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4164 ((|#1| (-1253 $)) 48) ((|#1|) 61)) (-3625 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50) (((-1253 |#1|) $) 67) (((-682 |#1|) (-1253 $)) 66)) (-4377 (((-1253 |#1|) $) 64) (($ (-1253 |#1|)) 63)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38)) (-3084 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2743 ((|#2| $) 46)) (-3511 (((-765)) 28)) (-2162 (((-1253 $)) 68)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-409 |#1| |#2|) (-139) (-171) (-1229 |t#1|)) (T -409)) -((-2162 (*1 *2) (-12 (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *1)) (-4 *1 (-409 *3 *4)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *3)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1229 *3)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *3)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1229 *3)))) (-1929 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-682 *3)))) (-4164 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-682 *3))))) -(-13 (-369 |t#1| |t#2|) (-10 -8 (-15 -2162 ((-1253 $))) (-15 -3625 ((-1253 |t#1|) $)) (-15 -3625 ((-682 |t#1|) (-1253 $))) (-15 -1939 ($ (-1253 |t#1|))) (-15 -4377 ((-1253 |t#1|) $)) (-15 -4377 ($ (-1253 |t#1|))) (-15 -1929 ((-682 |t#1|))) (-15 -4164 (|t#1|)) (-15 -1928 ((-682 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-369 |#1| |#2|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-3558 (((-3 |#2| #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) 27) (((-3 (-544) #1#) $) 19)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) 24) (((-544) $) 14)) (-4353 (($ |#2|) NIL) (($ (-406 (-544))) 22) (($ (-544)) 11))) -(((-410 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| (-544))) (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|))) (-411 |#2|) (-1204)) (T -410)) -NIL -(-10 -8 (-15 -4353 (|#1| (-544))) (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|))) -((-3558 (((-3 |#1| #1="failed") $) 9) (((-3 (-406 (-544)) #1#) $) 16 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #1#) $) 13 (|has| |#1| (-1031 (-544))))) (-3557 ((|#1| $) 8) (((-406 (-544)) $) 17 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 14 (|has| |#1| (-1031 (-544))))) (-4353 (($ |#1|) 6) (($ (-406 (-544))) 15 (|has| |#1| (-1031 (-406 (-544))))) (($ (-544)) 12 (|has| |#1| (-1031 (-544)))))) -(((-411 |#1|) (-139) (-1204)) (T -411)) -NIL -(-13 (-1031 |t#1|) (-10 -7 (IF (|has| |t#1| (-1031 (-544))) (-6 (-1031 (-544))) |%noBranch|) (IF (|has| |t#1| (-1031 (-406 (-544)))) (-6 (-1031 (-406 (-544)))) |%noBranch|))) -(((-611 #1=(-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-611 #2=(-544)) |has| |#1| (-1031 (-544))) ((-611 |#1|) . T) ((-1031 #1#) |has| |#1| (-1031 (-406 (-544)))) ((-1031 #2#) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T)) -((-2947 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-1930 ((|#4| (-765) (-1253 |#4|)) 56)) (-2545 (((-112) $) NIL)) (-3381 (((-1253 |#4|) $) 17)) (-3517 ((|#2| $) 54)) (-1931 (($ $) 139)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 100)) (-2120 (($ (-1253 |#4|)) 99)) (-3644 (((-1110) $) NIL)) (-3380 ((|#1| $) 18)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 134)) (-2162 (((-1253 |#4|) $) 129)) (-3046 (($) 11 T CONST)) (-3437 (((-112) $ $) 40)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 122)) (* (($ $ $) 121))) -(((-412 |#1| |#2| |#3| |#4|) (-13 (-471) (-10 -8 (-15 -2120 ($ (-1253 |#4|))) (-15 -2162 ((-1253 |#4|) $)) (-15 -3517 (|#2| $)) (-15 -3381 ((-1253 |#4|) $)) (-15 -3380 (|#1| $)) (-15 -1931 ($ $)) (-15 -1930 (|#4| (-765) (-1253 |#4|))))) (-306) (-984 |#1|) (-1229 |#2|) (-13 (-409 |#2| |#3|) (-1031 |#2|))) (T -412)) -((-2120 (*1 *1 *2) (-12 (-5 *2 (-1253 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4))) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *3 (-306)) (-5 *1 (-412 *3 *4 *5 *6)))) (-2162 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4))))) (-3517 (*1 *2 *1) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-984 *3)) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *3 (-306)) (-4 *5 (-13 (-409 *2 *4) (-1031 *2))))) (-3381 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4))))) (-3380 (*1 *2 *1) (-12 (-4 *3 (-984 *2)) (-4 *4 (-1229 *3)) (-4 *2 (-306)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1031 *3))))) (-1931 (*1 *1 *1) (-12 (-4 *2 (-306)) (-4 *3 (-984 *2)) (-4 *4 (-1229 *3)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1031 *3))))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1253 *2)) (-4 *5 (-306)) (-4 *6 (-984 *5)) (-4 *2 (-13 (-409 *6 *7) (-1031 *6))) (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1229 *6))))) -(-13 (-471) (-10 -8 (-15 -2120 ($ (-1253 |#4|))) (-15 -2162 ((-1253 |#4|) $)) (-15 -3517 (|#2| $)) (-15 -3381 ((-1253 |#4|) $)) (-15 -3380 (|#1| $)) (-15 -1931 ($ $)) (-15 -1930 (|#4| (-765) (-1253 |#4|))))) -((-4365 (((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)) 33))) -(((-413 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4365 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) (-306) (-984 |#1|) (-1229 |#2|) (-13 (-409 |#2| |#3|) (-1031 |#2|)) (-306) (-984 |#5|) (-1229 |#6|) (-13 (-409 |#6| |#7|) (-1031 |#6|))) (T -413)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) (-4 *6 (-984 *5)) (-4 *7 (-1229 *6)) (-4 *8 (-13 (-409 *6 *7) (-1031 *6))) (-4 *9 (-306)) (-4 *10 (-984 *9)) (-4 *11 (-1229 *10)) (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-413 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1031 *10)))))) -(-10 -7 (-15 -4365 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) -((-2947 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-3517 ((|#2| $) 61)) (-1932 (($ (-1253 |#4|)) 25) (($ (-412 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1031 |#2|)))) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 34)) (-2162 (((-1253 |#4|) $) 26)) (-3046 (($) 23 T CONST)) (-3437 (((-112) $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ $ $) 72))) -(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-720) (-10 -8 (-15 -2162 ((-1253 |#4|) $)) (-15 -3517 (|#2| $)) (-15 -1932 ($ (-1253 |#4|))) (IF (|has| |#4| (-1031 |#2|)) (-15 -1932 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-306) (-984 |#1|) (-1229 |#2|) (-409 |#2| |#3|) (-1253 |#4|)) (T -414)) -((-2162 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-3517 (*1 *2 *1) (-12 (-4 *4 (-1229 *2)) (-4 *2 (-984 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1253 *5)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-1253 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *3 (-306)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1031 *4)) (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1253 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))) -(-13 (-720) (-10 -8 (-15 -2162 ((-1253 |#4|) $)) (-15 -3517 (|#2| $)) (-15 -1932 ($ (-1253 |#4|))) (IF (|has| |#4| (-1031 |#2|)) (-15 -1932 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4365 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-171) (-417 |#4|) (-171)) (T -415)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))) -(-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|))) -((-1920 (((-3 $ #1="failed")) 86)) (-3624 (((-1253 (-682 |#2|)) (-1253 $)) NIL) (((-1253 (-682 |#2|))) 91)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) 85)) (-1847 (((-3 $ #1#)) 84)) (-1935 (((-682 |#2|) (-1253 $)) NIL) (((-682 |#2|)) 102)) (-1933 (((-682 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) $) 110)) (-2050 (((-1160 (-939 |#2|))) 55)) (-1937 ((|#2| (-1253 $)) NIL) ((|#2|) 106)) (-1939 (($ (-1253 |#2|) (-1253 $)) NIL) (($ (-1253 |#2|)) 112)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) 83)) (-1848 (((-3 $ #1#)) 75)) (-1936 (((-682 |#2|) (-1253 $)) NIL) (((-682 |#2|)) 100)) (-1934 (((-682 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) $) 108)) (-2054 (((-1160 (-939 |#2|))) 54)) (-1938 ((|#2| (-1253 $)) NIL) ((|#2|) 104)) (-3625 (((-1253 |#2|) $ (-1253 $)) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $) 111) (((-682 |#2|) (-1253 $)) 118)) (-4377 (((-1253 |#2|) $) 96) (($ (-1253 |#2|)) 98)) (-2042 (((-635 (-939 |#2|)) (-1253 $)) NIL) (((-635 (-939 |#2|))) 94)) (-2927 (($ (-682 |#2|) $) 90))) -(((-416 |#1| |#2|) (-10 -8 (-15 -2927 (|#1| (-682 |#2|) |#1|)) (-15 -2050 ((-1160 (-939 |#2|)))) (-15 -2054 ((-1160 (-939 |#2|)))) (-15 -1933 ((-682 |#2|) |#1|)) (-15 -1934 ((-682 |#2|) |#1|)) (-15 -1935 ((-682 |#2|))) (-15 -1936 ((-682 |#2|))) (-15 -1937 (|#2|)) (-15 -1938 (|#2|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -2042 ((-635 (-939 |#2|)))) (-15 -3624 ((-1253 (-682 |#2|)))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -1920 ((-3 |#1| #1="failed"))) (-15 -1847 ((-3 |#1| #1#))) (-15 -1848 ((-3 |#1| #1#))) (-15 -2056 ((-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) #1#))) (-15 -2057 ((-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) #1#))) (-15 -1935 ((-682 |#2|) (-1253 |#1|))) (-15 -1936 ((-682 |#2|) (-1253 |#1|))) (-15 -1937 (|#2| (-1253 |#1|))) (-15 -1938 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1933 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1934 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -3624 ((-1253 (-682 |#2|)) (-1253 |#1|))) (-15 -2042 ((-635 (-939 |#2|)) (-1253 |#1|)))) (-417 |#2|) (-171)) (T -416)) -((-3624 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2042 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-635 (-939 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1938 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1937 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1936 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1935 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2054 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1160 (-939 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2050 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1160 (-939 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4))))) -(-10 -8 (-15 -2927 (|#1| (-682 |#2|) |#1|)) (-15 -2050 ((-1160 (-939 |#2|)))) (-15 -2054 ((-1160 (-939 |#2|)))) (-15 -1933 ((-682 |#2|) |#1|)) (-15 -1934 ((-682 |#2|) |#1|)) (-15 -1935 ((-682 |#2|))) (-15 -1936 ((-682 |#2|))) (-15 -1937 (|#2|)) (-15 -1938 (|#2|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -1939 (|#1| (-1253 |#2|))) (-15 -2042 ((-635 (-939 |#2|)))) (-15 -3624 ((-1253 (-682 |#2|)))) (-15 -3625 ((-682 |#2|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1|)) (-15 -1920 ((-3 |#1| #1="failed"))) (-15 -1847 ((-3 |#1| #1#))) (-15 -1848 ((-3 |#1| #1#))) (-15 -2056 ((-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) #1#))) (-15 -2057 ((-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) #1#))) (-15 -1935 ((-682 |#2|) (-1253 |#1|))) (-15 -1936 ((-682 |#2|) (-1253 |#1|))) (-15 -1937 (|#2| (-1253 |#1|))) (-15 -1938 (|#2| (-1253 |#1|))) (-15 -1939 (|#1| (-1253 |#2|) (-1253 |#1|))) (-15 -3625 ((-682 |#2|) (-1253 |#1|) (-1253 |#1|))) (-15 -3625 ((-1253 |#2|) |#1| (-1253 |#1|))) (-15 -1933 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -1934 ((-682 |#2|) |#1| (-1253 |#1|))) (-15 -3624 ((-1253 (-682 |#2|)) (-1253 |#1|))) (-15 -2042 ((-635 (-939 |#2|)) (-1253 |#1|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1920 (((-3 $ #1="failed")) 37 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-3624 (((-1253 (-682 |#1|)) (-1253 $)) 78) (((-1253 (-682 |#1|))) 100)) (-1873 (((-1253 $)) 81)) (-4131 (($) 17 T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) 40 (|has| |#1| (-554)))) (-1847 (((-3 $ #1#)) 38 (|has| |#1| (-554)))) (-1935 (((-682 |#1|) (-1253 $)) 65) (((-682 |#1|)) 92)) (-1871 ((|#1| $) 74)) (-1933 (((-682 |#1|) $ (-1253 $)) 76) (((-682 |#1|) $) 90)) (-2539 (((-3 $ #1#) $) 45 (|has| |#1| (-554)))) (-2050 (((-1160 (-939 |#1|))) 88 (|has| |#1| (-362)))) (-2542 (($ $ (-912)) 28)) (-1869 ((|#1| $) 72)) (-1849 (((-1160 |#1|) $) 42 (|has| |#1| (-554)))) (-1937 ((|#1| (-1253 $)) 67) ((|#1|) 94)) (-1867 (((-1160 |#1|) $) 63)) (-1861 (((-112)) 57)) (-1939 (($ (-1253 |#1|) (-1253 $)) 69) (($ (-1253 |#1|)) 98)) (-3866 (((-3 $ #1#) $) 47 (|has| |#1| (-554)))) (-3494 (((-912)) 80)) (-1858 (((-112)) 54)) (-2567 (($ $ (-912)) 33)) (-1854 (((-112)) 50)) (-1852 (((-112)) 48)) (-1856 (((-112)) 52)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) 41 (|has| |#1| (-554)))) (-1848 (((-3 $ #1#)) 39 (|has| |#1| (-554)))) (-1936 (((-682 |#1|) (-1253 $)) 66) (((-682 |#1|)) 93)) (-1872 ((|#1| $) 75)) (-1934 (((-682 |#1|) $ (-1253 $)) 77) (((-682 |#1|) $) 91)) (-2540 (((-3 $ #1#) $) 46 (|has| |#1| (-554)))) (-2054 (((-1160 (-939 |#1|))) 89 (|has| |#1| (-362)))) (-2541 (($ $ (-912)) 29)) (-1870 ((|#1| $) 73)) (-1850 (((-1160 |#1|) $) 43 (|has| |#1| (-554)))) (-1938 ((|#1| (-1253 $)) 68) ((|#1|) 95)) (-1868 (((-1160 |#1|) $) 64)) (-1862 (((-112)) 58)) (-3643 (((-1148) $) 9)) (-1853 (((-112)) 49)) (-1855 (((-112)) 51)) (-1857 (((-112)) 53)) (-3644 (((-1110) $) 10)) (-1860 (((-112)) 56)) (-4206 ((|#1| $ (-544)) 101)) (-3625 (((-1253 |#1|) $ (-1253 $)) 71) (((-682 |#1|) (-1253 $) (-1253 $)) 70) (((-1253 |#1|) $) 103) (((-682 |#1|) (-1253 $)) 102)) (-4377 (((-1253 |#1|) $) 97) (($ (-1253 |#1|)) 96)) (-2042 (((-635 (-939 |#1|)) (-1253 $)) 79) (((-635 (-939 |#1|))) 99)) (-2729 (($ $ $) 25)) (-1866 (((-112)) 62)) (-4353 (((-857) $) 11)) (-2162 (((-1253 $)) 104)) (-1851 (((-635 (-1253 |#1|))) 44 (|has| |#1| (-554)))) (-2730 (($ $ $ $) 26)) (-1864 (((-112)) 60)) (-2927 (($ (-682 |#1|) $) 87)) (-2728 (($ $ $) 24)) (-1865 (((-112)) 61)) (-1863 (((-112)) 59)) (-1859 (((-112)) 55)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-417 |#1|) (-139) (-171)) (T -417)) -((-2162 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-417 *3)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-417 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-417 *2)) (-4 *2 (-171)))) (-3624 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 (-682 *3))))) (-2042 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-635 (-939 *3))))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-417 *3)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-417 *3)))) (-1938 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-171)))) (-1937 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-171)))) (-1936 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-1935 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3)))) (-2054 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1160 (-939 *3))))) (-2050 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1160 (-939 *3))))) (-2927 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *1 (-417 *3)) (-4 *3 (-171))))) -(-13 (-366 |t#1|) (-10 -8 (-15 -2162 ((-1253 $))) (-15 -3625 ((-1253 |t#1|) $)) (-15 -3625 ((-682 |t#1|) (-1253 $))) (-15 -4206 (|t#1| $ (-544))) (-15 -3624 ((-1253 (-682 |t#1|)))) (-15 -2042 ((-635 (-939 |t#1|)))) (-15 -1939 ($ (-1253 |t#1|))) (-15 -4377 ((-1253 |t#1|) $)) (-15 -4377 ($ (-1253 |t#1|))) (-15 -1938 (|t#1|)) (-15 -1937 (|t#1|)) (-15 -1936 ((-682 |t#1|))) (-15 -1935 ((-682 |t#1|))) (-15 -1934 ((-682 |t#1|) $)) (-15 -1933 ((-682 |t#1|) $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2054 ((-1160 (-939 |t#1|)))) (-15 -2050 ((-1160 (-939 |t#1|))))) |%noBranch|) (-15 -2927 ($ (-682 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-366 |#1|) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-738 |#1|) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1091) . T)) -((-3519 (((-404 |#1|) (-404 |#1|) (-1 (-404 |#1|) |#1|)) 21)) (-1940 (((-404 |#1|) (-404 |#1|) (-404 |#1|)) 16))) -(((-418 |#1|) (-10 -7 (-15 -3519 ((-404 |#1|) (-404 |#1|) (-1 (-404 |#1|) |#1|))) (-15 -1940 ((-404 |#1|) (-404 |#1|) (-404 |#1|)))) (-554)) (T -418)) -((-1940 (*1 *2 *2 *2) (-12 (-5 *2 (-404 *3)) (-4 *3 (-554)) (-5 *1 (-418 *3)))) (-3519 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-404 *4) *4)) (-4 *4 (-554)) (-5 *2 (-404 *4)) (-5 *1 (-418 *4))))) -(-10 -7 (-15 -3519 ((-404 |#1|) (-404 |#1|) (-1 (-404 |#1|) |#1|))) (-15 -1940 ((-404 |#1|) (-404 |#1|) (-404 |#1|)))) -((-3467 (((-635 (-1166)) $) 72)) (-3469 (((-406 (-1160 $)) $ (-606 $)) 273)) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-635 (-606 $)) (-635 $)) 237)) (-3558 (((-3 (-606 $) #1="failed") $) NIL) (((-3 (-1166) #1#) $) 75) (((-3 (-544) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-406 (-939 |#2|)) #1#) $) 324) (((-3 (-939 |#2|) #1#) $) 235) (((-3 (-406 (-544)) #1#) $) NIL)) (-3557 (((-606 $) $) NIL) (((-1166) $) 30) (((-544) $) NIL) ((|#2| $) 231) (((-406 (-939 |#2|)) $) 305) (((-939 |#2|) $) 232) (((-406 (-544)) $) NIL)) (-3430 (((-113) (-113)) 47)) (-3379 (($ $) 87)) (-1690 (((-3 (-606 $) "failed") $) 228)) (-1689 (((-635 (-606 $)) $) 229)) (-3205 (((-3 (-635 $) "failed") $) 247)) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) "failed") $) 254)) (-3204 (((-3 (-635 $) "failed") $) 245)) (-1941 (((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) "failed") $) 264)) (-3206 (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $) 251) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-1166)) 219)) (-1944 (((-112) $) 19)) (-1943 ((|#2| $) 21)) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) 236) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) 96) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1166)) 57) (($ $ (-635 (-1166))) 240) (($ $) 241) (($ $ (-113) $ (-1166)) 60) (($ $ (-635 (-113)) (-635 $) (-1166)) 67) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $))) 107) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $)))) 242) (($ $ (-1166) (-765) (-1 $ (-635 $))) 94) (($ $ (-1166) (-765) (-1 $ $)) 93)) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) 106)) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) 238)) (-3378 (($ $) 284)) (-4377 (((-883 (-544)) $) 257) (((-883 (-377)) $) 261) (($ (-404 $)) 320) (((-533) $) NIL)) (-4353 (((-857) $) 239) (($ (-606 $)) 84) (($ (-1166)) 26) (($ |#2|) NIL) (($ (-1115 |#2| (-606 $))) NIL) (($ (-406 |#2|)) 289) (($ (-939 (-406 |#2|))) 329) (($ (-406 (-939 (-406 |#2|)))) 301) (($ (-406 (-939 |#2|))) 295) (($ $) NIL) (($ (-939 |#2|)) 185) (($ (-406 (-544))) 334) (($ (-544)) NIL)) (-3511 (((-765)) 79)) (-2377 (((-112) (-113)) 41)) (-1942 (($ (-1166) $) 33) (($ (-1166) $ $) 34) (($ (-1166) $ $ $) 35) (($ (-1166) $ $ $ $) 36) (($ (-1166) (-635 $)) 39)) (* (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL))) -(((-419 |#1| |#2|) (-10 -8 (-15 * (|#1| (-912) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| (-544))) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-406 (-544)) #1="failed") |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4353 (|#1| (-939 |#2|))) (-15 -3558 ((-3 (-939 |#2|) #1#) |#1|)) (-15 -3557 ((-939 |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4353 (|#1| (-406 (-939 |#2|)))) (-15 -3558 ((-3 (-406 (-939 |#2|)) #1#) |#1|)) (-15 -3557 ((-406 (-939 |#2|)) |#1|)) (-15 -3469 ((-406 (-1160 |#1|)) |#1| (-606 |#1|))) (-15 -4353 (|#1| (-406 (-939 (-406 |#2|))))) (-15 -4353 (|#1| (-939 (-406 |#2|)))) (-15 -4353 (|#1| (-406 |#2|))) (-15 -3378 (|#1| |#1|)) (-15 -4377 (|#1| (-404 |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-765) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-765) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-765)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-765)) (-635 (-1 |#1| |#1|)))) (-15 -3207 ((-3 (-2 (|:| |val| |#1|) (|:| -2536 (-544))) "failed") |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1| (-1166))) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1| (-113))) (-15 -3379 (|#1| |#1|)) (-15 -4353 (|#1| (-1115 |#2| (-606 |#1|)))) (-15 -1941 ((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 |#1|))) "failed") |#1|)) (-15 -3204 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1|)) (-15 -3205 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 |#1|) (-1166))) (-15 -4174 (|#1| |#1| (-113) |#1| (-1166))) (-15 -4174 (|#1| |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1166)))) (-15 -4174 (|#1| |#1| (-1166))) (-15 -1942 (|#1| (-1166) (-635 |#1|))) (-15 -1942 (|#1| (-1166) |#1| |#1| |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1| |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1|)) (-15 -3467 ((-635 (-1166)) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1944 ((-112) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4353 (|#1| (-1166))) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| |#1|)))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| |#1|)))) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1689 ((-635 (-606 |#1|)) |#1|)) (-15 -1690 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -1692 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -1692 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -1692 (|#1| |#1| (-292 |#1|))) (-15 -4206 (|#1| (-113) (-635 |#1|))) (-15 -4206 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-606 |#1|) |#1|)) (-15 -4353 (|#1| (-606 |#1|))) (-15 -3558 ((-3 (-606 |#1|) #1#) |#1|)) (-15 -3557 ((-606 |#1|) |#1|)) (-15 -4353 ((-857) |#1|))) (-420 |#2|) (-844)) (T -419)) -((-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-844)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-419 *4 *5)) (-4 *4 (-420 *5)))) (-3511 (*1 *2) (-12 (-4 *4 (-844)) (-5 *2 (-765)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4))))) -(-10 -8 (-15 * (|#1| (-912) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4353 (|#1| (-544))) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-406 (-544)) #1="failed") |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4353 (|#1| (-939 |#2|))) (-15 -3558 ((-3 (-939 |#2|) #1#) |#1|)) (-15 -3557 ((-939 |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4353 (|#1| (-406 (-939 |#2|)))) (-15 -3558 ((-3 (-406 (-939 |#2|)) #1#) |#1|)) (-15 -3557 ((-406 (-939 |#2|)) |#1|)) (-15 -3469 ((-406 (-1160 |#1|)) |#1| (-606 |#1|))) (-15 -4353 (|#1| (-406 (-939 (-406 |#2|))))) (-15 -4353 (|#1| (-939 (-406 |#2|)))) (-15 -4353 (|#1| (-406 |#2|))) (-15 -3378 (|#1| |#1|)) (-15 -4377 (|#1| (-404 |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-765) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-765) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-765)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-765)) (-635 (-1 |#1| |#1|)))) (-15 -3207 ((-3 (-2 (|:| |val| |#1|) (|:| -2536 (-544))) "failed") |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1| (-1166))) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1| (-113))) (-15 -3379 (|#1| |#1|)) (-15 -4353 (|#1| (-1115 |#2| (-606 |#1|)))) (-15 -1941 ((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 |#1|))) "failed") |#1|)) (-15 -3204 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 |#1|)) (|:| -2536 (-544))) "failed") |#1|)) (-15 -3205 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 |#1|) (-1166))) (-15 -4174 (|#1| |#1| (-113) |#1| (-1166))) (-15 -4174 (|#1| |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1166)))) (-15 -4174 (|#1| |#1| (-1166))) (-15 -1942 (|#1| (-1166) (-635 |#1|))) (-15 -1942 (|#1| (-1166) |#1| |#1| |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1| |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1| |#1|)) (-15 -1942 (|#1| (-1166) |#1|)) (-15 -3467 ((-635 (-1166)) |#1|)) (-15 -1943 (|#2| |#1|)) (-15 -1944 ((-112) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4353 (|#1| (-1166))) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-113) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-113)) (-635 (-1 |#1| |#1|)))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| |#1|))) (-15 -4174 (|#1| |#1| (-1166) (-1 |#1| (-635 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| (-635 |#1|))))) (-15 -4174 (|#1| |#1| (-635 (-1166)) (-635 (-1 |#1| |#1|)))) (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -1689 ((-635 (-606 |#1|)) |#1|)) (-15 -1690 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -1692 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -1692 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -1692 (|#1| |#1| (-292 |#1|))) (-15 -4206 (|#1| (-113) (-635 |#1|))) (-15 -4206 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1| |#1|)) (-15 -4206 (|#1| (-113) |#1|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4174 (|#1| |#1| (-635 (-606 |#1|)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-606 |#1|) |#1|)) (-15 -4353 (|#1| (-606 |#1|))) (-15 -3558 ((-3 (-606 |#1|) #1#) |#1|)) (-15 -3557 ((-606 |#1|) |#1|)) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 114 (|has| |#1| (-25)))) (-3467 (((-635 (-1166)) $) 201)) (-3469 (((-406 (-1160 $)) $ (-606 $)) 169 (|has| |#1| (-554)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 141 (|has| |#1| (-554)))) (-2213 (($ $) 142 (|has| |#1| (-554)))) (-2211 (((-112) $) 144 (|has| |#1| (-554)))) (-1688 (((-635 (-606 $)) $) 44)) (-1391 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-1692 (($ $ (-292 $)) 56) (($ $ (-635 (-292 $))) 55) (($ $ (-635 (-606 $)) (-635 $)) 54)) (-4181 (($ $) 161 (|has| |#1| (-554)))) (-4376 (((-404 $) $) 162 (|has| |#1| (-554)))) (-1733 (((-112) $ $) 152 (|has| |#1| (-554)))) (-4131 (($) 102 (-3936 (|has| |#1| (-1102)) (|has| |#1| (-25))) CONST)) (-3558 (((-3 (-606 $) #1="failed") $) 69) (((-3 (-1166) #1#) $) 214) (((-3 (-544) #1#) $) 208 (|has| |#1| (-1031 (-544)))) (((-3 |#1| #1#) $) 205) (((-3 (-406 (-939 |#1|)) #1#) $) 167 (|has| |#1| (-554))) (((-3 (-939 |#1|) #1#) $) 121 (|has| |#1| (-1042))) (((-3 (-406 (-544)) #1#) $) 96 (-3936 (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544))))))) (-3557 (((-606 $) $) 70) (((-1166) $) 215) (((-544) $) 207 (|has| |#1| (-1031 (-544)))) ((|#1| $) 206) (((-406 (-939 |#1|)) $) 168 (|has| |#1| (-554))) (((-939 |#1|) $) 122 (|has| |#1| (-1042))) (((-406 (-544)) $) 97 (-3936 (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544))))))) (-2943 (($ $ $) 156 (|has| |#1| (-554)))) (-2401 (((-682 (-544)) (-682 $)) 135 (-3240 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 134 (-3240 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 133 (|has| |#1| (-1042))) (((-682 |#1|) (-682 $)) 132 (|has| |#1| (-1042)))) (-3866 (((-3 $ "failed") $) 104 (|has| |#1| (-1102)))) (-2942 (($ $ $) 155 (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 150 (|has| |#1| (-554)))) (-4130 (((-112) $) 163 (|has| |#1| (-554)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 210 (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 209 (|has| |#1| (-879 (-377))))) (-2952 (($ $) 51) (($ (-635 $)) 50)) (-1687 (((-635 (-113)) $) 43)) (-3430 (((-113) (-113)) 42)) (-2545 (((-112) $) 103 (|has| |#1| (-1102)))) (-3055 (((-112) $) 22 (|has| $ (-1031 (-544))))) (-3379 (($ $) 184 (|has| |#1| (-1042)))) (-3381 (((-1115 |#1| (-606 $)) $) 185 (|has| |#1| (-1042)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 159 (|has| |#1| (-554)))) (-1685 (((-1160 $) (-606 $)) 25 (|has| $ (-1042)))) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-4365 (($ (-1 $ $) (-606 $)) 36)) (-1690 (((-3 (-606 $) "failed") $) 46)) (-2041 (($ (-635 $)) 148 (|has| |#1| (-554))) (($ $ $) 147 (|has| |#1| (-554)))) (-3643 (((-1148) $) 9)) (-1689 (((-635 (-606 $)) $) 45)) (-2356 (($ (-113) $) 38) (($ (-113) (-635 $)) 37)) (-3205 (((-3 (-635 $) "failed") $) 190 (|has| |#1| (-1102)))) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) "failed") $) 181 (|has| |#1| (-1042)))) (-3204 (((-3 (-635 $) "failed") $) 188 (|has| |#1| (-25)))) (-1941 (((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3206 (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $) 189 (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-113)) 183 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-1166)) 182 (|has| |#1| (-1042)))) (-3013 (((-112) $ (-113)) 40) (((-112) $ (-1166)) 39)) (-2779 (($ $) 106 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554))))) (-2982 (((-765) $) 47)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 203)) (-1943 ((|#1| $) 202)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 149 (|has| |#1| (-554)))) (-3545 (($ (-635 $)) 146 (|has| |#1| (-554))) (($ $ $) 145 (|has| |#1| (-554)))) (-1686 (((-112) $ $) 35) (((-112) $ (-1166)) 34)) (-4139 (((-404 $) $) 160 (|has| |#1| (-554)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 158 (|has| |#1| (-554))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 157 (|has| |#1| (-554)))) (-3865 (((-3 $ "failed") $ $) 140 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 151 (|has| |#1| (-554)))) (-3056 (((-112) $) 23 (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) 67) (($ $ (-635 (-606 $)) (-635 $)) 66) (($ $ (-635 (-292 $))) 65) (($ $ (-292 $)) 64) (($ $ $ $) 63) (($ $ (-635 $) (-635 $)) 62) (($ $ (-635 (-1166)) (-635 (-1 $ $))) 33) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) 32) (($ $ (-1166) (-1 $ (-635 $))) 31) (($ $ (-1166) (-1 $ $)) 30) (($ $ (-635 (-113)) (-635 (-1 $ $))) 29) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) 28) (($ $ (-113) (-1 $ (-635 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1166)) 195 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166))) 194 (|has| |#1| (-609 (-533)))) (($ $) 193 (|has| |#1| (-609 (-533)))) (($ $ (-113) $ (-1166)) 192 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-113)) (-635 $) (-1166)) 191 (|has| |#1| (-609 (-533)))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $))) 180 (|has| |#1| (-1042))) (($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $)))) 179 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ (-635 $))) 178 (|has| |#1| (-1042))) (($ $ (-1166) (-765) (-1 $ $)) 177 (|has| |#1| (-1042)))) (-1732 (((-765) $) 153 (|has| |#1| (-554)))) (-4206 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-635 $)) 57)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 154 (|has| |#1| (-554)))) (-1691 (($ $) 49) (($ $ $) 48)) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 126 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 125 (|has| |#1| (-1042))) (($ $ (-635 (-1166))) 124 (|has| |#1| (-1042))) (($ $ (-1166)) 123 (|has| |#1| (-1042)))) (-3378 (($ $) 174 (|has| |#1| (-554)))) (-3380 (((-1115 |#1| (-606 $)) $) 175 (|has| |#1| (-554)))) (-3586 (($ $) 24 (|has| $ (-1042)))) (-4377 (((-883 (-544)) $) 212 (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) 211 (|has| |#1| (-609 (-883 (-377))))) (($ (-404 $)) 176 (|has| |#1| (-554))) (((-533) $) 98 (|has| |#1| (-609 (-533))))) (-3392 (($ $ $) 109 (|has| |#1| (-471)))) (-2729 (($ $ $) 110 (|has| |#1| (-471)))) (-4353 (((-857) $) 11) (($ (-606 $)) 68) (($ (-1166)) 213) (($ |#1|) 204) (($ (-1115 |#1| (-606 $))) 186 (|has| |#1| (-1042))) (($ (-406 |#1|)) 172 (|has| |#1| (-554))) (($ (-939 (-406 |#1|))) 171 (|has| |#1| (-554))) (($ (-406 (-939 (-406 |#1|)))) 170 (|has| |#1| (-554))) (($ (-406 (-939 |#1|))) 166 (|has| |#1| (-554))) (($ $) 139 (|has| |#1| (-554))) (($ (-939 |#1|)) 120 (|has| |#1| (-1042))) (($ (-406 (-544))) 95 (-3936 (|has| |#1| (-554)) (-12 (|has| |#1| (-1031 (-544))) (|has| |#1| (-554))) (|has| |#1| (-1031 (-406 (-544)))))) (($ (-544)) 94 (-3936 (|has| |#1| (-1042)) (|has| |#1| (-1031 (-544)))))) (-3084 (((-3 $ "failed") $) 136 (|has| |#1| (-144)))) (-3511 (((-765)) 131 (|has| |#1| (-1042)))) (-2969 (($ $) 53) (($ (-635 $)) 52)) (-2377 (((-112) (-113)) 41)) (-2212 (((-112) $ $) 143 (|has| |#1| (-554)))) (-1942 (($ (-1166) $) 200) (($ (-1166) $ $) 199) (($ (-1166) $ $ $) 198) (($ (-1166) $ $ $ $) 197) (($ (-1166) (-635 $)) 196)) (-3040 (($) 113 (|has| |#1| (-25)) CONST)) (-3046 (($) 101 (|has| |#1| (-1102)) CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 130 (|has| |#1| (-1042))) (($ $ (-1166) (-765)) 129 (|has| |#1| (-1042))) (($ $ (-635 (-1166))) 128 (|has| |#1| (-1042))) (($ $ (-1166)) 127 (|has| |#1| (-1042)))) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4356 (($ (-1115 |#1| (-606 $)) (-1115 |#1| (-606 $))) 173 (|has| |#1| (-554))) (($ $ $) 107 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554))))) (-4244 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-4246 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-544)) 108 (-3936 (|has| |#1| (-471)) (|has| |#1| (-554)))) (($ $ (-765)) 105 (|has| |#1| (-1102))) (($ $ (-912)) 100 (|has| |#1| (-1102)))) (* (($ (-406 (-544)) $) 165 (|has| |#1| (-554))) (($ $ (-406 (-544))) 164 (|has| |#1| (-554))) (($ |#1| $) 138 (|has| |#1| (-171))) (($ $ |#1|) 137 (|has| |#1| (-171))) (($ (-544) $) 119 (|has| |#1| (-21))) (($ (-765) $) 115 (|has| |#1| (-25))) (($ (-912) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1102))))) -(((-420 |#1|) (-139) (-844)) (T -420)) -((-1944 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-844)) (-5 *2 (-112)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-844)) (-5 *2 (-635 (-1166))))) (-1942 (*1 *1 *2 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) (-1942 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) (-1942 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) (-1942 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) (-1942 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 *1)) (-4 *1 (-420 *4)) (-4 *4 (-844)))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-533))))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1166))) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-533))))) (-4174 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-609 (-533))))) (-4174 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1166)) (-4 *1 (-420 *4)) (-4 *4 (-844)) (-4 *4 (-609 (-533))))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 *1)) (-5 *4 (-1166)) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-609 (-533))))) (-3205 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-420 *3)))) (-3206 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *3)))) (-3204 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-420 *3)))) (-1941 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4361 (-544)) (|:| |var| (-606 *1)))) (-4 *1 (-420 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1115 *3 (-606 *1))) (-4 *3 (-1042)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-3381 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-606 *1))) (-4 *1 (-420 *3)))) (-3379 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-1042)))) (-3206 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1042)) (-4 *4 (-844)) (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *4)))) (-3206 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-1042)) (-4 *4 (-844)) (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *4)))) (-3207 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-2 (|:| |val| *1) (|:| -2536 (-544)))) (-4 *1 (-420 *3)))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-765))) (-5 *4 (-635 (-1 *1 *1))) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-765))) (-5 *4 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 (-635 *1))) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4174 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 *1)) (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-404 *1)) (-4 *1 (-420 *3)) (-4 *3 (-554)) (-4 *3 (-844)))) (-3380 (*1 *2 *1) (-12 (-4 *3 (-554)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-606 *1))) (-4 *1 (-420 *3)))) (-3378 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-554)))) (-4356 (*1 *1 *2 *2) (-12 (-5 *2 (-1115 *3 (-606 *1))) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-939 (-406 *3))) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-406 *3)))) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) (-3469 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-420 *4)) (-4 *4 (-844)) (-4 *4 (-554)) (-5 *2 (-406 (-1160 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-1102))))) -(-13 (-297) (-1031 (-1166)) (-877 |t#1|) (-399 |t#1|) (-411 |t#1|) (-10 -8 (-15 -1944 ((-112) $)) (-15 -1943 (|t#1| $)) (-15 -3467 ((-635 (-1166)) $)) (-15 -1942 ($ (-1166) $)) (-15 -1942 ($ (-1166) $ $)) (-15 -1942 ($ (-1166) $ $ $)) (-15 -1942 ($ (-1166) $ $ $ $)) (-15 -1942 ($ (-1166) (-635 $))) (IF (|has| |t#1| (-609 (-533))) (PROGN (-6 (-609 (-533))) (-15 -4174 ($ $ (-1166))) (-15 -4174 ($ $ (-635 (-1166)))) (-15 -4174 ($ $)) (-15 -4174 ($ $ (-113) $ (-1166))) (-15 -4174 ($ $ (-635 (-113)) (-635 $) (-1166)))) |%noBranch|) (IF (|has| |t#1| (-1102)) (PROGN (-6 (-720)) (-15 ** ($ $ (-765))) (-15 -3205 ((-3 (-635 $) "failed") $)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-471)) (-6 (-471)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3204 ((-3 (-635 $) "failed") $)) (-15 -1941 ((-3 (-2 (|:| -4361 (-544)) (|:| |var| (-606 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-6 (-1042)) (-6 (-1031 (-939 |t#1|))) (-6 (-893 (-1166))) (-6 (-376 |t#1|)) (-15 -4353 ($ (-1115 |t#1| (-606 $)))) (-15 -3381 ((-1115 |t#1| (-606 $)) $)) (-15 -3379 ($ $)) (-15 -3206 ((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-113))) (-15 -3206 ((-3 (-2 (|:| |var| (-606 $)) (|:| -2536 (-544))) "failed") $ (-1166))) (-15 -3207 ((-3 (-2 (|:| |val| $) (|:| -2536 (-544))) "failed") $)) (-15 -4174 ($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ $)))) (-15 -4174 ($ $ (-635 (-1166)) (-635 (-765)) (-635 (-1 $ (-635 $))))) (-15 -4174 ($ $ (-1166) (-765) (-1 $ (-635 $)))) (-15 -4174 ($ $ (-1166) (-765) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-362)) (-6 (-1031 (-406 (-939 |t#1|)))) (-15 -4377 ($ (-404 $))) (-15 -3380 ((-1115 |t#1| (-606 $)) $)) (-15 -3378 ($ $)) (-15 -4356 ($ (-1115 |t#1| (-606 $)) (-1115 |t#1| (-606 $)))) (-15 -4353 ($ (-406 |t#1|))) (-15 -4353 ($ (-939 (-406 |t#1|)))) (-15 -4353 ($ (-406 (-939 (-406 |t#1|))))) (-15 -3469 ((-406 (-1160 $)) $ (-606 $))) (IF (|has| |t#1| (-1031 (-544))) (-6 (-1031 (-406 (-544)))) |%noBranch|)) |%noBranch|))) -(((-21) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-23) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-406 (-544))) |has| |#1| (-554)) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-554)) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) |has| |#1| (-554)) ((-130) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-554))) ((-611 #2=(-406 (-939 |#1|))) |has| |#1| (-554)) ((-611 (-544)) -3936 (|has| |#1| (-1042)) (|has| |#1| (-1031 (-544))) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-611 #3=(-606 $)) . T) ((-611 #4=(-939 |#1|)) |has| |#1| (-1042)) ((-611 #5=(-1166)) . T) ((-611 |#1|) . T) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) |has| |#1| (-554)) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544)))) ((-242) |has| |#1| (-554)) ((-289) |has| |#1| (-554)) ((-306) |has| |#1| (-554)) ((-308 $) . T) ((-297) . T) ((-362) |has| |#1| (-554)) ((-376 |#1|) |has| |#1| (-1042)) ((-399 |#1|) . T) ((-411 |#1|) . T) ((-450) |has| |#1| (-554)) ((-471) |has| |#1| (-471)) ((-512 (-606 $) $) . T) ((-512 $ $) . T) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-554)) ((-641 |#1|) |has| |#1| (-171)) ((-641 $) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-634 (-544)) -12 (|has| |#1| (-634 (-544))) (|has| |#1| (-1042))) ((-634 |#1|) |has| |#1| (-1042)) ((-711 #1#) |has| |#1| (-554)) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) -3936 (|has| |#1| (-1102)) (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-844) . T) ((-893 (-1166)) |has| |#1| (-1042)) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-877 |#1|) . T) ((-914) |has| |#1| (-554)) ((-1031 (-406 (-544))) -3936 (|has| |#1| (-1031 (-406 (-544)))) (-12 (|has| |#1| (-554)) (|has| |#1| (-1031 (-544))))) ((-1031 #2#) |has| |#1| (-554)) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 #3#) . T) ((-1031 #4#) |has| |#1| (-1042)) ((-1031 #5#) . T) ((-1031 |#1|) . T) ((-1048 #1#) |has| |#1| (-554)) ((-1048 |#1|) |has| |#1| (-171)) ((-1048 $) |has| |#1| (-554)) ((-1042) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1049) -3936 (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1102) -3936 (|has| |#1| (-1102)) (|has| |#1| (-1042)) (|has| |#1| (-554)) (|has| |#1| (-471)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1091) . T) ((-1204) . T) ((-1209) |has| |#1| (-554))) -((-4365 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1042) (-844)) (-420 |#1|) (-13 (-1042) (-844)) (-420 |#3|)) (T -421)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1042) (-844))) (-4 *6 (-13 (-1042) (-844))) (-4 *2 (-420 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-420 *5))))) -(-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|))) -((-1948 ((|#2| |#2|) 165)) (-1945 (((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112)) 57))) -(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1945 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112))) (-15 -1948 (|#2| |#2|))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|)) (-1166) |#2|) (T -422)) -((-1948 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1190) (-420 *3))) (-14 *4 (-1166)) (-14 *5 *2))) (-1945 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-14 *6 (-1166)) (-14 *7 *3)))) -(-10 -7 (-15 -1945 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112))) (-15 -1948 (|#2| |#2|))) -((-1948 ((|#2| |#2|) 89)) (-1946 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148)) 48)) (-1947 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148)) 153))) -(((-423 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1946 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -1947 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -1948 (|#2| |#2|))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|) (-10 -8 (-15 -4353 ($ |#3|)))) (-842) (-13 (-1232 |#2| |#3|) (-362) (-1190) (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $)))) (-976 |#4|) (-1166)) (T -423)) -((-1948 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-4 *2 (-13 (-27) (-1190) (-420 *3) (-10 -8 (-15 -4353 ($ *4))))) (-4 *4 (-842)) (-4 *5 (-13 (-1232 *2 *4) (-362) (-1190) (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $))))) (-5 *1 (-423 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1166)))) (-1947 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-4 *3 (-13 (-27) (-1190) (-420 *6) (-10 -8 (-15 -4353 ($ *7))))) (-4 *7 (-842)) (-4 *8 (-13 (-1232 *3 *7) (-362) (-1190) (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-423 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) (-14 *10 (-1166)))) (-1946 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-4 *3 (-13 (-27) (-1190) (-420 *6) (-10 -8 (-15 -4353 ($ *7))))) (-4 *7 (-842)) (-4 *8 (-13 (-1232 *3 *7) (-362) (-1190) (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) (-5 *1 (-423 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) (-14 *10 (-1166))))) -(-10 -7 (-15 -1946 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -1947 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148))))) |#2| (-112) (-1148))) (-15 -1948 (|#2| |#2|))) -((-1949 (($) 44)) (-3635 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3637 (($ $ $) 39)) (-3636 (((-112) $ $) 28)) (-3521 (((-765)) 47)) (-3640 (($ (-635 |#2|)) 20) (($) NIL)) (-3377 (($) 53)) (-3642 (((-112) $ $) 13)) (-2913 ((|#2| $) 61)) (-3242 ((|#2| $) 59)) (-2160 (((-912) $) 55)) (-3639 (($ $ $) 35)) (-2535 (($ (-912)) 50)) (-3638 (($ $ |#2|) NIL) (($ $ $) 38)) (-2097 (((-765) (-1 (-112) |#2|) $) NIL) (((-765) |#2| $) 26)) (-3929 (($ (-635 |#2|)) 24)) (-1950 (($ $) 46)) (-4353 (((-857) $) 33)) (-1951 (((-765) $) 21)) (-3641 (($ (-635 |#2|)) 19) (($) NIL)) (-3437 (((-112) $ $) 16))) -(((-424 |#1| |#2|) (-10 -8 (-15 -3521 ((-765))) (-15 -2535 (|#1| (-912))) (-15 -2160 ((-912) |#1|)) (-15 -3377 (|#1|)) (-15 -2913 (|#2| |#1|)) (-15 -3242 (|#2| |#1|)) (-15 -1949 (|#1|)) (-15 -1950 (|#1| |#1|)) (-15 -1951 ((-765) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3642 ((-112) |#1| |#1|)) (-15 -3641 (|#1|)) (-15 -3641 (|#1| (-635 |#2|))) (-15 -3640 (|#1|)) (-15 -3640 (|#1| (-635 |#2|))) (-15 -3639 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#2|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3636 ((-112) |#1| |#1|)) (-15 -3635 (|#1| |#1| |#1|)) (-15 -3635 (|#1| |#1| |#2|)) (-15 -3635 (|#1| |#2| |#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1091)) (T -424)) -((-3521 (*1 *2) (-12 (-4 *4 (-1091)) (-5 *2 (-765)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) -(-10 -8 (-15 -3521 ((-765))) (-15 -2535 (|#1| (-912))) (-15 -2160 ((-912) |#1|)) (-15 -3377 (|#1|)) (-15 -2913 (|#2| |#1|)) (-15 -3242 (|#2| |#1|)) (-15 -1949 (|#1|)) (-15 -1950 (|#1| |#1|)) (-15 -1951 ((-765) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3642 ((-112) |#1| |#1|)) (-15 -3641 (|#1|)) (-15 -3641 (|#1| (-635 |#2|))) (-15 -3640 (|#1|)) (-15 -3640 (|#1| (-635 |#2|))) (-15 -3639 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#2|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3636 ((-112) |#1| |#1|)) (-15 -3635 (|#1| |#1| |#1|)) (-15 -3635 (|#1| |#1| |#2|)) (-15 -3635 (|#1| |#2| |#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|))) -((-2947 (((-112) $ $) 19)) (-1949 (($) 67 (|has| |#1| (-367)))) (-3635 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3637 (($ $ $) 78)) (-3636 (((-112) $ $) 79)) (-1293 (((-112) $ (-765)) 8)) (-3521 (((-765)) 61 (|has| |#1| (-367)))) (-3640 (($ (-635 |#1|)) 74) (($) 73)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-3377 (($) 64 (|has| |#1| (-367)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 70)) (-4126 (((-112) $ (-765)) 9)) (-2913 ((|#1| $) 65 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3242 ((|#1| $) 66 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-2160 (((-912) $) 63 (|has| |#1| (-367)))) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22)) (-3639 (($ $ $) 75)) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-2535 (($ (-912)) 62 (|has| |#1| (-367)))) (-3644 (((-1110) $) 21)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3638 (($ $ |#1|) 77) (($ $ $) 76)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-1950 (($ $) 68 (|has| |#1| (-367)))) (-4353 (((-857) $) 18)) (-1951 (((-765) $) 69)) (-3641 (($ (-635 |#1|)) 72) (($) 71)) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-425 |#1|) (-139) (-1091)) (T -425)) -((-1951 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1091)) (-5 *2 (-765)))) (-1950 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-367)))) (-1949 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-367)) (-4 *2 (-1091)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-844)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-844))))) -(-13 (-228 |t#1|) (-1089 |t#1|) (-10 -8 (-6 -4400) (-15 -1951 ((-765) $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-15 -1950 ($ $)) (-15 -1949 ($))) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-15 -3242 (|t#1| $)) (-15 -2913 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-228 |#1|) . T) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-367) |has| |#1| (-367)) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1089 |#1|) . T) ((-1091) . T) ((-1204) . T)) -((-4248 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4249 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4365 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4249 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4248 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1091) (-425 |#1|) (-1091) (-425 |#3|)) (T -426)) -((-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1091)) (-4 *5 (-1091)) (-4 *2 (-425 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1091)) (-4 *2 (-1091)) (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-425 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) -(-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4249 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4248 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1952 (((-580 |#2|) |#2| (-1166)) 35)) (-2255 (((-580 |#2|) |#2| (-1166)) 20)) (-2300 ((|#2| |#2| (-1166)) 25))) -(((-427 |#1| |#2|) (-10 -7 (-15 -2255 ((-580 |#2|) |#2| (-1166))) (-15 -1952 ((-580 |#2|) |#2| (-1166))) (-15 -2300 (|#2| |#2| (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-29 |#1|))) (T -427)) -((-2300 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-427 *4 *2)) (-4 *2 (-13 (-1190) (-29 *4))))) (-1952 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5))))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5)))))) -(-10 -7 (-15 -2255 ((-580 |#2|) |#2| (-1166))) (-15 -1952 ((-580 |#2|) |#2| (-1166))) (-15 -2300 (|#2| |#2| (-1166)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-1954 (($ |#2| |#1|) 35)) (-1953 (($ |#2| |#1|) 33)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-330 |#2|)) 25)) (-3511 (((-765)) NIL)) (-3040 (($) 10 T CONST)) (-3046 (($) 16 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 34)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-428 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4387)) (IF (|has| |#1| (-6 -4387)) (-6 -4387) |%noBranch|) |%noBranch|) (-15 -4353 ($ |#1|)) (-15 -4353 ($ (-330 |#2|))) (-15 -1954 ($ |#2| |#1|)) (-15 -1953 ($ |#2| |#1|)))) (-13 (-171) (-38 (-406 (-544)))) (-13 (-844) (-21))) (T -428)) -((-4353 (*1 *1 *2) (-12 (-5 *1 (-428 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-544))))) (-4 *3 (-13 (-844) (-21))))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-844) (-21))) (-5 *1 (-428 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-544))))))) (-1954 (*1 *1 *2 *3) (-12 (-5 *1 (-428 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-544))))) (-4 *2 (-13 (-844) (-21))))) (-1953 (*1 *1 *2 *3) (-12 (-5 *1 (-428 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-544))))) (-4 *2 (-13 (-844) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4387)) (IF (|has| |#1| (-6 -4387)) (-6 -4387) |%noBranch|) |%noBranch|) (-15 -4353 ($ |#1|)) (-15 -4353 ($ (-330 |#2|))) (-15 -1954 ($ |#2| |#1|)) (-15 -1953 ($ |#2| |#1|)))) -((-4219 (((-3 |#2| (-635 |#2|)) |#2| (-1166)) 108))) -(((-429 |#1| |#2|) (-10 -7 (-15 -4219 ((-3 |#2| (-635 |#2|)) |#2| (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-953) (-29 |#1|))) (T -429)) -((-4219 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 *3 (-635 *3))) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1190) (-953) (-29 *5)))))) -(-10 -7 (-15 -4219 ((-3 |#2| (-635 |#2|)) |#2| (-1166)))) -((-3790 ((|#2| |#2| |#2|) 33)) (-3430 (((-113) (-113)) 44)) (-1956 ((|#2| |#2|) 66)) (-1955 ((|#2| |#2|) 69)) (-3789 ((|#2| |#2|) 32)) (-3793 ((|#2| |#2| |#2|) 35)) (-3795 ((|#2| |#2| |#2|) 37)) (-3792 ((|#2| |#2| |#2|) 34)) (-3794 ((|#2| |#2| |#2|) 36)) (-2377 (((-112) (-113)) 42)) (-3797 ((|#2| |#2|) 39)) (-3796 ((|#2| |#2|) 38)) (-3787 ((|#2| |#2|) 27)) (-3791 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3788 ((|#2| |#2| |#2|) 31))) -(((-430 |#1| |#2|) (-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -3787 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3791 (|#2| |#2| |#2|)) (-15 -3788 (|#2| |#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -3793 (|#2| |#2| |#2|)) (-15 -3794 (|#2| |#2| |#2|)) (-15 -3795 (|#2| |#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -1956 (|#2| |#2|))) (-13 (-844) (-554)) (-420 |#1|)) (T -430)) -((-1956 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-1955 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3796 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3795 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3794 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3793 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3792 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3790 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3788 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3791 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *4)) (-4 *4 (-420 *3)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-430 *4 *5)) (-4 *5 (-420 *4))))) -(-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -3787 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3791 (|#2| |#2| |#2|)) (-15 -3788 (|#2| |#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3790 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -3793 (|#2| |#2| |#2|)) (-15 -3794 (|#2| |#2| |#2|)) (-15 -3795 (|#2| |#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -1956 (|#2| |#2|))) -((-3215 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1160 |#2|)) (|:| |pol2| (-1160 |#2|)) (|:| |prim| (-1160 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1160 |#2|))) (|:| |prim| (-1160 |#2|))) (-635 |#2|)) 61))) -(((-431 |#1| |#2|) (-10 -7 (-15 -3215 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1160 |#2|))) (|:| |prim| (-1160 |#2|))) (-635 |#2|))) (IF (|has| |#2| (-27)) (-15 -3215 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1160 |#2|)) (|:| |pol2| (-1160 |#2|)) (|:| |prim| (-1160 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-554) (-844) (-146)) (-420 |#1|)) (T -431)) -((-3215 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-554) (-844) (-146))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1160 *3)) (|:| |pol2| (-1160 *3)) (|:| |prim| (-1160 *3)))) (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-420 *4)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-420 *4)) (-4 *4 (-13 (-554) (-844) (-146))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-635 (-1160 *5))) (|:| |prim| (-1160 *5)))) (-5 *1 (-431 *4 *5))))) -(-10 -7 (-15 -3215 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-635 (-1160 |#2|))) (|:| |prim| (-1160 |#2|))) (-635 |#2|))) (IF (|has| |#2| (-27)) (-15 -3215 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1160 |#2|)) (|:| |pol2| (-1160 |#2|)) (|:| |prim| (-1160 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1958 (((-1259)) 19)) (-1957 (((-1160 (-406 (-544))) |#2| (-606 |#2|)) 41) (((-406 (-544)) |#2|) 25))) -(((-432 |#1| |#2|) (-10 -7 (-15 -1957 ((-406 (-544)) |#2|)) (-15 -1957 ((-1160 (-406 (-544))) |#2| (-606 |#2|))) (-15 -1958 ((-1259)))) (-13 (-844) (-554) (-1031 (-544))) (-420 |#1|)) (T -432)) -((-1958 (*1 *2) (-12 (-4 *3 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-1259)) (-5 *1 (-432 *3 *4)) (-4 *4 (-420 *3)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-420 *5)) (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-432 *5 *3)))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-432 *4 *3)) (-4 *3 (-420 *4))))) -(-10 -7 (-15 -1957 ((-406 (-544)) |#2|)) (-15 -1957 ((-1160 (-406 (-544))) |#2| (-606 |#2|))) (-15 -1958 ((-1259)))) -((-4052 (((-112) $) 28)) (-1959 (((-112) $) 30)) (-3660 (((-112) $) 31)) (-1961 (((-112) $) 34)) (-1963 (((-112) $) 29)) (-1962 (((-112) $) 33)) (-4353 (((-857) $) 18) (($ (-1148)) 27) (($ (-1166)) 23) (((-1166) $) 22) (((-1093) $) 21)) (-1960 (((-112) $) 32)) (-3437 (((-112) $ $) 15))) -(((-433) (-13 (-608 (-857)) (-10 -8 (-15 -4353 ($ (-1148))) (-15 -4353 ($ (-1166))) (-15 -4353 ((-1166) $)) (-15 -4353 ((-1093) $)) (-15 -4052 ((-112) $)) (-15 -1963 ((-112) $)) (-15 -3660 ((-112) $)) (-15 -1962 ((-112) $)) (-15 -1961 ((-112) $)) (-15 -1960 ((-112) $)) (-15 -1959 ((-112) $)) (-15 -3437 ((-112) $ $))))) (T -433)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-433)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-433)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3437 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(-13 (-608 (-857)) (-10 -8 (-15 -4353 ($ (-1148))) (-15 -4353 ($ (-1166))) (-15 -4353 ((-1166) $)) (-15 -4353 ((-1093) $)) (-15 -4052 ((-112) $)) (-15 -1963 ((-112) $)) (-15 -3660 ((-112) $)) (-15 -1962 ((-112) $)) (-15 -1961 ((-112) $)) (-15 -1960 ((-112) $)) (-15 -1959 ((-112) $)) (-15 -3437 ((-112) $ $)))) -((-1965 (((-3 (-404 (-1160 (-406 (-544)))) "failed") |#3|) 70)) (-1964 (((-404 |#3|) |#3|) 34)) (-1967 (((-3 (-404 (-1160 (-48))) "failed") |#3|) 46 (|has| |#2| (-1031 (-48))))) (-1966 (((-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48))) (|:| -3019 (-112))) |#3|) 37))) -(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -1964 ((-404 |#3|) |#3|)) (-15 -1965 ((-3 (-404 (-1160 (-406 (-544)))) "failed") |#3|)) (-15 -1966 ((-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48))) (|:| -3019 (-112))) |#3|)) (IF (|has| |#2| (-1031 (-48))) (-15 -1967 ((-3 (-404 (-1160 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-554) (-844) (-1031 (-544))) (-420 |#1|) (-1229 |#2|)) (T -434)) -((-1967 (*1 *2 *3) (|partial| -12 (-4 *5 (-1031 (-48))) (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) (-5 *2 (-404 (-1160 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) (-5 *2 (-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48))) (|:| -3019 (-112)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-1965 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) (-5 *2 (-404 (-1160 (-406 (-544))))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) (-5 *2 (-404 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5))))) -(-10 -7 (-15 -1964 ((-404 |#3|) |#3|)) (-15 -1965 ((-3 (-404 (-1160 (-406 (-544)))) "failed") |#3|)) (-15 -1966 ((-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48))) (|:| -3019 (-112))) |#3|)) (IF (|has| |#2| (-1031 (-48))) (-15 -1967 ((-3 (-404 (-1160 (-48))) "failed") |#3|)) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-1976 (((-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $) 11)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1974 (($) 32)) (-1971 (($) 38)) (-1972 (($) 34)) (-1969 (($) 36)) (-1973 (($) 33)) (-1970 (($) 35)) (-1968 (($) 37)) (-1975 (((-112) $) 8)) (-2725 (((-635 (-939 (-544))) $) 19)) (-3929 (($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-1166)) (-112)) 27) (($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-939 (-544))) (-112)) 28)) (-4353 (((-857) $) 23) (($ (-433)) 29)) (-3437 (((-112) $ $) NIL))) -(((-435) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-433))) (-15 -1976 ((-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $)) (-15 -2725 ((-635 (-939 (-544))) $)) (-15 -1975 ((-112) $)) (-15 -3929 ($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-1166)) (-112))) (-15 -3929 ($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-939 (-544))) (-112))) (-15 -1974 ($)) (-15 -1973 ($)) (-15 -1972 ($)) (-15 -1971 ($)) (-15 -1970 ($)) (-15 -1969 ($)) (-15 -1968 ($))))) (T -435)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-435)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) (-5 *1 (-435)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-635 (-939 (-544)))) (-5 *1 (-435)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-435)))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *3 (-635 (-1166))) (-5 *4 (-112)) (-5 *1 (-435)))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-112)) (-5 *1 (-435)))) (-1974 (*1 *1) (-5 *1 (-435))) (-1973 (*1 *1) (-5 *1 (-435))) (-1972 (*1 *1) (-5 *1 (-435))) (-1971 (*1 *1) (-5 *1 (-435))) (-1970 (*1 *1) (-5 *1 (-435))) (-1969 (*1 *1) (-5 *1 (-435))) (-1968 (*1 *1) (-5 *1 (-435)))) -(-13 (-1091) (-10 -8 (-15 -4353 ($ (-433))) (-15 -1976 ((-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $)) (-15 -2725 ((-635 (-939 (-544))) $)) (-15 -1975 ((-112) $)) (-15 -3929 ($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-1166)) (-112))) (-15 -3929 ($ (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-635 (-939 (-544))) (-112))) (-15 -1974 ($)) (-15 -1973 ($)) (-15 -1972 ($)) (-15 -1971 ($)) (-15 -1970 ($)) (-15 -1969 ($)) (-15 -1968 ($)))) -((-2947 (((-112) $ $) NIL)) (-1841 (((-1148) $ (-1148)) NIL)) (-1845 (($ $ (-1148)) NIL)) (-1842 (((-1148) $) NIL)) (-1980 (((-387) (-387) (-387)) 17) (((-387) (-387)) 15)) (-1846 (($ (-387)) NIL) (($ (-387) (-1148)) NIL)) (-3949 (((-387) $) NIL)) (-3643 (((-1148) $) NIL)) (-1843 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1979 (((-1259) (-1148)) 9)) (-1978 (((-1259) (-1148)) 10)) (-1977 (((-1259)) 11)) (-4353 (((-857) $) NIL)) (-1844 (($ $) 34)) (-3437 (((-112) $ $) NIL))) -(((-436) (-13 (-364 (-387) (-1148)) (-10 -7 (-15 -1980 ((-387) (-387) (-387))) (-15 -1980 ((-387) (-387))) (-15 -1979 ((-1259) (-1148))) (-15 -1978 ((-1259) (-1148))) (-15 -1977 ((-1259)))))) (T -436)) -((-1980 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-436)))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-436)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-436)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-436)))) (-1977 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-436))))) -(-13 (-364 (-387) (-1148)) (-10 -7 (-15 -1980 ((-387) (-387) (-387))) (-15 -1980 ((-387) (-387))) (-15 -1979 ((-1259) (-1148))) (-15 -1978 ((-1259) (-1148))) (-15 -1977 ((-1259))))) -((-2947 (((-112) $ $) NIL)) (-3949 (((-1166) $) 8)) (-3643 (((-1148) $) 16)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 13))) -(((-437 |#1|) (-13 (-1091) (-10 -8 (-15 -3949 ((-1166) $)))) (-1166)) (T -437)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-437 *3)) (-14 *3 *2)))) -(-13 (-1091) (-10 -8 (-15 -3949 ((-1166) $)))) -((-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-1253 (-692))) 14) (($ (-635 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 11))) -(((-438) (-139)) (T -438)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-692))) (-4 *1 (-438)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-438)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-438))))) -(-13 (-395) (-10 -8 (-15 -4353 ($ (-1253 (-692)))) (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))))) -(((-608 (-857)) . T) ((-395) . T) ((-1204) . T)) -((-3558 (((-3 $ "failed") (-1253 (-313 (-377)))) 21) (((-3 $ "failed") (-1253 (-313 (-544)))) 19) (((-3 $ "failed") (-1253 (-939 (-377)))) 17) (((-3 $ "failed") (-1253 (-939 (-544)))) 15) (((-3 $ "failed") (-1253 (-406 (-939 (-377))))) 13) (((-3 $ "failed") (-1253 (-406 (-939 (-544))))) 11)) (-3557 (($ (-1253 (-313 (-377)))) 22) (($ (-1253 (-313 (-544)))) 20) (($ (-1253 (-939 (-377)))) 18) (($ (-1253 (-939 (-544)))) 16) (($ (-1253 (-406 (-939 (-377))))) 14) (($ (-1253 (-406 (-939 (-544))))) 12)) (-3784 (((-1259) $) 7)) (-4353 (((-857) $) 8) (($ (-635 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) 23))) +((-4235 (*1 *1 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-403)))) (-4235 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-916)) (-4 *1 (-403)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) (-3241 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) (-1960 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) (-3366 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) (-3280 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) (-3327 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) (-3366 (*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4393)) (-4 *1 (-403)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4393)) (-4 *1 (-403)))) (-3327 (*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4393)) (-4 *1 (-403)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-562)) (|has| *1 (-6 -4393)) (-4 *1 (-403)) (-5 *2 (-916)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-562)) (|has| *1 (-6 -4393)) (-4 *1 (-403)) (-5 *2 (-916)))) (-1551 (*1 *1) (-12 (-4 *1 (-403)) (-2236 (|has| *1 (-6 -4393))) (-2236 (|has| *1 (-6 -4385))))) (-2993 (*1 *1) (-12 (-4 *1 (-403)) (-2236 (|has| *1 (-6 -4393))) (-2236 (|has| *1 (-6 -4385)))))) +(-13 (-1053) (-10 -8 (-6 -1406) (-15 -4235 ($ (-562) (-562))) (-15 -4235 ($ (-562) (-562) (-916))) (-15 -1900 ((-562) $)) (-15 -3241 ((-916))) (-15 -1960 ((-562) $)) (-15 -3946 ((-562) $)) (-15 -3366 ((-916))) (-15 -3280 ((-916))) (-15 -3327 ((-916))) (IF (|has| $ (-6 -4393)) (PROGN (-15 -3366 ((-916) (-916))) (-15 -3280 ((-916) (-916))) (-15 -3327 ((-916) (-916))) (-15 -3544 ((-916) (-562))) (-15 -2015 ((-916) (-562)))) |%noBranch|) (IF (|has| $ (-6 -4385)) |%noBranch| (IF (|has| $ (-6 -4393)) |%noBranch| (PROGN (-15 -1551 ($)) (-15 -2993 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-610 (-224)) . T) ((-610 (-378)) . T) ((-610 (-887 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-843) . T) ((-845) . T) ((-881 (-378)) . T) ((-915) . T) ((-997) . T) ((-1017) . T) ((-1053) . T) ((-1033 (-406 (-562))) . T) ((-1033 (-562)) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) +((-4152 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20))) +(((-404 |#1| |#2|) (-10 -7 (-15 -4152 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-554) (-554)) (T -404)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6))))) +(-10 -7 (-15 -4152 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) +((-4152 (((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)) 13))) +(((-405 |#1| |#2|) (-10 -7 (-15 -4152 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) (-554) (-554)) (T -405)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6))))) +(-10 -7 (-15 -4152 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 13)) (-4246 ((|#1| $) 21 (|has| |#1| (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL (|has| |#1| (-815)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 17) (((-3 (-1168) "failed") $) NIL (|has| |#1| (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) 70 (|has| |#1| (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562))))) (-3961 ((|#1| $) 15) (((-1168) $) NIL (|has| |#1| (-1033 (-1168)))) (((-406 (-562)) $) 67 (|has| |#1| (-1033 (-562)))) (((-562) $) NIL (|has| |#1| (-1033 (-562))))) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) 50)) (-1448 (($) NIL (|has| |#1| (-544)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3519 (((-112) $) NIL (|has| |#1| (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| |#1| (-881 (-378))))) (-1957 (((-112) $) 64)) (-3425 (($ $) NIL)) (-4065 ((|#1| $) 71)) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)))) (-3392 (((-112) $) NIL (|has| |#1| (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 97)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL (|has| |#1| (-306)))) (-4014 ((|#1| $) 28 (|has| |#1| (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) 135 (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) 131 (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|)))) (-1577 (((-766) $) NIL)) (-2343 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3658 (($ $) NIL)) (-4076 ((|#1| $) 73)) (-4208 (((-887 (-562)) $) NIL (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| |#1| (-610 (-887 (-378))))) (((-535) $) NIL (|has| |#1| (-610 (-535)))) (((-378) $) NIL (|has| |#1| (-1017))) (((-224) $) NIL (|has| |#1| (-1017)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 115 (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 10) (($ (-1168)) NIL (|has| |#1| (-1033 (-1168))))) (-2805 (((-3 $ "failed") $) 99 (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) 100)) (-2604 ((|#1| $) 26 (|has| |#1| (-544)))) (-2922 (((-112) $ $) NIL)) (-3526 (($ $) NIL (|has| |#1| (-815)))) (-2286 (($) 22 T CONST)) (-2294 (($) 8 T CONST)) (-2833 (((-1150) $) 43 (-12 (|has| |#1| (-544)) (|has| |#1| (-823)))) (((-1150) $ (-112)) 44 (-12 (|has| |#1| (-544)) (|has| |#1| (-823)))) (((-1261) (-817) $) 45 (-12 (|has| |#1| (-544)) (|has| |#1| (-823)))) (((-1261) (-817) $ (-112)) 46 (-12 (|has| |#1| (-544)) (|has| |#1| (-823))))) (-3114 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) 56)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) 24 (|has| |#1| (-845)))) (-1859 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1848 (($ $) 25) (($ $ $) 55)) (-1835 (($ $ $) 53)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 125)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 60) (($ $ $) 57) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-406 |#1|) (-13 (-987 |#1|) (-10 -7 (IF (|has| |#1| (-544)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4389)) (IF (|has| |#1| (-451)) (IF (|has| |#1| (-6 -4400)) (-6 -4389) |%noBranch|) |%noBranch|) |%noBranch|))) (-554)) (T -406)) +NIL +(-13 (-987 |#1|) (-10 -7 (IF (|has| |#1| (-544)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4389)) (IF (|has| |#1| (-451)) (IF (|has| |#1| (-6 -4400)) (-6 -4389) |%noBranch|) |%noBranch|) |%noBranch|))) +((-1636 (((-683 |#2|) (-1256 $)) NIL) (((-683 |#2|)) 18)) (-4018 (($ (-1256 |#2|) (-1256 $)) NIL) (($ (-1256 |#2|)) 24)) (-1958 (((-683 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) $) 38)) (-1565 ((|#3| $) 60)) (-2455 ((|#2| (-1256 $)) NIL) ((|#2|) 20)) (-3593 (((-1256 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $) 22) (((-683 |#2|) (-1256 $)) 36)) (-4208 (((-1256 |#2|) $) 11) (($ (-1256 |#2|)) 13)) (-3376 ((|#3| $) 52))) +(((-407 |#1| |#2| |#3|) (-10 -8 (-15 -1958 ((-683 |#2|) |#1|)) (-15 -2455 (|#2|)) (-15 -1636 ((-683 |#2|))) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -4018 (|#1| (-1256 |#2|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1|)) (-15 -1565 (|#3| |#1|)) (-15 -3376 (|#3| |#1|)) (-15 -1636 ((-683 |#2|) (-1256 |#1|))) (-15 -2455 (|#2| (-1256 |#1|))) (-15 -4018 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1958 ((-683 |#2|) |#1| (-1256 |#1|)))) (-408 |#2| |#3|) (-171) (-1232 |#2|)) (T -407)) +((-1636 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5)))) (-2455 (*1 *2) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4)) (-4 *3 (-408 *2 *4))))) +(-10 -8 (-15 -1958 ((-683 |#2|) |#1|)) (-15 -2455 (|#2|)) (-15 -1636 ((-683 |#2|))) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -4018 (|#1| (-1256 |#2|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1|)) (-15 -1565 (|#3| |#1|)) (-15 -3376 (|#3| |#1|)) (-15 -1636 ((-683 |#2|) (-1256 |#1|))) (-15 -2455 (|#2| (-1256 |#1|))) (-15 -4018 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -1958 ((-683 |#2|) |#1| (-1256 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1636 (((-683 |#1|) (-1256 $)) 47) (((-683 |#1|)) 62)) (-1748 ((|#1| $) 53)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-4018 (($ (-1256 |#1|) (-1256 $)) 49) (($ (-1256 |#1|)) 65)) (-1958 (((-683 |#1|) $ (-1256 $)) 54) (((-683 |#1|) $) 60)) (-3668 (((-3 $ "failed") $) 33)) (-2173 (((-916)) 55)) (-1957 (((-112) $) 31)) (-2247 ((|#1| $) 52)) (-1565 ((|#2| $) 45 (|has| |#1| (-362)))) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2455 ((|#1| (-1256 $)) 48) ((|#1|) 61)) (-3593 (((-1256 |#1|) $ (-1256 $)) 51) (((-683 |#1|) (-1256 $) (-1256 $)) 50) (((-1256 |#1|) $) 67) (((-683 |#1|) (-1256 $)) 66)) (-4208 (((-1256 |#1|) $) 64) (($ (-1256 |#1|)) 63)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38)) (-2805 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-3376 ((|#2| $) 46)) (-2579 (((-766)) 28)) (-3928 (((-1256 $)) 68)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-408 |#1| |#2|) (-139) (-171) (-1232 |t#1|)) (T -408)) +((-3928 (*1 *2) (-12 (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *1)) (-4 *1 (-408 *3 *4)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *3)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1232 *3)))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *3)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1232 *3)))) (-1636 (*1 *2) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-683 *3)))) (-2455 (*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-683 *3))))) +(-13 (-369 |t#1| |t#2|) (-10 -8 (-15 -3928 ((-1256 $))) (-15 -3593 ((-1256 |t#1|) $)) (-15 -3593 ((-683 |t#1|) (-1256 $))) (-15 -4018 ($ (-1256 |t#1|))) (-15 -4208 ((-1256 |t#1|) $)) (-15 -4208 ($ (-1256 |t#1|))) (-15 -1636 ((-683 |t#1|))) (-15 -2455 (|t#1|)) (-15 -1958 ((-683 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-369 |#1| |#2|) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) . T) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) 27) (((-3 (-562) "failed") $) 19)) (-3961 ((|#2| $) NIL) (((-406 (-562)) $) 24) (((-562) $) 14)) (-4054 (($ |#2|) NIL) (($ (-406 (-562))) 22) (($ (-562)) 11))) +(((-409 |#1| |#2|) (-10 -8 (-15 -4054 (|#1| (-562))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4054 (|#1| |#2|))) (-410 |#2|) (-1207)) (T -409)) +NIL +(-10 -8 (-15 -4054 (|#1| (-562))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4054 (|#1| |#2|))) +((-4048 (((-3 |#1| "failed") $) 9) (((-3 (-406 (-562)) "failed") $) 16 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 13 (|has| |#1| (-1033 (-562))))) (-3961 ((|#1| $) 8) (((-406 (-562)) $) 17 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 14 (|has| |#1| (-1033 (-562))))) (-4054 (($ |#1|) 6) (($ (-406 (-562))) 15 (|has| |#1| (-1033 (-406 (-562))))) (($ (-562)) 12 (|has| |#1| (-1033 (-562)))))) +(((-410 |#1|) (-139) (-1207)) (T -410)) +NIL +(-13 (-1033 |t#1|) (-10 -7 (IF (|has| |t#1| (-1033 (-562))) (-6 (-1033 (-562))) |%noBranch|) (IF (|has| |t#1| (-1033 (-406 (-562)))) (-6 (-1033 (-406 (-562)))) |%noBranch|))) +(((-612 #0=(-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-612 #1=(-562)) |has| |#1| (-1033 (-562))) ((-612 |#1|) . T) ((-1033 #0#) |has| |#1| (-1033 (-406 (-562)))) ((-1033 #1#) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T)) +((-4152 (((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)) 33))) +(((-411 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4152 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) (-306) (-987 |#1|) (-1232 |#2|) (-13 (-408 |#2| |#3|) (-1033 |#2|)) (-306) (-987 |#5|) (-1232 |#6|) (-13 (-408 |#6| |#7|) (-1033 |#6|))) (T -411)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) (-4 *6 (-987 *5)) (-4 *7 (-1232 *6)) (-4 *8 (-13 (-408 *6 *7) (-1033 *6))) (-4 *9 (-306)) (-4 *10 (-987 *9)) (-4 *11 (-1232 *10)) (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-408 *10 *11) (-1033 *10)))))) +(-10 -7 (-15 -4152 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) +((-4041 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-3133 ((|#4| (-766) (-1256 |#4|)) 56)) (-1957 (((-112) $) NIL)) (-4065 (((-1256 |#4|) $) 17)) (-2247 ((|#2| $) 54)) (-2904 (($ $) 139)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 100)) (-1366 (($ (-1256 |#4|)) 99)) (-1709 (((-1112) $) NIL)) (-4076 ((|#1| $) 18)) (-3665 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-4054 (((-857) $) 134)) (-3928 (((-1256 |#4|) $) 129)) (-2294 (($) 11 T CONST)) (-1731 (((-112) $ $) 40)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 122)) (* (($ $ $) 121))) +(((-412 |#1| |#2| |#3| |#4|) (-13 (-472) (-10 -8 (-15 -1366 ($ (-1256 |#4|))) (-15 -3928 ((-1256 |#4|) $)) (-15 -2247 (|#2| $)) (-15 -4065 ((-1256 |#4|) $)) (-15 -4076 (|#1| $)) (-15 -2904 ($ $)) (-15 -3133 (|#4| (-766) (-1256 |#4|))))) (-306) (-987 |#1|) (-1232 |#2|) (-13 (-408 |#2| |#3|) (-1033 |#2|))) (T -412)) +((-1366 (*1 *1 *2) (-12 (-5 *2 (-1256 *6)) (-4 *6 (-13 (-408 *4 *5) (-1033 *4))) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *3 (-306)) (-5 *1 (-412 *3 *4 *5 *6)))) (-3928 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1033 *4))))) (-2247 (*1 *2 *1) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1033 *2))))) (-4065 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1033 *4))))) (-4076 (*1 *2 *1) (-12 (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) (-4 *2 (-306)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1033 *3))))) (-2904 (*1 *1 *1) (-12 (-4 *2 (-306)) (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1033 *3))))) (-3133 (*1 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-1256 *2)) (-4 *5 (-306)) (-4 *6 (-987 *5)) (-4 *2 (-13 (-408 *6 *7) (-1033 *6))) (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1232 *6))))) +(-13 (-472) (-10 -8 (-15 -1366 ($ (-1256 |#4|))) (-15 -3928 ((-1256 |#4|) $)) (-15 -2247 (|#2| $)) (-15 -4065 ((-1256 |#4|) $)) (-15 -4076 (|#1| $)) (-15 -2904 ($ $)) (-15 -3133 (|#4| (-766) (-1256 |#4|))))) +((-4041 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-2247 ((|#2| $) 61)) (-4309 (($ (-1256 |#4|)) 25) (($ (-412 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1033 |#2|)))) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 34)) (-3928 (((-1256 |#4|) $) 26)) (-2294 (($) 23 T CONST)) (-1731 (((-112) $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ $ $) 72))) +(((-413 |#1| |#2| |#3| |#4| |#5|) (-13 (-721) (-10 -8 (-15 -3928 ((-1256 |#4|) $)) (-15 -2247 (|#2| $)) (-15 -4309 ($ (-1256 |#4|))) (IF (|has| |#4| (-1033 |#2|)) (-15 -4309 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-306) (-987 |#1|) (-1232 |#2|) (-408 |#2| |#3|) (-1256 |#4|)) (T -413)) +((-3928 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-4 *6 (-408 *4 *5)) (-14 *7 *2))) (-2247 (*1 *2 *1) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4)) (-14 *6 (-1256 *5)))) (-4309 (*1 *1 *2) (-12 (-5 *2 (-1256 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-4309 (*1 *1 *2) (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1033 *4)) (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *6 (-408 *4 *5)) (-14 *7 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))))) +(-13 (-721) (-10 -8 (-15 -3928 ((-1256 |#4|) $)) (-15 -2247 (|#2| $)) (-15 -4309 ($ (-1256 |#4|))) (IF (|has| |#4| (-1033 |#2|)) (-15 -4309 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4152 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) (-416 |#2|) (-171) (-416 |#4|) (-171)) (T -414)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5))))) +(-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) +((-3931 (((-3 $ "failed")) 86)) (-1902 (((-1256 (-683 |#2|)) (-1256 $)) NIL) (((-1256 (-683 |#2|))) 91)) (-2874 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) 85)) (-2117 (((-3 $ "failed")) 84)) (-4356 (((-683 |#2|) (-1256 $)) NIL) (((-683 |#2|)) 102)) (-2966 (((-683 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) $) 110)) (-3407 (((-1164 (-947 |#2|))) 55)) (-2819 ((|#2| (-1256 $)) NIL) ((|#2|) 106)) (-4018 (($ (-1256 |#2|) (-1256 $)) NIL) (($ (-1256 |#2|)) 112)) (-1681 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) 83)) (-3700 (((-3 $ "failed")) 75)) (-3025 (((-683 |#2|) (-1256 $)) NIL) (((-683 |#2|)) 100)) (-1671 (((-683 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) $) 108)) (-2743 (((-1164 (-947 |#2|))) 54)) (-1305 ((|#2| (-1256 $)) NIL) ((|#2|) 104)) (-3593 (((-1256 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $) 111) (((-683 |#2|) (-1256 $)) 118)) (-4208 (((-1256 |#2|) $) 96) (($ (-1256 |#2|)) 98)) (-4136 (((-639 (-947 |#2|)) (-1256 $)) NIL) (((-639 (-947 |#2|))) 94)) (-1360 (($ (-683 |#2|) $) 90))) +(((-415 |#1| |#2|) (-10 -8 (-15 -1360 (|#1| (-683 |#2|) |#1|)) (-15 -3407 ((-1164 (-947 |#2|)))) (-15 -2743 ((-1164 (-947 |#2|)))) (-15 -2966 ((-683 |#2|) |#1|)) (-15 -1671 ((-683 |#2|) |#1|)) (-15 -4356 ((-683 |#2|))) (-15 -3025 ((-683 |#2|))) (-15 -2819 (|#2|)) (-15 -1305 (|#2|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -4018 (|#1| (-1256 |#2|))) (-15 -4136 ((-639 (-947 |#2|)))) (-15 -1902 ((-1256 (-683 |#2|)))) (-15 -3593 ((-683 |#2|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1|)) (-15 -3931 ((-3 |#1| "failed"))) (-15 -2117 ((-3 |#1| "failed"))) (-15 -3700 ((-3 |#1| "failed"))) (-15 -2874 ((-3 (-2 (|:| |particular| |#1|) (|:| -3928 (-639 |#1|))) "failed"))) (-15 -1681 ((-3 (-2 (|:| |particular| |#1|) (|:| -3928 (-639 |#1|))) "failed"))) (-15 -4356 ((-683 |#2|) (-1256 |#1|))) (-15 -3025 ((-683 |#2|) (-1256 |#1|))) (-15 -2819 (|#2| (-1256 |#1|))) (-15 -1305 (|#2| (-1256 |#1|))) (-15 -4018 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2966 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1671 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1902 ((-1256 (-683 |#2|)) (-1256 |#1|))) (-15 -4136 ((-639 (-947 |#2|)) (-1256 |#1|)))) (-416 |#2|) (-171)) (T -415)) +((-1902 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-4136 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-639 (-947 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-1305 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-2819 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-3025 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-683 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-4356 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-683 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2743 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1164 (-947 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3407 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1164 (-947 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4))))) +(-10 -8 (-15 -1360 (|#1| (-683 |#2|) |#1|)) (-15 -3407 ((-1164 (-947 |#2|)))) (-15 -2743 ((-1164 (-947 |#2|)))) (-15 -2966 ((-683 |#2|) |#1|)) (-15 -1671 ((-683 |#2|) |#1|)) (-15 -4356 ((-683 |#2|))) (-15 -3025 ((-683 |#2|))) (-15 -2819 (|#2|)) (-15 -1305 (|#2|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -4018 (|#1| (-1256 |#2|))) (-15 -4136 ((-639 (-947 |#2|)))) (-15 -1902 ((-1256 (-683 |#2|)))) (-15 -3593 ((-683 |#2|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1|)) (-15 -3931 ((-3 |#1| "failed"))) (-15 -2117 ((-3 |#1| "failed"))) (-15 -3700 ((-3 |#1| "failed"))) (-15 -2874 ((-3 (-2 (|:| |particular| |#1|) (|:| -3928 (-639 |#1|))) "failed"))) (-15 -1681 ((-3 (-2 (|:| |particular| |#1|) (|:| -3928 (-639 |#1|))) "failed"))) (-15 -4356 ((-683 |#2|) (-1256 |#1|))) (-15 -3025 ((-683 |#2|) (-1256 |#1|))) (-15 -2819 (|#2| (-1256 |#1|))) (-15 -1305 (|#2| (-1256 |#1|))) (-15 -4018 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -3593 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -3593 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2966 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1671 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1902 ((-1256 (-683 |#2|)) (-1256 |#1|))) (-15 -4136 ((-639 (-947 |#2|)) (-1256 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3931 (((-3 $ "failed")) 37 (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) 19)) (-1902 (((-1256 (-683 |#1|)) (-1256 $)) 78) (((-1256 (-683 |#1|))) 100)) (-3655 (((-1256 $)) 81)) (-1800 (($) 17 T CONST)) (-2874 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) 40 (|has| |#1| (-554)))) (-2117 (((-3 $ "failed")) 38 (|has| |#1| (-554)))) (-4356 (((-683 |#1|) (-1256 $)) 65) (((-683 |#1|)) 92)) (-2422 ((|#1| $) 74)) (-2966 (((-683 |#1|) $ (-1256 $)) 76) (((-683 |#1|) $) 90)) (-2545 (((-3 $ "failed") $) 45 (|has| |#1| (-554)))) (-3407 (((-1164 (-947 |#1|))) 88 (|has| |#1| (-362)))) (-1379 (($ $ (-916)) 28)) (-2355 ((|#1| $) 72)) (-3474 (((-1164 |#1|) $) 42 (|has| |#1| (-554)))) (-2819 ((|#1| (-1256 $)) 67) ((|#1|) 94)) (-2964 (((-1164 |#1|) $) 63)) (-2380 (((-112)) 57)) (-4018 (($ (-1256 |#1|) (-1256 $)) 69) (($ (-1256 |#1|)) 98)) (-3668 (((-3 $ "failed") $) 47 (|has| |#1| (-554)))) (-2173 (((-916)) 80)) (-1321 (((-112)) 54)) (-3650 (($ $ (-916)) 33)) (-3813 (((-112)) 50)) (-3375 (((-112)) 48)) (-4258 (((-112)) 52)) (-1681 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) 41 (|has| |#1| (-554)))) (-3700 (((-3 $ "failed")) 39 (|has| |#1| (-554)))) (-3025 (((-683 |#1|) (-1256 $)) 66) (((-683 |#1|)) 93)) (-4153 ((|#1| $) 75)) (-1671 (((-683 |#1|) $ (-1256 $)) 77) (((-683 |#1|) $) 91)) (-4238 (((-3 $ "failed") $) 46 (|has| |#1| (-554)))) (-2743 (((-1164 (-947 |#1|))) 89 (|has| |#1| (-362)))) (-2991 (($ $ (-916)) 29)) (-1680 ((|#1| $) 73)) (-2026 (((-1164 |#1|) $) 43 (|has| |#1| (-554)))) (-1305 ((|#1| (-1256 $)) 68) ((|#1|) 95)) (-2670 (((-1164 |#1|) $) 64)) (-2090 (((-112)) 58)) (-2913 (((-1150) $) 9)) (-2144 (((-112)) 49)) (-2580 (((-112)) 51)) (-2809 (((-112)) 53)) (-1709 (((-1112) $) 10)) (-4323 (((-112)) 56)) (-2343 ((|#1| $ (-562)) 101)) (-3593 (((-1256 |#1|) $ (-1256 $)) 71) (((-683 |#1|) (-1256 $) (-1256 $)) 70) (((-1256 |#1|) $) 103) (((-683 |#1|) (-1256 $)) 102)) (-4208 (((-1256 |#1|) $) 97) (($ (-1256 |#1|)) 96)) (-4136 (((-639 (-947 |#1|)) (-1256 $)) 79) (((-639 (-947 |#1|))) 99)) (-1911 (($ $ $) 25)) (-1396 (((-112)) 62)) (-4054 (((-857) $) 11)) (-3928 (((-1256 $)) 104)) (-3553 (((-639 (-1256 |#1|))) 44 (|has| |#1| (-554)))) (-2436 (($ $ $ $) 26)) (-2850 (((-112)) 60)) (-1360 (($ (-683 |#1|) $) 87)) (-3626 (($ $ $) 24)) (-1981 (((-112)) 61)) (-3199 (((-112)) 59)) (-4114 (((-112)) 55)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-416 |#1|) (-139) (-171)) (T -416)) +((-3928 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1256 *1)) (-4 *1 (-416 *3)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 *3)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-1902 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 (-683 *3))))) (-4136 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-639 (-947 *3))))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 *3)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-1305 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2819 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-3025 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3)))) (-4356 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3)))) (-2743 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1164 (-947 *3))))) (-3407 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1164 (-947 *3))))) (-1360 (*1 *1 *2 *1) (-12 (-5 *2 (-683 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171))))) +(-13 (-366 |t#1|) (-10 -8 (-15 -3928 ((-1256 $))) (-15 -3593 ((-1256 |t#1|) $)) (-15 -3593 ((-683 |t#1|) (-1256 $))) (-15 -2343 (|t#1| $ (-562))) (-15 -1902 ((-1256 (-683 |t#1|)))) (-15 -4136 ((-639 (-947 |t#1|)))) (-15 -4018 ($ (-1256 |t#1|))) (-15 -4208 ((-1256 |t#1|) $)) (-15 -4208 ($ (-1256 |t#1|))) (-15 -1305 (|t#1|)) (-15 -2819 (|t#1|)) (-15 -3025 ((-683 |t#1|))) (-15 -4356 ((-683 |t#1|))) (-15 -1671 ((-683 |t#1|) $)) (-15 -2966 ((-683 |t#1|) $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2743 ((-1164 (-947 |t#1|)))) (-15 -3407 ((-1164 (-947 |t#1|))))) |%noBranch|) (-15 -1360 ($ (-683 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-366 |#1|) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-715) . T) ((-739 |#1|) . T) ((-756) . T) ((-1050 |#1|) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 44)) (-2154 (($ $) 59)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 147)) (-2796 (($ $) NIL)) (-4370 (((-112) $) 38)) (-3931 ((|#1| $) 13)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| |#1| (-1211)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-1211)))) (-2303 (($ |#1| (-562)) 34)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 117)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 57)) (-3668 (((-3 $ "failed") $) 132)) (-1726 (((-3 (-406 (-562)) "failed") $) 65 (|has| |#1| (-544)))) (-3035 (((-112) $) 61 (|has| |#1| (-544)))) (-1291 (((-406 (-562)) $) 72 (|has| |#1| (-544)))) (-2547 (($ |#1| (-562)) 36)) (-2717 (((-112) $) 153 (|has| |#1| (-1211)))) (-1957 (((-112) $) 45)) (-2101 (((-766) $) 40)) (-2137 (((-3 "nil" "sqfr" "irred" "prime") $ (-562)) 138)) (-3126 ((|#1| $ (-562)) 137)) (-3683 (((-562) $ (-562)) 136)) (-2463 (($ |#1| (-562)) 33)) (-4152 (($ (-1 |#1| |#1|) $) 144)) (-3539 (($ |#1| (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562))))) 60)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-2913 (((-1150) $) NIL)) (-3340 (($ |#1| (-562)) 35)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) 148 (|has| |#1| (-451)))) (-2666 (($ |#1| (-562) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-1510 (((-639 (-2 (|:| -1635 |#1|) (|:| -1960 (-562)))) $) 56)) (-3414 (((-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))) $) 12)) (-1635 (((-417 $) $) NIL (|has| |#1| (-1211)))) (-1762 (((-3 $ "failed") $ $) 139)) (-1960 (((-562) $) 133)) (-3525 ((|#1| $) 58)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 81 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 87 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) $) NIL (|has| |#1| (-513 (-1168) $))) (($ $ (-639 (-1168)) (-639 $)) 88 (|has| |#1| (-513 (-1168) $))) (($ $ (-639 (-293 $))) 84 (|has| |#1| (-308 $))) (($ $ (-293 $)) NIL (|has| |#1| (-308 $))) (($ $ $ $) NIL (|has| |#1| (-308 $))) (($ $ (-639 $) (-639 $)) NIL (|has| |#1| (-308 $)))) (-2343 (($ $ |#1|) 73 (|has| |#1| (-285 |#1| |#1|))) (($ $ $) 74 (|has| |#1| (-285 $ $)))) (-4029 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) 143)) (-4208 (((-535) $) 30 (|has| |#1| (-610 (-535)))) (((-378) $) 94 (|has| |#1| (-1017))) (((-224) $) 97 (|has| |#1| (-1017)))) (-4054 (((-857) $) 115) (($ (-562)) 48) (($ $) NIL) (($ |#1|) 47) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562)))))) (-2579 (((-766)) 50)) (-2922 (((-112) $ $) NIL)) (-2286 (($) 42 T CONST)) (-2294 (($) 41 T CONST)) (-3114 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1731 (((-112) $ $) 98)) (-1848 (($ $) 129) (($ $ $) NIL)) (-1835 (($ $ $) 141)) (** (($ $ (-916)) NIL) (($ $ (-766)) 104)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 52) (($ $ $) 51) (($ |#1| $) 53) (($ $ |#1|) NIL))) +(((-417 |#1|) (-13 (-554) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -3525 (|#1| $)) (-15 -1960 ((-562) $)) (-15 -3539 ($ |#1| (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))))) (-15 -3414 ((-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))) $)) (-15 -2463 ($ |#1| (-562))) (-15 -1510 ((-639 (-2 (|:| -1635 |#1|) (|:| -1960 (-562)))) $)) (-15 -3340 ($ |#1| (-562))) (-15 -3683 ((-562) $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -2137 ((-3 "nil" "sqfr" "irred" "prime") $ (-562))) (-15 -2101 ((-766) $)) (-15 -2547 ($ |#1| (-562))) (-15 -2303 ($ |#1| (-562))) (-15 -2666 ($ |#1| (-562) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3931 (|#1| $)) (-15 -2154 ($ $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-451)) (-6 (-451)) |%noBranch|) (IF (|has| |#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |#1| (-1211)) (-6 (-1211)) |%noBranch|) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-513 (-1168) $)) (-6 (-513 (-1168) $)) |%noBranch|))) (-554)) (T -417)) +((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-554)) (-5 *1 (-417 *3)))) (-3525 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-3539 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-562))))) (-4 *2 (-554)) (-5 *1 (-417 *2)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-562))))) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-2463 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| -1635 *3) (|:| -1960 (-562))))) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-3340 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-3683 (*1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-3126 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-2137 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *4)) (-4 *4 (-554)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-2547 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-2303 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-2666 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-562)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-3931 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-544)) (-4 *3 (-554)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-417 *3)) (-4 *3 (-544)) (-4 *3 (-554)))) (-1726 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-417 *3)) (-4 *3 (-544)) (-4 *3 (-554))))) +(-13 (-554) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -3525 (|#1| $)) (-15 -1960 ((-562) $)) (-15 -3539 ($ |#1| (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))))) (-15 -3414 ((-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))) $)) (-15 -2463 ($ |#1| (-562))) (-15 -1510 ((-639 (-2 (|:| -1635 |#1|) (|:| -1960 (-562)))) $)) (-15 -3340 ($ |#1| (-562))) (-15 -3683 ((-562) $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -2137 ((-3 "nil" "sqfr" "irred" "prime") $ (-562))) (-15 -2101 ((-766) $)) (-15 -2547 ($ |#1| (-562))) (-15 -2303 ($ |#1| (-562))) (-15 -2666 ($ |#1| (-562) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3931 (|#1| $)) (-15 -2154 ($ $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-451)) (-6 (-451)) |%noBranch|) (IF (|has| |#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |#1| (-1211)) (-6 (-1211)) |%noBranch|) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-513 (-1168) $)) (-6 (-513 (-1168) $)) |%noBranch|))) +((-3528 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 21)) (-4369 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 16))) +(((-418 |#1|) (-10 -7 (-15 -3528 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4369 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-554)) (T -418)) +((-4369 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-554)) (-5 *1 (-418 *3)))) (-3528 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-554)) (-5 *2 (-417 *4)) (-5 *1 (-418 *4))))) +(-10 -7 (-15 -3528 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4369 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) +((-2108 ((|#2| |#2|) 165)) (-3889 (((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112)) 57))) +(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3889 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112))) (-15 -2108 (|#2| |#2|))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|)) (-1168) |#2|) (T -419)) +((-2108 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1192) (-429 *3))) (-14 *4 (-1168)) (-14 *5 *2))) (-3889 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-14 *6 (-1168)) (-14 *7 *3)))) +(-10 -7 (-15 -3889 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112))) (-15 -2108 (|#2| |#2|))) +((-4152 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1044) (-845)) (-429 |#1|) (-13 (-1044) (-845)) (-429 |#3|)) (T -420)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1044) (-845))) (-4 *6 (-13 (-1044) (-845))) (-4 *2 (-429 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5))))) +(-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|))) +((-2108 ((|#2| |#2|) 89)) (-2801 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150)) 48)) (-1333 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150)) 153))) +(((-421 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2801 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150))) (-15 -1333 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150))) (-15 -2108 (|#2| |#2|))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|) (-10 -8 (-15 -4054 ($ |#3|)))) (-843) (-13 (-1234 |#2| |#3|) (-362) (-1192) (-10 -8 (-15 -4029 ($ $)) (-15 -2667 ($ $)))) (-978 |#4|) (-1168)) (T -421)) +((-2108 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-4 *2 (-13 (-27) (-1192) (-429 *3) (-10 -8 (-15 -4054 ($ *4))))) (-4 *4 (-843)) (-4 *5 (-13 (-1234 *2 *4) (-362) (-1192) (-10 -8 (-15 -4029 ($ $)) (-15 -2667 ($ $))))) (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-978 *5)) (-14 *7 (-1168)))) (-1333 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-4 *3 (-13 (-27) (-1192) (-429 *6) (-10 -8 (-15 -4054 ($ *7))))) (-4 *7 (-843)) (-4 *8 (-13 (-1234 *3 *7) (-362) (-1192) (-10 -8 (-15 -4029 ($ $)) (-15 -2667 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1150)) (-4 *9 (-978 *8)) (-14 *10 (-1168)))) (-2801 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-4 *3 (-13 (-27) (-1192) (-429 *6) (-10 -8 (-15 -4054 ($ *7))))) (-4 *7 (-843)) (-4 *8 (-13 (-1234 *3 *7) (-362) (-1192) (-10 -8 (-15 -4029 ($ $)) (-15 -2667 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1150)) (-4 *9 (-978 *8)) (-14 *10 (-1168))))) +(-10 -7 (-15 -2801 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150))) (-15 -1333 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150))) (-15 -2108 (|#2| |#2|))) +((-2578 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1955 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4152 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1955 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2578 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1092) (-424 |#1|) (-1092) (-424 |#3|)) (T -422)) +((-2578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1092)) (-4 *5 (-1092)) (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6)))) (-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1092)) (-4 *2 (-1092)) (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5))))) +(-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1955 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2578 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3721 (($) 44)) (-2494 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2129 (($ $ $) 39)) (-2330 (((-112) $ $) 28)) (-1382 (((-766)) 47)) (-1608 (($ (-639 |#2|)) 20) (($) NIL)) (-1448 (($) 53)) (-3027 (((-112) $ $) 13)) (-1551 ((|#2| $) 61)) (-2993 ((|#2| $) 59)) (-1999 (((-916) $) 55)) (-4376 (($ $ $) 35)) (-2466 (($ (-916)) 50)) (-3703 (($ $ |#2|) NIL) (($ $ $) 38)) (-1723 (((-766) (-1 (-112) |#2|) $) NIL) (((-766) |#2| $) 26)) (-4066 (($ (-639 |#2|)) 24)) (-2449 (($ $) 46)) (-4054 (((-857) $) 33)) (-4234 (((-766) $) 21)) (-1703 (($ (-639 |#2|)) 19) (($) NIL)) (-1731 (((-112) $ $) 16))) +(((-423 |#1| |#2|) (-10 -8 (-15 -1382 ((-766))) (-15 -2466 (|#1| (-916))) (-15 -1999 ((-916) |#1|)) (-15 -1448 (|#1|)) (-15 -1551 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -3721 (|#1|)) (-15 -2449 (|#1| |#1|)) (-15 -4234 ((-766) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -3027 ((-112) |#1| |#1|)) (-15 -1703 (|#1|)) (-15 -1703 (|#1| (-639 |#2|))) (-15 -1608 (|#1|)) (-15 -1608 (|#1| (-639 |#2|))) (-15 -4376 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -2129 (|#1| |#1| |#1|)) (-15 -2330 ((-112) |#1| |#1|)) (-15 -2494 (|#1| |#1| |#1|)) (-15 -2494 (|#1| |#1| |#2|)) (-15 -2494 (|#1| |#2| |#1|)) (-15 -4066 (|#1| (-639 |#2|))) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|))) (-424 |#2|) (-1092)) (T -423)) +((-1382 (*1 *2) (-12 (-4 *4 (-1092)) (-5 *2 (-766)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4))))) +(-10 -8 (-15 -1382 ((-766))) (-15 -2466 (|#1| (-916))) (-15 -1999 ((-916) |#1|)) (-15 -1448 (|#1|)) (-15 -1551 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -3721 (|#1|)) (-15 -2449 (|#1| |#1|)) (-15 -4234 ((-766) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -3027 ((-112) |#1| |#1|)) (-15 -1703 (|#1|)) (-15 -1703 (|#1| (-639 |#2|))) (-15 -1608 (|#1|)) (-15 -1608 (|#1| (-639 |#2|))) (-15 -4376 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -2129 (|#1| |#1| |#1|)) (-15 -2330 ((-112) |#1| |#1|)) (-15 -2494 (|#1| |#1| |#1|)) (-15 -2494 (|#1| |#1| |#2|)) (-15 -2494 (|#1| |#2| |#1|)) (-15 -4066 (|#1| (-639 |#2|))) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|))) +((-4041 (((-112) $ $) 19)) (-3721 (($) 67 (|has| |#1| (-367)))) (-2494 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2129 (($ $ $) 78)) (-2330 (((-112) $ $) 79)) (-4336 (((-112) $ (-766)) 8)) (-1382 (((-766)) 61 (|has| |#1| (-367)))) (-1608 (($ (-639 |#1|)) 74) (($) 73)) (-3111 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ |#1| $) 47 (|has| $ (-6 -4402))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4402)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4402)))) (-1448 (($) 64 (|has| |#1| (-367)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3027 (((-112) $ $) 70)) (-3292 (((-112) $ (-766)) 9)) (-1551 ((|#1| $) 65 (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-2993 ((|#1| $) 66 (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-1999 (((-916) $) 63 (|has| |#1| (-367)))) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22)) (-4376 (($ $ $) 75)) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40)) (-2466 (($ (-916)) 62 (|has| |#1| (-367)))) (-1709 (((-1112) $) 21)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-3703 (($ $ |#1|) 77) (($ $ $) 76)) (-3564 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 50)) (-2449 (($ $) 68 (|has| |#1| (-367)))) (-4054 (((-857) $) 18)) (-4234 (((-766) $) 69)) (-1703 (($ (-639 |#1|)) 72) (($) 71)) (-1932 (($ (-639 |#1|)) 42)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20)) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-424 |#1|) (-139) (-1092)) (T -424)) +((-4234 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1092)) (-5 *2 (-766)))) (-2449 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-367)))) (-3721 (*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1092)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-845)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-845))))) +(-13 (-228 |t#1|) (-1090 |t#1|) (-10 -8 (-6 -4402) (-15 -4234 ((-766) $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-15 -2449 ($ $)) (-15 -3721 ($))) |%noBranch|) (IF (|has| |t#1| (-845)) (PROGN (-15 -2993 (|t#1| $)) (-15 -1551 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-228 |#1|) . T) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-367) |has| |#1| (-367)) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1090 |#1|) . T) ((-1092) . T) ((-1207) . T)) +((-4082 (((-583 |#2|) |#2| (-1168)) 35)) (-3206 (((-583 |#2|) |#2| (-1168)) 20)) (-1317 ((|#2| |#2| (-1168)) 25))) +(((-425 |#1| |#2|) (-10 -7 (-15 -3206 ((-583 |#2|) |#2| (-1168))) (-15 -4082 ((-583 |#2|) |#2| (-1168))) (-15 -1317 (|#2| |#2| (-1168)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-29 |#1|))) (T -425)) +((-1317 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1192) (-29 *4))))) (-4082 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1192) (-29 *5))))) (-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1192) (-29 *5)))))) +(-10 -7 (-15 -3206 ((-583 |#2|) |#2| (-1168))) (-15 -4082 ((-583 |#2|) |#2| (-1168))) (-15 -1317 (|#2| |#2| (-1168)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-3527 (($ |#2| |#1|) 35)) (-2688 (($ |#2| |#1|) 33)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-330 |#2|)) 25)) (-2579 (((-766)) NIL)) (-2286 (($) 10 T CONST)) (-2294 (($) 16 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 34)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-426 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4389)) (IF (|has| |#1| (-6 -4389)) (-6 -4389) |%noBranch|) |%noBranch|) (-15 -4054 ($ |#1|)) (-15 -4054 ($ (-330 |#2|))) (-15 -3527 ($ |#2| |#1|)) (-15 -2688 ($ |#2| |#1|)))) (-13 (-171) (-38 (-406 (-562)))) (-13 (-845) (-21))) (T -426)) +((-4054 (*1 *1 *2) (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-562))))) (-4 *3 (-13 (-845) (-21))))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-845) (-21))) (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))))) (-3527 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))) (-4 *2 (-13 (-845) (-21))))) (-2688 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))) (-4 *2 (-13 (-845) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4389)) (IF (|has| |#1| (-6 -4389)) (-6 -4389) |%noBranch|) |%noBranch|) (-15 -4054 ($ |#1|)) (-15 -4054 ($ (-330 |#2|))) (-15 -3527 ($ |#2| |#1|)) (-15 -2688 ($ |#2| |#1|)))) +((-2667 (((-3 |#2| (-639 |#2|)) |#2| (-1168)) 108))) +(((-427 |#1| |#2|) (-10 -7 (-15 -2667 ((-3 |#2| (-639 |#2|)) |#2| (-1168)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-954) (-29 |#1|))) (T -427)) +((-2667 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 *3 (-639 *3))) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1192) (-954) (-29 *5)))))) +(-10 -7 (-15 -2667 ((-3 |#2| (-639 |#2|)) |#2| (-1168)))) +((-1402 (((-639 (-1168)) $) 72)) (-1599 (((-406 (-1164 $)) $ (-608 $)) 273)) (-3165 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-639 (-608 $)) (-639 $)) 237)) (-4048 (((-3 (-608 $) "failed") $) NIL) (((-3 (-1168) "failed") $) 75) (((-3 (-562) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-406 (-947 |#2|)) "failed") $) 324) (((-3 (-947 |#2|) "failed") $) 235) (((-3 (-406 (-562)) "failed") $) NIL)) (-3961 (((-608 $) $) NIL) (((-1168) $) 30) (((-562) $) NIL) ((|#2| $) 231) (((-406 (-947 |#2|)) $) 305) (((-947 |#2|) $) 232) (((-406 (-562)) $) NIL)) (-2876 (((-114) (-114)) 47)) (-3425 (($ $) 87)) (-4367 (((-3 (-608 $) "failed") $) 228)) (-1583 (((-639 (-608 $)) $) 229)) (-2042 (((-3 (-639 $) "failed") $) 247)) (-3218 (((-3 (-2 (|:| |val| $) (|:| -1960 (-562))) "failed") $) 254)) (-1546 (((-3 (-639 $) "failed") $) 245)) (-3853 (((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $) 264)) (-1628 (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $) 251) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-1168)) 219)) (-1534 (((-112) $) 19)) (-1547 ((|#2| $) 21)) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) 236) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) 96) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1168)) 57) (($ $ (-639 (-1168))) 240) (($ $) 241) (($ $ (-114) $ (-1168)) 60) (($ $ (-639 (-114)) (-639 $) (-1168)) 67) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $))) 107) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $)))) 242) (($ $ (-1168) (-766) (-1 $ (-639 $))) 94) (($ $ (-1168) (-766) (-1 $ $)) 93)) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) 106)) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) 238)) (-3658 (($ $) 284)) (-4208 (((-887 (-562)) $) 257) (((-887 (-378)) $) 261) (($ (-417 $)) 320) (((-535) $) NIL)) (-4054 (((-857) $) 239) (($ (-608 $)) 84) (($ (-1168)) 26) (($ |#2|) NIL) (($ (-1117 |#2| (-608 $))) NIL) (($ (-406 |#2|)) 289) (($ (-947 (-406 |#2|))) 329) (($ (-406 (-947 (-406 |#2|)))) 301) (($ (-406 (-947 |#2|))) 295) (($ $) NIL) (($ (-947 |#2|)) 185) (($ (-406 (-562))) 334) (($ (-562)) NIL)) (-2579 (((-766)) 79)) (-2803 (((-112) (-114)) 41)) (-3105 (($ (-1168) $) 33) (($ (-1168) $ $) 34) (($ (-1168) $ $ $) 35) (($ (-1168) $ $ $ $) 36) (($ (-1168) (-639 $)) 39)) (* (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL))) +(((-428 |#1| |#2|) (-10 -8 (-15 * (|#1| (-916) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4054 (|#1| (-562))) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4054 (|#1| (-947 |#2|))) (-15 -4048 ((-3 (-947 |#2|) "failed") |#1|)) (-15 -3961 ((-947 |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4054 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -4054 (|#1| (-406 (-947 |#2|)))) (-15 -4048 ((-3 (-406 (-947 |#2|)) "failed") |#1|)) (-15 -3961 ((-406 (-947 |#2|)) |#1|)) (-15 -1599 ((-406 (-1164 |#1|)) |#1| (-608 |#1|))) (-15 -4054 (|#1| (-406 (-947 (-406 |#2|))))) (-15 -4054 (|#1| (-947 (-406 |#2|)))) (-15 -4054 (|#1| (-406 |#2|))) (-15 -3658 (|#1| |#1|)) (-15 -4208 (|#1| (-417 |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-766) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-766) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-766)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-766)) (-639 (-1 |#1| |#1|)))) (-15 -3218 ((-3 (-2 (|:| |val| |#1|) (|:| -1960 (-562))) "failed") |#1|)) (-15 -1628 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1960 (-562))) "failed") |#1| (-1168))) (-15 -1628 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1960 (-562))) "failed") |#1| (-114))) (-15 -3425 (|#1| |#1|)) (-15 -4054 (|#1| (-1117 |#2| (-608 |#1|)))) (-15 -3853 ((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 |#1|))) "failed") |#1|)) (-15 -1546 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1628 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1960 (-562))) "failed") |#1|)) (-15 -2042 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 |#1|) (-1168))) (-15 -1433 (|#1| |#1| (-114) |#1| (-1168))) (-15 -1433 (|#1| |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1168)))) (-15 -1433 (|#1| |#1| (-1168))) (-15 -3105 (|#1| (-1168) (-639 |#1|))) (-15 -3105 (|#1| (-1168) |#1| |#1| |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1| |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1|)) (-15 -1402 ((-639 (-1168)) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4054 (|#1| (-1168))) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3961 ((-1168) |#1|)) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| |#1|)))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| |#1|)))) (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -1583 ((-639 (-608 |#1|)) |#1|)) (-15 -4367 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3165 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -3165 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3165 (|#1| |#1| (-293 |#1|))) (-15 -2343 (|#1| (-114) (-639 |#1|))) (-15 -2343 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4054 (|#1| (-608 |#1|))) (-15 -4048 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3961 ((-608 |#1|) |#1|)) (-15 -4054 ((-857) |#1|))) (-429 |#2|) (-845)) (T -428)) +((-2876 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-845)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5)))) (-2579 (*1 *2) (-12 (-4 *4 (-845)) (-5 *2 (-766)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) +(-10 -8 (-15 * (|#1| (-916) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4054 (|#1| (-562))) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4054 (|#1| (-947 |#2|))) (-15 -4048 ((-3 (-947 |#2|) "failed") |#1|)) (-15 -3961 ((-947 |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4054 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -4054 (|#1| (-406 (-947 |#2|)))) (-15 -4048 ((-3 (-406 (-947 |#2|)) "failed") |#1|)) (-15 -3961 ((-406 (-947 |#2|)) |#1|)) (-15 -1599 ((-406 (-1164 |#1|)) |#1| (-608 |#1|))) (-15 -4054 (|#1| (-406 (-947 (-406 |#2|))))) (-15 -4054 (|#1| (-947 (-406 |#2|)))) (-15 -4054 (|#1| (-406 |#2|))) (-15 -3658 (|#1| |#1|)) (-15 -4208 (|#1| (-417 |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-766) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-766) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-766)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-766)) (-639 (-1 |#1| |#1|)))) (-15 -3218 ((-3 (-2 (|:| |val| |#1|) (|:| -1960 (-562))) "failed") |#1|)) (-15 -1628 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1960 (-562))) "failed") |#1| (-1168))) (-15 -1628 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1960 (-562))) "failed") |#1| (-114))) (-15 -3425 (|#1| |#1|)) (-15 -4054 (|#1| (-1117 |#2| (-608 |#1|)))) (-15 -3853 ((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 |#1|))) "failed") |#1|)) (-15 -1546 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1628 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1960 (-562))) "failed") |#1|)) (-15 -2042 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 |#1|) (-1168))) (-15 -1433 (|#1| |#1| (-114) |#1| (-1168))) (-15 -1433 (|#1| |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1168)))) (-15 -1433 (|#1| |#1| (-1168))) (-15 -3105 (|#1| (-1168) (-639 |#1|))) (-15 -3105 (|#1| (-1168) |#1| |#1| |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1| |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1|)) (-15 -1402 ((-639 (-1168)) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4054 (|#1| (-1168))) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3961 ((-1168) |#1|)) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| |#1|)))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| |#1|)))) (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -1583 ((-639 (-608 |#1|)) |#1|)) (-15 -4367 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3165 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -3165 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3165 (|#1| |#1| (-293 |#1|))) (-15 -2343 (|#1| (-114) (-639 |#1|))) (-15 -2343 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4054 (|#1| (-608 |#1|))) (-15 -4048 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3961 ((-608 |#1|) |#1|)) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 114 (|has| |#1| (-25)))) (-1402 (((-639 (-1168)) $) 201)) (-1599 (((-406 (-1164 $)) $ (-608 $)) 169 (|has| |#1| (-554)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 141 (|has| |#1| (-554)))) (-2796 (($ $) 142 (|has| |#1| (-554)))) (-4370 (((-112) $) 144 (|has| |#1| (-554)))) (-1495 (((-639 (-608 $)) $) 44)) (-3214 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-3165 (($ $ (-293 $)) 56) (($ $ (-639 (-293 $))) 55) (($ $ (-639 (-608 $)) (-639 $)) 54)) (-2798 (($ $) 161 (|has| |#1| (-554)))) (-2921 (((-417 $) $) 162 (|has| |#1| (-554)))) (-2569 (((-112) $ $) 152 (|has| |#1| (-554)))) (-1800 (($) 102 (-4037 (|has| |#1| (-1104)) (|has| |#1| (-25))) CONST)) (-4048 (((-3 (-608 $) "failed") $) 69) (((-3 (-1168) "failed") $) 214) (((-3 (-562) "failed") $) 208 (|has| |#1| (-1033 (-562)))) (((-3 |#1| "failed") $) 205) (((-3 (-406 (-947 |#1|)) "failed") $) 167 (|has| |#1| (-554))) (((-3 (-947 |#1|) "failed") $) 121 (|has| |#1| (-1044))) (((-3 (-406 (-562)) "failed") $) 96 (-4037 (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562))))))) (-3961 (((-608 $) $) 70) (((-1168) $) 215) (((-562) $) 207 (|has| |#1| (-1033 (-562)))) ((|#1| $) 206) (((-406 (-947 |#1|)) $) 168 (|has| |#1| (-554))) (((-947 |#1|) $) 122 (|has| |#1| (-1044))) (((-406 (-562)) $) 97 (-4037 (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562))))))) (-1811 (($ $ $) 156 (|has| |#1| (-554)))) (-2406 (((-683 (-562)) (-683 $)) 135 (-2246 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 134 (-2246 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 133 (|has| |#1| (-1044))) (((-683 |#1|) (-683 $)) 132 (|has| |#1| (-1044)))) (-3668 (((-3 $ "failed") $) 104 (|has| |#1| (-1104)))) (-1787 (($ $ $) 155 (|has| |#1| (-554)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 150 (|has| |#1| (-554)))) (-2717 (((-112) $) 163 (|has| |#1| (-554)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 210 (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 209 (|has| |#1| (-881 (-378))))) (-1383 (($ $) 51) (($ (-639 $)) 50)) (-3936 (((-639 (-114)) $) 43)) (-2876 (((-114) (-114)) 42)) (-1957 (((-112) $) 103 (|has| |#1| (-1104)))) (-3130 (((-112) $) 22 (|has| $ (-1033 (-562))))) (-3425 (($ $) 184 (|has| |#1| (-1044)))) (-4065 (((-1117 |#1| (-608 $)) $) 185 (|has| |#1| (-1044)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 159 (|has| |#1| (-554)))) (-1677 (((-1164 $) (-608 $)) 25 (|has| $ (-1044)))) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-4152 (($ (-1 $ $) (-608 $)) 36)) (-4367 (((-3 (-608 $) "failed") $) 46)) (-1564 (($ (-639 $)) 148 (|has| |#1| (-554))) (($ $ $) 147 (|has| |#1| (-554)))) (-2913 (((-1150) $) 9)) (-1583 (((-639 (-608 $)) $) 45)) (-4141 (($ (-114) $) 38) (($ (-114) (-639 $)) 37)) (-2042 (((-3 (-639 $) "failed") $) 190 (|has| |#1| (-1104)))) (-3218 (((-3 (-2 (|:| |val| $) (|:| -1960 (-562))) "failed") $) 181 (|has| |#1| (-1044)))) (-1546 (((-3 (-639 $) "failed") $) 188 (|has| |#1| (-25)))) (-3853 (((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $) 187 (|has| |#1| (-25)))) (-1628 (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $) 189 (|has| |#1| (-1104))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-114)) 183 (|has| |#1| (-1044))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-1168)) 182 (|has| |#1| (-1044)))) (-1776 (((-112) $ (-114)) 40) (((-112) $ (-1168)) 39)) (-1525 (($ $) 106 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554))))) (-3060 (((-766) $) 47)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 203)) (-1547 ((|#1| $) 202)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 149 (|has| |#1| (-554)))) (-1606 (($ (-639 $)) 146 (|has| |#1| (-554))) (($ $ $) 145 (|has| |#1| (-554)))) (-4296 (((-112) $ $) 35) (((-112) $ (-1168)) 34)) (-1635 (((-417 $) $) 160 (|has| |#1| (-554)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-554))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 157 (|has| |#1| (-554)))) (-1762 (((-3 $ "failed") $ $) 140 (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 151 (|has| |#1| (-554)))) (-3803 (((-112) $) 23 (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) 67) (($ $ (-639 (-608 $)) (-639 $)) 66) (($ $ (-639 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-639 $) (-639 $)) 62) (($ $ (-639 (-1168)) (-639 (-1 $ $))) 33) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) 32) (($ $ (-1168) (-1 $ (-639 $))) 31) (($ $ (-1168) (-1 $ $)) 30) (($ $ (-639 (-114)) (-639 (-1 $ $))) 29) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) 28) (($ $ (-114) (-1 $ (-639 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1168)) 195 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168))) 194 (|has| |#1| (-610 (-535)))) (($ $) 193 (|has| |#1| (-610 (-535)))) (($ $ (-114) $ (-1168)) 192 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-114)) (-639 $) (-1168)) 191 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $))) 180 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $)))) 179 (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ (-639 $))) 178 (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ $)) 177 (|has| |#1| (-1044)))) (-1577 (((-766) $) 153 (|has| |#1| (-554)))) (-2343 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-639 $)) 57)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 154 (|has| |#1| (-554)))) (-3790 (($ $) 49) (($ $ $) 48)) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 126 (|has| |#1| (-1044))) (($ $ (-1168) (-766)) 125 (|has| |#1| (-1044))) (($ $ (-639 (-1168))) 124 (|has| |#1| (-1044))) (($ $ (-1168)) 123 (|has| |#1| (-1044)))) (-3658 (($ $) 174 (|has| |#1| (-554)))) (-4076 (((-1117 |#1| (-608 $)) $) 175 (|has| |#1| (-554)))) (-2096 (($ $) 24 (|has| $ (-1044)))) (-4208 (((-887 (-562)) $) 212 (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) 211 (|has| |#1| (-610 (-887 (-378))))) (($ (-417 $)) 176 (|has| |#1| (-554))) (((-535) $) 98 (|has| |#1| (-610 (-535))))) (-3665 (($ $ $) 109 (|has| |#1| (-472)))) (-1911 (($ $ $) 110 (|has| |#1| (-472)))) (-4054 (((-857) $) 11) (($ (-608 $)) 68) (($ (-1168)) 213) (($ |#1|) 204) (($ (-1117 |#1| (-608 $))) 186 (|has| |#1| (-1044))) (($ (-406 |#1|)) 172 (|has| |#1| (-554))) (($ (-947 (-406 |#1|))) 171 (|has| |#1| (-554))) (($ (-406 (-947 (-406 |#1|)))) 170 (|has| |#1| (-554))) (($ (-406 (-947 |#1|))) 166 (|has| |#1| (-554))) (($ $) 139 (|has| |#1| (-554))) (($ (-947 |#1|)) 120 (|has| |#1| (-1044))) (($ (-406 (-562))) 95 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562)))))) (($ (-562)) 94 (-4037 (|has| |#1| (-1044)) (|has| |#1| (-1033 (-562)))))) (-2805 (((-3 $ "failed") $) 136 (|has| |#1| (-144)))) (-2579 (((-766)) 131 (|has| |#1| (-1044)))) (-2746 (($ $) 53) (($ (-639 $)) 52)) (-2803 (((-112) (-114)) 41)) (-2922 (((-112) $ $) 143 (|has| |#1| (-554)))) (-3105 (($ (-1168) $) 200) (($ (-1168) $ $) 199) (($ (-1168) $ $ $) 198) (($ (-1168) $ $ $ $) 197) (($ (-1168) (-639 $)) 196)) (-2286 (($) 113 (|has| |#1| (-25)) CONST)) (-2294 (($) 101 (|has| |#1| (-1104)) CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) 130 (|has| |#1| (-1044))) (($ $ (-1168) (-766)) 129 (|has| |#1| (-1044))) (($ $ (-639 (-1168))) 128 (|has| |#1| (-1044))) (($ $ (-1168)) 127 (|has| |#1| (-1044)))) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (-1859 (($ (-1117 |#1| (-608 $)) (-1117 |#1| (-608 $))) 173 (|has| |#1| (-554))) (($ $ $) 107 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554))))) (-1848 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1835 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-562)) 108 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554)))) (($ $ (-766)) 105 (|has| |#1| (-1104))) (($ $ (-916)) 100 (|has| |#1| (-1104)))) (* (($ (-406 (-562)) $) 165 (|has| |#1| (-554))) (($ $ (-406 (-562))) 164 (|has| |#1| (-554))) (($ |#1| $) 138 (|has| |#1| (-171))) (($ $ |#1|) 137 (|has| |#1| (-171))) (($ (-562) $) 119 (|has| |#1| (-21))) (($ (-766) $) 115 (|has| |#1| (-25))) (($ (-916) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1104))))) +(((-429 |#1|) (-139) (-845)) (T -429)) +((-1534 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-845)) (-5 *2 (-112)))) (-1547 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-845)) (-5 *2 (-639 (-1168))))) (-3105 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) (-3105 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) (-3105 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) (-3105 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) (-3105 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-639 *1)) (-4 *1 (-429 *4)) (-4 *4 (-845)))) (-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)) (-4 *3 (-610 (-535))))) (-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1168))) (-4 *1 (-429 *3)) (-4 *3 (-845)) (-4 *3 (-610 (-535))))) (-1433 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-610 (-535))))) (-1433 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1168)) (-4 *1 (-429 *4)) (-4 *4 (-845)) (-4 *4 (-610 (-535))))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 *1)) (-5 *4 (-1168)) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-610 (-535))))) (-2042 (*1 *2 *1) (|partial| -12 (-4 *3 (-1104)) (-4 *3 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-429 *3)))) (-1628 (*1 *2 *1) (|partial| -12 (-4 *3 (-1104)) (-4 *3 (-845)) (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1960 (-562)))) (-4 *1 (-429 *3)))) (-1546 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-429 *3)))) (-3853 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-845)) (-5 *2 (-2 (|:| -4221 (-562)) (|:| |var| (-608 *1)))) (-4 *1 (-429 *3)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1117 *3 (-608 *1))) (-4 *3 (-1044)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-4065 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *3 (-845)) (-5 *2 (-1117 *3 (-608 *1))) (-4 *1 (-429 *3)))) (-3425 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-1044)))) (-1628 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1044)) (-4 *4 (-845)) (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1960 (-562)))) (-4 *1 (-429 *4)))) (-1628 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1168)) (-4 *4 (-1044)) (-4 *4 (-845)) (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1960 (-562)))) (-4 *1 (-429 *4)))) (-3218 (*1 *2 *1) (|partial| -12 (-4 *3 (-1044)) (-4 *3 (-845)) (-5 *2 (-2 (|:| |val| *1) (|:| -1960 (-562)))) (-4 *1 (-429 *3)))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-766))) (-5 *4 (-639 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-766))) (-5 *4 (-639 (-1 *1 (-639 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *4 (-1 *1 (-639 *1))) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *4 (-1 *1 *1)) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-554)) (-4 *3 (-845)))) (-4076 (*1 *2 *1) (-12 (-4 *3 (-554)) (-4 *3 (-845)) (-5 *2 (-1117 *3 (-608 *1))) (-4 *1 (-429 *3)))) (-3658 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-554)))) (-1859 (*1 *1 *2 *2) (-12 (-5 *2 (-1117 *3 (-608 *1))) (-4 *3 (-554)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-554)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-947 (-406 *3))) (-4 *3 (-554)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-406 *3)))) (-4 *3 (-554)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-1599 (*1 *2 *1 *3) (-12 (-5 *3 (-608 *1)) (-4 *1 (-429 *4)) (-4 *4 (-845)) (-4 *4 (-554)) (-5 *2 (-406 (-1164 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-429 *3)) (-4 *3 (-845)) (-4 *3 (-1104))))) +(-13 (-301) (-1033 (-1168)) (-879 |t#1|) (-399 |t#1|) (-410 |t#1|) (-10 -8 (-15 -1534 ((-112) $)) (-15 -1547 (|t#1| $)) (-15 -1402 ((-639 (-1168)) $)) (-15 -3105 ($ (-1168) $)) (-15 -3105 ($ (-1168) $ $)) (-15 -3105 ($ (-1168) $ $ $)) (-15 -3105 ($ (-1168) $ $ $ $)) (-15 -3105 ($ (-1168) (-639 $))) (IF (|has| |t#1| (-610 (-535))) (PROGN (-6 (-610 (-535))) (-15 -1433 ($ $ (-1168))) (-15 -1433 ($ $ (-639 (-1168)))) (-15 -1433 ($ $)) (-15 -1433 ($ $ (-114) $ (-1168))) (-15 -1433 ($ $ (-639 (-114)) (-639 $) (-1168)))) |%noBranch|) (IF (|has| |t#1| (-1104)) (PROGN (-6 (-721)) (-15 ** ($ $ (-766))) (-15 -2042 ((-3 (-639 $) "failed") $)) (-15 -1628 ((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-472)) (-6 (-472)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1546 ((-3 (-639 $) "failed") $)) (-15 -3853 ((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1044)) (PROGN (-6 (-1044)) (-6 (-1033 (-947 |t#1|))) (-6 (-895 (-1168))) (-6 (-376 |t#1|)) (-15 -4054 ($ (-1117 |t#1| (-608 $)))) (-15 -4065 ((-1117 |t#1| (-608 $)) $)) (-15 -3425 ($ $)) (-15 -1628 ((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-114))) (-15 -1628 ((-3 (-2 (|:| |var| (-608 $)) (|:| -1960 (-562))) "failed") $ (-1168))) (-15 -3218 ((-3 (-2 (|:| |val| $) (|:| -1960 (-562))) "failed") $)) (-15 -1433 ($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $)))) (-15 -1433 ($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $))))) (-15 -1433 ($ $ (-1168) (-766) (-1 $ (-639 $)))) (-15 -1433 ($ $ (-1168) (-766) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-362)) (-6 (-1033 (-406 (-947 |t#1|)))) (-15 -4208 ($ (-417 $))) (-15 -4076 ((-1117 |t#1| (-608 $)) $)) (-15 -3658 ($ $)) (-15 -1859 ($ (-1117 |t#1| (-608 $)) (-1117 |t#1| (-608 $)))) (-15 -4054 ($ (-406 |t#1|))) (-15 -4054 ($ (-947 (-406 |t#1|)))) (-15 -4054 ($ (-406 (-947 (-406 |t#1|))))) (-15 -1599 ((-406 (-1164 $)) $ (-608 $))) (IF (|has| |t#1| (-1033 (-562))) (-6 (-1033 (-406 (-562)))) |%noBranch|)) |%noBranch|))) +(((-21) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-23) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-406 (-562))) |has| |#1| (-554)) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-554)) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) |has| |#1| (-554)) ((-130) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-554))) ((-612 #1=(-406 (-947 |#1|))) |has| |#1| (-554)) ((-612 (-562)) -4037 (|has| |#1| (-1044)) (|has| |#1| (-1033 (-562))) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-612 #2=(-608 $)) . T) ((-612 #3=(-947 |#1|)) |has| |#1| (-1044)) ((-612 #4=(-1168)) . T) ((-612 |#1|) . T) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) |has| |#1| (-554)) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562)))) ((-242) |has| |#1| (-554)) ((-289) |has| |#1| (-554)) ((-306) |has| |#1| (-554)) ((-308 $) . T) ((-301) . T) ((-362) |has| |#1| (-554)) ((-376 |#1|) |has| |#1| (-1044)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-451) |has| |#1| (-554)) ((-472) |has| |#1| (-472)) ((-513 (-608 $) $) . T) ((-513 $ $) . T) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-554)) ((-642 |#1|) |has| |#1| (-171)) ((-642 $) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-635 (-562)) -12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) ((-635 |#1|) |has| |#1| (-1044)) ((-712 #0#) |has| |#1| (-554)) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) -4037 (|has| |#1| (-1104)) (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-472)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-845) . T) ((-895 (-1168)) |has| |#1| (-1044)) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-879 |#1|) . T) ((-915) |has| |#1| (-554)) ((-1033 (-406 (-562))) -4037 (|has| |#1| (-1033 (-406 (-562)))) (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) ((-1033 #1#) |has| |#1| (-554)) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 #2#) . T) ((-1033 #3#) |has| |#1| (-1044)) ((-1033 #4#) . T) ((-1033 |#1|) . T) ((-1050 #0#) |has| |#1| (-554)) ((-1050 |#1|) |has| |#1| (-171)) ((-1050 $) |has| |#1| (-554)) ((-1044) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1051) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1104) -4037 (|has| |#1| (-1104)) (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-472)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1092) . T) ((-1207) . T) ((-1211) |has| |#1| (-554))) +((-4230 ((|#2| |#2| |#2|) 33)) (-2876 (((-114) (-114)) 44)) (-1828 ((|#2| |#2|) 66)) (-3184 ((|#2| |#2|) 69)) (-2791 ((|#2| |#2|) 32)) (-3690 ((|#2| |#2| |#2|) 35)) (-1868 ((|#2| |#2| |#2|) 37)) (-4266 ((|#2| |#2| |#2|) 34)) (-3350 ((|#2| |#2| |#2|) 36)) (-2803 (((-112) (-114)) 42)) (-2190 ((|#2| |#2|) 39)) (-3402 ((|#2| |#2|) 38)) (-3526 ((|#2| |#2|) 27)) (-3819 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2088 ((|#2| |#2| |#2|) 31))) +(((-430 |#1| |#2|) (-10 -7 (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -3526 (|#2| |#2|)) (-15 -3819 (|#2| |#2|)) (-15 -3819 (|#2| |#2| |#2|)) (-15 -2088 (|#2| |#2| |#2|)) (-15 -2791 (|#2| |#2|)) (-15 -4230 (|#2| |#2| |#2|)) (-15 -4266 (|#2| |#2| |#2|)) (-15 -3690 (|#2| |#2| |#2|)) (-15 -3350 (|#2| |#2| |#2|)) (-15 -1868 (|#2| |#2| |#2|)) (-15 -3402 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -3184 (|#2| |#2|)) (-15 -1828 (|#2| |#2|))) (-13 (-845) (-554)) (-429 |#1|)) (T -430)) +((-1828 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3184 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2190 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3402 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1868 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3350 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3690 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-4266 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-4230 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2791 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2088 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3819 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3819 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3526 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *4)) (-4 *4 (-429 *3)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4))))) +(-10 -7 (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -3526 (|#2| |#2|)) (-15 -3819 (|#2| |#2|)) (-15 -3819 (|#2| |#2| |#2|)) (-15 -2088 (|#2| |#2| |#2|)) (-15 -2791 (|#2| |#2|)) (-15 -4230 (|#2| |#2| |#2|)) (-15 -4266 (|#2| |#2| |#2|)) (-15 -3690 (|#2| |#2| |#2|)) (-15 -3350 (|#2| |#2| |#2|)) (-15 -1868 (|#2| |#2| |#2|)) (-15 -3402 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -3184 (|#2| |#2|)) (-15 -1828 (|#2| |#2|))) +((-3529 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1164 |#2|)) (|:| |pol2| (-1164 |#2|)) (|:| |prim| (-1164 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-639 (-1164 |#2|))) (|:| |prim| (-1164 |#2|))) (-639 |#2|)) 61))) +(((-431 |#1| |#2|) (-10 -7 (-15 -3529 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-639 (-1164 |#2|))) (|:| |prim| (-1164 |#2|))) (-639 |#2|))) (IF (|has| |#2| (-27)) (-15 -3529 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1164 |#2|)) (|:| |pol2| (-1164 |#2|)) (|:| |prim| (-1164 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-554) (-845) (-146)) (-429 |#1|)) (T -431)) +((-3529 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-554) (-845) (-146))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1164 *3)) (|:| |pol2| (-1164 *3)) (|:| |prim| (-1164 *3)))) (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-554) (-845) (-146))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-639 (-1164 *5))) (|:| |prim| (-1164 *5)))) (-5 *1 (-431 *4 *5))))) +(-10 -7 (-15 -3529 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-639 (-1164 |#2|))) (|:| |prim| (-1164 |#2|))) (-639 |#2|))) (IF (|has| |#2| (-27)) (-15 -3529 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1164 |#2|)) (|:| |pol2| (-1164 |#2|)) (|:| |prim| (-1164 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3234 (((-1261)) 19)) (-1622 (((-1164 (-406 (-562))) |#2| (-608 |#2|)) 41) (((-406 (-562)) |#2|) 25))) +(((-432 |#1| |#2|) (-10 -7 (-15 -1622 ((-406 (-562)) |#2|)) (-15 -1622 ((-1164 (-406 (-562))) |#2| (-608 |#2|))) (-15 -3234 ((-1261)))) (-13 (-845) (-554) (-1033 (-562))) (-429 |#1|)) (T -432)) +((-3234 (*1 *2) (-12 (-4 *3 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-1261)) (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))) (-1622 (*1 *2 *3 *4) (-12 (-5 *4 (-608 *3)) (-4 *3 (-429 *5)) (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-432 *5 *3)))) (-1622 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-406 (-562))) (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4))))) +(-10 -7 (-15 -1622 ((-406 (-562)) |#2|)) (-15 -1622 ((-1164 (-406 (-562))) |#2| (-608 |#2|))) (-15 -3234 ((-1261)))) +((-3263 (((-112) $) 28)) (-2433 (((-112) $) 30)) (-3377 (((-112) $) 31)) (-3827 (((-112) $) 34)) (-2219 (((-112) $) 29)) (-2450 (((-112) $) 33)) (-4054 (((-857) $) 18) (($ (-1150)) 27) (($ (-1168)) 23) (((-1168) $) 22) (((-1096) $) 21)) (-2238 (((-112) $) 32)) (-1731 (((-112) $ $) 15))) +(((-433) (-13 (-609 (-857)) (-10 -8 (-15 -4054 ($ (-1150))) (-15 -4054 ($ (-1168))) (-15 -4054 ((-1168) $)) (-15 -4054 ((-1096) $)) (-15 -3263 ((-112) $)) (-15 -2219 ((-112) $)) (-15 -3377 ((-112) $)) (-15 -2450 ((-112) $)) (-15 -3827 ((-112) $)) (-15 -2238 ((-112) $)) (-15 -2433 ((-112) $)) (-15 -1731 ((-112) $ $))))) (T -433)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-433)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-433)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-433)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-433)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1731 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) +(-13 (-609 (-857)) (-10 -8 (-15 -4054 ($ (-1150))) (-15 -4054 ($ (-1168))) (-15 -4054 ((-1168) $)) (-15 -4054 ((-1096) $)) (-15 -3263 ((-112) $)) (-15 -2219 ((-112) $)) (-15 -3377 ((-112) $)) (-15 -2450 ((-112) $)) (-15 -3827 ((-112) $)) (-15 -2238 ((-112) $)) (-15 -2433 ((-112) $)) (-15 -1731 ((-112) $ $)))) +((-1771 (((-3 (-417 (-1164 (-406 (-562)))) "failed") |#3|) 70)) (-3685 (((-417 |#3|) |#3|) 34)) (-2802 (((-3 (-417 (-1164 (-48))) "failed") |#3|) 46 (|has| |#2| (-1033 (-48))))) (-3837 (((-3 (|:| |overq| (-1164 (-406 (-562)))) (|:| |overan| (-1164 (-48))) (|:| -4253 (-112))) |#3|) 37))) +(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -3685 ((-417 |#3|) |#3|)) (-15 -1771 ((-3 (-417 (-1164 (-406 (-562)))) "failed") |#3|)) (-15 -3837 ((-3 (|:| |overq| (-1164 (-406 (-562)))) (|:| |overan| (-1164 (-48))) (|:| -4253 (-112))) |#3|)) (IF (|has| |#2| (-1033 (-48))) (-15 -2802 ((-3 (-417 (-1164 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-554) (-845) (-1033 (-562))) (-429 |#1|) (-1232 |#2|)) (T -434)) +((-2802 (*1 *2 *3) (|partial| -12 (-4 *5 (-1033 (-48))) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1164 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-3837 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) (-5 *2 (-3 (|:| |overq| (-1164 (-406 (-562)))) (|:| |overan| (-1164 (-48))) (|:| -4253 (-112)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-1771 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1164 (-406 (-562))))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-3685 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5))))) +(-10 -7 (-15 -3685 ((-417 |#3|) |#3|)) (-15 -1771 ((-3 (-417 (-1164 (-406 (-562)))) "failed") |#3|)) (-15 -3837 ((-3 (|:| |overq| (-1164 (-406 (-562)))) (|:| |overan| (-1164 (-48))) (|:| -4253 (-112))) |#3|)) (IF (|has| |#2| (-1033 (-48))) (-15 -2802 ((-3 (-417 (-1164 (-48))) "failed") |#3|)) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-3067 (((-1150) $ (-1150)) NIL)) (-2413 (($ $ (-1150)) NIL)) (-1805 (((-1150) $) NIL)) (-2827 (((-387) (-387) (-387)) 17) (((-387) (-387)) 15)) (-3316 (($ (-387)) NIL) (($ (-387) (-1150)) NIL)) (-3254 (((-387) $) NIL)) (-2913 (((-1150) $) NIL)) (-3523 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2996 (((-1261) (-1150)) 9)) (-1298 (((-1261) (-1150)) 10)) (-2612 (((-1261)) 11)) (-4054 (((-857) $) NIL)) (-3948 (($ $) 34)) (-1731 (((-112) $ $) NIL))) +(((-435) (-13 (-363 (-387) (-1150)) (-10 -7 (-15 -2827 ((-387) (-387) (-387))) (-15 -2827 ((-387) (-387))) (-15 -2996 ((-1261) (-1150))) (-15 -1298 ((-1261) (-1150))) (-15 -2612 ((-1261)))))) (T -435)) +((-2827 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-2827 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-435)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-435)))) (-2612 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-435))))) +(-13 (-363 (-387) (-1150)) (-10 -7 (-15 -2827 ((-387) (-387) (-387))) (-15 -2827 ((-387) (-387))) (-15 -2996 ((-1261) (-1150))) (-15 -1298 ((-1261) (-1150))) (-15 -2612 ((-1261))))) +((-4041 (((-112) $ $) NIL)) (-3909 (((-3 (|:| |fst| (-433)) (|:| -2650 "void")) $) 11)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1523 (($) 32)) (-1647 (($) 38)) (-1824 (($) 34)) (-3117 (($) 36)) (-1791 (($) 33)) (-1556 (($) 35)) (-1441 (($) 37)) (-2240 (((-112) $) 8)) (-1598 (((-639 (-947 (-562))) $) 19)) (-4066 (($ (-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-639 (-1168)) (-112)) 27) (($ (-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-639 (-947 (-562))) (-112)) 28)) (-4054 (((-857) $) 23) (($ (-433)) 29)) (-1731 (((-112) $ $) NIL))) +(((-436) (-13 (-1092) (-10 -8 (-15 -4054 ($ (-433))) (-15 -3909 ((-3 (|:| |fst| (-433)) (|:| -2650 "void")) $)) (-15 -1598 ((-639 (-947 (-562))) $)) (-15 -2240 ((-112) $)) (-15 -4066 ($ (-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-639 (-1168)) (-112))) (-15 -4066 ($ (-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-639 (-947 (-562))) (-112))) (-15 -1523 ($)) (-15 -1791 ($)) (-15 -1824 ($)) (-15 -1647 ($)) (-15 -1556 ($)) (-15 -3117 ($)) (-15 -1441 ($))))) (T -436)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *1 (-436)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-639 (-947 (-562)))) (-5 *1 (-436)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-4066 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *3 (-639 (-1168))) (-5 *4 (-112)) (-5 *1 (-436)))) (-4066 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-112)) (-5 *1 (-436)))) (-1523 (*1 *1) (-5 *1 (-436))) (-1791 (*1 *1) (-5 *1 (-436))) (-1824 (*1 *1) (-5 *1 (-436))) (-1647 (*1 *1) (-5 *1 (-436))) (-1556 (*1 *1) (-5 *1 (-436))) (-3117 (*1 *1) (-5 *1 (-436))) (-1441 (*1 *1) (-5 *1 (-436)))) +(-13 (-1092) (-10 -8 (-15 -4054 ($ (-433))) (-15 -3909 ((-3 (|:| |fst| (-433)) (|:| -2650 "void")) $)) (-15 -1598 ((-639 (-947 (-562))) $)) (-15 -2240 ((-112) $)) (-15 -4066 ($ (-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-639 (-1168)) (-112))) (-15 -4066 ($ (-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-639 (-947 (-562))) (-112))) (-15 -1523 ($)) (-15 -1791 ($)) (-15 -1824 ($)) (-15 -1647 ($)) (-15 -1556 ($)) (-15 -3117 ($)) (-15 -1441 ($)))) +((-4041 (((-112) $ $) NIL)) (-3254 (((-1168) $) 8)) (-2913 (((-1150) $) 16)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 13))) +(((-437 |#1|) (-13 (-1092) (-10 -8 (-15 -3254 ((-1168) $)))) (-1168)) (T -437)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-437 *3)) (-14 *3 *2)))) +(-13 (-1092) (-10 -8 (-15 -3254 ((-1168) $)))) +((-4041 (((-112) $ $) NIL)) (-2845 (((-1110) $) 7)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 13)) (-1731 (((-112) $ $) 9))) +(((-438) (-13 (-1092) (-10 -8 (-15 -2845 ((-1110) $))))) (T -438)) +((-2845 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-438))))) +(-13 (-1092) (-10 -8 (-15 -2845 ((-1110) $)))) +((-3219 (((-1261) $) 7)) (-4054 (((-857) $) 8) (($ (-1256 (-693))) 14) (($ (-639 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 11))) (((-439) (-139)) (T -439)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-439)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-313 (-377)))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-313 (-377)))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-313 (-544)))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-313 (-544)))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-939 (-377)))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-939 (-377)))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-939 (-544)))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-939 (-544)))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 (-377))))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-406 (-939 (-377))))) (-4 *1 (-439)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 (-544))))) (-4 *1 (-439)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-406 (-939 (-544))))) (-4 *1 (-439))))) -(-13 (-395) (-10 -8 (-15 -4353 ($ (-635 (-329)))) (-15 -4353 ($ (-329))) (-15 -4353 ($ (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329)))))) (-15 -3557 ($ (-1253 (-313 (-377))))) (-15 -3558 ((-3 $ "failed") (-1253 (-313 (-377))))) (-15 -3557 ($ (-1253 (-313 (-544))))) (-15 -3558 ((-3 $ "failed") (-1253 (-313 (-544))))) (-15 -3557 ($ (-1253 (-939 (-377))))) (-15 -3558 ((-3 $ "failed") (-1253 (-939 (-377))))) (-15 -3557 ($ (-1253 (-939 (-544))))) (-15 -3558 ((-3 $ "failed") (-1253 (-939 (-544))))) (-15 -3557 ($ (-1253 (-406 (-939 (-377)))))) (-15 -3558 ((-3 $ "failed") (-1253 (-406 (-939 (-377)))))) (-15 -3557 ($ (-1253 (-406 (-939 (-544)))))) (-15 -3558 ((-3 $ "failed") (-1253 (-406 (-939 (-544)))))))) -(((-608 (-857)) . T) ((-395) . T) ((-1204) . T)) -((-1986 (((-112)) 17)) (-1987 (((-112) (-112)) 18)) (-1988 (((-112)) 13)) (-1989 (((-112) (-112)) 14)) (-1991 (((-112)) 15)) (-1992 (((-112) (-112)) 16)) (-1983 (((-912) (-912)) 21) (((-912)) 20)) (-1984 (((-765) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544))))) 41)) (-1982 (((-912) (-912)) 23) (((-912)) 22)) (-1985 (((-2 (|:| -2957 (-544)) (|:| -2812 (-635 |#1|))) |#1|) 61)) (-1981 (((-404 |#1|) (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544))))))) 126)) (-4141 (((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112)) 152)) (-4140 (((-404 |#1|) |#1| (-765) (-765)) 165) (((-404 |#1|) |#1| (-635 (-765)) (-765)) 162) (((-404 |#1|) |#1| (-635 (-765))) 164) (((-404 |#1|) |#1| (-765)) 163) (((-404 |#1|) |#1|) 161)) (-2003 (((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765) (-112)) 167) (((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765)) 168) (((-3 |#1| "failed") (-912) |#1| (-635 (-765))) 170) (((-3 |#1| "failed") (-912) |#1| (-765)) 169) (((-3 |#1| "failed") (-912) |#1|) 171)) (-4139 (((-404 |#1|) |#1| (-765) (-765)) 160) (((-404 |#1|) |#1| (-635 (-765)) (-765)) 156) (((-404 |#1|) |#1| (-635 (-765))) 158) (((-404 |#1|) |#1| (-765)) 157) (((-404 |#1|) |#1|) 155)) (-1990 (((-112) |#1|) 36)) (-2002 (((-730 (-765)) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544))))) 66)) (-1993 (((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112) (-1087 (-765)) (-765)) 154))) -(((-440 |#1|) (-10 -7 (-15 -1981 ((-404 |#1|) (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))))) (-15 -2002 ((-730 (-765)) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))))) (-15 -1982 ((-912))) (-15 -1982 ((-912) (-912))) (-15 -1983 ((-912))) (-15 -1983 ((-912) (-912))) (-15 -1984 ((-765) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))))) (-15 -1985 ((-2 (|:| -2957 (-544)) (|:| -2812 (-635 |#1|))) |#1|)) (-15 -1986 ((-112))) (-15 -1987 ((-112) (-112))) (-15 -1988 ((-112))) (-15 -1989 ((-112) (-112))) (-15 -1990 ((-112) |#1|)) (-15 -1991 ((-112))) (-15 -1992 ((-112) (-112))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4139 ((-404 |#1|) |#1| (-765))) (-15 -4139 ((-404 |#1|) |#1| (-635 (-765)))) (-15 -4139 ((-404 |#1|) |#1| (-635 (-765)) (-765))) (-15 -4139 ((-404 |#1|) |#1| (-765) (-765))) (-15 -4140 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1| (-765))) (-15 -4140 ((-404 |#1|) |#1| (-635 (-765)))) (-15 -4140 ((-404 |#1|) |#1| (-635 (-765)) (-765))) (-15 -4140 ((-404 |#1|) |#1| (-765) (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1|)) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765) (-112))) (-15 -4141 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112))) (-15 -1993 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112) (-1087 (-765)) (-765)))) (-1229 (-544))) (T -440)) -((-1993 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1087 (-765))) (-5 *6 (-765)) (-5 *2 (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-2003 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-2003 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-2003 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-2003 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-912)) (-5 *4 (-765)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-2003 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-912)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) (-4140 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-765))) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-765))) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1991 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1990 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1988 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1986 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1985 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2957 (-544)) (|:| -2812 (-635 *3)))) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -4139 *4) (|:| -4355 (-544))))) (-4 *4 (-1229 (-544))) (-5 *2 (-765)) (-5 *1 (-440 *4)))) (-1983 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1983 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-1982 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -4139 *4) (|:| -4355 (-544))))) (-4 *4 (-1229 (-544))) (-5 *2 (-730 (-765))) (-5 *1 (-440 *4)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| *4) (|:| -2530 (-544))))))) (-4 *4 (-1229 (-544))) (-5 *2 (-404 *4)) (-5 *1 (-440 *4))))) -(-10 -7 (-15 -1981 ((-404 |#1|) (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))))) (-15 -2002 ((-730 (-765)) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))))) (-15 -1982 ((-912))) (-15 -1982 ((-912) (-912))) (-15 -1983 ((-912))) (-15 -1983 ((-912) (-912))) (-15 -1984 ((-765) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))))) (-15 -1985 ((-2 (|:| -2957 (-544)) (|:| -2812 (-635 |#1|))) |#1|)) (-15 -1986 ((-112))) (-15 -1987 ((-112) (-112))) (-15 -1988 ((-112))) (-15 -1989 ((-112) (-112))) (-15 -1990 ((-112) |#1|)) (-15 -1991 ((-112))) (-15 -1992 ((-112) (-112))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4139 ((-404 |#1|) |#1| (-765))) (-15 -4139 ((-404 |#1|) |#1| (-635 (-765)))) (-15 -4139 ((-404 |#1|) |#1| (-635 (-765)) (-765))) (-15 -4139 ((-404 |#1|) |#1| (-765) (-765))) (-15 -4140 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1| (-765))) (-15 -4140 ((-404 |#1|) |#1| (-635 (-765)))) (-15 -4140 ((-404 |#1|) |#1| (-635 (-765)) (-765))) (-15 -4140 ((-404 |#1|) |#1| (-765) (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1|)) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765))) (-15 -2003 ((-3 |#1| "failed") (-912) |#1| (-635 (-765)) (-765) (-112))) (-15 -4141 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112))) (-15 -1993 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112) (-1087 (-765)) (-765)))) -((-1997 (((-544) |#2|) 48) (((-544) |#2| (-765)) 47)) (-1996 (((-544) |#2|) 55)) (-1998 ((|#3| |#2|) 25)) (-3517 ((|#3| |#2| (-912)) 14)) (-4240 ((|#3| |#2|) 15)) (-1999 ((|#3| |#2|) 9)) (-2982 ((|#3| |#2|) 10)) (-1995 ((|#3| |#2| (-912)) 62) ((|#3| |#2|) 30)) (-1994 (((-544) |#2|) 57))) -(((-441 |#1| |#2| |#3|) (-10 -7 (-15 -1994 ((-544) |#2|)) (-15 -1995 (|#3| |#2|)) (-15 -1995 (|#3| |#2| (-912))) (-15 -1996 ((-544) |#2|)) (-15 -1997 ((-544) |#2| (-765))) (-15 -1997 ((-544) |#2|)) (-15 -3517 (|#3| |#2| (-912))) (-15 -1998 (|#3| |#2|)) (-15 -1999 (|#3| |#2|)) (-15 -2982 (|#3| |#2|)) (-15 -4240 (|#3| |#2|))) (-1042) (-1229 |#1|) (-13 (-403) (-1031 |#1|) (-362) (-1190) (-283))) (T -441)) -((-4240 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-2982 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-1999 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-1998 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5)))) (-1997 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))) (-1997 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *5 *3 *6)) (-4 *3 (-1229 *5)) (-4 *6 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))))) (-1996 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))))) (-1995 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5)))) (-1995 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5)) (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))))) -(-10 -7 (-15 -1994 ((-544) |#2|)) (-15 -1995 (|#3| |#2|)) (-15 -1995 (|#3| |#2| (-912))) (-15 -1996 ((-544) |#2|)) (-15 -1997 ((-544) |#2| (-765))) (-15 -1997 ((-544) |#2|)) (-15 -3517 (|#3| |#2| (-912))) (-15 -1998 (|#3| |#2|)) (-15 -1999 (|#3| |#2|)) (-15 -2982 (|#3| |#2|)) (-15 -4240 (|#3| |#2|))) -((-3758 ((|#2| (-1253 |#1|)) 36)) (-2001 ((|#2| |#2| |#1|) 49)) (-2000 ((|#2| |#2| |#1|) 41)) (-2417 ((|#2| |#2|) 38)) (-3574 (((-112) |#2|) 30)) (-2004 (((-635 |#2|) (-912) (-404 |#2|)) 17)) (-2003 ((|#2| (-912) (-404 |#2|)) 21)) (-2002 (((-730 (-765)) (-404 |#2|)) 25))) -(((-442 |#1| |#2|) (-10 -7 (-15 -3574 ((-112) |#2|)) (-15 -3758 (|#2| (-1253 |#1|))) (-15 -2417 (|#2| |#2|)) (-15 -2000 (|#2| |#2| |#1|)) (-15 -2001 (|#2| |#2| |#1|)) (-15 -2002 ((-730 (-765)) (-404 |#2|))) (-15 -2003 (|#2| (-912) (-404 |#2|))) (-15 -2004 ((-635 |#2|) (-912) (-404 |#2|)))) (-1042) (-1229 |#1|)) (T -442)) -((-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-404 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-1042)) (-5 *2 (-635 *6)) (-5 *1 (-442 *5 *6)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-404 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-442 *5 *2)) (-4 *5 (-1042)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-404 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1042)) (-5 *2 (-730 (-765))) (-5 *1 (-442 *4 *5)))) (-2001 (*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) (-2000 (*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-1042)) (-4 *2 (-1229 *4)) (-5 *1 (-442 *4 *2)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -3574 ((-112) |#2|)) (-15 -3758 (|#2| (-1253 |#1|))) (-15 -2417 (|#2| |#2|)) (-15 -2000 (|#2| |#2| |#1|)) (-15 -2001 (|#2| |#2| |#1|)) (-15 -2002 ((-730 (-765)) (-404 |#2|))) (-15 -2003 (|#2| (-912) (-404 |#2|))) (-15 -2004 ((-635 |#2|) (-912) (-404 |#2|)))) -((-2007 (((-765)) 41)) (-2011 (((-765)) 23 (|has| |#1| (-403))) (((-765) (-765)) 22 (|has| |#1| (-403)))) (-2010 (((-544) |#1|) 18 (|has| |#1| (-403)))) (-2009 (((-544) |#1|) 20 (|has| |#1| (-403)))) (-2006 (((-765)) 40) (((-765) (-765)) 39)) (-2005 ((|#1| (-765) (-544)) 29)) (-2008 (((-1259)) 43))) -(((-443 |#1|) (-10 -7 (-15 -2005 (|#1| (-765) (-544))) (-15 -2006 ((-765) (-765))) (-15 -2006 ((-765))) (-15 -2007 ((-765))) (-15 -2008 ((-1259))) (IF (|has| |#1| (-403)) (PROGN (-15 -2009 ((-544) |#1|)) (-15 -2010 ((-544) |#1|)) (-15 -2011 ((-765) (-765))) (-15 -2011 ((-765)))) |%noBranch|)) (-1042)) (T -443)) -((-2011 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2010 (*1 *2 *3) (-12 (-5 *2 (-544)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2009 (*1 *2 *3) (-12 (-5 *2 (-544)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) (-2008 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2007 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2006 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-544)) (-5 *1 (-443 *2)) (-4 *2 (-1042))))) -(-10 -7 (-15 -2005 (|#1| (-765) (-544))) (-15 -2006 ((-765) (-765))) (-15 -2006 ((-765))) (-15 -2007 ((-765))) (-15 -2008 ((-1259))) (IF (|has| |#1| (-403)) (PROGN (-15 -2009 ((-544) |#1|)) (-15 -2010 ((-544) |#1|)) (-15 -2011 ((-765) (-765))) (-15 -2011 ((-765)))) |%noBranch|)) -((-2012 (((-635 (-544)) (-544)) 60)) (-4130 (((-112) (-167 (-544))) 64)) (-4139 (((-404 (-167 (-544))) (-167 (-544))) 59))) -(((-444) (-10 -7 (-15 -4139 ((-404 (-167 (-544))) (-167 (-544)))) (-15 -2012 ((-635 (-544)) (-544))) (-15 -4130 ((-112) (-167 (-544)))))) (T -444)) -((-4130 (*1 *2 *3) (-12 (-5 *3 (-167 (-544))) (-5 *2 (-112)) (-5 *1 (-444)))) (-2012 (*1 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-444)) (-5 *3 (-544)))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 (-167 (-544)))) (-5 *1 (-444)) (-5 *3 (-167 (-544)))))) -(-10 -7 (-15 -4139 ((-404 (-167 (-544))) (-167 (-544)))) (-15 -2012 ((-635 (-544)) (-544))) (-15 -4130 ((-112) (-167 (-544))))) -((-3329 ((|#4| |#4| (-635 |#4|)) 22 (|has| |#1| (-362)))) (-2374 (((-635 |#4|) (-635 |#4|) (-1148) (-1148)) 41) (((-635 |#4|) (-635 |#4|) (-1148)) 40) (((-635 |#4|) (-635 |#4|)) 35))) -(((-445 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2374 ((-635 |#4|) (-635 |#4|))) (-15 -2374 ((-635 |#4|) (-635 |#4|) (-1148))) (-15 -2374 ((-635 |#4|) (-635 |#4|) (-1148) (-1148))) (IF (|has| |#1| (-362)) (-15 -3329 (|#4| |#4| (-635 |#4|))) |%noBranch|)) (-450) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -445)) -((-3329 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *2)))) (-2374 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) (-2374 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-445 *3 *4 *5 *6))))) -(-10 -7 (-15 -2374 ((-635 |#4|) (-635 |#4|))) (-15 -2374 ((-635 |#4|) (-635 |#4|) (-1148))) (-15 -2374 ((-635 |#4|) (-635 |#4|) (-1148) (-1148))) (IF (|has| |#1| (-362)) (-15 -3329 (|#4| |#4| (-635 |#4|))) |%noBranch|)) -((-2013 ((|#4| |#4| (-635 |#4|)) 60)) (-2014 (((-635 |#4|) (-635 |#4|) (-1148) (-1148)) 17) (((-635 |#4|) (-635 |#4|) (-1148)) 16) (((-635 |#4|) (-635 |#4|)) 11))) -(((-446 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2013 (|#4| |#4| (-635 |#4|))) (-15 -2014 ((-635 |#4|) (-635 |#4|))) (-15 -2014 ((-635 |#4|) (-635 |#4|) (-1148))) (-15 -2014 ((-635 |#4|) (-635 |#4|) (-1148) (-1148)))) (-306) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -446)) -((-2014 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *7)))) (-2014 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *7)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-446 *3 *4 *5 *6)))) (-2013 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *2))))) -(-10 -7 (-15 -2013 (|#4| |#4| (-635 |#4|))) (-15 -2014 ((-635 |#4|) (-635 |#4|))) (-15 -2014 ((-635 |#4|) (-635 |#4|) (-1148))) (-15 -2014 ((-635 |#4|) (-635 |#4|) (-1148) (-1148)))) -((-2016 (((-635 (-635 |#4|)) (-635 |#4|) (-112)) 72) (((-635 (-635 |#4|)) (-635 |#4|)) 71) (((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112)) 65) (((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|)) 66)) (-2015 (((-635 (-635 |#4|)) (-635 |#4|) (-112)) 41) (((-635 (-635 |#4|)) (-635 |#4|)) 62))) -(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2015 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -2015 ((-635 (-635 |#4|)) (-635 |#4|) (-112))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-112)))) (-13 (-306) (-146)) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -447)) -((-2016 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-2016 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-2016 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-2016 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-635 *7))))) -(-10 -7 (-15 -2015 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -2015 ((-635 (-635 |#4|)) (-635 |#4|) (-112))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-635 |#4|) (-112))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|))) (-15 -2016 ((-635 (-635 |#4|)) (-635 |#4|) (-112)))) -((-2040 (((-765) |#4|) 12)) (-2028 (((-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))) |#4| (-765) (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|)))) 31)) (-2030 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2029 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-2018 ((|#4| |#4| (-635 |#4|)) 39)) (-2026 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|)) 69)) (-2033 (((-1259) |#4|) 41)) (-2036 (((-1259) (-635 |#4|)) 50)) (-2034 (((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544)) 47)) (-2037 (((-1259) (-544)) 78)) (-2031 (((-635 |#4|) (-635 |#4|)) 76)) (-2039 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|)) |#4| (-765)) 25)) (-2032 (((-544) |#4|) 77)) (-2027 ((|#4| |#4|) 29)) (-2019 (((-635 |#4|) (-635 |#4|) (-544) (-544)) 55)) (-2035 (((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544) (-544)) 88)) (-2038 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2020 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-2025 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-2024 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-2021 (((-112) |#2| |#2|) 56)) (-2023 (((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2022 (((-112) |#2| |#2| |#2| |#2|) 59)) (-2017 ((|#4| |#4| (-635 |#4|)) 70))) -(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2017 (|#4| |#4| (-635 |#4|))) (-15 -2018 (|#4| |#4| (-635 |#4|))) (-15 -2019 ((-635 |#4|) (-635 |#4|) (-544) (-544))) (-15 -2020 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2021 ((-112) |#2| |#2|)) (-15 -2022 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2023 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2024 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2025 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2026 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|))) (-15 -2027 (|#4| |#4|)) (-15 -2028 ((-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))) |#4| (-765) (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))))) (-15 -2029 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2030 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2031 ((-635 |#4|) (-635 |#4|))) (-15 -2032 ((-544) |#4|)) (-15 -2033 ((-1259) |#4|)) (-15 -2034 ((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544))) (-15 -2035 ((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544) (-544))) (-15 -2036 ((-1259) (-635 |#4|))) (-15 -2037 ((-1259) (-544))) (-15 -2038 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2039 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|)) |#4| (-765))) (-15 -2040 ((-765) |#4|))) (-450) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -448)) -((-2040 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2039 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-765)) (|:| -2154 *4))) (-5 *5 (-765)) (-4 *4 (-943 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-448 *6 *7 *8 *4)))) (-2038 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-787)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-544)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2035 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-787)) (-4 *4 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) (-5 *1 (-448 *5 *6 *7 *4)))) (-2034 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-787)) (-4 *4 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) (-5 *1 (-448 *5 *6 *7 *4)))) (-2033 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2032 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-544)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6)))) (-2030 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-787)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-787)) (-4 *2 (-943 *4 *5 *6)) (-5 *1 (-448 *4 *5 *6 *2)) (-4 *4 (-450)) (-4 *6 (-844)))) (-2028 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 *3)))) (-5 *4 (-765)) (-4 *3 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-448 *5 *6 *7 *3)))) (-2027 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *2)) (-4 *2 (-943 *3 *4 *5)))) (-2026 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-448 *5 *6 *7 *3)))) (-2025 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-787)) (-4 *6 (-943 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-844)) (-5 *1 (-448 *4 *3 *5 *6)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-787)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6)))) (-2023 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-787)) (-4 *3 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *3)))) (-2022 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-943 *4 *3 *5)))) (-2021 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-943 *4 *3 *5)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-787)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2019 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-544)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *7)))) (-2018 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2)))) (-2017 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2))))) -(-10 -7 (-15 -2017 (|#4| |#4| (-635 |#4|))) (-15 -2018 (|#4| |#4| (-635 |#4|))) (-15 -2019 ((-635 |#4|) (-635 |#4|) (-544) (-544))) (-15 -2020 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2021 ((-112) |#2| |#2|)) (-15 -2022 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2023 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2024 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2025 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2026 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-635 |#4|))) (-15 -2027 (|#4| |#4|)) (-15 -2028 ((-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))) |#4| (-765) (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|))))) (-15 -2029 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2030 ((-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-635 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2031 ((-635 |#4|) (-635 |#4|))) (-15 -2032 ((-544) |#4|)) (-15 -2033 ((-1259) |#4|)) (-15 -2034 ((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544))) (-15 -2035 ((-544) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-544) (-544) (-544) (-544))) (-15 -2036 ((-1259) (-635 |#4|))) (-15 -2037 ((-1259) (-544))) (-15 -2038 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2039 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-765)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-765)) (|:| -2154 |#4|)) |#4| (-765))) (-15 -2040 ((-765) |#4|))) -((-2041 (($ $ $) 14) (($ (-635 $)) 21)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 41)) (-3545 (($ $ $) NIL) (($ (-635 $)) 22))) -(((-449 |#1|) (-10 -8 (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -2041 (|#1| (-635 |#1|))) (-15 -2041 (|#1| |#1| |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|))) (-450)) (T -449)) -NIL -(-10 -8 (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -2041 (|#1| (-635 |#1|))) (-15 -2041 (|#1| |#1| |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -3545 (|#1| |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-450) (-139)) (T -450)) -((-3545 (*1 *1 *1 *1) (-4 *1 (-450))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) (-2041 (*1 *1 *1 *1) (-4 *1 (-450))) (-2041 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) (-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-450))))) -(-13 (-554) (-10 -8 (-15 -3545 ($ $ $)) (-15 -3545 ($ (-635 $))) (-15 -2041 ($ $ $)) (-15 -2041 ($ (-635 $))) (-15 -3090 ((-1160 $) (-1160 $) (-1160 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 (-406 (-939 |#1|)))) (-1253 $)) NIL) (((-1253 (-682 (-406 (-939 |#1|))))) NIL)) (-1873 (((-1253 $)) NIL)) (-4131 (($) NIL T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed")) NIL)) (-1847 (((-3 $ #1#)) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-1935 (((-682 (-406 (-939 |#1|))) (-1253 $)) NIL) (((-682 (-406 (-939 |#1|)))) NIL)) (-1871 (((-406 (-939 |#1|)) $) NIL)) (-1933 (((-682 (-406 (-939 |#1|))) $ (-1253 $)) NIL) (((-682 (-406 (-939 |#1|))) $) NIL)) (-2539 (((-3 $ #1#) $) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-2050 (((-1160 (-939 (-406 (-939 |#1|))))) NIL (|has| (-406 (-939 |#1|)) (-362))) (((-1160 (-406 (-939 |#1|)))) 84 (|has| |#1| (-554)))) (-2542 (($ $ (-912)) NIL)) (-1869 (((-406 (-939 |#1|)) $) NIL)) (-1849 (((-1160 (-406 (-939 |#1|))) $) 82 (|has| (-406 (-939 |#1|)) (-554)))) (-1937 (((-406 (-939 |#1|)) (-1253 $)) NIL) (((-406 (-939 |#1|))) NIL)) (-1867 (((-1160 (-406 (-939 |#1|))) $) NIL)) (-1861 (((-112)) NIL)) (-1939 (($ (-1253 (-406 (-939 |#1|))) (-1253 $)) 103) (($ (-1253 (-406 (-939 |#1|)))) NIL)) (-3866 (((-3 $ #1#) $) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-3494 (((-912)) NIL)) (-1858 (((-112)) NIL)) (-2567 (($ $ (-912)) NIL)) (-1854 (((-112)) NIL)) (-1852 (((-112)) NIL)) (-1856 (((-112)) NIL)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed")) NIL)) (-1848 (((-3 $ #1#)) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-1936 (((-682 (-406 (-939 |#1|))) (-1253 $)) NIL) (((-682 (-406 (-939 |#1|)))) NIL)) (-1872 (((-406 (-939 |#1|)) $) NIL)) (-1934 (((-682 (-406 (-939 |#1|))) $ (-1253 $)) NIL) (((-682 (-406 (-939 |#1|))) $) NIL)) (-2540 (((-3 $ #1#) $) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-2054 (((-1160 (-939 (-406 (-939 |#1|))))) NIL (|has| (-406 (-939 |#1|)) (-362))) (((-1160 (-406 (-939 |#1|)))) 83 (|has| |#1| (-554)))) (-2541 (($ $ (-912)) NIL)) (-1870 (((-406 (-939 |#1|)) $) NIL)) (-1850 (((-1160 (-406 (-939 |#1|))) $) 77 (|has| (-406 (-939 |#1|)) (-554)))) (-1938 (((-406 (-939 |#1|)) (-1253 $)) NIL) (((-406 (-939 |#1|))) NIL)) (-1868 (((-1160 (-406 (-939 |#1|))) $) NIL)) (-1862 (((-112)) NIL)) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) NIL)) (-1855 (((-112)) NIL)) (-1857 (((-112)) NIL)) (-3644 (((-1110) $) NIL)) (-2044 (((-406 (-939 |#1|)) $ $) 71 (|has| |#1| (-554)))) (-2048 (((-406 (-939 |#1|)) $) 93 (|has| |#1| (-554)))) (-2047 (((-406 (-939 |#1|)) $) 95 (|has| |#1| (-554)))) (-2049 (((-1160 (-406 (-939 |#1|))) $) 88 (|has| |#1| (-554)))) (-2043 (((-406 (-939 |#1|))) 72 (|has| |#1| (-554)))) (-2046 (((-406 (-939 |#1|)) $ $) 64 (|has| |#1| (-554)))) (-2052 (((-406 (-939 |#1|)) $) 92 (|has| |#1| (-554)))) (-2051 (((-406 (-939 |#1|)) $) 94 (|has| |#1| (-554)))) (-2053 (((-1160 (-406 (-939 |#1|))) $) 87 (|has| |#1| (-554)))) (-2045 (((-406 (-939 |#1|))) 68 (|has| |#1| (-554)))) (-2055 (($) 101) (($ (-1166)) 107) (($ (-1253 (-1166))) 106) (($ (-1253 $)) 96) (($ (-1166) (-1253 $)) 105) (($ (-1253 (-1166)) (-1253 $)) 104)) (-1860 (((-112)) NIL)) (-4206 (((-406 (-939 |#1|)) $ (-544)) NIL)) (-3625 (((-1253 (-406 (-939 |#1|))) $ (-1253 $)) 98) (((-682 (-406 (-939 |#1|))) (-1253 $) (-1253 $)) NIL) (((-1253 (-406 (-939 |#1|))) $) 40) (((-682 (-406 (-939 |#1|))) (-1253 $)) NIL)) (-4377 (((-1253 (-406 (-939 |#1|))) $) NIL) (($ (-1253 (-406 (-939 |#1|)))) 37)) (-2042 (((-635 (-939 (-406 (-939 |#1|)))) (-1253 $)) NIL) (((-635 (-939 (-406 (-939 |#1|))))) NIL) (((-635 (-939 |#1|)) (-1253 $)) 99 (|has| |#1| (-554))) (((-635 (-939 |#1|))) 100 (|has| |#1| (-554)))) (-2729 (($ $ $) NIL)) (-1866 (((-112)) NIL)) (-4353 (((-857) $) NIL) (($ (-1253 (-406 (-939 |#1|)))) NIL)) (-2162 (((-1253 $)) 60)) (-1851 (((-635 (-1253 (-406 (-939 |#1|))))) NIL (|has| (-406 (-939 |#1|)) (-554)))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) NIL)) (-2927 (($ (-682 (-406 (-939 |#1|))) $) NIL)) (-2728 (($ $ $) NIL)) (-1865 (((-112)) NIL)) (-1863 (((-112)) NIL)) (-1859 (((-112)) NIL)) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) 97)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 56) (($ $ (-406 (-939 |#1|))) NIL) (($ (-406 (-939 |#1|)) $) NIL) (($ (-1132 |#2| (-406 (-939 |#1|))) $) NIL))) -(((-451 |#1| |#2| |#3| |#4|) (-13 (-417 (-406 (-939 |#1|))) (-641 (-1132 |#2| (-406 (-939 |#1|)))) (-10 -8 (-15 -4353 ($ (-1253 (-406 (-939 |#1|))))) (-15 -2057 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2056 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2055 ($)) (-15 -2055 ($ (-1166))) (-15 -2055 ($ (-1253 (-1166)))) (-15 -2055 ($ (-1253 $))) (-15 -2055 ($ (-1166) (-1253 $))) (-15 -2055 ($ (-1253 (-1166)) (-1253 $))) (IF (|has| |#1| (-554)) (PROGN (-15 -2054 ((-1160 (-406 (-939 |#1|))))) (-15 -2053 ((-1160 (-406 (-939 |#1|))) $)) (-15 -2052 ((-406 (-939 |#1|)) $)) (-15 -2051 ((-406 (-939 |#1|)) $)) (-15 -2050 ((-1160 (-406 (-939 |#1|))))) (-15 -2049 ((-1160 (-406 (-939 |#1|))) $)) (-15 -2048 ((-406 (-939 |#1|)) $)) (-15 -2047 ((-406 (-939 |#1|)) $)) (-15 -2046 ((-406 (-939 |#1|)) $ $)) (-15 -2045 ((-406 (-939 |#1|)))) (-15 -2044 ((-406 (-939 |#1|)) $ $)) (-15 -2043 ((-406 (-939 |#1|)))) (-15 -2042 ((-635 (-939 |#1|)) (-1253 $))) (-15 -2042 ((-635 (-939 |#1|))))) |%noBranch|))) (-171) (-912) (-635 (-1166)) (-1253 (-682 |#1|))) (T -451)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 *3)))) (-4 *3 (-171)) (-14 *6 (-1253 (-682 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))))) (-2057 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2162 (-635 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2056 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-451 *3 *4 *5 *6)) (|:| -2162 (-635 (-451 *3 *4 *5 *6))))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2055 (*1 *1) (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-912)) (-14 *4 (-635 (-1166))) (-14 *5 (-1253 (-682 *2))))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 *2)) (-14 *6 (-1253 (-682 *3))))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-1253 (-1166))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-1253 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2055 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-912)) (-14 *6 (-635 *2)) (-14 *7 (-1253 (-682 *4))))) (-2055 (*1 *1 *2 *3) (-12 (-5 *2 (-1253 (-1166))) (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-912)) (-14 *6 (-635 (-1166))) (-14 *7 (-1253 (-682 *4))))) (-2054 (*1 *2) (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2050 (*1 *2) (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2046 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2045 (*1 *2) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2044 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2043 (*1 *2) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *2 (-635 (-939 *4))) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *4 (-171)) (-14 *5 (-912)) (-14 *6 (-635 (-1166))) (-14 *7 (-1253 (-682 *4))))) (-2042 (*1 *2) (-12 (-5 *2 (-635 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3)))))) -(-13 (-417 (-406 (-939 |#1|))) (-641 (-1132 |#2| (-406 (-939 |#1|)))) (-10 -8 (-15 -4353 ($ (-1253 (-406 (-939 |#1|))))) (-15 -2057 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2056 ((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) "failed"))) (-15 -2055 ($)) (-15 -2055 ($ (-1166))) (-15 -2055 ($ (-1253 (-1166)))) (-15 -2055 ($ (-1253 $))) (-15 -2055 ($ (-1166) (-1253 $))) (-15 -2055 ($ (-1253 (-1166)) (-1253 $))) (IF (|has| |#1| (-554)) (PROGN (-15 -2054 ((-1160 (-406 (-939 |#1|))))) (-15 -2053 ((-1160 (-406 (-939 |#1|))) $)) (-15 -2052 ((-406 (-939 |#1|)) $)) (-15 -2051 ((-406 (-939 |#1|)) $)) (-15 -2050 ((-1160 (-406 (-939 |#1|))))) (-15 -2049 ((-1160 (-406 (-939 |#1|))) $)) (-15 -2048 ((-406 (-939 |#1|)) $)) (-15 -2047 ((-406 (-939 |#1|)) $)) (-15 -2046 ((-406 (-939 |#1|)) $ $)) (-15 -2045 ((-406 (-939 |#1|)))) (-15 -2044 ((-406 (-939 |#1|)) $ $)) (-15 -2043 ((-406 (-939 |#1|)))) (-15 -2042 ((-635 (-939 |#1|)) (-1253 $))) (-15 -2042 ((-635 (-939 |#1|))))) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 13)) (-3467 (((-635 (-858 |#1|)) $) 74)) (-3469 (((-1160 $) $ (-858 |#1|)) 46) (((-1160 |#2|) $) 117)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) 21) (((-765) $ (-635 (-858 |#1|))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) 44) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-858 |#1|) #2#) $) NIL)) (-3557 ((|#2| $) 42) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-858 |#1|) $) NIL)) (-4163 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-2087 (($ $ (-635 (-544))) 79)) (-4366 (($ $) 67)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| |#3| $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) 58)) (-3470 (($ (-1160 |#2|) (-858 |#1|)) 122) (($ (-1160 $) (-858 |#1|)) 52)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) 59)) (-3276 (($ |#2| |#3|) 28) (($ $ (-858 |#1|) (-765)) 30) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-858 |#1|)) NIL)) (-3202 ((|#3| $) NIL) (((-765) $ (-858 |#1|)) 50) (((-635 (-765)) $ (-635 (-858 |#1|))) 57)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 |#3| |#3|) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-3 (-858 |#1|) #3="failed") $) 39)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) 41)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 40)) (-1943 ((|#2| $) 115)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) 127 (|has| |#2| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-858 |#1|) |#2|) 86) (($ $ (-635 (-858 |#1|)) (-635 |#2|)) 89) (($ $ (-858 |#1|) $) 84) (($ $ (-635 (-858 |#1|)) (-635 $)) 105)) (-4164 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-858 |#1|)) 53) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4355 ((|#3| $) 66) (((-765) $ (-858 |#1|)) 37) (((-635 (-765)) $ (-635 (-858 |#1|))) 56)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-858 |#1|) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) 124 (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) 144) (($ (-544)) NIL) (($ |#2|) 85) (($ (-858 |#1|)) 31) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#2| (-554)))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ |#3|) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) 17 T CONST)) (-3046 (($) 25 T CONST)) (-3051 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) 64 (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 110)) (** (($ $ (-912)) NIL) (($ $ (-765)) 108)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 29) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-452 |#1| |#2| |#3|) (-13 (-943 |#2| |#3| (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544)))))) (-635 (-1166)) (-1042) (-237 (-4364 |#1|) (-765))) (T -452)) -((-2087 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-14 *3 (-635 (-1166))) (-5 *1 (-452 *3 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-237 (-4364 *3) (-765)))))) -(-13 (-943 |#2| |#3| (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544)))))) -((-2061 (((-112) |#1| (-635 |#2|)) 68)) (-2059 (((-3 (-1253 (-635 |#2|)) "failed") (-765) |#1| (-635 |#2|)) 77)) (-2060 (((-3 (-635 |#2|) "failed") |#2| |#1| (-1253 (-635 |#2|))) 79)) (-2187 ((|#2| |#2| |#1|) 28)) (-2058 (((-765) |#2| (-635 |#2|)) 20))) -(((-453 |#1| |#2|) (-10 -7 (-15 -2187 (|#2| |#2| |#1|)) (-15 -2058 ((-765) |#2| (-635 |#2|))) (-15 -2059 ((-3 (-1253 (-635 |#2|)) "failed") (-765) |#1| (-635 |#2|))) (-15 -2060 ((-3 (-635 |#2|) "failed") |#2| |#1| (-1253 (-635 |#2|)))) (-15 -2061 ((-112) |#1| (-635 |#2|)))) (-306) (-1229 |#1|)) (T -453)) -((-2061 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *5)) (-4 *5 (-1229 *3)) (-4 *3 (-306)) (-5 *2 (-112)) (-5 *1 (-453 *3 *5)))) (-2060 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1253 (-635 *3))) (-4 *4 (-306)) (-5 *2 (-635 *3)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1229 *4)))) (-2059 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-306)) (-4 *6 (-1229 *4)) (-5 *2 (-1253 (-635 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-635 *6)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-306)) (-5 *2 (-765)) (-5 *1 (-453 *5 *3)))) (-2187 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1229 *3))))) -(-10 -7 (-15 -2187 (|#2| |#2| |#1|)) (-15 -2058 ((-765) |#2| (-635 |#2|))) (-15 -2059 ((-3 (-1253 (-635 |#2|)) "failed") (-765) |#1| (-635 |#2|))) (-15 -2060 ((-3 (-635 |#2|) "failed") |#2| |#1| (-1253 (-635 |#2|)))) (-15 -2061 ((-112) |#1| (-635 |#2|)))) -((-4139 (((-404 |#5|) |#5|) 24))) -(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4139 ((-404 |#5|) |#5|))) (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166))))) (-787) (-554) (-554) (-943 |#4| |#2| |#1|)) (T -454)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166)))))) (-4 *5 (-787)) (-4 *7 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-554)) (-4 *3 (-943 *7 *5 *4))))) -(-10 -7 (-15 -4139 ((-404 |#5|) |#5|))) -((-3082 ((|#3|) 37)) (-3090 (((-1160 |#4|) (-1160 |#4|) (-1160 |#4|)) 33))) -(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3090 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3082 (|#3|))) (-787) (-844) (-903) (-943 |#3| |#1| |#2|)) (T -455)) -((-3082 (*1 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-903)) (-5 *1 (-455 *3 *4 *2 *5)) (-4 *5 (-943 *2 *3 *4)))) (-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-903)) (-5 *1 (-455 *3 *4 *5 *6))))) -(-10 -7 (-15 -3090 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3082 (|#3|))) -((-4139 (((-404 (-1160 |#1|)) (-1160 |#1|)) 43))) -(((-456 |#1|) (-10 -7 (-15 -4139 ((-404 (-1160 |#1|)) (-1160 |#1|)))) (-306)) (T -456)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-404 (-1160 *4))) (-5 *1 (-456 *4)) (-5 *3 (-1160 *4))))) -(-10 -7 (-15 -4139 ((-404 (-1160 |#1|)) (-1160 |#1|)))) -((-4136 (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-765))) 42) (((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-765))) 41) (((-51) |#2| (-1166) (-292 |#2|)) 35) (((-51) (-1 |#2| (-544)) (-292 |#2|)) 28)) (-4225 (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))) 80) (((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))) 79) (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544))) 78) (((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544))) 77) (((-51) |#2| (-1166) (-292 |#2|)) 72) (((-51) (-1 |#2| (-544)) (-292 |#2|)) 71)) (-4188 (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))) 66) (((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))) 64)) (-4185 (((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544))) 48) (((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544))) 47))) -(((-457 |#1| |#2|) (-10 -7 (-15 -4136 ((-51) (-1 |#2| (-544)) (-292 |#2|))) (-15 -4136 ((-51) |#2| (-1166) (-292 |#2|))) (-15 -4136 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-765)))) (-15 -4136 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-765)))) (-15 -4185 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544)))) (-15 -4185 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544)))) (-15 -4188 ((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4188 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4225 ((-51) (-1 |#2| (-544)) (-292 |#2|))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|))) (-15 -4225 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544)))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544)))) (-15 -4225 ((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))))) (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -457)) -((-4225 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-406 (-544)))) (-5 *7 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *8))) (-4 *8 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *8 *3)))) (-4225 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-544)))) (-5 *4 (-292 *8)) (-5 *5 (-1220 (-406 (-544)))) (-5 *6 (-406 (-544))) (-4 *8 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *8)))) (-4225 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *3)))) (-4225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-544))) (-4 *7 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *7)))) (-4225 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-544))) (-5 *4 (-292 *6)) (-4 *6 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *5 *6)))) (-4188 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-406 (-544)))) (-5 *7 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *8))) (-4 *8 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *8 *3)))) (-4188 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-544)))) (-5 *4 (-292 *8)) (-5 *5 (-1220 (-406 (-544)))) (-5 *6 (-406 (-544))) (-4 *8 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *8)))) (-4185 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *3)))) (-4185 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-544))) (-4 *7 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *7)))) (-4136 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-765))) (-4 *3 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *7 *3)))) (-4136 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-765))) (-4 *7 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *7)))) (-4136 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *6 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-544))) (-5 *4 (-292 *6)) (-4 *6 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) (-5 *1 (-457 *5 *6))))) -(-10 -7 (-15 -4136 ((-51) (-1 |#2| (-544)) (-292 |#2|))) (-15 -4136 ((-51) |#2| (-1166) (-292 |#2|))) (-15 -4136 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-765)))) (-15 -4136 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-765)))) (-15 -4185 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544)))) (-15 -4185 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544)))) (-15 -4188 ((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4188 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4225 ((-51) (-1 |#2| (-544)) (-292 |#2|))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|))) (-15 -4225 ((-51) (-1 |#2| (-544)) (-292 |#2|) (-1220 (-544)))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-544)))) (-15 -4225 ((-51) (-1 |#2| (-406 (-544))) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544)))) (-15 -4225 ((-51) |#2| (-1166) (-292 |#2|) (-1220 (-406 (-544))) (-406 (-544))))) -((-2187 ((|#2| |#2| |#1|) 15)) (-2063 (((-635 |#2|) |#2| (-635 |#2|) |#1| (-912)) 68)) (-2062 (((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-912)) 59))) -(((-458 |#1| |#2|) (-10 -7 (-15 -2062 ((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-912))) (-15 -2063 ((-635 |#2|) |#2| (-635 |#2|) |#1| (-912))) (-15 -2187 (|#2| |#2| |#1|))) (-306) (-1229 |#1|)) (T -458)) -((-2187 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1229 *3)))) (-2063 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-635 *3)) (-5 *5 (-912)) (-4 *3 (-1229 *4)) (-4 *4 (-306)) (-5 *1 (-458 *4 *3)))) (-2062 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-912)) (-4 *5 (-306)) (-4 *3 (-1229 *5)) (-5 *2 (-2 (|:| |plist| (-635 *3)) (|:| |modulo| *5))) (-5 *1 (-458 *5 *3)) (-5 *4 (-635 *3))))) -(-10 -7 (-15 -2062 ((-2 (|:| |plist| (-635 |#2|)) (|:| |modulo| |#1|)) |#2| (-635 |#2|) |#1| (-912))) (-15 -2063 ((-635 |#2|) |#2| (-635 |#2|) |#1| (-912))) (-15 -2187 (|#2| |#2| |#1|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 28)) (-4114 (($ |#3|) 25)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) 32)) (-2064 (($ |#2| |#4| $) 33)) (-3276 (($ |#2| (-707 |#3| |#4| |#5|)) 24)) (-3277 (((-707 |#3| |#4| |#5|) $) 15)) (-2066 ((|#3| $) 19)) (-2067 ((|#4| $) 17)) (-3575 ((|#2| $) 29)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2065 (($ |#2| |#3| |#4|) 26)) (-3040 (($) 36 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 34)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-459 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-711 |#6|) (-711 |#2|) (-10 -8 (-15 -3575 (|#2| $)) (-15 -3277 ((-707 |#3| |#4| |#5|) $)) (-15 -2067 (|#4| $)) (-15 -2066 (|#3| $)) (-15 -4366 ($ $)) (-15 -3276 ($ |#2| (-707 |#3| |#4| |#5|))) (-15 -4114 ($ |#3|)) (-15 -2065 ($ |#2| |#3| |#4|)) (-15 -2064 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-635 (-1166)) (-171) (-844) (-237 (-4364 |#1|) (-765)) (-1 (-112) (-2 (|:| -2535 |#3|) (|:| -2536 |#4|)) (-2 (|:| -2535 |#3|) (|:| -2536 |#4|))) (-943 |#2| |#4| (-858 |#1|))) (T -459)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-4364 *3) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6)) (-2 (|:| -2535 *5) (|:| -2536 *6)))) (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-844)) (-4 *2 (-943 *4 *6 (-858 *3))))) (-3575 (*1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *5 (-237 (-4364 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *4) (|:| -2536 *5)) (-2 (|:| -2535 *4) (|:| -2536 *5)))) (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-844)) (-4 *7 (-943 *2 *5 (-858 *3))))) (-3277 (*1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-4364 *3) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6)) (-2 (|:| -2535 *5) (|:| -2536 *6)))) (-5 *2 (-707 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8)) (-4 *5 (-844)) (-4 *8 (-943 *4 *6 (-858 *3))))) (-2067 (*1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-14 *6 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *2)) (-2 (|:| -2535 *5) (|:| -2536 *2)))) (-4 *2 (-237 (-4364 *3) (-765))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7)) (-4 *5 (-844)) (-4 *7 (-943 *4 *2 (-858 *3))))) (-2066 (*1 *2 *1) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-4364 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *5)) (-2 (|:| -2535 *2) (|:| -2536 *5)))) (-4 *2 (-844)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *7 (-943 *4 *5 (-858 *3))))) (-4366 (*1 *1 *1) (-12 (-14 *2 (-635 (-1166))) (-4 *3 (-171)) (-4 *5 (-237 (-4364 *2) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *4) (|:| -2536 *5)) (-2 (|:| -2535 *4) (|:| -2536 *5)))) (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-844)) (-4 *7 (-943 *3 *5 (-858 *2))))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-707 *5 *6 *7)) (-4 *5 (-844)) (-4 *6 (-237 (-4364 *4) (-765))) (-14 *7 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6)) (-2 (|:| -2535 *5) (|:| -2536 *6)))) (-14 *4 (-635 (-1166))) (-4 *2 (-171)) (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) (-4 *8 (-943 *2 *6 (-858 *4))))) (-4114 (*1 *1 *2) (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-4364 *3) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *5)) (-2 (|:| -2535 *2) (|:| -2536 *5)))) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-844)) (-4 *7 (-943 *4 *5 (-858 *3))))) (-2065 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-635 (-1166))) (-4 *2 (-171)) (-4 *4 (-237 (-4364 *5) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *3) (|:| -2536 *4)) (-2 (|:| -2535 *3) (|:| -2536 *4)))) (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-844)) (-4 *7 (-943 *2 *4 (-858 *5))))) (-2064 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-635 (-1166))) (-4 *2 (-171)) (-4 *3 (-237 (-4364 *4) (-765))) (-14 *6 (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *3)) (-2 (|:| -2535 *5) (|:| -2536 *3)))) (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-844)) (-4 *7 (-943 *2 *3 (-858 *4)))))) -(-13 (-711 |#6|) (-711 |#2|) (-10 -8 (-15 -3575 (|#2| $)) (-15 -3277 ((-707 |#3| |#4| |#5|) $)) (-15 -2067 (|#4| $)) (-15 -2066 (|#3| $)) (-15 -4366 ($ $)) (-15 -3276 ($ |#2| (-707 |#3| |#4| |#5|))) (-15 -4114 ($ |#3|)) (-15 -2065 ($ |#2| |#3| |#4|)) (-15 -2064 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2068 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-460 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2068 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-787) (-844) (-554) (-943 |#3| |#1| |#2|) (-13 (-1031 (-406 (-544))) (-362) (-10 -8 (-15 -4353 ($ |#4|)) (-15 -3381 (|#4| $)) (-15 -3380 (|#4| $))))) (T -460)) -((-2068 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-844)) (-4 *5 (-787)) (-4 *6 (-554)) (-4 *7 (-943 *6 *5 *3)) (-5 *1 (-460 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1031 (-406 (-544))) (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))) -(-10 -7 (-15 -2068 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2947 (((-112) $ $) NIL)) (-3467 (((-635 |#3|) $) 41)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) NIL (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-3283 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 48)) (-3557 (($ (-635 |#4|)) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400)))) (-2096 (((-635 |#4|) $) 18 (|has| $ (-6 -4400)))) (-3581 ((|#3| $) 46)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 14 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2100 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 21)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-3644 (((-1110) $) NIL)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 39)) (-3972 (($) 17)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) 16)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533)))) (($ (-635 |#4|)) 50)) (-3929 (($ (-635 |#4|)) 13)) (-3293 (($ $ |#3|) NIL)) (-3295 (($ $ |#3|) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) 38) (((-635 |#4|) $) 49)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 30)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-461 |#1| |#2| |#3| |#4|) (-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4377 ($ (-635 |#4|))) (-6 -4400) (-6 -4401))) (-1042) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -461)) -((-4377 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-461 *3 *4 *5 *6))))) -(-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4377 ($ (-635 |#4|))) (-6 -4400) (-6 -4401))) -((-3040 (($) 11)) (-3046 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -3046 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3040 (|#1|))) (-463 |#2| |#3|) (-171) (-23)) (T -462)) -NIL -(-10 -8 (-15 -3046 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3040 (|#1|))) -((-2947 (((-112) $ $) 7)) (-3558 (((-3 |#1| "failed") $) 26)) (-3557 ((|#1| $) 27)) (-4351 (($ $ $) 23)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4355 ((|#2| $) 19)) (-4353 (((-857) $) 11) (($ |#1|) 25)) (-3040 (($) 18 T CONST)) (-3046 (($) 24 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 15) (($ $ $) 13)) (-4246 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-463 |#1| |#2|) (-139) (-171) (-23)) (T -463)) -((-3046 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-4351 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))) -(-13 (-468 |t#1| |t#2|) (-1031 |t#1|) (-10 -8 (-15 (-3046) ($) -4359) (-15 -4351 ($ $ $)))) -(((-102) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-468 |#1| |#2|) . T) ((-1031 |#1|) . T) ((-1091) . T)) -((-2069 (((-1253 (-1253 (-544))) (-1253 (-1253 (-544))) (-912)) 18)) (-2070 (((-1253 (-1253 (-544))) (-912)) 16))) -(((-464) (-10 -7 (-15 -2069 ((-1253 (-1253 (-544))) (-1253 (-1253 (-544))) (-912))) (-15 -2070 ((-1253 (-1253 (-544))) (-912))))) (T -464)) -((-2070 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 (-1253 (-544)))) (-5 *1 (-464)))) (-2069 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 (-1253 (-544)))) (-5 *3 (-912)) (-5 *1 (-464))))) -(-10 -7 (-15 -2069 ((-1253 (-1253 (-544))) (-1253 (-1253 (-544))) (-912))) (-15 -2070 ((-1253 (-1253 (-544))) (-912)))) -((-3152 (((-544) (-544)) 30) (((-544)) 22)) (-3156 (((-544) (-544)) 26) (((-544)) 18)) (-3154 (((-544) (-544)) 28) (((-544)) 20)) (-2072 (((-112) (-112)) 12) (((-112)) 10)) (-2071 (((-112) (-112)) 11) (((-112)) 9)) (-2073 (((-112) (-112)) 24) (((-112)) 15))) -(((-465) (-10 -7 (-15 -2071 ((-112))) (-15 -2072 ((-112))) (-15 -2071 ((-112) (-112))) (-15 -2072 ((-112) (-112))) (-15 -2073 ((-112))) (-15 -3154 ((-544))) (-15 -3156 ((-544))) (-15 -3152 ((-544))) (-15 -2073 ((-112) (-112))) (-15 -3154 ((-544) (-544))) (-15 -3156 ((-544) (-544))) (-15 -3152 ((-544) (-544))))) (T -465)) -((-3152 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-3152 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-3156 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-3154 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) (-2073 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2072 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) (-2071 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))) -(-10 -7 (-15 -2071 ((-112))) (-15 -2072 ((-112))) (-15 -2071 ((-112) (-112))) (-15 -2072 ((-112) (-112))) (-15 -2073 ((-112))) (-15 -3154 ((-544))) (-15 -3156 ((-544))) (-15 -3152 ((-544))) (-15 -2073 ((-112) (-112))) (-15 -3154 ((-544) (-544))) (-15 -3156 ((-544) (-544))) (-15 -3152 ((-544) (-544)))) -((-2947 (((-112) $ $) NIL)) (-4258 (((-635 (-377)) $) 28) (((-635 (-377)) $ (-635 (-377))) 94)) (-2078 (((-635 (-1079 (-377))) $) 16) (((-635 (-1079 (-377))) $ (-635 (-1079 (-377)))) 91)) (-2075 (((-635 (-635 (-936 (-224)))) (-635 (-635 (-936 (-224)))) (-635 (-867))) 44)) (-2079 (((-635 (-635 (-936 (-224)))) $) 87)) (-4113 (((-1259) $ (-936 (-224)) (-867)) 106)) (-2080 (($ $) 86) (($ (-635 (-635 (-936 (-224))))) 97) (($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912))) 96) (($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)) (-635 (-260))) 98)) (-3643 (((-1148) $) NIL)) (-4267 (((-544) $) 68)) (-3644 (((-1110) $) NIL)) (-2081 (($) 95)) (-2074 (((-635 (-224)) (-635 (-635 (-936 (-224))))) 54)) (-2077 (((-1259) $ (-635 (-936 (-224))) (-867) (-867) (-912)) 100) (((-1259) $ (-936 (-224))) 102) (((-1259) $ (-936 (-224)) (-867) (-867) (-912)) 101)) (-4353 (((-857) $) 112) (($ (-635 (-635 (-936 (-224))))) 107)) (-2076 (((-1259) $ (-936 (-224))) 105)) (-3437 (((-112) $ $) NIL))) -(((-466) (-13 (-1091) (-10 -8 (-15 -2081 ($)) (-15 -2080 ($ $)) (-15 -2080 ($ (-635 (-635 (-936 (-224)))))) (-15 -2080 ($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)))) (-15 -2080 ($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)) (-635 (-260)))) (-15 -2079 ((-635 (-635 (-936 (-224)))) $)) (-15 -4267 ((-544) $)) (-15 -2078 ((-635 (-1079 (-377))) $)) (-15 -2078 ((-635 (-1079 (-377))) $ (-635 (-1079 (-377))))) (-15 -4258 ((-635 (-377)) $)) (-15 -4258 ((-635 (-377)) $ (-635 (-377)))) (-15 -2077 ((-1259) $ (-635 (-936 (-224))) (-867) (-867) (-912))) (-15 -2077 ((-1259) $ (-936 (-224)))) (-15 -2077 ((-1259) $ (-936 (-224)) (-867) (-867) (-912))) (-15 -2076 ((-1259) $ (-936 (-224)))) (-15 -4113 ((-1259) $ (-936 (-224)) (-867))) (-15 -4353 ($ (-635 (-635 (-936 (-224)))))) (-15 -4353 ((-857) $)) (-15 -2075 ((-635 (-635 (-936 (-224)))) (-635 (-635 (-936 (-224)))) (-635 (-867)))) (-15 -2074 ((-635 (-224)) (-635 (-635 (-936 (-224))))))))) (T -466)) -((-4353 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-466)))) (-2081 (*1 *1) (-5 *1 (-466))) (-2080 (*1 *1 *1) (-5 *1 (-466))) (-2080 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466)))) (-2080 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867))) (-5 *4 (-635 (-912))) (-5 *1 (-466)))) (-2080 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867))) (-5 *4 (-635 (-912))) (-5 *5 (-635 (-260))) (-5 *1 (-466)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-466)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-466)))) (-2078 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-466)))) (-4258 (*1 *2 *1) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-466)))) (-4258 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-466)))) (-2077 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *2 (-1259)) (-5 *1 (-466)))) (-2077 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466)))) (-2077 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *2 (-1259)) (-5 *1 (-466)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466)))) (-4113 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-466)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466)))) (-2075 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867))) (-5 *1 (-466)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-635 (-224))) (-5 *1 (-466))))) -(-13 (-1091) (-10 -8 (-15 -2081 ($)) (-15 -2080 ($ $)) (-15 -2080 ($ (-635 (-635 (-936 (-224)))))) (-15 -2080 ($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)))) (-15 -2080 ($ (-635 (-635 (-936 (-224)))) (-635 (-867)) (-635 (-867)) (-635 (-912)) (-635 (-260)))) (-15 -2079 ((-635 (-635 (-936 (-224)))) $)) (-15 -4267 ((-544) $)) (-15 -2078 ((-635 (-1079 (-377))) $)) (-15 -2078 ((-635 (-1079 (-377))) $ (-635 (-1079 (-377))))) (-15 -4258 ((-635 (-377)) $)) (-15 -4258 ((-635 (-377)) $ (-635 (-377)))) (-15 -2077 ((-1259) $ (-635 (-936 (-224))) (-867) (-867) (-912))) (-15 -2077 ((-1259) $ (-936 (-224)))) (-15 -2077 ((-1259) $ (-936 (-224)) (-867) (-867) (-912))) (-15 -2076 ((-1259) $ (-936 (-224)))) (-15 -4113 ((-1259) $ (-936 (-224)) (-867))) (-15 -4353 ($ (-635 (-635 (-936 (-224)))))) (-15 -4353 ((-857) $)) (-15 -2075 ((-635 (-635 (-936 (-224)))) (-635 (-635 (-936 (-224)))) (-635 (-867)))) (-15 -2074 ((-635 (-224)) (-635 (-635 (-936 (-224)))))))) -((-4244 (($ $) NIL) (($ $ $) 11))) -(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|))) (-468 |#2| |#3|) (-171) (-23)) (T -467)) -NIL -(-10 -8 (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4355 ((|#2| $) 19)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 15) (($ $ $) 13)) (-4246 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-468 |#1| |#2|) (-139) (-171) (-23)) (T -468)) -((-4355 (*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) (-3040 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-4246 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))) -(-13 (-1091) (-10 -8 (-15 -4355 (|t#2| $)) (-15 (-3040) ($) -4359) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4244 ($ $)) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2083 (((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-858 |#1|))) 91)) (-2082 (((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|))) 89)) (-2084 (((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-544)))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|))) 61))) -(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -2082 ((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|)))) (-15 -2083 ((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-858 |#1|)))) (-15 -2084 ((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-544)))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|))))) (-635 (-1166)) (-450) (-450)) (T -469)) -((-2084 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-858 *5))) (-14 *5 (-635 (-1166))) (-4 *6 (-450)) (-5 *2 (-2 (|:| |dpolys| (-635 (-246 *5 *6))) (|:| |coords| (-635 (-544))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450)))) (-2083 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-635 (-858 *4))) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6)) (-4 *6 (-450)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-858 *5))) (-14 *5 (-635 (-1166))) (-4 *6 (-450)) (-5 *2 (-635 (-635 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450))))) -(-10 -7 (-15 -2082 ((-635 (-635 (-246 |#1| |#2|))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|)))) (-15 -2083 ((-3 (-635 (-479 |#1| |#2|)) "failed") (-635 (-479 |#1| |#2|)) (-635 (-858 |#1|)))) (-15 -2084 ((-2 (|:| |dpolys| (-635 (-246 |#1| |#2|))) (|:| |coords| (-635 (-544)))) (-635 (-246 |#1| |#2|)) (-635 (-858 |#1|))))) -((-3866 (((-3 $ "failed") $) 11)) (-3392 (($ $ $) 18)) (-2729 (($ $ $) 19)) (-4356 (($ $ $) 9)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 17))) -(((-470 |#1|) (-10 -8 (-15 -2729 (|#1| |#1| |#1|)) (-15 -3392 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -4356 (|#1| |#1| |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912)))) (-471)) (T -470)) -NIL -(-10 -8 (-15 -2729 (|#1| |#1| |#1|)) (-15 -3392 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -4356 (|#1| |#1| |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912)))) -((-2947 (((-112) $ $) 7)) (-4131 (($) 18 T CONST)) (-3866 (((-3 $ "failed") $) 15)) (-2545 (((-112) $) 17)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 24)) (-3644 (((-1110) $) 10)) (-3392 (($ $ $) 21)) (-2729 (($ $ $) 20)) (-4353 (((-857) $) 11)) (-3046 (($) 19 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 23)) (** (($ $ (-912)) 13) (($ $ (-765)) 16) (($ $ (-544)) 22)) (* (($ $ $) 14))) -(((-471) (-139)) (T -471)) -((-2779 (*1 *1 *1) (-4 *1 (-471))) (-4356 (*1 *1 *1 *1) (-4 *1 (-471))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-544)))) (-3392 (*1 *1 *1 *1) (-4 *1 (-471))) (-2729 (*1 *1 *1 *1) (-4 *1 (-471)))) -(-13 (-720) (-10 -8 (-15 -2779 ($ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ (-544))) (-6 -4397) (-15 -3392 ($ $ $)) (-15 -2729 ($ $ $)))) -(((-102) . T) ((-608 (-857)) . T) ((-720) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 17)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) NIL) (($ $ (-406 (-544)) (-406 (-544))) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) NIL) (((-406 (-544)) $ (-406 (-544))) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL) (($ $ (-406 (-544))) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) NIL) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 22)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 26 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 33 (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 27 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) NIL) (($ $ $) NIL (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 25 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $ (-1250 |#2|)) 15)) (-4355 (((-406 (-544)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1250 |#2|)) NIL) (($ (-1234 |#1| |#2| |#3|)) 9) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 18)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) 24)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-472 |#1| |#2| |#3|) (-13 (-1236 |#1|) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4353 ($ (-1234 |#1| |#2| |#3|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -472)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1234 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-472 *3 *4 *5)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))) -(-13 (-1236 |#1|) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4353 ($ (-1234 |#1| |#2| |#3|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) 18)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) 19)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) 16)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-473 |#1| |#2| |#3| |#4|) (-1181 |#1| |#2|) (-1091) (-1091) (-1181 |#1| |#2|) |#2|) (T -473)) -NIL -(-1181 |#1| |#2|) -((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) NIL)) (-4089 (((-635 $) (-635 |#4|)) NIL)) (-3467 (((-635 |#3|) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4095 ((|#4| |#4| $) NIL)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) 27 (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3283 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3557 (($ (-635 |#4|)) NIL)) (-4205 (((-3 $ #1#) $) 40)) (-4092 ((|#4| |#4| $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) NIL)) (-2096 (((-635 |#4|) $) 17 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 18 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2100 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 22)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-4204 (((-3 |#4| #1#) $) 38)) (-4104 (((-635 |#4|) $) NIL)) (-4098 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4093 ((|#4| |#4| $) NIL)) (-4106 (((-112) $ $) NIL)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4094 ((|#4| |#4| $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 |#4| #1#) $) 36)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4086 (((-3 $ #1#) $ |#4|) 47)) (-4175 (($ $ |#4|) NIL)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 16)) (-3972 (($) 14)) (-4355 (((-765) $) NIL)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) 13)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 21)) (-3293 (($ $ |#3|) 43)) (-3295 (($ $ |#3|) 44)) (-4091 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) 32) (((-635 |#4|) $) 41)) (-4085 (((-765) $) NIL (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) NIL)) (-4340 (((-112) |#3| $) NIL)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-474 |#1| |#2| |#3| |#4|) (-1199 |#1| |#2| |#3| |#4|) (-554) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -474)) -NIL -(-1199 |#1| |#2| |#3| |#4|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-4034 (($) 18)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4377 (((-377) $) 22) (((-224) $) 25) (((-406 (-1160 (-544))) $) 19) (((-533) $) 52)) (-4353 (((-857) $) 50) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (((-224) $) 24) (((-377) $) 21)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 36 T CONST)) (-3046 (($) 11 T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL))) -(((-475) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))) (-1013) (-608 (-224)) (-608 (-377)) (-609 (-406 (-1160 (-544)))) (-609 (-533)) (-10 -8 (-15 -4034 ($))))) (T -475)) -((-4034 (*1 *1) (-5 *1 (-475)))) -(-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))) (-1013) (-608 (-224)) (-608 (-377)) (-609 (-406 (-1160 (-544)))) (-609 (-533)) (-10 -8 (-15 -4034 ($)))) -((-2947 (((-112) $ $) NIL)) (-3927 (((-1125) $) 11)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-476) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))) (T -476)) -((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476))))) -(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $)))) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) 16)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) 20)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) 18)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) 13)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 19)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 11 (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) 15 (|has| $ (-6 -4400))))) -(((-477 |#1| |#2| |#3|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) (-1091) (-1091) (-1148)) (T -477)) -NIL -(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) -((-2085 (((-544) (-544) (-544)) 7)) (-2086 (((-112) (-544) (-544) (-544) (-544)) 11)) (-3856 (((-1253 (-635 (-544))) (-765) (-765)) 22))) -(((-478) (-10 -7 (-15 -2085 ((-544) (-544) (-544))) (-15 -2086 ((-112) (-544) (-544) (-544) (-544))) (-15 -3856 ((-1253 (-635 (-544))) (-765) (-765))))) (T -478)) -((-3856 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1253 (-635 (-544)))) (-5 *1 (-478)))) (-2086 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-478)))) (-2085 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-478))))) -(-10 -7 (-15 -2085 ((-544) (-544) (-544))) (-15 -2086 ((-112) (-544) (-544) (-544) (-544))) (-15 -3856 ((-1253 (-635 (-544))) (-765) (-765)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-858 |#1|)) $) NIL)) (-3469 (((-1160 $) $ (-858 |#1|)) NIL) (((-1160 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-858 |#1|))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-858 |#1|) #2#) $) NIL)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-858 |#1|) $) NIL)) (-4163 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-2087 (($ $ (-635 (-544))) NIL)) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| (-480 (-4364 |#1|) (-765)) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#2|) (-858 |#1|)) NIL) (($ (-1160 $) (-858 |#1|)) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#2| (-480 (-4364 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-858 |#1|)) NIL)) (-3202 (((-480 (-4364 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 (-480 (-4364 |#1|) (-765)) (-480 (-4364 |#1|) (-765))) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-3 (-858 |#1|) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#2| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-635 (-858 |#1|)) (-635 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-635 (-858 |#1|)) (-635 $)) NIL)) (-4164 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4355 (((-480 (-4364 |#1|) (-765)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-858 |#1|) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#2| (-554)))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-480 (-4364 |#1|) (-765))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-479 |#1| |#2|) (-13 (-943 |#2| (-480 (-4364 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544)))))) (-635 (-1166)) (-1042)) (T -479)) -((-2087 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-479 *3 *4)) (-14 *3 (-635 (-1166))) (-4 *4 (-1042))))) -(-13 (-943 |#2| (-480 (-4364 |#1|) (-765)) (-858 |#1|)) (-10 -8 (-15 -2087 ($ $ (-635 (-544)))))) -((-2947 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3589 (((-112) $) NIL (|has| |#2| (-130)))) (-4114 (($ (-912)) NIL (|has| |#2| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#2| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#2| (-367)))) (-4030 (((-544) $) NIL (|has| |#2| (-842)))) (-4194 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1091)))) (-3557 (((-544) $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) ((|#2| $) NIL (|has| |#2| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3866 (((-3 $ "failed") $) NIL (|has| |#2| (-720)))) (-3377 (($) NIL (|has| |#2| (-367)))) (-1665 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ (-544)) 11)) (-3587 (((-112) $) NIL (|has| |#2| (-842)))) (-2096 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (|has| |#2| (-720)))) (-3588 (((-112) $) NIL (|has| |#2| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#2| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#2| (-1091)))) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#2| (-367)))) (-3644 (((-1110) $) NIL (|has| |#2| (-1091)))) (-4207 ((|#2| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-544)) NIL)) (-4243 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1552 (($ (-1253 |#2|)) NIL)) (-4318 (((-133)) NIL (|has| |#2| (-362)))) (-4217 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#2|) $) NIL) (($ (-544)) NIL (-3936 (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (($ |#2|) NIL (|has| |#2| (-1091))) (((-857) $) NIL (|has| |#2| (-608 (-857))))) (-3511 (((-765)) NIL (|has| |#2| (-1042)))) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#2| (-842)))) (-3040 (($) NIL (|has| |#2| (-130)) CONST)) (-3046 (($) NIL (|has| |#2| (-720)) CONST)) (-3051 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3437 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3066 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3067 (((-112) $ $) 15 (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-4246 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-912)) NIL (|has| |#2| (-720)))) (* (($ (-544) $) NIL (|has| |#2| (-1042))) (($ $ $) NIL (|has| |#2| (-720))) (($ $ |#2|) NIL (|has| |#2| (-720))) (($ |#2| $) NIL (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-912) $) NIL (|has| |#2| (-25)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-480 |#1| |#2|) (-237 |#1| |#2|) (-765) (-787)) (T -480)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-693))) (-4 *1 (-439)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-439)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-439))))) +(-13 (-394) (-10 -8 (-15 -4054 ($ (-1256 (-693)))) (-15 -4054 ($ (-639 (-329)))) (-15 -4054 ($ (-329))) (-15 -4054 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))))) +(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) +((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 21) (((-3 $ "failed") (-1256 (-315 (-562)))) 19) (((-3 $ "failed") (-1256 (-947 (-378)))) 17) (((-3 $ "failed") (-1256 (-947 (-562)))) 15) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 13) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 11)) (-3961 (($ (-1256 (-315 (-378)))) 22) (($ (-1256 (-315 (-562)))) 20) (($ (-1256 (-947 (-378)))) 18) (($ (-1256 (-947 (-562)))) 16) (($ (-1256 (-406 (-947 (-378))))) 14) (($ (-1256 (-406 (-947 (-562))))) 12)) (-3219 (((-1261) $) 7)) (-4054 (((-857) $) 8) (($ (-639 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 23))) +(((-440) (-139)) (T -440)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-440)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-440)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-440)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1256 (-315 (-378)))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-315 (-378)))) (-4 *1 (-440)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1256 (-315 (-562)))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-315 (-562)))) (-4 *1 (-440)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1256 (-947 (-378)))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-947 (-378)))) (-4 *1 (-440)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1256 (-947 (-562)))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-947 (-562)))) (-4 *1 (-440)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 (-378))))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-406 (-947 (-378))))) (-4 *1 (-440)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 (-562))))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-406 (-947 (-562))))) (-4 *1 (-440))))) +(-13 (-394) (-10 -8 (-15 -4054 ($ (-639 (-329)))) (-15 -4054 ($ (-329))) (-15 -4054 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -3961 ($ (-1256 (-315 (-378))))) (-15 -4048 ((-3 $ "failed") (-1256 (-315 (-378))))) (-15 -3961 ($ (-1256 (-315 (-562))))) (-15 -4048 ((-3 $ "failed") (-1256 (-315 (-562))))) (-15 -3961 ($ (-1256 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-1256 (-947 (-378))))) (-15 -3961 ($ (-1256 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-1256 (-947 (-562))))) (-15 -3961 ($ (-1256 (-406 (-947 (-378)))))) (-15 -4048 ((-3 $ "failed") (-1256 (-406 (-947 (-378)))))) (-15 -3961 ($ (-1256 (-406 (-947 (-562)))))) (-15 -4048 ((-3 $ "failed") (-1256 (-406 (-947 (-562)))))))) +(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) +((-2145 (((-112)) 17)) (-1531 (((-112) (-112)) 18)) (-3017 (((-112)) 13)) (-2713 (((-112) (-112)) 14)) (-3707 (((-112)) 15)) (-3353 (((-112) (-112)) 16)) (-2036 (((-916) (-916)) 21) (((-916)) 20)) (-2101 (((-766) (-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562))))) 41)) (-3337 (((-916) (-916)) 23) (((-916)) 22)) (-3476 (((-2 (|:| -2641 (-562)) (|:| -1510 (-639 |#1|))) |#1|) 61)) (-3539 (((-417 |#1|) (-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562))))))) 126)) (-2832 (((-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))) |#1| (-112)) 152)) (-3696 (((-417 |#1|) |#1| (-766) (-766)) 165) (((-417 |#1|) |#1| (-639 (-766)) (-766)) 162) (((-417 |#1|) |#1| (-639 (-766))) 164) (((-417 |#1|) |#1| (-766)) 163) (((-417 |#1|) |#1|) 161)) (-3363 (((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766) (-112)) 167) (((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766)) 168) (((-3 |#1| "failed") (-916) |#1| (-639 (-766))) 170) (((-3 |#1| "failed") (-916) |#1| (-766)) 169) (((-3 |#1| "failed") (-916) |#1|) 171)) (-1635 (((-417 |#1|) |#1| (-766) (-766)) 160) (((-417 |#1|) |#1| (-639 (-766)) (-766)) 156) (((-417 |#1|) |#1| (-639 (-766))) 158) (((-417 |#1|) |#1| (-766)) 157) (((-417 |#1|) |#1|) 155)) (-4291 (((-112) |#1|) 36)) (-3590 (((-732 (-766)) (-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562))))) 66)) (-2884 (((-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))) |#1| (-112) (-1094 (-766)) (-766)) 154))) +(((-441 |#1|) (-10 -7 (-15 -3539 ((-417 |#1|) (-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))))) (-15 -3590 ((-732 (-766)) (-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))))) (-15 -3337 ((-916))) (-15 -3337 ((-916) (-916))) (-15 -2036 ((-916))) (-15 -2036 ((-916) (-916))) (-15 -2101 ((-766) (-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))))) (-15 -3476 ((-2 (|:| -2641 (-562)) (|:| -1510 (-639 |#1|))) |#1|)) (-15 -2145 ((-112))) (-15 -1531 ((-112) (-112))) (-15 -3017 ((-112))) (-15 -2713 ((-112) (-112))) (-15 -4291 ((-112) |#1|)) (-15 -3707 ((-112))) (-15 -3353 ((-112) (-112))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -1635 ((-417 |#1|) |#1| (-766))) (-15 -1635 ((-417 |#1|) |#1| (-639 (-766)))) (-15 -1635 ((-417 |#1|) |#1| (-639 (-766)) (-766))) (-15 -1635 ((-417 |#1|) |#1| (-766) (-766))) (-15 -3696 ((-417 |#1|) |#1|)) (-15 -3696 ((-417 |#1|) |#1| (-766))) (-15 -3696 ((-417 |#1|) |#1| (-639 (-766)))) (-15 -3696 ((-417 |#1|) |#1| (-639 (-766)) (-766))) (-15 -3696 ((-417 |#1|) |#1| (-766) (-766))) (-15 -3363 ((-3 |#1| "failed") (-916) |#1|)) (-15 -3363 ((-3 |#1| "failed") (-916) |#1| (-766))) (-15 -3363 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)))) (-15 -3363 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766))) (-15 -3363 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766) (-112))) (-15 -2832 ((-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))) |#1| (-112))) (-15 -2884 ((-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))) |#1| (-112) (-1094 (-766)) (-766)))) (-1232 (-562))) (T -441)) +((-2884 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1094 (-766))) (-5 *6 (-766)) (-5 *2 (-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| *3) (|:| -2762 (-562))))))) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-2832 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| *3) (|:| -2762 (-562))))))) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3363 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *6 (-112)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3363 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3363 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3363 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-916)) (-5 *4 (-766)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3363 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-916)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3696 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3696 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-766))) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3696 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-766))) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3353 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3707 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-4291 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-2713 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3017 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1531 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-2145 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3476 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2641 (-562)) (|:| -1510 (-639 *3)))) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1635 *4) (|:| -3598 (-562))))) (-4 *4 (-1232 (-562))) (-5 *2 (-766)) (-5 *1 (-441 *4)))) (-2036 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-2036 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3337 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1635 *4) (|:| -3598 (-562))))) (-4 *4 (-1232 (-562))) (-5 *2 (-732 (-766))) (-5 *1 (-441 *4)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| *4) (|:| -2762 (-562))))))) (-4 *4 (-1232 (-562))) (-5 *2 (-417 *4)) (-5 *1 (-441 *4))))) +(-10 -7 (-15 -3539 ((-417 |#1|) (-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))))) (-15 -3590 ((-732 (-766)) (-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))))) (-15 -3337 ((-916))) (-15 -3337 ((-916) (-916))) (-15 -2036 ((-916))) (-15 -2036 ((-916) (-916))) (-15 -2101 ((-766) (-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))))) (-15 -3476 ((-2 (|:| -2641 (-562)) (|:| -1510 (-639 |#1|))) |#1|)) (-15 -2145 ((-112))) (-15 -1531 ((-112) (-112))) (-15 -3017 ((-112))) (-15 -2713 ((-112) (-112))) (-15 -4291 ((-112) |#1|)) (-15 -3707 ((-112))) (-15 -3353 ((-112) (-112))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -1635 ((-417 |#1|) |#1| (-766))) (-15 -1635 ((-417 |#1|) |#1| (-639 (-766)))) (-15 -1635 ((-417 |#1|) |#1| (-639 (-766)) (-766))) (-15 -1635 ((-417 |#1|) |#1| (-766) (-766))) (-15 -3696 ((-417 |#1|) |#1|)) (-15 -3696 ((-417 |#1|) |#1| (-766))) (-15 -3696 ((-417 |#1|) |#1| (-639 (-766)))) (-15 -3696 ((-417 |#1|) |#1| (-639 (-766)) (-766))) (-15 -3696 ((-417 |#1|) |#1| (-766) (-766))) (-15 -3363 ((-3 |#1| "failed") (-916) |#1|)) (-15 -3363 ((-3 |#1| "failed") (-916) |#1| (-766))) (-15 -3363 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)))) (-15 -3363 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766))) (-15 -3363 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766) (-112))) (-15 -2832 ((-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))) |#1| (-112))) (-15 -2884 ((-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))) |#1| (-112) (-1094 (-766)) (-766)))) +((-4331 (((-562) |#2|) 48) (((-562) |#2| (-766)) 47)) (-2761 (((-562) |#2|) 55)) (-4019 ((|#3| |#2|) 25)) (-2247 ((|#3| |#2| (-916)) 14)) (-3641 ((|#3| |#2|) 15)) (-2483 ((|#3| |#2|) 9)) (-3060 ((|#3| |#2|) 10)) (-3046 ((|#3| |#2| (-916)) 62) ((|#3| |#2|) 30)) (-3469 (((-562) |#2|) 57))) +(((-442 |#1| |#2| |#3|) (-10 -7 (-15 -3469 ((-562) |#2|)) (-15 -3046 (|#3| |#2|)) (-15 -3046 (|#3| |#2| (-916))) (-15 -2761 ((-562) |#2|)) (-15 -4331 ((-562) |#2| (-766))) (-15 -4331 ((-562) |#2|)) (-15 -2247 (|#3| |#2| (-916))) (-15 -4019 (|#3| |#2|)) (-15 -2483 (|#3| |#2|)) (-15 -3060 (|#3| |#2|)) (-15 -3641 (|#3| |#2|))) (-1044) (-1232 |#1|) (-13 (-403) (-1033 |#1|) (-362) (-1192) (-283))) (T -442)) +((-3641 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-3060 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-2483 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-4019 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-2247 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *2 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))) (-5 *1 (-442 *5 *3 *2)) (-4 *3 (-1232 *5)))) (-4331 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) (-4 *3 (-1232 *4)) (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))))) (-4331 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *5 *3 *6)) (-4 *3 (-1232 *5)) (-4 *6 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))))) (-2761 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) (-4 *3 (-1232 *4)) (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))))) (-3046 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *2 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))) (-5 *1 (-442 *5 *3 *2)) (-4 *3 (-1232 *5)))) (-3046 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-3469 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) (-4 *3 (-1232 *4)) (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283)))))) +(-10 -7 (-15 -3469 ((-562) |#2|)) (-15 -3046 (|#3| |#2|)) (-15 -3046 (|#3| |#2| (-916))) (-15 -2761 ((-562) |#2|)) (-15 -4331 ((-562) |#2| (-766))) (-15 -4331 ((-562) |#2|)) (-15 -2247 (|#3| |#2| (-916))) (-15 -4019 (|#3| |#2|)) (-15 -2483 (|#3| |#2|)) (-15 -3060 (|#3| |#2|)) (-15 -3641 (|#3| |#2|))) +((-2661 ((|#2| (-1256 |#1|)) 36)) (-2072 ((|#2| |#2| |#1|) 49)) (-2441 ((|#2| |#2| |#1|) 41)) (-2677 ((|#2| |#2|) 38)) (-2311 (((-112) |#2|) 30)) (-2037 (((-639 |#2|) (-916) (-417 |#2|)) 17)) (-3363 ((|#2| (-916) (-417 |#2|)) 21)) (-3590 (((-732 (-766)) (-417 |#2|)) 25))) +(((-443 |#1| |#2|) (-10 -7 (-15 -2311 ((-112) |#2|)) (-15 -2661 (|#2| (-1256 |#1|))) (-15 -2677 (|#2| |#2|)) (-15 -2441 (|#2| |#2| |#1|)) (-15 -2072 (|#2| |#2| |#1|)) (-15 -3590 ((-732 (-766)) (-417 |#2|))) (-15 -3363 (|#2| (-916) (-417 |#2|))) (-15 -2037 ((-639 |#2|) (-916) (-417 |#2|)))) (-1044) (-1232 |#1|)) (T -443)) +((-2037 (*1 *2 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-417 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-1044)) (-5 *2 (-639 *6)) (-5 *1 (-443 *5 *6)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-417 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-443 *5 *2)) (-4 *5 (-1044)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1044)) (-5 *2 (-732 (-766))) (-5 *1 (-443 *4 *5)))) (-2072 (*1 *2 *2 *3) (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3)))) (-2441 (*1 *2 *2 *3) (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3)))) (-2677 (*1 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-1044)) (-4 *2 (-1232 *4)) (-5 *1 (-443 *4 *2)))) (-2311 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -2311 ((-112) |#2|)) (-15 -2661 (|#2| (-1256 |#1|))) (-15 -2677 (|#2| |#2|)) (-15 -2441 (|#2| |#2| |#1|)) (-15 -2072 (|#2| |#2| |#1|)) (-15 -3590 ((-732 (-766)) (-417 |#2|))) (-15 -3363 (|#2| (-916) (-417 |#2|))) (-15 -2037 ((-639 |#2|) (-916) (-417 |#2|)))) +((-4194 (((-766)) 41)) (-1597 (((-766)) 23 (|has| |#1| (-403))) (((-766) (-766)) 22 (|has| |#1| (-403)))) (-1940 (((-562) |#1|) 18 (|has| |#1| (-403)))) (-3371 (((-562) |#1|) 20 (|has| |#1| (-403)))) (-1596 (((-766)) 40) (((-766) (-766)) 39)) (-3619 ((|#1| (-766) (-562)) 29)) (-3698 (((-1261)) 43))) +(((-444 |#1|) (-10 -7 (-15 -3619 (|#1| (-766) (-562))) (-15 -1596 ((-766) (-766))) (-15 -1596 ((-766))) (-15 -4194 ((-766))) (-15 -3698 ((-1261))) (IF (|has| |#1| (-403)) (PROGN (-15 -3371 ((-562) |#1|)) (-15 -1940 ((-562) |#1|)) (-15 -1597 ((-766) (-766))) (-15 -1597 ((-766)))) |%noBranch|)) (-1044)) (T -444)) +((-1597 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) (-1940 (*1 *2 *3) (-12 (-5 *2 (-562)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) (-3371 (*1 *2 *3) (-12 (-5 *2 (-562)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) (-3698 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) (-4194 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) (-1596 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) (-3619 (*1 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-562)) (-5 *1 (-444 *2)) (-4 *2 (-1044))))) +(-10 -7 (-15 -3619 (|#1| (-766) (-562))) (-15 -1596 ((-766) (-766))) (-15 -1596 ((-766))) (-15 -4194 ((-766))) (-15 -3698 ((-1261))) (IF (|has| |#1| (-403)) (PROGN (-15 -3371 ((-562) |#1|)) (-15 -1940 ((-562) |#1|)) (-15 -1597 ((-766) (-766))) (-15 -1597 ((-766)))) |%noBranch|)) +((-3118 (((-639 (-562)) (-562)) 60)) (-2717 (((-112) (-168 (-562))) 64)) (-1635 (((-417 (-168 (-562))) (-168 (-562))) 59))) +(((-445) (-10 -7 (-15 -1635 ((-417 (-168 (-562))) (-168 (-562)))) (-15 -3118 ((-639 (-562)) (-562))) (-15 -2717 ((-112) (-168 (-562)))))) (T -445)) +((-2717 (*1 *2 *3) (-12 (-5 *3 (-168 (-562))) (-5 *2 (-112)) (-5 *1 (-445)))) (-3118 (*1 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-445)) (-5 *3 (-562)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 (-168 (-562)))) (-5 *1 (-445)) (-5 *3 (-168 (-562)))))) +(-10 -7 (-15 -1635 ((-417 (-168 (-562))) (-168 (-562)))) (-15 -3118 ((-639 (-562)) (-562))) (-15 -2717 ((-112) (-168 (-562))))) +((-3367 ((|#4| |#4| (-639 |#4|)) 60)) (-1885 (((-639 |#4|) (-639 |#4|) (-1150) (-1150)) 17) (((-639 |#4|) (-639 |#4|) (-1150)) 16) (((-639 |#4|) (-639 |#4|)) 11))) +(((-446 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3367 (|#4| |#4| (-639 |#4|))) (-15 -1885 ((-639 |#4|) (-639 |#4|))) (-15 -1885 ((-639 |#4|) (-639 |#4|) (-1150))) (-15 -1885 ((-639 |#4|) (-639 |#4|) (-1150) (-1150)))) (-306) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -446)) +((-1885 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-446 *4 *5 *6 *7)))) (-1885 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-446 *4 *5 *6 *7)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-446 *3 *4 *5 *6)))) (-3367 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-446 *4 *5 *6 *2))))) +(-10 -7 (-15 -3367 (|#4| |#4| (-639 |#4|))) (-15 -1885 ((-639 |#4|) (-639 |#4|))) (-15 -1885 ((-639 |#4|) (-639 |#4|) (-1150))) (-15 -1885 ((-639 |#4|) (-639 |#4|) (-1150) (-1150)))) +((-3069 (((-639 (-639 |#4|)) (-639 |#4|) (-112)) 72) (((-639 (-639 |#4|)) (-639 |#4|)) 71) (((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|) (-112)) 65) (((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|)) 66)) (-1579 (((-639 (-639 |#4|)) (-639 |#4|) (-112)) 41) (((-639 (-639 |#4|)) (-639 |#4|)) 62))) +(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1579 ((-639 (-639 |#4|)) (-639 |#4|))) (-15 -1579 ((-639 (-639 |#4|)) (-639 |#4|) (-112))) (-15 -3069 ((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|))) (-15 -3069 ((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|) (-112))) (-15 -3069 ((-639 (-639 |#4|)) (-639 |#4|))) (-15 -3069 ((-639 (-639 |#4|)) (-639 |#4|) (-112)))) (-13 (-306) (-146)) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -447)) +((-3069 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) (-3069 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-3069 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) (-3069 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) (-1579 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) +(-10 -7 (-15 -1579 ((-639 (-639 |#4|)) (-639 |#4|))) (-15 -1579 ((-639 (-639 |#4|)) (-639 |#4|) (-112))) (-15 -3069 ((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|))) (-15 -3069 ((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|) (-112))) (-15 -3069 ((-639 (-639 |#4|)) (-639 |#4|))) (-15 -3069 ((-639 (-639 |#4|)) (-639 |#4|) (-112)))) +((-4373 (((-766) |#4|) 12)) (-2052 (((-639 (-2 (|:| |totdeg| (-766)) (|:| -4380 |#4|))) |#4| (-766) (-639 (-2 (|:| |totdeg| (-766)) (|:| -4380 |#4|)))) 31)) (-2633 (((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1988 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-1412 ((|#4| |#4| (-639 |#4|)) 39)) (-3679 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-639 |#4|)) 69)) (-2593 (((-1261) |#4|) 41)) (-3811 (((-1261) (-639 |#4|)) 50)) (-4281 (((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562)) 47)) (-3369 (((-1261) (-562)) 78)) (-4229 (((-639 |#4|) (-639 |#4|)) 76)) (-2637 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-766)) (|:| -4380 |#4|)) |#4| (-766)) 25)) (-4002 (((-562) |#4|) 77)) (-1844 ((|#4| |#4|) 29)) (-3253 (((-639 |#4|) (-639 |#4|) (-562) (-562)) 55)) (-4033 (((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562) (-562)) 88)) (-2935 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2268 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-2229 (((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-2626 (((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-4075 (((-112) |#2| |#2|) 56)) (-4271 (((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2680 (((-112) |#2| |#2| |#2| |#2|) 59)) (-2864 ((|#4| |#4| (-639 |#4|)) 70))) +(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2864 (|#4| |#4| (-639 |#4|))) (-15 -1412 (|#4| |#4| (-639 |#4|))) (-15 -3253 ((-639 |#4|) (-639 |#4|) (-562) (-562))) (-15 -2268 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4075 ((-112) |#2| |#2|)) (-15 -2680 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4271 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2626 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2229 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3679 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-639 |#4|))) (-15 -1844 (|#4| |#4|)) (-15 -2052 ((-639 (-2 (|:| |totdeg| (-766)) (|:| -4380 |#4|))) |#4| (-766) (-639 (-2 (|:| |totdeg| (-766)) (|:| -4380 |#4|))))) (-15 -1988 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2633 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4229 ((-639 |#4|) (-639 |#4|))) (-15 -4002 ((-562) |#4|)) (-15 -2593 ((-1261) |#4|)) (-15 -4281 ((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562))) (-15 -4033 ((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562) (-562))) (-15 -3811 ((-1261) (-639 |#4|))) (-15 -3369 ((-1261) (-562))) (-15 -2935 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2637 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-766)) (|:| -4380 |#4|)) |#4| (-766))) (-15 -4373 ((-766) |#4|))) (-451) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -448)) +((-4373 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-766)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-2637 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-766)) (|:| -4380 *4))) (-5 *5 (-766)) (-4 *4 (-944 *6 *7 *8)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-448 *6 *7 *8 *4)))) (-2935 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-788)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-562)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) (-5 *1 (-448 *4 *5 *6 *7)))) (-4033 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-766)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-788)) (-4 *4 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-845)) (-5 *1 (-448 *5 *6 *7 *4)))) (-4281 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-766)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-788)) (-4 *4 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-845)) (-5 *1 (-448 *5 *6 *7 *4)))) (-2593 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-4002 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-562)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-4229 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *6)))) (-2633 (*1 *2 *2 *2) (-12 (-5 *2 (-639 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-766)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-788)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *6)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-788)) (-4 *2 (-944 *4 *5 *6)) (-5 *1 (-448 *4 *5 *6 *2)) (-4 *4 (-451)) (-4 *6 (-845)))) (-2052 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-639 (-2 (|:| |totdeg| (-766)) (|:| -4380 *3)))) (-5 *4 (-766)) (-4 *3 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-448 *5 *6 *7 *3)))) (-1844 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-448 *5 *6 *7 *3)))) (-2229 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-766)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-788)) (-4 *6 (-944 *4 *3 *5)) (-4 *4 (-451)) (-4 *5 (-845)) (-5 *1 (-448 *4 *3 *5 *6)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-639 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-766)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-788)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *6)))) (-4271 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-788)) (-4 *3 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *3)))) (-2680 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-451)) (-4 *3 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-944 *4 *3 *5)))) (-4075 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *3 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-944 *4 *3 *5)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-788)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))) (-3253 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-562)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *7)))) (-1412 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *2)))) (-2864 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *2))))) +(-10 -7 (-15 -2864 (|#4| |#4| (-639 |#4|))) (-15 -1412 (|#4| |#4| (-639 |#4|))) (-15 -3253 ((-639 |#4|) (-639 |#4|) (-562) (-562))) (-15 -2268 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4075 ((-112) |#2| |#2|)) (-15 -2680 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4271 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2626 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2229 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3679 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-639 |#4|))) (-15 -1844 (|#4| |#4|)) (-15 -2052 ((-639 (-2 (|:| |totdeg| (-766)) (|:| -4380 |#4|))) |#4| (-766) (-639 (-2 (|:| |totdeg| (-766)) (|:| -4380 |#4|))))) (-15 -1988 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2633 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4229 ((-639 |#4|) (-639 |#4|))) (-15 -4002 ((-562) |#4|)) (-15 -2593 ((-1261) |#4|)) (-15 -4281 ((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562))) (-15 -4033 ((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562) (-562))) (-15 -3811 ((-1261) (-639 |#4|))) (-15 -3369 ((-1261) (-562))) (-15 -2935 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2637 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-766)) (|:| -4380 |#4|)) |#4| (-766))) (-15 -4373 ((-766) |#4|))) +((-1548 ((|#4| |#4| (-639 |#4|)) 22 (|has| |#1| (-362)))) (-2769 (((-639 |#4|) (-639 |#4|) (-1150) (-1150)) 41) (((-639 |#4|) (-639 |#4|) (-1150)) 40) (((-639 |#4|) (-639 |#4|)) 35))) +(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2769 ((-639 |#4|) (-639 |#4|))) (-15 -2769 ((-639 |#4|) (-639 |#4|) (-1150))) (-15 -2769 ((-639 |#4|) (-639 |#4|) (-1150) (-1150))) (IF (|has| |#1| (-362)) (-15 -1548 (|#4| |#4| (-639 |#4|))) |%noBranch|)) (-451) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -449)) +((-1548 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-449 *4 *5 *6 *2)))) (-2769 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2769 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-449 *3 *4 *5 *6))))) +(-10 -7 (-15 -2769 ((-639 |#4|) (-639 |#4|))) (-15 -2769 ((-639 |#4|) (-639 |#4|) (-1150))) (-15 -2769 ((-639 |#4|) (-639 |#4|) (-1150) (-1150))) (IF (|has| |#1| (-362)) (-15 -1548 (|#4| |#4| (-639 |#4|))) |%noBranch|)) +((-1564 (($ $ $) 14) (($ (-639 $)) 21)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 41)) (-1606 (($ $ $) NIL) (($ (-639 $)) 22))) +(((-450 |#1|) (-10 -8 (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -1564 (|#1| (-639 |#1|))) (-15 -1564 (|#1| |#1| |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|))) (-451)) (T -450)) +NIL +(-10 -8 (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -1564 (|#1| (-639 |#1|))) (-15 -1564 (|#1| |#1| |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1762 (((-3 $ "failed") $ $) 43)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-451) (-139)) (T -451)) +((-1606 (*1 *1 *1 *1) (-4 *1 (-451))) (-1606 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-451)))) (-1564 (*1 *1 *1 *1) (-4 *1 (-451))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-451)))) (-2741 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-451))))) +(-13 (-554) (-10 -8 (-15 -1606 ($ $ $)) (-15 -1606 ($ (-639 $))) (-15 -1564 ($ $ $)) (-15 -1564 ($ (-639 $))) (-15 -2741 ((-1164 $) (-1164 $) (-1164 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3931 (((-3 $ "failed")) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1902 (((-1256 (-683 (-406 (-947 |#1|)))) (-1256 $)) NIL) (((-1256 (-683 (-406 (-947 |#1|))))) NIL)) (-3655 (((-1256 $)) NIL)) (-1800 (($) NIL T CONST)) (-2874 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL)) (-2117 (((-3 $ "failed")) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-4356 (((-683 (-406 (-947 |#1|))) (-1256 $)) NIL) (((-683 (-406 (-947 |#1|)))) NIL)) (-2422 (((-406 (-947 |#1|)) $) NIL)) (-2966 (((-683 (-406 (-947 |#1|))) $ (-1256 $)) NIL) (((-683 (-406 (-947 |#1|))) $) NIL)) (-2545 (((-3 $ "failed") $) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-3407 (((-1164 (-947 (-406 (-947 |#1|))))) NIL (|has| (-406 (-947 |#1|)) (-362))) (((-1164 (-406 (-947 |#1|)))) 84 (|has| |#1| (-554)))) (-1379 (($ $ (-916)) NIL)) (-2355 (((-406 (-947 |#1|)) $) NIL)) (-3474 (((-1164 (-406 (-947 |#1|))) $) 82 (|has| (-406 (-947 |#1|)) (-554)))) (-2819 (((-406 (-947 |#1|)) (-1256 $)) NIL) (((-406 (-947 |#1|))) NIL)) (-2964 (((-1164 (-406 (-947 |#1|))) $) NIL)) (-2380 (((-112)) NIL)) (-4018 (($ (-1256 (-406 (-947 |#1|))) (-1256 $)) 103) (($ (-1256 (-406 (-947 |#1|)))) NIL)) (-3668 (((-3 $ "failed") $) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-2173 (((-916)) NIL)) (-1321 (((-112)) NIL)) (-3650 (($ $ (-916)) NIL)) (-3813 (((-112)) NIL)) (-3375 (((-112)) NIL)) (-4258 (((-112)) NIL)) (-1681 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL)) (-3700 (((-3 $ "failed")) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-3025 (((-683 (-406 (-947 |#1|))) (-1256 $)) NIL) (((-683 (-406 (-947 |#1|)))) NIL)) (-4153 (((-406 (-947 |#1|)) $) NIL)) (-1671 (((-683 (-406 (-947 |#1|))) $ (-1256 $)) NIL) (((-683 (-406 (-947 |#1|))) $) NIL)) (-4238 (((-3 $ "failed") $) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-2743 (((-1164 (-947 (-406 (-947 |#1|))))) NIL (|has| (-406 (-947 |#1|)) (-362))) (((-1164 (-406 (-947 |#1|)))) 83 (|has| |#1| (-554)))) (-2991 (($ $ (-916)) NIL)) (-1680 (((-406 (-947 |#1|)) $) NIL)) (-2026 (((-1164 (-406 (-947 |#1|))) $) 77 (|has| (-406 (-947 |#1|)) (-554)))) (-1305 (((-406 (-947 |#1|)) (-1256 $)) NIL) (((-406 (-947 |#1|))) NIL)) (-2670 (((-1164 (-406 (-947 |#1|))) $) NIL)) (-2090 (((-112)) NIL)) (-2913 (((-1150) $) NIL)) (-2144 (((-112)) NIL)) (-2580 (((-112)) NIL)) (-2809 (((-112)) NIL)) (-1709 (((-1112) $) NIL)) (-3190 (((-406 (-947 |#1|)) $ $) 71 (|has| |#1| (-554)))) (-1665 (((-406 (-947 |#1|)) $) 93 (|has| |#1| (-554)))) (-2199 (((-406 (-947 |#1|)) $) 95 (|has| |#1| (-554)))) (-3169 (((-1164 (-406 (-947 |#1|))) $) 88 (|has| |#1| (-554)))) (-3822 (((-406 (-947 |#1|))) 72 (|has| |#1| (-554)))) (-2458 (((-406 (-947 |#1|)) $ $) 64 (|has| |#1| (-554)))) (-1518 (((-406 (-947 |#1|)) $) 92 (|has| |#1| (-554)))) (-1833 (((-406 (-947 |#1|)) $) 94 (|has| |#1| (-554)))) (-3037 (((-1164 (-406 (-947 |#1|))) $) 87 (|has| |#1| (-554)))) (-3953 (((-406 (-947 |#1|))) 68 (|has| |#1| (-554)))) (-4242 (($) 101) (($ (-1168)) 107) (($ (-1256 (-1168))) 106) (($ (-1256 $)) 96) (($ (-1168) (-1256 $)) 105) (($ (-1256 (-1168)) (-1256 $)) 104)) (-4323 (((-112)) NIL)) (-2343 (((-406 (-947 |#1|)) $ (-562)) NIL)) (-3593 (((-1256 (-406 (-947 |#1|))) $ (-1256 $)) 98) (((-683 (-406 (-947 |#1|))) (-1256 $) (-1256 $)) NIL) (((-1256 (-406 (-947 |#1|))) $) 40) (((-683 (-406 (-947 |#1|))) (-1256 $)) NIL)) (-4208 (((-1256 (-406 (-947 |#1|))) $) NIL) (($ (-1256 (-406 (-947 |#1|)))) 37)) (-4136 (((-639 (-947 (-406 (-947 |#1|)))) (-1256 $)) NIL) (((-639 (-947 (-406 (-947 |#1|))))) NIL) (((-639 (-947 |#1|)) (-1256 $)) 99 (|has| |#1| (-554))) (((-639 (-947 |#1|))) 100 (|has| |#1| (-554)))) (-1911 (($ $ $) NIL)) (-1396 (((-112)) NIL)) (-4054 (((-857) $) NIL) (($ (-1256 (-406 (-947 |#1|)))) NIL)) (-3928 (((-1256 $)) 60)) (-3553 (((-639 (-1256 (-406 (-947 |#1|))))) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-2436 (($ $ $ $) NIL)) (-2850 (((-112)) NIL)) (-1360 (($ (-683 (-406 (-947 |#1|))) $) NIL)) (-3626 (($ $ $) NIL)) (-1981 (((-112)) NIL)) (-3199 (((-112)) NIL)) (-4114 (((-112)) NIL)) (-2286 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) 97)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 56) (($ $ (-406 (-947 |#1|))) NIL) (($ (-406 (-947 |#1|)) $) NIL) (($ (-1134 |#2| (-406 (-947 |#1|))) $) NIL))) +(((-452 |#1| |#2| |#3| |#4|) (-13 (-416 (-406 (-947 |#1|))) (-642 (-1134 |#2| (-406 (-947 |#1|)))) (-10 -8 (-15 -4054 ($ (-1256 (-406 (-947 |#1|))))) (-15 -1681 ((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed"))) (-15 -2874 ((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed"))) (-15 -4242 ($)) (-15 -4242 ($ (-1168))) (-15 -4242 ($ (-1256 (-1168)))) (-15 -4242 ($ (-1256 $))) (-15 -4242 ($ (-1168) (-1256 $))) (-15 -4242 ($ (-1256 (-1168)) (-1256 $))) (IF (|has| |#1| (-554)) (PROGN (-15 -2743 ((-1164 (-406 (-947 |#1|))))) (-15 -3037 ((-1164 (-406 (-947 |#1|))) $)) (-15 -1518 ((-406 (-947 |#1|)) $)) (-15 -1833 ((-406 (-947 |#1|)) $)) (-15 -3407 ((-1164 (-406 (-947 |#1|))))) (-15 -3169 ((-1164 (-406 (-947 |#1|))) $)) (-15 -1665 ((-406 (-947 |#1|)) $)) (-15 -2199 ((-406 (-947 |#1|)) $)) (-15 -2458 ((-406 (-947 |#1|)) $ $)) (-15 -3953 ((-406 (-947 |#1|)))) (-15 -3190 ((-406 (-947 |#1|)) $ $)) (-15 -3822 ((-406 (-947 |#1|)))) (-15 -4136 ((-639 (-947 |#1|)) (-1256 $))) (-15 -4136 ((-639 (-947 |#1|))))) |%noBranch|))) (-171) (-916) (-639 (-1168)) (-1256 (-683 |#1|))) (T -452)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 *3)))) (-4 *3 (-171)) (-14 *6 (-1256 (-683 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))))) (-1681 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-452 *3 *4 *5 *6)) (|:| -3928 (-639 (-452 *3 *4 *5 *6))))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2874 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-452 *3 *4 *5 *6)) (|:| -3928 (-639 (-452 *3 *4 *5 *6))))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-4242 (*1 *1) (-12 (-5 *1 (-452 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-916)) (-14 *4 (-639 (-1168))) (-14 *5 (-1256 (-683 *2))))) (-4242 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 *2)) (-14 *6 (-1256 (-683 *3))))) (-4242 (*1 *1 *2) (-12 (-5 *2 (-1256 (-1168))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-4242 (*1 *1 *2) (-12 (-5 *2 (-1256 (-452 *3 *4 *5 *6))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-4242 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-452 *4 *5 *6 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-916)) (-14 *6 (-639 *2)) (-14 *7 (-1256 (-683 *4))))) (-4242 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 (-1168))) (-5 *3 (-1256 (-452 *4 *5 *6 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-916)) (-14 *6 (-639 (-1168))) (-14 *7 (-1256 (-683 *4))))) (-2743 (*1 *2) (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-3407 (*1 *2) (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2458 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-3953 (*1 *2) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-3190 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-3822 (*1 *2) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-1256 (-452 *4 *5 *6 *7))) (-5 *2 (-639 (-947 *4))) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *4 (-171)) (-14 *5 (-916)) (-14 *6 (-639 (-1168))) (-14 *7 (-1256 (-683 *4))))) (-4136 (*1 *2) (-12 (-5 *2 (-639 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(-13 (-416 (-406 (-947 |#1|))) (-642 (-1134 |#2| (-406 (-947 |#1|)))) (-10 -8 (-15 -4054 ($ (-1256 (-406 (-947 |#1|))))) (-15 -1681 ((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed"))) (-15 -2874 ((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed"))) (-15 -4242 ($)) (-15 -4242 ($ (-1168))) (-15 -4242 ($ (-1256 (-1168)))) (-15 -4242 ($ (-1256 $))) (-15 -4242 ($ (-1168) (-1256 $))) (-15 -4242 ($ (-1256 (-1168)) (-1256 $))) (IF (|has| |#1| (-554)) (PROGN (-15 -2743 ((-1164 (-406 (-947 |#1|))))) (-15 -3037 ((-1164 (-406 (-947 |#1|))) $)) (-15 -1518 ((-406 (-947 |#1|)) $)) (-15 -1833 ((-406 (-947 |#1|)) $)) (-15 -3407 ((-1164 (-406 (-947 |#1|))))) (-15 -3169 ((-1164 (-406 (-947 |#1|))) $)) (-15 -1665 ((-406 (-947 |#1|)) $)) (-15 -2199 ((-406 (-947 |#1|)) $)) (-15 -2458 ((-406 (-947 |#1|)) $ $)) (-15 -3953 ((-406 (-947 |#1|)))) (-15 -3190 ((-406 (-947 |#1|)) $ $)) (-15 -3822 ((-406 (-947 |#1|)))) (-15 -4136 ((-639 (-947 |#1|)) (-1256 $))) (-15 -4136 ((-639 (-947 |#1|))))) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 13)) (-1402 (((-639 (-859 |#1|)) $) 74)) (-1599 (((-1164 $) $ (-859 |#1|)) 46) (((-1164 |#2|) $) 117)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2796 (($ $) NIL (|has| |#2| (-554)))) (-4370 (((-112) $) NIL (|has| |#2| (-554)))) (-1986 (((-766) $) 21) (((-766) $ (-639 (-859 |#1|))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-2798 (($ $) NIL (|has| |#2| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#2| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) 44) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-859 |#1|) "failed") $) NIL)) (-3961 ((|#2| $) 42) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-859 |#1|) $) NIL)) (-2835 (($ $ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-2040 (($ $ (-639 (-562))) 79)) (-1601 (($ $) 67)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#2| (-904)))) (-3122 (($ $ |#2| |#3| $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) 58)) (-1390 (($ (-1164 |#2|) (-859 |#1|)) 122) (($ (-1164 $) (-859 |#1|)) 52)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) 59)) (-1378 (($ |#2| |#3|) 28) (($ $ (-859 |#1|) (-766)) 30) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-859 |#1|)) NIL)) (-2076 ((|#3| $) NIL) (((-766) $ (-859 |#1|)) 50) (((-639 (-766)) $ (-639 (-859 |#1|))) 57)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2836 (($ (-1 |#3| |#3|) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3372 (((-3 (-859 |#1|) "failed") $) 39)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) 41)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-2913 (((-1150) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-859 |#1|)) (|:| -1960 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 40)) (-1547 ((|#2| $) 115)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) 127 (|has| |#2| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-859 |#1|) |#2|) 86) (($ $ (-639 (-859 |#1|)) (-639 |#2|)) 89) (($ $ (-859 |#1|) $) 84) (($ $ (-639 (-859 |#1|)) (-639 $)) 105)) (-2455 (($ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-859 |#1|)) 53) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-3598 ((|#3| $) 66) (((-766) $ (-859 |#1|)) 37) (((-639 (-766)) $ (-639 (-859 |#1|))) 56)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-859 |#1|) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-3900 ((|#2| $) 124 (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4054 (((-857) $) 144) (($ (-562)) NIL) (($ |#2|) 85) (($ (-859 |#1|)) 31) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#2| (-554)))) (-4358 (((-639 |#2|) $) NIL)) (-3906 ((|#2| $ |#3|) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2286 (($) 17 T CONST)) (-2294 (($) 25 T CONST)) (-3114 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) 64 (|has| |#2| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 110)) (** (($ $ (-916)) NIL) (($ $ (-766)) 108)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 29) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-453 |#1| |#2| |#3|) (-13 (-944 |#2| |#3| (-859 |#1|)) (-10 -8 (-15 -2040 ($ $ (-639 (-562)))))) (-639 (-1168)) (-1044) (-237 (-3492 |#1|) (-766))) (T -453)) +((-2040 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-14 *3 (-639 (-1168))) (-5 *1 (-453 *3 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-237 (-3492 *3) (-766)))))) +(-13 (-944 |#2| |#3| (-859 |#1|)) (-10 -8 (-15 -2040 ($ $ (-639 (-562)))))) +((-3614 (((-112) |#1| (-639 |#2|)) 68)) (-2363 (((-3 (-1256 (-639 |#2|)) "failed") (-766) |#1| (-639 |#2|)) 77)) (-2150 (((-3 (-639 |#2|) "failed") |#2| |#1| (-1256 (-639 |#2|))) 79)) (-2925 ((|#2| |#2| |#1|) 28)) (-3499 (((-766) |#2| (-639 |#2|)) 20))) +(((-454 |#1| |#2|) (-10 -7 (-15 -2925 (|#2| |#2| |#1|)) (-15 -3499 ((-766) |#2| (-639 |#2|))) (-15 -2363 ((-3 (-1256 (-639 |#2|)) "failed") (-766) |#1| (-639 |#2|))) (-15 -2150 ((-3 (-639 |#2|) "failed") |#2| |#1| (-1256 (-639 |#2|)))) (-15 -3614 ((-112) |#1| (-639 |#2|)))) (-306) (-1232 |#1|)) (T -454)) +((-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *5)) (-4 *5 (-1232 *3)) (-4 *3 (-306)) (-5 *2 (-112)) (-5 *1 (-454 *3 *5)))) (-2150 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1256 (-639 *3))) (-4 *4 (-306)) (-5 *2 (-639 *3)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1232 *4)))) (-2363 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-766)) (-4 *4 (-306)) (-4 *6 (-1232 *4)) (-5 *2 (-1256 (-639 *6))) (-5 *1 (-454 *4 *6)) (-5 *5 (-639 *6)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-306)) (-5 *2 (-766)) (-5 *1 (-454 *5 *3)))) (-2925 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1232 *3))))) +(-10 -7 (-15 -2925 (|#2| |#2| |#1|)) (-15 -3499 ((-766) |#2| (-639 |#2|))) (-15 -2363 ((-3 (-1256 (-639 |#2|)) "failed") (-766) |#1| (-639 |#2|))) (-15 -2150 ((-3 (-639 |#2|) "failed") |#2| |#1| (-1256 (-639 |#2|)))) (-15 -3614 ((-112) |#1| (-639 |#2|)))) +((-1635 (((-417 |#5|) |#5|) 24))) +(((-455 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1635 ((-417 |#5|) |#5|))) (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168))))) (-788) (-554) (-554) (-944 |#4| |#2| |#1|)) (T -455)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168)))))) (-4 *5 (-788)) (-4 *7 (-554)) (-5 *2 (-417 *3)) (-5 *1 (-455 *4 *5 *6 *7 *3)) (-4 *6 (-554)) (-4 *3 (-944 *7 *5 *4))))) +(-10 -7 (-15 -1635 ((-417 |#5|) |#5|))) +((-4348 ((|#3|) 37)) (-2741 (((-1164 |#4|) (-1164 |#4|) (-1164 |#4|)) 33))) +(((-456 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2741 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -4348 (|#3|))) (-788) (-845) (-904) (-944 |#3| |#1| |#2|)) (T -456)) +((-4348 (*1 *2) (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-904)) (-5 *1 (-456 *3 *4 *2 *5)) (-4 *5 (-944 *2 *3 *4)))) (-2741 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-904)) (-5 *1 (-456 *3 *4 *5 *6))))) +(-10 -7 (-15 -2741 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -4348 (|#3|))) +((-1635 (((-417 (-1164 |#1|)) (-1164 |#1|)) 43))) +(((-457 |#1|) (-10 -7 (-15 -1635 ((-417 (-1164 |#1|)) (-1164 |#1|)))) (-306)) (T -457)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1164 *4))) (-5 *1 (-457 *4)) (-5 *3 (-1164 *4))))) +(-10 -7 (-15 -1635 ((-417 (-1164 |#1|)) (-1164 |#1|)))) +((-1469 (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-766))) 42) (((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-766))) 41) (((-52) |#2| (-1168) (-293 |#2|)) 35) (((-52) (-1 |#2| (-562)) (-293 |#2|)) 28)) (-1503 (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))) 80) (((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))) 79) (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562))) 78) (((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562))) 77) (((-52) |#2| (-1168) (-293 |#2|)) 72) (((-52) (-1 |#2| (-562)) (-293 |#2|)) 71)) (-1499 (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))) 66) (((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))) 64)) (-1485 (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562))) 48) (((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562))) 47))) +(((-458 |#1| |#2|) (-10 -7 (-15 -1469 ((-52) (-1 |#2| (-562)) (-293 |#2|))) (-15 -1469 ((-52) |#2| (-1168) (-293 |#2|))) (-15 -1469 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-766)))) (-15 -1469 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-766)))) (-15 -1485 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562)))) (-15 -1485 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562)))) (-15 -1499 ((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1499 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1503 ((-52) (-1 |#2| (-562)) (-293 |#2|))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|))) (-15 -1503 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562)))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562)))) (-15 -1503 ((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))))) (-13 (-554) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -458)) +((-1503 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-406 (-562)))) (-5 *7 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *8))) (-4 *8 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *8 *3)))) (-1503 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-562)))) (-5 *4 (-293 *8)) (-5 *5 (-1223 (-406 (-562)))) (-5 *6 (-406 (-562))) (-4 *8 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *8)))) (-1503 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-562))) (-4 *7 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *3)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-562))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *5 *6)))) (-1499 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-406 (-562)))) (-5 *7 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *8))) (-4 *8 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *8 *3)))) (-1499 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-562)))) (-5 *4 (-293 *8)) (-5 *5 (-1223 (-406 (-562)))) (-5 *6 (-406 (-562))) (-4 *8 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *8)))) (-1485 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) (-1485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-562))) (-4 *7 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) (-1469 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-766))) (-4 *3 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) (-1469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-766))) (-4 *7 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) (-1469 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *3)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-562))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *5 *6))))) +(-10 -7 (-15 -1469 ((-52) (-1 |#2| (-562)) (-293 |#2|))) (-15 -1469 ((-52) |#2| (-1168) (-293 |#2|))) (-15 -1469 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-766)))) (-15 -1469 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-766)))) (-15 -1485 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562)))) (-15 -1485 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562)))) (-15 -1499 ((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1499 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1503 ((-52) (-1 |#2| (-562)) (-293 |#2|))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|))) (-15 -1503 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562)))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562)))) (-15 -1503 ((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))))) +((-2925 ((|#2| |#2| |#1|) 15)) (-1595 (((-639 |#2|) |#2| (-639 |#2|) |#1| (-916)) 68)) (-2044 (((-2 (|:| |plist| (-639 |#2|)) (|:| |modulo| |#1|)) |#2| (-639 |#2|) |#1| (-916)) 59))) +(((-459 |#1| |#2|) (-10 -7 (-15 -2044 ((-2 (|:| |plist| (-639 |#2|)) (|:| |modulo| |#1|)) |#2| (-639 |#2|) |#1| (-916))) (-15 -1595 ((-639 |#2|) |#2| (-639 |#2|) |#1| (-916))) (-15 -2925 (|#2| |#2| |#1|))) (-306) (-1232 |#1|)) (T -459)) +((-2925 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-459 *3 *2)) (-4 *2 (-1232 *3)))) (-1595 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-639 *3)) (-5 *5 (-916)) (-4 *3 (-1232 *4)) (-4 *4 (-306)) (-5 *1 (-459 *4 *3)))) (-2044 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-916)) (-4 *5 (-306)) (-4 *3 (-1232 *5)) (-5 *2 (-2 (|:| |plist| (-639 *3)) (|:| |modulo| *5))) (-5 *1 (-459 *5 *3)) (-5 *4 (-639 *3))))) +(-10 -7 (-15 -2044 ((-2 (|:| |plist| (-639 |#2|)) (|:| |modulo| |#1|)) |#2| (-639 |#2|) |#1| (-916))) (-15 -1595 ((-639 |#2|) |#2| (-639 |#2|) |#1| (-916))) (-15 -2925 (|#2| |#2| |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 28)) (-3901 (($ |#3|) 25)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1601 (($ $) 32)) (-1682 (($ |#2| |#4| $) 33)) (-1378 (($ |#2| (-708 |#3| |#4| |#5|)) 24)) (-1560 (((-708 |#3| |#4| |#5|) $) 15)) (-1927 ((|#3| $) 19)) (-1584 ((|#4| $) 17)) (-1573 ((|#2| $) 29)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-2005 (($ |#2| |#3| |#4|) 26)) (-2286 (($) 36 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 34)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-460 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-712 |#6|) (-712 |#2|) (-10 -8 (-15 -1573 (|#2| $)) (-15 -1560 ((-708 |#3| |#4| |#5|) $)) (-15 -1584 (|#4| $)) (-15 -1927 (|#3| $)) (-15 -1601 ($ $)) (-15 -1378 ($ |#2| (-708 |#3| |#4| |#5|))) (-15 -3901 ($ |#3|)) (-15 -2005 ($ |#2| |#3| |#4|)) (-15 -1682 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-639 (-1168)) (-171) (-845) (-237 (-3492 |#1|) (-766)) (-1 (-112) (-2 (|:| -2466 |#3|) (|:| -1960 |#4|)) (-2 (|:| -2466 |#3|) (|:| -1960 |#4|))) (-944 |#2| |#4| (-859 |#1|))) (T -460)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-4 *6 (-237 (-3492 *3) (-766))) (-14 *7 (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *6)) (-2 (|:| -2466 *5) (|:| -1960 *6)))) (-5 *1 (-460 *3 *4 *5 *6 *7 *2)) (-4 *5 (-845)) (-4 *2 (-944 *4 *6 (-859 *3))))) (-1573 (*1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *5 (-237 (-3492 *3) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2466 *4) (|:| -1960 *5)) (-2 (|:| -2466 *4) (|:| -1960 *5)))) (-4 *2 (-171)) (-5 *1 (-460 *3 *2 *4 *5 *6 *7)) (-4 *4 (-845)) (-4 *7 (-944 *2 *5 (-859 *3))))) (-1560 (*1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-4 *6 (-237 (-3492 *3) (-766))) (-14 *7 (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *6)) (-2 (|:| -2466 *5) (|:| -1960 *6)))) (-5 *2 (-708 *5 *6 *7)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8)) (-4 *5 (-845)) (-4 *8 (-944 *4 *6 (-859 *3))))) (-1584 (*1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-14 *6 (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *2)) (-2 (|:| -2466 *5) (|:| -1960 *2)))) (-4 *2 (-237 (-3492 *3) (-766))) (-5 *1 (-460 *3 *4 *5 *2 *6 *7)) (-4 *5 (-845)) (-4 *7 (-944 *4 *2 (-859 *3))))) (-1927 (*1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-4 *5 (-237 (-3492 *3) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2466 *2) (|:| -1960 *5)) (-2 (|:| -2466 *2) (|:| -1960 *5)))) (-4 *2 (-845)) (-5 *1 (-460 *3 *4 *2 *5 *6 *7)) (-4 *7 (-944 *4 *5 (-859 *3))))) (-1601 (*1 *1 *1) (-12 (-14 *2 (-639 (-1168))) (-4 *3 (-171)) (-4 *5 (-237 (-3492 *2) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2466 *4) (|:| -1960 *5)) (-2 (|:| -2466 *4) (|:| -1960 *5)))) (-5 *1 (-460 *2 *3 *4 *5 *6 *7)) (-4 *4 (-845)) (-4 *7 (-944 *3 *5 (-859 *2))))) (-1378 (*1 *1 *2 *3) (-12 (-5 *3 (-708 *5 *6 *7)) (-4 *5 (-845)) (-4 *6 (-237 (-3492 *4) (-766))) (-14 *7 (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *6)) (-2 (|:| -2466 *5) (|:| -1960 *6)))) (-14 *4 (-639 (-1168))) (-4 *2 (-171)) (-5 *1 (-460 *4 *2 *5 *6 *7 *8)) (-4 *8 (-944 *2 *6 (-859 *4))))) (-3901 (*1 *1 *2) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-4 *5 (-237 (-3492 *3) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2466 *2) (|:| -1960 *5)) (-2 (|:| -2466 *2) (|:| -1960 *5)))) (-5 *1 (-460 *3 *4 *2 *5 *6 *7)) (-4 *2 (-845)) (-4 *7 (-944 *4 *5 (-859 *3))))) (-2005 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-639 (-1168))) (-4 *2 (-171)) (-4 *4 (-237 (-3492 *5) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2466 *3) (|:| -1960 *4)) (-2 (|:| -2466 *3) (|:| -1960 *4)))) (-5 *1 (-460 *5 *2 *3 *4 *6 *7)) (-4 *3 (-845)) (-4 *7 (-944 *2 *4 (-859 *5))))) (-1682 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-639 (-1168))) (-4 *2 (-171)) (-4 *3 (-237 (-3492 *4) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *3)) (-2 (|:| -2466 *5) (|:| -1960 *3)))) (-5 *1 (-460 *4 *2 *5 *3 *6 *7)) (-4 *5 (-845)) (-4 *7 (-944 *2 *3 (-859 *4)))))) +(-13 (-712 |#6|) (-712 |#2|) (-10 -8 (-15 -1573 (|#2| $)) (-15 -1560 ((-708 |#3| |#4| |#5|) $)) (-15 -1584 (|#4| $)) (-15 -1927 (|#3| $)) (-15 -1601 ($ $)) (-15 -1378 ($ |#2| (-708 |#3| |#4| |#5|))) (-15 -3901 ($ |#3|)) (-15 -2005 ($ |#2| |#3| |#4|)) (-15 -1682 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2185 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-461 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2185 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-788) (-845) (-554) (-944 |#3| |#1| |#2|) (-13 (-1033 (-406 (-562))) (-362) (-10 -8 (-15 -4054 ($ |#4|)) (-15 -4065 (|#4| $)) (-15 -4076 (|#4| $))))) (T -461)) +((-2185 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-845)) (-4 *5 (-788)) (-4 *6 (-554)) (-4 *7 (-944 *6 *5 *3)) (-5 *1 (-461 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1033 (-406 (-562))) (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $)))))))) +(-10 -7 (-15 -2185 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-4041 (((-112) $ $) NIL)) (-1402 (((-639 |#3|) $) 41)) (-4170 (((-112) $) NIL)) (-4274 (((-112) $) NIL (|has| |#1| (-554)))) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2207 (((-112) $) NIL (|has| |#1| (-554)))) (-1920 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3852 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2539 (((-112) $) NIL (|has| |#1| (-554)))) (-3884 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 48)) (-3961 (($ (-639 |#4|)) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4402)))) (-1720 (((-639 |#4|) $) 18 (|has| $ (-6 -4402)))) (-4339 ((|#3| $) 46)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#4|) $) 14 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-1490 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 21)) (-3754 (((-639 |#3|) $) NIL)) (-2071 (((-112) |#3| $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-1709 (((-1112) $) NIL)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 39)) (-4307 (($) 17)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) 16)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535)))) (($ (-639 |#4|)) 50)) (-4066 (($ (-639 |#4|)) 13)) (-1812 (($ $ |#3|) NIL)) (-3274 (($ $ |#3|) NIL)) (-1568 (($ $ |#3|) NIL)) (-4054 (((-857) $) 38) (((-639 |#4|) $) 49)) (-1744 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 30)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-462 |#1| |#2| |#3| |#4|) (-13 (-971 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4208 ($ (-639 |#4|))) (-6 -4402) (-6 -4403))) (-1044) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -462)) +((-4208 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-462 *3 *4 *5 *6))))) +(-13 (-971 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4208 ($ (-639 |#4|))) (-6 -4402) (-6 -4403))) +((-2286 (($) 11)) (-2294 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-463 |#1| |#2| |#3|) (-10 -8 (-15 -2294 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2286 (|#1|))) (-464 |#2| |#3|) (-171) (-23)) (T -463)) +NIL +(-10 -8 (-15 -2294 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2286 (|#1|))) +((-4041 (((-112) $ $) 7)) (-4048 (((-3 |#1| "failed") $) 26)) (-3961 ((|#1| $) 27)) (-1397 (($ $ $) 23)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-3598 ((|#2| $) 19)) (-4054 (((-857) $) 11) (($ |#1|) 25)) (-2286 (($) 18 T CONST)) (-2294 (($) 24 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 15) (($ $ $) 13)) (-1835 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-464 |#1| |#2|) (-139) (-171) (-23)) (T -464)) +((-2294 (*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1397 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))) +(-13 (-469 |t#1| |t#2|) (-1033 |t#1|) (-10 -8 (-15 (-2294) ($) -1497) (-15 -1397 ($ $ $)))) +(((-102) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-469 |#1| |#2|) . T) ((-1033 |#1|) . T) ((-1092) . T)) +((-3733 (((-1256 (-1256 (-562))) (-1256 (-1256 (-562))) (-916)) 18)) (-3475 (((-1256 (-1256 (-562))) (-916)) 16))) +(((-465) (-10 -7 (-15 -3733 ((-1256 (-1256 (-562))) (-1256 (-1256 (-562))) (-916))) (-15 -3475 ((-1256 (-1256 (-562))) (-916))))) (T -465)) +((-3475 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 (-1256 (-562)))) (-5 *1 (-465)))) (-3733 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 (-1256 (-562)))) (-5 *3 (-916)) (-5 *1 (-465))))) +(-10 -7 (-15 -3733 ((-1256 (-1256 (-562))) (-1256 (-1256 (-562))) (-916))) (-15 -3475 ((-1256 (-1256 (-562))) (-916)))) +((-4010 (((-562) (-562)) 30) (((-562)) 22)) (-1990 (((-562) (-562)) 26) (((-562)) 18)) (-3559 (((-562) (-562)) 28) (((-562)) 20)) (-3741 (((-112) (-112)) 12) (((-112)) 10)) (-2182 (((-112) (-112)) 11) (((-112)) 9)) (-3470 (((-112) (-112)) 24) (((-112)) 15))) +(((-466) (-10 -7 (-15 -2182 ((-112))) (-15 -3741 ((-112))) (-15 -2182 ((-112) (-112))) (-15 -3741 ((-112) (-112))) (-15 -3470 ((-112))) (-15 -3559 ((-562))) (-15 -1990 ((-562))) (-15 -4010 ((-562))) (-15 -3470 ((-112) (-112))) (-15 -3559 ((-562) (-562))) (-15 -1990 ((-562) (-562))) (-15 -4010 ((-562) (-562))))) (T -466)) +((-4010 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-3559 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-4010 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-1990 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-3559 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-3470 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-2182 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-3741 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-2182 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466))))) +(-10 -7 (-15 -2182 ((-112))) (-15 -3741 ((-112))) (-15 -2182 ((-112) (-112))) (-15 -3741 ((-112) (-112))) (-15 -3470 ((-112))) (-15 -3559 ((-562))) (-15 -1990 ((-562))) (-15 -4010 ((-562))) (-15 -3470 ((-112) (-112))) (-15 -3559 ((-562) (-562))) (-15 -1990 ((-562) (-562))) (-15 -4010 ((-562) (-562)))) +((-4041 (((-112) $ $) NIL)) (-3426 (((-639 (-378)) $) 28) (((-639 (-378)) $ (-639 (-378))) 94)) (-3545 (((-639 (-1086 (-378))) $) 16) (((-639 (-1086 (-378))) $ (-639 (-1086 (-378)))) 91)) (-3814 (((-639 (-639 (-938 (-224)))) (-639 (-639 (-938 (-224)))) (-639 (-869))) 44)) (-3244 (((-639 (-639 (-938 (-224)))) $) 87)) (-1460 (((-1261) $ (-938 (-224)) (-869)) 106)) (-3478 (($ $) 86) (($ (-639 (-639 (-938 (-224))))) 97) (($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916))) 96) (($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)) (-639 (-262))) 98)) (-2913 (((-1150) $) NIL)) (-2320 (((-562) $) 68)) (-1709 (((-1112) $) NIL)) (-2029 (($) 95)) (-3062 (((-639 (-224)) (-639 (-639 (-938 (-224))))) 54)) (-2079 (((-1261) $ (-639 (-938 (-224))) (-869) (-869) (-916)) 100) (((-1261) $ (-938 (-224))) 102) (((-1261) $ (-938 (-224)) (-869) (-869) (-916)) 101)) (-4054 (((-857) $) 112) (($ (-639 (-639 (-938 (-224))))) 107)) (-2342 (((-1261) $ (-938 (-224))) 105)) (-1731 (((-112) $ $) NIL))) +(((-467) (-13 (-1092) (-10 -8 (-15 -2029 ($)) (-15 -3478 ($ $)) (-15 -3478 ($ (-639 (-639 (-938 (-224)))))) (-15 -3478 ($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)))) (-15 -3478 ($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)) (-639 (-262)))) (-15 -3244 ((-639 (-639 (-938 (-224)))) $)) (-15 -2320 ((-562) $)) (-15 -3545 ((-639 (-1086 (-378))) $)) (-15 -3545 ((-639 (-1086 (-378))) $ (-639 (-1086 (-378))))) (-15 -3426 ((-639 (-378)) $)) (-15 -3426 ((-639 (-378)) $ (-639 (-378)))) (-15 -2079 ((-1261) $ (-639 (-938 (-224))) (-869) (-869) (-916))) (-15 -2079 ((-1261) $ (-938 (-224)))) (-15 -2079 ((-1261) $ (-938 (-224)) (-869) (-869) (-916))) (-15 -2342 ((-1261) $ (-938 (-224)))) (-15 -1460 ((-1261) $ (-938 (-224)) (-869))) (-15 -4054 ($ (-639 (-639 (-938 (-224)))))) (-15 -4054 ((-857) $)) (-15 -3814 ((-639 (-639 (-938 (-224)))) (-639 (-639 (-938 (-224)))) (-639 (-869)))) (-15 -3062 ((-639 (-224)) (-639 (-639 (-938 (-224))))))))) (T -467)) +((-4054 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-467)))) (-2029 (*1 *1) (-5 *1 (-467))) (-3478 (*1 *1 *1) (-5 *1 (-467))) (-3478 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) (-3478 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) (-5 *4 (-639 (-916))) (-5 *1 (-467)))) (-3478 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) (-5 *4 (-639 (-916))) (-5 *5 (-639 (-262))) (-5 *1 (-467)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-467)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-467)))) (-3545 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-467)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-467)))) (-3426 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-467)))) (-2079 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *4 (-869)) (-5 *5 (-916)) (-5 *2 (-1261)) (-5 *1 (-467)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-467)))) (-2079 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-938 (-224))) (-5 *4 (-869)) (-5 *5 (-916)) (-5 *2 (-1261)) (-5 *1 (-467)))) (-2342 (*1 *2 *1 *3) (-12 (-5 *3 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-467)))) (-1460 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938 (-224))) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-467)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) (-3814 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) (-5 *1 (-467)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-639 (-224))) (-5 *1 (-467))))) +(-13 (-1092) (-10 -8 (-15 -2029 ($)) (-15 -3478 ($ $)) (-15 -3478 ($ (-639 (-639 (-938 (-224)))))) (-15 -3478 ($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)))) (-15 -3478 ($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)) (-639 (-262)))) (-15 -3244 ((-639 (-639 (-938 (-224)))) $)) (-15 -2320 ((-562) $)) (-15 -3545 ((-639 (-1086 (-378))) $)) (-15 -3545 ((-639 (-1086 (-378))) $ (-639 (-1086 (-378))))) (-15 -3426 ((-639 (-378)) $)) (-15 -3426 ((-639 (-378)) $ (-639 (-378)))) (-15 -2079 ((-1261) $ (-639 (-938 (-224))) (-869) (-869) (-916))) (-15 -2079 ((-1261) $ (-938 (-224)))) (-15 -2079 ((-1261) $ (-938 (-224)) (-869) (-869) (-916))) (-15 -2342 ((-1261) $ (-938 (-224)))) (-15 -1460 ((-1261) $ (-938 (-224)) (-869))) (-15 -4054 ($ (-639 (-639 (-938 (-224)))))) (-15 -4054 ((-857) $)) (-15 -3814 ((-639 (-639 (-938 (-224)))) (-639 (-639 (-938 (-224)))) (-639 (-869)))) (-15 -3062 ((-639 (-224)) (-639 (-639 (-938 (-224)))))))) +((-1848 (($ $) NIL) (($ $ $) 11))) +(((-468 |#1| |#2| |#3|) (-10 -8 (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|))) (-469 |#2| |#3|) (-171) (-23)) (T -468)) +NIL +(-10 -8 (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-3598 ((|#2| $) 19)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 15) (($ $ $) 13)) (-1835 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-469 |#1| |#2|) (-139) (-171) (-23)) (T -469)) +((-3598 (*1 *2 *1) (-12 (-4 *1 (-469 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) (-2286 (*1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1848 (*1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1835 (*1 *1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1848 (*1 *1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))) +(-13 (-1092) (-10 -8 (-15 -3598 (|t#2| $)) (-15 (-2286) ($) -1497) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1848 ($ $)) (-15 -1835 ($ $ $)) (-15 -1848 ($ $ $)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-3194 (((-3 (-639 (-480 |#1| |#2|)) "failed") (-639 (-480 |#1| |#2|)) (-639 (-859 |#1|))) 91)) (-1706 (((-639 (-639 (-246 |#1| |#2|))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|))) 89)) (-2888 (((-2 (|:| |dpolys| (-639 (-246 |#1| |#2|))) (|:| |coords| (-639 (-562)))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|))) 61))) +(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -1706 ((-639 (-639 (-246 |#1| |#2|))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|)))) (-15 -3194 ((-3 (-639 (-480 |#1| |#2|)) "failed") (-639 (-480 |#1| |#2|)) (-639 (-859 |#1|)))) (-15 -2888 ((-2 (|:| |dpolys| (-639 (-246 |#1| |#2|))) (|:| |coords| (-639 (-562)))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|))))) (-639 (-1168)) (-451) (-451)) (T -470)) +((-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-859 *5))) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-2 (|:| |dpolys| (-639 (-246 *5 *6))) (|:| |coords| (-639 (-562))))) (-5 *1 (-470 *5 *6 *7)) (-5 *3 (-639 (-246 *5 *6))) (-4 *7 (-451)))) (-3194 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-480 *4 *5))) (-5 *3 (-639 (-859 *4))) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-470 *4 *5 *6)) (-4 *6 (-451)))) (-1706 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-859 *5))) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-639 (-639 (-246 *5 *6)))) (-5 *1 (-470 *5 *6 *7)) (-5 *3 (-639 (-246 *5 *6))) (-4 *7 (-451))))) +(-10 -7 (-15 -1706 ((-639 (-639 (-246 |#1| |#2|))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|)))) (-15 -3194 ((-3 (-639 (-480 |#1| |#2|)) "failed") (-639 (-480 |#1| |#2|)) (-639 (-859 |#1|)))) (-15 -2888 ((-2 (|:| |dpolys| (-639 (-246 |#1| |#2|))) (|:| |coords| (-639 (-562)))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|))))) +((-3668 (((-3 $ "failed") $) 11)) (-3665 (($ $ $) 18)) (-1911 (($ $ $) 19)) (-1859 (($ $ $) 9)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 17))) +(((-471 |#1|) (-10 -8 (-15 -1911 (|#1| |#1| |#1|)) (-15 -3665 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1859 (|#1| |#1| |#1|)) (-15 -3668 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916)))) (-472)) (T -471)) +NIL +(-10 -8 (-15 -1911 (|#1| |#1| |#1|)) (-15 -3665 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1859 (|#1| |#1| |#1|)) (-15 -3668 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916)))) +((-4041 (((-112) $ $) 7)) (-1800 (($) 18 T CONST)) (-3668 (((-3 $ "failed") $) 15)) (-1957 (((-112) $) 17)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 24)) (-1709 (((-1112) $) 10)) (-3665 (($ $ $) 21)) (-1911 (($ $ $) 20)) (-4054 (((-857) $) 11)) (-2294 (($) 19 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ $) 23)) (** (($ $ (-916)) 13) (($ $ (-766)) 16) (($ $ (-562)) 22)) (* (($ $ $) 14))) +(((-472) (-139)) (T -472)) +((-1525 (*1 *1 *1) (-4 *1 (-472))) (-1859 (*1 *1 *1 *1) (-4 *1 (-472))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-472)) (-5 *2 (-562)))) (-3665 (*1 *1 *1 *1) (-4 *1 (-472))) (-1911 (*1 *1 *1 *1) (-4 *1 (-472)))) +(-13 (-721) (-10 -8 (-15 -1525 ($ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ (-562))) (-6 -4399) (-15 -3665 ($ $ $)) (-15 -1911 ($ $ $)))) +(((-102) . T) ((-609 (-857)) . T) ((-721) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) 17)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2557 (($ $ (-406 (-562))) NIL) (($ $ (-406 (-562)) (-406 (-562))) NIL)) (-1938 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) NIL)) (-2988 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| |#1| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4207 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2717 (((-112) $) NIL (|has| |#1| (-362)))) (-1756 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-406 (-562)) $) NIL) (((-406 (-562)) $ (-406 (-562))) NIL)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) NIL) (($ $ (-406 (-562))) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-406 (-562))) NIL) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 22)) (-4365 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-2667 (($ $) 26 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 33 (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 27 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ (-406 (-562))) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) NIL) (($ $ $) NIL (|has| (-406 (-562)) (-1104)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) 25 (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $ (-1252 |#2|)) 15)) (-3598 (((-406 (-562)) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1252 |#2|)) NIL) (($ (-1241 |#1| |#2| |#3|)) 9) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-3906 ((|#1| $ (-406 (-562))) NIL)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-2328 ((|#1| $) 18)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) 24)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-473 |#1| |#2| |#3|) (-13 (-1237 |#1|) (-10 -8 (-15 -4054 ($ (-1252 |#2|))) (-15 -4054 ($ (-1241 |#1| |#2| |#3|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -473)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1241 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-473 *3 *4 *5)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) +(-13 (-1237 |#1|) (-10 -8 (-15 -4054 ($ (-1252 |#2|))) (-15 -4054 ($ (-1241 |#1| |#2| |#3|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-3052 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) 18)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 |#2| "failed") |#1| $) 19)) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) 16)) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 ((|#1| $) NIL (|has| |#1| (-845)))) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-3874 ((|#1| $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1520 (((-639 |#1|) $) NIL)) (-4265 (((-112) |#1| $) NIL)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-2093 (((-639 |#1|) $) NIL)) (-1570 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-4054 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-474 |#1| |#2| |#3| |#4|) (-1183 |#1| |#2|) (-1092) (-1092) (-1183 |#1| |#2|) |#2|) (T -474)) +NIL +(-1183 |#1| |#2|) +((-4041 (((-112) $ $) NIL)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |#4|)))) (-639 |#4|)) NIL)) (-2304 (((-639 $) (-639 |#4|)) NIL)) (-1402 (((-639 |#3|) $) NIL)) (-4170 (((-112) $) NIL)) (-4274 (((-112) $) NIL (|has| |#1| (-554)))) (-4377 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3049 ((|#4| |#4| $) NIL)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1800 (($) NIL T CONST)) (-2207 (((-112) $) 27 (|has| |#1| (-554)))) (-1920 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3852 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2539 (((-112) $) NIL (|has| |#1| (-554)))) (-2839 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3884 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) NIL)) (-3961 (($ (-639 |#4|)) NIL)) (-1434 (((-3 $ "failed") $) 40)) (-2387 ((|#4| |#4| $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4091 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3595 ((|#4| |#4| $) NIL)) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4402))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2267 (((-2 (|:| -1450 (-639 |#4|)) (|:| -3316 (-639 |#4|))) $) NIL)) (-1720 (((-639 |#4|) $) 17 (|has| $ (-6 -4402)))) (-2573 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4339 ((|#3| $) 34)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#4|) $) 18 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-1490 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 22)) (-3754 (((-639 |#3|) $) NIL)) (-2071 (((-112) |#3| $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-1504 (((-3 |#4| "failed") $) 38)) (-3576 (((-639 |#4|) $) NIL)) (-2890 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1849 ((|#4| |#4| $) NIL)) (-1408 (((-112) $ $) NIL)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-2766 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1532 ((|#4| |#4| $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 |#4| "failed") $) 36)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3310 (((-3 $ "failed") $ |#4|) 47)) (-1353 (($ $ |#4|) NIL)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 16)) (-4307 (($) 14)) (-3598 (((-766) $) NIL)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) 13)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) 21)) (-1812 (($ $ |#3|) 43)) (-3274 (($ $ |#3|) 44)) (-3277 (($ $) NIL)) (-1568 (($ $ |#3|) NIL)) (-4054 (((-857) $) 32) (((-639 |#4|) $) 41)) (-3730 (((-766) $) NIL (|has| |#3| (-367)))) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4252 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) NIL)) (-1744 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-4089 (((-639 |#3|) $) NIL)) (-3694 (((-112) |#3| $) NIL)) (-1731 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-475 |#1| |#2| |#3| |#4|) (-1200 |#1| |#2| |#3| |#4|) (-554) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -475)) +NIL +(-1200 |#1| |#2| |#3| |#4|) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL)) (-3961 (((-562) $) NIL) (((-406 (-562)) $) NIL)) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-4100 (($) 18)) (-1957 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4208 (((-378) $) 22) (((-224) $) 25) (((-406 (-1164 (-562))) $) 19) (((-535) $) 52)) (-4054 (((-857) $) 50) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (((-224) $) 24) (((-378) $) 21)) (-2579 (((-766)) NIL)) (-2922 (((-112) $ $) NIL)) (-2286 (($) 36 T CONST)) (-2294 (($) 11 T CONST)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) +(((-476) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))) (-1017) (-609 (-224)) (-609 (-378)) (-610 (-406 (-1164 (-562)))) (-610 (-535)) (-10 -8 (-15 -4100 ($))))) (T -476)) +((-4100 (*1 *1) (-5 *1 (-476)))) +(-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))) (-1017) (-609 (-224)) (-609 (-378)) (-610 (-406 (-1164 (-562)))) (-610 (-535)) (-10 -8 (-15 -4100 ($)))) +((-4041 (((-112) $ $) NIL)) (-4328 (((-1127) $) 11)) (-4316 (((-1127) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-477) (-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1127) $))))) (T -477)) +((-4316 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-477)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-477))))) +(-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1127) $)))) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-3052 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) 16)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 |#2| "failed") |#1| $) 20)) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) 18)) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 ((|#1| $) NIL (|has| |#1| (-845)))) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-3874 ((|#1| $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1520 (((-639 |#1|) $) 13)) (-4265 (((-112) |#1| $) NIL)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-2093 (((-639 |#1|) $) NIL)) (-1570 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 19)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-4054 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 11 (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) 15 (|has| $ (-6 -4402))))) +(((-478 |#1| |#2| |#3|) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4402))) (-1092) (-1092) (-1150)) (T -478)) +NIL +(-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4402))) +((-4364 (((-562) (-562) (-562)) 7)) (-3156 (((-112) (-562) (-562) (-562) (-562)) 11)) (-2167 (((-1256 (-639 (-562))) (-766) (-766)) 22))) +(((-479) (-10 -7 (-15 -4364 ((-562) (-562) (-562))) (-15 -3156 ((-112) (-562) (-562) (-562) (-562))) (-15 -2167 ((-1256 (-639 (-562))) (-766) (-766))))) (T -479)) +((-2167 (*1 *2 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1256 (-639 (-562)))) (-5 *1 (-479)))) (-3156 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-479)))) (-4364 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-479))))) +(-10 -7 (-15 -4364 ((-562) (-562) (-562))) (-15 -3156 ((-112) (-562) (-562) (-562) (-562))) (-15 -2167 ((-1256 (-639 (-562))) (-766) (-766)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-859 |#1|)) $) NIL)) (-1599 (((-1164 $) $ (-859 |#1|)) NIL) (((-1164 |#2|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2796 (($ $) NIL (|has| |#2| (-554)))) (-4370 (((-112) $) NIL (|has| |#2| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-859 |#1|))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-2798 (($ $) NIL (|has| |#2| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#2| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-859 |#1|) "failed") $) NIL)) (-3961 ((|#2| $) NIL) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-859 |#1|) $) NIL)) (-2835 (($ $ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-2040 (($ $ (-639 (-562))) NIL)) (-1601 (($ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#2| (-904)))) (-3122 (($ $ |#2| (-481 (-3492 |#1|) (-766)) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1390 (($ (-1164 |#2|) (-859 |#1|)) NIL) (($ (-1164 $) (-859 |#1|)) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#2| (-481 (-3492 |#1|) (-766))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-859 |#1|)) NIL)) (-2076 (((-481 (-3492 |#1|) (-766)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2836 (($ (-1 (-481 (-3492 |#1|) (-766)) (-481 (-3492 |#1|) (-766))) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3372 (((-3 (-859 |#1|) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-2913 (((-1150) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-859 |#1|)) (|:| -1960 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#2| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-859 |#1|) |#2|) NIL) (($ $ (-639 (-859 |#1|)) (-639 |#2|)) NIL) (($ $ (-859 |#1|) $) NIL) (($ $ (-639 (-859 |#1|)) (-639 $)) NIL)) (-2455 (($ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-3598 (((-481 (-3492 |#1|) (-766)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-859 |#1|) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-3900 ((|#2| $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-859 |#1|)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#2| (-554)))) (-4358 (((-639 |#2|) $) NIL)) (-3906 ((|#2| $ (-481 (-3492 |#1|) (-766))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-480 |#1| |#2|) (-13 (-944 |#2| (-481 (-3492 |#1|) (-766)) (-859 |#1|)) (-10 -8 (-15 -2040 ($ $ (-639 (-562)))))) (-639 (-1168)) (-1044)) (T -480)) +((-2040 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-480 *3 *4)) (-14 *3 (-639 (-1168))) (-4 *4 (-1044))))) +(-13 (-944 |#2| (-481 (-3492 |#1|) (-766)) (-859 |#1|)) (-10 -8 (-15 -2040 ($ $ (-639 (-562)))))) +((-4041 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-1952 (((-112) $) NIL (|has| |#2| (-130)))) (-3901 (($ (-916)) NIL (|has| |#2| (-1044)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-3659 (($ $ $) NIL (|has| |#2| (-788)))) (-3214 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-4336 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#2| (-367)))) (-2277 (((-562) $) NIL (|has| |#2| (-843)))) (-4200 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1092)))) (-3961 (((-562) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) ((|#2| $) NIL (|has| |#2| (-1092)))) (-2406 (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL (|has| |#2| (-1044))) (((-683 |#2|) (-683 $)) NIL (|has| |#2| (-1044)))) (-3668 (((-3 $ "failed") $) NIL (|has| |#2| (-721)))) (-1448 (($) NIL (|has| |#2| (-367)))) (-1505 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ (-562)) 11)) (-3519 (((-112) $) NIL (|has| |#2| (-843)))) (-1720 (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1957 (((-112) $) NIL (|has| |#2| (-721)))) (-3392 (((-112) $) NIL (|has| |#2| (-843)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1912 (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1490 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-1999 (((-916) $) NIL (|has| |#2| (-367)))) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#2| (-1092)))) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-2466 (($ (-916)) NIL (|has| |#2| (-367)))) (-1709 (((-1112) $) NIL (|has| |#2| (-1092)))) (-1421 ((|#2| $) NIL (|has| (-562) (-845)))) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-562)) NIL)) (-4177 ((|#2| $ $) NIL (|has| |#2| (-1044)))) (-1679 (($ (-1256 |#2|)) NIL)) (-3627 (((-133)) NIL (|has| |#2| (-362)))) (-4029 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-1256 |#2|) $) NIL) (($ (-562)) NIL (-4037 (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (($ |#2|) NIL (|has| |#2| (-1092))) (((-857) $) NIL (|has| |#2| (-609 (-857))))) (-2579 (((-766)) NIL (|has| |#2| (-1044)))) (-1744 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-3526 (($ $) NIL (|has| |#2| (-843)))) (-2286 (($) NIL (|has| |#2| (-130)) CONST)) (-2294 (($) NIL (|has| |#2| (-721)) CONST)) (-3114 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1772 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1731 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-1785 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1759 (((-112) $ $) 15 (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $ $) NIL (|has| |#2| (-1044))) (($ $) NIL (|has| |#2| (-1044)))) (-1835 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-766)) NIL (|has| |#2| (-721))) (($ $ (-916)) NIL (|has| |#2| (-721)))) (* (($ (-562) $) NIL (|has| |#2| (-1044))) (($ $ $) NIL (|has| |#2| (-721))) (($ $ |#2|) NIL (|has| |#2| (-721))) (($ |#2| $) NIL (|has| |#2| (-721))) (($ (-766) $) NIL (|has| |#2| (-130))) (($ (-916) $) NIL (|has| |#2| (-25)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-481 |#1| |#2|) (-237 |#1| |#2|) (-766) (-788)) (T -481)) NIL (-237 |#1| |#2|) -((-2947 (((-112) $ $) NIL)) (-2088 (((-635 (-504)) $) 11)) (-3949 (((-504) $) 10)) (-3643 (((-1148) $) NIL)) (-2089 (($ (-504) (-635 (-504))) 9)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-481) (-13 (-1073) (-10 -8 (-15 -2089 ($ (-504) (-635 (-504)))) (-15 -3949 ((-504) $)) (-15 -2088 ((-635 (-504)) $))))) (T -481)) -((-2089 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-504))) (-5 *2 (-504)) (-5 *1 (-481)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-635 (-504))) (-5 *1 (-481))))) -(-13 (-1073) (-10 -8 (-15 -2089 ($ (-504) (-635 (-504)))) (-15 -3949 ((-504) $)) (-15 -2088 ((-635 (-504)) $)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-3241 (($ $ $) 32)) (-3917 (($ $ $) 31)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3242 ((|#1| $) 26)) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) 27)) (-4014 (($ |#1| $) 10)) (-2090 (($ (-635 |#1|)) 12)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1357 ((|#1| $) 23)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 9)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 29)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) 21 (|has| $ (-6 -4400))))) -(((-482 |#1|) (-13 (-961 |#1|) (-10 -8 (-15 -2090 ($ (-635 |#1|))))) (-844)) (T -482)) -((-2090 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-482 *3))))) -(-13 (-961 |#1|) (-10 -8 (-15 -2090 ($ (-635 |#1|))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4249 (($ $) 69)) (-1780 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-2120 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 44)) (-3644 (((-1110) $) NIL)) (-2544 (((-3 |#4| "failed") $) 107)) (-1781 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-544)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3839 (((-2 (|:| -2459 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4353 (((-857) $) 102)) (-3040 (($) 33 T CONST)) (-3437 (((-112) $ $) 109)) (-4244 (($ $) 72) (($ $ $) NIL)) (-4246 (($ $ $) 70)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 73))) -(((-483 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -483)) -NIL -(-335 |#1| |#2| |#3| |#4|) -((-2094 (((-544) (-635 (-544))) 29)) (-2091 ((|#1| (-635 |#1|)) 55)) (-2093 (((-635 |#1|) (-635 |#1|)) 56)) (-2092 (((-635 |#1|) (-635 |#1|)) 58)) (-3545 ((|#1| (-635 |#1|)) 57)) (-3199 (((-635 (-544)) (-635 |#1|)) 32))) -(((-484 |#1|) (-10 -7 (-15 -3545 (|#1| (-635 |#1|))) (-15 -2091 (|#1| (-635 |#1|))) (-15 -2092 ((-635 |#1|) (-635 |#1|))) (-15 -2093 ((-635 |#1|) (-635 |#1|))) (-15 -3199 ((-635 (-544)) (-635 |#1|))) (-15 -2094 ((-544) (-635 (-544))))) (-1229 (-544))) (T -484)) -((-2094 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-544)) (-5 *1 (-484 *4)) (-4 *4 (-1229 *2)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1229 (-544))) (-5 *2 (-635 (-544))) (-5 *1 (-484 *4)))) (-2093 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1229 (-544))) (-5 *1 (-484 *3)))) (-2092 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1229 (-544))) (-5 *1 (-484 *3)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-544))))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-544)))))) -(-10 -7 (-15 -3545 (|#1| (-635 |#1|))) (-15 -2091 (|#1| (-635 |#1|))) (-15 -2092 ((-635 |#1|) (-635 |#1|))) (-15 -2093 ((-635 |#1|) (-635 |#1|))) (-15 -3199 ((-635 (-544)) (-635 |#1|))) (-15 -2094 ((-544) (-635 (-544))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-544) $) NIL (|has| (-544) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-544) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-544) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-544) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-544) (-1031 (-544))))) (-3557 (((-544) $) NIL) (((-1166) $) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-544) (-1031 (-544)))) (((-544) $) NIL (|has| (-544) (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-544) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-544) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-544) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-544) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-544) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-544) (-1141)))) (-3588 (((-112) $) NIL (|has| (-544) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-544) (-844)))) (-4365 (($ (-1 (-544) (-544)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-544) (-1141)) CONST)) (-2095 (($ (-406 (-544))) 9)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-544) (-306))) (((-406 (-544)) $) NIL)) (-3515 (((-544) $) NIL (|has| (-544) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-544)) (-635 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-544) (-544)) NIL (|has| (-544) (-308 (-544)))) (($ $ (-292 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-292 (-544)))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-1166)) (-635 (-544))) NIL (|has| (-544) (-512 (-1166) (-544)))) (($ $ (-1166) (-544)) NIL (|has| (-544) (-512 (-1166) (-544))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-544)) NIL (|has| (-544) (-285 (-544) (-544))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-544) $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| (-544) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-544) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-544) (-609 (-533)))) (((-377) $) NIL (|has| (-544) (-1013))) (((-224) $) NIL (|has| (-544) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-544) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 8) (($ (-544)) NIL) (($ (-1166)) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL) (((-997 16) $) 10)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-544) (-903))) (|has| (-544) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-544) $) NIL (|has| (-544) (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-544) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-544) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-544) (-844)))) (-4356 (($ $ $) NIL) (($ (-544) (-544)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-544) $) NIL) (($ $ (-544)) NIL))) -(((-485) (-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 16)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -2095 ($ (-406 (-544))))))) (T -485)) -((-3513 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-485)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-485))))) -(-13 (-984 (-544)) (-608 (-406 (-544))) (-608 (-997 16)) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -2095 ($ (-406 (-544)))))) -((-2554 (((-635 |#2|) $) 23)) (-3646 (((-112) |#2| $) 28)) (-2098 (((-112) (-1 (-112) |#2|) $) 21)) (-4174 (($ $ (-635 (-292 |#2|))) 13) (($ $ (-292 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-635 |#2|) (-635 |#2|)) NIL)) (-2097 (((-765) (-1 (-112) |#2|) $) 22) (((-765) |#2| $) 26)) (-4353 (((-857) $) 37)) (-2099 (((-112) (-1 (-112) |#2|) $) 20)) (-3437 (((-112) $ $) 31)) (-4364 (((-765) $) 17))) -(((-486 |#1| |#2|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -3646 ((-112) |#2| |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2554 ((-635 |#2|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|))) (-487 |#2|) (-1204)) (T -486)) -NIL -(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#2| |#2|)) (-15 -4174 (|#1| |#1| (-292 |#2|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#2|)))) (-15 -3646 ((-112) |#2| |#1|)) (-15 -2097 ((-765) |#2| |#1|)) (-15 -2554 ((-635 |#2|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#2|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-487 |#1|) (-139) (-1204)) (T -487)) -((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1204)))) (-2100 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4401)) (-4 *1 (-487 *3)) (-4 *3 (-1204)))) (-2099 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4)) (-4 *4 (-1204)) (-5 *2 (-112)))) (-2098 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4)) (-4 *4 (-1204)) (-5 *2 (-112)))) (-2097 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4)) (-4 *4 (-1204)) (-5 *2 (-765)))) (-2096 (*1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-5 *2 (-635 *3)))) (-2554 (*1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-5 *2 (-635 *3)))) (-2097 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-765)))) (-3646 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) (IF (|has| |t#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |t#1| (-1091)) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4401)) (-15 -2100 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4400)) (PROGN (-15 -2099 ((-112) (-1 (-112) |t#1|) $)) (-15 -2098 ((-112) (-1 (-112) |t#1|) $)) (-15 -2097 ((-765) (-1 (-112) |t#1|) $)) (-15 -2096 ((-635 |t#1|) $)) (-15 -2554 ((-635 |t#1|) $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -2097 ((-765) |t#1| $)) (-15 -3646 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-4353 ((|#1| $) 6) (($ |#1|) 9))) -(((-488 |#1|) (-139) (-1204)) (T -488)) -NIL -(-13 (-608 |t#1|) (-611 |t#1|)) -(((-611 |#1|) . T) ((-608 |#1|) . T)) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2101 (($ (-1148)) 8)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 14) (((-1148) $) 11)) (-3437 (((-112) $ $) 10))) -(((-489) (-13 (-1091) (-608 (-1148)) (-10 -8 (-15 -2101 ($ (-1148)))))) (T -489)) -((-2101 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-489))))) -(-13 (-1091) (-608 (-1148)) (-10 -8 (-15 -2101 ($ (-1148))))) -((-3891 (($ $) 15)) (-3889 (($ $) 24)) (-3893 (($ $) 12)) (-3894 (($ $) 10)) (-3892 (($ $) 17)) (-3890 (($ $) 22))) -(((-490 |#1|) (-10 -8 (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|))) (-491)) (T -490)) -NIL -(-10 -8 (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|))) -((-3891 (($ $) 11)) (-3889 (($ $) 10)) (-3893 (($ $) 9)) (-3894 (($ $) 8)) (-3892 (($ $) 7)) (-3890 (($ $) 6))) -(((-491) (-139)) (T -491)) -((-3891 (*1 *1 *1) (-4 *1 (-491))) (-3889 (*1 *1 *1) (-4 *1 (-491))) (-3893 (*1 *1 *1) (-4 *1 (-491))) (-3894 (*1 *1 *1) (-4 *1 (-491))) (-3892 (*1 *1 *1) (-4 *1 (-491))) (-3890 (*1 *1 *1) (-4 *1 (-491)))) -(-13 (-10 -8 (-15 -3890 ($ $)) (-15 -3892 ($ $)) (-15 -3894 ($ $)) (-15 -3893 ($ $)) (-15 -3889 ($ $)) (-15 -3891 ($ $)))) -((-4139 (((-404 |#4|) |#4| (-1 (-404 |#2|) |#2|)) 42))) -(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4| (-1 (-404 |#2|) |#2|)))) (-362) (-1229 |#1|) (-13 (-362) (-146) (-718 |#1| |#2|)) (-1229 |#3|)) (T -492)) -((-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-4 *7 (-13 (-362) (-146) (-718 *5 *6))) (-5 *2 (-404 *3)) (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1229 *7))))) -(-10 -7 (-15 -4139 ((-404 |#4|) |#4| (-1 (-404 |#2|) |#2|)))) -((-2947 (((-112) $ $) NIL)) (-1695 (((-635 $) (-1160 $) (-1166)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-939 $)) NIL)) (-1287 (($ (-1160 $) (-1166)) NIL) (($ (-1160 $)) NIL) (($ (-939 $)) NIL)) (-3589 (((-112) $) 38)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2102 (((-112) $ $) 63)) (-1688 (((-635 (-606 $)) $) 47)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1692 (($ $ (-292 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-1288 (((-635 $) (-1160 $) (-1166)) NIL) (((-635 $) (-1160 $)) NIL) (((-635 $) (-939 $)) NIL)) (-3584 (($ (-1160 $) (-1166)) NIL) (($ (-1160 $)) NIL) (($ (-939 $)) NIL)) (-3558 (((-3 (-606 $) #1="failed") $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 (-406 (-544)) #1#) $) NIL)) (-3557 (((-606 $) $) NIL) (((-544) $) NIL) (((-406 (-544)) $) 49)) (-2943 (($ $ $) NIL)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-406 (-544)))) (|:| |vec| (-1253 (-406 (-544))))) (-682 $) (-1253 $)) NIL) (((-682 (-406 (-544))) (-682 $)) NIL)) (-4249 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2952 (($ $) NIL) (($ (-635 $)) NIL)) (-1687 (((-635 (-113)) $) NIL)) (-3430 (((-113) (-113)) NIL)) (-2545 (((-112) $) 41)) (-3055 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-3381 (((-1115 (-544) (-606 $)) $) 36)) (-3394 (($ $ (-544)) NIL)) (-3517 (((-1160 $) (-1160 $) (-606 $)) 77) (((-1160 $) (-1160 $) (-635 (-606 $))) 54) (($ $ (-606 $)) 66) (($ $ (-635 (-606 $))) 67)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-1685 (((-1160 $) (-606 $)) 64 (|has| $ (-1042)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 $ $) (-606 $)) NIL)) (-1690 (((-3 (-606 $) "failed") $) NIL)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-1689 (((-635 (-606 $)) $) NIL)) (-2356 (($ (-113) $) NIL) (($ (-113) (-635 $)) NIL)) (-3013 (((-112) $ (-113)) NIL) (((-112) $ (-1166)) NIL)) (-2779 (($ $) NIL)) (-2982 (((-765) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1686 (((-112) $ $) NIL) (((-112) $ (-1166)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL (|has| $ (-1031 (-544))))) (-4174 (($ $ (-606 $) $) NIL) (($ $ (-635 (-606 $)) (-635 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-1166)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-1166) (-1 $ (-635 $))) NIL) (($ $ (-1166) (-1 $ $)) NIL) (($ $ (-635 (-113)) (-635 (-1 $ $))) NIL) (($ $ (-635 (-113)) (-635 (-1 $ (-635 $)))) NIL) (($ $ (-113) (-1 $ (-635 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1732 (((-765) $) NIL)) (-4206 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-635 $)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1691 (($ $) NIL) (($ $ $) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) 35)) (-3380 (((-1115 (-544) (-606 $)) $) 19)) (-3586 (($ $) NIL (|has| $ (-1042)))) (-4377 (((-377) $) 91) (((-224) $) 99) (((-167 (-377)) $) 107)) (-4353 (((-857) $) NIL) (($ (-606 $)) NIL) (($ (-406 (-544))) NIL) (($ $) NIL) (($ (-544)) NIL) (($ (-1115 (-544) (-606 $))) 20)) (-3511 (((-765)) NIL)) (-2969 (($ $) NIL) (($ (-635 $)) NIL)) (-2377 (((-112) (-113)) 83)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 10 T CONST)) (-3046 (($) 21 T CONST)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 23)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4356 (($ $ $) 43)) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-406 (-544))) NIL) (($ $ (-544)) 45) (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ $ $) 26) (($ (-544) $) NIL) (($ (-765) $) NIL) (($ (-912) $) NIL))) -(((-493) (-13 (-297) (-27) (-1031 (-544)) (-1031 (-406 (-544))) (-634 (-544)) (-1013) (-634 (-406 (-544))) (-146) (-609 (-167 (-377))) (-232) (-10 -8 (-15 -4353 ($ (-1115 (-544) (-606 $)))) (-15 -3381 ((-1115 (-544) (-606 $)) $)) (-15 -3380 ((-1115 (-544) (-606 $)) $)) (-15 -4249 ($ $)) (-15 -2102 ((-112) $ $)) (-15 -3517 ((-1160 $) (-1160 $) (-606 $))) (-15 -3517 ((-1160 $) (-1160 $) (-635 (-606 $)))) (-15 -3517 ($ $ (-606 $))) (-15 -3517 ($ $ (-635 (-606 $))))))) (T -493)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493)))) (-4249 (*1 *1 *1) (-5 *1 (-493))) (-2102 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493)))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-493))) (-5 *3 (-606 (-493))) (-5 *1 (-493)))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-493))) (-5 *3 (-635 (-606 (-493)))) (-5 *1 (-493)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-493))) (-5 *1 (-493)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-606 (-493)))) (-5 *1 (-493))))) -(-13 (-297) (-27) (-1031 (-544)) (-1031 (-406 (-544))) (-634 (-544)) (-1013) (-634 (-406 (-544))) (-146) (-609 (-167 (-377))) (-232) (-10 -8 (-15 -4353 ($ (-1115 (-544) (-606 $)))) (-15 -3381 ((-1115 (-544) (-606 $)) $)) (-15 -3380 ((-1115 (-544) (-606 $)) $)) (-15 -4249 ($ $)) (-15 -2102 ((-112) $ $)) (-15 -3517 ((-1160 $) (-1160 $) (-606 $))) (-15 -3517 ((-1160 $) (-1160 $) (-635 (-606 $)))) (-15 -3517 ($ $ (-606 $))) (-15 -3517 ($ $ (-635 (-606 $)))))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) 25 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 22 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 21)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 14)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 12 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) 23 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) 10 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 13)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) 24) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 9 (|has| $ (-6 -4400))))) -(((-494 |#1| |#2|) (-19 |#1|) (-1204) (-544)) (T -494)) +((-4041 (((-112) $ $) NIL)) (-1913 (((-639 (-505)) $) 11)) (-3254 (((-505) $) 10)) (-2913 (((-1150) $) NIL)) (-3709 (($ (-505) (-639 (-505))) 9)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 20) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-482) (-13 (-1075) (-10 -8 (-15 -3709 ($ (-505) (-639 (-505)))) (-15 -3254 ((-505) $)) (-15 -1913 ((-639 (-505)) $))))) (T -482)) +((-3709 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-505))) (-5 *2 (-505)) (-5 *1 (-482)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-482)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-639 (-505))) (-5 *1 (-482))))) +(-13 (-1075) (-10 -8 (-15 -3709 ($ (-505) (-639 (-505)))) (-15 -3254 ((-505) $)) (-15 -1913 ((-639 (-505)) $)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) NIL)) (-1800 (($) NIL T CONST)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-2673 (($ $ $) 32)) (-1610 (($ $ $) 31)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2993 ((|#1| $) 26)) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3262 ((|#1| $) 27)) (-4300 (($ |#1| $) 10)) (-2408 (($ (-639 |#1|)) 12)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1904 ((|#1| $) 23)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 9)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) 29)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) 21 (|has| $ (-6 -4402))))) +(((-483 |#1|) (-13 (-963 |#1|) (-10 -8 (-15 -2408 ($ (-639 |#1|))))) (-845)) (T -483)) +((-2408 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-483 *3))))) +(-13 (-963 |#1|) (-10 -8 (-15 -2408 ($ (-639 |#1|))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1955 (($ $) 69)) (-2875 (((-112) $) NIL)) (-2913 (((-1150) $) NIL)) (-1366 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 44)) (-1709 (((-1112) $) NIL)) (-3148 (((-3 |#4| "failed") $) 107)) (-1329 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-562)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-2018 (((-2 (|:| -1416 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4054 (((-857) $) 102)) (-2286 (($) 33 T CONST)) (-1731 (((-112) $ $) 109)) (-1848 (($ $) 72) (($ $ $) NIL)) (-1835 (($ $ $) 70)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 73))) +(((-484 |#1| |#2| |#3| |#4|) (-334 |#1| |#2| |#3| |#4|) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -484)) +NIL +(-334 |#1| |#2| |#3| |#4|) +((-2388 (((-562) (-639 (-562))) 29)) (-1976 ((|#1| (-639 |#1|)) 55)) (-2950 (((-639 |#1|) (-639 |#1|)) 56)) (-1558 (((-639 |#1|) (-639 |#1|)) 58)) (-1606 ((|#1| (-639 |#1|)) 57)) (-3900 (((-639 (-562)) (-639 |#1|)) 32))) +(((-485 |#1|) (-10 -7 (-15 -1606 (|#1| (-639 |#1|))) (-15 -1976 (|#1| (-639 |#1|))) (-15 -1558 ((-639 |#1|) (-639 |#1|))) (-15 -2950 ((-639 |#1|) (-639 |#1|))) (-15 -3900 ((-639 (-562)) (-639 |#1|))) (-15 -2388 ((-562) (-639 (-562))))) (-1232 (-562))) (T -485)) +((-2388 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-562)) (-5 *1 (-485 *4)) (-4 *4 (-1232 *2)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1232 (-562))) (-5 *2 (-639 (-562))) (-5 *1 (-485 *4)))) (-2950 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1232 (-562))) (-5 *1 (-485 *3)))) (-1558 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1232 (-562))) (-5 *1 (-485 *3)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-485 *2)) (-4 *2 (-1232 (-562))))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-485 *2)) (-4 *2 (-1232 (-562)))))) +(-10 -7 (-15 -1606 (|#1| (-639 |#1|))) (-15 -1976 (|#1| (-639 |#1|))) (-15 -1558 ((-639 |#1|) (-639 |#1|))) (-15 -2950 ((-639 |#1|) (-639 |#1|))) (-15 -3900 ((-639 (-562)) (-639 |#1|))) (-15 -2388 ((-562) (-639 (-562))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 (((-562) $) NIL (|has| (-562) (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL (|has| (-562) (-815)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-562) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-562) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-562) (-1033 (-562))))) (-3961 (((-562) $) NIL) (((-1168) $) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-562) (-1033 (-562)))) (((-562) $) NIL (|has| (-562) (-1033 (-562))))) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-562) (-544)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3519 (((-112) $) NIL (|has| (-562) (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-562) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-562) (-881 (-378))))) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL)) (-4065 (((-562) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| (-562) (-1143)))) (-3392 (((-112) $) NIL (|has| (-562) (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-562) (-845)))) (-4152 (($ (-1 (-562) (-562)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-562) (-1143)) CONST)) (-3702 (($ (-406 (-562))) 9)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL (|has| (-562) (-306))) (((-406 (-562)) $) NIL)) (-4014 (((-562) $) NIL (|has| (-562) (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-562)) (-639 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-562) (-562)) NIL (|has| (-562) (-308 (-562)))) (($ $ (-293 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-293 (-562)))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-1168)) (-639 (-562))) NIL (|has| (-562) (-513 (-1168) (-562)))) (($ $ (-1168) (-562)) NIL (|has| (-562) (-513 (-1168) (-562))))) (-1577 (((-766) $) NIL)) (-2343 (($ $ (-562)) NIL (|has| (-562) (-285 (-562) (-562))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-3658 (($ $) NIL)) (-4076 (((-562) $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| (-562) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-562) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-562) (-610 (-535)))) (((-378) $) NIL (|has| (-562) (-1017))) (((-224) $) NIL (|has| (-562) (-1017)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-562) (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 8) (($ (-562)) NIL) (($ (-1168)) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL) (((-999 16) $) 10)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-562) (-904))) (|has| (-562) (-144))))) (-2579 (((-766)) NIL)) (-2604 (((-562) $) NIL (|has| (-562) (-544)))) (-2922 (((-112) $ $) NIL)) (-3526 (($ $) NIL (|has| (-562) (-815)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1759 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1859 (($ $ $) NIL) (($ (-562) (-562)) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-562) $) NIL) (($ $ (-562)) NIL))) +(((-486) (-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 16)) (-10 -8 (-15 -2736 ((-406 (-562)) $)) (-15 -3702 ($ (-406 (-562))))))) (T -486)) +((-2736 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-486)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-486))))) +(-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 16)) (-10 -8 (-15 -2736 ((-406 (-562)) $)) (-15 -3702 ($ (-406 (-562)))))) +((-1912 (((-639 |#2|) $) 23)) (-1669 (((-112) |#2| $) 28)) (-1763 (((-112) (-1 (-112) |#2|) $) 21)) (-1433 (($ $ (-639 (-293 |#2|))) 13) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-639 |#2|) (-639 |#2|)) NIL)) (-1723 (((-766) (-1 (-112) |#2|) $) 22) (((-766) |#2| $) 26)) (-4054 (((-857) $) 37)) (-1744 (((-112) (-1 (-112) |#2|) $) 20)) (-1731 (((-112) $ $) 31)) (-3492 (((-766) $) 17))) +(((-487 |#1| |#2|) (-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1669 ((-112) |#2| |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1912 ((-639 |#2|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|))) (-488 |#2|) (-1207)) (T -487)) +NIL +(-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1669 ((-112) |#2| |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1912 ((-639 |#2|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-1800 (($) 7 T CONST)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-488 |#1|) (-139) (-1207)) (T -488)) +((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-488 *3)) (-4 *3 (-1207)))) (-1490 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) (-4 *3 (-1207)))) (-1744 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4402)) (-4 *1 (-488 *4)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-1763 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4402)) (-4 *1 (-488 *4)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-1723 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4402)) (-4 *1 (-488 *4)) (-4 *4 (-1207)) (-5 *2 (-766)))) (-1720 (*1 *2 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) (-5 *2 (-639 *3)))) (-1912 (*1 *2 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) (-5 *2 (-639 *3)))) (-1723 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-766)))) (-1669 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) (IF (|has| |t#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |t#1| (-1092)) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4403)) (-15 -1490 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4402)) (PROGN (-15 -1744 ((-112) (-1 (-112) |t#1|) $)) (-15 -1763 ((-112) (-1 (-112) |t#1|) $)) (-15 -1723 ((-766) (-1 (-112) |t#1|) $)) (-15 -1720 ((-639 |t#1|) $)) (-15 -1912 ((-639 |t#1|) $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -1723 ((-766) |t#1| $)) (-15 -1669 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-4054 ((|#1| $) 6) (($ |#1|) 9))) +(((-489 |#1|) (-139) (-1207)) (T -489)) +NIL +(-13 (-609 |t#1|) (-612 |t#1|)) +(((-612 |#1|) . T) ((-609 |#1|) . T)) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-2899 (($ (-1150)) 8)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 14) (((-1150) $) 11)) (-1731 (((-112) $ $) 10))) +(((-490) (-13 (-1092) (-609 (-1150)) (-10 -8 (-15 -2899 ($ (-1150)))))) (T -490)) +((-2899 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-490))))) +(-13 (-1092) (-609 (-1150)) (-10 -8 (-15 -2899 ($ (-1150))))) +((-2988 (($ $) 15)) (-4207 (($ $) 24)) (-3014 (($ $) 12)) (-3023 (($ $) 10)) (-3001 (($ $) 17)) (-2978 (($ $) 22))) +(((-491 |#1|) (-10 -8 (-15 -2978 (|#1| |#1|)) (-15 -3001 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -4207 (|#1| |#1|)) (-15 -2988 (|#1| |#1|))) (-492)) (T -491)) +NIL +(-10 -8 (-15 -2978 (|#1| |#1|)) (-15 -3001 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -4207 (|#1| |#1|)) (-15 -2988 (|#1| |#1|))) +((-2988 (($ $) 11)) (-4207 (($ $) 10)) (-3014 (($ $) 9)) (-3023 (($ $) 8)) (-3001 (($ $) 7)) (-2978 (($ $) 6))) +(((-492) (-139)) (T -492)) +((-2988 (*1 *1 *1) (-4 *1 (-492))) (-4207 (*1 *1 *1) (-4 *1 (-492))) (-3014 (*1 *1 *1) (-4 *1 (-492))) (-3023 (*1 *1 *1) (-4 *1 (-492))) (-3001 (*1 *1 *1) (-4 *1 (-492))) (-2978 (*1 *1 *1) (-4 *1 (-492)))) +(-13 (-10 -8 (-15 -2978 ($ $)) (-15 -3001 ($ $)) (-15 -3023 ($ $)) (-15 -3014 ($ $)) (-15 -4207 ($ $)) (-15 -2988 ($ $)))) +((-1635 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 42))) +(((-493 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-362) (-1232 |#1|) (-13 (-362) (-146) (-719 |#1| |#2|)) (-1232 |#3|)) (T -493)) +((-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-4 *7 (-13 (-362) (-146) (-719 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-493 *5 *6 *7 *3)) (-4 *3 (-1232 *7))))) +(-10 -7 (-15 -1635 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) +((-4041 (((-112) $ $) NIL)) (-1404 (((-639 $) (-1164 $) (-1168)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-947 $)) NIL)) (-1821 (($ (-1164 $) (-1168)) NIL) (($ (-1164 $)) NIL) (($ (-947 $)) NIL)) (-1952 (((-112) $) 38)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-1607 (((-112) $ $) 63)) (-1495 (((-639 (-608 $)) $) 47)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3165 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-1643 (($ $) NIL)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-3646 (((-639 $) (-1164 $) (-1168)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-947 $)) NIL)) (-1502 (($ (-1164 $) (-1168)) NIL) (($ (-1164 $)) NIL) (($ (-947 $)) NIL)) (-4048 (((-3 (-608 $) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL)) (-3961 (((-608 $) $) NIL) (((-562) $) NIL) (((-406 (-562)) $) 49)) (-1811 (($ $ $) NIL)) (-2406 (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1545 (-683 (-406 (-562)))) (|:| |vec| (-1256 (-406 (-562))))) (-683 $) (-1256 $)) NIL) (((-683 (-406 (-562))) (-683 $)) NIL)) (-1955 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-1383 (($ $) NIL) (($ (-639 $)) NIL)) (-3936 (((-639 (-114)) $) NIL)) (-2876 (((-114) (-114)) NIL)) (-1957 (((-112) $) 41)) (-3130 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-4065 (((-1117 (-562) (-608 $)) $) 36)) (-1891 (($ $ (-562)) NIL)) (-2247 (((-1164 $) (-1164 $) (-608 $)) 77) (((-1164 $) (-1164 $) (-639 (-608 $))) 54) (($ $ (-608 $)) 66) (($ $ (-639 (-608 $))) 67)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1677 (((-1164 $) (-608 $)) 64 (|has| $ (-1044)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 $ $) (-608 $)) NIL)) (-4367 (((-3 (-608 $) "failed") $) NIL)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1583 (((-639 (-608 $)) $) NIL)) (-4141 (($ (-114) $) NIL) (($ (-114) (-639 $)) NIL)) (-1776 (((-112) $ (-114)) NIL) (((-112) $ (-1168)) NIL)) (-1525 (($ $) NIL)) (-3060 (((-766) $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-4296 (((-112) $ $) NIL) (((-112) $ (-1168)) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3803 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1577 (((-766) $) NIL)) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3790 (($ $) NIL) (($ $ $) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) 35)) (-4076 (((-1117 (-562) (-608 $)) $) 19)) (-2096 (($ $) NIL (|has| $ (-1044)))) (-4208 (((-378) $) 91) (((-224) $) 99) (((-168 (-378)) $) 107)) (-4054 (((-857) $) NIL) (($ (-608 $)) NIL) (($ (-406 (-562))) NIL) (($ $) NIL) (($ (-562)) NIL) (($ (-1117 (-562) (-608 $))) 20)) (-2579 (((-766)) NIL)) (-2746 (($ $) NIL) (($ (-639 $)) NIL)) (-2803 (((-112) (-114)) 83)) (-2922 (((-112) $ $) NIL)) (-2286 (($) 10 T CONST)) (-2294 (($) 21 T CONST)) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 23)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1859 (($ $ $) 43)) (-1848 (($ $ $) NIL) (($ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-406 (-562))) NIL) (($ $ (-562)) 45) (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ $ $) 26) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL))) +(((-494) (-13 (-301) (-27) (-1033 (-562)) (-1033 (-406 (-562))) (-635 (-562)) (-1017) (-635 (-406 (-562))) (-146) (-610 (-168 (-378))) (-232) (-10 -8 (-15 -4054 ($ (-1117 (-562) (-608 $)))) (-15 -4065 ((-1117 (-562) (-608 $)) $)) (-15 -4076 ((-1117 (-562) (-608 $)) $)) (-15 -1955 ($ $)) (-15 -1607 ((-112) $ $)) (-15 -2247 ((-1164 $) (-1164 $) (-608 $))) (-15 -2247 ((-1164 $) (-1164 $) (-639 (-608 $)))) (-15 -2247 ($ $ (-608 $))) (-15 -2247 ($ $ (-639 (-608 $))))))) (T -494)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) (-1955 (*1 *1 *1) (-5 *1 (-494))) (-1607 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-494)))) (-2247 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-494))) (-5 *3 (-608 (-494))) (-5 *1 (-494)))) (-2247 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-494))) (-5 *3 (-639 (-608 (-494)))) (-5 *1 (-494)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-608 (-494))) (-5 *1 (-494)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-608 (-494)))) (-5 *1 (-494))))) +(-13 (-301) (-27) (-1033 (-562)) (-1033 (-406 (-562))) (-635 (-562)) (-1017) (-635 (-406 (-562))) (-146) (-610 (-168 (-378))) (-232) (-10 -8 (-15 -4054 ($ (-1117 (-562) (-608 $)))) (-15 -4065 ((-1117 (-562) (-608 $)) $)) (-15 -4076 ((-1117 (-562) (-608 $)) $)) (-15 -1955 ($ $)) (-15 -1607 ((-112) $ $)) (-15 -2247 ((-1164 $) (-1164 $) (-608 $))) (-15 -2247 ((-1164 $) (-1164 $) (-639 (-608 $)))) (-15 -2247 ($ $ (-608 $))) (-15 -2247 ($ $ (-639 (-608 $)))))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) 25 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) 22 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 21)) (-4264 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1458 (($ (-766) |#1|) 14)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) 12 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) 23 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) 10 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 13)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) 24) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 9 (|has| $ (-6 -4402))))) +(((-495 |#1| |#2|) (-19 |#1|) (-1207) (-562)) (T -495)) NIL (-19 |#1|) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL)) (-1332 (($ $ (-544) (-494 |#1| |#3|)) NIL)) (-1331 (($ $ (-544) (-494 |#1| |#2|)) NIL)) (-4131 (($) NIL T CONST)) (-3497 (((-494 |#1| |#3|) $ (-544)) NIL)) (-1665 ((|#1| $ (-544) (-544) |#1|) NIL)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3500 (((-765) $) NIL)) (-4021 (($ (-765) (-765) |#1|) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 (((-494 |#1| |#2|) $ (-544)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-495 |#1| |#2| |#3|) (-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) (-1204) (-544) (-544)) (T -495)) -NIL -(-57 |#1| (-494 |#1| |#3|) (-494 |#1| |#2|)) -((-2104 (((-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765)) 27)) (-2103 (((-635 (-1160 |#1|)) |#1| (-765) (-765) (-765)) 34)) (-2232 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765)) 84))) -(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -2103 ((-635 (-1160 |#1|)) |#1| (-765) (-765) (-765))) (-15 -2104 ((-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765))) (-15 -2232 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765)))) (-349) (-1229 |#1|) (-1229 |#2|)) (T -496)) -((-2232 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-2 (|:| -2162 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7))))) (-5 *5 (-765)) (-4 *8 (-1229 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -2162 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7)))) (-5 *1 (-496 *6 *7 *8)))) (-2104 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-765)) (-4 *5 (-349)) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-2 (|:| -2162 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6))))) (-5 *1 (-496 *5 *6 *7)) (-5 *3 (-2 (|:| -2162 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6)))) (-4 *7 (-1229 *6)))) (-2103 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-765)) (-4 *3 (-349)) (-4 *5 (-1229 *3)) (-5 *2 (-635 (-1160 *3))) (-5 *1 (-496 *3 *5 *6)) (-4 *6 (-1229 *5))))) -(-10 -7 (-15 -2103 ((-635 (-1160 |#1|)) |#1| (-765) (-765) (-765))) (-15 -2104 ((-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-765) (-765))) (-15 -2232 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) (-635 |#3|) (-635 (-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) (-765)))) -((-2110 (((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))) 62)) (-2105 ((|#1| (-682 |#1|) |#1| (-765)) 25)) (-2107 (((-765) (-765) (-765)) 30)) (-2109 (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 42)) (-2108 (((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|) 50) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 47)) (-2106 ((|#1| (-682 |#1|) (-682 |#1|) |#1| (-544)) 29)) (-3733 ((|#1| (-682 |#1|)) 18))) -(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -3733 (|#1| (-682 |#1|))) (-15 -2105 (|#1| (-682 |#1|) |#1| (-765))) (-15 -2106 (|#1| (-682 |#1|) (-682 |#1|) |#1| (-544))) (-15 -2107 ((-765) (-765) (-765))) (-15 -2108 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2108 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2109 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2110 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))))) (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $)))) (-1229 |#1|) (-409 |#1| |#2|)) (T -497)) -((-2110 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2109 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2108 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2107 (*1 *2 *2 *2) (-12 (-5 *2 (-765)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2106 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-682 *2)) (-5 *4 (-544)) (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *5 (-1229 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-2105 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-682 *2)) (-5 *4 (-765)) (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *5 (-1229 *2)) (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-682 *2)) (-4 *4 (-1229 *2)) (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-409 *2 *4))))) -(-10 -7 (-15 -3733 (|#1| (-682 |#1|))) (-15 -2105 (|#1| (-682 |#1|) |#1| (-765))) (-15 -2106 (|#1| (-682 |#1|) (-682 |#1|) |#1| (-544))) (-15 -2107 ((-765) (-765) (-765))) (-15 -2108 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2108 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2109 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2110 ((-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|))) (-2 (|:| -2162 (-682 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-682 |#1|)))))) -((-2947 (((-112) $ $) NIL)) (-2430 (($ $) NIL)) (-3725 (($ $ $) 35)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| (-112) (-844))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-112) (-844)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4401)))) (-3292 (($ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-112) $ (-1220 (-544)) (-112)) NIL (|has| $ (-6 -4401))) (((-112) $ (-544) (-112)) 36 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-3810 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-4249 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-1665 (((-112) $ (-544) (-112)) NIL (|has| $ (-6 -4401)))) (-3498 (((-112) $ (-544)) NIL)) (-3823 (((-544) (-112) $ (-544)) NIL (|has| (-112) (-1091))) (((-544) (-112) $) NIL (|has| (-112) (-1091))) (((-544) (-1 (-112) (-112)) $) NIL)) (-2096 (((-635 (-112)) $) NIL (|has| $ (-6 -4400)))) (-3239 (($ $ $) 33)) (-3726 (($ $) NIL)) (-1382 (($ $ $) NIL)) (-4021 (($ (-765) (-112)) 23)) (-1383 (($ $ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 8 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL)) (-3917 (($ $ $) NIL (|has| (-112) (-844))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2554 (((-635 (-112)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL)) (-2100 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ (-112) $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-112) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2345 (($ $ (-112)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-112)) (-635 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-292 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091)))) (($ $ (-635 (-292 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091))))) (-2351 (((-635 (-112)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 24)) (-4206 (($ $ (-1220 (-544))) NIL) (((-112) $ (-544)) 18) (((-112) $ (-544) (-112)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2097 (((-765) (-112) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-112) (-1091)))) (((-765) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) 25)) (-4377 (((-533) $) NIL (|has| (-112) (-609 (-533))))) (-3929 (($ (-635 (-112))) NIL)) (-4208 (($ (-635 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4353 (((-857) $) 22)) (-2099 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4400)))) (-3240 (($ $ $) 31)) (-2428 (($ $ $) NIL)) (-3722 (($ $ $) 39)) (-3724 (($ $) 37)) (-3723 (($ $ $) 38)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 26)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 27)) (-2429 (($ $ $) NIL)) (-4364 (((-765) $) 10 (|has| $ (-6 -4400))))) -(((-498 |#1|) (-13 (-123) (-10 -8 (-15 -3724 ($ $)) (-15 -3722 ($ $ $)) (-15 -3723 ($ $ $)))) (-544)) (T -498)) -((-3724 (*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544)))) (-3722 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544)))) (-3723 (*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544))))) -(-13 (-123) (-10 -8 (-15 -3724 ($ $)) (-15 -3722 ($ $ $)) (-15 -3723 ($ $ $)))) -((-2112 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1160 |#4|)) 34)) (-2111 (((-1160 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1160 |#4|)) 21)) (-2113 (((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1160 |#4|))) 45)) (-2114 (((-1160 (-1160 |#4|)) (-1 |#4| |#1|) |#3|) 54))) -(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2111 (|#2| (-1 |#1| |#4|) (-1160 |#4|))) (-15 -2111 ((-1160 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2112 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1160 |#4|))) (-15 -2113 ((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1160 |#4|)))) (-15 -2114 ((-1160 (-1160 |#4|)) (-1 |#4| |#1|) |#3|))) (-1042) (-1229 |#1|) (-1229 |#2|) (-1042)) (T -499)) -((-2114 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *6 (-1229 *5)) (-5 *2 (-1160 (-1160 *7))) (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1229 *6)))) (-2113 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-682 (-1160 *8))) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *6)) (-5 *1 (-499 *5 *6 *7 *8)) (-4 *7 (-1229 *6)))) (-2112 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1160 *7)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *4 (-1229 *5)) (-5 *2 (-1160 *7)) (-5 *1 (-499 *5 *4 *6 *7)) (-4 *6 (-1229 *4)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1160 *7)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2))))) -(-10 -7 (-15 -2111 (|#2| (-1 |#1| |#4|) (-1160 |#4|))) (-15 -2111 ((-1160 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2112 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1160 |#4|))) (-15 -2113 ((-3 (-682 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-682 (-1160 |#4|)))) (-15 -2114 ((-1160 (-1160 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2947 (((-112) $ $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2115 (((-1259) $) 19)) (-4206 (((-1148) $ (-1166)) 23)) (-4024 (((-1259) $) 15)) (-4353 (((-857) $) 21) (($ (-1148)) 20)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 9)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 8))) -(((-500) (-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -4353 ($ (-1148)))))) (T -500)) -((-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1148)) (-5 *1 (-500)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-500))))) -(-13 (-844) (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) (-15 -2115 ((-1259) $)) (-15 -4353 ($ (-1148))))) -((-4148 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4146 ((|#1| |#4|) 10)) (-4147 ((|#3| |#4|) 17))) -(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4146 (|#1| |#4|)) (-15 -4147 (|#3| |#4|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-554) (-984 |#1|) (-371 |#1|) (-371 |#2|)) (T -501)) -((-4148 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-501 *4 *5 *6 *3)) (-4 *6 (-371 *4)) (-4 *3 (-371 *5)))) (-4147 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-4 *2 (-371 *4)) (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-371 *5)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-501 *2 *4 *5 *3)) (-4 *5 (-371 *2)) (-4 *3 (-371 *4))))) -(-10 -7 (-15 -4146 (|#1| |#4|)) (-15 -4147 (|#3| |#4|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2947 (((-112) $ $) NIL)) (-2125 (((-112) $ (-635 |#3|)) 103) (((-112) $) 104)) (-3589 (((-112) $) 147)) (-2117 (($ $ |#4|) 95) (($ $ |#4| (-635 |#3|)) 99)) (-2116 (((-1155 (-635 (-939 |#1|)) (-635 (-292 (-939 |#1|)))) (-635 |#4|)) 140 (|has| |#3| (-609 (-1166))))) (-2124 (($ $ $) 89) (($ $ |#4|) 87)) (-2545 (((-112) $) 146)) (-2121 (($ $) 107)) (-3643 (((-1148) $) NIL)) (-3639 (($ $ $) 81) (($ (-635 $)) 83)) (-2126 (((-112) |#4| $) 106)) (-2127 (((-112) $ $) 70)) (-2120 (($ (-635 |#4|)) 88)) (-3644 (((-1110) $) NIL)) (-2119 (($ (-635 |#4|)) 144)) (-2118 (((-112) $) 145)) (-2374 (($ $) 72)) (-3077 (((-635 |#4|) $) 56)) (-2123 (((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|)) NIL)) (-2128 (((-112) |#4| $) 75)) (-4318 (((-544) $ (-635 |#3|)) 108) (((-544) $) 109)) (-4353 (((-857) $) 143) (($ (-635 |#4|)) 84)) (-2122 (($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $))) NIL)) (-3437 (((-112) $ $) 71)) (-4246 (($ $ $) 91)) (** (($ $ (-765)) 94)) (* (($ $ $) 93))) -(((-502 |#1| |#2| |#3| |#4|) (-13 (-1091) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 -4246 ($ $ $)) (-15 -2545 ((-112) $)) (-15 -3589 ((-112) $)) (-15 -2128 ((-112) |#4| $)) (-15 -2127 ((-112) $ $)) (-15 -2126 ((-112) |#4| $)) (-15 -2125 ((-112) $ (-635 |#3|))) (-15 -2125 ((-112) $)) (-15 -3639 ($ $ $)) (-15 -3639 ($ (-635 $))) (-15 -2124 ($ $ $)) (-15 -2124 ($ $ |#4|)) (-15 -2374 ($ $)) (-15 -2123 ((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|))) (-15 -2122 ($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)))) (-15 -4318 ((-544) $ (-635 |#3|))) (-15 -4318 ((-544) $)) (-15 -2121 ($ $)) (-15 -2120 ($ (-635 |#4|))) (-15 -2119 ($ (-635 |#4|))) (-15 -2118 ((-112) $)) (-15 -3077 ((-635 |#4|) $)) (-15 -4353 ($ (-635 |#4|))) (-15 -2117 ($ $ |#4|)) (-15 -2117 ($ $ |#4| (-635 |#3|))) (IF (|has| |#3| (-609 (-1166))) (-15 -2116 ((-1155 (-635 (-939 |#1|)) (-635 (-292 (-939 |#1|)))) (-635 |#4|))) |%noBranch|))) (-362) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -502)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-4246 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-2545 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-3589 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-2128 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2127 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-2126 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))) (-2125 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-3639 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-3639 (*1 *1 *2) (-12 (-5 *2 (-635 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-2124 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-2124 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-943 *3 *4 *5)))) (-2374 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-2 (|:| |mval| (-682 *4)) (|:| |invmval| (-682 *4)) (|:| |genIdeal| (-502 *4 *5 *6 *7)))) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-682 *3)) (|:| |invmval| (-682 *3)) (|:| |genIdeal| (-502 *3 *4 *5 *6)))) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-4318 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *2 (-544)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))) (-4318 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-544)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-2121 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2119 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2118 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-3077 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *6)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) (-2117 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-943 *3 *4 *5)))) (-2117 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-943 *4 *5 *6)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *6 (-609 (-1166))) (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1155 (-635 (-939 *4)) (-635 (-292 (-939 *4))))) (-5 *1 (-502 *4 *5 *6 *7))))) -(-13 (-1091) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 -4246 ($ $ $)) (-15 -2545 ((-112) $)) (-15 -3589 ((-112) $)) (-15 -2128 ((-112) |#4| $)) (-15 -2127 ((-112) $ $)) (-15 -2126 ((-112) |#4| $)) (-15 -2125 ((-112) $ (-635 |#3|))) (-15 -2125 ((-112) $)) (-15 -3639 ($ $ $)) (-15 -3639 ($ (-635 $))) (-15 -2124 ($ $ $)) (-15 -2124 ($ $ |#4|)) (-15 -2374 ($ $)) (-15 -2123 ((-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)) $ (-635 |#3|))) (-15 -2122 ($ (-2 (|:| |mval| (-682 |#1|)) (|:| |invmval| (-682 |#1|)) (|:| |genIdeal| $)))) (-15 -4318 ((-544) $ (-635 |#3|))) (-15 -4318 ((-544) $)) (-15 -2121 ($ $)) (-15 -2120 ($ (-635 |#4|))) (-15 -2119 ($ (-635 |#4|))) (-15 -2118 ((-112) $)) (-15 -3077 ((-635 |#4|) $)) (-15 -4353 ($ (-635 |#4|))) (-15 -2117 ($ $ |#4|)) (-15 -2117 ($ $ |#4| (-635 |#3|))) (IF (|has| |#3| (-609 (-1166))) (-15 -2116 ((-1155 (-635 (-939 |#1|)) (-635 (-292 (-939 |#1|)))) (-635 |#4|))) |%noBranch|))) -((-2129 (((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) 148)) (-2130 (((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) 149)) (-2131 (((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) 107)) (-4130 (((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) NIL)) (-2132 (((-635 (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) 151)) (-2133 (((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-635 (-858 |#1|))) 163))) -(((-503 |#1| |#2|) (-10 -7 (-15 -2129 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2130 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -4130 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2131 ((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2132 ((-635 (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2133 ((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-635 (-858 |#1|))))) (-635 (-1166)) (-765)) (T -503)) -((-2133 (*1 *2 *2 *3) (-12 (-5 *2 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) (-5 *3 (-635 (-858 *4))) (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *1 (-503 *4 *5)))) (-2132 (*1 *2 *3) (-12 (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-635 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544)))))) (-5 *1 (-503 *4 *5)) (-5 *3 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-502 (-406 (-544)) (-238 *4 (-765)) (-858 *3) (-246 *3 (-406 (-544))))) (-14 *3 (-635 (-1166))) (-14 *4 (-765)) (-5 *1 (-503 *3 *4)))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5))))) -(-10 -7 (-15 -2129 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2130 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -4130 ((-112) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2131 ((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2132 ((-635 (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544))))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))))) (-15 -2133 ((-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-502 (-406 (-544)) (-238 |#2| (-765)) (-858 |#1|) (-246 |#1| (-406 (-544)))) (-635 (-858 |#1|))))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11) (((-1166) $) 9)) (-3437 (((-112) $ $) 7))) -(((-504) (-13 (-1091) (-608 (-1166)))) (T -504)) -NIL -(-13 (-1091) (-608 (-1166))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) 12 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) 11) (($ $ $) 23)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 18))) -(((-505 |#1| |#2|) (-13 (-21) (-507 |#1| |#2|)) (-21) (-844)) (T -505)) -NIL -(-13 (-21) (-507 |#1| |#2|)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 12)) (-4131 (($) NIL T CONST)) (-4366 (($ $) 27)) (-3276 (($ |#1| |#2|) 24)) (-4365 (($ (-1 |#1| |#1|) $) 26)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) 28)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) 10 T CONST)) (-3437 (((-112) $ $) NIL)) (-4246 (($ $ $) 17)) (* (($ (-912) $) NIL) (($ (-765) $) 22))) -(((-506 |#1| |#2|) (-13 (-23) (-507 |#1| |#2|)) (-23) (-844)) (T -506)) -NIL -(-13 (-23) (-507 |#1| |#2|)) -((-2947 (((-112) $ $) 7)) (-4366 (($ $) 13)) (-3276 (($ |#1| |#2|) 16)) (-4365 (($ (-1 |#1| |#1|) $) 17)) (-2134 ((|#2| $) 14)) (-3575 ((|#1| $) 15)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6))) -(((-507 |#1| |#2|) (-139) (-1091) (-844)) (T -507)) -((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-844)))) (-3276 (*1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-844)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1091)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-844)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-844))))) -(-13 (-1091) (-10 -8 (-15 -4365 ($ (-1 |t#1| |t#1|) $)) (-15 -3276 ($ |t#1| |t#2|)) (-15 -3575 (|t#1| $)) (-15 -2134 (|t#2| $)) (-15 -4366 ($ $)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-4366 (($ $) 24)) (-3276 (($ |#1| |#2|) 21)) (-4365 (($ (-1 |#1| |#1|) $) 23)) (-2134 ((|#2| $) 26)) (-3575 ((|#1| $) 25)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20)) (-3437 (((-112) $ $) 13))) -(((-508 |#1| |#2|) (-507 |#1| |#2|) (-1091) (-844)) (T -508)) -NIL -(-507 |#1| |#2|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 13)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL))) -(((-509 |#1| |#2|) (-13 (-786) (-507 |#1| |#2|)) (-786) (-844)) (T -509)) -NIL -(-13 (-786) (-507 |#1| |#2|)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2778 (($ $ $) 16)) (-1391 (((-3 $ "failed") $ $) 13)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2134 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL))) -(((-510 |#1| |#2|) (-13 (-787) (-507 |#1| |#2|)) (-787) (-844)) (T -510)) -NIL -(-13 (-787) (-507 |#1| |#2|)) -((-4174 (($ $ (-635 |#2|) (-635 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-511 |#1| |#2| |#3|) (-10 -8 (-15 -4174 (|#1| |#1| |#2| |#3|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#3|)))) (-512 |#2| |#3|) (-1091) (-1204)) (T -511)) -NIL -(-10 -8 (-15 -4174 (|#1| |#1| |#2| |#3|)) (-15 -4174 (|#1| |#1| (-635 |#2|) (-635 |#3|)))) -((-4174 (($ $ (-635 |#1|) (-635 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-512 |#1| |#2|) (-139) (-1091) (-1204)) (T -512)) -((-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *5)) (-4 *1 (-512 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1204)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1204))))) -(-13 (-10 -8 (-15 -4174 ($ $ |t#1| |t#2|)) (-15 -4174 ($ $ (-635 |t#1|) (-635 |t#2|))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 16)) (-4180 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $) 18)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-2813 ((|#1| $ (-544)) 23)) (-1747 ((|#2| $ (-544)) 21)) (-2410 (($ (-1 |#1| |#1|) $) 46)) (-1746 (($ (-1 |#2| |#2|) $) 43)) (-3643 (((-1148) $) NIL)) (-1745 (($ $ $) 53 (|has| |#2| (-786)))) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 42) (($ |#1|) NIL)) (-4084 ((|#2| |#1| $) 49)) (-3040 (($) 11 T CONST)) (-3437 (((-112) $ $) 29)) (-4246 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-912) $) NIL) (($ (-765) $) 36) (($ |#2| |#1|) 31))) -(((-513 |#1| |#2| |#3|) (-322 |#1| |#2|) (-1091) (-130) |#2|) (T -513)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1928 (($ $ (-562) (-495 |#1| |#3|)) NIL)) (-3003 (($ $ (-562) (-495 |#1| |#2|)) NIL)) (-1800 (($) NIL T CONST)) (-3796 (((-495 |#1| |#3|) $ (-562)) NIL)) (-1505 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-2699 (((-766) $) NIL)) (-1458 (($ (-766) (-766) |#1|) NIL)) (-2709 (((-766) $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-2783 (((-562) $) NIL)) (-4217 (((-562) $) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4088 (((-562) $) NIL)) (-2453 (((-562) $) NIL)) (-1490 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2716 (($ $ |#1|) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2211 (((-495 |#1| |#2|) $ (-562)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-496 |#1| |#2| |#3|) (-57 |#1| (-495 |#1| |#3|) (-495 |#1| |#2|)) (-1207) (-562) (-562)) (T -496)) +NIL +(-57 |#1| (-495 |#1| |#3|) (-495 |#1| |#2|)) +((-2104 (((-639 (-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-766) (-766)) 27)) (-3414 (((-639 (-1164 |#1|)) |#1| (-766) (-766) (-766)) 34)) (-3757 (((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-639 |#3|) (-639 (-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-766)) 84))) +(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -3414 ((-639 (-1164 |#1|)) |#1| (-766) (-766) (-766))) (-15 -2104 ((-639 (-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-766) (-766))) (-15 -3757 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-639 |#3|) (-639 (-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-766)))) (-348) (-1232 |#1|) (-1232 |#2|)) (T -497)) +((-3757 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-2 (|:| -3928 (-683 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-683 *7))))) (-5 *5 (-766)) (-4 *8 (-1232 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-348)) (-5 *2 (-2 (|:| -3928 (-683 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-683 *7)))) (-5 *1 (-497 *6 *7 *8)))) (-2104 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-766)) (-4 *5 (-348)) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -3928 (-683 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-683 *6))))) (-5 *1 (-497 *5 *6 *7)) (-5 *3 (-2 (|:| -3928 (-683 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-683 *6)))) (-4 *7 (-1232 *6)))) (-3414 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-766)) (-4 *3 (-348)) (-4 *5 (-1232 *3)) (-5 *2 (-639 (-1164 *3))) (-5 *1 (-497 *3 *5 *6)) (-4 *6 (-1232 *5))))) +(-10 -7 (-15 -3414 ((-639 (-1164 |#1|)) |#1| (-766) (-766) (-766))) (-15 -2104 ((-639 (-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-766) (-766))) (-15 -3757 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-639 |#3|) (-639 (-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-766)))) +((-3573 (((-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|)))) 62)) (-3894 ((|#1| (-683 |#1|) |#1| (-766)) 25)) (-3557 (((-766) (-766) (-766)) 30)) (-1865 (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 42)) (-3112 (((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|) 50) (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 47)) (-3799 ((|#1| (-683 |#1|) (-683 |#1|) |#1| (-562)) 29)) (-3436 ((|#1| (-683 |#1|)) 18))) +(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3436 (|#1| (-683 |#1|))) (-15 -3894 (|#1| (-683 |#1|) |#1| (-766))) (-15 -3799 (|#1| (-683 |#1|) (-683 |#1|) |#1| (-562))) (-15 -3557 ((-766) (-766) (-766))) (-15 -3112 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3112 ((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|)) (-15 -1865 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3573 ((-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|)))))) (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $)))) (-1232 |#1|) (-408 |#1| |#2|)) (T -498)) +((-3573 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1865 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3112 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3112 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3557 (*1 *2 *2 *2) (-12 (-5 *2 (-766)) (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3799 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-683 *2)) (-5 *4 (-562)) (-4 *2 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-4 *5 (-1232 *2)) (-5 *1 (-498 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-3894 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-683 *2)) (-5 *4 (-766)) (-4 *2 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-4 *5 (-1232 *2)) (-5 *1 (-498 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-683 *2)) (-4 *4 (-1232 *2)) (-4 *2 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) (-5 *1 (-498 *2 *4 *5)) (-4 *5 (-408 *2 *4))))) +(-10 -7 (-15 -3436 (|#1| (-683 |#1|))) (-15 -3894 (|#1| (-683 |#1|) |#1| (-766))) (-15 -3799 (|#1| (-683 |#1|) (-683 |#1|) |#1| (-562))) (-15 -3557 ((-766) (-766) (-766))) (-15 -3112 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3112 ((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|)) (-15 -1865 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3573 ((-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -3928 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|)))))) +((-4041 (((-112) $ $) NIL)) (-3295 (($ $) NIL)) (-2265 (($ $ $) 35)) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) $) NIL (|has| (-112) (-845))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3381 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-845)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-1395 (($ $) NIL (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-4200 (((-112) $ (-1223 (-562)) (-112)) NIL (|has| $ (-6 -4403))) (((-112) $ (-562) (-112)) 36 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-1475 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-1955 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-1505 (((-112) $ (-562) (-112)) NIL (|has| $ (-6 -4403)))) (-1420 (((-112) $ (-562)) NIL)) (-4264 (((-562) (-112) $ (-562)) NIL (|has| (-112) (-1092))) (((-562) (-112) $) NIL (|has| (-112) (-1092))) (((-562) (-1 (-112) (-112)) $) NIL)) (-1720 (((-639 (-112)) $) NIL (|has| $ (-6 -4402)))) (-2255 (($ $ $) 33)) (-2236 (($ $) NIL)) (-1325 (($ $ $) NIL)) (-1458 (($ (-766) (-112)) 23)) (-2134 (($ $ $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) 8 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL)) (-1610 (($ $ $) NIL (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1912 (((-639 (-112)) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL)) (-1490 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-3297 (($ $ $ (-562)) NIL) (($ (-112) $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-112) $) NIL (|has| (-562) (-845)))) (-3251 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2716 (($ $ (-112)) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-112)) (-639 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-639 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092))))) (-2411 (((-639 (-112)) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 24)) (-2343 (($ $ (-1223 (-562))) NIL) (((-112) $ (-562)) 18) (((-112) $ (-562) (-112)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-1723 (((-766) (-112) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-112) (-1092)))) (((-766) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402)))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) 25)) (-4208 (((-535) $) NIL (|has| (-112) (-610 (-535))))) (-4066 (($ (-639 (-112))) NIL)) (-2767 (($ (-639 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4054 (((-857) $) 22)) (-1744 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4402)))) (-2246 (($ $ $) 31)) (-2308 (($ $ $) NIL)) (-2937 (($ $ $) 39)) (-2945 (($ $) 37)) (-2926 (($ $ $) 38)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 26)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 27)) (-2298 (($ $ $) NIL)) (-3492 (((-766) $) 10 (|has| $ (-6 -4402))))) +(((-499 |#1|) (-13 (-123) (-10 -8 (-15 -2945 ($ $)) (-15 -2937 ($ $ $)) (-15 -2926 ($ $ $)))) (-562)) (T -499)) +((-2945 (*1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) (-2937 (*1 *1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) (-2926 (*1 *1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562))))) +(-13 (-123) (-10 -8 (-15 -2945 ($ $)) (-15 -2937 ($ $ $)) (-15 -2926 ($ $ $)))) +((-2634 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1164 |#4|)) 34)) (-3995 (((-1164 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1164 |#4|)) 21)) (-1361 (((-3 (-683 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-683 (-1164 |#4|))) 45)) (-3215 (((-1164 (-1164 |#4|)) (-1 |#4| |#1|) |#3|) 54))) +(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3995 (|#2| (-1 |#1| |#4|) (-1164 |#4|))) (-15 -3995 ((-1164 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2634 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1164 |#4|))) (-15 -1361 ((-3 (-683 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-683 (-1164 |#4|)))) (-15 -3215 ((-1164 (-1164 |#4|)) (-1 |#4| |#1|) |#3|))) (-1044) (-1232 |#1|) (-1232 |#2|) (-1044)) (T -500)) +((-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *6 (-1232 *5)) (-5 *2 (-1164 (-1164 *7))) (-5 *1 (-500 *5 *6 *4 *7)) (-4 *4 (-1232 *6)))) (-1361 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-683 (-1164 *8))) (-4 *5 (-1044)) (-4 *8 (-1044)) (-4 *6 (-1232 *5)) (-5 *2 (-683 *6)) (-5 *1 (-500 *5 *6 *7 *8)) (-4 *7 (-1232 *6)))) (-2634 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1164 *7)) (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *2 (-1232 *5)) (-5 *1 (-500 *5 *2 *6 *7)) (-4 *6 (-1232 *2)))) (-3995 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *4 (-1232 *5)) (-5 *2 (-1164 *7)) (-5 *1 (-500 *5 *4 *6 *7)) (-4 *6 (-1232 *4)))) (-3995 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1164 *7)) (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *2 (-1232 *5)) (-5 *1 (-500 *5 *2 *6 *7)) (-4 *6 (-1232 *2))))) +(-10 -7 (-15 -3995 (|#2| (-1 |#1| |#4|) (-1164 |#4|))) (-15 -3995 ((-1164 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2634 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1164 |#4|))) (-15 -1361 ((-3 (-683 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-683 (-1164 |#4|)))) (-15 -3215 ((-1164 (-1164 |#4|)) (-1 |#4| |#1|) |#3|))) +((-4041 (((-112) $ $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1966 (((-1261) $) 19)) (-2343 (((-1150) $ (-1168)) 23)) (-1479 (((-1261) $) 15)) (-4054 (((-857) $) 21) (($ (-1150)) 20)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 9)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 8))) +(((-501) (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1966 ((-1261) $)) (-15 -4054 ($ (-1150)))))) (T -501)) +((-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1150)) (-5 *1 (-501)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-501)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-501)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-501))))) +(-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1966 ((-1261) $)) (-15 -4054 ($ (-1150))))) +((-4096 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1917 ((|#1| |#4|) 10)) (-1471 ((|#3| |#4|) 17))) +(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1917 (|#1| |#4|)) (-15 -1471 (|#3| |#4|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-554) (-987 |#1|) (-372 |#1|) (-372 |#2|)) (T -502)) +((-4096 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5)))) (-1471 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-4 *2 (-372 *4)) (-5 *1 (-502 *4 *5 *2 *3)) (-4 *3 (-372 *5)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-502 *2 *4 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-372 *4))))) +(-10 -7 (-15 -1917 (|#1| |#4|)) (-15 -1471 (|#3| |#4|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-4041 (((-112) $ $) NIL)) (-2231 (((-112) $ (-639 |#3|)) 103) (((-112) $) 104)) (-1952 (((-112) $) 147)) (-1658 (($ $ |#4|) 95) (($ $ |#4| (-639 |#3|)) 99)) (-3842 (((-1157 (-639 (-947 |#1|)) (-639 (-293 (-947 |#1|)))) (-639 |#4|)) 140 (|has| |#3| (-610 (-1168))))) (-2097 (($ $ $) 89) (($ $ |#4|) 87)) (-1957 (((-112) $) 146)) (-1837 (($ $) 107)) (-2913 (((-1150) $) NIL)) (-4376 (($ $ $) 81) (($ (-639 $)) 83)) (-1886 (((-112) |#4| $) 106)) (-3601 (((-112) $ $) 70)) (-1366 (($ (-639 |#4|)) 88)) (-1709 (((-1112) $) NIL)) (-2619 (($ (-639 |#4|)) 144)) (-3622 (((-112) $) 145)) (-2769 (($ $) 72)) (-3795 (((-639 |#4|) $) 56)) (-1789 (((-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)) $ (-639 |#3|)) NIL)) (-2428 (((-112) |#4| $) 75)) (-3627 (((-562) $ (-639 |#3|)) 108) (((-562) $) 109)) (-4054 (((-857) $) 143) (($ (-639 |#4|)) 84)) (-1581 (($ (-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $))) NIL)) (-1731 (((-112) $ $) 71)) (-1835 (($ $ $) 91)) (** (($ $ (-766)) 94)) (* (($ $ $) 93))) +(((-503 |#1| |#2| |#3| |#4|) (-13 (-1092) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-766))) (-15 -1835 ($ $ $)) (-15 -1957 ((-112) $)) (-15 -1952 ((-112) $)) (-15 -2428 ((-112) |#4| $)) (-15 -3601 ((-112) $ $)) (-15 -1886 ((-112) |#4| $)) (-15 -2231 ((-112) $ (-639 |#3|))) (-15 -2231 ((-112) $)) (-15 -4376 ($ $ $)) (-15 -4376 ($ (-639 $))) (-15 -2097 ($ $ $)) (-15 -2097 ($ $ |#4|)) (-15 -2769 ($ $)) (-15 -1789 ((-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)) $ (-639 |#3|))) (-15 -1581 ($ (-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)))) (-15 -3627 ((-562) $ (-639 |#3|))) (-15 -3627 ((-562) $)) (-15 -1837 ($ $)) (-15 -1366 ($ (-639 |#4|))) (-15 -2619 ($ (-639 |#4|))) (-15 -3622 ((-112) $)) (-15 -3795 ((-639 |#4|) $)) (-15 -4054 ($ (-639 |#4|))) (-15 -1658 ($ $ |#4|)) (-15 -1658 ($ $ |#4| (-639 |#3|))) (IF (|has| |#3| (-610 (-1168))) (-15 -3842 ((-1157 (-639 (-947 |#1|)) (-639 (-293 (-947 |#1|)))) (-639 |#4|))) |%noBranch|))) (-362) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -503)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-1835 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-1957 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-1952 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-2428 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-3601 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-1886 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-2231 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) (-2231 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-4376 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-639 (-503 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-2097 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-2097 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5)))) (-2769 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) (-5 *2 (-2 (|:| |mval| (-683 *4)) (|:| |invmval| (-683 *4)) (|:| |genIdeal| (-503 *4 *5 *6 *7)))) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-683 *3)) (|:| |invmval| (-683 *3)) (|:| |genIdeal| (-503 *3 *4 *5 *6)))) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-3627 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) (-5 *2 (-562)) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) (-3627 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-562)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-1837 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)))) (-3622 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-3795 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *6)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)))) (-1658 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5)))) (-1658 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) (-5 *1 (-503 *4 *5 *6 *2)) (-4 *2 (-944 *4 *5 *6)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *6 (-610 (-1168))) (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1157 (-639 (-947 *4)) (-639 (-293 (-947 *4))))) (-5 *1 (-503 *4 *5 *6 *7))))) +(-13 (-1092) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-766))) (-15 -1835 ($ $ $)) (-15 -1957 ((-112) $)) (-15 -1952 ((-112) $)) (-15 -2428 ((-112) |#4| $)) (-15 -3601 ((-112) $ $)) (-15 -1886 ((-112) |#4| $)) (-15 -2231 ((-112) $ (-639 |#3|))) (-15 -2231 ((-112) $)) (-15 -4376 ($ $ $)) (-15 -4376 ($ (-639 $))) (-15 -2097 ($ $ $)) (-15 -2097 ($ $ |#4|)) (-15 -2769 ($ $)) (-15 -1789 ((-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)) $ (-639 |#3|))) (-15 -1581 ($ (-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)))) (-15 -3627 ((-562) $ (-639 |#3|))) (-15 -3627 ((-562) $)) (-15 -1837 ($ $)) (-15 -1366 ($ (-639 |#4|))) (-15 -2619 ($ (-639 |#4|))) (-15 -3622 ((-112) $)) (-15 -3795 ((-639 |#4|) $)) (-15 -4054 ($ (-639 |#4|))) (-15 -1658 ($ $ |#4|)) (-15 -1658 ($ $ |#4| (-639 |#3|))) (IF (|has| |#3| (-610 (-1168))) (-15 -3842 ((-1157 (-639 (-947 |#1|)) (-639 (-293 (-947 |#1|)))) (-639 |#4|))) |%noBranch|))) +((-4321 (((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) 148)) (-3054 (((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) 149)) (-1666 (((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) 107)) (-2717 (((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) NIL)) (-4104 (((-639 (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) 151)) (-3791 (((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-639 (-859 |#1|))) 163))) +(((-504 |#1| |#2|) (-10 -7 (-15 -4321 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3054 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -2717 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -1666 ((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -4104 ((-639 (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3791 ((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-639 (-859 |#1|))))) (-639 (-1168)) (-766)) (T -504)) +((-3791 (*1 *2 *2 *3) (-12 (-5 *2 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))) (-5 *3 (-639 (-859 *4))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *1 (-504 *4 *5)))) (-4104 (*1 *2 *3) (-12 (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-639 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562)))))) (-5 *1 (-504 *4 *5)) (-5 *3 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-503 (-406 (-562)) (-239 *4 (-766)) (-859 *3) (-246 *3 (-406 (-562))))) (-14 *3 (-639 (-1168))) (-14 *4 (-766)) (-5 *1 (-504 *3 *4)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5)))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5))))) +(-10 -7 (-15 -4321 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3054 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -2717 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -1666 ((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -4104 ((-639 (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3791 ((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-639 (-859 |#1|))))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 11) (((-1168) $) 9)) (-1731 (((-112) $ $) 7))) +(((-505) (-13 (-1092) (-609 (-1168)))) (T -505)) +NIL +(-13 (-1092) (-609 (-1168))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-1378 (($ |#1| |#2|) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2500 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-2286 (($) 12 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) 11) (($ $ $) 23)) (-1835 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 18))) +(((-506 |#1| |#2|) (-13 (-21) (-508 |#1| |#2|)) (-21) (-845)) (T -506)) +NIL +(-13 (-21) (-508 |#1| |#2|)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 12)) (-1800 (($) NIL T CONST)) (-1601 (($ $) 27)) (-1378 (($ |#1| |#2|) 24)) (-4152 (($ (-1 |#1| |#1|) $) 26)) (-2500 ((|#2| $) NIL)) (-1573 ((|#1| $) 28)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-2286 (($) 10 T CONST)) (-1731 (((-112) $ $) NIL)) (-1835 (($ $ $) 17)) (* (($ (-916) $) NIL) (($ (-766) $) 22))) +(((-507 |#1| |#2|) (-13 (-23) (-508 |#1| |#2|)) (-23) (-845)) (T -507)) +NIL +(-13 (-23) (-508 |#1| |#2|)) +((-4041 (((-112) $ $) 7)) (-1601 (($ $) 13)) (-1378 (($ |#1| |#2|) 16)) (-4152 (($ (-1 |#1| |#1|) $) 17)) (-2500 ((|#2| $) 14)) (-1573 ((|#1| $) 15)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6))) +(((-508 |#1| |#2|) (-139) (-1092) (-845)) (T -508)) +((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-508 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-845)))) (-1378 (*1 *1 *2 *3) (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-845)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-508 *2 *3)) (-4 *3 (-845)) (-4 *2 (-1092)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-508 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-845)))) (-1601 (*1 *1 *1) (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-845))))) +(-13 (-1092) (-10 -8 (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (-15 -1378 ($ |t#1| |t#2|)) (-15 -1573 (|t#1| $)) (-15 -2500 (|t#2| $)) (-15 -1601 ($ $)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-1378 (($ |#1| |#2|) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2500 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-2286 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 13)) (-1835 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL))) +(((-509 |#1| |#2|) (-13 (-787) (-508 |#1| |#2|)) (-787) (-845)) (T -509)) +NIL +(-13 (-787) (-508 |#1| |#2|)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3659 (($ $ $) 16)) (-3214 (((-3 $ "failed") $ $) 13)) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-1378 (($ |#1| |#2|) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2500 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-2286 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1835 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL))) +(((-510 |#1| |#2|) (-13 (-788) (-508 |#1| |#2|)) (-788) (-845)) (T -510)) +NIL +(-13 (-788) (-508 |#1| |#2|)) +((-4041 (((-112) $ $) NIL)) (-1601 (($ $) 24)) (-1378 (($ |#1| |#2|) 21)) (-4152 (($ (-1 |#1| |#1|) $) 23)) (-2500 ((|#2| $) 26)) (-1573 ((|#1| $) 25)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 20)) (-1731 (((-112) $ $) 13))) +(((-511 |#1| |#2|) (-508 |#1| |#2|) (-1092) (-845)) (T -511)) +NIL +(-508 |#1| |#2|) +((-1433 (($ $ (-639 |#2|) (-639 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-512 |#1| |#2| |#3|) (-10 -8 (-15 -1433 (|#1| |#1| |#2| |#3|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#3|)))) (-513 |#2| |#3|) (-1092) (-1207)) (T -512)) +NIL +(-10 -8 (-15 -1433 (|#1| |#1| |#2| |#3|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#3|)))) +((-1433 (($ $ (-639 |#1|) (-639 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-513 |#1| |#2|) (-139) (-1092) (-1207)) (T -513)) +((-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 *5)) (-4 *1 (-513 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1207)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-513 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1207))))) +(-13 (-10 -8 (-15 -1433 ($ $ |t#1| |t#2|)) (-15 -1433 ($ $ (-639 |t#1|) (-639 |t#2|))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 16)) (-1938 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $) 18)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766) $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-3126 ((|#1| $ (-562)) 23)) (-4173 ((|#2| $ (-562)) 21)) (-1304 (($ (-1 |#1| |#1|) $) 46)) (-3344 (($ (-1 |#2| |#2|) $) 43)) (-2913 (((-1150) $) NIL)) (-1755 (($ $ $) 53 (|has| |#2| (-787)))) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 42) (($ |#1|) NIL)) (-3906 ((|#2| |#1| $) 49)) (-2286 (($) 11 T CONST)) (-1731 (((-112) $ $) 29)) (-1835 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-916) $) NIL) (($ (-766) $) 36) (($ |#2| |#1|) 31))) +(((-514 |#1| |#2| |#3|) (-322 |#1| |#2|) (-1092) (-130) |#2|) (T -514)) NIL (-322 |#1| |#2|) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-2135 (((-112) (-112)) 25)) (-4194 ((|#1| $ (-544) |#1|) 28 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) 52)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-2498 (($ $) 56 (|has| |#1| (-1091)))) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) 44)) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2136 (($ $ (-544)) 13)) (-2137 (((-765) $) 11)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 23)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 21 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) 20 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4014 (($ $ $ (-544)) 51) (($ |#1| $ (-544)) 37)) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2138 (($ (-635 |#1|)) 29)) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) 19 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 40)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 16)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) 33) (($ $ (-1220 (-544))) NIL)) (-1660 (($ $ (-1220 (-544))) 50) (($ $ (-544)) 45)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) 41 (|has| $ (-6 -4401)))) (-3804 (($ $) 32)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4197 (($ $ $) 42) (($ $ |#1|) 39)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 17 (|has| $ (-6 -4400))))) -(((-514 |#1| |#2|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2138 ($ (-635 |#1|))) (-15 -2137 ((-765) $)) (-15 -2136 ($ $ (-544))) (-15 -2135 ((-112) (-112))))) (-1204) (-544)) (T -514)) -((-2138 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-514 *3 *4)) (-14 *4 (-544)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 (-544)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 *2))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 (-544))))) -(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2138 ($ (-635 |#1|))) (-15 -2137 ((-765) $)) (-15 -2136 ($ $ (-544))) (-15 -2135 ((-112) (-112))))) -((-2947 (((-112) $ $) NIL)) (-2140 (((-1125) $) 11)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2139 (((-1125) $) 13)) (-4329 (((-1125) $) 9)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-515) (-13 (-1073) (-10 -8 (-15 -4329 ((-1125) $)) (-15 -2140 ((-1125) $)) (-15 -2139 ((-1125) $))))) (T -515)) -((-4329 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515))))) -(-13 (-1073) (-10 -8 (-15 -4329 ((-1125) $)) (-15 -2140 ((-1125) $)) (-15 -2139 ((-1125) $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (((-578 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-578 |#1|) (-367)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-578 |#1|) (-367)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL (|has| (-578 |#1|) (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-578 |#1|) "failed") $) NIL)) (-3557 (((-578 |#1|) $) NIL)) (-1939 (($ (-1253 (-578 |#1|))) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-578 |#1|) (-367)))) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-578 |#1|) (-367)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL (|has| (-578 |#1|) (-367)))) (-1824 (((-112) $) NIL (|has| (-578 |#1|) (-367)))) (-1914 (($ $ (-765)) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367)))) (($ $) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-4130 (((-112) $) NIL)) (-4178 (((-912) $) NIL (|has| (-578 |#1|) (-367))) (((-826 (-912)) $) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| (-578 |#1|) (-367)))) (-2161 (((-112) $) NIL (|has| (-578 |#1|) (-367)))) (-3517 (((-578 |#1|) $) NIL) (($ $ (-912)) NIL (|has| (-578 |#1|) (-367)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-578 |#1|) (-367)))) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 (-578 |#1|)) $) NIL) (((-1160 $) $ (-912)) NIL (|has| (-578 |#1|) (-367)))) (-2160 (((-912) $) NIL (|has| (-578 |#1|) (-367)))) (-1752 (((-1160 (-578 |#1|)) $) NIL (|has| (-578 |#1|) (-367)))) (-1751 (((-1160 (-578 |#1|)) $) NIL (|has| (-578 |#1|) (-367))) (((-3 (-1160 (-578 |#1|)) "failed") $ $) NIL (|has| (-578 |#1|) (-367)))) (-1753 (($ $ (-1160 (-578 |#1|))) NIL (|has| (-578 |#1|) (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-578 |#1|) (-367)) CONST)) (-2535 (($ (-912)) NIL (|has| (-578 |#1|) (-367)))) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL (|has| (-578 |#1|) (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-578 |#1|) (-367)))) (-4139 (((-404 $) $) NIL)) (-4337 (((-826 (-912))) NIL) (((-912)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-765) $) NIL (|has| (-578 |#1|) (-367))) (((-3 (-765) "failed") $ $) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-4318 (((-133)) NIL)) (-4217 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-4355 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-3586 (((-1160 (-578 |#1|))) NIL)) (-1818 (($) NIL (|has| (-578 |#1|) (-367)))) (-1754 (($) NIL (|has| (-578 |#1|) (-367)))) (-3625 (((-1253 (-578 |#1|)) $) NIL) (((-682 (-578 |#1|)) (-1253 $)) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-578 |#1|) (-367)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-578 |#1|)) NIL)) (-3084 (($ $) NIL (|has| (-578 |#1|) (-367))) (((-3 $ "failed") $) NIL (-3936 (|has| (-578 |#1|) (-144)) (|has| (-578 |#1|) (-367))))) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL) (((-1253 $) (-912)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-3051 (($ $) NIL (|has| (-578 |#1|) (-367))) (($ $ (-765)) NIL (|has| (-578 |#1|) (-367)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL) (($ $ (-578 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-578 |#1|)) NIL) (($ (-578 |#1|) $) NIL))) -(((-516 |#1| |#2|) (-328 (-578 |#1|)) (-912) (-912)) (T -516)) -NIL -(-328 (-578 |#1|)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) 35)) (-1332 (($ $ (-544) |#4|) NIL)) (-1331 (($ $ (-544) |#5|) NIL)) (-4131 (($) NIL T CONST)) (-3497 ((|#4| $ (-544)) NIL)) (-1665 ((|#1| $ (-544) (-544) |#1|) 34)) (-3498 ((|#1| $ (-544) (-544)) 32)) (-2096 (((-635 |#1|) $) NIL)) (-3500 (((-765) $) 28)) (-4021 (($ (-765) (-765) |#1|) 25)) (-3499 (((-765) $) 30)) (-4126 (((-112) $ (-765)) NIL)) (-3504 (((-544) $) 26)) (-3502 (((-544) $) 27)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) 29)) (-3501 (((-544) $) 31)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) 38 (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 14)) (-3972 (($) 16)) (-4206 ((|#1| $ (-544) (-544)) 33) ((|#1| $ (-544) (-544) |#1|) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 ((|#5| $ (-544)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-517 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1204) (-544) (-544) (-371 |#1|) (-371 |#1|)) (T -517)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4250 (((-112) (-112)) 25)) (-4200 ((|#1| $ (-562) |#1|) 28 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403)))) (-3111 (($ (-1 (-112) |#1|) $) 52)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-4354 (($ $) 56 (|has| |#1| (-1092)))) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4000 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) 44)) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-4264 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-2933 (($ $ (-562)) 13)) (-3189 (((-766) $) 11)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1458 (($ (-766) |#1|) 23)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) 21 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2673 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) 20 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-4300 (($ $ $ (-562)) 51) (($ |#1| $ (-562)) 37)) (-3297 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2851 (($ (-639 |#1|)) 29)) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) 19 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 40)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 16)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) 33) (($ $ (-1223 (-562))) NIL)) (-2878 (($ $ (-1223 (-562))) 50) (($ $ (-562)) 45)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) 41 (|has| $ (-6 -4403)))) (-4220 (($ $) 32)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) NIL)) (-4142 (($ $ $) 42) (($ $ |#1|) 39)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 17 (|has| $ (-6 -4402))))) +(((-515 |#1| |#2|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2851 ($ (-639 |#1|))) (-15 -3189 ((-766) $)) (-15 -2933 ($ $ (-562))) (-15 -4250 ((-112) (-112))))) (-1207) (-562)) (T -515)) +((-2851 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-515 *3 *4)) (-14 *4 (-562)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) (-14 *4 (-562)))) (-2933 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) (-14 *4 *2))) (-4250 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) (-14 *4 (-562))))) +(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -2851 ($ (-639 |#1|))) (-15 -3189 ((-766) $)) (-15 -2933 ($ $ (-562))) (-15 -4250 ((-112) (-112))))) +((-4041 (((-112) $ $) NIL)) (-3091 (((-1127) $) 11)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1444 (((-1127) $) 13)) (-3317 (((-1127) $) 9)) (-4054 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-516) (-13 (-1075) (-10 -8 (-15 -3317 ((-1127) $)) (-15 -3091 ((-1127) $)) (-15 -1444 ((-1127) $))))) (T -516)) +((-3317 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516))))) +(-13 (-1075) (-10 -8 (-15 -3317 ((-1127) $)) (-15 -3091 ((-1127) $)) (-15 -1444 ((-1127) $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 (((-579 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-579 |#1|) (-367)))) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-579 |#1|) (-367)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| (-579 |#1|) (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-579 |#1|) "failed") $) NIL)) (-3961 (((-579 |#1|) $) NIL)) (-4018 (($ (-1256 (-579 |#1|))) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-579 |#1|) (-367)))) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-579 |#1|) (-367)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) NIL (|has| (-579 |#1|) (-367)))) (-1322 (((-112) $) NIL (|has| (-579 |#1|) (-367)))) (-3589 (($ $ (-766)) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367)))) (($ $) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367))))) (-2717 (((-112) $) NIL)) (-1900 (((-916) $) NIL (|has| (-579 |#1|) (-367))) (((-828 (-916)) $) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367))))) (-1957 (((-112) $) NIL)) (-1846 (($) NIL (|has| (-579 |#1|) (-367)))) (-1316 (((-112) $) NIL (|has| (-579 |#1|) (-367)))) (-2247 (((-579 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-579 |#1|) (-367)))) (-3699 (((-3 $ "failed") $) NIL (|has| (-579 |#1|) (-367)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 (-579 |#1|)) $) NIL) (((-1164 $) $ (-916)) NIL (|has| (-579 |#1|) (-367)))) (-1999 (((-916) $) NIL (|has| (-579 |#1|) (-367)))) (-3892 (((-1164 (-579 |#1|)) $) NIL (|has| (-579 |#1|) (-367)))) (-4203 (((-1164 (-579 |#1|)) $) NIL (|has| (-579 |#1|) (-367))) (((-3 (-1164 (-579 |#1|)) "failed") $ $) NIL (|has| (-579 |#1|) (-367)))) (-2393 (($ $ (-1164 (-579 |#1|))) NIL (|has| (-579 |#1|) (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-579 |#1|) (-367)) CONST)) (-2466 (($ (-916)) NIL (|has| (-579 |#1|) (-367)))) (-3113 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3148 (($) NIL (|has| (-579 |#1|) (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| (-579 |#1|) (-367)))) (-1635 (((-417 $) $) NIL)) (-4121 (((-828 (-916))) NIL) (((-916)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-766) $) NIL (|has| (-579 |#1|) (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367))))) (-3627 (((-133)) NIL)) (-4029 (($ $) NIL (|has| (-579 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-579 |#1|) (-367)))) (-3598 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-2096 (((-1164 (-579 |#1|))) NIL)) (-2283 (($) NIL (|has| (-579 |#1|) (-367)))) (-2624 (($) NIL (|has| (-579 |#1|) (-367)))) (-3593 (((-1256 (-579 |#1|)) $) NIL) (((-683 (-579 |#1|)) (-1256 $)) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-579 |#1|) (-367)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-579 |#1|)) NIL)) (-2805 (($ $) NIL (|has| (-579 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367))))) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4374 (($ $) NIL (|has| (-579 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-579 |#1|) (-367)))) (-3114 (($ $) NIL (|has| (-579 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-579 |#1|) (-367)))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ (-579 |#1|)) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-579 |#1|)) NIL) (($ (-579 |#1|) $) NIL))) +(((-517 |#1| |#2|) (-328 (-579 |#1|)) (-916) (-916)) (T -517)) +NIL +(-328 (-579 |#1|)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) 35)) (-1928 (($ $ (-562) |#4|) NIL)) (-3003 (($ $ (-562) |#5|) NIL)) (-1800 (($) NIL T CONST)) (-3796 ((|#4| $ (-562)) NIL)) (-1505 ((|#1| $ (-562) (-562) |#1|) 34)) (-1420 ((|#1| $ (-562) (-562)) 32)) (-1720 (((-639 |#1|) $) NIL)) (-2699 (((-766) $) 28)) (-1458 (($ (-766) (-766) |#1|) 25)) (-2709 (((-766) $) 30)) (-3292 (((-112) $ (-766)) NIL)) (-2783 (((-562) $) 26)) (-4217 (((-562) $) 27)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4088 (((-562) $) 29)) (-2453 (((-562) $) 31)) (-1490 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) 38 (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2716 (($ $ |#1|) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 14)) (-4307 (($) 16)) (-2343 ((|#1| $ (-562) (-562)) 33) ((|#1| $ (-562) (-562) |#1|) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2211 ((|#5| $ (-562)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-518 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1207) (-562) (-562) (-372 |#1|) (-372 |#1|)) (T -518)) NIL (-57 |#1| |#4| |#5|) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-4201 ((|#1| $) NIL)) (-4203 (($ $) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 58 (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4401)))) (-3292 (($ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) 23 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 21 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) NIL)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4202 ((|#1| $) NIL)) (-4131 (($) NIL T CONST)) (-2416 (($ $) 28 (|has| $ (-6 -4401)))) (-2417 (($ $) 29)) (-4205 (($ $) 18) (($ $ (-765)) 32)) (-2498 (($ $) 54 (|has| |#1| (-1091)))) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) NIL)) (-3810 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-3823 (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091))) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) (-1 (-112) |#1|) $) NIL)) (-2096 (((-635 |#1|) $) 27 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 31 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-3917 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3941 (($ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) 50 (|has| |#1| (-1091)))) (-4204 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-4014 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) 13) (($ $ (-765)) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-3847 (((-112) $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 12)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) 17)) (-3972 (($) 16)) (-4206 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1220 (-544))) NIL) ((|#1| $ (-544)) NIL) ((|#1| $ (-544) |#1|) NIL)) (-3412 (((-544) $ $) NIL)) (-1660 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-4040 (((-112) $) 33)) (-4198 (($ $) NIL)) (-4196 (($ $) NIL (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) 35)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) 34)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 26)) (-4197 (($ $ $) 53) (($ $ |#1|) NIL)) (-4208 (($ $ $) NIL) (($ |#1| $) 10) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-4353 (((-857) $) 45 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 47 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 9 (|has| $ (-6 -4400))))) -(((-518 |#1| |#2|) (-659 |#1|) (-1204) (-544)) (T -518)) -NIL -(-659 |#1|) -((-3495 ((|#4| |#4|) 27)) (-3494 (((-765) |#4|) 32)) (-3493 (((-765) |#4|) 33)) (-3492 (((-635 |#3|) |#4|) 39 (|has| |#3| (-6 -4401)))) (-3996 (((-3 |#4| "failed") |#4|) 50)) (-2141 ((|#4| |#4|) 43)) (-3732 ((|#1| |#4|) 42))) -(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3495 (|#4| |#4|)) (-15 -3494 ((-765) |#4|)) (-15 -3493 ((-765) |#4|)) (IF (|has| |#3| (-6 -4401)) (-15 -3492 ((-635 |#3|) |#4|)) |%noBranch|) (-15 -3732 (|#1| |#4|)) (-15 -2141 (|#4| |#4|)) (-15 -3996 ((-3 |#4| "failed") |#4|))) (-362) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|)) (T -519)) -((-3996 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-2141 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-362)) (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5)))) (-3492 (*1 *2 *3) (-12 (|has| *6 (-6 -4401)) (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-635 *6)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3493 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3494 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) -(-10 -7 (-15 -3495 (|#4| |#4|)) (-15 -3494 ((-765) |#4|)) (-15 -3493 ((-765) |#4|)) (IF (|has| |#3| (-6 -4401)) (-15 -3492 ((-635 |#3|) |#4|)) |%noBranch|) (-15 -3732 (|#1| |#4|)) (-15 -2141 (|#4| |#4|)) (-15 -3996 ((-3 |#4| "failed") |#4|))) -((-3495 ((|#8| |#4|) 20)) (-3492 (((-635 |#3|) |#4|) 29 (|has| |#7| (-6 -4401)))) (-3996 (((-3 |#8| "failed") |#4|) 23))) -(((-520 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3495 (|#8| |#4|)) (-15 -3996 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4401)) (-15 -3492 ((-635 |#3|) |#4|)) |%noBranch|)) (-554) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|) (-984 |#1|) (-371 |#5|) (-371 |#5|) (-679 |#5| |#6| |#7|)) (T -520)) -((-3492 (*1 *2 *3) (-12 (|has| *9 (-6 -4401)) (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-4 *7 (-984 *4)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7)) (-5 *2 (-635 *6)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-679 *4 *5 *6)) (-4 *10 (-679 *7 *8 *9)))) (-3996 (*1 *2 *3) (|partial| -12 (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-4 *7 (-984 *4)) (-4 *2 (-679 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-679 *4 *5 *6)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7)))) (-3495 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-4 *7 (-984 *4)) (-4 *2 (-679 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-679 *4 *5 *6)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7))))) -(-10 -7 (-15 -3495 (|#8| |#4|)) (-15 -3996 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4401)) (-15 -3492 ((-635 |#3|) |#4|)) |%noBranch|)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765) (-765)) NIL)) (-2473 (($ $ $) NIL)) (-3818 (($ (-597 |#1| |#3|)) NIL) (($ $) NIL)) (-3506 (((-112) $) NIL)) (-2472 (($ $ (-544) (-544)) 12)) (-2471 (($ $ (-544) (-544)) NIL)) (-2470 (($ $ (-544) (-544) (-544) (-544)) NIL)) (-2475 (($ $) NIL)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-2469 (($ $ (-544) (-544) $) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544)) $) NIL)) (-1332 (($ $ (-544) (-597 |#1| |#3|)) NIL)) (-1331 (($ $ (-544) (-597 |#1| |#2|)) NIL)) (-3737 (($ (-765) |#1|) NIL)) (-4131 (($) NIL T CONST)) (-3495 (($ $) 21 (|has| |#1| (-306)))) (-3497 (((-597 |#1| |#3|) $ (-544)) NIL)) (-3494 (((-765) $) 24 (|has| |#1| (-554)))) (-1665 ((|#1| $ (-544) (-544) |#1|) NIL)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3493 (((-765) $) 26 (|has| |#1| (-554)))) (-3492 (((-635 (-597 |#1| |#2|)) $) 29 (|has| |#1| (-554)))) (-3500 (((-765) $) NIL)) (-4021 (($ (-765) (-765) |#1|) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#1| $) 19 (|has| |#1| (-6 (-4402 #1="*"))))) (-3504 (((-544) $) 10)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) 11)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#1|))) NIL)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4000 (((-635 (-635 |#1|)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3996 (((-3 $ #2="failed") $) 33 (|has| |#1| (-362)))) (-2474 (($ $ $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-3865 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-554)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544))) NIL)) (-3736 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL)) (-3507 (((-112) $) NIL)) (-3732 ((|#1| $) 17 (|has| |#1| (-6 (-4402 #1#))))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3496 (((-597 |#1| |#2|) $ (-544)) NIL)) (-4353 (($ (-597 |#1| |#2|)) NIL) (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-544) $) NIL) (((-597 |#1| |#2|) $ (-597 |#1| |#2|)) NIL) (((-597 |#1| |#3|) (-597 |#1| |#3|) $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-521 |#1| |#2| |#3|) (-679 |#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) (-1042) (-544) (-544)) (T -521)) -NIL -(-679 |#1| (-597 |#1| |#3|) (-597 |#1| |#2|)) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2142 (((-635 (-1205)) $) 13)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL) (($ (-635 (-1205))) 11)) (-3437 (((-112) $ $) NIL))) -(((-522) (-13 (-1073) (-10 -8 (-15 -4353 ($ (-635 (-1205)))) (-15 -2142 ((-635 (-1205)) $))))) (T -522)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-522)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-522))))) -(-13 (-1073) (-10 -8 (-15 -4353 ($ (-635 (-1205)))) (-15 -2142 ((-635 (-1205)) $)))) -((-2947 (((-112) $ $) NIL)) (-2143 (((-1125) $) 14)) (-3643 (((-1148) $) NIL)) (-2144 (((-1166) $) 11)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-523) (-13 (-1073) (-10 -8 (-15 -2144 ((-1166) $)) (-15 -2143 ((-1125) $))))) (T -523)) -((-2144 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-523)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-523))))) -(-13 (-1073) (-10 -8 (-15 -2144 ((-1166) $)) (-15 -2143 ((-1125) $)))) -((-2150 (((-684 (-1212)) $) 15)) (-2146 (((-684 (-1211)) $) 35)) (-2148 (((-684 (-1210)) $) 26)) (-2151 (((-684 (-547)) $) 12)) (-2147 (((-684 (-546)) $) 39)) (-2149 (((-684 (-545)) $) 30)) (-2145 (((-765) $ (-129)) 49))) -(((-524 |#1|) (-10 -8 (-15 -2145 ((-765) |#1| (-129))) (-15 -2146 ((-684 (-1211)) |#1|)) (-15 -2147 ((-684 (-546)) |#1|)) (-15 -2148 ((-684 (-1210)) |#1|)) (-15 -2149 ((-684 (-545)) |#1|)) (-15 -2150 ((-684 (-1212)) |#1|)) (-15 -2151 ((-684 (-547)) |#1|))) (-525)) (T -524)) -NIL -(-10 -8 (-15 -2145 ((-765) |#1| (-129))) (-15 -2146 ((-684 (-1211)) |#1|)) (-15 -2147 ((-684 (-546)) |#1|)) (-15 -2148 ((-684 (-1210)) |#1|)) (-15 -2149 ((-684 (-545)) |#1|)) (-15 -2150 ((-684 (-1212)) |#1|)) (-15 -2151 ((-684 (-547)) |#1|))) -((-2150 (((-684 (-1212)) $) 12)) (-2146 (((-684 (-1211)) $) 8)) (-2148 (((-684 (-1210)) $) 10)) (-2151 (((-684 (-547)) $) 13)) (-2147 (((-684 (-546)) $) 9)) (-2149 (((-684 (-545)) $) 11)) (-2145 (((-765) $ (-129)) 7)) (-2152 (((-684 (-128)) $) 14)) (-1844 (($ $) 6))) -(((-525) (-139)) (T -525)) -((-2152 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-128))))) (-2151 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-547))))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1212))))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-545))))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1210))))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-546))))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1211))))) (-2145 (*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-129)) (-5 *2 (-765))))) -(-13 (-172) (-10 -8 (-15 -2152 ((-684 (-128)) $)) (-15 -2151 ((-684 (-547)) $)) (-15 -2150 ((-684 (-1212)) $)) (-15 -2149 ((-684 (-545)) $)) (-15 -2148 ((-684 (-1210)) $)) (-15 -2147 ((-684 (-546)) $)) (-15 -2146 ((-684 (-1211)) $)) (-15 -2145 ((-765) $ (-129))))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) NIL)) (-2359 ((|#1| $) NIL)) (-3121 (($ $) NIL)) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-2254 (($ $ (-562)) 58 (|has| $ (-6 -4403)))) (-1399 (((-112) $) NIL (|has| |#1| (-845))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3381 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4403)))) (-1395 (($ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-1512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-3012 (($ $ $) 23 (|has| $ (-6 -4403)))) (-3950 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-2687 ((|#1| $ |#1|) 21 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4403))) (($ $ "rest" $) 24 (|has| $ (-6 -4403))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-3111 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-2350 ((|#1| $) NIL)) (-1800 (($) NIL T CONST)) (-2447 (($ $) 28 (|has| $ (-6 -4403)))) (-2677 (($ $) 29)) (-1434 (($ $) 18) (($ $ (-766)) 32)) (-4354 (($ $) 54 (|has| |#1| (-1092)))) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4000 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-3266 (((-112) $) NIL)) (-4264 (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092))) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) (-1 (-112) |#1|) $) NIL)) (-1720 (((-639 |#1|) $) 27 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) 31 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2673 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-1610 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3716 (($ |#1|) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-4007 (((-639 |#1|) $) NIL)) (-3449 (((-112) $) NIL)) (-2913 (((-1150) $) 50 (|has| |#1| (-1092)))) (-1504 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-4300 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3297 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) 13) (($ $ (-766)) NIL)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-2017 (((-112) $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 12)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) 17)) (-4307 (($) 16)) (-2343 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1223 (-562))) NIL) ((|#1| $ (-562)) NIL) ((|#1| $ (-562) |#1|) NIL)) (-2568 (((-562) $ $) NIL)) (-2878 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2424 (((-112) $) 33)) (-2613 (($ $) NIL)) (-4327 (($ $) NIL (|has| $ (-6 -4403)))) (-2296 (((-766) $) NIL)) (-3913 (($ $) 35)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) 34)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 26)) (-4142 (($ $ $) 53) (($ $ |#1|) NIL)) (-2767 (($ $ $) NIL) (($ |#1| $) 10) (($ (-639 $)) NIL) (($ $ |#1|) NIL)) (-4054 (((-857) $) 45 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) 47 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 9 (|has| $ (-6 -4402))))) +(((-519 |#1| |#2|) (-660 |#1|) (-1207) (-562)) (T -519)) +NIL +(-660 |#1|) +((-2522 ((|#4| |#4|) 27)) (-2173 (((-766) |#4|) 32)) (-3922 (((-766) |#4|) 33)) (-2318 (((-639 |#3|) |#4|) 39 (|has| |#3| (-6 -4403)))) (-3494 (((-3 |#4| "failed") |#4|) 50)) (-2785 ((|#4| |#4|) 43)) (-3770 ((|#1| |#4|) 42))) +(((-520 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 (|#4| |#4|)) (-15 -2173 ((-766) |#4|)) (-15 -3922 ((-766) |#4|)) (IF (|has| |#3| (-6 -4403)) (-15 -2318 ((-639 |#3|) |#4|)) |%noBranch|) (-15 -3770 (|#1| |#4|)) (-15 -2785 (|#4| |#4|)) (-15 -3494 ((-3 |#4| "failed") |#4|))) (-362) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -520)) +((-3494 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362)) (-5 *1 (-520 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) (-2318 (*1 *2 *3) (-12 (|has| *6 (-6 -4403)) (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-639 *6)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2173 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2522 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) +(-10 -7 (-15 -2522 (|#4| |#4|)) (-15 -2173 ((-766) |#4|)) (-15 -3922 ((-766) |#4|)) (IF (|has| |#3| (-6 -4403)) (-15 -2318 ((-639 |#3|) |#4|)) |%noBranch|) (-15 -3770 (|#1| |#4|)) (-15 -2785 (|#4| |#4|)) (-15 -3494 ((-3 |#4| "failed") |#4|))) +((-2522 ((|#8| |#4|) 20)) (-2318 (((-639 |#3|) |#4|) 29 (|has| |#7| (-6 -4403)))) (-3494 (((-3 |#8| "failed") |#4|) 23))) +(((-521 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2522 (|#8| |#4|)) (-15 -3494 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4403)) (-15 -2318 ((-639 |#3|) |#4|)) |%noBranch|)) (-554) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|) (-987 |#1|) (-372 |#5|) (-372 |#5|) (-681 |#5| |#6| |#7|)) (T -521)) +((-2318 (*1 *2 *3) (-12 (|has| *9 (-6 -4403)) (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)) (-5 *2 (-639 *6)) (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-681 *4 *5 *6)) (-4 *10 (-681 *7 *8 *9)))) (-3494 (*1 *2 *3) (|partial| -12 (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))) +(-10 -7 (-15 -2522 (|#8| |#4|)) (-15 -3494 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4403)) (-15 -2318 ((-639 |#3|) |#4|)) |%noBranch|)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2911 (($ (-766) (-766)) NIL)) (-2654 (($ $ $) NIL)) (-2529 (($ (-598 |#1| |#3|)) NIL) (($ $) NIL)) (-2952 (((-112) $) NIL)) (-2188 (($ $ (-562) (-562)) 12)) (-2467 (($ $ (-562) (-562)) NIL)) (-1593 (($ $ (-562) (-562) (-562) (-562)) NIL)) (-3886 (($ $) NIL)) (-3220 (((-112) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-4212 (($ $ (-562) (-562) $) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562)) $) NIL)) (-1928 (($ $ (-562) (-598 |#1| |#3|)) NIL)) (-3003 (($ $ (-562) (-598 |#1| |#2|)) NIL)) (-2554 (($ (-766) |#1|) NIL)) (-1800 (($) NIL T CONST)) (-2522 (($ $) 21 (|has| |#1| (-306)))) (-3796 (((-598 |#1| |#3|) $ (-562)) NIL)) (-2173 (((-766) $) 24 (|has| |#1| (-554)))) (-1505 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-3922 (((-766) $) 26 (|has| |#1| (-554)))) (-2318 (((-639 (-598 |#1| |#2|)) $) 29 (|has| |#1| (-554)))) (-2699 (((-766) $) NIL)) (-1458 (($ (-766) (-766) |#1|) NIL)) (-2709 (((-766) $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-2280 ((|#1| $) 19 (|has| |#1| (-6 (-4404 "*"))))) (-2783 (((-562) $) 10)) (-4217 (((-562) $) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4088 (((-562) $) 11)) (-2453 (((-562) $) NIL)) (-2885 (($ (-639 (-639 |#1|))) NIL)) (-1490 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2824 (((-639 (-639 |#1|)) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3494 (((-3 $ "failed") $) 33 (|has| |#1| (-362)))) (-2309 (($ $ $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2716 (($ $ |#1|) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562))) NIL)) (-3448 (($ (-639 |#1|)) NIL) (($ (-639 $)) NIL)) (-1544 (((-112) $) NIL)) (-3770 ((|#1| $) 17 (|has| |#1| (-6 (-4404 "*"))))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2211 (((-598 |#1| |#2|) $ (-562)) NIL)) (-4054 (($ (-598 |#1| |#2|)) NIL) (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1335 (((-112) $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $ $) NIL) (($ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-562) $) NIL) (((-598 |#1| |#2|) $ (-598 |#1| |#2|)) NIL) (((-598 |#1| |#3|) (-598 |#1| |#3|) $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-522 |#1| |#2| |#3|) (-681 |#1| (-598 |#1| |#3|) (-598 |#1| |#2|)) (-1044) (-562) (-562)) (T -522)) +NIL +(-681 |#1| (-598 |#1| |#3|) (-598 |#1| |#2|)) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-4273 (((-639 (-1206)) $) 13)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 20) (($ (-1173)) NIL) (((-1173) $) NIL) (($ (-639 (-1206))) 11)) (-1731 (((-112) $ $) NIL))) +(((-523) (-13 (-1075) (-10 -8 (-15 -4054 ($ (-639 (-1206)))) (-15 -4273 ((-639 (-1206)) $))))) (T -523)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-523)))) (-4273 (*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-523))))) +(-13 (-1075) (-10 -8 (-15 -4054 ($ (-639 (-1206)))) (-15 -4273 ((-639 (-1206)) $)))) +((-4041 (((-112) $ $) NIL)) (-2931 (((-1127) $) 14)) (-2913 (((-1150) $) NIL)) (-2806 (((-1168) $) 11)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-524) (-13 (-1075) (-10 -8 (-15 -2806 ((-1168) $)) (-15 -2931 ((-1127) $))))) (T -524)) +((-2806 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-524)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-524))))) +(-13 (-1075) (-10 -8 (-15 -2806 ((-1168) $)) (-15 -2931 ((-1127) $)))) +((-3691 (((-685 (-1214)) $) 15)) (-3192 (((-685 (-1213)) $) 35)) (-3661 (((-685 (-1212)) $) 26)) (-1735 (((-685 (-547)) $) 12)) (-1890 (((-685 (-546)) $) 39)) (-2242 (((-685 (-545)) $) 30)) (-1477 (((-766) $ (-128)) 49))) +(((-525 |#1|) (-10 -8 (-15 -1477 ((-766) |#1| (-128))) (-15 -3192 ((-685 (-1213)) |#1|)) (-15 -1890 ((-685 (-546)) |#1|)) (-15 -3661 ((-685 (-1212)) |#1|)) (-15 -2242 ((-685 (-545)) |#1|)) (-15 -3691 ((-685 (-1214)) |#1|)) (-15 -1735 ((-685 (-547)) |#1|))) (-526)) (T -525)) +NIL +(-10 -8 (-15 -1477 ((-766) |#1| (-128))) (-15 -3192 ((-685 (-1213)) |#1|)) (-15 -1890 ((-685 (-546)) |#1|)) (-15 -3661 ((-685 (-1212)) |#1|)) (-15 -2242 ((-685 (-545)) |#1|)) (-15 -3691 ((-685 (-1214)) |#1|)) (-15 -1735 ((-685 (-547)) |#1|))) +((-3691 (((-685 (-1214)) $) 12)) (-3192 (((-685 (-1213)) $) 8)) (-3661 (((-685 (-1212)) $) 10)) (-1735 (((-685 (-547)) $) 13)) (-1890 (((-685 (-546)) $) 9)) (-2242 (((-685 (-545)) $) 11)) (-1477 (((-766) $ (-128)) 7)) (-1850 (((-685 (-129)) $) 14)) (-3948 (($ $) 6))) +(((-526) (-139)) (T -526)) +((-1850 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-129))))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-547))))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1214))))) (-2242 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-545))))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1212))))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-546))))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1213))))) (-1477 (*1 *2 *1 *3) (-12 (-4 *1 (-526)) (-5 *3 (-128)) (-5 *2 (-766))))) +(-13 (-172) (-10 -8 (-15 -1850 ((-685 (-129)) $)) (-15 -1735 ((-685 (-547)) $)) (-15 -3691 ((-685 (-1214)) $)) (-15 -2242 ((-685 (-545)) $)) (-15 -3661 ((-685 (-1212)) $)) (-15 -1890 ((-685 (-546)) $)) (-15 -3192 ((-685 (-1213)) $)) (-15 -1477 ((-766) $ (-128))))) (((-172) . T)) -((-2155 (((-1160 |#1|) (-765)) 75)) (-3734 (((-1253 |#1|) (-1253 |#1|) (-912)) 68)) (-2153 (((-1259) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) |#1|) 83)) (-2157 (((-1253 |#1|) (-1253 |#1|) (-765)) 36)) (-3377 (((-1253 |#1|) (-912)) 70)) (-2159 (((-1253 |#1|) (-1253 |#1|) (-544)) 24)) (-2154 (((-1160 |#1|) (-1253 |#1|)) 76)) (-2163 (((-1253 |#1|) (-912)) 94)) (-2161 (((-112) (-1253 |#1|)) 79)) (-3517 (((-1253 |#1|) (-1253 |#1|) (-912)) 61)) (-2164 (((-1160 |#1|) (-1253 |#1|)) 88)) (-2160 (((-912) (-1253 |#1|)) 58)) (-2779 (((-1253 |#1|) (-1253 |#1|)) 30)) (-2535 (((-1253 |#1|) (-912) (-912)) 96)) (-2158 (((-1253 |#1|) (-1253 |#1|) (-1110) (-1110)) 23)) (-2156 (((-1253 |#1|) (-1253 |#1|) (-765) (-1110)) 37)) (-2162 (((-1253 (-1253 |#1|)) (-912)) 93)) (-4356 (((-1253 |#1|) (-1253 |#1|) (-1253 |#1|)) 80)) (** (((-1253 |#1|) (-1253 |#1|) (-544)) 43)) (* (((-1253 |#1|) (-1253 |#1|) (-1253 |#1|)) 25))) -(((-526 |#1|) (-10 -7 (-15 -2153 ((-1259) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) |#1|)) (-15 -3377 ((-1253 |#1|) (-912))) (-15 -2535 ((-1253 |#1|) (-912) (-912))) (-15 -2154 ((-1160 |#1|) (-1253 |#1|))) (-15 -2155 ((-1160 |#1|) (-765))) (-15 -2156 ((-1253 |#1|) (-1253 |#1|) (-765) (-1110))) (-15 -2157 ((-1253 |#1|) (-1253 |#1|) (-765))) (-15 -2158 ((-1253 |#1|) (-1253 |#1|) (-1110) (-1110))) (-15 -2159 ((-1253 |#1|) (-1253 |#1|) (-544))) (-15 ** ((-1253 |#1|) (-1253 |#1|) (-544))) (-15 * ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -4356 ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -3517 ((-1253 |#1|) (-1253 |#1|) (-912))) (-15 -3734 ((-1253 |#1|) (-1253 |#1|) (-912))) (-15 -2779 ((-1253 |#1|) (-1253 |#1|))) (-15 -2160 ((-912) (-1253 |#1|))) (-15 -2161 ((-112) (-1253 |#1|))) (-15 -2162 ((-1253 (-1253 |#1|)) (-912))) (-15 -2163 ((-1253 |#1|) (-912))) (-15 -2164 ((-1160 |#1|) (-1253 |#1|)))) (-349)) (T -526)) -((-2164 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 (-1253 *4))) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-526 *4)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-912)) (-5 *1 (-526 *4)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3)))) (-3734 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-912)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-3517 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-912)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-4356 (*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-544)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-2159 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-544)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-2158 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1110)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-2157 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) (-2156 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1253 *5)) (-5 *3 (-765)) (-5 *4 (-1110)) (-4 *5 (-349)) (-5 *1 (-526 *5)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)))) (-2535 (*1 *2 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) (-4 *4 (-349)) (-5 *2 (-1259)) (-5 *1 (-526 *4))))) -(-10 -7 (-15 -2153 ((-1259) (-1253 (-635 (-2 (|:| -3806 |#1|) (|:| -2535 (-1110))))) |#1|)) (-15 -3377 ((-1253 |#1|) (-912))) (-15 -2535 ((-1253 |#1|) (-912) (-912))) (-15 -2154 ((-1160 |#1|) (-1253 |#1|))) (-15 -2155 ((-1160 |#1|) (-765))) (-15 -2156 ((-1253 |#1|) (-1253 |#1|) (-765) (-1110))) (-15 -2157 ((-1253 |#1|) (-1253 |#1|) (-765))) (-15 -2158 ((-1253 |#1|) (-1253 |#1|) (-1110) (-1110))) (-15 -2159 ((-1253 |#1|) (-1253 |#1|) (-544))) (-15 ** ((-1253 |#1|) (-1253 |#1|) (-544))) (-15 * ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -4356 ((-1253 |#1|) (-1253 |#1|) (-1253 |#1|))) (-15 -3517 ((-1253 |#1|) (-1253 |#1|) (-912))) (-15 -3734 ((-1253 |#1|) (-1253 |#1|) (-912))) (-15 -2779 ((-1253 |#1|) (-1253 |#1|))) (-15 -2160 ((-912) (-1253 |#1|))) (-15 -2161 ((-112) (-1253 |#1|))) (-15 -2162 ((-1253 (-1253 |#1|)) (-912))) (-15 -2163 ((-1253 |#1|) (-912))) (-15 -2164 ((-1160 |#1|) (-1253 |#1|)))) -((-2150 (((-684 (-1212)) $) NIL)) (-2146 (((-684 (-1211)) $) NIL)) (-2148 (((-684 (-1210)) $) NIL)) (-2151 (((-684 (-547)) $) NIL)) (-2147 (((-684 (-546)) $) NIL)) (-2149 (((-684 (-545)) $) NIL)) (-2145 (((-765) $ (-129)) NIL)) (-2152 (((-684 (-128)) $) 23)) (-2165 (((-1110) $ (-1110)) 28)) (-3823 (((-1110) $) 27)) (-2940 (((-112) $) 18)) (-2167 (($ (-387)) 12) (($ (-1148)) 14)) (-2166 (((-112) $) 24)) (-4353 (((-857) $) 31)) (-1844 (($ $) 25))) -(((-527) (-13 (-525) (-608 (-857)) (-10 -8 (-15 -2167 ($ (-387))) (-15 -2167 ($ (-1148))) (-15 -2166 ((-112) $)) (-15 -2940 ((-112) $)) (-15 -3823 ((-1110) $)) (-15 -2165 ((-1110) $ (-1110)))))) (T -527)) -((-2167 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527)))) (-2167 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))) (-2165 (*1 *2 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-527))))) -(-13 (-525) (-608 (-857)) (-10 -8 (-15 -2167 ($ (-387))) (-15 -2167 ($ (-1148))) (-15 -2166 ((-112) $)) (-15 -2940 ((-112) $)) (-15 -3823 ((-1110) $)) (-15 -2165 ((-1110) $ (-1110))))) -((-2169 (((-1 |#1| |#1|) |#1|) 11)) (-2168 (((-1 |#1| |#1|)) 10))) -(((-528 |#1|) (-10 -7 (-15 -2168 ((-1 |#1| |#1|))) (-15 -2169 ((-1 |#1| |#1|) |#1|))) (-13 (-720) (-25))) (T -528)) -((-2169 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25))))) (-2168 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25)))))) -(-10 -7 (-15 -2168 ((-1 |#1| |#1|))) (-15 -2169 ((-1 |#1| |#1|) |#1|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2778 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3276 (($ (-765) |#1|) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 (-765) (-765)) $) NIL)) (-2134 ((|#1| $) NIL)) (-3575 (((-765) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20)) (-3040 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL))) -(((-529 |#1|) (-13 (-787) (-507 (-765) |#1|)) (-844)) (T -529)) -NIL -(-13 (-787) (-507 (-765) |#1|)) -((-2171 (((-635 |#2|) (-1160 |#1|) |#3|) 83)) (-2172 (((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-404 (-1160 |#1|)) (-1160 |#1|))) 100)) (-2170 (((-1160 |#1|) (-682 |#1|)) 95))) -(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -2170 ((-1160 |#1|) (-682 |#1|))) (-15 -2171 ((-635 |#2|) (-1160 |#1|) |#3|)) (-15 -2172 ((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-404 (-1160 |#1|)) (-1160 |#1|))))) (-362) (-362) (-13 (-362) (-842))) (T -530)) -((-2172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *6)) (-5 *5 (-1 (-404 (-1160 *6)) (-1160 *6))) (-4 *6 (-362)) (-5 *2 (-635 (-2 (|:| |outval| *7) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 *7)))))) (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *5)) (-4 *5 (-362)) (-5 *2 (-635 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *2 (-1160 *4)) (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-842)))))) -(-10 -7 (-15 -2170 ((-1160 |#1|) (-682 |#1|))) (-15 -2171 ((-635 |#2|) (-1160 |#1|) |#3|)) (-15 -2172 ((-635 (-2 (|:| |outval| |#2|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#2|))))) (-682 |#1|) |#3| (-1 (-404 (-1160 |#1|)) (-1160 |#1|))))) -((-2937 (((-684 (-1212)) $ (-1212)) NIL)) (-2938 (((-684 (-547)) $ (-547)) NIL)) (-2936 (((-765) $ (-129)) 39)) (-2939 (((-684 (-128)) $ (-128)) 40)) (-2150 (((-684 (-1212)) $) NIL)) (-2146 (((-684 (-1211)) $) NIL)) (-2148 (((-684 (-1210)) $) NIL)) (-2151 (((-684 (-547)) $) NIL)) (-2147 (((-684 (-546)) $) NIL)) (-2149 (((-684 (-545)) $) NIL)) (-2145 (((-765) $ (-129)) 34)) (-2152 (((-684 (-128)) $) 37)) (-2733 (((-112) $) 29)) (-2734 (((-684 $) (-576) (-947)) 19) (((-684 $) (-489) (-947)) 26)) (-4353 (((-857) $) 49)) (-1844 (($ $) 41))) -(((-531) (-13 (-761 (-576)) (-608 (-857)) (-10 -8 (-15 -2734 ((-684 $) (-489) (-947)))))) (T -531)) -((-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-489)) (-5 *4 (-947)) (-5 *2 (-684 (-531))) (-5 *1 (-531))))) -(-13 (-761 (-576)) (-608 (-857)) (-10 -8 (-15 -2734 ((-684 $) (-489) (-947))))) -((-2909 (((-836 (-544))) 12)) (-2908 (((-836 (-544))) 14)) (-2893 (((-826 (-544))) 9))) -(((-532) (-10 -7 (-15 -2893 ((-826 (-544)))) (-15 -2909 ((-836 (-544)))) (-15 -2908 ((-836 (-544)))))) (T -532)) -((-2908 (*1 *2) (-12 (-5 *2 (-836 (-544))) (-5 *1 (-532)))) (-2909 (*1 *2) (-12 (-5 *2 (-836 (-544))) (-5 *1 (-532)))) (-2893 (*1 *2) (-12 (-5 *2 (-826 (-544))) (-5 *1 (-532))))) -(-10 -7 (-15 -2893 ((-826 (-544)))) (-15 -2909 ((-836 (-544)))) (-15 -2908 ((-836 (-544))))) -((-2947 (((-112) $ $) NIL)) (-2176 (((-1148) $) 47)) (-3661 (((-112) $) 43)) (-3657 (((-1166) $) 44)) (-3662 (((-112) $) 41)) (-3942 (((-1148) $) 42)) (-2175 (($ (-1148)) 48)) (-3664 (((-112) $) NIL)) (-3666 (((-112) $) NIL)) (-3663 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-2178 (($ $ (-635 (-1166))) 20)) (-2181 (((-51) $) 22)) (-3660 (((-112) $) NIL)) (-3656 (((-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-2518 (($ $ (-635 (-1166)) (-1166)) 60)) (-3659 (((-112) $) NIL)) (-3655 (((-224) $) NIL)) (-2177 (($ $) 38)) (-3654 (((-857) $) NIL)) (-3667 (((-112) $ $) NIL)) (-4206 (($ $ (-544)) NIL) (($ $ (-635 (-544))) NIL)) (-3658 (((-635 $) $) 28)) (-2174 (((-1166) (-635 $)) 49)) (-4377 (($ (-1148)) NIL) (($ (-1166)) 18) (($ (-544)) 8) (($ (-224)) 25) (($ (-857)) NIL) (($ (-635 $)) 56) (((-1093) $) 11) (($ (-1093)) 12)) (-2173 (((-1166) (-1166) (-635 $)) 52)) (-4353 (((-857) $) 46)) (-3652 (($ $) 51)) (-3653 (($ $) 50)) (-2179 (($ $ (-635 $)) 57)) (-3665 (((-112) $) 27)) (-3040 (($) 9 T CONST)) (-3046 (($) 10 T CONST)) (-3437 (((-112) $ $) 61)) (-4356 (($ $ $) 66)) (-4246 (($ $ $) 62)) (** (($ $ (-765)) 65) (($ $ (-544)) 64)) (* (($ $ $) 63)) (-4364 (((-544) $) NIL))) -(((-533) (-13 (-1094 (-1148) (-1166) (-544) (-224) (-857)) (-609 (-1093)) (-10 -8 (-15 -2181 ((-51) $)) (-15 -4377 ($ (-1093))) (-15 -2179 ($ $ (-635 $))) (-15 -2518 ($ $ (-635 (-1166)) (-1166))) (-15 -2178 ($ $ (-635 (-1166)))) (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ (-544))) (-15 0 ($) -4359) (-15 1 ($) -4359) (-15 -2177 ($ $)) (-15 -2176 ((-1148) $)) (-15 -2175 ($ (-1148))) (-15 -2174 ((-1166) (-635 $))) (-15 -2173 ((-1166) (-1166) (-635 $)))))) (T -533)) -((-2181 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-533)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-533)))) (-2179 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-533))) (-5 *1 (-533)))) (-2518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-1166)) (-5 *1 (-533)))) (-2178 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-533)))) (-4246 (*1 *1 *1 *1) (-5 *1 (-533))) (* (*1 *1 *1 *1) (-5 *1 (-533))) (-4356 (*1 *1 *1 *1) (-5 *1 (-533))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-533)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-533)))) (-3040 (*1 *1) (-5 *1 (-533))) (-3046 (*1 *1) (-5 *1 (-533))) (-2177 (*1 *1 *1) (-5 *1 (-533))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-533)))) (-2175 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-533)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-635 (-533))) (-5 *2 (-1166)) (-5 *1 (-533)))) (-2173 (*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-533))) (-5 *1 (-533))))) -(-13 (-1094 (-1148) (-1166) (-544) (-224) (-857)) (-609 (-1093)) (-10 -8 (-15 -2181 ((-51) $)) (-15 -4377 ($ (-1093))) (-15 -2179 ($ $ (-635 $))) (-15 -2518 ($ $ (-635 (-1166)) (-1166))) (-15 -2178 ($ $ (-635 (-1166)))) (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ (-544))) (-15 (-3040) ($) -4359) (-15 (-3046) ($) -4359) (-15 -2177 ($ $)) (-15 -2176 ((-1148) $)) (-15 -2175 ($ (-1148))) (-15 -2174 ((-1166) (-635 $))) (-15 -2173 ((-1166) (-1166) (-635 $))))) -((-2180 (((-533) (-1166)) 15)) (-2181 ((|#1| (-533)) 20))) -(((-534 |#1|) (-10 -7 (-15 -2180 ((-533) (-1166))) (-15 -2181 (|#1| (-533)))) (-1204)) (T -534)) -((-2181 (*1 *2 *3) (-12 (-5 *3 (-533)) (-5 *1 (-534 *2)) (-4 *2 (-1204)))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-533)) (-5 *1 (-534 *4)) (-4 *4 (-1204))))) -(-10 -7 (-15 -2180 ((-533) (-1166))) (-15 -2181 (|#1| (-533)))) -((-3852 ((|#2| |#2|) 17)) (-3850 ((|#2| |#2|) 13)) (-3853 ((|#2| |#2| (-544) (-544)) 20)) (-3851 ((|#2| |#2|) 15))) -(((-535 |#1| |#2|) (-10 -7 (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2| (-544) (-544)))) (-13 (-554) (-146)) (-1246 |#1|)) (T -535)) -((-3853 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-544)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-535 *4 *2)) (-4 *2 (-1246 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3))))) -(-10 -7 (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2| (-544) (-544)))) -((-2184 (((-635 (-292 (-939 |#2|))) (-635 |#2|) (-635 (-1166))) 32)) (-2182 (((-635 |#2|) (-939 |#1|) |#3|) 53) (((-635 |#2|) (-1160 |#1|) |#3|) 52)) (-2183 (((-635 (-635 |#2|)) (-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)) |#3|) 88))) -(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2182 ((-635 |#2|) (-1160 |#1|) |#3|)) (-15 -2182 ((-635 |#2|) (-939 |#1|) |#3|)) (-15 -2183 ((-635 (-635 |#2|)) (-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)) |#3|)) (-15 -2184 ((-635 (-292 (-939 |#2|))) (-635 |#2|) (-635 (-1166))))) (-450) (-362) (-13 (-362) (-842))) (T -536)) -((-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1166))) (-4 *6 (-362)) (-5 *2 (-635 (-292 (-939 *6)))) (-5 *1 (-536 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-13 (-362) (-842))))) (-2183 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-4 *6 (-450)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362)) (-4 *5 (-13 (-362) (-842))))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-939 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842)))))) -(-10 -7 (-15 -2182 ((-635 |#2|) (-1160 |#1|) |#3|)) (-15 -2182 ((-635 |#2|) (-939 |#1|) |#3|)) (-15 -2183 ((-635 (-635 |#2|)) (-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)) |#3|)) (-15 -2184 ((-635 (-292 (-939 |#2|))) (-635 |#2|) (-635 (-1166))))) -((-2187 ((|#2| |#2| |#1|) 17)) (-2185 ((|#2| (-635 |#2|)) 26)) (-2186 ((|#2| (-635 |#2|)) 45))) -(((-537 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2185 (|#2| (-635 |#2|))) (-15 -2186 (|#2| (-635 |#2|))) (-15 -2187 (|#2| |#2| |#1|))) (-306) (-1229 |#1|) |#1| (-1 |#1| |#1| (-765))) (T -537)) -((-2187 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-765))) (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1229 *3)))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765))))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765)))))) -(-10 -7 (-15 -2185 (|#2| (-635 |#2|))) (-15 -2186 (|#2| (-635 |#2|))) (-15 -2187 (|#2| |#2| |#1|))) -((-4139 (((-404 (-1160 |#4|)) (-1160 |#4|) (-1 (-404 (-1160 |#3|)) (-1160 |#3|))) 79) (((-404 |#4|) |#4| (-1 (-404 (-1160 |#3|)) (-1160 |#3|))) 167))) -(((-538 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4| (-1 (-404 (-1160 |#3|)) (-1160 |#3|)))) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|) (-1 (-404 (-1160 |#3|)) (-1160 |#3|))))) (-844) (-787) (-13 (-306) (-146)) (-943 |#3| |#2| |#1|)) (T -538)) -((-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-404 (-1160 *7)) (-1160 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-943 *7 *6 *5)) (-5 *2 (-404 (-1160 *8))) (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1160 *8)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-404 (-1160 *7)) (-1160 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-404 *3)) (-5 *1 (-538 *5 *6 *7 *3)) (-4 *3 (-943 *7 *6 *5))))) -(-10 -7 (-15 -4139 ((-404 |#4|) |#4| (-1 (-404 (-1160 |#3|)) (-1160 |#3|)))) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|) (-1 (-404 (-1160 |#3|)) (-1160 |#3|))))) -((-3852 ((|#4| |#4|) 73)) (-3850 ((|#4| |#4|) 69)) (-3853 ((|#4| |#4| (-544) (-544)) 75)) (-3851 ((|#4| |#4|) 71))) -(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3850 (|#4| |#4|)) (-15 -3851 (|#4| |#4|)) (-15 -3852 (|#4| |#4|)) (-15 -3853 (|#4| |#4| (-544) (-544)))) (-13 (-362) (-367) (-609 (-544))) (-1229 |#1|) (-718 |#1| |#2|) (-1246 |#3|)) (T -539)) -((-3853 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-544)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-4 *5 (-1229 *4)) (-4 *6 (-718 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2)) (-4 *2 (-1246 *6)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3)) (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5))))) -(-10 -7 (-15 -3850 (|#4| |#4|)) (-15 -3851 (|#4| |#4|)) (-15 -3852 (|#4| |#4|)) (-15 -3853 (|#4| |#4| (-544) (-544)))) -((-3852 ((|#2| |#2|) 27)) (-3850 ((|#2| |#2|) 23)) (-3853 ((|#2| |#2| (-544) (-544)) 29)) (-3851 ((|#2| |#2|) 25))) -(((-540 |#1| |#2|) (-10 -7 (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2| (-544) (-544)))) (-13 (-362) (-367) (-609 (-544))) (-1246 |#1|)) (T -540)) -((-3853 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-544)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1246 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1246 *3)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1246 *3)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1246 *3))))) -(-10 -7 (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2| (-544) (-544)))) -((-2188 (((-3 (-544) #1="failed") |#2| |#1| (-1 (-3 (-544) #1#) |#1|)) 14) (((-3 (-544) #1#) |#2| |#1| (-544) (-1 (-3 (-544) #1#) |#1|)) 13) (((-3 (-544) #1#) |#2| (-544) (-1 (-3 (-544) #1#) |#1|)) 26))) -(((-541 |#1| |#2|) (-10 -7 (-15 -2188 ((-3 (-544) #1="failed") |#2| (-544) (-1 (-3 (-544) #1#) |#1|))) (-15 -2188 ((-3 (-544) #1#) |#2| |#1| (-544) (-1 (-3 (-544) #1#) |#1|))) (-15 -2188 ((-3 (-544) #1#) |#2| |#1| (-1 (-3 (-544) #1#) |#1|)))) (-1042) (-1229 |#1|)) (T -541)) -((-2188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-544) #1="failed") *4)) (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4)))) (-2188 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-544) #1#) *4)) (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4)))) (-2188 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-544) #1#) *5)) (-4 *5 (-1042)) (-5 *2 (-544)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1229 *5))))) -(-10 -7 (-15 -2188 ((-3 (-544) #1="failed") |#2| (-544) (-1 (-3 (-544) #1#) |#1|))) (-15 -2188 ((-3 (-544) #1#) |#2| |#1| (-544) (-1 (-3 (-544) #1#) |#1|))) (-15 -2188 ((-3 (-544) #1#) |#2| |#1| (-1 (-3 (-544) #1#) |#1|)))) -((-2197 (($ $ $) 78)) (-4376 (((-404 $) $) 46)) (-3558 (((-3 (-544) "failed") $) 58)) (-3557 (((-544) $) 36)) (-3407 (((-3 (-406 (-544)) "failed") $) 73)) (-3406 (((-112) $) 23)) (-3405 (((-406 (-544)) $) 71)) (-4130 (((-112) $) 49)) (-2190 (($ $ $ $) 85)) (-3587 (((-112) $) 15)) (-1440 (($ $ $) 56)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 68)) (-3848 (((-3 $ "failed") $) 63)) (-2194 (($ $) 22)) (-2189 (($ $ $) 83)) (-3849 (($) 59)) (-1438 (($ $) 52)) (-4139 (((-404 $) $) 44)) (-3056 (((-112) $) 13)) (-1732 (((-765) $) 27)) (-4217 (($ $ (-765)) NIL) (($ $) 10)) (-3804 (($ $) 16)) (-4377 (((-544) $) NIL) (((-533) $) 35) (((-883 (-544)) $) 39) (((-377) $) 30) (((-224) $) 32)) (-3511 (((-765)) 8)) (-2199 (((-112) $ $) 19)) (-3487 (($ $ $) 54))) -(((-542 |#1|) (-10 -8 (-15 -2189 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1| |#1| |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2199 ((-112) |#1| |#1|)) (-15 -3056 ((-112) |#1|)) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -3487 (|#1| |#1| |#1|)) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -3558 ((-3 (-544) "failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -4377 ((-544) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3587 ((-112) |#1|)) (-15 -1732 ((-765) |#1|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4130 ((-112) |#1|)) (-15 -3511 ((-765)))) (-543)) (T -542)) -((-3511 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-542 *3)) (-4 *3 (-543))))) -(-10 -8 (-15 -2189 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1| |#1| |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2199 ((-112) |#1| |#1|)) (-15 -3056 ((-112) |#1|)) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -3487 (|#1| |#1| |#1|)) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -3558 ((-3 (-544) "failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -4377 ((-544) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -3587 ((-112) |#1|)) (-15 -1732 ((-765) |#1|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4130 ((-112) |#1|)) (-15 -3511 ((-765)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-2197 (($ $ $) 85)) (-1391 (((-3 $ "failed") $ $) 19)) (-2192 (($ $ $ $) 74)) (-4181 (($ $) 52)) (-4376 (((-404 $) $) 53)) (-1733 (((-112) $ $) 125)) (-4030 (((-544) $) 114)) (-2735 (($ $ $) 88)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) "failed") $) 106)) (-3557 (((-544) $) 107)) (-2943 (($ $ $) 129)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 104) (((-682 (-544)) (-682 $)) 103)) (-3866 (((-3 $ "failed") $) 33)) (-3407 (((-3 (-406 (-544)) "failed") $) 82)) (-3406 (((-112) $) 84)) (-3405 (((-406 (-544)) $) 83)) (-3377 (($) 81) (($ $) 80)) (-2942 (($ $ $) 128)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 123)) (-4130 (((-112) $) 54)) (-2190 (($ $ $ $) 72)) (-2198 (($ $ $) 86)) (-3587 (((-112) $) 116)) (-1440 (($ $ $) 97)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 100)) (-2545 (((-112) $) 31)) (-3055 (((-112) $) 92)) (-3848 (((-3 $ "failed") $) 94)) (-3588 (((-112) $) 115)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 132)) (-2191 (($ $ $ $) 73)) (-2913 (($ $ $) 117)) (-3242 (($ $ $) 118)) (-2194 (($ $) 76)) (-4240 (($ $) 89)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2189 (($ $ $) 71)) (-3849 (($) 93 T CONST)) (-2196 (($ $) 78)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1438 (($ $) 98)) (-4139 (((-404 $) $) 51)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 130)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 124)) (-3056 (((-112) $) 91)) (-1732 (((-765) $) 126)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 127)) (-4217 (($ $ (-765)) 111) (($ $) 109)) (-2195 (($ $) 77)) (-3804 (($ $) 79)) (-4377 (((-544) $) 108) (((-533) $) 102) (((-883 (-544)) $) 101) (((-377) $) 96) (((-224) $) 95)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-544)) 105)) (-3511 (((-765)) 28)) (-2199 (((-112) $ $) 87)) (-3487 (($ $ $) 99)) (-3076 (($) 90)) (-2212 (((-112) $ $) 40)) (-2193 (($ $ $ $) 75)) (-3787 (($ $) 113)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-765)) 112) (($ $) 110)) (-2945 (((-112) $ $) 120)) (-2946 (((-112) $ $) 121)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 119)) (-3067 (((-112) $ $) 122)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-543) (-139)) (T -543)) -((-3055 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3076 (*1 *1) (-4 *1 (-543))) (-4240 (*1 *1 *1) (-4 *1 (-543))) (-2735 (*1 *1 *1 *1) (-4 *1 (-543))) (-2199 (*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2198 (*1 *1 *1 *1) (-4 *1 (-543))) (-2197 (*1 *1 *1 *1) (-4 *1 (-543))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-544))))) (-3407 (*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-544))))) (-3377 (*1 *1) (-4 *1 (-543))) (-3377 (*1 *1 *1) (-4 *1 (-543))) (-3804 (*1 *1 *1) (-4 *1 (-543))) (-2196 (*1 *1 *1) (-4 *1 (-543))) (-2195 (*1 *1 *1) (-4 *1 (-543))) (-2194 (*1 *1 *1) (-4 *1 (-543))) (-2193 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2192 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2191 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2190 (*1 *1 *1 *1 *1) (-4 *1 (-543))) (-2189 (*1 *1 *1 *1) (-4 *1 (-543)))) -(-13 (-1209) (-306) (-814) (-232) (-609 (-544)) (-1031 (-544)) (-634 (-544)) (-609 (-533)) (-609 (-883 (-544))) (-879 (-544)) (-142) (-1013) (-146) (-1141) (-10 -8 (-15 -3055 ((-112) $)) (-15 -3056 ((-112) $)) (-6 -4399) (-15 -3076 ($)) (-15 -4240 ($ $)) (-15 -2735 ($ $ $)) (-15 -2199 ((-112) $ $)) (-15 -2198 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $)) (-15 -3377 ($)) (-15 -3377 ($ $)) (-15 -3804 ($ $)) (-15 -2196 ($ $)) (-15 -2195 ($ $)) (-15 -2194 ($ $)) (-15 -2193 ($ $ $ $)) (-15 -2192 ($ $ $ $)) (-15 -2191 ($ $ $ $)) (-15 -2190 ($ $ $ $)) (-15 -2189 ($ $ $)) (-6 -4398))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-142) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-377)) . T) ((-609 (-533)) . T) ((-609 (-544)) . T) ((-609 (-883 (-544))) . T) ((-232) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-634 (-544)) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-814) . T) ((-842) . T) ((-844) . T) ((-879 (-544)) . T) ((-914) . T) ((-1013) . T) ((-1031 (-544)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) . T) ((-1209) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 25)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 88)) (-2213 (($ $) 89)) (-2211 (((-112) $) NIL)) (-2197 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2192 (($ $ $ $) 43)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL)) (-2735 (($ $ $) 82)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) "failed") $) NIL)) (-3557 (((-544) $) NIL)) (-2943 (($ $ $) 81)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 62) (((-682 (-544)) (-682 $)) 58)) (-3866 (((-3 $ "failed") $) 85)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL)) (-3406 (((-112) $) NIL)) (-3405 (((-406 (-544)) $) NIL)) (-3377 (($) 64) (($ $) 65)) (-2942 (($ $ $) 80)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2190 (($ $ $ $) NIL)) (-2198 (($ $ $) 55)) (-3587 (((-112) $) NIL)) (-1440 (($ $ $) NIL)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL)) (-2545 (((-112) $) 26)) (-3055 (((-112) $) 75)) (-3848 (((-3 $ "failed") $) NIL)) (-3588 (((-112) $) 35)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2191 (($ $ $ $) 44)) (-2913 (($ $ $) 77)) (-3242 (($ $ $) 76)) (-2194 (($ $) NIL)) (-4240 (($ $) 41)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) 54)) (-2189 (($ $ $) NIL)) (-3849 (($) NIL T CONST)) (-2196 (($ $) 31)) (-3644 (((-1110) $) 34)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 119)) (-3545 (($ $ $) 86) (($ (-635 $)) NIL)) (-1438 (($ $) NIL)) (-4139 (((-404 $) $) 105)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) 84)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 79)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-2195 (($ $) 32)) (-3804 (($ $) 30)) (-4377 (((-544) $) 40) (((-533) $) 52) (((-883 (-544)) $) NIL) (((-377) $) 47) (((-224) $) 49) (((-1148) $) 53)) (-4353 (((-857) $) 38) (($ (-544)) 39) (($ $) NIL) (($ (-544)) 39)) (-3511 (((-765)) NIL)) (-2199 (((-112) $ $) NIL)) (-3487 (($ $ $) NIL)) (-3076 (($) 29)) (-2212 (((-112) $ $) NIL)) (-2193 (($ $ $ $) 42)) (-3787 (($ $) 63)) (-3040 (($) 27 T CONST)) (-3046 (($) 28 T CONST)) (-2879 (((-1148) $) 20) (((-1148) $ (-112)) 22) (((-1259) (-817) $) 23) (((-1259) (-817) $ (-112)) 24)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 66)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 67)) (-4244 (($ $) 68) (($ $ $) 70)) (-4246 (($ $ $) 69)) (** (($ $ (-912)) NIL) (($ $ (-765)) 74)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 72) (($ $ $) 71))) -(((-544) (-13 (-543) (-609 (-1148)) (-815) (-10 -8 (-15 -3377 ($ $)) (-6 -4387) (-6 -4392) (-6 -4388) (-6 -4382)))) (T -544)) -((-3377 (*1 *1 *1) (-5 *1 (-544)))) -(-13 (-543) (-609 (-1148)) (-815) (-10 -8 (-15 -3377 ($ $)) (-6 -4387) (-6 -4392) (-6 -4388) (-6 -4382))) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL))) -(((-545) (-838)) (T -545)) -NIL -(-838) -((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#))) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL))) -(((-546) (-838)) (T -546)) -NIL -(-838) -((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#))) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL))) -(((-547) (-838)) (T -547)) -NIL -(-838) -((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#))) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) NIL)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-548 |#1| |#2| |#3|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) (-1091) (-1091) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400)))) (T -548)) -NIL -(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) -((-2200 (((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-1 (-1160 |#2|) (-1160 |#2|))) 51))) -(((-549 |#1| |#2|) (-10 -7 (-15 -2200 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-1 (-1160 |#2|) (-1160 |#2|))))) (-13 (-844) (-554)) (-13 (-27) (-420 |#1|))) (T -549)) -((-2200 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-606 *3)) (-5 *5 (-1 (-1160 *3) (-1160 *3))) (-4 *3 (-13 (-27) (-420 *6))) (-4 *6 (-13 (-844) (-554))) (-5 *2 (-580 *3)) (-5 *1 (-549 *6 *3))))) -(-10 -7 (-15 -2200 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-1 (-1160 |#2|) (-1160 |#2|))))) -((-2202 (((-580 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-2203 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-2201 (((-580 |#5|) |#5| (-1 |#3| |#3|)) 201))) -(((-550 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2201 ((-580 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2202 ((-580 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2203 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-844) (-554) (-1031 (-544))) (-13 (-27) (-420 |#1|)) (-1229 |#2|) (-1229 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -550)) -((-2203 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-27) (-420 *4))) (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-4 *7 (-1229 (-406 *6))) (-5 *1 (-550 *4 *5 *6 *7 *2)) (-4 *2 (-341 *5 *6 *7)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-420 *5))) (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-4 *8 (-1229 (-406 *7))) (-5 *2 (-580 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-420 *5))) (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-4 *8 (-1229 (-406 *7))) (-5 *2 (-580 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8))))) -(-10 -7 (-15 -2201 ((-580 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2202 ((-580 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2203 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2206 (((-112) (-544) (-544)) 10)) (-2204 (((-544) (-544)) 7)) (-2205 (((-544) (-544) (-544)) 8))) -(((-551) (-10 -7 (-15 -2204 ((-544) (-544))) (-15 -2205 ((-544) (-544) (-544))) (-15 -2206 ((-112) (-544) (-544))))) (T -551)) -((-2206 (*1 *2 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-551)))) (-2205 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-551)))) (-2204 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-551))))) -(-10 -7 (-15 -2204 ((-544) (-544))) (-15 -2205 ((-544) (-544) (-544))) (-15 -2206 ((-112) (-544) (-544)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2983 ((|#1| $) 62)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-3891 (($ $) 92)) (-4046 (($ $) 75)) (-2778 ((|#1| $) 63)) (-1391 (((-3 $ "failed") $ $) 19)) (-3420 (($ $) 74)) (-3889 (($ $) 91)) (-4045 (($ $) 76)) (-3893 (($ $) 90)) (-4044 (($ $) 77)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) "failed") $) 70)) (-3557 (((-544) $) 71)) (-3866 (((-3 $ "failed") $) 33)) (-2209 (($ |#1| |#1|) 67)) (-3587 (((-112) $) 61)) (-4034 (($) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 73)) (-3588 (((-112) $) 60)) (-2913 (($ $ $) 108)) (-3242 (($ $ $) 107)) (-4349 (($ $) 99)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2210 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-406 (-544))) 65)) (-2208 ((|#1| $) 64)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3865 (((-3 $ "failed") $ $) 43)) (-4350 (($ $) 100)) (-3894 (($ $) 89)) (-4043 (($ $) 78)) (-3892 (($ $) 88)) (-4042 (($ $) 79)) (-3890 (($ $) 87)) (-4041 (($ $) 80)) (-2207 (((-112) $ |#1|) 59)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-544)) 69)) (-3511 (((-765)) 28)) (-3897 (($ $) 98)) (-3885 (($ $) 86)) (-2212 (((-112) $ $) 40)) (-3895 (($ $) 97)) (-3883 (($ $) 85)) (-3899 (($ $) 96)) (-3887 (($ $) 84)) (-3900 (($ $) 95)) (-3888 (($ $) 83)) (-3898 (($ $) 94)) (-3886 (($ $) 82)) (-3896 (($ $) 93)) (-3884 (($ $) 81)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 105)) (-2946 (((-112) $ $) 104)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 106)) (-3067 (((-112) $ $) 103)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ $) 101) (($ $ (-406 (-544))) 72)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-552 |#1|) (-139) (-13 (-403) (-1190))) (T -552)) -((-2210 (*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2209 (*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2210 (*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2210 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) (-2207 (*1 *2 *1 *3) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112))))) -(-13 (-450) (-844) (-1190) (-995) (-1031 (-544)) (-10 -8 (-6 -4176) (-15 -2210 ($ |t#1| |t#1|)) (-15 -2209 ($ |t#1| |t#1|)) (-15 -2210 ($ |t#1|)) (-15 -2210 ($ (-406 (-544)))) (-15 -2208 (|t#1| $)) (-15 -2778 (|t#1| $)) (-15 -2983 (|t#1| $)) (-15 -3587 ((-112) $)) (-15 -3588 ((-112) $)) (-15 -2207 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-283) . T) ((-289) . T) ((-450) . T) ((-491) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-844) . T) ((-995) . T) ((-1031 (-544)) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) . T) ((-1193) . T)) -((-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 9)) (-2213 (($ $) 11)) (-2211 (((-112) $) 18)) (-3866 (((-3 $ "failed") $) 16)) (-2212 (((-112) $ $) 20))) -(((-553 |#1|) (-10 -8 (-15 -2211 ((-112) |#1|)) (-15 -2212 ((-112) |#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|))) (-554)) (T -553)) -NIL -(-10 -8 (-15 -2211 ((-112) |#1|)) (-15 -2212 ((-112) |#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2214 ((-2 (|:| -1920 |#1|) (|:| -4387 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) +((-1845 (((-1164 |#1|) (-766)) 75)) (-1748 (((-1256 |#1|) (-1256 |#1|) (-916)) 68)) (-1651 (((-1261) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))) |#1|) 83)) (-3092 (((-1256 |#1|) (-1256 |#1|) (-766)) 36)) (-1448 (((-1256 |#1|) (-916)) 70)) (-3446 (((-1256 |#1|) (-1256 |#1|) (-562)) 24)) (-4380 (((-1164 |#1|) (-1256 |#1|)) 76)) (-1846 (((-1256 |#1|) (-916)) 94)) (-1316 (((-112) (-1256 |#1|)) 79)) (-2247 (((-1256 |#1|) (-1256 |#1|) (-916)) 61)) (-1565 (((-1164 |#1|) (-1256 |#1|)) 88)) (-1999 (((-916) (-1256 |#1|)) 58)) (-1525 (((-1256 |#1|) (-1256 |#1|)) 30)) (-2466 (((-1256 |#1|) (-916) (-916)) 96)) (-3781 (((-1256 |#1|) (-1256 |#1|) (-1112) (-1112)) 23)) (-1492 (((-1256 |#1|) (-1256 |#1|) (-766) (-1112)) 37)) (-3928 (((-1256 (-1256 |#1|)) (-916)) 93)) (-1859 (((-1256 |#1|) (-1256 |#1|) (-1256 |#1|)) 80)) (** (((-1256 |#1|) (-1256 |#1|) (-562)) 43)) (* (((-1256 |#1|) (-1256 |#1|) (-1256 |#1|)) 25))) +(((-527 |#1|) (-10 -7 (-15 -1651 ((-1261) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))) |#1|)) (-15 -1448 ((-1256 |#1|) (-916))) (-15 -2466 ((-1256 |#1|) (-916) (-916))) (-15 -4380 ((-1164 |#1|) (-1256 |#1|))) (-15 -1845 ((-1164 |#1|) (-766))) (-15 -1492 ((-1256 |#1|) (-1256 |#1|) (-766) (-1112))) (-15 -3092 ((-1256 |#1|) (-1256 |#1|) (-766))) (-15 -3781 ((-1256 |#1|) (-1256 |#1|) (-1112) (-1112))) (-15 -3446 ((-1256 |#1|) (-1256 |#1|) (-562))) (-15 ** ((-1256 |#1|) (-1256 |#1|) (-562))) (-15 * ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -1859 ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -2247 ((-1256 |#1|) (-1256 |#1|) (-916))) (-15 -1748 ((-1256 |#1|) (-1256 |#1|) (-916))) (-15 -1525 ((-1256 |#1|) (-1256 |#1|))) (-15 -1999 ((-916) (-1256 |#1|))) (-15 -1316 ((-112) (-1256 |#1|))) (-15 -3928 ((-1256 (-1256 |#1|)) (-916))) (-15 -1846 ((-1256 |#1|) (-916))) (-15 -1565 ((-1164 |#1|) (-1256 |#1|)))) (-348)) (T -527)) +((-1565 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-1164 *4)) (-5 *1 (-527 *4)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 (-1256 *4))) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-527 *4)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-916)) (-5 *1 (-527 *4)))) (-1525 (*1 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) (-1748 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-916)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-2247 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-916)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-1859 (*1 *2 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-562)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-3446 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-562)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-3781 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1112)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-3092 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-1492 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1256 *5)) (-5 *3 (-766)) (-5 *4 (-1112)) (-4 *5 (-348)) (-5 *1 (-527 *5)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1164 *4)) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-1164 *4)) (-5 *1 (-527 *4)))) (-2466 (*1 *2 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) (-4 *4 (-348)) (-5 *2 (-1261)) (-5 *1 (-527 *4))))) +(-10 -7 (-15 -1651 ((-1261) (-1256 (-639 (-2 (|:| -2534 |#1|) (|:| -2466 (-1112))))) |#1|)) (-15 -1448 ((-1256 |#1|) (-916))) (-15 -2466 ((-1256 |#1|) (-916) (-916))) (-15 -4380 ((-1164 |#1|) (-1256 |#1|))) (-15 -1845 ((-1164 |#1|) (-766))) (-15 -1492 ((-1256 |#1|) (-1256 |#1|) (-766) (-1112))) (-15 -3092 ((-1256 |#1|) (-1256 |#1|) (-766))) (-15 -3781 ((-1256 |#1|) (-1256 |#1|) (-1112) (-1112))) (-15 -3446 ((-1256 |#1|) (-1256 |#1|) (-562))) (-15 ** ((-1256 |#1|) (-1256 |#1|) (-562))) (-15 * ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -1859 ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -2247 ((-1256 |#1|) (-1256 |#1|) (-916))) (-15 -1748 ((-1256 |#1|) (-1256 |#1|) (-916))) (-15 -1525 ((-1256 |#1|) (-1256 |#1|))) (-15 -1999 ((-916) (-1256 |#1|))) (-15 -1316 ((-112) (-1256 |#1|))) (-15 -3928 ((-1256 (-1256 |#1|)) (-916))) (-15 -1846 ((-1256 |#1|) (-916))) (-15 -1565 ((-1164 |#1|) (-1256 |#1|)))) +((-3691 (((-685 (-1214)) $) NIL)) (-3192 (((-685 (-1213)) $) NIL)) (-3661 (((-685 (-1212)) $) NIL)) (-1735 (((-685 (-547)) $) NIL)) (-1890 (((-685 (-546)) $) NIL)) (-2242 (((-685 (-545)) $) NIL)) (-1477 (((-766) $ (-128)) NIL)) (-1850 (((-685 (-129)) $) 23)) (-2909 (((-1112) $ (-1112)) 28)) (-4264 (((-1112) $) 27)) (-2468 (((-112) $) 18)) (-2273 (($ (-387)) 12) (($ (-1150)) 14)) (-2647 (((-112) $) 24)) (-4054 (((-857) $) 31)) (-3948 (($ $) 25))) +(((-528) (-13 (-526) (-609 (-857)) (-10 -8 (-15 -2273 ($ (-387))) (-15 -2273 ($ (-1150))) (-15 -2647 ((-112) $)) (-15 -2468 ((-112) $)) (-15 -4264 ((-1112) $)) (-15 -2909 ((-1112) $ (-1112)))))) (T -528)) +((-2273 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-528)))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-528)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-528)))) (-2468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-528)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-528)))) (-2909 (*1 *2 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-528))))) +(-13 (-526) (-609 (-857)) (-10 -8 (-15 -2273 ($ (-387))) (-15 -2273 ($ (-1150))) (-15 -2647 ((-112) $)) (-15 -2468 ((-112) $)) (-15 -4264 ((-1112) $)) (-15 -2909 ((-1112) $ (-1112))))) +((-3512 (((-1 |#1| |#1|) |#1|) 11)) (-3638 (((-1 |#1| |#1|)) 10))) +(((-529 |#1|) (-10 -7 (-15 -3638 ((-1 |#1| |#1|))) (-15 -3512 ((-1 |#1| |#1|) |#1|))) (-13 (-721) (-25))) (T -529)) +((-3512 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-529 *3)) (-4 *3 (-13 (-721) (-25))))) (-3638 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-529 *3)) (-4 *3 (-13 (-721) (-25)))))) +(-10 -7 (-15 -3638 ((-1 |#1| |#1|))) (-15 -3512 ((-1 |#1| |#1|) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-1378 (($ (-766) |#1|) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 (-766) (-766)) $) NIL)) (-2500 ((|#1| $) NIL)) (-1573 (((-766) $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 20)) (-2286 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1835 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL))) +(((-530 |#1|) (-13 (-788) (-508 (-766) |#1|)) (-845)) (T -530)) +NIL +(-13 (-788) (-508 (-766) |#1|)) +((-1619 (((-639 |#2|) (-1164 |#1|) |#3|) 83)) (-2232 (((-639 (-2 (|:| |outval| |#2|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#2|))))) (-683 |#1|) |#3| (-1 (-417 (-1164 |#1|)) (-1164 |#1|))) 100)) (-3267 (((-1164 |#1|) (-683 |#1|)) 95))) +(((-531 |#1| |#2| |#3|) (-10 -7 (-15 -3267 ((-1164 |#1|) (-683 |#1|))) (-15 -1619 ((-639 |#2|) (-1164 |#1|) |#3|)) (-15 -2232 ((-639 (-2 (|:| |outval| |#2|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#2|))))) (-683 |#1|) |#3| (-1 (-417 (-1164 |#1|)) (-1164 |#1|))))) (-362) (-362) (-13 (-362) (-843))) (T -531)) +((-2232 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *6)) (-5 *5 (-1 (-417 (-1164 *6)) (-1164 *6))) (-4 *6 (-362)) (-5 *2 (-639 (-2 (|:| |outval| *7) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 *7)))))) (-5 *1 (-531 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-843))))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-362)) (-5 *2 (-639 *6)) (-5 *1 (-531 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843))))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-683 *4)) (-4 *4 (-362)) (-5 *2 (-1164 *4)) (-5 *1 (-531 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-843)))))) +(-10 -7 (-15 -3267 ((-1164 |#1|) (-683 |#1|))) (-15 -1619 ((-639 |#2|) (-1164 |#1|) |#3|)) (-15 -2232 ((-639 (-2 (|:| |outval| |#2|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#2|))))) (-683 |#1|) |#3| (-1 (-417 (-1164 |#1|)) (-1164 |#1|))))) +((-2475 (((-685 (-1214)) $ (-1214)) NIL)) (-3202 (((-685 (-547)) $ (-547)) NIL)) (-3787 (((-766) $ (-128)) 39)) (-3966 (((-685 (-129)) $ (-129)) 40)) (-3691 (((-685 (-1214)) $) NIL)) (-3192 (((-685 (-1213)) $) NIL)) (-3661 (((-685 (-1212)) $) NIL)) (-1735 (((-685 (-547)) $) NIL)) (-1890 (((-685 (-546)) $) NIL)) (-2242 (((-685 (-545)) $) NIL)) (-1477 (((-766) $ (-128)) 34)) (-1850 (((-685 (-129)) $) 37)) (-3828 (((-112) $) 29)) (-2640 (((-685 $) (-577) (-949)) 19) (((-685 $) (-490) (-949)) 26)) (-4054 (((-857) $) 49)) (-3948 (($ $) 41))) +(((-532) (-13 (-762 (-577)) (-609 (-857)) (-10 -8 (-15 -2640 ((-685 $) (-490) (-949)))))) (T -532)) +((-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-490)) (-5 *4 (-949)) (-5 *2 (-685 (-532))) (-5 *1 (-532))))) +(-13 (-762 (-577)) (-609 (-857)) (-10 -8 (-15 -2640 ((-685 $) (-490) (-949))))) +((-3604 (((-838 (-562))) 12)) (-3616 (((-838 (-562))) 14)) (-4113 (((-828 (-562))) 9))) +(((-533) (-10 -7 (-15 -4113 ((-828 (-562)))) (-15 -3604 ((-838 (-562)))) (-15 -3616 ((-838 (-562)))))) (T -533)) +((-3616 (*1 *2) (-12 (-5 *2 (-838 (-562))) (-5 *1 (-533)))) (-3604 (*1 *2) (-12 (-5 *2 (-838 (-562))) (-5 *1 (-533)))) (-4113 (*1 *2) (-12 (-5 *2 (-828 (-562))) (-5 *1 (-533))))) +(-10 -7 (-15 -4113 ((-828 (-562)))) (-15 -3604 ((-838 (-562)))) (-15 -3616 ((-838 (-562))))) +((-2914 (((-535) (-1168)) 15)) (-3924 ((|#1| (-535)) 20))) +(((-534 |#1|) (-10 -7 (-15 -2914 ((-535) (-1168))) (-15 -3924 (|#1| (-535)))) (-1207)) (T -534)) +((-3924 (*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-534 *2)) (-4 *2 (-1207)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-535)) (-5 *1 (-534 *4)) (-4 *4 (-1207))))) +(-10 -7 (-15 -2914 ((-535) (-1168))) (-15 -3924 (|#1| (-535)))) +((-4041 (((-112) $ $) NIL)) (-2740 (((-1150) $) 47)) (-1873 (((-112) $) 43)) (-1730 (((-1168) $) 44)) (-2186 (((-112) $) 41)) (-3596 (((-1150) $) 42)) (-3912 (($ (-1150)) 48)) (-3155 (((-112) $) NIL)) (-4060 (((-112) $) NIL)) (-1661 (((-112) $) NIL)) (-2913 (((-1150) $) NIL)) (-3835 (($ $ (-639 (-1168))) 20)) (-3924 (((-52) $) 22)) (-3377 (((-112) $) NIL)) (-1757 (((-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-1407 (($ $ (-639 (-1168)) (-1168)) 60)) (-3715 (((-112) $) NIL)) (-4235 (((-224) $) NIL)) (-2755 (($ $) 38)) (-2404 (((-857) $) NIL)) (-3342 (((-112) $ $) NIL)) (-2343 (($ $ (-562)) NIL) (($ $ (-639 (-562))) NIL)) (-1716 (((-639 $) $) 28)) (-3095 (((-1168) (-639 $)) 49)) (-4208 (($ (-1150)) NIL) (($ (-1168)) 18) (($ (-562)) 8) (($ (-224)) 25) (($ (-857)) NIL) (($ (-639 $)) 56) (((-1096) $) 11) (($ (-1096)) 12)) (-3464 (((-1168) (-1168) (-639 $)) 52)) (-4054 (((-857) $) 46)) (-3740 (($ $) 51)) (-3728 (($ $) 50)) (-4269 (($ $ (-639 $)) 57)) (-2849 (((-112) $) 27)) (-2286 (($) 9 T CONST)) (-2294 (($) 10 T CONST)) (-1731 (((-112) $ $) 61)) (-1859 (($ $ $) 66)) (-1835 (($ $ $) 62)) (** (($ $ (-766)) 65) (($ $ (-562)) 64)) (* (($ $ $) 63)) (-3492 (((-562) $) NIL))) +(((-535) (-13 (-1095 (-1150) (-1168) (-562) (-224) (-857)) (-610 (-1096)) (-10 -8 (-15 -3924 ((-52) $)) (-15 -4208 ($ (-1096))) (-15 -4269 ($ $ (-639 $))) (-15 -1407 ($ $ (-639 (-1168)) (-1168))) (-15 -3835 ($ $ (-639 (-1168)))) (-15 -1835 ($ $ $)) (-15 * ($ $ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ (-766))) (-15 ** ($ $ (-562))) (-15 0 ($) -1497) (-15 1 ($) -1497) (-15 -2755 ($ $)) (-15 -2740 ((-1150) $)) (-15 -3912 ($ (-1150))) (-15 -3095 ((-1168) (-639 $))) (-15 -3464 ((-1168) (-1168) (-639 $)))))) (T -535)) +((-3924 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-535)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-535)))) (-4269 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-535))) (-5 *1 (-535)))) (-1407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-1168)) (-5 *1 (-535)))) (-3835 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-535)))) (-1835 (*1 *1 *1 *1) (-5 *1 (-535))) (* (*1 *1 *1 *1) (-5 *1 (-535))) (-1859 (*1 *1 *1 *1) (-5 *1 (-535))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-535)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-535)))) (-2286 (*1 *1) (-5 *1 (-535))) (-2294 (*1 *1) (-5 *1 (-535))) (-2755 (*1 *1 *1) (-5 *1 (-535))) (-2740 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-535)))) (-3912 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-535)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-639 (-535))) (-5 *2 (-1168)) (-5 *1 (-535)))) (-3464 (*1 *2 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-535))) (-5 *1 (-535))))) +(-13 (-1095 (-1150) (-1168) (-562) (-224) (-857)) (-610 (-1096)) (-10 -8 (-15 -3924 ((-52) $)) (-15 -4208 ($ (-1096))) (-15 -4269 ($ $ (-639 $))) (-15 -1407 ($ $ (-639 (-1168)) (-1168))) (-15 -3835 ($ $ (-639 (-1168)))) (-15 -1835 ($ $ $)) (-15 * ($ $ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ (-766))) (-15 ** ($ $ (-562))) (-15 (-2286) ($) -1497) (-15 (-2294) ($) -1497) (-15 -2755 ($ $)) (-15 -2740 ((-1150) $)) (-15 -3912 ($ (-1150))) (-15 -3095 ((-1168) (-639 $))) (-15 -3464 ((-1168) (-1168) (-639 $))))) +((-2729 ((|#2| |#2|) 17)) (-2398 ((|#2| |#2|) 13)) (-4329 ((|#2| |#2| (-562) (-562)) 20)) (-2200 ((|#2| |#2|) 15))) +(((-536 |#1| |#2|) (-10 -7 (-15 -2398 (|#2| |#2|)) (-15 -2200 (|#2| |#2|)) (-15 -2729 (|#2| |#2|)) (-15 -4329 (|#2| |#2| (-562) (-562)))) (-13 (-554) (-146)) (-1247 |#1|)) (T -536)) +((-4329 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-562)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-536 *4 *2)) (-4 *2 (-1247 *4)))) (-2729 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1247 *3)))) (-2200 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1247 *3)))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1247 *3))))) +(-10 -7 (-15 -2398 (|#2| |#2|)) (-15 -2200 (|#2| |#2|)) (-15 -2729 (|#2| |#2|)) (-15 -4329 (|#2| |#2| (-562) (-562)))) +((-1941 (((-639 (-293 (-947 |#2|))) (-639 |#2|) (-639 (-1168))) 32)) (-1707 (((-639 |#2|) (-947 |#1|) |#3|) 53) (((-639 |#2|) (-1164 |#1|) |#3|) 52)) (-3293 (((-639 (-639 |#2|)) (-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)) |#3|) 88))) +(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -1707 ((-639 |#2|) (-1164 |#1|) |#3|)) (-15 -1707 ((-639 |#2|) (-947 |#1|) |#3|)) (-15 -3293 ((-639 (-639 |#2|)) (-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)) |#3|)) (-15 -1941 ((-639 (-293 (-947 |#2|))) (-639 |#2|) (-639 (-1168))))) (-451) (-362) (-13 (-362) (-843))) (T -537)) +((-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-1168))) (-4 *6 (-362)) (-5 *2 (-639 (-293 (-947 *6)))) (-5 *1 (-537 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-13 (-362) (-843))))) (-3293 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-639 (-639 *7))) (-5 *1 (-537 *6 *7 *5)) (-4 *7 (-362)) (-4 *5 (-13 (-362) (-843))))) (-1707 (*1 *2 *3 *4) (-12 (-5 *3 (-947 *5)) (-4 *5 (-451)) (-5 *2 (-639 *6)) (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843))))) (-1707 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-451)) (-5 *2 (-639 *6)) (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843)))))) +(-10 -7 (-15 -1707 ((-639 |#2|) (-1164 |#1|) |#3|)) (-15 -1707 ((-639 |#2|) (-947 |#1|) |#3|)) (-15 -3293 ((-639 (-639 |#2|)) (-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)) |#3|)) (-15 -1941 ((-639 (-293 (-947 |#2|))) (-639 |#2|) (-639 (-1168))))) +((-2925 ((|#2| |#2| |#1|) 17)) (-1728 ((|#2| (-639 |#2|)) 26)) (-3309 ((|#2| (-639 |#2|)) 45))) +(((-538 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1728 (|#2| (-639 |#2|))) (-15 -3309 (|#2| (-639 |#2|))) (-15 -2925 (|#2| |#2| |#1|))) (-306) (-1232 |#1|) |#1| (-1 |#1| |#1| (-766))) (T -538)) +((-2925 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-766))) (-5 *1 (-538 *3 *2 *4 *5)) (-4 *2 (-1232 *3)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-538 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-766))))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-538 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-766)))))) +(-10 -7 (-15 -1728 (|#2| (-639 |#2|))) (-15 -3309 (|#2| (-639 |#2|))) (-15 -2925 (|#2| |#2| |#1|))) +((-1635 (((-417 (-1164 |#4|)) (-1164 |#4|) (-1 (-417 (-1164 |#3|)) (-1164 |#3|))) 79) (((-417 |#4|) |#4| (-1 (-417 (-1164 |#3|)) (-1164 |#3|))) 167))) +(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4| (-1 (-417 (-1164 |#3|)) (-1164 |#3|)))) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|) (-1 (-417 (-1164 |#3|)) (-1164 |#3|))))) (-845) (-788) (-13 (-306) (-146)) (-944 |#3| |#2| |#1|)) (T -539)) +((-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1164 *7)) (-1164 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-845)) (-4 *6 (-788)) (-4 *8 (-944 *7 *6 *5)) (-5 *2 (-417 (-1164 *8))) (-5 *1 (-539 *5 *6 *7 *8)) (-5 *3 (-1164 *8)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1164 *7)) (-1164 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-845)) (-4 *6 (-788)) (-5 *2 (-417 *3)) (-5 *1 (-539 *5 *6 *7 *3)) (-4 *3 (-944 *7 *6 *5))))) +(-10 -7 (-15 -1635 ((-417 |#4|) |#4| (-1 (-417 (-1164 |#3|)) (-1164 |#3|)))) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|) (-1 (-417 (-1164 |#3|)) (-1164 |#3|))))) +((-2729 ((|#4| |#4|) 73)) (-2398 ((|#4| |#4|) 69)) (-4329 ((|#4| |#4| (-562) (-562)) 75)) (-2200 ((|#4| |#4|) 71))) +(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2398 (|#4| |#4|)) (-15 -2200 (|#4| |#4|)) (-15 -2729 (|#4| |#4|)) (-15 -4329 (|#4| |#4| (-562) (-562)))) (-13 (-362) (-367) (-610 (-562))) (-1232 |#1|) (-719 |#1| |#2|) (-1247 |#3|)) (T -540)) +((-4329 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-562)) (-4 *4 (-13 (-362) (-367) (-610 *3))) (-4 *5 (-1232 *4)) (-4 *6 (-719 *4 *5)) (-5 *1 (-540 *4 *5 *6 *2)) (-4 *2 (-1247 *6)))) (-2729 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) (-2200 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5))))) +(-10 -7 (-15 -2398 (|#4| |#4|)) (-15 -2200 (|#4| |#4|)) (-15 -2729 (|#4| |#4|)) (-15 -4329 (|#4| |#4| (-562) (-562)))) +((-2729 ((|#2| |#2|) 27)) (-2398 ((|#2| |#2|) 23)) (-4329 ((|#2| |#2| (-562) (-562)) 29)) (-2200 ((|#2| |#2|) 25))) +(((-541 |#1| |#2|) (-10 -7 (-15 -2398 (|#2| |#2|)) (-15 -2200 (|#2| |#2|)) (-15 -2729 (|#2| |#2|)) (-15 -4329 (|#2| |#2| (-562) (-562)))) (-13 (-362) (-367) (-610 (-562))) (-1247 |#1|)) (T -541)) +((-4329 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-562)) (-4 *4 (-13 (-362) (-367) (-610 *3))) (-5 *1 (-541 *4 *2)) (-4 *2 (-1247 *4)))) (-2729 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1247 *3)))) (-2200 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1247 *3)))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1247 *3))))) +(-10 -7 (-15 -2398 (|#2| |#2|)) (-15 -2200 (|#2| |#2|)) (-15 -2729 (|#2| |#2|)) (-15 -4329 (|#2| |#2| (-562) (-562)))) +((-2113 (((-3 (-562) "failed") |#2| |#1| (-1 (-3 (-562) "failed") |#1|)) 14) (((-3 (-562) "failed") |#2| |#1| (-562) (-1 (-3 (-562) "failed") |#1|)) 13) (((-3 (-562) "failed") |#2| (-562) (-1 (-3 (-562) "failed") |#1|)) 26))) +(((-542 |#1| |#2|) (-10 -7 (-15 -2113 ((-3 (-562) "failed") |#2| (-562) (-1 (-3 (-562) "failed") |#1|))) (-15 -2113 ((-3 (-562) "failed") |#2| |#1| (-562) (-1 (-3 (-562) "failed") |#1|))) (-15 -2113 ((-3 (-562) "failed") |#2| |#1| (-1 (-3 (-562) "failed") |#1|)))) (-1044) (-1232 |#1|)) (T -542)) +((-2113 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-562) "failed") *4)) (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-542 *4 *3)) (-4 *3 (-1232 *4)))) (-2113 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-562) "failed") *4)) (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-542 *4 *3)) (-4 *3 (-1232 *4)))) (-2113 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-562) "failed") *5)) (-4 *5 (-1044)) (-5 *2 (-562)) (-5 *1 (-542 *5 *3)) (-4 *3 (-1232 *5))))) +(-10 -7 (-15 -2113 ((-3 (-562) "failed") |#2| (-562) (-1 (-3 (-562) "failed") |#1|))) (-15 -2113 ((-3 (-562) "failed") |#2| |#1| (-562) (-1 (-3 (-562) "failed") |#1|))) (-15 -2113 ((-3 (-562) "failed") |#2| |#1| (-1 (-3 (-562) "failed") |#1|)))) +((-1685 (($ $ $) 78)) (-2921 (((-417 $) $) 46)) (-4048 (((-3 (-562) "failed") $) 58)) (-3961 (((-562) $) 36)) (-1726 (((-3 (-406 (-562)) "failed") $) 73)) (-3035 (((-112) $) 23)) (-1291 (((-406 (-562)) $) 71)) (-2717 (((-112) $) 49)) (-3854 (($ $ $ $) 85)) (-3519 (((-112) $) 15)) (-2794 (($ $ $) 56)) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 68)) (-3699 (((-3 $ "failed") $) 63)) (-3930 (($ $) 22)) (-1809 (($ $ $) 83)) (-3729 (($) 59)) (-1351 (($ $) 52)) (-1635 (((-417 $) $) 44)) (-3803 (((-112) $) 13)) (-1577 (((-766) $) 27)) (-4029 (($ $ (-766)) NIL) (($ $) 10)) (-4220 (($ $) 16)) (-4208 (((-562) $) NIL) (((-535) $) 35) (((-887 (-562)) $) 39) (((-378) $) 30) (((-224) $) 32)) (-2579 (((-766)) 8)) (-2929 (((-112) $ $) 19)) (-3261 (($ $ $) 54))) +(((-543 |#1|) (-10 -8 (-15 -1809 (|#1| |#1| |#1|)) (-15 -3854 (|#1| |#1| |#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -1685 (|#1| |#1| |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -3803 ((-112) |#1|)) (-15 -3729 (|#1|)) (-15 -3699 ((-3 |#1| "failed") |#1|)) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -2794 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1|)) (-15 -3261 (|#1| |#1| |#1|)) (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4208 ((-562) |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3519 ((-112) |#1|)) (-15 -1577 ((-766) |#1|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -2717 ((-112) |#1|)) (-15 -2579 ((-766)))) (-544)) (T -543)) +((-2579 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-543 *3)) (-4 *3 (-544))))) +(-10 -8 (-15 -1809 (|#1| |#1| |#1|)) (-15 -3854 (|#1| |#1| |#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -1685 (|#1| |#1| |#1|)) (-15 -2929 ((-112) |#1| |#1|)) (-15 -3803 ((-112) |#1|)) (-15 -3729 (|#1|)) (-15 -3699 ((-3 |#1| "failed") |#1|)) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -2794 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1|)) (-15 -3261 (|#1| |#1| |#1|)) (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4208 ((-562) |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3519 ((-112) |#1|)) (-15 -1577 ((-766) |#1|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -2717 ((-112) |#1|)) (-15 -2579 ((-766)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-1685 (($ $ $) 85)) (-3214 (((-3 $ "failed") $ $) 19)) (-4375 (($ $ $ $) 74)) (-2798 (($ $) 52)) (-2921 (((-417 $) $) 53)) (-2569 (((-112) $ $) 125)) (-2277 (((-562) $) 114)) (-3358 (($ $ $) 88)) (-1800 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 106)) (-3961 (((-562) $) 107)) (-1811 (($ $ $) 129)) (-2406 (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 104) (((-683 (-562)) (-683 $)) 103)) (-3668 (((-3 $ "failed") $) 33)) (-1726 (((-3 (-406 (-562)) "failed") $) 82)) (-3035 (((-112) $) 84)) (-1291 (((-406 (-562)) $) 83)) (-1448 (($) 81) (($ $) 80)) (-1787 (($ $ $) 128)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 123)) (-2717 (((-112) $) 54)) (-3854 (($ $ $ $) 72)) (-1292 (($ $ $) 86)) (-3519 (((-112) $) 116)) (-2794 (($ $ $) 97)) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 100)) (-1957 (((-112) $) 31)) (-3130 (((-112) $) 92)) (-3699 (((-3 $ "failed") $) 94)) (-3392 (((-112) $) 115)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 132)) (-2504 (($ $ $ $) 73)) (-1551 (($ $ $) 117)) (-2993 (($ $ $) 118)) (-3930 (($ $) 76)) (-3641 (($ $) 89)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1809 (($ $ $) 71)) (-3729 (($) 93 T CONST)) (-4137 (($ $) 78)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1351 (($ $) 98)) (-1635 (((-417 $) $) 51)) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 130)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 124)) (-3803 (((-112) $) 91)) (-1577 (((-766) $) 126)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 127)) (-4029 (($ $ (-766)) 111) (($ $) 109)) (-2372 (($ $) 77)) (-4220 (($ $) 79)) (-4208 (((-562) $) 108) (((-535) $) 102) (((-887 (-562)) $) 101) (((-378) $) 96) (((-224) $) 95)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-562)) 105)) (-2579 (((-766)) 28)) (-2929 (((-112) $ $) 87)) (-3261 (($ $ $) 99)) (-3241 (($) 90)) (-2922 (((-112) $ $) 40)) (-3131 (($ $ $ $) 75)) (-3526 (($ $) 113)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-766)) 112) (($ $) 110)) (-1798 (((-112) $ $) 120)) (-1772 (((-112) $ $) 121)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 119)) (-1759 (((-112) $ $) 122)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-544) (-139)) (T -544)) +((-3130 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-3241 (*1 *1) (-4 *1 (-544))) (-3641 (*1 *1 *1) (-4 *1 (-544))) (-3358 (*1 *1 *1 *1) (-4 *1 (-544))) (-2929 (*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-1292 (*1 *1 *1 *1) (-4 *1 (-544))) (-1685 (*1 *1 *1 *1) (-4 *1 (-544))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-1291 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-406 (-562))))) (-1726 (*1 *2 *1) (|partial| -12 (-4 *1 (-544)) (-5 *2 (-406 (-562))))) (-1448 (*1 *1) (-4 *1 (-544))) (-1448 (*1 *1 *1) (-4 *1 (-544))) (-4220 (*1 *1 *1) (-4 *1 (-544))) (-4137 (*1 *1 *1) (-4 *1 (-544))) (-2372 (*1 *1 *1) (-4 *1 (-544))) (-3930 (*1 *1 *1) (-4 *1 (-544))) (-3131 (*1 *1 *1 *1 *1) (-4 *1 (-544))) (-4375 (*1 *1 *1 *1 *1) (-4 *1 (-544))) (-2504 (*1 *1 *1 *1 *1) (-4 *1 (-544))) (-3854 (*1 *1 *1 *1 *1) (-4 *1 (-544))) (-1809 (*1 *1 *1 *1) (-4 *1 (-544)))) +(-13 (-1211) (-306) (-815) (-232) (-610 (-562)) (-1033 (-562)) (-635 (-562)) (-610 (-535)) (-610 (-887 (-562))) (-881 (-562)) (-142) (-1017) (-146) (-1143) (-10 -8 (-15 -3130 ((-112) $)) (-15 -3803 ((-112) $)) (-6 -4401) (-15 -3241 ($)) (-15 -3641 ($ $)) (-15 -3358 ($ $ $)) (-15 -2929 ((-112) $ $)) (-15 -1292 ($ $ $)) (-15 -1685 ($ $ $)) (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $)) (-15 -1448 ($)) (-15 -1448 ($ $)) (-15 -4220 ($ $)) (-15 -4137 ($ $)) (-15 -2372 ($ $)) (-15 -3930 ($ $)) (-15 -3131 ($ $ $ $)) (-15 -4375 ($ $ $ $)) (-15 -2504 ($ $ $ $)) (-15 -3854 ($ $ $ $)) (-15 -1809 ($ $ $)) (-6 -4400))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-142) . T) ((-171) . T) ((-610 (-224)) . T) ((-610 (-378)) . T) ((-610 (-535)) . T) ((-610 (-562)) . T) ((-610 (-887 (-562))) . T) ((-232) . T) ((-289) . T) ((-306) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-635 (-562)) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-815) . T) ((-843) . T) ((-845) . T) ((-881 (-562)) . T) ((-915) . T) ((-1017) . T) ((-1033 (-562)) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) . T) ((-1211) . T)) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1448 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-1999 (((-916) $) NIL)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL))) +(((-545) (-839)) (T -545)) +NIL +(-839) +((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1448 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-1999 (((-916) $) NIL)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL))) +(((-546) (-839)) (T -546)) +NIL +(-839) +((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1448 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-1999 (((-916) $) NIL)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL))) +(((-547) (-839)) (T -547)) +NIL +(-839) +((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-3052 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) NIL)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 |#2| "failed") |#1| $) NIL)) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 ((|#1| $) NIL (|has| |#1| (-845)))) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-3874 ((|#1| $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1520 (((-639 |#1|) $) NIL)) (-4265 (((-112) |#1| $) NIL)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-2093 (((-639 |#1|) $) NIL)) (-1570 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-4054 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-548 |#1| |#2| |#3|) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4402))) (-1092) (-1092) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4402)))) (T -548)) +NIL +(-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4402))) +((-2047 (((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-1 (-1164 |#2|) (-1164 |#2|))) 51))) +(((-549 |#1| |#2|) (-10 -7 (-15 -2047 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-1 (-1164 |#2|) (-1164 |#2|))))) (-13 (-845) (-554)) (-13 (-27) (-429 |#1|))) (T -549)) +((-2047 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-608 *3)) (-5 *5 (-1 (-1164 *3) (-1164 *3))) (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-845) (-554))) (-5 *2 (-583 *3)) (-5 *1 (-549 *6 *3))))) +(-10 -7 (-15 -2047 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-1 (-1164 |#2|) (-1164 |#2|))))) +((-2430 (((-583 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-4176 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-3749 (((-583 |#5|) |#5| (-1 |#3| |#3|)) 201))) +(((-550 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3749 ((-583 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2430 ((-583 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4176 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-845) (-554) (-1033 (-562))) (-13 (-27) (-429 |#1|)) (-1232 |#2|) (-1232 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -550)) +((-4176 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-27) (-429 *4))) (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-4 *7 (-1232 (-406 *6))) (-5 *1 (-550 *4 *5 *6 *7 *2)) (-4 *2 (-341 *5 *6 *7)))) (-2430 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-4 *8 (-1232 (-406 *7))) (-5 *2 (-583 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))) (-3749 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-4 *8 (-1232 (-406 *7))) (-5 *2 (-583 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8))))) +(-10 -7 (-15 -3749 ((-583 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2430 ((-583 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4176 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3179 (((-112) (-562) (-562)) 10)) (-4035 (((-562) (-562)) 7)) (-3554 (((-562) (-562) (-562)) 8))) +(((-551) (-10 -7 (-15 -4035 ((-562) (-562))) (-15 -3554 ((-562) (-562) (-562))) (-15 -3179 ((-112) (-562) (-562))))) (T -551)) +((-3179 (*1 *2 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-551)))) (-3554 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-551)))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-551))))) +(-10 -7 (-15 -4035 ((-562) (-562))) (-15 -3554 ((-562) (-562) (-562))) (-15 -3179 ((-112) (-562) (-562)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3697 ((|#1| $) 62)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-2988 (($ $) 92)) (-4097 (($ $) 75)) (-3659 ((|#1| $) 63)) (-3214 (((-3 $ "failed") $ $) 19)) (-1643 (($ $) 74)) (-4207 (($ $) 91)) (-4074 (($ $) 76)) (-3014 (($ $) 90)) (-4119 (($ $) 77)) (-1800 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 70)) (-3961 (((-562) $) 71)) (-3668 (((-3 $ "failed") $) 33)) (-4112 (($ |#1| |#1|) 67)) (-3519 (((-112) $) 61)) (-4100 (($) 102)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 73)) (-3392 (((-112) $) 60)) (-1551 (($ $ $) 108)) (-2993 (($ $ $) 107)) (-4365 (($ $) 99)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-2682 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-406 (-562))) 65)) (-1310 ((|#1| $) 64)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1762 (((-3 $ "failed") $ $) 43)) (-3430 (($ $) 100)) (-3023 (($ $) 89)) (-4130 (($ $) 78)) (-3001 (($ $) 88)) (-4108 (($ $) 79)) (-2978 (($ $) 87)) (-4087 (($ $) 80)) (-2843 (((-112) $ |#1|) 59)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-562)) 69)) (-2579 (((-766)) 28)) (-3055 (($ $) 98)) (-4165 (($ $) 86)) (-2922 (((-112) $ $) 40)) (-3033 (($ $) 97)) (-4138 (($ $) 85)) (-3078 (($ $) 96)) (-4182 (($ $) 84)) (-1566 (($ $) 95)) (-4195 (($ $) 83)) (-3066 (($ $) 94)) (-4174 (($ $) 82)) (-3044 (($ $) 93)) (-4151 (($ $) 81)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 105)) (-1772 (((-112) $ $) 104)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 106)) (-1759 (((-112) $ $) 103)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ $) 101) (($ $ (-406 (-562))) 72)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-552 |#1|) (-139) (-13 (-403) (-1192))) (T -552)) +((-2682 (*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-4112 (*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-2682 (*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))))) (-1310 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112)))) (-2843 (*1 *2 *1 *3) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112))))) +(-13 (-451) (-845) (-1192) (-997) (-1033 (-562)) (-10 -8 (-6 -1406) (-15 -2682 ($ |t#1| |t#1|)) (-15 -4112 ($ |t#1| |t#1|)) (-15 -2682 ($ |t#1|)) (-15 -2682 ($ (-406 (-562)))) (-15 -1310 (|t#1| $)) (-15 -3659 (|t#1| $)) (-15 -3697 (|t#1| $)) (-15 -3519 ((-112) $)) (-15 -3392 ((-112) $)) (-15 -2843 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-283) . T) ((-289) . T) ((-451) . T) ((-492) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-845) . T) ((-997) . T) ((-1033 (-562)) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) . T) ((-1195) . T)) +((-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 9)) (-2796 (($ $) 11)) (-4370 (((-112) $) 18)) (-3668 (((-3 $ "failed") $) 16)) (-2922 (((-112) $ $) 20))) +(((-553 |#1|) (-10 -8 (-15 -4370 ((-112) |#1|)) (-15 -2922 ((-112) |#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -1445 ((-2 (|:| -3931 |#1|) (|:| -4389 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3668 ((-3 |#1| "failed") |#1|))) (-554)) (T -553)) +NIL +(-10 -8 (-15 -4370 ((-112) |#1|)) (-15 -2922 ((-112) |#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -1445 ((-2 (|:| -3931 |#1|) (|:| -4389 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3668 ((-3 |#1| "failed") |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 43)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-554) (-139)) (T -554)) -((-3865 (*1 *1 *1 *1) (|partial| -4 *1 (-554))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1920 *1) (|:| -4387 *1) (|:| |associate| *1))) (-4 *1 (-554)))) (-2213 (*1 *1 *1) (-4 *1 (-554))) (-2212 (*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) -(-13 (-171) (-38 $) (-289) (-10 -8 (-15 -3865 ((-3 $ "failed") $ $)) (-15 -2214 ((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $)) (-15 -2213 ($ $)) (-15 -2212 ((-112) $ $)) (-15 -2211 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2216 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-635 |#2|)) 37)) (-2218 (((-580 |#2|) |#2| (-1166)) 62)) (-2217 (((-3 |#2| "failed") |#2| (-1166)) 151)) (-2219 (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1166) (-606 |#2|) (-635 (-606 |#2|))) 154)) (-2215 (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1166) |#2|) 40))) -(((-555 |#1| |#2|) (-10 -7 (-15 -2215 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1166) |#2|)) (-15 -2216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-635 |#2|))) (-15 -2217 ((-3 |#2| "failed") |#2| (-1166))) (-15 -2218 ((-580 |#2|) |#2| (-1166))) (-15 -2219 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1166) (-606 |#2|) (-635 (-606 |#2|))))) (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -555)) -((-2219 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1166)) (-5 *6 (-635 (-606 *3))) (-5 *5 (-606 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *7))) (-4 *7 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-555 *7 *3)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2217 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-555 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-2216 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-555 *6 *3)))) (-2215 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))) -(-10 -7 (-15 -2215 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1166) |#2|)) (-15 -2216 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1166) (-635 |#2|))) (-15 -2217 ((-3 |#2| "failed") |#2| (-1166))) (-15 -2218 ((-580 |#2|) |#2| (-1166))) (-15 -2219 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1166) (-606 |#2|) (-635 (-606 |#2|))))) -((-4376 (((-404 |#1|) |#1|) 18)) (-4139 (((-404 |#1|) |#1|) 33)) (-2221 (((-3 |#1| "failed") |#1|) 44)) (-2220 (((-404 |#1|) |#1|) 51))) -(((-556 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -2220 ((-404 |#1|) |#1|)) (-15 -2221 ((-3 |#1| "failed") |#1|))) (-543)) (T -556)) -((-2221 (*1 *2 *2) (|partial| -12 (-5 *1 (-556 *2)) (-4 *2 (-543)))) (-2220 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543)))) (-4376 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543)))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543))))) -(-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -2220 ((-404 |#1|) |#1|)) (-15 -2221 ((-3 |#1| "failed") |#1|))) -((-2222 (($) 9)) (-2225 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 35)) (-2789 (((-635 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 32)) (-4014 (($ (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2224 (($ (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2226 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-2351 (((-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2223 (((-1259)) 12))) -(((-557) (-10 -8 (-15 -2222 ($)) (-15 -2223 ((-1259))) (-15 -2789 ((-635 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2224 ($ (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4014 ($ (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2225 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2351 ((-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2226 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -557)) -((-2226 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-557)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-557)))) (-2225 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-557)))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-557)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-557)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-557)))) (-2223 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-557)))) (-2222 (*1 *1) (-5 *1 (-557)))) -(-10 -8 (-15 -2222 ($)) (-15 -2223 ((-1259))) (-15 -2789 ((-635 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2224 ($ (-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1589 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4014 ($ (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2225 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2351 ((-635 (-2 (|:| -4267 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2226 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1143 (-224))) (|:| |notEvaluated| #6#))) (|:| -1589 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) -((-3469 (((-1160 (-406 (-1160 |#2|))) |#2| (-606 |#2|) (-606 |#2|) (-1160 |#2|)) 32)) (-2229 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) |#2| (-1160 |#2|)) 110)) (-2227 (((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))) 80) (((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|)) 52)) (-2228 (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-606 |#2|) (-606 |#2|) |#2| (-606 |#2|) |#2| (-406 (-1160 |#2|))) 87) (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-606 |#2|) (-606 |#2|) |#2| |#2| (-1160 |#2|)) 109)) (-2230 (((-3 |#2| #3="failed") |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) (-606 |#2|) |#2| (-406 (-1160 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) |#2| (-1160 |#2|)) 111)) (-2231 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))) 128 (|has| |#3| (-651 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|)) 127 (|has| |#3| (-651 |#2|)))) (-3470 ((|#2| (-1160 (-406 (-1160 |#2|))) (-606 |#2|) |#2|) 50)) (-3463 (((-1160 (-406 (-1160 |#2|))) (-1160 |#2|) (-606 |#2|)) 31))) -(((-558 |#1| |#2| |#3|) (-10 -7 (-15 -2227 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|))) (-15 -2227 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2228 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-606 |#2|) (-606 |#2|) |#2| |#2| (-1160 |#2|))) (-15 -2228 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-606 |#2|) (-606 |#2|) |#2| (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2229 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) |#2| (-1160 |#2|))) (-15 -2229 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2230 ((-3 |#2| #3="failed") |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) |#2| (-1160 |#2|))) (-15 -2230 ((-3 |#2| #3#) |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -3469 ((-1160 (-406 (-1160 |#2|))) |#2| (-606 |#2|) (-606 |#2|) (-1160 |#2|))) (-15 -3470 (|#2| (-1160 (-406 (-1160 |#2|))) (-606 |#2|) |#2|)) (-15 -3463 ((-1160 (-406 (-1160 |#2|))) (-1160 |#2|) (-606 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -2231 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|))) (-15 -2231 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))))) |%noBranch|)) (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))) (-13 (-420 |#1|) (-27) (-1190)) (-1091)) (T -558)) -((-2231 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-606 *4)) (-5 *6 (-406 (-1160 *4))) (-4 *4 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091)))) (-2231 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-606 *4)) (-5 *6 (-1160 *4)) (-4 *4 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4)))) (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *6)) (-4 *6 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-1160 (-406 (-1160 *6)))) (-5 *1 (-558 *5 *6 *7)) (-5 *3 (-1160 *6)) (-4 *7 (-1091)))) (-3470 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1160 (-406 (-1160 *2)))) (-5 *4 (-606 *2)) (-4 *2 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *1 (-558 *5 *2 *6)) (-4 *6 (-1091)))) (-3469 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-1160 (-406 (-1160 *3)))) (-5 *1 (-558 *6 *3 *7)) (-5 *5 (-1160 *3)) (-4 *7 (-1091)))) (-2230 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1166))) (-5 *5 (-406 (-1160 *2))) (-4 *2 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1091)))) (-2230 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1166))) (-5 *5 (-1160 *2)) (-4 *2 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1091)))) (-2229 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-5 *6 (-406 (-1160 *3))) (-4 *3 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1091)))) (-2229 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-5 *6 (-1160 *3)) (-4 *3 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1091)))) (-2228 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-406 (-1160 *3))) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091)))) (-2228 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-1160 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091)))) (-2227 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-606 *3)) (-5 *5 (-406 (-1160 *3))) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091)))) (-2227 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-606 *3)) (-5 *5 (-1160 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091))))) -(-10 -7 (-15 -2227 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|))) (-15 -2227 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2228 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-606 |#2|) (-606 |#2|) |#2| |#2| (-1160 |#2|))) (-15 -2228 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-606 |#2|) (-606 |#2|) |#2| (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2229 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) |#2| (-1160 |#2|))) (-15 -2229 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -2230 ((-3 |#2| #3="failed") |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) |#2| (-1160 |#2|))) (-15 -2230 ((-3 |#2| #3#) |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1166)) (-606 |#2|) |#2| (-406 (-1160 |#2|)))) (-15 -3469 ((-1160 (-406 (-1160 |#2|))) |#2| (-606 |#2|) (-606 |#2|) (-1160 |#2|))) (-15 -3470 (|#2| (-1160 (-406 (-1160 |#2|))) (-606 |#2|) |#2|)) (-15 -3463 ((-1160 (-406 (-1160 |#2|))) (-1160 |#2|) (-606 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -2231 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) |#2| (-1160 |#2|))) (-15 -2231 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-606 |#2|) |#2| (-406 (-1160 |#2|))))) |%noBranch|)) -((-2241 (((-544) (-544) (-765)) 66)) (-2240 (((-544) (-544)) 65)) (-2239 (((-544) (-544)) 64)) (-2238 (((-544) (-544)) 69)) (-3187 (((-544) (-544) (-544)) 49)) (-2237 (((-544) (-544) (-544)) 46)) (-2236 (((-406 (-544)) (-544)) 20)) (-2235 (((-544) (-544)) 21)) (-2234 (((-544) (-544)) 58)) (-3184 (((-544) (-544)) 32)) (-2233 (((-635 (-544)) (-544)) 63)) (-2232 (((-544) (-544) (-544) (-544) (-544)) 44)) (-3180 (((-406 (-544)) (-544)) 41))) -(((-559) (-10 -7 (-15 -3180 ((-406 (-544)) (-544))) (-15 -2232 ((-544) (-544) (-544) (-544) (-544))) (-15 -2233 ((-635 (-544)) (-544))) (-15 -3184 ((-544) (-544))) (-15 -2234 ((-544) (-544))) (-15 -2235 ((-544) (-544))) (-15 -2236 ((-406 (-544)) (-544))) (-15 -2237 ((-544) (-544) (-544))) (-15 -3187 ((-544) (-544) (-544))) (-15 -2238 ((-544) (-544))) (-15 -2239 ((-544) (-544))) (-15 -2240 ((-544) (-544))) (-15 -2241 ((-544) (-544) (-765))))) (T -559)) -((-2241 (*1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-765)) (-5 *1 (-559)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2239 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-3187 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2237 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2236 (*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-559)) (-5 *3 (-544)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-2233 (*1 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-559)) (-5 *3 (-544)))) (-2232 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) (-3180 (*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-559)) (-5 *3 (-544))))) -(-10 -7 (-15 -3180 ((-406 (-544)) (-544))) (-15 -2232 ((-544) (-544) (-544) (-544) (-544))) (-15 -2233 ((-635 (-544)) (-544))) (-15 -3184 ((-544) (-544))) (-15 -2234 ((-544) (-544))) (-15 -2235 ((-544) (-544))) (-15 -2236 ((-406 (-544)) (-544))) (-15 -2237 ((-544) (-544) (-544))) (-15 -3187 ((-544) (-544) (-544))) (-15 -2238 ((-544) (-544))) (-15 -2239 ((-544) (-544))) (-15 -2240 ((-544) (-544))) (-15 -2241 ((-544) (-544) (-765)))) -((-2242 (((-2 (|:| |answer| |#4|) (|:| -2289 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-560 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2242 ((-2 (|:| |answer| |#4|) (|:| -2289 |#4|)) |#4| (-1 |#2| |#2|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -560)) -((-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-4 *7 (-1229 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2289 *3))) (-5 *1 (-560 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7))))) -(-10 -7 (-15 -2242 ((-2 (|:| |answer| |#4|) (|:| -2289 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2242 (((-2 (|:| |answer| (-406 |#2|)) (|:| -2289 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 18))) -(((-561 |#1| |#2|) (-10 -7 (-15 -2242 ((-2 (|:| |answer| (-406 |#2|)) (|:| -2289 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1229 |#1|)) (T -561)) -((-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| (-406 *6)) (|:| -2289 (-406 *6)) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-561 *5 *6)) (-5 *3 (-406 *6))))) -(-10 -7 (-15 -2242 ((-2 (|:| |answer| (-406 |#2|)) (|:| -2289 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) -((-3050 (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763) (-1054)) 108) (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763)) 110)) (-4219 (((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1166)) 172) (((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1148)) 171) (((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377) (-1054)) 176) (((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377)) 177) (((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377)) 178) (((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377))))) 179) (((-1028) (-313 (-377)) (-1079 (-836 (-377)))) 167) (((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377)) 166) (((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377)) 162) (((-1028) (-763)) 155) (((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377) (-1054)) 161))) -(((-562) (-10 -7 (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377) (-1054))) (-15 -4219 ((-1028) (-763))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377) (-1054))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763) (-1054))) (-15 -4219 ((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1148))) (-15 -4219 ((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1166))))) (T -562)) -((-4219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-313 (-377))) (-5 *4 (-1082 (-836 (-377)))) (-5 *5 (-1166)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-313 (-377))) (-5 *4 (-1082 (-836 (-377)))) (-5 *5 (-1148)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) (-5 *1 (-562)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) (-5 *5 (-377)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1028)) (-5 *1 (-562)))) (-4219 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562))))) -(-10 -7 (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377) (-1054))) (-15 -4219 ((-1028) (-763))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-1079 (-836 (-377))))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377))) (-15 -4219 ((-1028) (-313 (-377)) (-635 (-1079 (-836 (-377)))) (-377) (-377) (-1054))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028))) (-763) (-1054))) (-15 -4219 ((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1148))) (-15 -4219 ((-3 (-1028) "failed") (-313 (-377)) (-1082 (-836 (-377))) (-1166)))) -((-2245 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|)) 183)) (-2243 (((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|)) 98)) (-2244 (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-606 |#2|) (-606 |#2|) |#2|) 179)) (-2246 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1166))) 188)) (-2247 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-1166)) 196 (|has| |#3| (-651 |#2|))))) -(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -2243 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|))) (-15 -2244 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-606 |#2|) (-606 |#2|) |#2|)) (-15 -2245 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|))) (-15 -2246 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1166)))) (IF (|has| |#3| (-651 |#2|)) (-15 -2247 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-1166))) |%noBranch|)) (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544))) (-13 (-420 |#1|) (-27) (-1190)) (-1091)) (T -563)) -((-2247 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-606 *4)) (-5 *6 (-1166)) (-4 *4 (-13 (-420 *7) (-27) (-1190))) (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091)))) (-2246 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1166))) (-4 *2 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1091)))) (-2245 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190))) (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1091)))) (-2244 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1091)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *5) (-27) (-1190))) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) (-5 *2 (-580 *3)) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1091))))) -(-10 -7 (-15 -2243 ((-580 |#2|) |#2| (-606 |#2|) (-606 |#2|))) (-15 -2244 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-606 |#2|) (-606 |#2|) |#2|)) (-15 -2245 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|) (-606 |#2|) (-635 |#2|))) (-15 -2246 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-606 |#2|) (-606 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1166)))) (IF (|has| |#3| (-651 |#2|)) (-15 -2247 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2162 (-635 |#2|))) |#3| |#2| (-606 |#2|) (-606 |#2|) (-1166))) |%noBranch|)) -((-2248 (((-2 (|:| -2461 |#2|) (|:| |nconst| |#2|)) |#2| (-1166)) 63)) (-2250 (((-3 |#2| "failed") |#2| (-1166) (-836 |#2|) (-836 |#2|)) 163 (-12 (|has| |#2| (-1129)) (|has| |#1| (-609 (-883 (-544)))) (|has| |#1| (-879 (-544))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)) 146 (-12 (|has| |#2| (-625)) (|has| |#1| (-609 (-883 (-544)))) (|has| |#1| (-879 (-544)))))) (-2249 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)) 147 (-12 (|has| |#2| (-625)) (|has| |#1| (-609 (-883 (-544)))) (|has| |#1| (-879 (-544))))))) -(((-564 |#1| |#2|) (-10 -7 (-15 -2248 ((-2 (|:| -2461 |#2|) (|:| |nconst| |#2|)) |#2| (-1166))) (IF (|has| |#1| (-609 (-883 (-544)))) (IF (|has| |#1| (-879 (-544))) (PROGN (IF (|has| |#2| (-625)) (PROGN (-15 -2249 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) (-15 -2250 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) (IF (|has| |#2| (-1129)) (-15 -2250 ((-3 |#2| "failed") |#2| (-1166) (-836 |#2|) (-836 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-844) (-1031 (-544)) (-450) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -564)) -((-2250 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1166)) (-5 *4 (-836 *2)) (-4 *2 (-1129)) (-4 *2 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-609 (-883 (-544)))) (-4 *5 (-879 (-544))) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) (-5 *1 (-564 *5 *2)))) (-2250 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-883 (-544)))) (-4 *5 (-879 (-544))) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2249 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-883 (-544)))) (-4 *5 (-879 (-544))) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2248 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) (-5 *2 (-2 (|:| -2461 *3) (|:| |nconst| *3))) (-5 *1 (-564 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))) -(-10 -7 (-15 -2248 ((-2 (|:| -2461 |#2|) (|:| |nconst| |#2|)) |#2| (-1166))) (IF (|has| |#1| (-609 (-883 (-544)))) (IF (|has| |#1| (-879 (-544))) (PROGN (IF (|has| |#2| (-625)) (PROGN (-15 -2249 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) (-15 -2250 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) (IF (|has| |#2| (-1129)) (-15 -2250 ((-3 |#2| "failed") |#2| (-1166) (-836 |#2|) (-836 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2253 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|))) 41)) (-4219 (((-580 (-406 |#2|)) (-406 |#2|)) 28)) (-2251 (((-3 (-406 |#2|) "failed") (-406 |#2|)) 17)) (-2252 (((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|)) 48))) -(((-565 |#1| |#2|) (-10 -7 (-15 -4219 ((-580 (-406 |#2|)) (-406 |#2|))) (-15 -2251 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2252 ((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -2253 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-544))) (-1229 |#1|)) (T -565)) -((-2253 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-635 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *5 *6)))) (-2252 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -2290 (-406 *5)) (|:| |coeff| (-406 *5)))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146) (-1031 (-544)))) (-5 *1 (-565 *3 *4)))) (-4219 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) (-5 *2 (-580 (-406 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5))))) -(-10 -7 (-15 -4219 ((-580 (-406 |#2|)) (-406 |#2|))) (-15 -2251 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2252 ((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -2253 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-635 (-406 |#2|))))) -((-2254 (((-3 (-544) "failed") |#1|) 14)) (-3660 (((-112) |#1|) 13)) (-3656 (((-544) |#1|) 9))) -(((-566 |#1|) (-10 -7 (-15 -3656 ((-544) |#1|)) (-15 -3660 ((-112) |#1|)) (-15 -2254 ((-3 (-544) "failed") |#1|))) (-1031 (-544))) (T -566)) -((-2254 (*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))) (-3660 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-1031 (-544))))) (-3656 (*1 *2 *3) (-12 (-5 *2 (-544)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2))))) -(-10 -7 (-15 -3656 ((-544) |#1|)) (-15 -3660 ((-112) |#1|)) (-15 -2254 ((-3 (-544) "failed") |#1|))) -((-2257 (((-3 (-2 (|:| |mainpart| (-406 (-939 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-939 |#1|))) (|:| |logand| (-406 (-939 |#1|))))))) "failed") (-406 (-939 |#1|)) (-1166) (-635 (-406 (-939 |#1|)))) 48)) (-2255 (((-580 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-1166)) 28)) (-2256 (((-3 (-406 (-939 |#1|)) "failed") (-406 (-939 |#1|)) (-1166)) 23)) (-2258 (((-3 (-2 (|:| -2290 (-406 (-939 |#1|))) (|:| |coeff| (-406 (-939 |#1|)))) "failed") (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|))) 35))) -(((-567 |#1|) (-10 -7 (-15 -2255 ((-580 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -2256 ((-3 (-406 (-939 |#1|)) "failed") (-406 (-939 |#1|)) (-1166))) (-15 -2257 ((-3 (-2 (|:| |mainpart| (-406 (-939 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-939 |#1|))) (|:| |logand| (-406 (-939 |#1|))))))) "failed") (-406 (-939 |#1|)) (-1166) (-635 (-406 (-939 |#1|))))) (-15 -2258 ((-3 (-2 (|:| -2290 (-406 (-939 |#1|))) (|:| |coeff| (-406 (-939 |#1|)))) "failed") (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|))))) (-13 (-554) (-1031 (-544)) (-146))) (T -567)) -((-2258 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-1031 (-544)) (-146))) (-5 *2 (-2 (|:| -2290 (-406 (-939 *5))) (|:| |coeff| (-406 (-939 *5))))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-939 *5))))) (-2257 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 (-406 (-939 *6)))) (-5 *3 (-406 (-939 *6))) (-4 *6 (-13 (-554) (-1031 (-544)) (-146))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6)))) (-2256 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-406 (-939 *4))) (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-1031 (-544)) (-146))) (-5 *1 (-567 *4)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-1031 (-544)) (-146))) (-5 *2 (-580 (-406 (-939 *5)))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-939 *5)))))) -(-10 -7 (-15 -2255 ((-580 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -2256 ((-3 (-406 (-939 |#1|)) "failed") (-406 (-939 |#1|)) (-1166))) (-15 -2257 ((-3 (-2 (|:| |mainpart| (-406 (-939 |#1|))) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 (-939 |#1|))) (|:| |logand| (-406 (-939 |#1|))))))) "failed") (-406 (-939 |#1|)) (-1166) (-635 (-406 (-939 |#1|))))) (-15 -2258 ((-3 (-2 (|:| -2290 (-406 (-939 |#1|))) (|:| |coeff| (-406 (-939 |#1|)))) "failed") (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|))))) -((-2947 (((-112) $ $) 58)) (-3589 (((-112) $) 36)) (-2983 ((|#1| $) 30)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) 62)) (-3891 (($ $) 122)) (-4046 (($ $) 102)) (-2778 ((|#1| $) 28)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL)) (-3889 (($ $) 124)) (-4045 (($ $) 98)) (-3893 (($ $) 126)) (-4044 (($ $) 106)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) "failed") $) 77)) (-3557 (((-544) $) 79)) (-3866 (((-3 $ "failed") $) 61)) (-2209 (($ |#1| |#1|) 26)) (-3587 (((-112) $) 33)) (-4034 (($) 88)) (-2545 (((-112) $) 43)) (-3394 (($ $ (-544)) NIL)) (-3588 (((-112) $) 34)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4349 (($ $) 90)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2210 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-406 (-544))) 76)) (-2208 ((|#1| $) 27)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) 64) (($ (-635 $)) NIL)) (-3865 (((-3 $ "failed") $ $) 63)) (-4350 (($ $) 92)) (-3894 (($ $) 130)) (-4043 (($ $) 104)) (-3892 (($ $) 132)) (-4042 (($ $) 108)) (-3890 (($ $) 128)) (-4041 (($ $) 100)) (-2207 (((-112) $ |#1|) 31)) (-4353 (((-857) $) 84) (($ (-544)) 66) (($ $) NIL) (($ (-544)) 66)) (-3511 (((-765)) 86)) (-3897 (($ $) 144)) (-3885 (($ $) 114)) (-2212 (((-112) $ $) NIL)) (-3895 (($ $) 142)) (-3883 (($ $) 110)) (-3899 (($ $) 140)) (-3887 (($ $) 120)) (-3900 (($ $) 138)) (-3888 (($ $) 118)) (-3898 (($ $) 136)) (-3886 (($ $) 116)) (-3896 (($ $) 134)) (-3884 (($ $) 112)) (-3040 (($) 21 T CONST)) (-3046 (($) 10 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 37)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 35)) (-4244 (($ $) 41) (($ $ $) 42)) (-4246 (($ $ $) 40)) (** (($ $ (-912)) 54) (($ $ (-765)) NIL) (($ $ $) 94) (($ $ (-406 (-544))) 146)) (* (($ (-912) $) 51) (($ (-765) $) NIL) (($ (-544) $) 50) (($ $ $) 48))) -(((-568 |#1|) (-552 |#1|) (-13 (-403) (-1190))) (T -568)) +((-1762 (*1 *1 *1 *1) (|partial| -4 *1 (-554))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3931 *1) (|:| -4389 *1) (|:| |associate| *1))) (-4 *1 (-554)))) (-2796 (*1 *1 *1) (-4 *1 (-554))) (-2922 (*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) +(-13 (-171) (-38 $) (-289) (-10 -8 (-15 -1762 ((-3 $ "failed") $ $)) (-15 -1445 ((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $)) (-15 -2796 ($ $)) (-15 -2922 ((-112) $ $)) (-15 -4370 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-1866 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1168) (-639 |#2|)) 37)) (-2942 (((-583 |#2|) |#2| (-1168)) 62)) (-3322 (((-3 |#2| "failed") |#2| (-1168)) 151)) (-1303 (((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) (-608 |#2|) (-639 (-608 |#2|))) 154)) (-3303 (((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) |#2|) 40))) +(((-555 |#1| |#2|) (-10 -7 (-15 -3303 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) |#2|)) (-15 -1866 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1168) (-639 |#2|))) (-15 -3322 ((-3 |#2| "failed") |#2| (-1168))) (-15 -2942 ((-583 |#2|) |#2| (-1168))) (-15 -1303 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) (-608 |#2|) (-639 (-608 |#2|))))) (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -555)) +((-1303 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1168)) (-5 *6 (-639 (-608 *3))) (-5 *5 (-608 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) (-5 *1 (-555 *7 *3)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-3322 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-555 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-1866 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-555 *6 *3)))) (-3303 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) +(-10 -7 (-15 -3303 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) |#2|)) (-15 -1866 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1168) (-639 |#2|))) (-15 -3322 ((-3 |#2| "failed") |#2| (-1168))) (-15 -2942 ((-583 |#2|) |#2| (-1168))) (-15 -1303 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) (-608 |#2|) (-639 (-608 |#2|))))) +((-2921 (((-417 |#1|) |#1|) 18)) (-1635 (((-417 |#1|) |#1|) 33)) (-2780 (((-3 |#1| "failed") |#1|) 44)) (-4092 (((-417 |#1|) |#1|) 51))) +(((-556 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -4092 ((-417 |#1|) |#1|)) (-15 -2780 ((-3 |#1| "failed") |#1|))) (-544)) (T -556)) +((-2780 (*1 *2 *2) (|partial| -12 (-5 *1 (-556 *2)) (-4 *2 (-544)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544)))) (-2921 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544))))) +(-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -4092 ((-417 |#1|) |#1|)) (-15 -2780 ((-3 |#1| "failed") |#1|))) +((-2646 (($) 9)) (-1711 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 35)) (-1520 (((-639 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 32)) (-4300 (($ (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3967 (($ (-639 (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2694 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-2411 (((-639 (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-4276 (((-1261)) 12))) +(((-557) (-10 -8 (-15 -2646 ($)) (-15 -4276 ((-1261))) (-15 -1520 ((-639 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -3967 ($ (-639 (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4300 ($ (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1711 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2411 ((-639 (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2694 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -557)) +((-2694 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-557)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-557)))) (-1711 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-557)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-557)))) (-3967 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-557)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-557)))) (-4276 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-557)))) (-2646 (*1 *1) (-5 *1 (-557)))) +(-10 -8 (-15 -2646 ($)) (-15 -4276 ((-1261))) (-15 -1520 ((-639 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -3967 ($ (-639 (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4300 ($ (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1711 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2411 ((-639 (-2 (|:| -2320 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2694 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1590 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) +((-1599 (((-1164 (-406 (-1164 |#2|))) |#2| (-608 |#2|) (-608 |#2|) (-1164 |#2|)) 32)) (-1654 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) |#2| (-1164 |#2|)) 110)) (-2561 (((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))) 80) (((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|)) 52)) (-2171 (((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| (-608 |#2|) |#2| (-406 (-1164 |#2|))) 87) (((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| |#2| (-1164 |#2|)) 109)) (-2402 (((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) (-608 |#2|) |#2| (-406 (-1164 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) |#2| (-1164 |#2|)) 111)) (-4166 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3928 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))) 128 (|has| |#3| (-650 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3928 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|)) 127 (|has| |#3| (-650 |#2|)))) (-1390 ((|#2| (-1164 (-406 (-1164 |#2|))) (-608 |#2|) |#2|) 50)) (-1943 (((-1164 (-406 (-1164 |#2|))) (-1164 |#2|) (-608 |#2|)) 31))) +(((-558 |#1| |#2| |#3|) (-10 -7 (-15 -2561 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|))) (-15 -2561 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -2171 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| |#2| (-1164 |#2|))) (-15 -2171 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1654 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) |#2| (-1164 |#2|))) (-15 -1654 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -2402 ((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) |#2| (-1164 |#2|))) (-15 -2402 ((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1599 ((-1164 (-406 (-1164 |#2|))) |#2| (-608 |#2|) (-608 |#2|) (-1164 |#2|))) (-15 -1390 (|#2| (-1164 (-406 (-1164 |#2|))) (-608 |#2|) |#2|)) (-15 -1943 ((-1164 (-406 (-1164 |#2|))) (-1164 |#2|) (-608 |#2|))) (IF (|has| |#3| (-650 |#2|)) (PROGN (-15 -4166 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3928 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|))) (-15 -4166 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3928 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))))) |%noBranch|)) (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562))) (-13 (-429 |#1|) (-27) (-1192)) (-1092)) (T -558)) +((-4166 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-608 *4)) (-5 *6 (-406 (-1164 *4))) (-4 *4 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092)))) (-4166 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-608 *4)) (-5 *6 (-1164 *4)) (-4 *4 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *4 (-608 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-1164 (-406 (-1164 *6)))) (-5 *1 (-558 *5 *6 *7)) (-5 *3 (-1164 *6)) (-4 *7 (-1092)))) (-1390 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1164 (-406 (-1164 *2)))) (-5 *4 (-608 *2)) (-4 *2 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *1 (-558 *5 *2 *6)) (-4 *6 (-1092)))) (-1599 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-1164 (-406 (-1164 *3)))) (-5 *1 (-558 *6 *3 *7)) (-5 *5 (-1164 *3)) (-4 *7 (-1092)))) (-2402 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) (-5 *5 (-406 (-1164 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1092)))) (-2402 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) (-5 *5 (-1164 *2)) (-4 *2 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1092)))) (-1654 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) (-5 *6 (-406 (-1164 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1092)))) (-1654 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) (-5 *6 (-1164 *3)) (-4 *3 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1092)))) (-2171 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-406 (-1164 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) (-2171 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-1164 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) (-2561 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-608 *3)) (-5 *5 (-406 (-1164 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) (-2561 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-608 *3)) (-5 *5 (-1164 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092))))) +(-10 -7 (-15 -2561 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|))) (-15 -2561 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -2171 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| |#2| (-1164 |#2|))) (-15 -2171 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1654 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) |#2| (-1164 |#2|))) (-15 -1654 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -2402 ((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) |#2| (-1164 |#2|))) (-15 -2402 ((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1599 ((-1164 (-406 (-1164 |#2|))) |#2| (-608 |#2|) (-608 |#2|) (-1164 |#2|))) (-15 -1390 (|#2| (-1164 (-406 (-1164 |#2|))) (-608 |#2|) |#2|)) (-15 -1943 ((-1164 (-406 (-1164 |#2|))) (-1164 |#2|) (-608 |#2|))) (IF (|has| |#3| (-650 |#2|)) (PROGN (-15 -4166 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3928 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|))) (-15 -4166 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3928 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))))) |%noBranch|)) +((-2882 (((-562) (-562) (-766)) 66)) (-2243 (((-562) (-562)) 65)) (-2425 (((-562) (-562)) 64)) (-3351 (((-562) (-562)) 69)) (-1761 (((-562) (-562) (-562)) 49)) (-3735 (((-562) (-562) (-562)) 46)) (-2118 (((-406 (-562)) (-562)) 20)) (-3628 (((-562) (-562)) 21)) (-2159 (((-562) (-562)) 58)) (-4342 (((-562) (-562)) 32)) (-2437 (((-639 (-562)) (-562)) 63)) (-3757 (((-562) (-562) (-562) (-562) (-562)) 44)) (-3160 (((-406 (-562)) (-562)) 41))) +(((-559) (-10 -7 (-15 -3160 ((-406 (-562)) (-562))) (-15 -3757 ((-562) (-562) (-562) (-562) (-562))) (-15 -2437 ((-639 (-562)) (-562))) (-15 -4342 ((-562) (-562))) (-15 -2159 ((-562) (-562))) (-15 -3628 ((-562) (-562))) (-15 -2118 ((-406 (-562)) (-562))) (-15 -3735 ((-562) (-562) (-562))) (-15 -1761 ((-562) (-562) (-562))) (-15 -3351 ((-562) (-562))) (-15 -2425 ((-562) (-562))) (-15 -2243 ((-562) (-562))) (-15 -2882 ((-562) (-562) (-766))))) (T -559)) +((-2882 (*1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-766)) (-5 *1 (-559)))) (-2243 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2425 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-1761 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-3735 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2118 (*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-559)) (-5 *3 (-562)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-4342 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2437 (*1 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-559)) (-5 *3 (-562)))) (-3757 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-3160 (*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-559)) (-5 *3 (-562))))) +(-10 -7 (-15 -3160 ((-406 (-562)) (-562))) (-15 -3757 ((-562) (-562) (-562) (-562) (-562))) (-15 -2437 ((-639 (-562)) (-562))) (-15 -4342 ((-562) (-562))) (-15 -2159 ((-562) (-562))) (-15 -3628 ((-562) (-562))) (-15 -2118 ((-406 (-562)) (-562))) (-15 -3735 ((-562) (-562) (-562))) (-15 -1761 ((-562) (-562) (-562))) (-15 -3351 ((-562) (-562))) (-15 -2425 ((-562) (-562))) (-15 -2243 ((-562) (-562))) (-15 -2882 ((-562) (-562) (-766)))) +((-1435 (((-2 (|:| |answer| |#4|) (|:| -3288 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-560 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1435 ((-2 (|:| |answer| |#4|) (|:| -3288 |#4|)) |#4| (-1 |#2| |#2|)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -560)) +((-1435 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-4 *7 (-1232 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3288 *3))) (-5 *1 (-560 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7))))) +(-10 -7 (-15 -1435 ((-2 (|:| |answer| |#4|) (|:| -3288 |#4|)) |#4| (-1 |#2| |#2|)))) +((-1435 (((-2 (|:| |answer| (-406 |#2|)) (|:| -3288 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 18))) +(((-561 |#1| |#2|) (-10 -7 (-15 -1435 ((-2 (|:| |answer| (-406 |#2|)) (|:| -3288 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1232 |#1|)) (T -561)) +((-1435 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| (-406 *6)) (|:| -3288 (-406 *6)) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-561 *5 *6)) (-5 *3 (-406 *6))))) +(-10 -7 (-15 -1435 ((-2 (|:| |answer| (-406 |#2|)) (|:| -3288 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 25)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 88)) (-2796 (($ $) 89)) (-4370 (((-112) $) NIL)) (-1685 (($ $ $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-4375 (($ $ $ $) 43)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL)) (-3358 (($ $ $) 82)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL)) (-3961 (((-562) $) NIL)) (-1811 (($ $ $) 81)) (-2406 (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 62) (((-683 (-562)) (-683 $)) 58)) (-3668 (((-3 $ "failed") $) 85)) (-1726 (((-3 (-406 (-562)) "failed") $) NIL)) (-3035 (((-112) $) NIL)) (-1291 (((-406 (-562)) $) NIL)) (-1448 (($) 64) (($ $) 65)) (-1787 (($ $ $) 80)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3854 (($ $ $ $) NIL)) (-1292 (($ $ $) 55)) (-3519 (((-112) $) NIL)) (-2794 (($ $ $) NIL)) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL)) (-1957 (((-112) $) 26)) (-3130 (((-112) $) 75)) (-3699 (((-3 $ "failed") $) NIL)) (-3392 (((-112) $) 35)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2504 (($ $ $ $) 44)) (-1551 (($ $ $) 77)) (-2993 (($ $ $) 76)) (-3930 (($ $) NIL)) (-3641 (($ $) 41)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) 54)) (-1809 (($ $ $) NIL)) (-3729 (($) NIL T CONST)) (-4137 (($ $) 31)) (-1709 (((-1112) $) 34)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 119)) (-1606 (($ $ $) 86) (($ (-639 $)) NIL)) (-1351 (($ $) NIL)) (-1635 (((-417 $) $) 105)) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) 84)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3803 (((-112) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 79)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-2372 (($ $) 32)) (-4220 (($ $) 30)) (-4208 (((-562) $) 40) (((-535) $) 52) (((-887 (-562)) $) NIL) (((-378) $) 47) (((-224) $) 49) (((-1150) $) 53)) (-4054 (((-857) $) 38) (($ (-562)) 39) (($ $) NIL) (($ (-562)) 39)) (-2579 (((-766)) NIL)) (-2929 (((-112) $ $) NIL)) (-3261 (($ $ $) NIL)) (-3241 (($) 29)) (-2922 (((-112) $ $) NIL)) (-3131 (($ $ $ $) 42)) (-3526 (($ $) 63)) (-2286 (($) 27 T CONST)) (-2294 (($) 28 T CONST)) (-2833 (((-1150) $) 20) (((-1150) $ (-112)) 22) (((-1261) (-817) $) 23) (((-1261) (-817) $ (-112)) 24)) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 66)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 67)) (-1848 (($ $) 68) (($ $ $) 70)) (-1835 (($ $ $) 69)) (** (($ $ (-916)) NIL) (($ $ (-766)) 74)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 72) (($ $ $) 71))) +(((-562) (-13 (-544) (-610 (-1150)) (-823) (-10 -8 (-15 -1448 ($ $)) (-6 -4389) (-6 -4394) (-6 -4390) (-6 -4384)))) (T -562)) +((-1448 (*1 *1 *1) (-5 *1 (-562)))) +(-13 (-544) (-610 (-1150)) (-823) (-10 -8 (-15 -1448 ($ $)) (-6 -4389) (-6 -4394) (-6 -4390) (-6 -4384))) +((-2172 (((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764) (-1056)) 108) (((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764)) 110)) (-2667 (((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1168)) 172) (((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1150)) 171) (((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378) (-1056)) 176) (((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378)) 177) (((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378)) 178) (((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378))))) 179) (((-1030) (-315 (-378)) (-1086 (-838 (-378)))) 167) (((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378)) 166) (((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378)) 162) (((-1030) (-764)) 155) (((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378) (-1056)) 161))) +(((-563) (-10 -7 (-15 -2667 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378) (-1056))) (-15 -2667 ((-1030) (-764))) (-15 -2667 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378))) (-15 -2667 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378))) (-15 -2667 ((-1030) (-315 (-378)) (-1086 (-838 (-378))))) (-15 -2667 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))))) (-15 -2667 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378))) (-15 -2667 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378))) (-15 -2667 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378) (-1056))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764) (-1056))) (-15 -2667 ((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1150))) (-15 -2667 ((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1168))))) (T -563)) +((-2667 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-838 (-378)))) (-5 *5 (-1168)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2667 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-838 (-378)))) (-5 *5 (-1150)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-764)) (-5 *4 (-1056)) (-5 *2 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) (-5 *1 (-563)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) (-5 *1 (-563)))) (-2667 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) (-5 *5 (-378)) (-5 *6 (-1056)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2667 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2667 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2667 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2667 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-2667 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) (-5 *5 (-378)) (-5 *6 (-1056)) (-5 *2 (-1030)) (-5 *1 (-563))))) +(-10 -7 (-15 -2667 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378) (-1056))) (-15 -2667 ((-1030) (-764))) (-15 -2667 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378))) (-15 -2667 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378))) (-15 -2667 ((-1030) (-315 (-378)) (-1086 (-838 (-378))))) (-15 -2667 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))))) (-15 -2667 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378))) (-15 -2667 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378))) (-15 -2667 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378) (-1056))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764) (-1056))) (-15 -2667 ((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1150))) (-15 -2667 ((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1168)))) +((-3642 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|)) 183)) (-3163 (((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|)) 98)) (-1914 (((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2|) 179)) (-3479 (((-3 |#2| "failed") |#2| |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168))) 188)) (-3150 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3928 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-1168)) 196 (|has| |#3| (-650 |#2|))))) +(((-564 |#1| |#2| |#3|) (-10 -7 (-15 -3163 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|))) (-15 -1914 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2|)) (-15 -3642 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|))) (-15 -3479 ((-3 |#2| "failed") |#2| |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)))) (IF (|has| |#3| (-650 |#2|)) (-15 -3150 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3928 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-1168))) |%noBranch|)) (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562))) (-13 (-429 |#1|) (-27) (-1192)) (-1092)) (T -564)) +((-3150 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-608 *4)) (-5 *6 (-1168)) (-4 *4 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092)))) (-3479 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) (-4 *2 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1092)))) (-3642 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1092)))) (-1914 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) (-5 *1 (-564 *5 *3 *6)) (-4 *6 (-1092)))) (-3163 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-564 *5 *3 *6)) (-4 *6 (-1092))))) +(-10 -7 (-15 -3163 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|))) (-15 -1914 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2|)) (-15 -3642 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|))) (-15 -3479 ((-3 |#2| "failed") |#2| |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)))) (IF (|has| |#3| (-650 |#2|)) (-15 -3150 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3928 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-1168))) |%noBranch|)) +((-4024 (((-2 (|:| -3670 |#2|) (|:| |nconst| |#2|)) |#2| (-1168)) 63)) (-4279 (((-3 |#2| "failed") |#2| (-1168) (-838 |#2|) (-838 |#2|)) 163 (-12 (|has| |#2| (-1131)) (|has| |#1| (-610 (-887 (-562)))) (|has| |#1| (-881 (-562))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)) 146 (-12 (|has| |#2| (-625)) (|has| |#1| (-610 (-887 (-562)))) (|has| |#1| (-881 (-562)))))) (-2610 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)) 147 (-12 (|has| |#2| (-625)) (|has| |#1| (-610 (-887 (-562)))) (|has| |#1| (-881 (-562))))))) +(((-565 |#1| |#2|) (-10 -7 (-15 -4024 ((-2 (|:| -3670 |#2|) (|:| |nconst| |#2|)) |#2| (-1168))) (IF (|has| |#1| (-610 (-887 (-562)))) (IF (|has| |#1| (-881 (-562))) (PROGN (IF (|has| |#2| (-625)) (PROGN (-15 -2610 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168))) (-15 -4279 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)))) |%noBranch|) (IF (|has| |#2| (-1131)) (-15 -4279 ((-3 |#2| "failed") |#2| (-1168) (-838 |#2|) (-838 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-845) (-1033 (-562)) (-451) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -565)) +((-4279 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1168)) (-5 *4 (-838 *2)) (-4 *2 (-1131)) (-4 *2 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-610 (-887 (-562)))) (-4 *5 (-881 (-562))) (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) (-5 *1 (-565 *5 *2)))) (-4279 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-610 (-887 (-562)))) (-4 *5 (-881 (-562))) (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-565 *5 *3)) (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-2610 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-610 (-887 (-562)))) (-4 *5 (-881 (-562))) (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-565 *5 *3)) (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-4024 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) (-5 *2 (-2 (|:| -3670 *3) (|:| |nconst| *3))) (-5 *1 (-565 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) +(-10 -7 (-15 -4024 ((-2 (|:| -3670 |#2|) (|:| |nconst| |#2|)) |#2| (-1168))) (IF (|has| |#1| (-610 (-887 (-562)))) (IF (|has| |#1| (-881 (-562))) (PROGN (IF (|has| |#2| (-625)) (PROGN (-15 -2610 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168))) (-15 -4279 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)))) |%noBranch|) (IF (|has| |#2| (-1131)) (-15 -4279 ((-3 |#2| "failed") |#2| (-1168) (-838 |#2|) (-838 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1784 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-639 (-406 |#2|))) 41)) (-2667 (((-583 (-406 |#2|)) (-406 |#2|)) 28)) (-4071 (((-3 (-406 |#2|) "failed") (-406 |#2|)) 17)) (-2615 (((-3 (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|)) 48))) +(((-566 |#1| |#2|) (-10 -7 (-15 -2667 ((-583 (-406 |#2|)) (-406 |#2|))) (-15 -4071 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2615 ((-3 (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -1784 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-639 (-406 |#2|))))) (-13 (-362) (-146) (-1033 (-562))) (-1232 |#1|)) (T -566)) +((-1784 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-639 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *5 *6)))) (-2615 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -3860 (-406 *5)) (|:| |coeff| (-406 *5)))) (-5 *1 (-566 *4 *5)) (-5 *3 (-406 *5)))) (-4071 (*1 *2 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146) (-1033 (-562)))) (-5 *1 (-566 *3 *4)))) (-2667 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) (-5 *2 (-583 (-406 *5))) (-5 *1 (-566 *4 *5)) (-5 *3 (-406 *5))))) +(-10 -7 (-15 -2667 ((-583 (-406 |#2|)) (-406 |#2|))) (-15 -4071 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -2615 ((-3 (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -1784 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-639 (-406 |#2|))))) +((-1618 (((-3 (-562) "failed") |#1|) 14)) (-3377 (((-112) |#1|) 13)) (-1757 (((-562) |#1|) 9))) +(((-567 |#1|) (-10 -7 (-15 -1757 ((-562) |#1|)) (-15 -3377 ((-112) |#1|)) (-15 -1618 ((-3 (-562) "failed") |#1|))) (-1033 (-562))) (T -567)) +((-1618 (*1 *2 *3) (|partial| -12 (-5 *2 (-562)) (-5 *1 (-567 *3)) (-4 *3 (-1033 *2)))) (-3377 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-1033 (-562))))) (-1757 (*1 *2 *3) (-12 (-5 *2 (-562)) (-5 *1 (-567 *3)) (-4 *3 (-1033 *2))))) +(-10 -7 (-15 -1757 ((-562) |#1|)) (-15 -3377 ((-112) |#1|)) (-15 -1618 ((-3 (-562) "failed") |#1|))) +((-1527 (((-3 (-2 (|:| |mainpart| (-406 (-947 |#1|))) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 (-947 |#1|))) (|:| |logand| (-406 (-947 |#1|))))))) "failed") (-406 (-947 |#1|)) (-1168) (-639 (-406 (-947 |#1|)))) 48)) (-3206 (((-583 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-1168)) 28)) (-1819 (((-3 (-406 (-947 |#1|)) "failed") (-406 (-947 |#1|)) (-1168)) 23)) (-2482 (((-3 (-2 (|:| -3860 (-406 (-947 |#1|))) (|:| |coeff| (-406 (-947 |#1|)))) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|))) 35))) +(((-568 |#1|) (-10 -7 (-15 -3206 ((-583 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -1819 ((-3 (-406 (-947 |#1|)) "failed") (-406 (-947 |#1|)) (-1168))) (-15 -1527 ((-3 (-2 (|:| |mainpart| (-406 (-947 |#1|))) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 (-947 |#1|))) (|:| |logand| (-406 (-947 |#1|))))))) "failed") (-406 (-947 |#1|)) (-1168) (-639 (-406 (-947 |#1|))))) (-15 -2482 ((-3 (-2 (|:| -3860 (-406 (-947 |#1|))) (|:| |coeff| (-406 (-947 |#1|)))) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|))))) (-13 (-554) (-1033 (-562)) (-146))) (T -568)) +((-2482 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-1033 (-562)) (-146))) (-5 *2 (-2 (|:| -3860 (-406 (-947 *5))) (|:| |coeff| (-406 (-947 *5))))) (-5 *1 (-568 *5)) (-5 *3 (-406 (-947 *5))))) (-1527 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 (-406 (-947 *6)))) (-5 *3 (-406 (-947 *6))) (-4 *6 (-13 (-554) (-1033 (-562)) (-146))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6)))) (-1819 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-406 (-947 *4))) (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-1033 (-562)) (-146))) (-5 *1 (-568 *4)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-1033 (-562)) (-146))) (-5 *2 (-583 (-406 (-947 *5)))) (-5 *1 (-568 *5)) (-5 *3 (-406 (-947 *5)))))) +(-10 -7 (-15 -3206 ((-583 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -1819 ((-3 (-406 (-947 |#1|)) "failed") (-406 (-947 |#1|)) (-1168))) (-15 -1527 ((-3 (-2 (|:| |mainpart| (-406 (-947 |#1|))) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 (-947 |#1|))) (|:| |logand| (-406 (-947 |#1|))))))) "failed") (-406 (-947 |#1|)) (-1168) (-639 (-406 (-947 |#1|))))) (-15 -2482 ((-3 (-2 (|:| -3860 (-406 (-947 |#1|))) (|:| |coeff| (-406 (-947 |#1|)))) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|))))) +((-4041 (((-112) $ $) 58)) (-1952 (((-112) $) 36)) (-3697 ((|#1| $) 30)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) 62)) (-2988 (($ $) 122)) (-4097 (($ $) 102)) (-3659 ((|#1| $) 28)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL)) (-4207 (($ $) 124)) (-4074 (($ $) 98)) (-3014 (($ $) 126)) (-4119 (($ $) 106)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) 77)) (-3961 (((-562) $) 79)) (-3668 (((-3 $ "failed") $) 61)) (-4112 (($ |#1| |#1|) 26)) (-3519 (((-112) $) 33)) (-4100 (($) 88)) (-1957 (((-112) $) 43)) (-1891 (($ $ (-562)) NIL)) (-3392 (((-112) $) 34)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4365 (($ $) 90)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-2682 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-406 (-562))) 76)) (-1310 ((|#1| $) 27)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) 64) (($ (-639 $)) NIL)) (-1762 (((-3 $ "failed") $ $) 63)) (-3430 (($ $) 92)) (-3023 (($ $) 130)) (-4130 (($ $) 104)) (-3001 (($ $) 132)) (-4108 (($ $) 108)) (-2978 (($ $) 128)) (-4087 (($ $) 100)) (-2843 (((-112) $ |#1|) 31)) (-4054 (((-857) $) 84) (($ (-562)) 66) (($ $) NIL) (($ (-562)) 66)) (-2579 (((-766)) 86)) (-3055 (($ $) 144)) (-4165 (($ $) 114)) (-2922 (((-112) $ $) NIL)) (-3033 (($ $) 142)) (-4138 (($ $) 110)) (-3078 (($ $) 140)) (-4182 (($ $) 120)) (-1566 (($ $) 138)) (-4195 (($ $) 118)) (-3066 (($ $) 136)) (-4174 (($ $) 116)) (-3044 (($ $) 134)) (-4151 (($ $) 112)) (-2286 (($) 21 T CONST)) (-2294 (($) 10 T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 37)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 35)) (-1848 (($ $) 41) (($ $ $) 42)) (-1835 (($ $ $) 40)) (** (($ $ (-916)) 54) (($ $ (-766)) NIL) (($ $ $) 94) (($ $ (-406 (-562))) 146)) (* (($ (-916) $) 51) (($ (-766) $) NIL) (($ (-562) $) 50) (($ $ $) 48))) +(((-569 |#1|) (-552 |#1|) (-13 (-403) (-1192))) (T -569)) NIL (-552 |#1|) -((-3086 (((-3 (-635 (-1160 (-544))) "failed") (-635 (-1160 (-544))) (-1160 (-544))) 24))) -(((-569) (-10 -7 (-15 -3086 ((-3 (-635 (-1160 (-544))) "failed") (-635 (-1160 (-544))) (-1160 (-544)))))) (T -569)) -((-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 (-544)))) (-5 *3 (-1160 (-544))) (-5 *1 (-569))))) -(-10 -7 (-15 -3086 ((-3 (-635 (-1160 (-544))) "failed") (-635 (-1160 (-544))) (-1160 (-544))))) -((-2259 (((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-1166)) 19)) (-2262 (((-635 (-606 |#2|)) (-635 |#2|) (-1166)) 23)) (-3635 (((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-635 (-606 |#2|))) 11)) (-2263 ((|#2| |#2| (-1166)) 53 (|has| |#1| (-554)))) (-2264 ((|#2| |#2| (-1166)) 77 (-12 (|has| |#2| (-283)) (|has| |#1| (-450))))) (-2261 (((-606 |#2|) (-606 |#2|) (-635 (-606 |#2|)) (-1166)) 25)) (-2260 (((-606 |#2|) (-635 (-606 |#2|))) 24)) (-2265 (((-580 |#2|) |#2| (-1166) (-1 (-580 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166))) 101 (-12 (|has| |#2| (-283)) (|has| |#2| (-625)) (|has| |#2| (-1031 (-1166))) (|has| |#1| (-609 (-883 (-544)))) (|has| |#1| (-450)) (|has| |#1| (-879 (-544))))))) -(((-570 |#1| |#2|) (-10 -7 (-15 -2259 ((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-1166))) (-15 -2260 ((-606 |#2|) (-635 (-606 |#2|)))) (-15 -2261 ((-606 |#2|) (-606 |#2|) (-635 (-606 |#2|)) (-1166))) (-15 -3635 ((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-635 (-606 |#2|)))) (-15 -2262 ((-635 (-606 |#2|)) (-635 |#2|) (-1166))) (IF (|has| |#1| (-554)) (-15 -2263 (|#2| |#2| (-1166))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -2264 (|#2| |#2| (-1166))) (IF (|has| |#1| (-609 (-883 (-544)))) (IF (|has| |#1| (-879 (-544))) (IF (|has| |#2| (-625)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2265 ((-580 |#2|) |#2| (-1166) (-1 (-580 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-844) (-420 |#1|)) (T -570)) -((-2265 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-580 *3) *3 (-1166))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1166))) (-4 *3 (-283)) (-4 *3 (-625)) (-4 *3 (-1031 *4)) (-4 *3 (-420 *7)) (-5 *4 (-1166)) (-4 *7 (-609 (-883 (-544)))) (-4 *7 (-450)) (-4 *7 (-879 (-544))) (-4 *7 (-844)) (-5 *2 (-580 *3)) (-5 *1 (-570 *7 *3)))) (-2264 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-450)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) (-4 *2 (-283)) (-4 *2 (-420 *4)))) (-2263 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-554)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) (-4 *2 (-420 *4)))) (-2262 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-1166)) (-4 *6 (-420 *5)) (-4 *5 (-844)) (-5 *2 (-635 (-606 *6))) (-5 *1 (-570 *5 *6)))) (-3635 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-606 *4))) (-4 *4 (-420 *3)) (-4 *3 (-844)) (-5 *1 (-570 *3 *4)))) (-2261 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-606 *6))) (-5 *4 (-1166)) (-5 *2 (-606 *6)) (-4 *6 (-420 *5)) (-4 *5 (-844)) (-5 *1 (-570 *5 *6)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-635 (-606 *5))) (-4 *4 (-844)) (-5 *2 (-606 *5)) (-5 *1 (-570 *4 *5)) (-4 *5 (-420 *4)))) (-2259 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-606 *5))) (-5 *3 (-1166)) (-4 *5 (-420 *4)) (-4 *4 (-844)) (-5 *1 (-570 *4 *5))))) -(-10 -7 (-15 -2259 ((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-1166))) (-15 -2260 ((-606 |#2|) (-635 (-606 |#2|)))) (-15 -2261 ((-606 |#2|) (-606 |#2|) (-635 (-606 |#2|)) (-1166))) (-15 -3635 ((-635 (-606 |#2|)) (-635 (-606 |#2|)) (-635 (-606 |#2|)))) (-15 -2262 ((-635 (-606 |#2|)) (-635 |#2|) (-1166))) (IF (|has| |#1| (-554)) (-15 -2263 (|#2| |#2| (-1166))) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-283)) (PROGN (-15 -2264 (|#2| |#2| (-1166))) (IF (|has| |#1| (-609 (-883 (-544)))) (IF (|has| |#1| (-879 (-544))) (IF (|has| |#2| (-625)) (IF (|has| |#2| (-1031 (-1166))) (-15 -2265 ((-580 |#2|) |#2| (-1166) (-1 (-580 |#2|) |#2| (-1166)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1166)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2268 (((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-544) |#1| |#1|)) 172)) (-2271 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-635 (-406 |#2|))) 148)) (-2274 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|))) 145)) (-2275 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2266 (((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2273 (((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|)) 175)) (-2269 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-406 |#2|)) 178)) (-2277 (((-2 (|:| |ir| (-580 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 84)) (-2278 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2272 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-635 (-406 |#2|))) 152)) (-2276 (((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|)) 137)) (-2267 (((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|)) 162)) (-2270 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-406 |#2|)) 183))) -(((-571 |#1| |#2|) (-10 -7 (-15 -2266 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2267 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|))) (-15 -2268 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-544) |#1| |#1|))) (-15 -2269 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-406 |#2|))) (-15 -2270 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-406 |#2|))) (-15 -2271 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-635 (-406 |#2|)))) (-15 -2272 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-635 (-406 |#2|)))) (-15 -2273 ((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -2274 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|)))) (-15 -2275 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2276 ((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|))) (-15 -2277 ((-2 (|:| |ir| (-580 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2278 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-362) (-1229 |#1|)) (T -571)) -((-2278 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-571 *5 *3)))) (-2277 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |ir| (-580 (-406 *6))) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))) (-2276 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-618 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3522 *4) (|:| |sol?| (-112))) (-544) *4)) (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *1 (-571 *4 *5)))) (-2275 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-362)) (-5 *1 (-571 *4 *2)) (-4 *2 (-1229 *4)))) (-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-635 (-406 *7))) (-4 *7 (-1229 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *7)))) (-2273 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2290 (-406 *6)) (|:| |coeff| (-406 *6)))) (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6)))) (-2272 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3522 *7) (|:| |sol?| (-112))) (-544) *7)) (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-571 *7 *8)))) (-2271 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2290 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-571 *7 *8)))) (-2270 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3522 *6) (|:| |sol?| (-112))) (-544) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2290 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2269 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2290 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2290 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-635 *6) "failed") (-544) *6 *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2267 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3522 *6) (|:| |sol?| (-112))) (-544) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7)))) (-2266 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2290 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7))))) -(-10 -7 (-15 -2266 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2267 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|))) (-15 -2268 ((-2 (|:| |answer| (-580 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-635 |#1|) "failed") (-544) |#1| |#1|))) (-15 -2269 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-406 |#2|))) (-15 -2270 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-406 |#2|))) (-15 -2271 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-635 (-406 |#2|)))) (-15 -2272 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|) (-635 (-406 |#2|)))) (-15 -2273 ((-3 (-2 (|:| -2290 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -2274 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-635 (-406 |#2|)))) (-15 -2275 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2276 ((-3 (-618 |#1| |#2|) "failed") (-618 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3522 |#1|) (|:| |sol?| (-112))) (-544) |#1|))) (-15 -2277 ((-2 (|:| |ir| (-580 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2278 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2279 (((-3 |#2| "failed") |#2| (-1166) (-1166)) 10))) -(((-572 |#1| |#2|) (-10 -7 (-15 -2279 ((-3 |#2| "failed") |#2| (-1166) (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-953) (-1129) (-29 |#1|))) (T -572)) -((-2279 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1190) (-953) (-1129) (-29 *4)))))) -(-10 -7 (-15 -2279 ((-3 |#2| "failed") |#2| (-1166) (-1166)))) -((-2937 (((-684 (-1212)) $ (-1212)) 26)) (-2938 (((-684 (-547)) $ (-547)) 25)) (-2936 (((-765) $ (-129)) 27)) (-2939 (((-684 (-128)) $ (-128)) 24)) (-2150 (((-684 (-1212)) $) 12)) (-2146 (((-684 (-1211)) $) 8)) (-2148 (((-684 (-1210)) $) 10)) (-2151 (((-684 (-547)) $) 13)) (-2147 (((-684 (-546)) $) 9)) (-2149 (((-684 (-545)) $) 11)) (-2145 (((-765) $ (-129)) 7)) (-2152 (((-684 (-128)) $) 14)) (-1844 (($ $) 6))) -(((-573) (-139)) (T -573)) -NIL -(-13 (-525) (-855)) -(((-172) . T) ((-525) . T) ((-855) . T)) -((-2937 (((-684 (-1212)) $ (-1212)) NIL)) (-2938 (((-684 (-547)) $ (-547)) NIL)) (-2936 (((-765) $ (-129)) NIL)) (-2939 (((-684 (-128)) $ (-128)) NIL)) (-2150 (((-684 (-1212)) $) NIL)) (-2146 (((-684 (-1211)) $) NIL)) (-2148 (((-684 (-1210)) $) NIL)) (-2151 (((-684 (-547)) $) NIL)) (-2147 (((-684 (-546)) $) NIL)) (-2149 (((-684 (-545)) $) NIL)) (-2145 (((-765) $ (-129)) NIL)) (-2152 (((-684 (-128)) $) NIL)) (-2940 (((-112) $) NIL)) (-2280 (($ (-387)) 14) (($ (-1148)) 16)) (-4353 (((-857) $) NIL)) (-1844 (($ $) NIL))) -(((-574) (-13 (-573) (-608 (-857)) (-10 -8 (-15 -2280 ($ (-387))) (-15 -2280 ($ (-1148))) (-15 -2940 ((-112) $))))) (T -574)) -((-2280 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-574)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-574)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574))))) -(-13 (-573) (-608 (-857)) (-10 -8 (-15 -2280 ($ (-387))) (-15 -2280 ($ (-1148))) (-15 -2940 ((-112) $)))) -((-2947 (((-112) $ $) NIL)) (-3859 (($) 7 T CONST)) (-3643 (((-1148) $) NIL)) (-2282 (($) 6 T CONST)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 14)) (-2281 (($) 8 T CONST)) (-3437 (((-112) $ $) 10))) -(((-575) (-13 (-1091) (-10 -8 (-15 -2282 ($) -4359) (-15 -3859 ($) -4359) (-15 -2281 ($) -4359)))) (T -575)) -((-2282 (*1 *1) (-5 *1 (-575))) (-3859 (*1 *1) (-5 *1 (-575))) (-2281 (*1 *1) (-5 *1 (-575)))) -(-13 (-1091) (-10 -8 (-15 -2282 ($) -4359) (-15 -3859 ($) -4359) (-15 -2281 ($) -4359))) -((-2947 (((-112) $ $) NIL)) (-2283 (((-684 $) (-489)) 16)) (-3643 (((-1148) $) NIL)) (-2285 (($ (-1148)) 9)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 31)) (-2284 (((-212 4 (-128)) $) 19)) (-3437 (((-112) $ $) 22))) -(((-576) (-13 (-1091) (-10 -8 (-15 -2285 ($ (-1148))) (-15 -2284 ((-212 4 (-128)) $)) (-15 -2283 ((-684 $) (-489)))))) (T -576)) -((-2285 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-576)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-212 4 (-128))) (-5 *1 (-576)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-684 (-576))) (-5 *1 (-576))))) -(-13 (-1091) (-10 -8 (-15 -2285 ($ (-1148))) (-15 -2284 ((-212 4 (-128)) $)) (-15 -2283 ((-684 $) (-489))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ (-544)) 66)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2989 (($ (-1160 (-544)) (-544)) 72)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) 58)) (-2990 (($ $) 34)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4178 (((-765) $) 15)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 (((-544)) 29)) (-2991 (((-544) $) 32)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4175 (($ $ (-544)) 21)) (-3865 (((-3 $ "failed") $ $) 59)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) 16)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 61)) (-2993 (((-1143 (-544)) $) 18)) (-3274 (($ $) 23)) (-4353 (((-857) $) 86) (($ (-544)) 52) (($ $) NIL)) (-3511 (((-765)) 14)) (-2212 (((-112) $ $) NIL)) (-4176 (((-544) $ (-544)) 36)) (-3040 (($) 35 T CONST)) (-3046 (($) 19 T CONST)) (-3437 (((-112) $ $) 39)) (-4244 (($ $) 51) (($ $ $) 37)) (-4246 (($ $ $) 50)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 54) (($ $ $) 55))) -(((-577 |#1| |#2|) (-863 |#1|) (-544) (-112)) (T -577)) -NIL -(-863 |#1|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 21)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (($ $ (-912)) NIL (|has| $ (-367))) (($ $) NIL)) (-1819 (((-1177 (-912) (-765)) (-544)) 47)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 $ "failed") $) 75)) (-3557 (($ $) 74)) (-1939 (($ (-1253 $)) 73)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) 32)) (-3377 (($) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) 49)) (-1824 (((-112) $) NIL)) (-1914 (($ $) NIL) (($ $ (-765)) NIL)) (-4130 (((-112) $) NIL)) (-4178 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-2545 (((-112) $) NIL)) (-2163 (($) 37 (|has| $ (-367)))) (-2161 (((-112) $) NIL (|has| $ (-367)))) (-3517 (($ $ (-912)) NIL (|has| $ (-367))) (($ $) NIL)) (-3848 (((-3 $ "failed") $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 $) $ (-912)) NIL (|has| $ (-367))) (((-1160 $) $) 83)) (-2160 (((-912) $) 55)) (-1752 (((-1160 $) $) NIL (|has| $ (-367)))) (-1751 (((-3 (-1160 $) "failed") $ $) NIL (|has| $ (-367))) (((-1160 $) $) NIL (|has| $ (-367)))) (-1753 (($ $ (-1160 $)) NIL (|has| $ (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL T CONST)) (-2535 (($ (-912)) 48)) (-4338 (((-112) $) 67)) (-3644 (((-1110) $) NIL)) (-2544 (($) 19 (|has| $ (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 42)) (-4139 (((-404 $) $) NIL)) (-4337 (((-912)) 66) (((-826 (-912))) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-3 (-765) "failed") $ $) NIL) (((-765) $) NIL)) (-4318 (((-133)) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-4355 (((-912) $) 65) (((-826 (-912)) $) NIL)) (-3586 (((-1160 $)) 82)) (-1818 (($) 54)) (-1754 (($) 38 (|has| $ (-367)))) (-3625 (((-682 $) (-1253 $)) NIL) (((-1253 $) $) 71)) (-4377 (((-544) $) 28)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) 30) (($ $) NIL) (($ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3511 (((-765)) 39)) (-2162 (((-1253 $) (-912)) 77) (((-1253 $)) 76)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) 22 T CONST)) (-3046 (($) 18 T CONST)) (-4335 (($ $ (-765)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 26)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 61) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL))) -(((-578 |#1|) (-13 (-349) (-328 $) (-609 (-544))) (-912)) (T -578)) -NIL -(-13 (-349) (-328 $) (-609 (-544))) -((-2286 (((-1259) (-1148)) 10))) -(((-579) (-10 -7 (-15 -2286 ((-1259) (-1148))))) (T -579)) -((-2286 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-579))))) -(-10 -7 (-15 -2286 ((-1259) (-1148)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| "failed") $) 69)) (-3557 ((|#1| $) NIL)) (-2290 ((|#1| $) 26)) (-2288 (((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2291 (($ |#1| (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2289 (((-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) $) 27)) (-3643 (((-1148) $) NIL)) (-3214 (($ |#1| |#1|) 33) (($ |#1| (-1166)) 44 (|has| |#1| (-1031 (-1166))))) (-3644 (((-1110) $) NIL)) (-2287 (((-112) $) 30)) (-4217 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1166)) 82 (|has| |#1| (-893 (-1166))))) (-4353 (((-857) $) 96) (($ |#1|) 25)) (-3040 (($) 16 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) 15) (($ $ $) NIL)) (-4246 (($ $ $) 78)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 14) (($ (-406 (-544)) $) 36) (($ $ (-406 (-544))) NIL))) -(((-580 |#1|) (-13 (-711 (-406 (-544))) (-1031 |#1|) (-10 -8 (-15 -2291 ($ |#1| (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2290 (|#1| $)) (-15 -2289 ((-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) $)) (-15 -2288 ((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2287 ((-112) $)) (-15 -3214 ($ |#1| |#1|)) (-15 -4217 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-893 (-1166))) (-15 -4217 (|#1| $ (-1166))) |%noBranch|) (IF (|has| |#1| (-1031 (-1166))) (-15 -3214 ($ |#1| (-1166))) |%noBranch|))) (-362)) (T -580)) -((-2291 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 *2)) (|:| |logand| (-1160 *2))))) (-5 *4 (-635 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362)) (-5 *1 (-580 *2)))) (-2290 (*1 *2 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-362)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 *3)) (|:| |logand| (-1160 *3))))) (-5 *1 (-580 *3)) (-4 *3 (-362)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-580 *3)) (-4 *3 (-362)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-362)))) (-3214 (*1 *1 *2 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-362)))) (-4217 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-580 *2)) (-4 *2 (-362)))) (-4217 (*1 *2 *1 *3) (-12 (-4 *2 (-362)) (-4 *2 (-893 *3)) (-5 *1 (-580 *2)) (-5 *3 (-1166)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *1 (-580 *2)) (-4 *2 (-1031 *3)) (-4 *2 (-362))))) -(-13 (-711 (-406 (-544))) (-1031 |#1|) (-10 -8 (-15 -2291 ($ |#1| (-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) (-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2290 (|#1| $)) (-15 -2289 ((-635 (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 |#1|)) (|:| |logand| (-1160 |#1|)))) $)) (-15 -2288 ((-635 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2287 ((-112) $)) (-15 -3214 ($ |#1| |#1|)) (-15 -4217 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-893 (-1166))) (-15 -4217 (|#1| $ (-1166))) |%noBranch|) (IF (|has| |#1| (-1031 (-1166))) (-15 -3214 ($ |#1| (-1166))) |%noBranch|))) -((-4365 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)) 30))) -(((-581 |#1| |#2|) (-10 -7 (-15 -4365 ((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|))) (-15 -4365 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4365 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4365 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-362) (-362)) (T -581)) -((-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-581 *5 *6)))) (-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-581 *5 *2)))) (-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2290 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| -2290 *6) (|:| |coeff| *6))) (-5 *1 (-581 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-580 *6)) (-5 *1 (-581 *5 *6))))) -(-10 -7 (-15 -4365 ((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|))) (-15 -4365 ((-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2290 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4365 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4365 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3822 (((-580 |#2|) (-580 |#2|)) 39)) (-4370 (((-635 |#2|) (-580 |#2|)) 41)) (-2299 ((|#2| (-580 |#2|)) 47))) -(((-582 |#1| |#2|) (-10 -7 (-15 -3822 ((-580 |#2|) (-580 |#2|))) (-15 -4370 ((-635 |#2|) (-580 |#2|))) (-15 -2299 (|#2| (-580 |#2|)))) (-13 (-450) (-1031 (-544)) (-844) (-634 (-544))) (-13 (-29 |#1|) (-1190))) (T -582)) -((-2299 (*1 *2 *3) (-12 (-5 *3 (-580 *2)) (-4 *2 (-13 (-29 *4) (-1190))) (-5 *1 (-582 *4 *2)) (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-580 *5)) (-4 *5 (-13 (-29 *4) (-1190))) (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-635 *5)) (-5 *1 (-582 *4 *5)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-580 *4)) (-4 *4 (-13 (-29 *3) (-1190))) (-4 *3 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *1 (-582 *3 *4))))) -(-10 -7 (-15 -3822 ((-580 |#2|) (-580 |#2|))) (-15 -4370 ((-635 |#2|) (-580 |#2|))) (-15 -2299 (|#2| (-580 |#2|)))) -((-2295 (((-112) |#1|) 16)) (-2296 (((-3 |#1| "failed") |#1|) 14)) (-2293 (((-2 (|:| -3076 |#1|) (|:| -2536 (-765))) |#1|) 30) (((-3 |#1| "failed") |#1| (-765)) 18)) (-2292 (((-112) |#1| (-765)) 19)) (-2297 ((|#1| |#1|) 31)) (-2294 ((|#1| |#1| (-765)) 33))) -(((-583 |#1|) (-10 -7 (-15 -2292 ((-112) |#1| (-765))) (-15 -2293 ((-3 |#1| "failed") |#1| (-765))) (-15 -2293 ((-2 (|:| -3076 |#1|) (|:| -2536 (-765))) |#1|)) (-15 -2294 (|#1| |#1| (-765))) (-15 -2295 ((-112) |#1|)) (-15 -2296 ((-3 |#1| "failed") |#1|)) (-15 -2297 (|#1| |#1|))) (-543)) (T -583)) -((-2297 (*1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2296 (*1 *2 *2) (|partial| -12 (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2295 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543)))) (-2294 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2293 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3076 *3) (|:| -2536 (-765)))) (-5 *1 (-583 *3)) (-4 *3 (-543)))) (-2293 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543))))) -(-10 -7 (-15 -2292 ((-112) |#1| (-765))) (-15 -2293 ((-3 |#1| "failed") |#1| (-765))) (-15 -2293 ((-2 (|:| -3076 |#1|) (|:| -2536 (-765))) |#1|)) (-15 -2294 (|#1| |#1| (-765))) (-15 -2295 ((-112) |#1|)) (-15 -2296 ((-3 |#1| "failed") |#1|)) (-15 -2297 (|#1| |#1|))) -((-2298 (((-1160 |#1|) (-912)) 26))) -(((-584 |#1|) (-10 -7 (-15 -2298 ((-1160 |#1|) (-912)))) (-349)) (T -584)) -((-2298 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-584 *4)) (-4 *4 (-349))))) -(-10 -7 (-15 -2298 ((-1160 |#1|) (-912)))) -((-3822 (((-580 (-406 (-939 |#1|))) (-580 (-406 (-939 |#1|)))) 27)) (-4219 (((-3 (-313 |#1|) (-635 (-313 |#1|))) (-406 (-939 |#1|)) (-1166)) 34 (|has| |#1| (-146)))) (-4370 (((-635 (-313 |#1|)) (-580 (-406 (-939 |#1|)))) 19)) (-2300 (((-313 |#1|) (-406 (-939 |#1|)) (-1166)) 32 (|has| |#1| (-146)))) (-2299 (((-313 |#1|) (-580 (-406 (-939 |#1|)))) 21))) -(((-585 |#1|) (-10 -7 (-15 -3822 ((-580 (-406 (-939 |#1|))) (-580 (-406 (-939 |#1|))))) (-15 -4370 ((-635 (-313 |#1|)) (-580 (-406 (-939 |#1|))))) (-15 -2299 ((-313 |#1|) (-580 (-406 (-939 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -4219 ((-3 (-313 |#1|) (-635 (-313 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -2300 ((-313 |#1|) (-406 (-939 |#1|)) (-1166)))) |%noBranch|)) (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (T -585)) -((-2300 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-313 *5)) (-5 *1 (-585 *5)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-3 (-313 *5) (-635 (-313 *5)))) (-5 *1 (-585 *5)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-580 (-406 (-939 *4)))) (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-313 *4)) (-5 *1 (-585 *4)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-580 (-406 (-939 *4)))) (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-635 (-313 *4))) (-5 *1 (-585 *4)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-580 (-406 (-939 *3)))) (-4 *3 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *1 (-585 *3))))) -(-10 -7 (-15 -3822 ((-580 (-406 (-939 |#1|))) (-580 (-406 (-939 |#1|))))) (-15 -4370 ((-635 (-313 |#1|)) (-580 (-406 (-939 |#1|))))) (-15 -2299 ((-313 |#1|) (-580 (-406 (-939 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -4219 ((-3 (-313 |#1|) (-635 (-313 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -2300 ((-313 |#1|) (-406 (-939 |#1|)) (-1166)))) |%noBranch|)) -((-2302 (((-635 (-682 (-544))) (-635 (-544)) (-635 (-895 (-544)))) 45) (((-635 (-682 (-544))) (-635 (-544))) 46) (((-682 (-544)) (-635 (-544)) (-895 (-544))) 41)) (-2301 (((-765) (-635 (-544))) 39))) -(((-586) (-10 -7 (-15 -2301 ((-765) (-635 (-544)))) (-15 -2302 ((-682 (-544)) (-635 (-544)) (-895 (-544)))) (-15 -2302 ((-635 (-682 (-544))) (-635 (-544)))) (-15 -2302 ((-635 (-682 (-544))) (-635 (-544)) (-635 (-895 (-544))))))) (T -586)) -((-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-544))) (-5 *4 (-635 (-895 (-544)))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-586)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-586)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-544))) (-5 *4 (-895 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-586)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-765)) (-5 *1 (-586))))) -(-10 -7 (-15 -2301 ((-765) (-635 (-544)))) (-15 -2302 ((-682 (-544)) (-635 (-544)) (-895 (-544)))) (-15 -2302 ((-635 (-682 (-544))) (-635 (-544)))) (-15 -2302 ((-635 (-682 (-544))) (-635 (-544)) (-635 (-895 (-544)))))) -((-3614 (((-635 |#5|) |#5| (-112)) 72)) (-2303 (((-112) |#5| (-635 |#5|)) 30))) -(((-587 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3614 ((-635 |#5|) |#5| (-112))) (-15 -2303 ((-112) |#5| (-635 |#5|)))) (-13 (-306) (-146)) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -587)) -((-2303 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1099 *5 *6 *7 *8)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-587 *5 *6 *7 *8 *3)))) (-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-635 *3)) (-5 *1 (-587 *5 *6 *7 *8 *3)) (-4 *3 (-1099 *5 *6 *7 *8))))) -(-10 -7 (-15 -3614 ((-635 |#5|) |#5| (-112))) (-15 -2303 ((-112) |#5| (-635 |#5|)))) -((-2947 (((-112) $ $) NIL)) (-3927 (((-1125) $) 11)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-588) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))) (T -588)) -((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588))))) -(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $)))) -((-2947 (((-112) $ $) NIL (|has| (-143) (-1091)))) (-3830 (($ $) 34)) (-3831 (($ $) NIL)) (-3821 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-3828 (((-112) $ $) 51)) (-3827 (((-112) $ $ (-544)) 46)) (-3822 (((-635 $) $ (-143)) 59) (((-635 $) $ (-140)) 60)) (-1876 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-844)))) (-1874 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-143) (-844))))) (-3292 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-143) $ (-544) (-143)) 45 (|has| $ (-6 -4401))) (((-143) $ (-1220 (-544)) (-143)) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-3819 (($ $ (-143)) 63) (($ $ (-140)) 64)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-3824 (($ $ (-1220 (-544)) $) 44)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3810 (($ (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-143) $ (-544) (-143)) NIL (|has| $ (-6 -4401)))) (-3498 (((-143) $ (-544)) NIL)) (-3829 (((-112) $ $) 71)) (-3823 (((-544) (-1 (-112) (-143)) $) NIL) (((-544) (-143) $) NIL (|has| (-143) (-1091))) (((-544) (-143) $ (-544)) 48 (|has| (-143) (-1091))) (((-544) $ $ (-544)) 47) (((-544) (-140) $ (-544)) 50)) (-2096 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-143)) 9)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 28 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| (-143) (-844)))) (-3917 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2347 (((-544) $) 42 (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-143) (-844)))) (-3825 (((-112) $ $ (-143)) 72)) (-3826 (((-765) $ $ (-143)) 69)) (-2100 (($ (-1 (-143) (-143)) $) 33 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-3832 (($ $) 37)) (-3833 (($ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3820 (($ $ (-143)) 61) (($ $ (-140)) 62)) (-3643 (((-1148) $) 38 (|has| (-143) (-1091)))) (-2421 (($ (-143) $ (-544)) NIL) (($ $ $ (-544)) 23)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-544) $) 68) (((-1110) $) NIL (|has| (-143) (-1091)))) (-4207 (((-143) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2345 (($ $ (-143)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2351 (((-635 (-143)) $) NIL)) (-3807 (((-112) $) 12)) (-3972 (($) 10)) (-4206 (((-143) $ (-544) (-143)) NIL) (((-143) $ (-544)) 52) (($ $ (-1220 (-544))) 21) (($ $ $) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400))) (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-1875 (($ $ $ (-544)) 65 (|has| $ (-6 -4401)))) (-3804 (($ $) 17)) (-4377 (((-533) $) NIL (|has| (-143) (-609 (-533))))) (-3929 (($ (-635 (-143))) NIL)) (-4208 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) 16) (($ (-635 $)) 66)) (-4353 (($ (-143)) NIL) (((-857) $) 27 (|has| (-143) (-608 (-857))))) (-2099 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| (-143) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3437 (((-112) $ $) 14 (|has| (-143) (-1091)))) (-3066 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3067 (((-112) $ $) 15 (|has| (-143) (-844)))) (-4364 (((-765) $) 13 (|has| $ (-6 -4400))))) -(((-589 |#1|) (-13 (-1134) (-10 -8 (-15 -3644 ((-544) $)))) (-544)) (T -589)) -((-3644 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-589 *3)) (-14 *3 *2)))) -(-13 (-1134) (-10 -8 (-15 -3644 ((-544) $)))) -((-3931 (((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2| (-1079 |#4|)) 32))) -(((-590 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3931 ((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2| (-1079 |#4|))) (-15 -3931 ((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2|))) (-787) (-844) (-554) (-943 |#3| |#1| |#2|)) (T -590)) -((-3931 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-544)))) (-5 *1 (-590 *5 *4 *6 *3)) (-4 *3 (-943 *6 *5 *4)))) (-3931 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1079 *3)) (-4 *3 (-943 *7 *6 *4)) (-4 *6 (-787)) (-4 *4 (-844)) (-4 *7 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-544)))) (-5 *1 (-590 *6 *4 *7 *3))))) -(-10 -7 (-15 -3931 ((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2| (-1079 |#4|))) (-15 -3931 ((-2 (|:| |num| |#4|) (|:| |den| (-544))) |#4| |#2|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 63)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-544)) 54) (($ $ (-544) (-544)) 55)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 60)) (-2334 (($ $) 99)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2332 (((-857) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) (-1019 (-836 (-544))) (-1166) |#1| (-406 (-544))) 223)) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 34)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3275 (((-112) $) NIL)) (-4178 (((-544) $) 58) (((-544) $ (-544)) 59)) (-2545 (((-112) $) NIL)) (-4183 (($ $ (-912)) 76)) (-4222 (($ (-1 |#1| (-544)) $) 73)) (-4344 (((-112) $) 25)) (-3276 (($ |#1| (-544)) 22) (($ $ (-1072) (-544)) NIL) (($ $ (-635 (-1072)) (-635 (-544))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 67)) (-2338 (($ (-1019 (-836 (-544))) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 13)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4219 (($ $) 149 (|has| |#1| (-38 (-406 (-544)))))) (-2335 (((-3 $ "failed") $ $ (-112)) 98)) (-2333 (($ $ $) 107)) (-3644 (((-1110) $) NIL)) (-2336 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 15)) (-2337 (((-1019 (-836 (-544))) $) 14)) (-4175 (($ $ (-544)) 45)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-544)))))) (-4206 ((|#1| $ (-544)) 57) (($ $ $) NIL (|has| (-544) (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (-4355 (((-544) $) NIL)) (-3274 (($ $) 46)) (-4353 (((-857) $) NIL) (($ (-544)) 28) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 27 (|has| |#1| (-171)))) (-4084 ((|#1| $ (-544)) 56)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 37)) (-4179 ((|#1| $) NIL)) (-2313 (($ $) 185 (|has| |#1| (-38 (-406 (-544)))))) (-2325 (($ $) 157 (|has| |#1| (-38 (-406 (-544)))))) (-2315 (($ $) 189 (|has| |#1| (-38 (-406 (-544)))))) (-2327 (($ $) 162 (|has| |#1| (-38 (-406 (-544)))))) (-2311 (($ $) 188 (|has| |#1| (-38 (-406 (-544)))))) (-2323 (($ $) 161 (|has| |#1| (-38 (-406 (-544)))))) (-2330 (($ $ (-406 (-544))) 165 (|has| |#1| (-38 (-406 (-544)))))) (-2331 (($ $ |#1|) 145 (|has| |#1| (-38 (-406 (-544)))))) (-2328 (($ $) 191 (|has| |#1| (-38 (-406 (-544)))))) (-2329 (($ $) 148 (|has| |#1| (-38 (-406 (-544)))))) (-2310 (($ $) 190 (|has| |#1| (-38 (-406 (-544)))))) (-2322 (($ $) 163 (|has| |#1| (-38 (-406 (-544)))))) (-2312 (($ $) 186 (|has| |#1| (-38 (-406 (-544)))))) (-2324 (($ $) 159 (|has| |#1| (-38 (-406 (-544)))))) (-2314 (($ $) 187 (|has| |#1| (-38 (-406 (-544)))))) (-2326 (($ $) 160 (|has| |#1| (-38 (-406 (-544)))))) (-2307 (($ $) 196 (|has| |#1| (-38 (-406 (-544)))))) (-2319 (($ $) 172 (|has| |#1| (-38 (-406 (-544)))))) (-2309 (($ $) 193 (|has| |#1| (-38 (-406 (-544)))))) (-2321 (($ $) 167 (|has| |#1| (-38 (-406 (-544)))))) (-2305 (($ $) 200 (|has| |#1| (-38 (-406 (-544)))))) (-2317 (($ $) 176 (|has| |#1| (-38 (-406 (-544)))))) (-2304 (($ $) 202 (|has| |#1| (-38 (-406 (-544)))))) (-2316 (($ $) 178 (|has| |#1| (-38 (-406 (-544)))))) (-2306 (($ $) 198 (|has| |#1| (-38 (-406 (-544)))))) (-2318 (($ $) 174 (|has| |#1| (-38 (-406 (-544)))))) (-2308 (($ $) 195 (|has| |#1| (-38 (-406 (-544)))))) (-2320 (($ $) 170 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4176 ((|#1| $ (-544)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3040 (($) 29 T CONST)) (-3046 (($) 38 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (-3437 (((-112) $ $) 65)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) 84) (($ $ $) 64)) (-4246 (($ $ $) 81)) (** (($ $ (-912)) NIL) (($ $ (-765)) 102)) (* (($ (-912) $) 89) (($ (-765) $) 87) (($ (-544) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-591 |#1|) (-13 (-1232 |#1| (-544)) (-10 -8 (-15 -2338 ($ (-1019 (-836 (-544))) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))))) (-15 -2337 ((-1019 (-836 (-544))) $)) (-15 -2336 ((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $)) (-15 -4225 ($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))))) (-15 -4344 ((-112) $)) (-15 -4222 ($ (-1 |#1| (-544)) $)) (-15 -2335 ((-3 $ "failed") $ $ (-112))) (-15 -2334 ($ $)) (-15 -2333 ($ $ $)) (-15 -2332 ((-857) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) (-1019 (-836 (-544))) (-1166) |#1| (-406 (-544)))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (-15 -2331 ($ $ |#1|)) (-15 -2330 ($ $ (-406 (-544)))) (-15 -2329 ($ $)) (-15 -2328 ($ $)) (-15 -2327 ($ $)) (-15 -2326 ($ $)) (-15 -2325 ($ $)) (-15 -2324 ($ $)) (-15 -2323 ($ $)) (-15 -2322 ($ $)) (-15 -2321 ($ $)) (-15 -2320 ($ $)) (-15 -2319 ($ $)) (-15 -2318 ($ $)) (-15 -2317 ($ $)) (-15 -2316 ($ $)) (-15 -2315 ($ $)) (-15 -2314 ($ $)) (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -2311 ($ $)) (-15 -2310 ($ $)) (-15 -2309 ($ $)) (-15 -2308 ($ $)) (-15 -2307 ($ $)) (-15 -2306 ($ $)) (-15 -2305 ($ $)) (-15 -2304 ($ $))) |%noBranch|))) (-1042)) (T -591)) -((-4344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-2338 (*1 *1 *2 *3) (-12 (-5 *2 (-1019 (-836 (-544)))) (-5 *3 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *4)))) (-4 *4 (-1042)) (-5 *1 (-591 *4)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1019 (-836 (-544)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-4 *3 (-1042)) (-5 *1 (-591 *3)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-544))) (-4 *3 (-1042)) (-5 *1 (-591 *3)))) (-2335 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) (-2334 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))) (-2333 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042)))) (-2332 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *6)))) (-5 *4 (-1019 (-836 (-544)))) (-5 *5 (-1166)) (-5 *7 (-406 (-544))) (-4 *6 (-1042)) (-5 *2 (-857)) (-5 *1 (-591 *6)))) (-4219 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2331 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2330 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-591 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1042)))) (-2329 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2328 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2327 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2326 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2323 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2322 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2321 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2319 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2318 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2317 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2316 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2315 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2314 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2312 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2311 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2310 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2309 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2308 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2307 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) (-2304 (*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(-13 (-1232 |#1| (-544)) (-10 -8 (-15 -2338 ($ (-1019 (-836 (-544))) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))))) (-15 -2337 ((-1019 (-836 (-544))) $)) (-15 -2336 ((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $)) (-15 -4225 ($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))))) (-15 -4344 ((-112) $)) (-15 -4222 ($ (-1 |#1| (-544)) $)) (-15 -2335 ((-3 $ "failed") $ $ (-112))) (-15 -2334 ($ $)) (-15 -2333 ($ $ $)) (-15 -2332 ((-857) (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) (-1019 (-836 (-544))) (-1166) |#1| (-406 (-544)))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (-15 -2331 ($ $ |#1|)) (-15 -2330 ($ $ (-406 (-544)))) (-15 -2329 ($ $)) (-15 -2328 ($ $)) (-15 -2327 ($ $)) (-15 -2326 ($ $)) (-15 -2325 ($ $)) (-15 -2324 ($ $)) (-15 -2323 ($ $)) (-15 -2322 ($ $)) (-15 -2321 ($ $)) (-15 -2320 ($ $)) (-15 -2319 ($ $)) (-15 -2318 ($ $)) (-15 -2317 ($ $)) (-15 -2316 ($ $)) (-15 -2315 ($ $)) (-15 -2314 ($ $)) (-15 -2313 ($ $)) (-15 -2312 ($ $)) (-15 -2311 ($ $)) (-15 -2310 ($ $)) (-15 -2309 ($ $)) (-15 -2308 ($ $)) (-15 -2307 ($ $)) (-15 -2306 ($ $)) (-15 -2305 ($ $)) (-15 -2304 ($ $))) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4225 (($ (-1143 |#1|)) 9)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) 42)) (-3275 (((-112) $) 52)) (-4178 (((-765) $) 55) (((-765) $ (-765)) 54)) (-2545 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ "failed") $ $) 44 (|has| |#1| (-554)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-1143 |#1|) $) 23)) (-3511 (((-765)) 51)) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 10 T CONST)) (-3046 (($) 14 T CONST)) (-3437 (((-112) $ $) 22)) (-4244 (($ $) 30) (($ $ $) 16)) (-4246 (($ $ $) 25)) (** (($ $ (-912)) NIL) (($ $ (-765)) 49)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-544)) 36))) -(((-592 |#1|) (-13 (-1042) (-10 -8 (-15 -4224 ((-1143 |#1|) $)) (-15 -4225 ($ (-1143 |#1|))) (-15 -3275 ((-112) $)) (-15 -4178 ((-765) $)) (-15 -4178 ((-765) $ (-765))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-544))) (IF (|has| |#1| (-554)) (-6 (-554)) |%noBranch|))) (-1042)) (T -592)) -((-4224 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-592 *3)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (-4178 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-592 *3)) (-4 *3 (-1042))))) -(-13 (-1042) (-10 -8 (-15 -4224 ((-1143 |#1|) $)) (-15 -4225 ($ (-1143 |#1|))) (-15 -3275 ((-112) $)) (-15 -4178 ((-765) $)) (-15 -4178 ((-765) $ (-765))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-544))) (IF (|has| |#1| (-554)) (-6 (-554)) |%noBranch|))) -((-4365 (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 15))) -(((-593 |#1| |#2|) (-10 -7 (-15 -4365 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)))) (-1204) (-1204)) (T -593)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-596 *6)) (-5 *1 (-593 *5 *6))))) -(-10 -7 (-15 -4365 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)))) -((-4365 (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1143 |#2|)) 20) (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-596 |#2|)) 19) (((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|)) 18))) -(((-594 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|))) (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-596 |#2|))) (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1143 |#2|)))) (-1204) (-1204) (-1204)) (T -594)) -((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-1143 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8)) (-5 *1 (-594 *6 *7 *8)))) (-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-596 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8)) (-5 *1 (-594 *6 *7 *8)))) (-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-596 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-596 *8)) (-5 *1 (-594 *6 *7 *8))))) -(-10 -7 (-15 -4365 ((-596 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-596 |#2|))) (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-596 |#2|))) (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-596 |#1|) (-1143 |#2|)))) -((-2343 ((|#3| |#3| (-635 (-606 |#3|)) (-635 (-1166))) 55)) (-2342 (((-167 |#2|) |#3|) 117)) (-2339 ((|#3| (-167 |#2|)) 44)) (-2340 ((|#2| |#3|) 19)) (-2341 ((|#3| |#2|) 33))) -(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -2339 (|#3| (-167 |#2|))) (-15 -2340 (|#2| |#3|)) (-15 -2341 (|#3| |#2|)) (-15 -2342 ((-167 |#2|) |#3|)) (-15 -2343 (|#3| |#3| (-635 (-606 |#3|)) (-635 (-1166))))) (-13 (-554) (-844)) (-13 (-420 |#1|) (-995) (-1190)) (-13 (-420 (-167 |#1|)) (-995) (-1190))) (T -595)) -((-2343 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-606 *2))) (-5 *4 (-635 (-1166))) (-4 *2 (-13 (-420 (-167 *5)) (-995) (-1190))) (-4 *5 (-13 (-554) (-844))) (-5 *1 (-595 *5 *6 *2)) (-4 *6 (-13 (-420 *5) (-995) (-1190))))) (-2342 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844))) (-5 *2 (-167 *5)) (-5 *1 (-595 *4 *5 *3)) (-4 *5 (-13 (-420 *4) (-995) (-1190))) (-4 *3 (-13 (-420 (-167 *4)) (-995) (-1190))))) (-2341 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 (-167 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *3 *2)) (-4 *3 (-13 (-420 *4) (-995) (-1190))))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 *4) (-995) (-1190))) (-5 *1 (-595 *4 *2 *3)) (-4 *3 (-13 (-420 (-167 *4)) (-995) (-1190))))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-420 *4) (-995) (-1190))) (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 (-167 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *5 *2))))) -(-10 -7 (-15 -2339 (|#3| (-167 |#2|))) (-15 -2340 (|#2| |#3|)) (-15 -2341 (|#3| |#2|)) (-15 -2342 ((-167 |#2|) |#3|)) (-15 -2343 (|#3| |#3| (-635 (-606 |#3|)) (-635 (-1166))))) -((-4117 (($ (-1 (-112) |#1|) $) 17)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3856 (($ (-1 |#1| |#1|) |#1|) 9)) (-3855 (($ (-1 (-112) |#1|) $) 13)) (-3854 (($ (-1 (-112) |#1|) $) 15)) (-3929 (((-1143 |#1|) $) 18)) (-4353 (((-857) $) NIL))) -(((-596 |#1|) (-13 (-608 (-857)) (-10 -8 (-15 -4365 ($ (-1 |#1| |#1|) $)) (-15 -3855 ($ (-1 (-112) |#1|) $)) (-15 -3854 ($ (-1 (-112) |#1|) $)) (-15 -4117 ($ (-1 (-112) |#1|) $)) (-15 -3856 ($ (-1 |#1| |#1|) |#1|)) (-15 -3929 ((-1143 |#1|) $)))) (-1204)) (T -596)) -((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-3855 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-3854 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-596 *3)) (-4 *3 (-1204))))) -(-13 (-608 (-857)) (-10 -8 (-15 -4365 ($ (-1 |#1| |#1|) $)) (-15 -3855 ($ (-1 (-112) |#1|) $)) (-15 -3854 ($ (-1 (-112) |#1|) $)) (-15 -4117 ($ (-1 (-112) |#1|) $)) (-15 -3856 ($ (-1 |#1| |#1|) |#1|)) (-15 -3929 ((-1143 |#1|) $)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765)) NIL (|has| |#1| (-23)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4239 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-4123 (((-112) $ (-765)) NIL)) (-4240 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4243 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4241 (($ $ $) NIL (|has| |#1| (-1042)))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4246 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-544) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-597 |#1| |#2|) (-1252 |#1|) (-1204) (-544)) (T -597)) -NIL -(-1252 |#1|) -((-2344 (((-1259) $ |#2| |#2|) 36)) (-2346 ((|#2| $) 23)) (-2347 ((|#2| $) 21)) (-2100 (($ (-1 |#3| |#3|) $) 32)) (-4365 (($ (-1 |#3| |#3|) $) 30)) (-4207 ((|#3| $) 26)) (-2345 (($ $ |#3|) 33)) (-2348 (((-112) |#3| $) 17)) (-2351 (((-635 |#3|) $) 15)) (-4206 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-598 |#1| |#2| |#3|) (-10 -8 (-15 -2344 ((-1259) |#1| |#2| |#2|)) (-15 -2345 (|#1| |#1| |#3|)) (-15 -4207 (|#3| |#1|)) (-15 -2346 (|#2| |#1|)) (-15 -2347 (|#2| |#1|)) (-15 -2348 ((-112) |#3| |#1|)) (-15 -2351 ((-635 |#3|) |#1|)) (-15 -4206 (|#3| |#1| |#2|)) (-15 -4206 (|#3| |#1| |#2| |#3|)) (-15 -2100 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4365 (|#1| (-1 |#3| |#3|) |#1|))) (-599 |#2| |#3|) (-1091) (-1204)) (T -598)) -NIL -(-10 -8 (-15 -2344 ((-1259) |#1| |#2| |#2|)) (-15 -2345 (|#1| |#1| |#3|)) (-15 -4207 (|#3| |#1|)) (-15 -2346 (|#2| |#1|)) (-15 -2347 (|#2| |#1|)) (-15 -2348 ((-112) |#3| |#1|)) (-15 -2351 ((-635 |#3|) |#1|)) (-15 -4206 (|#3| |#1| |#2|)) (-15 -4206 (|#3| |#1| |#2| |#3|)) (-15 -2100 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4365 (|#1| (-1 |#3| |#3|) |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#2| (-1091)))) (-2344 (((-1259) $ |#1| |#1|) 40 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-1665 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) 51)) (-2096 (((-635 |#2|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2346 ((|#1| $) 43 (|has| |#1| (-844)))) (-2554 (((-635 |#2|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-2347 ((|#1| $) 44 (|has| |#1| (-844)))) (-2100 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#2| (-1091)))) (-2349 (((-635 |#1|) $) 46)) (-2350 (((-112) |#1| $) 47)) (-3644 (((-1110) $) 21 (|has| |#2| (-1091)))) (-4207 ((|#2| $) 42 (|has| |#1| (-844)))) (-2345 (($ $ |#2|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2097 (((-765) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4400))) (((-765) |#2| $) 28 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#2| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#2| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-599 |#1| |#2|) (-139) (-1091) (-1204)) (T -599)) -((-2351 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-635 *4)))) (-2350 (*1 *2 *3 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-112)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-635 *3)))) (-2348 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-599 *4 *3)) (-4 *4 (-1091)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1204)) (-4 *2 (-1091)) (-4 *2 (-844)))) (-2346 (*1 *2 *1) (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1204)) (-4 *2 (-1091)) (-4 *2 (-844)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-599 *3 *2)) (-4 *3 (-1091)) (-4 *3 (-844)) (-4 *2 (-1204)))) (-2345 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-599 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) (-2344 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-1259))))) -(-13 (-487 |t#2|) (-287 |t#1| |t#2|) (-10 -8 (-15 -2351 ((-635 |t#2|) $)) (-15 -2350 ((-112) |t#1| $)) (-15 -2349 ((-635 |t#1|) $)) (IF (|has| |t#2| (-1091)) (IF (|has| $ (-6 -4400)) (-15 -2348 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-844)) (PROGN (-15 -2347 (|t#1| $)) (-15 -2346 (|t#1| $)) (-15 -4207 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4401)) (PROGN (-15 -2345 ($ $ |t#2|)) (-15 -2344 ((-1259) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1091)) ((-608 (-857)) -3936 (|has| |#2| (-1091)) (|has| |#2| (-608 (-857)))) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-1091) |has| |#2| (-1091)) ((-1204) . T)) -((-4353 (((-857) $) 17) (($ (-128)) 13) (((-128) $) 14))) -(((-600) (-13 (-608 (-857)) (-488 (-128)))) (T -600)) -NIL -(-13 (-608 (-857)) (-488 (-128))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-1171)) NIL) (((-1171) $) NIL) (((-1205) $) 14) (($ (-635 (-1205))) 13)) (-2352 (((-635 (-1205)) $) 10)) (-3437 (((-112) $ $) NIL))) -(((-601) (-13 (-1073) (-608 (-1205)) (-10 -8 (-15 -4353 ($ (-635 (-1205)))) (-15 -2352 ((-635 (-1205)) $))))) (T -601)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-601)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-601))))) -(-13 (-1073) (-608 (-1205)) (-10 -8 (-15 -4353 ($ (-635 (-1205)))) (-15 -2352 ((-635 (-1205)) $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1253 (-682 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1873 (((-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4131 (($) NIL T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1847 (((-3 $ #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1935 (((-682 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1871 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1933 (((-682 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2539 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2050 (((-1160 (-939 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-362))))) (-2542 (($ $ (-912)) NIL)) (-1869 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1849 (((-1160 |#1|) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1937 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1867 (((-1160 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1861 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1939 (($ (-1253 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1253 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3866 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-3494 (((-912)) NIL (|has| |#2| (-366 |#1|)))) (-1858 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2567 (($ $ (-912)) NIL)) (-1854 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1852 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1856 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1848 (((-3 $ #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1936 (((-682 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1872 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1934 (((-682 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2540 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2054 (((-1160 (-939 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-362))))) (-2541 (($ $ (-912)) NIL)) (-1870 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1850 (((-1160 |#1|) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1938 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1868 (((-1160 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1862 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1855 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1857 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3644 (((-1110) $) NIL)) (-1860 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4206 ((|#1| $ (-544)) NIL (|has| |#2| (-417 |#1|)))) (-3625 (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-417 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $) (-1253 $)) NIL (|has| |#2| (-366 |#1|))) (((-1253 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4377 (($ (-1253 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2042 (((-635 (-939 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-635 (-939 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2729 (($ $ $) NIL)) (-1866 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4353 (((-857) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2162 (((-1253 $)) NIL (|has| |#2| (-417 |#1|)))) (-1851 (((-635 (-1253 |#1|))) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2927 (($ (-682 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2728 (($ $ $) NIL)) (-1865 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1863 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1859 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) 24)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-602 |#1| |#2|) (-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4353 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-738 |#1|)) (T -602)) -((-4353 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-602 *3 *2)) (-4 *2 (-738 *3))))) -(-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4353 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-1841 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) 33)) (-4004 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL) (($) NIL)) (-2344 (((-1259) $ (-1148) (-1148)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-1148) |#1|) 43)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#1| #1="failed") (-1148) $) 46)) (-4131 (($) NIL T CONST)) (-1845 (($ $ (-1148)) 24)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-3809 (((-3 |#1| #1#) (-1148) $) 47) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (|has| $ (-6 -4400)))) (-3810 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-4249 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-1842 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) 32)) (-1665 ((|#1| $ (-1148) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-1148)) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-2394 (($ $) 48)) (-1846 (($ (-387)) 22) (($ (-387) (-1148)) 21)) (-3949 (((-387) $) 34)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400))) (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (((-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-2347 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-2789 (((-635 (-1148)) $) 39)) (-2354 (((-112) (-1148) $) NIL)) (-1843 (((-1148) $) 35)) (-1356 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-2349 (((-635 (-1148)) $) NIL)) (-2350 (((-112) (-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 ((|#1| $) NIL (|has| (-1148) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) "failed") (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-635 (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 37)) (-4206 ((|#1| $ (-1148) |#1|) NIL) ((|#1| $ (-1148)) 42)) (-1550 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL) (($) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (((-765) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (((-765) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-4353 (((-857) $) 20)) (-1844 (($ $) 25)) (-1358 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 19)) (-4364 (((-765) $) 41 (|has| $ (-6 -4400))))) -(((-603 |#1|) (-13 (-364 (-387) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) (-1181 (-1148) |#1|) (-10 -8 (-6 -4400) (-15 -2394 ($ $)))) (-1091)) (T -603)) -((-2394 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1091))))) -(-13 (-364 (-387) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) (-1181 (-1148) |#1|) (-10 -8 (-6 -4400) (-15 -2394 ($ $)))) -((-3646 (((-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 15)) (-2789 (((-635 |#2|) $) 19)) (-2354 (((-112) |#2| $) 12))) -(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -2789 ((-635 |#2|) |#1|)) (-15 -2354 ((-112) |#2| |#1|)) (-15 -3646 ((-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|))) (-605 |#2| |#3|) (-1091) (-1091)) (T -604)) -NIL -(-10 -8 (-15 -2789 ((-635 |#2|) |#1|)) (-15 -2354 ((-112) |#2| |#1|)) (-15 -3646 ((-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|))) -((-2947 (((-112) $ $) 19 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 55 (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| "failed") |#1| $) 61)) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 46 (|has| $ (-6 -4400))) (((-3 |#2| "failed") |#1| $) 62)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 54 (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 56 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 53 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-2789 (((-635 |#1|) $) 63)) (-2354 (((-112) |#1| $) 64)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 39)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 40)) (-3644 (((-1110) $) 21 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 51)) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 41)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) 26 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 25 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 24 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 23 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-1550 (($) 49) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 48)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 31 (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 50)) (-4353 (((-857) $) 18 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 42)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-605 |#1| |#2|) (-139) (-1091) (-1091)) (T -605)) -((-2354 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-112)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-635 *3)))) (-3809 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-2353 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091))))) -(-13 (-228 (-2 (|:| -4267 |t#1|) (|:| -2226 |t#2|))) (-10 -8 (-15 -2354 ((-112) |t#1| $)) (-15 -2789 ((-635 |t#1|) $)) (-15 -3809 ((-3 |t#2| "failed") |t#1| $)) (-15 -2353 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((-102) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) ((-608 (-857)) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857)))) ((-150 #1#) . T) ((-609 (-533)) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))) ((-228 #1#) . T) ((-234 #1#) . T) ((-308 #1#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-487 #1#) . T) ((-512 #1# #1#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-1091) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) ((-1204) . T)) -((-2947 (((-112) $ $) NIL)) (-2355 (((-3 (-1166) "failed") $) 37)) (-1392 (((-1259) $ (-765)) 26)) (-3823 (((-765) $) 25)) (-3430 (((-113) $) 12)) (-3949 (((-1166) $) 20)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2356 (($ (-113) (-635 |#1|) (-765)) 30) (($ (-1166)) 31)) (-3013 (((-112) $ (-113)) 18) (((-112) $ (-1166)) 16)) (-2982 (((-765) $) 22)) (-3644 (((-1110) $) NIL)) (-4377 (((-883 (-544)) $) 77 (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) 84 (|has| |#1| (-609 (-883 (-377))))) (((-533) $) 69 (|has| |#1| (-609 (-533))))) (-4353 (((-857) $) 55)) (-2357 (((-635 |#1|) $) 24)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 41)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 42))) -(((-606 |#1|) (-13 (-131) (-877 |#1|) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -3430 ((-113) $)) (-15 -2357 ((-635 |#1|) $)) (-15 -2982 ((-765) $)) (-15 -2356 ($ (-113) (-635 |#1|) (-765))) (-15 -2356 ($ (-1166))) (-15 -2355 ((-3 (-1166) "failed") $)) (-15 -3013 ((-112) $ (-113))) (-15 -3013 ((-112) $ (-1166))) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|))) (-844)) (T -606)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-2357 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-2356 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-635 *5)) (-5 *4 (-765)) (-4 *5 (-844)) (-5 *1 (-606 *5)))) (-2356 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-2355 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-606 *4)) (-4 *4 (-844)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-606 *4)) (-4 *4 (-844))))) -(-13 (-131) (-877 |#1|) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -3430 ((-113) $)) (-15 -2357 ((-635 |#1|) $)) (-15 -2982 ((-765) $)) (-15 -2356 ($ (-113) (-635 |#1|) (-765))) (-15 -2356 ($ (-1166))) (-15 -2355 ((-3 (-1166) "failed") $)) (-15 -3013 ((-112) $ (-113))) (-15 -3013 ((-112) $ (-1166))) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|))) -((-2358 (((-606 |#2|) |#1|) 15)) (-2359 (((-3 |#1| "failed") (-606 |#2|)) 19))) -(((-607 |#1| |#2|) (-10 -7 (-15 -2358 ((-606 |#2|) |#1|)) (-15 -2359 ((-3 |#1| "failed") (-606 |#2|)))) (-844) (-844)) (T -607)) -((-2359 (*1 *2 *3) (|partial| -12 (-5 *3 (-606 *4)) (-4 *4 (-844)) (-4 *2 (-844)) (-5 *1 (-607 *2 *4)))) (-2358 (*1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *1 (-607 *3 *4)) (-4 *3 (-844)) (-4 *4 (-844))))) -(-10 -7 (-15 -2358 ((-606 |#2|) |#1|)) (-15 -2359 ((-3 |#1| "failed") (-606 |#2|)))) -((-4353 ((|#1| $) 6))) -(((-608 |#1|) (-139) (-1204)) (T -608)) -((-4353 (*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1204))))) -(-13 (-10 -8 (-15 -4353 (|t#1| $)))) -((-4377 ((|#1| $) 6))) -(((-609 |#1|) (-139) (-1204)) (T -609)) -((-4377 (*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1204))))) -(-13 (-10 -8 (-15 -4377 (|t#1| $)))) -((-2360 (((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-404 |#2|) |#2|)) 15) (((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 16))) -(((-610 |#1| |#2|) (-10 -7 (-15 -2360 ((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -2360 ((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-404 |#2|) |#2|)))) (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -610)) -((-2360 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-1160 (-406 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-406 *6)))) (-2360 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-1160 (-406 *5))) (-5 *1 (-610 *4 *5)) (-5 *3 (-406 *5))))) -(-10 -7 (-15 -2360 ((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -2360 ((-3 (-1160 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-404 |#2|) |#2|)))) -((-4353 (($ |#1|) 6))) -(((-611 |#1|) (-139) (-1204)) (T -611)) -((-4353 (*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1204))))) -(-13 (-10 -8 (-15 -4353 ($ |t#1|)))) -((-2947 (((-112) $ $) NIL)) (-2362 (($) 8 T CONST)) (-2361 (($) 9 T CONST)) (-3239 (($ $ $) 21)) (-3726 (($ $) 19)) (-3643 (((-1148) $) NIL)) (-3238 (($ $ $) 22)) (-3644 (((-1110) $) NIL)) (-2363 (($) 7 T CONST)) (-3237 (($ $ $) 23)) (-4353 (((-857) $) 27)) (-3973 (((-112) $ (|[\|\|]| -2363)) 16) (((-112) $ (|[\|\|]| -2362)) 18) (((-112) $ (|[\|\|]| -2361)) 14)) (-3240 (($ $ $) 20)) (-3437 (((-112) $ $) 12))) -(((-612) (-13 (-960) (-10 -8 (-15 -2363 ($) -4359) (-15 -2362 ($) -4359) (-15 -2361 ($) -4359) (-15 -3973 ((-112) $ (|[\|\|]| -2363))) (-15 -3973 ((-112) $ (|[\|\|]| -2362))) (-15 -3973 ((-112) $ (|[\|\|]| -2361)))))) (T -612)) -((-2363 (*1 *1) (-5 *1 (-612))) (-2362 (*1 *1) (-5 *1 (-612))) (-2361 (*1 *1) (-5 *1 (-612))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2363)) (-5 *2 (-112)) (-5 *1 (-612)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2362)) (-5 *2 (-112)) (-5 *1 (-612)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2361)) (-5 *2 (-112)) (-5 *1 (-612))))) -(-13 (-960) (-10 -8 (-15 -2363 ($) -4359) (-15 -2362 ($) -4359) (-15 -2361 ($) -4359) (-15 -3973 ((-112) $ (|[\|\|]| -2363))) (-15 -3973 ((-112) $ (|[\|\|]| -2362))) (-15 -3973 ((-112) $ (|[\|\|]| -2361))))) -((-4377 (($ |#1|) 6))) -(((-613 |#1|) (-139) (-1204)) (T -613)) -((-4377 (*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1204))))) -(-13 (-10 -8 (-15 -4377 ($ |t#1|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4030 (((-544) $) NIL (|has| |#1| (-842)))) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-3587 (((-112) $) NIL (|has| |#1| (-842)))) (-2545 (((-112) $) NIL)) (-3381 ((|#1| $) 13)) (-3588 (((-112) $) NIL (|has| |#1| (-842)))) (-2913 (($ $ $) NIL (|has| |#1| (-842)))) (-3242 (($ $ $) NIL (|has| |#1| (-842)))) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3380 ((|#3| $) 15)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL)) (-3511 (((-765)) 20)) (-3787 (($ $) NIL (|has| |#1| (-842)))) (-3040 (($) NIL T CONST)) (-3046 (($) 12 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-842)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-842)))) (-4356 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-614 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (-15 -4356 ($ $ |#3|)) (-15 -4356 ($ |#1| |#3|)) (-15 -3381 (|#1| $)) (-15 -3380 (|#3| $)))) (-38 |#2|) (-171) (|SubsetCategory| (-720) |#2|)) (T -614)) -((-4356 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-614 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-720) *4)))) (-4356 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-614 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-720) *4)))) (-3381 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-614 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-720) *3)))) (-3380 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) (-5 *1 (-614 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (-15 -4356 ($ $ |#3|)) (-15 -4356 ($ |#1| |#3|)) (-15 -3381 (|#1| $)) (-15 -3380 (|#3| $)))) -((-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) 10))) -(((-615 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-616 |#2|) (-1042)) (T -615)) -NIL -(-10 -8 (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 36)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ |#1| $) 37))) -(((-616 |#1|) (-139) (-1042)) (T -616)) -((-4353 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1042))))) -(-13 (-1042) (-641 |t#1|) (-10 -8 (-15 -4353 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2364 ((|#2| |#2| (-1166) (-1166)) 18))) -(((-617 |#1| |#2|) (-10 -7 (-15 -2364 (|#2| |#2| (-1166) (-1166)))) (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-953) (-29 |#1|))) (T -617)) -((-2364 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-617 *4 *2)) (-4 *2 (-13 (-1190) (-953) (-29 *4)))))) -(-10 -7 (-15 -2364 (|#2| |#2| (-1166) (-1166)))) -((-2947 (((-112) $ $) 56)) (-3589 (((-112) $) 52)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2365 ((|#1| $) 49)) (-1391 (((-3 $ "failed") $ $) NIL)) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4158 (((-2 (|:| -1912 $) (|:| -1911 (-406 |#2|))) (-406 |#2|)) 97 (|has| |#1| (-362)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 24)) (-3866 (((-3 $ "failed") $) 75)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4178 (((-544) $) 19)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) 36)) (-3276 (($ |#1| (-544)) 21)) (-3575 ((|#1| $) 51)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) 87 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 101 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ $) 79)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1732 (((-765) $) 100 (|has| |#1| (-362)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 99 (|has| |#1| (-362)))) (-4217 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-4355 (((-544) $) 34)) (-4377 (((-406 |#2|) $) 42)) (-4353 (((-857) $) 62) (($ (-544)) 32) (($ $) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 31) (($ |#2|) 22)) (-4084 ((|#1| $ (-544)) 63)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 29)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 9 T CONST)) (-3046 (($) 12 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3437 (((-112) $ $) 17)) (-4244 (($ $) 46) (($ $ $) NIL)) (-4246 (($ $ $) 76)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 26) (($ $ $) 44))) -(((-618 |#1| |#2|) (-13 (-230 |#2|) (-554) (-609 (-406 |#2|)) (-411 |#1|) (-1031 |#2|) (-10 -8 (-15 -4344 ((-112) $)) (-15 -4355 ((-544) $)) (-15 -4178 ((-544) $)) (-15 -4366 ($ $)) (-15 -3575 (|#1| $)) (-15 -2365 (|#1| $)) (-15 -4084 (|#1| $ (-544))) (-15 -3276 ($ |#1| (-544))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -4158 ((-2 (|:| -1912 $) (|:| -1911 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) (-554) (-1229 |#1|)) (T -618)) -((-4344 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) (-4355 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-544)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) (-4178 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-544)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) (-4366 (*1 *1 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) (-3575 (*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) (-2365 (*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *2 (-554)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-4 *2 (-554)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2)))) (-4158 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-554)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -1912 (-618 *4 *5)) (|:| -1911 (-406 *5)))) (-5 *1 (-618 *4 *5)) (-5 *3 (-406 *5))))) -(-13 (-230 |#2|) (-554) (-609 (-406 |#2|)) (-411 |#1|) (-1031 |#2|) (-10 -8 (-15 -4344 ((-112) $)) (-15 -4355 ((-544) $)) (-15 -4178 ((-544) $)) (-15 -4366 ($ $)) (-15 -3575 (|#1| $)) (-15 -2365 (|#1| $)) (-15 -4084 (|#1| $ (-544))) (-15 -3276 ($ |#1| (-544))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -4158 ((-2 (|:| -1912 $) (|:| -1911 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) -((-4089 (((-635 |#6|) (-635 |#4|) (-112)) 46)) (-2366 ((|#6| |#6|) 39))) -(((-619 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2366 (|#6| |#6|)) (-15 -4089 ((-635 |#6|) (-635 |#4|) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|) (-1099 |#1| |#2| |#3| |#4|)) (T -619)) -((-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 *10)) (-5 *1 (-619 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *10 (-1099 *5 *6 *7 *8)))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-619 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *2 (-1099 *3 *4 *5 *6))))) -(-10 -7 (-15 -2366 (|#6| |#6|)) (-15 -4089 ((-635 |#6|) (-635 |#4|) (-112)))) -((-2367 (((-112) |#3| (-765) (-635 |#3|)) 23)) (-2368 (((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1160 |#3|)))) "failed") |#3| (-635 (-1160 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2812 (-635 (-2 (|:| |irr| |#4|) (|:| -2530 (-544)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|)) 55))) -(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-112) |#3| (-765) (-635 |#3|))) (-15 -2368 ((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1160 |#3|)))) "failed") |#3| (-635 (-1160 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2812 (-635 (-2 (|:| |irr| |#4|) (|:| -2530 (-544)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|)))) (-844) (-787) (-306) (-943 |#3| |#2| |#1|)) (T -620)) -((-2368 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2812 (-635 (-2 (|:| |irr| *10) (|:| -2530 (-544))))))) (-5 *6 (-635 *3)) (-5 *7 (-635 *8)) (-4 *8 (-844)) (-4 *3 (-306)) (-4 *10 (-943 *3 *9 *8)) (-4 *9 (-787)) (-5 *2 (-2 (|:| |polfac| (-635 *10)) (|:| |correct| *3) (|:| |corrfact| (-635 (-1160 *3))))) (-5 *1 (-620 *8 *9 *3 *10)) (-5 *4 (-635 (-1160 *3))))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-765)) (-5 *5 (-635 *3)) (-4 *3 (-306)) (-4 *6 (-844)) (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-620 *6 *7 *3 *8)) (-4 *8 (-943 *3 *7 *6))))) -(-10 -7 (-15 -2367 ((-112) |#3| (-765) (-635 |#3|))) (-15 -2368 ((-3 (-2 (|:| |polfac| (-635 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-635 (-1160 |#3|)))) "failed") |#3| (-635 (-1160 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2812 (-635 (-2 (|:| |irr| |#4|) (|:| -2530 (-544)))))) (-635 |#3|) (-635 |#1|) (-635 |#3|)))) -((-2947 (((-112) $ $) NIL)) (-3927 (((-1125) $) 11)) (-3928 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-621) (-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $))))) (T -621)) -((-3928 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621))))) -(-13 (-1073) (-10 -8 (-15 -3928 ((-1125) $)) (-15 -3927 ((-1125) $)))) -((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-4343 (($ $) 67)) (-4349 (((-657 |#1| |#2|) $) 52)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 70)) (-2369 (((-635 (-292 |#2|)) $ $) 33)) (-3644 (((-1110) $) NIL)) (-4350 (($ (-657 |#1| |#2|)) 48)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 58) (((-1269 |#1| |#2|) $) NIL) (((-1274 |#1| |#2|) $) 66)) (-3046 (($) 53 T CONST)) (-2370 (((-635 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $) 31)) (-2371 (((-635 (-657 |#1| |#2|)) (-635 |#1|)) 65)) (-3045 (((-635 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $) 37)) (-3437 (((-112) $ $) 54)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ $ $) 44))) -(((-622 |#1| |#2| |#3|) (-13 (-471) (-10 -8 (-15 -4350 ($ (-657 |#1| |#2|))) (-15 -4349 ((-657 |#1| |#2|) $)) (-15 -3045 ((-635 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $)) (-15 -4353 ((-1269 |#1| |#2|) $)) (-15 -4353 ((-1274 |#1| |#2|) $)) (-15 -4343 ($ $)) (-15 -4341 ((-635 |#1|) $)) (-15 -2371 ((-635 (-657 |#1| |#2|)) (-635 |#1|))) (-15 -2370 ((-635 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $)) (-15 -2369 ((-635 (-292 |#2|)) $ $)))) (-844) (-13 (-171) (-711 (-406 (-544)))) (-912)) (T -622)) -((-4350 (*1 *1 *2) (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-5 *1 (-622 *3 *4 *5)) (-14 *5 (-912)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-657 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-886 *3)) (|:| |c| *4)))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-622 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-13 (-171) (-711 (-406 (-544))))) (-14 *4 (-912)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-844)) (-5 *2 (-635 (-657 *4 *5))) (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-13 (-171) (-711 (-406 (-544))))) (-14 *6 (-912)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-665 *3)) (|:| |c| *4)))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) (-2369 (*1 *2 *1 *1) (-12 (-5 *2 (-635 (-292 *4))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912))))) -(-13 (-471) (-10 -8 (-15 -4350 ($ (-657 |#1| |#2|))) (-15 -4349 ((-657 |#1| |#2|) $)) (-15 -3045 ((-635 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $)) (-15 -4353 ((-1269 |#1| |#2|) $)) (-15 -4353 ((-1274 |#1| |#2|) $)) (-15 -4343 ($ $)) (-15 -4341 ((-635 |#1|) $)) (-15 -2371 ((-635 (-657 |#1| |#2|)) (-635 |#1|))) (-15 -2370 ((-635 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $)) (-15 -2369 ((-635 (-292 |#2|)) $ $)))) -((-4089 (((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112)) 71) (((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112)) 57)) (-2372 (((-112) (-635 (-774 |#1| (-858 |#2|)))) 23)) (-2376 (((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112)) 70)) (-2375 (((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112)) 56)) (-2374 (((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|)))) 27)) (-2373 (((-3 (-635 (-774 |#1| (-858 |#2|))) "failed") (-635 (-774 |#1| (-858 |#2|)))) 26))) -(((-623 |#1| |#2|) (-10 -7 (-15 -2372 ((-112) (-635 (-774 |#1| (-858 |#2|))))) (-15 -2373 ((-3 (-635 (-774 |#1| (-858 |#2|))) "failed") (-635 (-774 |#1| (-858 |#2|))))) (-15 -2374 ((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))))) (-15 -2375 ((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -2376 ((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -4089 ((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -4089 ((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112)))) (-450) (-635 (-1166))) (T -623)) -((-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) (-5 *1 (-623 *5 *6)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) (-5 *1 (-623 *5 *6)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-635 (-774 *3 (-858 *4)))) (-4 *3 (-450)) (-14 *4 (-635 (-1166))) (-5 *1 (-623 *3 *4)))) (-2373 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-774 *3 (-858 *4)))) (-4 *3 (-450)) (-14 *4 (-635 (-1166))) (-5 *1 (-623 *3 *4)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-635 (-774 *4 (-858 *5)))) (-4 *4 (-450)) (-14 *5 (-635 (-1166))) (-5 *2 (-112)) (-5 *1 (-623 *4 *5))))) -(-10 -7 (-15 -2372 ((-112) (-635 (-774 |#1| (-858 |#2|))))) (-15 -2373 ((-3 (-635 (-774 |#1| (-858 |#2|))) "failed") (-635 (-774 |#1| (-858 |#2|))))) (-15 -2374 ((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))))) (-15 -2375 ((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -2376 ((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -4089 ((-635 (-1039 |#1| |#2|)) (-635 (-774 |#1| (-858 |#2|))) (-112))) (-15 -4089 ((-635 (-1136 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|)))) (-635 (-774 |#1| (-858 |#2|))) (-112)))) -((-3430 (((-113) (-113)) 83)) (-2380 ((|#2| |#2|) 30)) (-3214 ((|#2| |#2| (-1082 |#2|)) 79) ((|#2| |#2| (-1166)) 52)) (-2378 ((|#2| |#2|) 29)) (-2379 ((|#2| |#2|) 31)) (-2377 (((-112) (-113)) 34)) (-2382 ((|#2| |#2|) 26)) (-2383 ((|#2| |#2|) 28)) (-2381 ((|#2| |#2|) 27))) -(((-624 |#1| |#2|) (-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -2383 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -2381 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -3214 (|#2| |#2| (-1166))) (-15 -3214 (|#2| |#2| (-1082 |#2|)))) (-13 (-844) (-554)) (-13 (-420 |#1|) (-995) (-1190))) (T -624)) -((-3214 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-420 *4) (-995) (-1190))) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-624 *4 *2)))) (-3214 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-624 *4 *2)) (-4 *2 (-13 (-420 *4) (-995) (-1190))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2381 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-2383 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) (-4 *2 (-13 (-420 *3) (-995) (-1190))))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *4)) (-4 *4 (-13 (-420 *3) (-995) (-1190))))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-624 *4 *5)) (-4 *5 (-13 (-420 *4) (-995) (-1190)))))) -(-10 -7 (-15 -2377 ((-112) (-113))) (-15 -3430 ((-113) (-113))) (-15 -2383 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -2381 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -3214 (|#2| |#2| (-1166))) (-15 -3214 (|#2| |#2| (-1082 |#2|)))) -((-3891 (($ $) 38)) (-4046 (($ $) 21)) (-3889 (($ $) 37)) (-4045 (($ $) 22)) (-3893 (($ $) 36)) (-4044 (($ $) 23)) (-4034 (($) 48)) (-4349 (($ $) 45)) (-2380 (($ $) 17)) (-3214 (($ $ (-1082 $)) 7) (($ $ (-1166)) 6)) (-4350 (($ $) 46)) (-2378 (($ $) 15)) (-2379 (($ $) 16)) (-3894 (($ $) 35)) (-4043 (($ $) 24)) (-3892 (($ $) 34)) (-4042 (($ $) 25)) (-3890 (($ $) 33)) (-4041 (($ $) 26)) (-3897 (($ $) 44)) (-3885 (($ $) 32)) (-3895 (($ $) 43)) (-3883 (($ $) 31)) (-3899 (($ $) 42)) (-3887 (($ $) 30)) (-3900 (($ $) 41)) (-3888 (($ $) 29)) (-3898 (($ $) 40)) (-3886 (($ $) 28)) (-3896 (($ $) 39)) (-3884 (($ $) 27)) (-2382 (($ $) 19)) (-2383 (($ $) 20)) (-2381 (($ $) 18)) (** (($ $ $) 47))) +((-4150 (((-3 (-639 (-1164 (-562))) "failed") (-639 (-1164 (-562))) (-1164 (-562))) 24))) +(((-570) (-10 -7 (-15 -4150 ((-3 (-639 (-1164 (-562))) "failed") (-639 (-1164 (-562))) (-1164 (-562)))))) (T -570)) +((-4150 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 (-562)))) (-5 *3 (-1164 (-562))) (-5 *1 (-570))))) +(-10 -7 (-15 -4150 ((-3 (-639 (-1164 (-562))) "failed") (-639 (-1164 (-562))) (-1164 (-562))))) +((-1491 (((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-1168)) 19)) (-3972 (((-639 (-608 |#2|)) (-639 |#2|) (-1168)) 23)) (-2494 (((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-639 (-608 |#2|))) 11)) (-4257 ((|#2| |#2| (-1168)) 53 (|has| |#1| (-554)))) (-4015 ((|#2| |#2| (-1168)) 77 (-12 (|has| |#2| (-283)) (|has| |#1| (-451))))) (-2313 (((-608 |#2|) (-608 |#2|) (-639 (-608 |#2|)) (-1168)) 25)) (-2416 (((-608 |#2|) (-639 (-608 |#2|))) 24)) (-1387 (((-583 |#2|) |#2| (-1168) (-1 (-583 |#2|) |#2| (-1168)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168))) 101 (-12 (|has| |#2| (-283)) (|has| |#2| (-625)) (|has| |#2| (-1033 (-1168))) (|has| |#1| (-610 (-887 (-562)))) (|has| |#1| (-451)) (|has| |#1| (-881 (-562))))))) +(((-571 |#1| |#2|) (-10 -7 (-15 -1491 ((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-1168))) (-15 -2416 ((-608 |#2|) (-639 (-608 |#2|)))) (-15 -2313 ((-608 |#2|) (-608 |#2|) (-639 (-608 |#2|)) (-1168))) (-15 -2494 ((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-639 (-608 |#2|)))) (-15 -3972 ((-639 (-608 |#2|)) (-639 |#2|) (-1168))) (IF (|has| |#1| (-554)) (-15 -4257 (|#2| |#2| (-1168))) |%noBranch|) (IF (|has| |#1| (-451)) (IF (|has| |#2| (-283)) (PROGN (-15 -4015 (|#2| |#2| (-1168))) (IF (|has| |#1| (-610 (-887 (-562)))) (IF (|has| |#1| (-881 (-562))) (IF (|has| |#2| (-625)) (IF (|has| |#2| (-1033 (-1168))) (-15 -1387 ((-583 |#2|) |#2| (-1168) (-1 (-583 |#2|) |#2| (-1168)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-845) (-429 |#1|)) (T -571)) +((-1387 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-583 *3) *3 (-1168))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1168))) (-4 *3 (-283)) (-4 *3 (-625)) (-4 *3 (-1033 *4)) (-4 *3 (-429 *7)) (-5 *4 (-1168)) (-4 *7 (-610 (-887 (-562)))) (-4 *7 (-451)) (-4 *7 (-881 (-562))) (-4 *7 (-845)) (-5 *2 (-583 *3)) (-5 *1 (-571 *7 *3)))) (-4015 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-451)) (-4 *4 (-845)) (-5 *1 (-571 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))) (-4257 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-554)) (-4 *4 (-845)) (-5 *1 (-571 *4 *2)) (-4 *2 (-429 *4)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-1168)) (-4 *6 (-429 *5)) (-4 *5 (-845)) (-5 *2 (-639 (-608 *6))) (-5 *1 (-571 *5 *6)))) (-2494 (*1 *2 *2 *2) (-12 (-5 *2 (-639 (-608 *4))) (-4 *4 (-429 *3)) (-4 *3 (-845)) (-5 *1 (-571 *3 *4)))) (-2313 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-639 (-608 *6))) (-5 *4 (-1168)) (-5 *2 (-608 *6)) (-4 *6 (-429 *5)) (-4 *5 (-845)) (-5 *1 (-571 *5 *6)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-639 (-608 *5))) (-4 *4 (-845)) (-5 *2 (-608 *5)) (-5 *1 (-571 *4 *5)) (-4 *5 (-429 *4)))) (-1491 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-608 *5))) (-5 *3 (-1168)) (-4 *5 (-429 *4)) (-4 *4 (-845)) (-5 *1 (-571 *4 *5))))) +(-10 -7 (-15 -1491 ((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-1168))) (-15 -2416 ((-608 |#2|) (-639 (-608 |#2|)))) (-15 -2313 ((-608 |#2|) (-608 |#2|) (-639 (-608 |#2|)) (-1168))) (-15 -2494 ((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-639 (-608 |#2|)))) (-15 -3972 ((-639 (-608 |#2|)) (-639 |#2|) (-1168))) (IF (|has| |#1| (-554)) (-15 -4257 (|#2| |#2| (-1168))) |%noBranch|) (IF (|has| |#1| (-451)) (IF (|has| |#2| (-283)) (PROGN (-15 -4015 (|#2| |#2| (-1168))) (IF (|has| |#1| (-610 (-887 (-562)))) (IF (|has| |#1| (-881 (-562))) (IF (|has| |#2| (-625)) (IF (|has| |#2| (-1033 (-1168))) (-15 -1387 ((-583 |#2|) |#2| (-1168) (-1 (-583 |#2|) |#2| (-1168)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2858 (((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-639 |#1|) "failed") (-562) |#1| |#1|)) 172)) (-2143 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-639 (-406 |#2|))) 148)) (-3278 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-639 (-406 |#2|))) 145)) (-2953 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2589 (((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2465 (((-3 (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|)) 175)) (-1637 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|)) 178)) (-1314 (((-2 (|:| |ir| (-583 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 84)) (-4032 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-3812 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-639 (-406 |#2|))) 152)) (-2771 (((-3 (-619 |#1| |#2|) "failed") (-619 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|)) 137)) (-4213 (((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|)) 162)) (-3338 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-406 |#2|)) 183))) +(((-572 |#1| |#2|) (-10 -7 (-15 -2589 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4213 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|))) (-15 -2858 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-639 |#1|) "failed") (-562) |#1| |#1|))) (-15 -1637 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -3338 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-406 |#2|))) (-15 -2143 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-639 (-406 |#2|)))) (-15 -3812 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-639 (-406 |#2|)))) (-15 -2465 ((-3 (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -3278 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-639 (-406 |#2|)))) (-15 -2953 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2771 ((-3 (-619 |#1| |#2|) "failed") (-619 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|))) (-15 -1314 ((-2 (|:| |ir| (-583 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -4032 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-362) (-1232 |#1|)) (T -572)) +((-4032 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-572 *5 *3)))) (-1314 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |ir| (-583 (-406 *6))) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-572 *5 *6)) (-5 *3 (-406 *6)))) (-2771 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1602 *4) (|:| |sol?| (-112))) (-562) *4)) (-4 *4 (-362)) (-4 *5 (-1232 *4)) (-5 *1 (-572 *4 *5)))) (-2953 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3860 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-362)) (-5 *1 (-572 *4 *2)) (-4 *2 (-1232 *4)))) (-3278 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-639 (-406 *7))) (-4 *7 (-1232 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6 *7)))) (-2465 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -3860 (-406 *6)) (|:| |coeff| (-406 *6)))) (-5 *1 (-572 *5 *6)) (-5 *3 (-406 *6)))) (-3812 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1602 *7) (|:| |sol?| (-112))) (-562) *7)) (-5 *6 (-639 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1232 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-572 *7 *8)))) (-2143 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3860 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-639 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1232 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-572 *7 *8)))) (-3338 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1602 *6) (|:| |sol?| (-112))) (-562) *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -3860 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7)))) (-1637 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3860 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -3860 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7)))) (-2858 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-639 *6) "failed") (-562) *6 *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7)))) (-4213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1602 *6) (|:| |sol?| (-112))) (-562) *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7)))) (-2589 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3860 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) +(-10 -7 (-15 -2589 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4213 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|))) (-15 -2858 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-639 |#1|) "failed") (-562) |#1| |#1|))) (-15 -1637 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -3338 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-406 |#2|))) (-15 -2143 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-639 (-406 |#2|)))) (-15 -3812 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-639 (-406 |#2|)))) (-15 -2465 ((-3 (-2 (|:| -3860 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -3278 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-639 (-406 |#2|)))) (-15 -2953 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2771 ((-3 (-619 |#1| |#2|) "failed") (-619 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1602 |#1|) (|:| |sol?| (-112))) (-562) |#1|))) (-15 -1314 ((-2 (|:| |ir| (-583 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -4032 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2495 (((-3 |#2| "failed") |#2| (-1168) (-1168)) 10))) +(((-573 |#1| |#2|) (-10 -7 (-15 -2495 ((-3 |#2| "failed") |#2| (-1168) (-1168)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-954) (-1131) (-29 |#1|))) (T -573)) +((-2495 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1168)) (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-573 *4 *2)) (-4 *2 (-13 (-1192) (-954) (-1131) (-29 *4)))))) +(-10 -7 (-15 -2495 ((-3 |#2| "failed") |#2| (-1168) (-1168)))) +((-2475 (((-685 (-1214)) $ (-1214)) 26)) (-3202 (((-685 (-547)) $ (-547)) 25)) (-3787 (((-766) $ (-128)) 27)) (-3966 (((-685 (-129)) $ (-129)) 24)) (-3691 (((-685 (-1214)) $) 12)) (-3192 (((-685 (-1213)) $) 8)) (-3661 (((-685 (-1212)) $) 10)) (-1735 (((-685 (-547)) $) 13)) (-1890 (((-685 (-546)) $) 9)) (-2242 (((-685 (-545)) $) 11)) (-1477 (((-766) $ (-128)) 7)) (-1850 (((-685 (-129)) $) 14)) (-3948 (($ $) 6))) +(((-574) (-139)) (T -574)) +NIL +(-13 (-526) (-855)) +(((-172) . T) ((-526) . T) ((-855) . T)) +((-2475 (((-685 (-1214)) $ (-1214)) NIL)) (-3202 (((-685 (-547)) $ (-547)) NIL)) (-3787 (((-766) $ (-128)) NIL)) (-3966 (((-685 (-129)) $ (-129)) NIL)) (-3691 (((-685 (-1214)) $) NIL)) (-3192 (((-685 (-1213)) $) NIL)) (-3661 (((-685 (-1212)) $) NIL)) (-1735 (((-685 (-547)) $) NIL)) (-1890 (((-685 (-546)) $) NIL)) (-2242 (((-685 (-545)) $) NIL)) (-1477 (((-766) $ (-128)) NIL)) (-1850 (((-685 (-129)) $) NIL)) (-2468 (((-112) $) NIL)) (-2747 (($ (-387)) 14) (($ (-1150)) 16)) (-4054 (((-857) $) NIL)) (-3948 (($ $) NIL))) +(((-575) (-13 (-574) (-609 (-857)) (-10 -8 (-15 -2747 ($ (-387))) (-15 -2747 ($ (-1150))) (-15 -2468 ((-112) $))))) (T -575)) +((-2747 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-575)))) (-2747 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-575)))) (-2468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575))))) +(-13 (-574) (-609 (-857)) (-10 -8 (-15 -2747 ($ (-387))) (-15 -2747 ($ (-1150))) (-15 -2468 ((-112) $)))) +((-4041 (((-112) $ $) NIL)) (-3463 (($) 7 T CONST)) (-2913 (((-1150) $) NIL)) (-1541 (($) 6 T CONST)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 14)) (-3921 (($) 8 T CONST)) (-1731 (((-112) $ $) 10))) +(((-576) (-13 (-1092) (-10 -8 (-15 -1541 ($) -1497) (-15 -3463 ($) -1497) (-15 -3921 ($) -1497)))) (T -576)) +((-1541 (*1 *1) (-5 *1 (-576))) (-3463 (*1 *1) (-5 *1 (-576))) (-3921 (*1 *1) (-5 *1 (-576)))) +(-13 (-1092) (-10 -8 (-15 -1541 ($) -1497) (-15 -3463 ($) -1497) (-15 -3921 ($) -1497))) +((-4041 (((-112) $ $) NIL)) (-3217 (((-685 $) (-490)) 16)) (-2913 (((-1150) $) NIL)) (-2151 (($ (-1150)) 9)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 31)) (-2409 (((-212 4 (-129)) $) 19)) (-1731 (((-112) $ $) 22))) +(((-577) (-13 (-1092) (-10 -8 (-15 -2151 ($ (-1150))) (-15 -2409 ((-212 4 (-129)) $)) (-15 -3217 ((-685 $) (-490)))))) (T -577)) +((-2151 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-577)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-577)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *2 (-685 (-577))) (-5 *1 (-577))))) +(-13 (-1092) (-10 -8 (-15 -2151 ($ (-1150))) (-15 -2409 ((-212 4 (-129)) $)) (-15 -3217 ((-685 $) (-490))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $ (-562)) 66)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-4334 (($ (-1164 (-562)) (-562)) 72)) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) 58)) (-2977 (($ $) 34)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-1900 (((-766) $) 15)) (-1957 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3518 (((-562)) 29)) (-2779 (((-562) $) 32)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1353 (($ $ (-562)) 21)) (-1762 (((-3 $ "failed") $ $) 59)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) 16)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 61)) (-3280 (((-1148 (-562)) $) 18)) (-2256 (($ $) 23)) (-4054 (((-857) $) 86) (($ (-562)) 52) (($ $) NIL)) (-2579 (((-766)) 14)) (-2922 (((-112) $ $) NIL)) (-1406 (((-562) $ (-562)) 36)) (-2286 (($) 35 T CONST)) (-2294 (($) 19 T CONST)) (-1731 (((-112) $ $) 39)) (-1848 (($ $) 51) (($ $ $) 37)) (-1835 (($ $ $) 50)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 54) (($ $ $) 55))) +(((-578 |#1| |#2|) (-864 |#1|) (-562) (-112)) (T -578)) +NIL +(-864 |#1|) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 21)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 (($ $ (-916)) NIL (|has| $ (-367))) (($ $) NIL)) (-3984 (((-1180 (-916) (-766)) (-562)) 47)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 $ "failed") $) 75)) (-3961 (($ $) 74)) (-4018 (($ (-1256 $)) 73)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) 32)) (-1448 (($) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) 49)) (-1322 (((-112) $) NIL)) (-3589 (($ $) NIL) (($ $ (-766)) NIL)) (-2717 (((-112) $) NIL)) (-1900 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-1957 (((-112) $) NIL)) (-1846 (($) 37 (|has| $ (-367)))) (-1316 (((-112) $) NIL (|has| $ (-367)))) (-2247 (($ $ (-916)) NIL (|has| $ (-367))) (($ $) NIL)) (-3699 (((-3 $ "failed") $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 $) $ (-916)) NIL (|has| $ (-367))) (((-1164 $) $) 83)) (-1999 (((-916) $) 55)) (-3892 (((-1164 $) $) NIL (|has| $ (-367)))) (-4203 (((-3 (-1164 $) "failed") $ $) NIL (|has| $ (-367))) (((-1164 $) $) NIL (|has| $ (-367)))) (-2393 (($ $ (-1164 $)) NIL (|has| $ (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL T CONST)) (-2466 (($ (-916)) 48)) (-3113 (((-112) $) 67)) (-1709 (((-1112) $) NIL)) (-3148 (($) 19 (|has| $ (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) 42)) (-1635 (((-417 $) $) NIL)) (-4121 (((-916)) 66) (((-828 (-916))) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-3 (-766) "failed") $ $) NIL) (((-766) $) NIL)) (-3627 (((-133)) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-3598 (((-916) $) 65) (((-828 (-916)) $) NIL)) (-2096 (((-1164 $)) 82)) (-2283 (($) 54)) (-2624 (($) 38 (|has| $ (-367)))) (-3593 (((-683 $) (-1256 $)) NIL) (((-1256 $) $) 71)) (-4208 (((-562) $) 28)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) 30) (($ $) NIL) (($ (-406 (-562))) NIL)) (-2805 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2579 (((-766)) 39)) (-3928 (((-1256 $) (-916)) 77) (((-1256 $)) 76)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) 22 T CONST)) (-2294 (($) 18 T CONST)) (-4374 (($ $ (-766)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 26)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 61) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) +(((-579 |#1|) (-13 (-348) (-328 $) (-610 (-562))) (-916)) (T -579)) +NIL +(-13 (-348) (-328 $) (-610 (-562))) +((-1538 (((-1261) (-1150)) 10))) +(((-580) (-10 -7 (-15 -1538 ((-1261) (-1150))))) (T -580)) +((-1538 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-580))))) +(-10 -7 (-15 -1538 ((-1261) (-1150)))) +((-2176 (((-583 |#2|) (-583 |#2|)) 39)) (-3525 (((-639 |#2|) (-583 |#2|)) 41)) (-2733 ((|#2| (-583 |#2|)) 47))) +(((-581 |#1| |#2|) (-10 -7 (-15 -2176 ((-583 |#2|) (-583 |#2|))) (-15 -3525 ((-639 |#2|) (-583 |#2|))) (-15 -2733 (|#2| (-583 |#2|)))) (-13 (-451) (-1033 (-562)) (-845) (-635 (-562))) (-13 (-29 |#1|) (-1192))) (T -581)) +((-2733 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-29 *4) (-1192))) (-5 *1 (-581 *4 *2)) (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-13 (-29 *4) (-1192))) (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-639 *5)) (-5 *1 (-581 *4 *5)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-13 (-29 *3) (-1192))) (-4 *3 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *1 (-581 *3 *4))))) +(-10 -7 (-15 -2176 ((-583 |#2|) (-583 |#2|))) (-15 -3525 ((-639 |#2|) (-583 |#2|))) (-15 -2733 (|#2| (-583 |#2|)))) +((-4152 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 30))) +(((-582 |#1| |#2|) (-10 -7 (-15 -4152 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))) (-15 -4152 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4152 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4152 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-362) (-362)) (T -582)) +((-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-582 *5 *6)))) (-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-582 *5 *2)))) (-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3860 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| -3860 *6) (|:| |coeff| *6))) (-5 *1 (-582 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-583 *6)) (-5 *1 (-582 *5 *6))))) +(-10 -7 (-15 -4152 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))) (-15 -4152 ((-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3860 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4152 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4152 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 69)) (-3961 ((|#1| $) NIL)) (-3860 ((|#1| $) 26)) (-2644 (((-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2381 (($ |#1| (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) (-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3288 (((-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) $) 27)) (-2913 (((-1150) $) NIL)) (-1982 (($ |#1| |#1|) 33) (($ |#1| (-1168)) 44 (|has| |#1| (-1033 (-1168))))) (-1709 (((-1112) $) NIL)) (-3039 (((-112) $) 30)) (-4029 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1168)) 82 (|has| |#1| (-895 (-1168))))) (-4054 (((-857) $) 96) (($ |#1|) 25)) (-2286 (($) 16 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) 15) (($ $ $) NIL)) (-1835 (($ $ $) 78)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 14) (($ (-406 (-562)) $) 36) (($ $ (-406 (-562))) NIL))) +(((-583 |#1|) (-13 (-712 (-406 (-562))) (-1033 |#1|) (-10 -8 (-15 -2381 ($ |#1| (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) (-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3860 (|#1| $)) (-15 -3288 ((-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) $)) (-15 -2644 ((-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3039 ((-112) $)) (-15 -1982 ($ |#1| |#1|)) (-15 -4029 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-895 (-1168))) (-15 -4029 (|#1| $ (-1168))) |%noBranch|) (IF (|has| |#1| (-1033 (-1168))) (-15 -1982 ($ |#1| (-1168))) |%noBranch|))) (-362)) (T -583)) +((-2381 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 *2)) (|:| |logand| (-1164 *2))))) (-5 *4 (-639 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362)) (-5 *1 (-583 *2)))) (-3860 (*1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-362)))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 *3)) (|:| |logand| (-1164 *3))))) (-5 *1 (-583 *3)) (-4 *3 (-362)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-583 *3)) (-4 *3 (-362)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-362)))) (-1982 (*1 *1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-362)))) (-4029 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-583 *2)) (-4 *2 (-362)))) (-4029 (*1 *2 *1 *3) (-12 (-4 *2 (-362)) (-4 *2 (-895 *3)) (-5 *1 (-583 *2)) (-5 *3 (-1168)))) (-1982 (*1 *1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *1 (-583 *2)) (-4 *2 (-1033 *3)) (-4 *2 (-362))))) +(-13 (-712 (-406 (-562))) (-1033 |#1|) (-10 -8 (-15 -2381 ($ |#1| (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) (-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3860 (|#1| $)) (-15 -3288 ((-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) $)) (-15 -2644 ((-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3039 ((-112) $)) (-15 -1982 ($ |#1| |#1|)) (-15 -4029 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-895 (-1168))) (-15 -4029 (|#1| $ (-1168))) |%noBranch|) (IF (|has| |#1| (-1033 (-1168))) (-15 -1982 ($ |#1| (-1168))) |%noBranch|))) +((-1746 (((-112) |#1|) 16)) (-2868 (((-3 |#1| "failed") |#1|) 14)) (-3605 (((-2 (|:| -3241 |#1|) (|:| -1960 (-766))) |#1|) 30) (((-3 |#1| "failed") |#1| (-766)) 18)) (-2130 (((-112) |#1| (-766)) 19)) (-1301 ((|#1| |#1|) 31)) (-3286 ((|#1| |#1| (-766)) 33))) +(((-584 |#1|) (-10 -7 (-15 -2130 ((-112) |#1| (-766))) (-15 -3605 ((-3 |#1| "failed") |#1| (-766))) (-15 -3605 ((-2 (|:| -3241 |#1|) (|:| -1960 (-766))) |#1|)) (-15 -3286 (|#1| |#1| (-766))) (-15 -1746 ((-112) |#1|)) (-15 -2868 ((-3 |#1| "failed") |#1|)) (-15 -1301 (|#1| |#1|))) (-544)) (T -584)) +((-1301 (*1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-544)))) (-2868 (*1 *2 *2) (|partial| -12 (-5 *1 (-584 *2)) (-4 *2 (-544)))) (-1746 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-544)))) (-3286 (*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-584 *2)) (-4 *2 (-544)))) (-3605 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3241 *3) (|:| -1960 (-766)))) (-5 *1 (-584 *3)) (-4 *3 (-544)))) (-3605 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-766)) (-5 *1 (-584 *2)) (-4 *2 (-544)))) (-2130 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-544))))) +(-10 -7 (-15 -2130 ((-112) |#1| (-766))) (-15 -3605 ((-3 |#1| "failed") |#1| (-766))) (-15 -3605 ((-2 (|:| -3241 |#1|) (|:| -1960 (-766))) |#1|)) (-15 -3286 (|#1| |#1| (-766))) (-15 -1746 ((-112) |#1|)) (-15 -2868 ((-3 |#1| "failed") |#1|)) (-15 -1301 (|#1| |#1|))) +((-2948 (((-1164 |#1|) (-916)) 26))) +(((-585 |#1|) (-10 -7 (-15 -2948 ((-1164 |#1|) (-916)))) (-348)) (T -585)) +((-2948 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-585 *4)) (-4 *4 (-348))))) +(-10 -7 (-15 -2948 ((-1164 |#1|) (-916)))) +((-2176 (((-583 (-406 (-947 |#1|))) (-583 (-406 (-947 |#1|)))) 27)) (-2667 (((-3 (-315 |#1|) (-639 (-315 |#1|))) (-406 (-947 |#1|)) (-1168)) 34 (|has| |#1| (-146)))) (-3525 (((-639 (-315 |#1|)) (-583 (-406 (-947 |#1|)))) 19)) (-1317 (((-315 |#1|) (-406 (-947 |#1|)) (-1168)) 32 (|has| |#1| (-146)))) (-2733 (((-315 |#1|) (-583 (-406 (-947 |#1|)))) 21))) +(((-586 |#1|) (-10 -7 (-15 -2176 ((-583 (-406 (-947 |#1|))) (-583 (-406 (-947 |#1|))))) (-15 -3525 ((-639 (-315 |#1|)) (-583 (-406 (-947 |#1|))))) (-15 -2733 ((-315 |#1|) (-583 (-406 (-947 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -2667 ((-3 (-315 |#1|) (-639 (-315 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -1317 ((-315 |#1|) (-406 (-947 |#1|)) (-1168)))) |%noBranch|)) (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (T -586)) +((-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-146)) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-315 *5)) (-5 *1 (-586 *5)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-146)) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-3 (-315 *5) (-639 (-315 *5)))) (-5 *1 (-586 *5)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-583 (-406 (-947 *4)))) (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-315 *4)) (-5 *1 (-586 *4)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-583 (-406 (-947 *4)))) (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-639 (-315 *4))) (-5 *1 (-586 *4)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-583 (-406 (-947 *3)))) (-4 *3 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *1 (-586 *3))))) +(-10 -7 (-15 -2176 ((-583 (-406 (-947 |#1|))) (-583 (-406 (-947 |#1|))))) (-15 -3525 ((-639 (-315 |#1|)) (-583 (-406 (-947 |#1|))))) (-15 -2733 ((-315 |#1|) (-583 (-406 (-947 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -2667 ((-3 (-315 |#1|) (-639 (-315 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -1317 ((-315 |#1|) (-406 (-947 |#1|)) (-1168)))) |%noBranch|)) +((-3857 (((-639 (-683 (-562))) (-639 (-562)) (-639 (-900 (-562)))) 45) (((-639 (-683 (-562))) (-639 (-562))) 46) (((-683 (-562)) (-639 (-562)) (-900 (-562))) 41)) (-4205 (((-766) (-639 (-562))) 39))) +(((-587) (-10 -7 (-15 -4205 ((-766) (-639 (-562)))) (-15 -3857 ((-683 (-562)) (-639 (-562)) (-900 (-562)))) (-15 -3857 ((-639 (-683 (-562))) (-639 (-562)))) (-15 -3857 ((-639 (-683 (-562))) (-639 (-562)) (-639 (-900 (-562))))))) (T -587)) +((-3857 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-562))) (-5 *4 (-639 (-900 (-562)))) (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-587)))) (-3857 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-587)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-562))) (-5 *4 (-900 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-587)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-766)) (-5 *1 (-587))))) +(-10 -7 (-15 -4205 ((-766) (-639 (-562)))) (-15 -3857 ((-683 (-562)) (-639 (-562)) (-900 (-562)))) (-15 -3857 ((-639 (-683 (-562))) (-639 (-562)))) (-15 -3857 ((-639 (-683 (-562))) (-639 (-562)) (-639 (-900 (-562)))))) +((-2707 (((-639 |#5|) |#5| (-112)) 72)) (-3420 (((-112) |#5| (-639 |#5|)) 30))) +(((-588 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2707 ((-639 |#5|) |#5| (-112))) (-15 -3420 ((-112) |#5| (-639 |#5|)))) (-13 (-306) (-146)) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -588)) +((-3420 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-588 *5 *6 *7 *8 *3)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-639 *3)) (-5 *1 (-588 *5 *6 *7 *8 *3)) (-4 *3 (-1101 *5 *6 *7 *8))))) +(-10 -7 (-15 -2707 ((-639 |#5|) |#5| (-112))) (-15 -3420 ((-112) |#5| (-639 |#5|)))) +((-4041 (((-112) $ $) NIL)) (-4328 (((-1127) $) 11)) (-4316 (((-1127) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-589) (-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1127) $))))) (T -589)) +((-4316 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-589)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-589))))) +(-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1127) $)))) +((-4041 (((-112) $ $) NIL (|has| (-143) (-1092)))) (-2744 (($ $) 34)) (-1576 (($ $) NIL)) (-3398 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-3824 (((-112) $ $) 51)) (-3801 (((-112) $ $ (-562)) 46)) (-2176 (((-639 $) $ (-143)) 59) (((-639 $) $ (-140)) 60)) (-1399 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-845)))) (-3381 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-845))))) (-1395 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 (((-143) $ (-562) (-143)) 45 (|has| $ (-6 -4403))) (((-143) $ (-1223 (-562)) (-143)) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-1968 (($ $ (-143)) 63) (($ $ (-140)) 64)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-3944 (($ $ (-1223 (-562)) $) 44)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-1475 (($ (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4402))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1505 (((-143) $ (-562) (-143)) NIL (|has| $ (-6 -4403)))) (-1420 (((-143) $ (-562)) NIL)) (-3847 (((-112) $ $) 71)) (-4264 (((-562) (-1 (-112) (-143)) $) NIL) (((-562) (-143) $) NIL (|has| (-143) (-1092))) (((-562) (-143) $ (-562)) 48 (|has| (-143) (-1092))) (((-562) $ $ (-562)) 47) (((-562) (-140) $ (-562)) 50)) (-1720 (((-639 (-143)) $) NIL (|has| $ (-6 -4402)))) (-1458 (($ (-766) (-143)) 9)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) 28 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| (-143) (-845)))) (-1610 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-845)))) (-1912 (((-639 (-143)) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-3874 (((-562) $) 42 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-143) (-845)))) (-4263 (((-112) $ $ (-143)) 72)) (-3789 (((-766) $ $ (-143)) 69)) (-1490 (($ (-1 (-143) (-143)) $) 33 (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-1614 (($ $) 37)) (-3141 (($ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-1980 (($ $ (-143)) 61) (($ $ (-140)) 62)) (-2913 (((-1150) $) 38 (|has| (-143) (-1092)))) (-3297 (($ (-143) $ (-562)) NIL) (($ $ $ (-562)) 23)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-562) $) 68) (((-1112) $) NIL (|has| (-143) (-1092)))) (-1421 (((-143) $) NIL (|has| (-562) (-845)))) (-3251 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2716 (($ $ (-143)) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-143)) (-639 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-2411 (((-639 (-143)) $) NIL)) (-2974 (((-112) $) 12)) (-4307 (($) 10)) (-2343 (((-143) $ (-562) (-143)) NIL) (((-143) $ (-562)) 52) (($ $ (-1223 (-562))) 21) (($ $ $) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402))) (((-766) (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-1853 (($ $ $ (-562)) 65 (|has| $ (-6 -4403)))) (-4220 (($ $) 17)) (-4208 (((-535) $) NIL (|has| (-143) (-610 (-535))))) (-4066 (($ (-639 (-143))) NIL)) (-2767 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) 16) (($ (-639 $)) 66)) (-4054 (($ (-143)) NIL) (((-857) $) 27 (|has| (-143) (-609 (-857))))) (-1744 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1731 (((-112) $ $) 14 (|has| (-143) (-1092)))) (-1785 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1759 (((-112) $ $) 15 (|has| (-143) (-845)))) (-3492 (((-766) $) 13 (|has| $ (-6 -4402))))) +(((-590 |#1|) (-13 (-1136) (-10 -8 (-15 -1709 ((-562) $)))) (-562)) (T -590)) +((-1709 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-590 *3)) (-14 *3 *2)))) +(-13 (-1136) (-10 -8 (-15 -1709 ((-562) $)))) +((-1625 (((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2| (-1086 |#4|)) 32))) +(((-591 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2| (-1086 |#4|))) (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2|))) (-788) (-845) (-554) (-944 |#3| |#1| |#2|)) (T -591)) +((-1625 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-562)))) (-5 *1 (-591 *5 *4 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) (-1625 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1086 *3)) (-4 *3 (-944 *7 *6 *4)) (-4 *6 (-788)) (-4 *4 (-845)) (-4 *7 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-562)))) (-5 *1 (-591 *6 *4 *7 *3))))) +(-10 -7 (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2| (-1086 |#4|))) (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 63)) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2557 (($ $ (-562)) 54) (($ $ (-562) (-562)) 55)) (-1938 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 60)) (-3412 (($ $) 99)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3008 (((-857) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) (-1021 (-838 (-562))) (-1168) |#1| (-406 (-562))) 223)) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 34)) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1756 (((-112) $) NIL)) (-1900 (((-562) $) 58) (((-562) $ (-562)) 59)) (-1957 (((-112) $) NIL)) (-3374 (($ $ (-916)) 76)) (-4222 (($ (-1 |#1| (-562)) $) 73)) (-3536 (((-112) $) 25)) (-1378 (($ |#1| (-562)) 22) (($ $ (-1074) (-562)) NIL) (($ $ (-639 (-1074)) (-639 (-562))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 67)) (-3245 (($ (-1021 (-838 (-562))) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 13)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-2667 (($ $) 149 (|has| |#1| (-38 (-406 (-562)))))) (-2002 (((-3 $ "failed") $ $ (-112)) 98)) (-3758 (($ $ $) 107)) (-1709 (((-1112) $) NIL)) (-1388 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 15)) (-2975 (((-1021 (-838 (-562))) $) 14)) (-1353 (($ $ (-562)) 45)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-562)))))) (-2343 ((|#1| $ (-562)) 57) (($ $ $) NIL (|has| (-562) (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-562) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (-3598 (((-562) $) NIL)) (-2256 (($ $) 46)) (-4054 (((-857) $) NIL) (($ (-562)) 28) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 27 (|has| |#1| (-171)))) (-3906 ((|#1| $ (-562)) 56)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) 37)) (-2328 ((|#1| $) NIL)) (-2284 (($ $) 185 (|has| |#1| (-38 (-406 (-562)))))) (-1295 (($ $) 157 (|has| |#1| (-38 (-406 (-562)))))) (-2815 (($ $) 189 (|has| |#1| (-38 (-406 (-562)))))) (-3551 (($ $) 162 (|has| |#1| (-38 (-406 (-562)))))) (-3910 (($ $) 188 (|has| |#1| (-38 (-406 (-562)))))) (-2790 (($ $) 161 (|has| |#1| (-38 (-406 (-562)))))) (-3575 (($ $ (-406 (-562))) 165 (|has| |#1| (-38 (-406 (-562)))))) (-3421 (($ $ |#1|) 145 (|has| |#1| (-38 (-406 (-562)))))) (-3314 (($ $) 191 (|has| |#1| (-38 (-406 (-562)))))) (-2003 (($ $) 148 (|has| |#1| (-38 (-406 (-562)))))) (-4237 (($ $) 190 (|has| |#1| (-38 (-406 (-562)))))) (-4201 (($ $) 163 (|has| |#1| (-38 (-406 (-562)))))) (-2512 (($ $) 186 (|has| |#1| (-38 (-406 (-562)))))) (-2657 (($ $) 159 (|has| |#1| (-38 (-406 (-562)))))) (-4043 (($ $) 187 (|has| |#1| (-38 (-406 (-562)))))) (-2030 (($ $) 160 (|has| |#1| (-38 (-406 (-562)))))) (-3938 (($ $) 196 (|has| |#1| (-38 (-406 (-562)))))) (-1667 (($ $) 172 (|has| |#1| (-38 (-406 (-562)))))) (-2674 (($ $) 193 (|has| |#1| (-38 (-406 (-562)))))) (-1411 (($ $) 167 (|has| |#1| (-38 (-406 (-562)))))) (-2690 (($ $) 200 (|has| |#1| (-38 (-406 (-562)))))) (-3435 (($ $) 176 (|has| |#1| (-38 (-406 (-562)))))) (-2990 (($ $) 202 (|has| |#1| (-38 (-406 (-562)))))) (-1591 (($ $) 178 (|has| |#1| (-38 (-406 (-562)))))) (-4260 (($ $) 198 (|has| |#1| (-38 (-406 (-562)))))) (-2001 (($ $) 174 (|has| |#1| (-38 (-406 (-562)))))) (-2997 (($ $) 195 (|has| |#1| (-38 (-406 (-562)))))) (-1909 (($ $) 170 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-1406 ((|#1| $ (-562)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-2286 (($) 29 T CONST)) (-2294 (($) 38 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-562) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (-1731 (((-112) $ $) 65)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) 84) (($ $ $) 64)) (-1835 (($ $ $) 81)) (** (($ $ (-916)) NIL) (($ $ (-766)) 102)) (* (($ (-916) $) 89) (($ (-766) $) 87) (($ (-562) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-592 |#1|) (-13 (-1234 |#1| (-562)) (-10 -8 (-15 -3245 ($ (-1021 (-838 (-562))) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))))) (-15 -2975 ((-1021 (-838 (-562))) $)) (-15 -1388 ((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $)) (-15 -1503 ($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))))) (-15 -3536 ((-112) $)) (-15 -4222 ($ (-1 |#1| (-562)) $)) (-15 -2002 ((-3 $ "failed") $ $ (-112))) (-15 -3412 ($ $)) (-15 -3758 ($ $ $)) (-15 -3008 ((-857) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) (-1021 (-838 (-562))) (-1168) |#1| (-406 (-562)))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $)) (-15 -3421 ($ $ |#1|)) (-15 -3575 ($ $ (-406 (-562)))) (-15 -2003 ($ $)) (-15 -3314 ($ $)) (-15 -3551 ($ $)) (-15 -2030 ($ $)) (-15 -1295 ($ $)) (-15 -2657 ($ $)) (-15 -2790 ($ $)) (-15 -4201 ($ $)) (-15 -1411 ($ $)) (-15 -1909 ($ $)) (-15 -1667 ($ $)) (-15 -2001 ($ $)) (-15 -3435 ($ $)) (-15 -1591 ($ $)) (-15 -2815 ($ $)) (-15 -4043 ($ $)) (-15 -2284 ($ $)) (-15 -2512 ($ $)) (-15 -3910 ($ $)) (-15 -4237 ($ $)) (-15 -2674 ($ $)) (-15 -2997 ($ $)) (-15 -3938 ($ $)) (-15 -4260 ($ $)) (-15 -2690 ($ $)) (-15 -2990 ($ $))) |%noBranch|))) (-1044)) (T -592)) +((-3536 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) (-3245 (*1 *1 *2 *3) (-12 (-5 *2 (-1021 (-838 (-562)))) (-5 *3 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *4)))) (-4 *4 (-1044)) (-5 *1 (-592 *4)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-1021 (-838 (-562)))) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) (-4 *3 (-1044)) (-5 *1 (-592 *3)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-562))) (-4 *3 (-1044)) (-5 *1 (-592 *3)))) (-2002 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1044)))) (-3758 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1044)))) (-3008 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *6)))) (-5 *4 (-1021 (-838 (-562)))) (-5 *5 (-1168)) (-5 *7 (-406 (-562))) (-4 *6 (-1044)) (-5 *2 (-857)) (-5 *1 (-592 *6)))) (-2667 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3575 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-592 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1044)))) (-2003 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3314 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3551 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2030 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1295 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2657 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2790 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-4201 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1411 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1909 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1667 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2001 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2815 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-4043 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2512 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-4237 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2674 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2997 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-4260 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2690 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2990 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(-13 (-1234 |#1| (-562)) (-10 -8 (-15 -3245 ($ (-1021 (-838 (-562))) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))))) (-15 -2975 ((-1021 (-838 (-562))) $)) (-15 -1388 ((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $)) (-15 -1503 ($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))))) (-15 -3536 ((-112) $)) (-15 -4222 ($ (-1 |#1| (-562)) $)) (-15 -2002 ((-3 $ "failed") $ $ (-112))) (-15 -3412 ($ $)) (-15 -3758 ($ $ $)) (-15 -3008 ((-857) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) (-1021 (-838 (-562))) (-1168) |#1| (-406 (-562)))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $)) (-15 -3421 ($ $ |#1|)) (-15 -3575 ($ $ (-406 (-562)))) (-15 -2003 ($ $)) (-15 -3314 ($ $)) (-15 -3551 ($ $)) (-15 -2030 ($ $)) (-15 -1295 ($ $)) (-15 -2657 ($ $)) (-15 -2790 ($ $)) (-15 -4201 ($ $)) (-15 -1411 ($ $)) (-15 -1909 ($ $)) (-15 -1667 ($ $)) (-15 -2001 ($ $)) (-15 -3435 ($ $)) (-15 -1591 ($ $)) (-15 -2815 ($ $)) (-15 -4043 ($ $)) (-15 -2284 ($ $)) (-15 -2512 ($ $)) (-15 -3910 ($ $)) (-15 -4237 ($ $)) (-15 -2674 ($ $)) (-15 -2997 ($ $)) (-15 -3938 ($ $)) (-15 -4260 ($ $)) (-15 -2690 ($ $)) (-15 -2990 ($ $))) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1503 (($ (-1148 |#1|)) 9)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) 42)) (-1756 (((-112) $) 52)) (-1900 (((-766) $) 55) (((-766) $ (-766)) 54)) (-1957 (((-112) $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ $) 44 (|has| |#1| (-554)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL (|has| |#1| (-554)))) (-4358 (((-1148 |#1|) $) 23)) (-2579 (((-766)) 51)) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) 10 T CONST)) (-2294 (($) 14 T CONST)) (-1731 (((-112) $ $) 22)) (-1848 (($ $) 30) (($ $ $) 16)) (-1835 (($ $ $) 25)) (** (($ $ (-916)) NIL) (($ $ (-766)) 49)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-562)) 36))) +(((-593 |#1|) (-13 (-1044) (-10 -8 (-15 -4358 ((-1148 |#1|) $)) (-15 -1503 ($ (-1148 |#1|))) (-15 -1756 ((-112) $)) (-15 -1900 ((-766) $)) (-15 -1900 ((-766) $ (-766))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-562))) (IF (|has| |#1| (-554)) (-6 (-554)) |%noBranch|))) (-1044)) (T -593)) +((-4358 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-593 *3)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) (-1900 (*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1044)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1044)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-593 *3)) (-4 *3 (-1044))))) +(-13 (-1044) (-10 -8 (-15 -4358 ((-1148 |#1|) $)) (-15 -1503 ($ (-1148 |#1|))) (-15 -1756 ((-112) $)) (-15 -1900 ((-766) $)) (-15 -1900 ((-766) $ (-766))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-562))) (IF (|has| |#1| (-554)) (-6 (-554)) |%noBranch|))) +((-4152 (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 15))) +(((-594 |#1| |#2|) (-10 -7 (-15 -4152 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)))) (-1207) (-1207)) (T -594)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-597 *6)) (-5 *1 (-594 *5 *6))))) +(-10 -7 (-15 -4152 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)))) +((-4152 (((-1148 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-1148 |#2|)) 20) (((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-597 |#2|)) 19) (((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|)) 18))) +(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|))) (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-597 |#2|))) (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-1148 |#2|)))) (-1207) (-1207) (-1207)) (T -595)) +((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-1148 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) (-5 *1 (-595 *6 *7 *8)))) (-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1148 *6)) (-5 *5 (-597 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) (-5 *1 (-595 *6 *7 *8)))) (-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-597 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-597 *8)) (-5 *1 (-595 *6 *7 *8))))) +(-10 -7 (-15 -4152 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|))) (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-597 |#2|))) (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-1148 |#2|)))) +((-3996 ((|#3| |#3| (-639 (-608 |#3|)) (-639 (-1168))) 55)) (-4297 (((-168 |#2|) |#3|) 117)) (-3550 ((|#3| (-168 |#2|)) 44)) (-3204 ((|#2| |#3|) 19)) (-1753 ((|#3| |#2|) 33))) +(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3550 (|#3| (-168 |#2|))) (-15 -3204 (|#2| |#3|)) (-15 -1753 (|#3| |#2|)) (-15 -4297 ((-168 |#2|) |#3|)) (-15 -3996 (|#3| |#3| (-639 (-608 |#3|)) (-639 (-1168))))) (-13 (-554) (-845)) (-13 (-429 |#1|) (-997) (-1192)) (-13 (-429 (-168 |#1|)) (-997) (-1192))) (T -596)) +((-3996 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-639 (-608 *2))) (-5 *4 (-639 (-1168))) (-4 *2 (-13 (-429 (-168 *5)) (-997) (-1192))) (-4 *5 (-13 (-554) (-845))) (-5 *1 (-596 *5 *6 *2)) (-4 *6 (-13 (-429 *5) (-997) (-1192))))) (-4297 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845))) (-5 *2 (-168 *5)) (-5 *1 (-596 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-997) (-1192))) (-4 *3 (-13 (-429 (-168 *4)) (-997) (-1192))))) (-1753 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845))) (-4 *2 (-13 (-429 (-168 *4)) (-997) (-1192))) (-5 *1 (-596 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-997) (-1192))))) (-3204 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845))) (-4 *2 (-13 (-429 *4) (-997) (-1192))) (-5 *1 (-596 *4 *2 *3)) (-4 *3 (-13 (-429 (-168 *4)) (-997) (-1192))))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-997) (-1192))) (-4 *4 (-13 (-554) (-845))) (-4 *2 (-13 (-429 (-168 *4)) (-997) (-1192))) (-5 *1 (-596 *4 *5 *2))))) +(-10 -7 (-15 -3550 (|#3| (-168 |#2|))) (-15 -3204 (|#2| |#3|)) (-15 -1753 (|#3| |#2|)) (-15 -4297 ((-168 |#2|) |#3|)) (-15 -3996 (|#3| |#3| (-639 (-608 |#3|)) (-639 (-1168))))) +((-3556 (($ (-1 (-112) |#1|) $) 17)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2167 (($ (-1 |#1| |#1|) |#1|) 9)) (-3535 (($ (-1 (-112) |#1|) $) 13)) (-3546 (($ (-1 (-112) |#1|) $) 15)) (-4066 (((-1148 |#1|) $) 18)) (-4054 (((-857) $) NIL))) +(((-597 |#1|) (-13 (-609 (-857)) (-10 -8 (-15 -4152 ($ (-1 |#1| |#1|) $)) (-15 -3535 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)) (-15 -3556 ($ (-1 (-112) |#1|) $)) (-15 -2167 ($ (-1 |#1| |#1|) |#1|)) (-15 -4066 ((-1148 |#1|) $)))) (-1207)) (T -597)) +((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-3535 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-2167 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1207))))) +(-13 (-609 (-857)) (-10 -8 (-15 -4152 ($ (-1 |#1| |#1|) $)) (-15 -3535 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)) (-15 -3556 ($ (-1 (-112) |#1|) $)) (-15 -2167 ($ (-1 |#1| |#1|) |#1|)) (-15 -4066 ((-1148 |#1|) $)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2911 (($ (-766)) NIL (|has| |#1| (-23)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-4264 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-2841 (((-683 |#1|) $ $) NIL (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3076 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-3289 (((-112) $ (-766)) NIL)) (-3641 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-4177 ((|#1| $ $) NIL (|has| |#1| (-1044)))) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1386 (($ $ $) NIL (|has| |#1| (-1044)))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1848 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1835 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-562) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-721))) (($ $ |#1|) NIL (|has| |#1| (-721)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-598 |#1| |#2|) (-1254 |#1|) (-1207) (-562)) (T -598)) +NIL +(-1254 |#1|) +((-3052 (((-1261) $ |#2| |#2|) 36)) (-4197 ((|#2| $) 23)) (-3874 ((|#2| $) 21)) (-1490 (($ (-1 |#3| |#3|) $) 32)) (-4152 (($ (-1 |#3| |#3|) $) 30)) (-1421 ((|#3| $) 26)) (-2716 (($ $ |#3|) 33)) (-3521 (((-112) |#3| $) 17)) (-2411 (((-639 |#3|) $) 15)) (-2343 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-599 |#1| |#2| |#3|) (-10 -8 (-15 -3052 ((-1261) |#1| |#2| |#2|)) (-15 -2716 (|#1| |#1| |#3|)) (-15 -1421 (|#3| |#1|)) (-15 -4197 (|#2| |#1|)) (-15 -3874 (|#2| |#1|)) (-15 -3521 ((-112) |#3| |#1|)) (-15 -2411 ((-639 |#3|) |#1|)) (-15 -2343 (|#3| |#1| |#2|)) (-15 -2343 (|#3| |#1| |#2| |#3|)) (-15 -1490 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4152 (|#1| (-1 |#3| |#3|) |#1|))) (-600 |#2| |#3|) (-1092) (-1207)) (T -599)) +NIL +(-10 -8 (-15 -3052 ((-1261) |#1| |#2| |#2|)) (-15 -2716 (|#1| |#1| |#3|)) (-15 -1421 (|#3| |#1|)) (-15 -4197 (|#2| |#1|)) (-15 -3874 (|#2| |#1|)) (-15 -3521 ((-112) |#3| |#1|)) (-15 -2411 ((-639 |#3|) |#1|)) (-15 -2343 (|#3| |#1| |#2|)) (-15 -2343 (|#3| |#1| |#2| |#3|)) (-15 -1490 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4152 (|#1| (-1 |#3| |#3|) |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#2| (-1092)))) (-3052 (((-1261) $ |#1| |#1|) 40 (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) 8)) (-4200 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4403)))) (-1800 (($) 7 T CONST)) (-1505 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) 51)) (-1720 (((-639 |#2|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-4197 ((|#1| $) 43 (|has| |#1| (-845)))) (-1912 (((-639 |#2|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402))))) (-3874 ((|#1| $) 44 (|has| |#1| (-845)))) (-1490 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#2| |#2|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#2| (-1092)))) (-2093 (((-639 |#1|) $) 46)) (-1570 (((-112) |#1| $) 47)) (-1709 (((-1112) $) 21 (|has| |#2| (-1092)))) (-1421 ((|#2| $) 42 (|has| |#1| (-845)))) (-2716 (($ $ |#2|) 41 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-1723 (((-766) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4402))) (((-766) |#2| $) 28 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#2| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#2| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-600 |#1| |#2|) (-139) (-1092) (-1207)) (T -600)) +((-2411 (*1 *2 *1) (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) (-5 *2 (-639 *4)))) (-1570 (*1 *2 *3 *1) (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) (-5 *2 (-639 *3)))) (-3521 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-600 *4 *3)) (-4 *4 (-1092)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-600 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1092)) (-4 *2 (-845)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-600 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1092)) (-4 *2 (-845)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-600 *3 *2)) (-4 *3 (-1092)) (-4 *3 (-845)) (-4 *2 (-1207)))) (-2716 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-600 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) (-3052 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) (-5 *2 (-1261))))) +(-13 (-488 |t#2|) (-287 |t#1| |t#2|) (-10 -8 (-15 -2411 ((-639 |t#2|) $)) (-15 -1570 ((-112) |t#1| $)) (-15 -2093 ((-639 |t#1|) $)) (IF (|has| |t#2| (-1092)) (IF (|has| $ (-6 -4402)) (-15 -3521 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-845)) (PROGN (-15 -3874 (|t#1| $)) (-15 -4197 (|t#1| $)) (-15 -1421 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4403)) (PROGN (-15 -2716 ($ $ |t#2|)) (-15 -3052 ((-1261) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1092)) ((-609 (-857)) -4037 (|has| |#2| (-1092)) (|has| |#2| (-609 (-857)))) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-488 |#2|) . T) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-1092) |has| |#2| (-1092)) ((-1207) . T)) +((-4054 (((-857) $) 17) (($ (-129)) 13) (((-129) $) 14))) +(((-601) (-13 (-609 (-857)) (-489 (-129)))) (T -601)) +NIL +(-13 (-609 (-857)) (-489 (-129))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL) (($ (-1173)) NIL) (((-1173) $) NIL) (((-1206) $) 14) (($ (-639 (-1206))) 13)) (-4036 (((-639 (-1206)) $) 10)) (-1731 (((-112) $ $) NIL))) +(((-602) (-13 (-1075) (-609 (-1206)) (-10 -8 (-15 -4054 ($ (-639 (-1206)))) (-15 -4036 ((-639 (-1206)) $))))) (T -602)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-602)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-602))))) +(-13 (-1075) (-609 (-1206)) (-10 -8 (-15 -4054 ($ (-639 (-1206)))) (-15 -4036 ((-639 (-1206)) $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3931 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1902 (((-1256 (-683 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1256 (-683 |#1|)) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-3655 (((-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-1800 (($) NIL T CONST)) (-2874 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2117 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-4356 (((-683 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2422 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2966 (((-683 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2545 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3407 (((-1164 (-947 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-1379 (($ $ (-916)) NIL)) (-2355 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3474 (((-1164 |#1|) $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2819 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2964 (((-1164 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2380 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4018 (($ (-1256 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1256 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-3668 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2173 (((-916)) NIL (|has| |#2| (-366 |#1|)))) (-1321 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3650 (($ $ (-916)) NIL)) (-3813 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3375 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4258 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1681 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3700 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3025 (((-683 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4153 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1671 (((-683 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4238 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2743 (((-1164 (-947 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2991 (($ $ (-916)) NIL)) (-1680 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2026 (((-1164 |#1|) $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-1305 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2670 (((-1164 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2090 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2913 (((-1150) $) NIL)) (-2144 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2580 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2809 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1709 (((-1112) $) NIL)) (-4323 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2343 ((|#1| $ (-562)) NIL (|has| |#2| (-416 |#1|)))) (-3593 (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-416 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $) (-1256 $)) NIL (|has| |#2| (-366 |#1|))) (((-1256 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4208 (($ (-1256 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-4136 (((-639 (-947 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-639 (-947 |#1|)) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-1911 (($ $ $) NIL)) (-1396 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4054 (((-857) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3928 (((-1256 $)) NIL (|has| |#2| (-416 |#1|)))) (-3553 (((-639 (-1256 |#1|))) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2436 (($ $ $ $) NIL)) (-2850 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1360 (($ (-683 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3626 (($ $ $) NIL)) (-1981 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3199 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4114 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2286 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) 24)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-603 |#1| |#2|) (-13 (-739 |#1|) (-609 |#2|) (-10 -8 (-15 -4054 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-739 |#1|)) (T -603)) +((-4054 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-603 *3 *2)) (-4 *2 (-739 *3))))) +(-13 (-739 |#1|) (-609 |#2|) (-10 -8 (-15 -4054 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-3067 (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) 33)) (-1443 (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL) (($) NIL)) (-3052 (((-1261) $ (-1150) (-1150)) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-1150) |#1|) 43)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 |#1| "failed") (-1150) $) 46)) (-1800 (($) NIL T CONST)) (-2413 (($ $ (-1150)) 24)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092))))) (-4000 (((-3 |#1| "failed") (-1150) $) 47) (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402))) (($ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL (|has| $ (-6 -4402)))) (-1475 (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402))) (($ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092))))) (-1955 (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092))))) (-1805 (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) 32)) (-1505 ((|#1| $ (-1150) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-1150)) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402))) (((-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-4332 (($ $) 48)) (-3316 (($ (-387)) 22) (($ (-387) (-1150)) 21)) (-3254 (((-387) $) 34)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-1150) $) NIL (|has| (-1150) (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402))) (((-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (((-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092))))) (-3874 (((-1150) $) NIL (|has| (-1150) (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-1520 (((-639 (-1150)) $) 39)) (-4265 (((-112) (-1150) $) NIL)) (-3523 (((-1150) $) 35)) (-3262 (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL)) (-4300 (($ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL)) (-2093 (((-639 (-1150)) $) NIL)) (-1570 (((-112) (-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 ((|#1| $) NIL (|has| (-1150) (-845)))) (-3251 (((-3 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) "failed") (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (($ $ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (($ $ (-639 (-293 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 37)) (-2343 ((|#1| $ (-1150) |#1|) NIL) ((|#1| $ (-1150)) 42)) (-3564 (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL) (($) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (((-766) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (((-766) (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL)) (-4054 (((-857) $) 20)) (-3948 (($ $) 25)) (-1932 (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 19)) (-3492 (((-766) $) 41 (|has| $ (-6 -4402))))) +(((-604 |#1|) (-13 (-363 (-387) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) (-1183 (-1150) |#1|) (-10 -8 (-6 -4402) (-15 -4332 ($ $)))) (-1092)) (T -604)) +((-4332 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1092))))) +(-13 (-363 (-387) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) (-1183 (-1150) |#1|) (-10 -8 (-6 -4402) (-15 -4332 ($ $)))) +((-1669 (((-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) $) 15)) (-1520 (((-639 |#2|) $) 19)) (-4265 (((-112) |#2| $) 12))) +(((-605 |#1| |#2| |#3|) (-10 -8 (-15 -1520 ((-639 |#2|) |#1|)) (-15 -4265 ((-112) |#2| |#1|)) (-15 -1669 ((-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|))) (-606 |#2| |#3|) (-1092) (-1092)) (T -605)) +NIL +(-10 -8 (-15 -1520 ((-639 |#2|) |#1|)) (-15 -4265 ((-112) |#2| |#1|)) (-15 -1669 ((-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|))) +((-4041 (((-112) $ $) 19 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 45 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 55 (|has| $ (-6 -4402)))) (-1472 (((-3 |#2| "failed") |#1| $) 61)) (-1800 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 47 (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 46 (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) 62)) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 54 (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 56 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 53 (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 52 (|has| $ (-6 -4402)))) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-1520 (((-639 |#1|) $) 63)) (-4265 (((-112) |#1| $) 64)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 39)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 40)) (-1709 (((-1112) $) 21 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 51)) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 41)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) 26 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 25 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 24 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 23 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-3564 (($) 49) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 48)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 31 (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 50)) (-4054 (((-857) $) 18 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857))))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 42)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-606 |#1| |#2|) (-139) (-1092) (-1092)) (T -606)) +((-4265 (*1 *2 *3 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-5 *2 (-112)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-5 *2 (-639 *3)))) (-4000 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-1472 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) +(-13 (-228 (-2 (|:| -2320 |t#1|) (|:| -2694 |t#2|))) (-10 -8 (-15 -4265 ((-112) |t#1| $)) (-15 -1520 ((-639 |t#1|) $)) (-15 -4000 ((-3 |t#2| "failed") |t#1| $)) (-15 -1472 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T) ((-102) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) ((-609 (-857)) -4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857)))) ((-150 #0#) . T) ((-610 (-535)) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))) ((-228 #0#) . T) ((-234 #0#) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) ((-488 #0#) . T) ((-513 #0# #0#) -12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) ((-1092) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) ((-1207) . T)) +((-1377 (((-608 |#2|) |#1|) 15)) (-4117 (((-3 |#1| "failed") (-608 |#2|)) 19))) +(((-607 |#1| |#2|) (-10 -7 (-15 -1377 ((-608 |#2|) |#1|)) (-15 -4117 ((-3 |#1| "failed") (-608 |#2|)))) (-845) (-845)) (T -607)) +((-4117 (*1 *2 *3) (|partial| -12 (-5 *3 (-608 *4)) (-4 *4 (-845)) (-4 *2 (-845)) (-5 *1 (-607 *2 *4)))) (-1377 (*1 *2 *3) (-12 (-5 *2 (-608 *4)) (-5 *1 (-607 *3 *4)) (-4 *3 (-845)) (-4 *4 (-845))))) +(-10 -7 (-15 -1377 ((-608 |#2|) |#1|)) (-15 -4117 ((-3 |#1| "failed") (-608 |#2|)))) +((-4041 (((-112) $ $) NIL)) (-2918 (((-3 (-1168) "failed") $) 37)) (-2111 (((-1261) $ (-766)) 26)) (-4264 (((-766) $) 25)) (-2876 (((-114) $) 12)) (-3254 (((-1168) $) 20)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-4141 (($ (-114) (-639 |#1|) (-766)) 30) (($ (-1168)) 31)) (-1776 (((-112) $ (-114)) 18) (((-112) $ (-1168)) 16)) (-3060 (((-766) $) 22)) (-1709 (((-1112) $) NIL)) (-4208 (((-887 (-562)) $) 77 (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) 84 (|has| |#1| (-610 (-887 (-378))))) (((-535) $) 69 (|has| |#1| (-610 (-535))))) (-4054 (((-857) $) 55)) (-2828 (((-639 |#1|) $) 24)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 41)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 42))) +(((-608 |#1|) (-13 (-131) (-879 |#1|) (-10 -8 (-15 -3254 ((-1168) $)) (-15 -2876 ((-114) $)) (-15 -2828 ((-639 |#1|) $)) (-15 -3060 ((-766) $)) (-15 -4141 ($ (-114) (-639 |#1|) (-766))) (-15 -4141 ($ (-1168))) (-15 -2918 ((-3 (-1168) "failed") $)) (-15 -1776 ((-112) $ (-114))) (-15 -1776 ((-112) $ (-1168))) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) (-845)) (T -608)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-4141 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-639 *5)) (-5 *4 (-766)) (-4 *5 (-845)) (-5 *1 (-608 *5)))) (-4141 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-2918 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-1776 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-845)))) (-1776 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-845))))) +(-13 (-131) (-879 |#1|) (-10 -8 (-15 -3254 ((-1168) $)) (-15 -2876 ((-114) $)) (-15 -2828 ((-639 |#1|) $)) (-15 -3060 ((-766) $)) (-15 -4141 ($ (-114) (-639 |#1|) (-766))) (-15 -4141 ($ (-1168))) (-15 -2918 ((-3 (-1168) "failed") $)) (-15 -1776 ((-112) $ (-114))) (-15 -1776 ((-112) $ (-1168))) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) +((-4054 ((|#1| $) 6))) +(((-609 |#1|) (-139) (-1207)) (T -609)) +((-4054 (*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1207))))) +(-13 (-10 -8 (-15 -4054 (|t#1| $)))) +((-4208 ((|#1| $) 6))) +(((-610 |#1|) (-139) (-1207)) (T -610)) +((-4208 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1207))))) +(-13 (-10 -8 (-15 -4208 (|t#1| $)))) +((-4286 (((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)) 15) (((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 16))) +(((-611 |#1| |#2|) (-10 -7 (-15 -4286 ((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -4286 ((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -611)) +((-4286 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-1164 (-406 *6))) (-5 *1 (-611 *5 *6)) (-5 *3 (-406 *6)))) (-4286 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-1164 (-406 *5))) (-5 *1 (-611 *4 *5)) (-5 *3 (-406 *5))))) +(-10 -7 (-15 -4286 ((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -4286 ((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)))) +((-4054 (($ |#1|) 6))) +(((-612 |#1|) (-139) (-1207)) (T -612)) +((-4054 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1207))))) +(-13 (-10 -8 (-15 -4054 ($ |t#1|)))) +((-4041 (((-112) $ $) NIL)) (-4378 (($) 8 T CONST)) (-2797 (($) 9 T CONST)) (-2255 (($ $ $) 21)) (-2236 (($ $) 19)) (-2913 (((-1150) $) NIL)) (-3994 (($ $ $) 22)) (-1709 (((-1112) $) NIL)) (-1615 (($) 7 T CONST)) (-1935 (($ $ $) 23)) (-4054 (((-857) $) 27)) (-2276 (((-112) $ (|[\|\|]| -1615)) 16) (((-112) $ (|[\|\|]| -4378)) 18) (((-112) $ (|[\|\|]| -2797)) 14)) (-2246 (($ $ $) 20)) (-1731 (((-112) $ $) 12))) +(((-613) (-13 (-962) (-10 -8 (-15 -1615 ($) -1497) (-15 -4378 ($) -1497) (-15 -2797 ($) -1497) (-15 -2276 ((-112) $ (|[\|\|]| -1615))) (-15 -2276 ((-112) $ (|[\|\|]| -4378))) (-15 -2276 ((-112) $ (|[\|\|]| -2797)))))) (T -613)) +((-1615 (*1 *1) (-5 *1 (-613))) (-4378 (*1 *1) (-5 *1 (-613))) (-2797 (*1 *1) (-5 *1 (-613))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1615)) (-5 *2 (-112)) (-5 *1 (-613)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4378)) (-5 *2 (-112)) (-5 *1 (-613)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2797)) (-5 *2 (-112)) (-5 *1 (-613))))) +(-13 (-962) (-10 -8 (-15 -1615 ($) -1497) (-15 -4378 ($) -1497) (-15 -2797 ($) -1497) (-15 -2276 ((-112) $ (|[\|\|]| -1615))) (-15 -2276 ((-112) $ (|[\|\|]| -4378))) (-15 -2276 ((-112) $ (|[\|\|]| -2797))))) +((-4208 (($ |#1|) 6))) +(((-614 |#1|) (-139) (-1207)) (T -614)) +((-4208 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1207))))) +(-13 (-10 -8 (-15 -4208 ($ |t#1|)))) +((-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) 10))) +(((-615 |#1| |#2|) (-10 -8 (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) (-616 |#2|) (-1044)) (T -615)) +NIL +(-10 -8 (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 36)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +(((-616 |#1|) (-139) (-1044)) (T -616)) +((-4054 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1044))))) +(-13 (-1044) (-642 |t#1|) (-10 -8 (-15 -4054 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2277 (((-562) $) NIL (|has| |#1| (-843)))) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-3519 (((-112) $) NIL (|has| |#1| (-843)))) (-1957 (((-112) $) NIL)) (-4065 ((|#1| $) 13)) (-3392 (((-112) $) NIL (|has| |#1| (-843)))) (-1551 (($ $ $) NIL (|has| |#1| (-843)))) (-2993 (($ $ $) NIL (|has| |#1| (-843)))) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4076 ((|#3| $) 15)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL)) (-2579 (((-766)) 20)) (-3526 (($ $) NIL (|has| |#1| (-843)))) (-2286 (($) NIL T CONST)) (-2294 (($) 12 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1859 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-617 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (-15 -1859 ($ $ |#3|)) (-15 -1859 ($ |#1| |#3|)) (-15 -4065 (|#1| $)) (-15 -4076 (|#3| $)))) (-38 |#2|) (-171) (|SubsetCategory| (-721) |#2|)) (T -617)) +((-1859 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-721) *4)))) (-1859 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-617 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-721) *4)))) (-4065 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-617 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-721) *3)))) (-4076 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-721) *4)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (-15 -1859 ($ $ |#3|)) (-15 -1859 ($ |#1| |#3|)) (-15 -4065 (|#1| $)) (-15 -4076 (|#3| $)))) +((-3945 ((|#2| |#2| (-1168) (-1168)) 18))) +(((-618 |#1| |#2|) (-10 -7 (-15 -3945 (|#2| |#2| (-1168) (-1168)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-954) (-29 |#1|))) (T -618)) +((-3945 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-618 *4 *2)) (-4 *2 (-13 (-1192) (-954) (-29 *4)))))) +(-10 -7 (-15 -3945 (|#2| |#2| (-1168) (-1168)))) +((-4041 (((-112) $ $) 56)) (-1952 (((-112) $) 52)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-1906 ((|#1| $) 49)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4157 (((-2 (|:| -2401 $) (|:| -3937 (-406 |#2|))) (-406 |#2|)) 97 (|has| |#1| (-362)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) 24)) (-3668 (((-3 $ "failed") $) 75)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-1900 (((-562) $) 19)) (-1957 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3536 (((-112) $) 36)) (-1378 (($ |#1| (-562)) 21)) (-1573 ((|#1| $) 51)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) 87 (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 101 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ $) 79)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1577 (((-766) $) 100 (|has| |#1| (-362)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 99 (|has| |#1| (-362)))) (-4029 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3598 (((-562) $) 34)) (-4208 (((-406 |#2|) $) 42)) (-4054 (((-857) $) 62) (($ (-562)) 32) (($ $) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 31) (($ |#2|) 22)) (-3906 ((|#1| $ (-562)) 63)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) 29)) (-2922 (((-112) $ $) NIL)) (-2286 (($) 9 T CONST)) (-2294 (($) 12 T CONST)) (-3114 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1731 (((-112) $ $) 17)) (-1848 (($ $) 46) (($ $ $) NIL)) (-1835 (($ $ $) 76)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 26) (($ $ $) 44))) +(((-619 |#1| |#2|) (-13 (-230 |#2|) (-554) (-610 (-406 |#2|)) (-410 |#1|) (-1033 |#2|) (-10 -8 (-15 -3536 ((-112) $)) (-15 -3598 ((-562) $)) (-15 -1900 ((-562) $)) (-15 -1601 ($ $)) (-15 -1573 (|#1| $)) (-15 -1906 (|#1| $)) (-15 -3906 (|#1| $ (-562))) (-15 -1378 ($ |#1| (-562))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -4157 ((-2 (|:| -2401 $) (|:| -3937 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) (-554) (-1232 |#1|)) (T -619)) +((-3536 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-619 *3 *4)) (-4 *4 (-1232 *3)))) (-3598 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-562)) (-5 *1 (-619 *3 *4)) (-4 *4 (-1232 *3)))) (-1900 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-562)) (-5 *1 (-619 *3 *4)) (-4 *4 (-1232 *3)))) (-1601 (*1 *1 *1) (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) (-1573 (*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) (-1906 (*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) (-3906 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *2 (-554)) (-5 *1 (-619 *2 *4)) (-4 *4 (-1232 *2)))) (-1378 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-4 *2 (-554)) (-5 *1 (-619 *2 *4)) (-4 *4 (-1232 *2)))) (-4157 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-554)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -2401 (-619 *4 *5)) (|:| -3937 (-406 *5)))) (-5 *1 (-619 *4 *5)) (-5 *3 (-406 *5))))) +(-13 (-230 |#2|) (-554) (-610 (-406 |#2|)) (-410 |#1|) (-1033 |#2|) (-10 -8 (-15 -3536 ((-112) $)) (-15 -3598 ((-562) $)) (-15 -1900 ((-562) $)) (-15 -1601 ($ $)) (-15 -1573 (|#1| $)) (-15 -1906 (|#1| $)) (-15 -3906 (|#1| $ (-562))) (-15 -1378 ($ |#1| (-562))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -4157 ((-2 (|:| -2401 $) (|:| -3937 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) +((-2304 (((-639 |#6|) (-639 |#4|) (-112)) 46)) (-2618 ((|#6| |#6|) 39))) +(((-620 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2618 (|#6| |#6|)) (-15 -2304 ((-639 |#6|) (-639 |#4|) (-112)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|) (-1101 |#1| |#2| |#3| |#4|)) (T -620)) +((-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 *10)) (-5 *1 (-620 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *10 (-1101 *5 *6 *7 *8)))) (-2618 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-620 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *2 (-1101 *3 *4 *5 *6))))) +(-10 -7 (-15 -2618 (|#6| |#6|)) (-15 -2304 ((-639 |#6|) (-639 |#4|) (-112)))) +((-4249 (((-112) |#3| (-766) (-639 |#3|)) 23)) (-1796 (((-3 (-2 (|:| |polfac| (-639 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-639 (-1164 |#3|)))) "failed") |#3| (-639 (-1164 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1510 (-639 (-2 (|:| |irr| |#4|) (|:| -2762 (-562)))))) (-639 |#3|) (-639 |#1|) (-639 |#3|)) 55))) +(((-621 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4249 ((-112) |#3| (-766) (-639 |#3|))) (-15 -1796 ((-3 (-2 (|:| |polfac| (-639 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-639 (-1164 |#3|)))) "failed") |#3| (-639 (-1164 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1510 (-639 (-2 (|:| |irr| |#4|) (|:| -2762 (-562)))))) (-639 |#3|) (-639 |#1|) (-639 |#3|)))) (-845) (-788) (-306) (-944 |#3| |#2| |#1|)) (T -621)) +((-1796 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1510 (-639 (-2 (|:| |irr| *10) (|:| -2762 (-562))))))) (-5 *6 (-639 *3)) (-5 *7 (-639 *8)) (-4 *8 (-845)) (-4 *3 (-306)) (-4 *10 (-944 *3 *9 *8)) (-4 *9 (-788)) (-5 *2 (-2 (|:| |polfac| (-639 *10)) (|:| |correct| *3) (|:| |corrfact| (-639 (-1164 *3))))) (-5 *1 (-621 *8 *9 *3 *10)) (-5 *4 (-639 (-1164 *3))))) (-4249 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-766)) (-5 *5 (-639 *3)) (-4 *3 (-306)) (-4 *6 (-845)) (-4 *7 (-788)) (-5 *2 (-112)) (-5 *1 (-621 *6 *7 *3 *8)) (-4 *8 (-944 *3 *7 *6))))) +(-10 -7 (-15 -4249 ((-112) |#3| (-766) (-639 |#3|))) (-15 -1796 ((-3 (-2 (|:| |polfac| (-639 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-639 (-1164 |#3|)))) "failed") |#3| (-639 (-1164 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1510 (-639 (-2 (|:| |irr| |#4|) (|:| -2762 (-562)))))) (-639 |#3|) (-639 |#1|) (-639 |#3|)))) +((-4041 (((-112) $ $) NIL)) (-4328 (((-1127) $) 11)) (-4316 (((-1127) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-622) (-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1127) $))))) (T -622)) +((-4316 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-622)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-622))))) +(-13 (-1075) (-10 -8 (-15 -4316 ((-1127) $)) (-15 -4328 ((-1127) $)))) +((-4041 (((-112) $ $) NIL)) (-2852 (((-639 |#1|) $) NIL)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-3818 (($ $) 67)) (-4365 (((-658 |#1| |#2|) $) 52)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 70)) (-1446 (((-639 (-293 |#2|)) $ $) 33)) (-1709 (((-1112) $) NIL)) (-3430 (($ (-658 |#1| |#2|)) 48)) (-3665 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-4054 (((-857) $) 58) (((-1271 |#1| |#2|) $) NIL) (((-1276 |#1| |#2|) $) 66)) (-2294 (($) 53 T CONST)) (-3070 (((-639 (-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|))) $) 31)) (-2848 (((-639 (-658 |#1| |#2|)) (-639 |#1|)) 65)) (-2516 (((-639 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $) 37)) (-1731 (((-112) $ $) 54)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ $ $) 44))) +(((-623 |#1| |#2| |#3|) (-13 (-472) (-10 -8 (-15 -3430 ($ (-658 |#1| |#2|))) (-15 -4365 ((-658 |#1| |#2|) $)) (-15 -2516 ((-639 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $)) (-15 -4054 ((-1271 |#1| |#2|) $)) (-15 -4054 ((-1276 |#1| |#2|) $)) (-15 -3818 ($ $)) (-15 -2852 ((-639 |#1|) $)) (-15 -2848 ((-639 (-658 |#1| |#2|)) (-639 |#1|))) (-15 -3070 ((-639 (-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|))) $)) (-15 -1446 ((-639 (-293 |#2|)) $ $)))) (-845) (-13 (-171) (-712 (-406 (-562)))) (-916)) (T -623)) +((-3430 (*1 *1 *2) (-12 (-5 *2 (-658 *3 *4)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-5 *1 (-623 *3 *4 *5)) (-14 *5 (-916)))) (-4365 (*1 *2 *1) (-12 (-5 *2 (-658 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |k| (-888 *3)) (|:| |c| *4)))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1276 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-845)) (-4 *3 (-13 (-171) (-712 (-406 (-562))))) (-14 *4 (-916)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-845)) (-5 *2 (-639 (-658 *4 *5))) (-5 *1 (-623 *4 *5 *6)) (-4 *5 (-13 (-171) (-712 (-406 (-562))))) (-14 *6 (-916)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |k| (-666 *3)) (|:| |c| *4)))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-1446 (*1 *2 *1 *1) (-12 (-5 *2 (-639 (-293 *4))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916))))) +(-13 (-472) (-10 -8 (-15 -3430 ($ (-658 |#1| |#2|))) (-15 -4365 ((-658 |#1| |#2|) $)) (-15 -2516 ((-639 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $)) (-15 -4054 ((-1271 |#1| |#2|) $)) (-15 -4054 ((-1276 |#1| |#2|) $)) (-15 -3818 ($ $)) (-15 -2852 ((-639 |#1|) $)) (-15 -2848 ((-639 (-658 |#1| |#2|)) (-639 |#1|))) (-15 -3070 ((-639 (-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|))) $)) (-15 -1446 ((-639 (-293 |#2|)) $ $)))) +((-2304 (((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112)) 71) (((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112)) 57)) (-1453 (((-112) (-639 (-775 |#1| (-859 |#2|)))) 23)) (-3089 (((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112)) 70)) (-3537 (((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112)) 56)) (-2769 (((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|)))) 27)) (-3065 (((-3 (-639 (-775 |#1| (-859 |#2|))) "failed") (-639 (-775 |#1| (-859 |#2|)))) 26))) +(((-624 |#1| |#2|) (-10 -7 (-15 -1453 ((-112) (-639 (-775 |#1| (-859 |#2|))))) (-15 -3065 ((-3 (-639 (-775 |#1| (-859 |#2|))) "failed") (-639 (-775 |#1| (-859 |#2|))))) (-15 -2769 ((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))))) (-15 -3537 ((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -3089 ((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -2304 ((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -2304 ((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112)))) (-451) (-639 (-1168))) (T -624)) +((-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1138 *5 (-530 (-859 *6)) (-859 *6) (-775 *5 (-859 *6))))) (-5 *1 (-624 *5 *6)))) (-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-624 *5 *6)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1138 *5 (-530 (-859 *6)) (-859 *6) (-775 *5 (-859 *6))))) (-5 *1 (-624 *5 *6)))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-624 *5 *6)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-639 (-775 *3 (-859 *4)))) (-4 *3 (-451)) (-14 *4 (-639 (-1168))) (-5 *1 (-624 *3 *4)))) (-3065 (*1 *2 *2) (|partial| -12 (-5 *2 (-639 (-775 *3 (-859 *4)))) (-4 *3 (-451)) (-14 *4 (-639 (-1168))) (-5 *1 (-624 *3 *4)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-639 (-775 *4 (-859 *5)))) (-4 *4 (-451)) (-14 *5 (-639 (-1168))) (-5 *2 (-112)) (-5 *1 (-624 *4 *5))))) +(-10 -7 (-15 -1453 ((-112) (-639 (-775 |#1| (-859 |#2|))))) (-15 -3065 ((-3 (-639 (-775 |#1| (-859 |#2|))) "failed") (-639 (-775 |#1| (-859 |#2|))))) (-15 -2769 ((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))))) (-15 -3537 ((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -3089 ((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -2304 ((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -2304 ((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112)))) +((-2988 (($ $) 38)) (-4097 (($ $) 21)) (-4207 (($ $) 37)) (-4074 (($ $) 22)) (-3014 (($ $) 36)) (-4119 (($ $) 23)) (-4100 (($) 48)) (-4365 (($ $) 45)) (-2033 (($ $) 17)) (-1982 (($ $ (-1084 $)) 7) (($ $ (-1168)) 6)) (-3430 (($ $) 46)) (-4021 (($ $) 15)) (-4056 (($ $) 16)) (-3023 (($ $) 35)) (-4130 (($ $) 24)) (-3001 (($ $) 34)) (-4108 (($ $) 25)) (-2978 (($ $) 33)) (-4087 (($ $) 26)) (-3055 (($ $) 44)) (-4165 (($ $) 32)) (-3033 (($ $) 43)) (-4138 (($ $) 31)) (-3078 (($ $) 42)) (-4182 (($ $) 30)) (-1566 (($ $) 41)) (-4195 (($ $) 29)) (-3066 (($ $) 40)) (-4174 (($ $) 28)) (-3044 (($ $) 39)) (-4151 (($ $) 27)) (-4083 (($ $) 19)) (-2537 (($ $) 20)) (-4361 (($ $) 18)) (** (($ $ $) 47))) (((-625) (-139)) (T -625)) -((-2383 (*1 *1 *1) (-4 *1 (-625))) (-2382 (*1 *1 *1) (-4 *1 (-625))) (-2381 (*1 *1 *1) (-4 *1 (-625))) (-2380 (*1 *1 *1) (-4 *1 (-625))) (-2379 (*1 *1 *1) (-4 *1 (-625))) (-2378 (*1 *1 *1) (-4 *1 (-625)))) -(-13 (-953) (-1190) (-10 -8 (-15 -2383 ($ $)) (-15 -2382 ($ $)) (-15 -2381 ($ $)) (-15 -2380 ($ $)) (-15 -2379 ($ $)) (-15 -2378 ($ $)))) -(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-953) . T) ((-1190) . T) ((-1193) . T)) -((-2393 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 53)) (-2386 (((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 68)) (-2387 (((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-858 |#1|)) 70) (((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-858 |#1|)) 69)) (-2384 (((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-544)))) (-635 (-479 |#1| |#2|))) 108)) (-2391 (((-635 (-479 |#1| |#2|)) (-858 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 83)) (-2385 (((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-544)))) (-635 (-246 |#1| |#2|))) 118)) (-2389 (((-1253 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|))) 58)) (-2388 (((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|))) 41)) (-2392 (((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|))) 50)) (-2390 (((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|))) 91))) -(((-626 |#1| |#2|) (-10 -7 (-15 -2384 ((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-544)))) (-635 (-479 |#1| |#2|)))) (-15 -2385 ((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-544)))) (-635 (-246 |#1| |#2|)))) (-15 -2386 ((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2387 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2387 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2388 ((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2389 ((-1253 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|)))) (-15 -2390 ((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2391 ((-635 (-479 |#1| |#2|)) (-858 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2392 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2393 ((-479 |#1| |#2|) (-246 |#1| |#2|)))) (-635 (-1166)) (-450)) (T -626)) -((-2393 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *2 (-479 *4 *5)) (-5 *1 (-626 *4 *5)))) (-2392 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))) (-2391 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-858 *4)) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *1 (-626 *4 *5)))) (-2390 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-246 *5 *6))) (-4 *6 (-450)) (-5 *2 (-246 *5 *6)) (-14 *5 (-635 (-1166))) (-5 *1 (-626 *5 *6)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-479 *5 *6))) (-5 *3 (-479 *5 *6)) (-14 *5 (-635 (-1166))) (-4 *6 (-450)) (-5 *2 (-1253 *6)) (-5 *1 (-626 *5 *6)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-635 (-479 *3 *4))) (-14 *3 (-635 (-1166))) (-4 *4 (-450)) (-5 *1 (-626 *3 *4)))) (-2387 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-635 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))) (-2387 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-635 (-1166))) (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *2 (-635 (-246 *4 *5))) (-5 *1 (-626 *4 *5)))) (-2385 (*1 *2 *3) (-12 (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |glbase| (-635 (-246 *4 *5))) (|:| |glval| (-635 (-544))))) (-5 *1 (-626 *4 *5)) (-5 *3 (-635 (-246 *4 *5))))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *2 (-2 (|:| |gblist| (-635 (-246 *4 *5))) (|:| |gvlist| (-635 (-544))))) (-5 *1 (-626 *4 *5))))) -(-10 -7 (-15 -2384 ((-2 (|:| |gblist| (-635 (-246 |#1| |#2|))) (|:| |gvlist| (-635 (-544)))) (-635 (-479 |#1| |#2|)))) (-15 -2385 ((-2 (|:| |glbase| (-635 (-246 |#1| |#2|))) (|:| |glval| (-635 (-544)))) (-635 (-246 |#1| |#2|)))) (-15 -2386 ((-635 (-246 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2387 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2387 ((-479 |#1| |#2|) (-635 (-479 |#1| |#2|)) (-858 |#1|))) (-15 -2388 ((-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2389 ((-1253 |#2|) (-479 |#1| |#2|) (-635 (-479 |#1| |#2|)))) (-15 -2390 ((-246 |#1| |#2|) (-635 |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2391 ((-635 (-479 |#1| |#2|)) (-858 |#1|) (-635 (-479 |#1| |#2|)) (-635 (-479 |#1| |#2|)))) (-15 -2392 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-635 (-246 |#1| |#2|)))) (-15 -2393 ((-479 |#1| |#2|) (-246 |#1| |#2|)))) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL)) (-2344 (((-1259) $ (-1148) (-1148)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-51) $ (-1148) (-51)) 16) (((-51) $ (-1166) (-51)) 17)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 (-51) #1="failed") (-1148) $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-3809 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-3 (-51) #1#) (-1148) $) NIL)) (-3810 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-51) $ (-1148) (-51)) NIL (|has| $ (-6 -4401)))) (-3498 (((-51) $ (-1148)) NIL)) (-2096 (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-2394 (($ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2554 (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2347 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2395 (($ (-387)) 9)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-2789 (((-635 (-1148)) $) NIL)) (-2354 (((-112) (-1148) $) NIL)) (-1356 (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL)) (-2349 (((-635 (-1148)) $) NIL)) (-2350 (((-112) (-1148) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-4207 (((-51) $) NIL (|has| (-1148) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) "failed") (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL)) (-2345 (($ $ (-51)) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ $ (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-51)) (-635 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-292 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-635 (-292 (-51)))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2351 (((-635 (-51)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (((-51) $ (-1148)) 14) (((-51) $ (-1148) (-51)) NIL) (((-51) $ (-1166)) 15)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091)))) (((-765) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091)))) (((-765) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-608 (-857))) (|has| (-51) (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 (-51))) (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-627) (-13 (-1181 (-1148) (-51)) (-10 -8 (-15 -2395 ($ (-387))) (-15 -2394 ($ $)) (-15 -4206 ((-51) $ (-1166))) (-15 -4194 ((-51) $ (-1166) (-51)))))) (T -627)) -((-2395 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-627)))) (-2394 (*1 *1 *1) (-5 *1 (-627))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-51)) (-5 *1 (-627)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1166)) (-5 *1 (-627))))) -(-13 (-1181 (-1148) (-51)) (-10 -8 (-15 -2395 ($ (-387))) (-15 -2394 ($ $)) (-15 -4206 ((-51) $ (-1166))) (-15 -4194 ((-51) $ (-1166) (-51))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1253 (-682 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1873 (((-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4131 (($) NIL T CONST)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1847 (((-3 $ #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1935 (((-682 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1871 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1933 (((-682 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2539 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2050 (((-1160 (-939 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-362))))) (-2542 (($ $ (-912)) NIL)) (-1869 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1849 (((-1160 |#1|) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1937 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1867 (((-1160 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1861 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1939 (($ (-1253 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1253 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-3866 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-3494 (((-912)) NIL (|has| |#2| (-366 |#1|)))) (-1858 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2567 (($ $ (-912)) NIL)) (-1854 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1852 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1856 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1848 (((-3 $ #1#)) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1936 (((-682 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1872 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1934 (((-682 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2540 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2054 (((-1160 (-939 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-362))))) (-2541 (($ $ (-912)) NIL)) (-1870 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1850 (((-1160 |#1|) $) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-1938 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-1868 (((-1160 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-1862 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1855 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1857 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3644 (((-1110) $) NIL)) (-1860 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4206 ((|#1| $ (-544)) NIL (|has| |#2| (-417 |#1|)))) (-3625 (((-682 |#1|) (-1253 $)) NIL (|has| |#2| (-417 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-682 |#1|) (-1253 $) (-1253 $)) NIL (|has| |#2| (-366 |#1|))) (((-1253 |#1|) $ (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-4377 (($ (-1253 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1253 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2042 (((-635 (-939 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-635 (-939 |#1|)) (-1253 $)) NIL (|has| |#2| (-366 |#1|)))) (-2729 (($ $ $) NIL)) (-1866 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4353 (((-857) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2162 (((-1253 $)) NIL (|has| |#2| (-417 |#1|)))) (-1851 (((-635 (-1253 |#1|))) NIL (-3936 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-554)))))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2927 (($ (-682 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2728 (($ $ $) NIL)) (-1865 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1863 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1859 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3040 (($) 15 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) 17)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-628 |#1| |#2|) (-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4353 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-738 |#1|)) (T -628)) -((-4353 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-628 *3 *2)) (-4 *2 (-738 *3))))) -(-13 (-738 |#1|) (-608 |#2|) (-10 -8 (-15 -4353 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) -((-4356 (($ $ |#2|) 10))) -(((-629 |#1| |#2|) (-10 -8 (-15 -4356 (|#1| |#1| |#2|))) (-630 |#2|) (-171)) (T -629)) -NIL -(-10 -8 (-15 -4356 (|#1| |#1| |#2|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3929 (($ $ $) 29)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 28 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +((-2537 (*1 *1 *1) (-4 *1 (-625))) (-4083 (*1 *1 *1) (-4 *1 (-625))) (-4361 (*1 *1 *1) (-4 *1 (-625))) (-2033 (*1 *1 *1) (-4 *1 (-625))) (-4056 (*1 *1 *1) (-4 *1 (-625))) (-4021 (*1 *1 *1) (-4 *1 (-625)))) +(-13 (-954) (-1192) (-10 -8 (-15 -2537 ($ $)) (-15 -4083 ($ $)) (-15 -4361 ($ $)) (-15 -2033 ($ $)) (-15 -4056 ($ $)) (-15 -4021 ($ $)))) +(((-35) . T) ((-95) . T) ((-283) . T) ((-492) . T) ((-954) . T) ((-1192) . T) ((-1195) . T)) +((-2876 (((-114) (-114)) 83)) (-2033 ((|#2| |#2|) 30)) (-1982 ((|#2| |#2| (-1084 |#2|)) 79) ((|#2| |#2| (-1168)) 52)) (-4021 ((|#2| |#2|) 29)) (-4056 ((|#2| |#2|) 31)) (-2803 (((-112) (-114)) 34)) (-4083 ((|#2| |#2|) 26)) (-2537 ((|#2| |#2|) 28)) (-4361 ((|#2| |#2|) 27))) +(((-626 |#1| |#2|) (-10 -7 (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -2537 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -1982 (|#2| |#2| (-1168))) (-15 -1982 (|#2| |#2| (-1084 |#2|)))) (-13 (-845) (-554)) (-13 (-429 |#1|) (-997) (-1192))) (T -626)) +((-1982 (*1 *2 *2 *3) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-13 (-429 *4) (-997) (-1192))) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-626 *4 *2)))) (-1982 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-626 *4 *2)) (-4 *2 (-13 (-429 *4) (-997) (-1192))))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-4361 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-2537 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *4)) (-4 *4 (-13 (-429 *3) (-997) (-1192))))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)) (-4 *5 (-13 (-429 *4) (-997) (-1192)))))) +(-10 -7 (-15 -2803 ((-112) (-114))) (-15 -2876 ((-114) (-114))) (-15 -2537 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -1982 (|#2| |#2| (-1168))) (-15 -1982 (|#2| |#2| (-1084 |#2|)))) +((-2871 (((-480 |#1| |#2|) (-246 |#1| |#2|)) 53)) (-4038 (((-639 (-246 |#1| |#2|)) (-639 (-480 |#1| |#2|))) 68)) (-2532 (((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-859 |#1|)) 70) (((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)) (-859 |#1|)) 69)) (-2788 (((-2 (|:| |gblist| (-639 (-246 |#1| |#2|))) (|:| |gvlist| (-639 (-562)))) (-639 (-480 |#1| |#2|))) 108)) (-1359 (((-639 (-480 |#1| |#2|)) (-859 |#1|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|))) 83)) (-4338 (((-2 (|:| |glbase| (-639 (-246 |#1| |#2|))) (|:| |glval| (-639 (-562)))) (-639 (-246 |#1| |#2|))) 118)) (-1715 (((-1256 |#2|) (-480 |#1| |#2|) (-639 (-480 |#1| |#2|))) 58)) (-2233 (((-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|))) 41)) (-3101 (((-246 |#1| |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|))) 50)) (-2595 (((-246 |#1| |#2|) (-639 |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|))) 91))) +(((-627 |#1| |#2|) (-10 -7 (-15 -2788 ((-2 (|:| |gblist| (-639 (-246 |#1| |#2|))) (|:| |gvlist| (-639 (-562)))) (-639 (-480 |#1| |#2|)))) (-15 -4338 ((-2 (|:| |glbase| (-639 (-246 |#1| |#2|))) (|:| |glval| (-639 (-562)))) (-639 (-246 |#1| |#2|)))) (-15 -4038 ((-639 (-246 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -2532 ((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)) (-859 |#1|))) (-15 -2532 ((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-859 |#1|))) (-15 -2233 ((-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -1715 ((-1256 |#2|) (-480 |#1| |#2|) (-639 (-480 |#1| |#2|)))) (-15 -2595 ((-246 |#1| |#2|) (-639 |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|)))) (-15 -1359 ((-639 (-480 |#1| |#2|)) (-859 |#1|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -3101 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|)))) (-15 -2871 ((-480 |#1| |#2|) (-246 |#1| |#2|)))) (-639 (-1168)) (-451)) (T -627)) +((-2871 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *2 (-480 *4 *5)) (-5 *1 (-627 *4 *5)))) (-3101 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-627 *4 *5)))) (-1359 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-639 (-480 *4 *5))) (-5 *3 (-859 *4)) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-627 *4 *5)))) (-2595 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-246 *5 *6))) (-4 *6 (-451)) (-5 *2 (-246 *5 *6)) (-14 *5 (-639 (-1168))) (-5 *1 (-627 *5 *6)))) (-1715 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-480 *5 *6))) (-5 *3 (-480 *5 *6)) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-1256 *6)) (-5 *1 (-627 *5 *6)))) (-2233 (*1 *2 *2) (-12 (-5 *2 (-639 (-480 *3 *4))) (-14 *3 (-639 (-1168))) (-4 *4 (-451)) (-5 *1 (-627 *3 *4)))) (-2532 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-480 *5 *6))) (-5 *4 (-859 *5)) (-14 *5 (-639 (-1168))) (-5 *2 (-480 *5 *6)) (-5 *1 (-627 *5 *6)) (-4 *6 (-451)))) (-2532 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-639 (-480 *5 *6))) (-5 *4 (-859 *5)) (-14 *5 (-639 (-1168))) (-5 *2 (-480 *5 *6)) (-5 *1 (-627 *5 *6)) (-4 *6 (-451)))) (-4038 (*1 *2 *3) (-12 (-5 *3 (-639 (-480 *4 *5))) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *2 (-639 (-246 *4 *5))) (-5 *1 (-627 *4 *5)))) (-4338 (*1 *2 *3) (-12 (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *2 (-2 (|:| |glbase| (-639 (-246 *4 *5))) (|:| |glval| (-639 (-562))))) (-5 *1 (-627 *4 *5)) (-5 *3 (-639 (-246 *4 *5))))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-639 (-480 *4 *5))) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *2 (-2 (|:| |gblist| (-639 (-246 *4 *5))) (|:| |gvlist| (-639 (-562))))) (-5 *1 (-627 *4 *5))))) +(-10 -7 (-15 -2788 ((-2 (|:| |gblist| (-639 (-246 |#1| |#2|))) (|:| |gvlist| (-639 (-562)))) (-639 (-480 |#1| |#2|)))) (-15 -4338 ((-2 (|:| |glbase| (-639 (-246 |#1| |#2|))) (|:| |glval| (-639 (-562)))) (-639 (-246 |#1| |#2|)))) (-15 -4038 ((-639 (-246 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -2532 ((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)) (-859 |#1|))) (-15 -2532 ((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-859 |#1|))) (-15 -2233 ((-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -1715 ((-1256 |#2|) (-480 |#1| |#2|) (-639 (-480 |#1| |#2|)))) (-15 -2595 ((-246 |#1| |#2|) (-639 |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|)))) (-15 -1359 ((-639 (-480 |#1| |#2|)) (-859 |#1|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -3101 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|)))) (-15 -2871 ((-480 |#1| |#2|) (-246 |#1| |#2|)))) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) NIL)) (-3052 (((-1261) $ (-1150) (-1150)) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 (((-52) $ (-1150) (-52)) 16) (((-52) $ (-1168) (-52)) 17)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 (-52) "failed") (-1150) $) NIL)) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092))))) (-4000 (($ (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-3 (-52) "failed") (-1150) $) NIL)) (-1475 (($ (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $ (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092)))) (((-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $ (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-1505 (((-52) $ (-1150) (-52)) NIL (|has| $ (-6 -4403)))) (-1420 (((-52) $ (-1150)) NIL)) (-1720 (((-639 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-639 (-52)) $) NIL (|has| $ (-6 -4402)))) (-4332 (($ $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-1150) $) NIL (|has| (-1150) (-845)))) (-1912 (((-639 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-639 (-52)) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-52) (-1092))))) (-3874 (((-1150) $) NIL (|has| (-1150) (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1554 (($ (-387)) 9)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092))))) (-1520 (((-639 (-1150)) $) NIL)) (-4265 (((-112) (-1150) $) NIL)) (-3262 (((-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) $) NIL)) (-4300 (($ (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) $) NIL)) (-2093 (((-639 (-1150)) $) NIL)) (-1570 (((-112) (-1150) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092))))) (-1421 (((-52) $) NIL (|has| (-1150) (-845)))) (-3251 (((-3 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) "failed") (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL)) (-2716 (($ $ (-52)) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092)))) (($ $ (-293 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092)))) (($ $ (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092)))) (($ $ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092)))) (($ $ (-639 (-52)) (-639 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-639 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-52) (-1092))))) (-2411 (((-639 (-52)) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 (((-52) $ (-1150)) 14) (((-52) $ (-1150) (-52)) NIL) (((-52) $ (-1168)) 15)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092)))) (((-766) (-52) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-52) (-1092)))) (((-766) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) NIL)) (-4054 (((-857) $) NIL (-4037 (|has| (-52) (-609 (-857))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 (-52))) (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-628) (-13 (-1183 (-1150) (-52)) (-10 -8 (-15 -1554 ($ (-387))) (-15 -4332 ($ $)) (-15 -2343 ((-52) $ (-1168))) (-15 -4200 ((-52) $ (-1168) (-52)))))) (T -628)) +((-1554 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-628)))) (-4332 (*1 *1 *1) (-5 *1 (-628))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-628)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1168)) (-5 *1 (-628))))) +(-13 (-1183 (-1150) (-52)) (-10 -8 (-15 -1554 ($ (-387))) (-15 -4332 ($ $)) (-15 -2343 ((-52) $ (-1168))) (-15 -4200 ((-52) $ (-1168) (-52))))) +((-1859 (($ $ |#2|) 10))) +(((-629 |#1| |#2|) (-10 -8 (-15 -1859 (|#1| |#1| |#2|))) (-630 |#2|) (-171)) (T -629)) +NIL +(-10 -8 (-15 -1859 (|#1| |#1| |#2|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4066 (($ $ $) 29)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 28 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) (((-630 |#1|) (-139) (-171)) (T -630)) -((-3929 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)))) (-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)) (-4 *2 (-362))))) -(-13 (-711 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3929 ($ $ $)) (IF (|has| |t#1| (-362)) (-15 -4356 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-1048 |#1|) . T) ((-1091) . T)) -((-2397 (((-3 (-836 |#2|) #1="failed") |#2| (-292 |#2|) (-1148)) 81) (((-3 (-836 |#2|) (-2 (|:| |leftHandLimit| (-3 (-836 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-836 |#2|) #1#))) "failed") |#2| (-292 (-836 |#2|))) 103)) (-2396 (((-3 (-826 |#2|) "failed") |#2| (-292 (-826 |#2|))) 108))) -(((-631 |#1| |#2|) (-10 -7 (-15 -2397 ((-3 (-836 |#2|) (-2 (|:| |leftHandLimit| (-3 (-836 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-836 |#2|) #1#))) "failed") |#2| (-292 (-836 |#2|)))) (-15 -2396 ((-3 (-826 |#2|) "failed") |#2| (-292 (-826 |#2|)))) (-15 -2397 ((-3 (-836 |#2|) #1#) |#2| (-292 |#2|) (-1148)))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -631)) -((-2397 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-292 *3)) (-5 *5 (-1148)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-836 *3)) (-5 *1 (-631 *6 *3)))) (-2396 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-292 (-826 *3))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-826 *3)) (-5 *1 (-631 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-836 *3))) (-4 *3 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-3 (-836 *3) (-2 (|:| |leftHandLimit| (-3 (-836 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-836 *3) #1#))) "failed")) (-5 *1 (-631 *5 *3))))) -(-10 -7 (-15 -2397 ((-3 (-836 |#2|) (-2 (|:| |leftHandLimit| (-3 (-836 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-836 |#2|) #1#))) "failed") |#2| (-292 (-836 |#2|)))) (-15 -2396 ((-3 (-826 |#2|) "failed") |#2| (-292 (-826 |#2|)))) (-15 -2397 ((-3 (-836 |#2|) #1#) |#2| (-292 |#2|) (-1148)))) -((-2397 (((-3 (-836 (-406 (-939 |#1|))) #1="failed") (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))) (-1148)) 80) (((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2="failed") (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|)))) 20) (((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2#) (-406 (-939 |#1|)) (-292 (-836 (-939 |#1|)))) 35)) (-2396 (((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|)))) 23) (((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-826 (-939 |#1|)))) 43))) -(((-632 |#1|) (-10 -7 (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2="failed") (-406 (-939 |#1|)) (-292 (-836 (-939 |#1|))))) (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2#) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -2396 ((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-826 (-939 |#1|))))) (-15 -2396 ((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) #1#) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))) (-1148)))) (-450)) (T -632)) -((-2397 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-292 (-406 (-939 *6)))) (-5 *5 (-1148)) (-5 *3 (-406 (-939 *6))) (-4 *6 (-450)) (-5 *2 (-836 *3)) (-5 *1 (-632 *6)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-450)) (-5 *2 (-826 *3)) (-5 *1 (-632 *5)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-826 (-939 *5)))) (-4 *5 (-450)) (-5 *2 (-826 (-406 (-939 *5)))) (-5 *1 (-632 *5)) (-5 *3 (-406 (-939 *5))))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-450)) (-5 *2 (-3 (-836 *3) (-2 (|:| |leftHandLimit| (-3 (-836 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-836 *3) #1#))) #2="failed")) (-5 *1 (-632 *5)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-292 (-836 (-939 *5)))) (-4 *5 (-450)) (-5 *2 (-3 (-836 (-406 (-939 *5))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 *5))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 *5))) #1#))) #2#)) (-5 *1 (-632 *5)) (-5 *3 (-406 (-939 *5)))))) -(-10 -7 (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2="failed") (-406 (-939 |#1|)) (-292 (-836 (-939 |#1|))))) (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-836 (-406 (-939 |#1|))) #1#))) #2#) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -2396 ((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-826 (-939 |#1|))))) (-15 -2396 ((-826 (-406 (-939 |#1|))) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -2397 ((-3 (-836 (-406 (-939 |#1|))) #1#) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))) (-1148)))) -((-2400 (((-3 (-1253 (-406 |#1|)) "failed") (-1253 |#2|) |#2|) 57 (-3726 (|has| |#1| (-362)))) (((-3 (-1253 |#1|) "failed") (-1253 |#2|) |#2|) 42 (|has| |#1| (-362)))) (-2398 (((-112) (-1253 |#2|)) 30)) (-2399 (((-3 (-1253 |#1|) "failed") (-1253 |#2|)) 33))) -(((-633 |#1| |#2|) (-10 -7 (-15 -2398 ((-112) (-1253 |#2|))) (-15 -2399 ((-3 (-1253 |#1|) "failed") (-1253 |#2|))) (IF (|has| |#1| (-362)) (-15 -2400 ((-3 (-1253 |#1|) "failed") (-1253 |#2|) |#2|)) (-15 -2400 ((-3 (-1253 (-406 |#1|)) "failed") (-1253 |#2|) |#2|)))) (-554) (-634 |#1|)) (T -633)) -((-2400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-3726 (-4 *5 (-362))) (-4 *5 (-554)) (-5 *2 (-1253 (-406 *5))) (-5 *1 (-633 *5 *4)))) (-2400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-4 *5 (-362)) (-4 *5 (-554)) (-5 *2 (-1253 *5)) (-5 *1 (-633 *5 *4)))) (-2399 (*1 *2 *3) (|partial| -12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-554)) (-5 *2 (-1253 *4)) (-5 *1 (-633 *4 *5)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-554)) (-5 *2 (-112)) (-5 *1 (-633 *4 *5))))) -(-10 -7 (-15 -2398 ((-112) (-1253 |#2|))) (-15 -2399 ((-3 (-1253 |#1|) "failed") (-1253 |#2|))) (IF (|has| |#1| (-362)) (-15 -2400 ((-3 (-1253 |#1|) "failed") (-1253 |#2|) |#2|)) (-15 -2400 ((-3 (-1253 (-406 |#1|)) "failed") (-1253 |#2|) |#2|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2401 (((-682 |#1|) (-682 $)) 36) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 35)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-634 |#1|) (-139) (-1042)) (T -634)) -((-2401 (*1 *2 *3) (-12 (-5 *3 (-682 *1)) (-4 *1 (-634 *4)) (-4 *4 (-1042)) (-5 *2 (-682 *4)))) (-2401 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *1)) (-5 *4 (-1253 *1)) (-4 *1 (-634 *5)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -1728 (-682 *5)) (|:| |vec| (-1253 *5))))))) -(-13 (-1042) (-10 -8 (-15 -2401 ((-682 |t#1|) (-682 $))) (-15 -2401 ((-2 (|:| -1728 (-682 |t#1|)) (|:| |vec| (-1253 |t#1|))) (-682 $) (-1253 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-4201 ((|#1| $) NIL)) (-4203 (($ $) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) $) NIL (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1874 (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-3292 (($ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) NIL (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-2404 (($ $ $) 31 (|has| |#1| (-1091)))) (-2403 (($ $ $) 33 (|has| |#1| (-1091)))) (-2402 (($ $ $) 36 (|has| |#1| (-1091)))) (-1659 (($ (-1 (-112) |#1|) $) NIL)) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4202 ((|#1| $) NIL)) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-4205 (($ $) NIL) (($ $ (-765)) NIL)) (-2498 (($ $) NIL (|has| |#1| (-1091)))) (-1424 (($ $) 30 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) NIL (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) NIL)) (-3810 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-3823 (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091))) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) (-1 (-112) |#1|) $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-2406 (((-112) $) 9)) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2407 (($) 7)) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3241 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3917 (($ $ $) NIL (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3941 (($ |#1|) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4204 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-4014 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-3847 (((-112) $) NIL)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1220 (-544))) NIL) ((|#1| $ (-544)) 35) ((|#1| $ (-544) |#1|) NIL)) (-3412 (((-544) $ $) NIL)) (-1660 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-4040 (((-112) $) NIL)) (-4198 (($ $) NIL)) (-4196 (($ $) NIL (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 44 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-3860 (($ |#1| $) 10)) (-4197 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4208 (($ $ $) 29) (($ |#1| $) NIL) (($ (-635 $)) NIL) (($ $ |#1|) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2405 (($ $ $) 11)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2879 (((-1148) $) 25 (|has| |#1| (-815))) (((-1148) $ (-112)) 26 (|has| |#1| (-815))) (((-1259) (-817) $) 27 (|has| |#1| (-815))) (((-1259) (-817) $ (-112)) 28 (|has| |#1| (-815)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-635 |#1|) (-13 (-659 |#1|) (-10 -8 (-15 -2407 ($)) (-15 -2406 ((-112) $)) (-15 -3860 ($ |#1| $)) (-15 -2405 ($ $ $)) (IF (|has| |#1| (-1091)) (PROGN (-15 -2404 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2402 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) (-1204)) (T -635)) -((-2407 (*1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3)) (-4 *3 (-1204)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204)))) (-2405 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204)))) (-2404 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)))) (-2403 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)))) (-2402 (*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204))))) -(-13 (-659 |#1|) (-10 -8 (-15 -2407 ($)) (-15 -2406 ((-112) $)) (-15 -3860 ($ |#1| $)) (-15 -2405 ($ $ $)) (IF (|has| |#1| (-1091)) (PROGN (-15 -2404 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2402 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |%noBranch|))) -((-4248 (((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|) 16)) (-4249 ((|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|) 18)) (-4365 (((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)) 13))) -(((-636 |#1| |#2|) (-10 -7 (-15 -4248 ((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -4365 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)))) (-1204) (-1204)) (T -636)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-635 *6)) (-5 *1 (-636 *5 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-635 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-636 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-635 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-5 *2 (-635 *5)) (-5 *1 (-636 *6 *5))))) -(-10 -7 (-15 -4248 ((-635 |#2|) (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-635 |#1|) |#2|)) (-15 -4365 ((-635 |#2|) (-1 |#2| |#1|) (-635 |#1|)))) -((-3826 ((|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|) 17) ((|#2| (-635 |#1|) (-635 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|)) 12))) -(((-637 |#1| |#2|) (-10 -7 (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|))) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1|)) (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|)) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|)) (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|))) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|)))) (-1091) (-1204)) (T -637)) -((-3826 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1091)) (-4 *2 (-1204)) (-5 *1 (-637 *5 *2)))) (-3826 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *1 (-637 *5 *6)))) (-3826 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1091)) (-4 *2 (-1204)) (-5 *1 (-637 *5 *2)))) (-3826 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 *5)) (-4 *6 (-1091)) (-4 *5 (-1204)) (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5)))) (-3826 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1091)) (-4 *2 (-1204)) (-5 *1 (-637 *5 *2)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6))))) -(-10 -7 (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|))) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1|)) (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) |#2|)) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1| |#2|)) (-15 -3826 ((-1 |#2| |#1|) (-635 |#1|) (-635 |#2|) (-1 |#2| |#1|))) (-15 -3826 (|#2| (-635 |#1|) (-635 |#2|) |#1| (-1 |#2| |#1|)))) -((-4365 (((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|)) 13))) -(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|)))) (-1204) (-1204) (-1204)) (T -638)) -((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-635 *6)) (-5 *5 (-635 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-635 *8)) (-5 *1 (-638 *6 *7 *8))))) -(-10 -7 (-15 -4365 ((-635 |#3|) (-1 |#3| |#1| |#2|) (-635 |#1|) (-635 |#2|)))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11) (($ (-1171)) NIL) (((-1171) $) NIL) ((|#1| $) 8)) (-3437 (((-112) $ $) NIL))) -(((-639 |#1|) (-13 (-1073) (-608 |#1|)) (-1091)) (T -639)) -NIL -(-13 (-1073) (-608 |#1|)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2408 (($ |#1| |#1| $) 43)) (-1293 (((-112) $ (-765)) NIL)) (-1659 (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2498 (($ $) 45)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) 51 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 53 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 9 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 37)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) 46)) (-4014 (($ |#1| $) 26) (($ |#1| $ (-765)) 42)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1357 ((|#1| $) 48)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 21)) (-3972 (($) 25)) (-2409 (((-112) $) 49)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 58)) (-1550 (($) 23) (($ (-635 |#1|)) 18)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) 55 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 19)) (-4377 (((-533) $) 34 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4353 (((-857) $) 14 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 22)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 60 (|has| |#1| (-1091)))) (-4364 (((-765) $) 16 (|has| $ (-6 -4400))))) -(((-640 |#1|) (-13 (-688 |#1|) (-10 -8 (-6 -4400) (-15 -2409 ((-112) $)) (-15 -2408 ($ |#1| |#1| $)))) (-1091)) (T -640)) -((-2409 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1091)))) (-2408 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1091))))) -(-13 (-688 |#1|) (-10 -8 (-6 -4400) (-15 -2409 ((-112) $)) (-15 -2408 ($ |#1| |#1| $)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23))) -(((-641 |#1|) (-139) (-1049)) (T -641)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1049))))) +((-4066 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)))) (-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)) (-4 *2 (-362))))) +(-13 (-712 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4066 ($ $ $)) (IF (|has| |t#1| (-362)) (-15 -1859 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-1050 |#1|) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3931 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1902 (((-1256 (-683 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1256 (-683 |#1|)) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-3655 (((-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-1800 (($) NIL T CONST)) (-2874 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2117 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-4356 (((-683 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2422 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2966 (((-683 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2545 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3407 (((-1164 (-947 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-1379 (($ $ (-916)) NIL)) (-2355 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3474 (((-1164 |#1|) $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2819 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2964 (((-1164 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2380 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4018 (($ (-1256 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1256 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-3668 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2173 (((-916)) NIL (|has| |#2| (-366 |#1|)))) (-1321 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3650 (($ $ (-916)) NIL)) (-3813 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3375 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4258 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1681 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3700 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3025 (((-683 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4153 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1671 (((-683 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4238 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2743 (((-1164 (-947 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2991 (($ $ (-916)) NIL)) (-1680 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2026 (((-1164 |#1|) $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-1305 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2670 (((-1164 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-2090 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2913 (((-1150) $) NIL)) (-2144 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2580 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2809 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1709 (((-1112) $) NIL)) (-4323 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2343 ((|#1| $ (-562)) NIL (|has| |#2| (-416 |#1|)))) (-3593 (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-416 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $) (-1256 $)) NIL (|has| |#2| (-366 |#1|))) (((-1256 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4208 (($ (-1256 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-4136 (((-639 (-947 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-639 (-947 |#1|)) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-1911 (($ $ $) NIL)) (-1396 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4054 (((-857) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3928 (((-1256 $)) NIL (|has| |#2| (-416 |#1|)))) (-3553 (((-639 (-1256 |#1|))) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2436 (($ $ $ $) NIL)) (-2850 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1360 (($ (-683 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-3626 (($ $ $) NIL)) (-1981 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3199 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4114 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2286 (($) 15 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) 17)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-631 |#1| |#2|) (-13 (-739 |#1|) (-609 |#2|) (-10 -8 (-15 -4054 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-739 |#1|)) (T -631)) +((-4054 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-631 *3 *2)) (-4 *2 (-739 *3))))) +(-13 (-739 |#1|) (-609 |#2|) (-10 -8 (-15 -4054 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) +((-2166 (((-3 (-838 |#2|) "failed") |#2| (-293 |#2|) (-1150)) 81) (((-3 (-838 |#2|) (-2 (|:| |leftHandLimit| (-3 (-838 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-838 |#2|) "failed"))) "failed") |#2| (-293 (-838 |#2|))) 103)) (-3879 (((-3 (-828 |#2|) "failed") |#2| (-293 (-828 |#2|))) 108))) +(((-632 |#1| |#2|) (-10 -7 (-15 -2166 ((-3 (-838 |#2|) (-2 (|:| |leftHandLimit| (-3 (-838 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-838 |#2|) "failed"))) "failed") |#2| (-293 (-838 |#2|)))) (-15 -3879 ((-3 (-828 |#2|) "failed") |#2| (-293 (-828 |#2|)))) (-15 -2166 ((-3 (-838 |#2|) "failed") |#2| (-293 |#2|) (-1150)))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -632)) +((-2166 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1150)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-838 *3)) (-5 *1 (-632 *6 *3)))) (-3879 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-293 (-828 *3))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-828 *3)) (-5 *1 (-632 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-2166 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-838 *3))) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (-838 *3) (-2 (|:| |leftHandLimit| (-3 (-838 *3) "failed")) (|:| |rightHandLimit| (-3 (-838 *3) "failed"))) "failed")) (-5 *1 (-632 *5 *3))))) +(-10 -7 (-15 -2166 ((-3 (-838 |#2|) (-2 (|:| |leftHandLimit| (-3 (-838 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-838 |#2|) "failed"))) "failed") |#2| (-293 (-838 |#2|)))) (-15 -3879 ((-3 (-828 |#2|) "failed") |#2| (-293 (-828 |#2|)))) (-15 -2166 ((-3 (-838 |#2|) "failed") |#2| (-293 |#2|) (-1150)))) +((-2166 (((-3 (-838 (-406 (-947 |#1|))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))) (-1150)) 80) (((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|)))) 20) (((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-838 (-947 |#1|)))) 35)) (-3879 (((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|)))) 23) (((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-828 (-947 |#1|)))) 43))) +(((-633 |#1|) (-10 -7 (-15 -2166 ((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-838 (-947 |#1|))))) (-15 -2166 ((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -3879 ((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-828 (-947 |#1|))))) (-15 -3879 ((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -2166 ((-3 (-838 (-406 (-947 |#1|))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))) (-1150)))) (-451)) (T -633)) +((-2166 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 (-406 (-947 *6)))) (-5 *5 (-1150)) (-5 *3 (-406 (-947 *6))) (-4 *6 (-451)) (-5 *2 (-838 *3)) (-5 *1 (-633 *6)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) (-4 *5 (-451)) (-5 *2 (-828 *3)) (-5 *1 (-633 *5)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-828 (-947 *5)))) (-4 *5 (-451)) (-5 *2 (-828 (-406 (-947 *5)))) (-5 *1 (-633 *5)) (-5 *3 (-406 (-947 *5))))) (-2166 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) (-4 *5 (-451)) (-5 *2 (-3 (-838 *3) (-2 (|:| |leftHandLimit| (-3 (-838 *3) "failed")) (|:| |rightHandLimit| (-3 (-838 *3) "failed"))) "failed")) (-5 *1 (-633 *5)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-838 (-947 *5)))) (-4 *5 (-451)) (-5 *2 (-3 (-838 (-406 (-947 *5))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 *5))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 *5))) "failed"))) "failed")) (-5 *1 (-633 *5)) (-5 *3 (-406 (-947 *5)))))) +(-10 -7 (-15 -2166 ((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-838 (-947 |#1|))))) (-15 -2166 ((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -3879 ((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-828 (-947 |#1|))))) (-15 -3879 ((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -2166 ((-3 (-838 (-406 (-947 |#1|))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))) (-1150)))) +((-1400 (((-3 (-1256 (-406 |#1|)) "failed") (-1256 |#2|) |#2|) 57 (-2236 (|has| |#1| (-362)))) (((-3 (-1256 |#1|) "failed") (-1256 |#2|) |#2|) 42 (|has| |#1| (-362)))) (-1569 (((-112) (-1256 |#2|)) 30)) (-1847 (((-3 (-1256 |#1|) "failed") (-1256 |#2|)) 33))) +(((-634 |#1| |#2|) (-10 -7 (-15 -1569 ((-112) (-1256 |#2|))) (-15 -1847 ((-3 (-1256 |#1|) "failed") (-1256 |#2|))) (IF (|has| |#1| (-362)) (-15 -1400 ((-3 (-1256 |#1|) "failed") (-1256 |#2|) |#2|)) (-15 -1400 ((-3 (-1256 (-406 |#1|)) "failed") (-1256 |#2|) |#2|)))) (-554) (-635 |#1|)) (T -634)) +((-1400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 *5)) (-2236 (-4 *5 (-362))) (-4 *5 (-554)) (-5 *2 (-1256 (-406 *5))) (-5 *1 (-634 *5 *4)))) (-1400 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 *5)) (-4 *5 (-362)) (-4 *5 (-554)) (-5 *2 (-1256 *5)) (-5 *1 (-634 *5 *4)))) (-1847 (*1 *2 *3) (|partial| -12 (-5 *3 (-1256 *5)) (-4 *5 (-635 *4)) (-4 *4 (-554)) (-5 *2 (-1256 *4)) (-5 *1 (-634 *4 *5)))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-635 *4)) (-4 *4 (-554)) (-5 *2 (-112)) (-5 *1 (-634 *4 *5))))) +(-10 -7 (-15 -1569 ((-112) (-1256 |#2|))) (-15 -1847 ((-3 (-1256 |#1|) "failed") (-1256 |#2|))) (IF (|has| |#1| (-362)) (-15 -1400 ((-3 (-1256 |#1|) "failed") (-1256 |#2|) |#2|)) (-15 -1400 ((-3 (-1256 (-406 |#1|)) "failed") (-1256 |#2|) |#2|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2406 (((-683 |#1|) (-683 $)) 36) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 35)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-635 |#1|) (-139) (-1044)) (T -635)) +((-2406 (*1 *2 *3) (-12 (-5 *3 (-683 *1)) (-4 *1 (-635 *4)) (-4 *4 (-1044)) (-5 *2 (-683 *4)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *1)) (-5 *4 (-1256 *1)) (-4 *1 (-635 *5)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -1545 (-683 *5)) (|:| |vec| (-1256 *5))))))) +(-13 (-1044) (-10 -8 (-15 -2406 ((-683 |t#1|) (-683 $))) (-15 -2406 ((-2 (|:| -1545 (-683 |t#1|)) (|:| |vec| (-1256 |t#1|))) (-683 $) (-1256 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-3789 ((|#2| (-639 |#1|) (-639 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-639 |#1|) (-639 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) |#2|) 17) ((|#2| (-639 |#1|) (-639 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|)) 12))) +(((-636 |#1| |#2|) (-10 -7 (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|))) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1|)) (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) |#2|)) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1| |#2|)) (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) (-1 |#2| |#1|))) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1| (-1 |#2| |#1|)))) (-1092) (-1207)) (T -636)) +((-3789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1092)) (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) (-3789 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-639 *5)) (-5 *4 (-639 *6)) (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *1 (-636 *5 *6)))) (-3789 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-4 *5 (-1092)) (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) (-3789 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 *5)) (-4 *6 (-1092)) (-4 *5 (-1207)) (-5 *2 (-1 *5 *6)) (-5 *1 (-636 *6 *5)))) (-3789 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-4 *5 (-1092)) (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *6)) (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-636 *5 *6))))) +(-10 -7 (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|))) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1|)) (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) |#2|)) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1| |#2|)) (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) (-1 |#2| |#1|))) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1| (-1 |#2| |#1|)))) +((-2578 (((-639 |#2|) (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|) 16)) (-1955 ((|#2| (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|) 18)) (-4152 (((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)) 13))) +(((-637 |#1| |#2|) (-10 -7 (-15 -2578 ((-639 |#2|) (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|)) (-15 -1955 (|#2| (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|)) (-15 -4152 ((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)))) (-1207) (-1207)) (T -637)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-639 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-639 *6)) (-5 *1 (-637 *5 *6)))) (-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-639 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-637 *5 *2)))) (-2578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-639 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-639 *5)) (-5 *1 (-637 *6 *5))))) +(-10 -7 (-15 -2578 ((-639 |#2|) (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|)) (-15 -1955 (|#2| (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|)) (-15 -4152 ((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)))) +((-4152 (((-639 |#3|) (-1 |#3| |#1| |#2|) (-639 |#1|) (-639 |#2|)) 13))) +(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-639 |#3|) (-1 |#3| |#1| |#2|) (-639 |#1|) (-639 |#2|)))) (-1207) (-1207) (-1207)) (T -638)) +((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-639 *6)) (-5 *5 (-639 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-639 *8)) (-5 *1 (-638 *6 *7 *8))))) +(-10 -7 (-15 -4152 ((-639 |#3|) (-1 |#3| |#1| |#2|) (-639 |#1|) (-639 |#2|)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) NIL)) (-2359 ((|#1| $) NIL)) (-3121 (($ $) NIL)) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-2254 (($ $ (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) $) NIL (|has| |#1| (-845))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3381 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1395 (($ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-1512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-3012 (($ $ $) NIL (|has| $ (-6 -4403)))) (-3950 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-2687 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4403))) (($ $ "rest" $) NIL (|has| $ (-6 -4403))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-1349 (($ $ $) 31 (|has| |#1| (-1092)))) (-1340 (($ $ $) 33 (|has| |#1| (-1092)))) (-3750 (($ $ $) 36 (|has| |#1| (-1092)))) (-3111 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-2350 ((|#1| $) NIL)) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1434 (($ $) NIL) (($ $ (-766)) NIL)) (-4354 (($ $) NIL (|has| |#1| (-1092)))) (-1459 (($ $) 30 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4000 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-3266 (((-112) $) NIL)) (-4264 (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092))) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) (-1 (-112) |#1|) $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-2220 (((-112) $) 9)) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1370 (($) 7)) (-1458 (($ (-766) |#1|) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2673 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1610 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3716 (($ |#1|) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-4007 (((-639 |#1|) $) NIL)) (-3449 (((-112) $) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1504 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-4300 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3297 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-2017 (((-112) $) NIL)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1223 (-562))) NIL) ((|#1| $ (-562)) 35) ((|#1| $ (-562) |#1|) NIL)) (-2568 (((-562) $ $) NIL)) (-2878 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2424 (((-112) $) NIL)) (-2613 (($ $) NIL)) (-4327 (($ $) NIL (|has| $ (-6 -4403)))) (-2296 (((-766) $) NIL)) (-3913 (($ $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 44 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) NIL)) (-3949 (($ |#1| $) 10)) (-4142 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2767 (($ $ $) 29) (($ |#1| $) NIL) (($ (-639 $)) NIL) (($ $ |#1|) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1592 (($ $ $) 11)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-2833 (((-1150) $) 25 (|has| |#1| (-823))) (((-1150) $ (-112)) 26 (|has| |#1| (-823))) (((-1261) (-817) $) 27 (|has| |#1| (-823))) (((-1261) (-817) $ (-112)) 28 (|has| |#1| (-823)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-639 |#1|) (-13 (-660 |#1|) (-10 -8 (-15 -1370 ($)) (-15 -2220 ((-112) $)) (-15 -3949 ($ |#1| $)) (-15 -1592 ($ $ $)) (IF (|has| |#1| (-1092)) (PROGN (-15 -1349 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -3750 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1207)) (T -639)) +((-1370 (*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-639 *3)) (-4 *3 (-1207)))) (-3949 (*1 *1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207)))) (-1592 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207)))) (-1349 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207)))) (-1340 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207)))) (-3750 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207))))) +(-13 (-660 |#1|) (-10 -8 (-15 -1370 ($)) (-15 -2220 ((-112) $)) (-15 -3949 ($ |#1| $)) (-15 -1592 ($ $ $)) (IF (|has| |#1| (-1092)) (PROGN (-15 -1349 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -3750 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 11) (($ (-1173)) NIL) (((-1173) $) NIL) ((|#1| $) 8)) (-1731 (((-112) $ $) NIL))) +(((-640 |#1|) (-13 (-1075) (-609 |#1|)) (-1092)) (T -640)) +NIL +(-13 (-1075) (-609 |#1|)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1447 (($ |#1| |#1| $) 43)) (-4336 (((-112) $ (-766)) NIL)) (-3111 (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-4354 (($ $) 45)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4000 (($ |#1| $) 51 (|has| $ (-6 -4402))) (($ (-1 (-112) |#1|) $) 53 (|has| $ (-6 -4402)))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1720 (((-639 |#1|) $) 9 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 37)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3262 ((|#1| $) 46)) (-4300 (($ |#1| $) 26) (($ |#1| $ (-766)) 42)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1904 ((|#1| $) 48)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 21)) (-4307 (($) 25)) (-1804 (((-112) $) 49)) (-2671 (((-639 (-2 (|:| -2694 |#1|) (|:| -1723 (-766)))) $) 58)) (-3564 (($) 23) (($ (-639 |#1|)) 18)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) 55 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) 19)) (-4208 (((-535) $) 34 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) NIL)) (-4054 (((-857) $) 14 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) 22)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 60 (|has| |#1| (-1092)))) (-3492 (((-766) $) 16 (|has| $ (-6 -4402))))) +(((-641 |#1|) (-13 (-689 |#1|) (-10 -8 (-6 -4402) (-15 -1804 ((-112) $)) (-15 -1447 ($ |#1| |#1| $)))) (-1092)) (T -641)) +((-1804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1092)))) (-1447 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1092))))) +(-13 (-689 |#1|) (-10 -8 (-6 -4402) (-15 -1804 ((-112) $)) (-15 -1447 ($ |#1| |#1| $)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23))) +(((-642 |#1|) (-139) (-1051)) (T -642)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1051))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765) $) 15)) (-2414 (($ $ |#1|) 56)) (-2416 (($ $) 32)) (-2417 (($ $) 31)) (-3558 (((-3 |#1| "failed") $) 48)) (-3557 ((|#1| $) NIL)) (-2449 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-3932 (((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-544)) 46)) (-2813 ((|#1| $ (-544)) 30)) (-2814 ((|#2| $ (-544)) 29)) (-2410 (($ (-1 |#1| |#1|) $) 34)) (-2411 (($ (-1 |#2| |#2|) $) 38)) (-2415 (($) 10)) (-2419 (($ |#1| |#2|) 22)) (-2418 (($ (-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|)))) 23)) (-2420 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $) 13)) (-2413 (($ |#1| $) 57)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2412 (((-112) $ $) 60)) (-4353 (((-857) $) 19) (($ |#1|) 16)) (-3437 (((-112) $ $) 25))) -(((-642 |#1| |#2| |#3|) (-13 (-1091) (-1031 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-544))) (-15 -2420 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $)) (-15 -2419 ($ |#1| |#2|)) (-15 -2418 ($ (-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))))) (-15 -2814 (|#2| $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2417 ($ $)) (-15 -2416 ($ $)) (-15 -3521 ((-765) $)) (-15 -2415 ($)) (-15 -2414 ($ $ |#1|)) (-15 -2413 ($ |#1| $)) (-15 -2449 ($ |#1| |#2| $)) (-15 -2449 ($ $ $)) (-15 -2412 ((-112) $ $)) (-15 -2411 ($ (-1 |#2| |#2|) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)))) (-1091) (-23) |#2|) (T -642)) -((-3932 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-857) (-857) (-857))) (-5 *4 (-544)) (-5 *2 (-857)) (-5 *1 (-642 *5 *6 *7)) (-4 *5 (-1091)) (-4 *6 (-23)) (-14 *7 *6))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4))) (-2419 (*1 *1 *2 *3) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2418 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)))) (-2814 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *2 (-23)) (-5 *1 (-642 *4 *2 *5)) (-4 *4 (-1091)) (-14 *5 *2))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *2 (-1091)) (-5 *1 (-642 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2417 (*1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2416 (*1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4))) (-2415 (*1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2414 (*1 *1 *1 *2) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2413 (*1 *1 *2 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2449 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2449 (*1 *1 *1 *1) (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) (-2412 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4))) (-2411 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)))) (-2410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-642 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1091) (-1031 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-544))) (-15 -2420 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))) $)) (-15 -2419 ($ |#1| |#2|)) (-15 -2418 ($ (-635 (-2 (|:| |gen| |#1|) (|:| -4350 |#2|))))) (-15 -2814 (|#2| $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2417 ($ $)) (-15 -2416 ($ $)) (-15 -3521 ((-765) $)) (-15 -2415 ($)) (-15 -2414 ($ $ |#1|)) (-15 -2413 ($ |#1| $)) (-15 -2449 ($ |#1| |#2| $)) (-15 -2449 ($ $ $)) (-15 -2412 ((-112) $ $)) (-15 -2411 ($ (-1 |#2| |#2|) $)) (-15 -2410 ($ (-1 |#1| |#1|) $)))) -((-2347 (((-544) $) 23)) (-2421 (($ |#2| $ (-544)) 21) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) 12)) (-2350 (((-112) (-544) $) 14)) (-4208 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-635 $)) NIL))) -(((-643 |#1| |#2|) (-10 -8 (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -2347 ((-544) |#1|)) (-15 -2349 ((-635 (-544)) |#1|)) (-15 -2350 ((-112) (-544) |#1|))) (-644 |#2|) (-1204)) (T -643)) -NIL -(-10 -8 (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -2347 ((-544) |#1|)) (-15 -2349 ((-635 (-544)) |#1|)) (-15 -2350 ((-112) (-544) |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-644 |#1|) (-139) (-1204)) (T -644)) -((-4021 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-4208 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204)))) (-4208 (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204)))) (-4208 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-4365 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-2421 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-644 *2)) (-4 *2 (-1204)))) (-2421 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1220 (-544))) (|has| *1 (-6 -4401)) (-4 *1 (-644 *2)) (-4 *2 (-1204))))) -(-13 (-599 (-544) |t#1|) (-150 |t#1|) (-10 -8 (-15 -4021 ($ (-765) |t#1|)) (-15 -4208 ($ $ |t#1|)) (-15 -4208 ($ |t#1| $)) (-15 -4208 ($ $ $)) (-15 -4208 ($ (-635 $))) (-15 -4365 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4206 ($ $ (-1220 (-544)))) (-15 -2422 ($ $ (-544))) (-15 -2422 ($ $ (-1220 (-544)))) (-15 -2421 ($ |t#1| $ (-544))) (-15 -2421 ($ $ $ (-544))) (IF (|has| $ (-6 -4401)) (-15 -4194 (|t#1| $ (-1220 (-544)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 15)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3381 ((|#1| $) 21)) (-2913 (($ $ $) NIL (|has| |#1| (-785)))) (-3242 (($ $ $) NIL (|has| |#1| (-785)))) (-3643 (((-1148) $) 46)) (-3644 (((-1110) $) NIL)) (-3380 ((|#3| $) 22)) (-4353 (((-857) $) 42)) (-3040 (($) 10 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-785)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-785)))) (-3437 (((-112) $ $) 20)) (-3066 (((-112) $ $) NIL (|has| |#1| (-785)))) (-3067 (((-112) $ $) 24 (|has| |#1| (-785)))) (-4356 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4244 (($ $) 17) (($ $ $) NIL)) (-4246 (($ $ $) 27)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-645 |#1| |#2| |#3|) (-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) (-15 -4356 ($ $ |#3|)) (-15 -4356 ($ |#1| |#3|)) (-15 -3381 (|#1| $)) (-15 -3380 (|#3| $)))) (-711 |#2|) (-171) (|SubsetCategory| (-720) |#2|)) (T -645)) -((-4356 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-645 *3 *4 *2)) (-4 *3 (-711 *4)) (-4 *2 (|SubsetCategory| (-720) *4)))) (-4356 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-645 *2 *4 *3)) (-4 *2 (-711 *4)) (-4 *3 (|SubsetCategory| (-720) *4)))) (-3381 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-711 *3)) (-5 *1 (-645 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-720) *3)))) (-3380 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) (-5 *1 (-645 *3 *4 *2)) (-4 *3 (-711 *4))))) -(-13 (-711 |#2|) (-10 -8 (IF (|has| |#1| (-785)) (-6 (-785)) |%noBranch|) (-15 -4356 ($ $ |#3|)) (-15 -4356 ($ |#1| |#3|)) (-15 -3381 (|#1| $)) (-15 -3380 (|#3| $)))) -((-3980 (((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-635 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) "failed") |#3| |#2| (-1166)) 44))) -(((-646 |#1| |#2| |#3|) (-10 -7 (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) "failed") |#3| |#2| (-1166))) (-15 -3980 ((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-635 |#2|)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953)) (-651 |#2|)) (T -646)) -((-3980 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-646 *6 *2 *3)) (-4 *3 (-651 *2)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-4 *4 (-13 (-29 *6) (-1190) (-953))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2162 (-635 *4)))) (-5 *1 (-646 *6 *4 *3)) (-4 *3 (-651 *4))))) -(-10 -7 (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) "failed") |#3| |#2| (-1166))) (-15 -3980 ((-3 |#2| "failed") |#3| |#2| (-1166) |#2| (-635 |#2|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2423 (($ $) NIL (|has| |#1| (-362)))) (-2425 (($ $ $) 28 (|has| |#1| (-362)))) (-2426 (($ $ (-765)) 31 (|has| |#1| (-362)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#1| (-362)))) (-2919 (($ $ $) NIL (|has| |#1| (-362)))) (-2920 (($ $ $) NIL (|has| |#1| (-362)))) (-2916 (($ $ $) NIL (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-2545 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#1| (-362)))) (-2925 (($ $ $) NIL (|has| |#1| (-362)))) (-2914 (($ $ $) NIL (|has| |#1| (-362)))) (-2922 (($ $ $) NIL (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-554)))) (-4206 ((|#1| $ |#1|) 24)) (-2427 (($ $ $) 33 (|has| |#1| (-362)))) (-4355 (((-765) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) 20) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#1| $ |#1| |#1|) 23)) (-2899 (($ $) NIL)) (-3040 (($) 21 T CONST)) (-3046 (($) 8 T CONST)) (-3051 (($) NIL)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-647 |#1| |#2|) (-651 |#1|) (-1042) (-1 |#1| |#1|)) (T -647)) -NIL -(-651 |#1|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2423 (($ $) NIL (|has| |#1| (-362)))) (-2425 (($ $ $) NIL (|has| |#1| (-362)))) (-2426 (($ $ (-765)) NIL (|has| |#1| (-362)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#1| (-362)))) (-2919 (($ $ $) NIL (|has| |#1| (-362)))) (-2920 (($ $ $) NIL (|has| |#1| (-362)))) (-2916 (($ $ $) NIL (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-2545 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#1| (-362)))) (-2925 (($ $ $) NIL (|has| |#1| (-362)))) (-2914 (($ $ $) NIL (|has| |#1| (-362)))) (-2922 (($ $ $) NIL (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-554)))) (-4206 ((|#1| $ |#1|) NIL)) (-2427 (($ $ $) NIL (|has| |#1| (-362)))) (-4355 (((-765) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#1| $ |#1| |#1|) NIL)) (-2899 (($ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($) NIL)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-648 |#1|) (-651 |#1|) (-232)) (T -648)) -NIL -(-651 |#1|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2423 (($ $) NIL (|has| |#1| (-362)))) (-2425 (($ $ $) NIL (|has| |#1| (-362)))) (-2426 (($ $ (-765)) NIL (|has| |#1| (-362)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#1| (-362)))) (-2919 (($ $ $) NIL (|has| |#1| (-362)))) (-2920 (($ $ $) NIL (|has| |#1| (-362)))) (-2916 (($ $ $) NIL (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-2545 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#1| (-362)))) (-2925 (($ $ $) NIL (|has| |#1| (-362)))) (-2914 (($ $ $) NIL (|has| |#1| (-362)))) (-2922 (($ $ $) NIL (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-554)))) (-4206 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2427 (($ $ $) NIL (|has| |#1| (-362)))) (-4355 (((-765) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#1| $ |#1| |#1|) NIL)) (-2899 (($ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($) NIL)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-649 |#1| |#2|) (-13 (-651 |#1|) (-285 |#2| |#2|)) (-232) (-13 (-641 |#1|) (-10 -8 (-15 -4217 ($ $))))) (T -649)) -NIL -(-13 (-651 |#1|) (-285 |#2| |#2|)) -((-2423 (($ $) 26)) (-2899 (($ $) 24)) (-3051 (($) 12))) -(((-650 |#1| |#2|) (-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -3051 (|#1|))) (-651 |#2|) (-1042)) (T -650)) -NIL -(-10 -8 (-15 -2423 (|#1| |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -3051 (|#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2423 (($ $) 81 (|has| |#1| (-362)))) (-2425 (($ $ $) 83 (|has| |#1| (-362)))) (-2426 (($ $ (-765)) 82 (|has| |#1| (-362)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2918 (($ $ $) 44 (|has| |#1| (-362)))) (-2919 (($ $ $) 45 (|has| |#1| (-362)))) (-2920 (($ $ $) 47 (|has| |#1| (-362)))) (-2916 (($ $ $) 42 (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 41 (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) 43 (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 46 (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) 74 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) 71 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) 68)) (-3557 (((-544) $) 73 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 70 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 69)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 54 (|has| |#1| (-450)))) (-2545 (((-112) $) 31)) (-3276 (($ |#1| (-765)) 61)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 56 (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 57 (|has| |#1| (-554)))) (-3202 (((-765) $) 65)) (-2924 (($ $ $) 51 (|has| |#1| (-362)))) (-2925 (($ $ $) 52 (|has| |#1| (-362)))) (-2914 (($ $ $) 40 (|has| |#1| (-362)))) (-2922 (($ $ $) 49 (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 48 (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) 50 (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 53 (|has| |#1| (-362)))) (-3575 ((|#1| $) 64)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ #1#) $ |#1|) 58 (|has| |#1| (-554)))) (-4206 ((|#1| $ |#1|) 86)) (-2427 (($ $ $) 80 (|has| |#1| (-362)))) (-4355 (((-765) $) 66)) (-3199 ((|#1| $) 55 (|has| |#1| (-450)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 72 (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 67)) (-4224 (((-635 |#1|) $) 60)) (-4084 ((|#1| $ (-765)) 62)) (-3511 (((-765)) 28)) (-2927 ((|#1| $ |#1| |#1|) 59)) (-2899 (($ $) 84)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($) 85)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-651 |#1|) (-139) (-1042)) (T -651)) -((-3051 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)))) (-2899 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)))) (-2425 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-651 *3)) (-4 *3 (-1042)) (-4 *3 (-362)))) (-2423 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2427 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(-13 (-846 |t#1|) (-285 |t#1| |t#1|) (-10 -8 (-15 -3051 ($)) (-15 -2899 ($ $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2425 ($ $ $)) (-15 -2426 ($ $ (-765))) (-15 -2423 ($ $)) (-15 -2427 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 #1=(-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-285 |#1| |#1|) . T) ((-411 |#1|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1031 #1#) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-846 |#1|) . T)) -((-2424 (((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|))) 74 (|has| |#1| (-27)))) (-4139 (((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|))) 73 (|has| |#1| (-27))) (((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 17))) -(((-652 |#1| |#2|) (-10 -7 (-15 -4139 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4139 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)))) (-15 -2424 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|))))) |%noBranch|)) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -652)) -((-2424 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-648 (-406 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-406 *5))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-648 (-406 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-406 *5))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-648 (-406 *6)))) (-5 *1 (-652 *5 *6)) (-5 *3 (-648 (-406 *6)))))) -(-10 -7 (-15 -4139 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4139 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|)))) (-15 -2424 ((-635 (-648 (-406 |#2|))) (-648 (-406 |#2|))))) |%noBranch|)) -((-2425 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2426 ((|#2| |#2| (-765) (-1 |#1| |#1|)) 40)) (-2427 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-653 |#1| |#2|) (-10 -7 (-15 -2425 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2426 (|#2| |#2| (-765) (-1 |#1| |#1|))) (-15 -2427 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-362) (-651 |#1|)) (T -653)) -((-2427 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) (-4 *2 (-651 *4)))) (-2426 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-653 *5 *2)) (-4 *2 (-651 *5)))) (-2425 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) (-4 *2 (-651 *4))))) -(-10 -7 (-15 -2425 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2426 (|#2| |#2| (-765) (-1 |#1| |#1|))) (-15 -2427 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2428 (($ $ $) 9))) -(((-654 |#1|) (-10 -8 (-15 -2428 (|#1| |#1| |#1|))) (-655)) (T -654)) -NIL -(-10 -8 (-15 -2428 (|#1| |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-2430 (($ $) 10)) (-2428 (($ $ $) 8)) (-3437 (((-112) $ $) 6)) (-2429 (($ $ $) 9))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766) $) 15)) (-2999 (($ $ |#1|) 56)) (-2447 (($ $) 32)) (-2677 (($ $) 31)) (-4048 (((-3 |#1| "failed") $) 48)) (-3961 ((|#1| $) NIL)) (-2960 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-1995 (((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-562)) 46)) (-3126 ((|#1| $ (-562)) 30)) (-1870 ((|#2| $ (-562)) 29)) (-1304 (($ (-1 |#1| |#1|) $) 34)) (-2866 (($ (-1 |#2| |#2|) $) 38)) (-3744 (($) 10)) (-4105 (($ |#1| |#2|) 22)) (-4214 (($ (-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|)))) 23)) (-3307 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $) 13)) (-1549 (($ |#1| $) 57)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1369 (((-112) $ $) 60)) (-4054 (((-857) $) 19) (($ |#1|) 16)) (-1731 (((-112) $ $) 25))) +(((-643 |#1| |#2| |#3|) (-13 (-1092) (-1033 |#1|) (-10 -8 (-15 -1995 ((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-562))) (-15 -3307 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $)) (-15 -4105 ($ |#1| |#2|)) (-15 -4214 ($ (-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))))) (-15 -1870 (|#2| $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -2677 ($ $)) (-15 -2447 ($ $)) (-15 -1382 ((-766) $)) (-15 -3744 ($)) (-15 -2999 ($ $ |#1|)) (-15 -1549 ($ |#1| $)) (-15 -2960 ($ |#1| |#2| $)) (-15 -2960 ($ $ $)) (-15 -1369 ((-112) $ $)) (-15 -2866 ($ (-1 |#2| |#2|) $)) (-15 -1304 ($ (-1 |#1| |#1|) $)))) (-1092) (-23) |#2|) (T -643)) +((-1995 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-857) (-857) (-857))) (-5 *4 (-562)) (-5 *2 (-857)) (-5 *1 (-643 *5 *6 *7)) (-4 *5 (-1092)) (-4 *6 (-23)) (-14 *7 *6))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4))) (-4105 (*1 *1 *2 *3) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-643 *3 *4 *5)))) (-1870 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *2 (-23)) (-5 *1 (-643 *4 *2 *5)) (-4 *4 (-1092)) (-14 *5 *2))) (-3126 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *2 (-1092)) (-5 *1 (-643 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2677 (*1 *1 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-2447 (*1 *1 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4))) (-3744 (*1 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-2999 (*1 *1 *1 *2) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-1549 (*1 *1 *2 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-2960 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-2960 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-1369 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4))) (-2866 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)))) (-1304 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-643 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1092) (-1033 |#1|) (-10 -8 (-15 -1995 ((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-562))) (-15 -3307 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $)) (-15 -4105 ($ |#1| |#2|)) (-15 -4214 ($ (-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))))) (-15 -1870 (|#2| $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -2677 ($ $)) (-15 -2447 ($ $)) (-15 -1382 ((-766) $)) (-15 -3744 ($)) (-15 -2999 ($ $ |#1|)) (-15 -1549 ($ |#1| $)) (-15 -2960 ($ |#1| |#2| $)) (-15 -2960 ($ $ $)) (-15 -1369 ((-112) $ $)) (-15 -2866 ($ (-1 |#2| |#2|) $)) (-15 -1304 ($ (-1 |#1| |#1|) $)))) +((-3874 (((-562) $) 23)) (-3297 (($ |#2| $ (-562)) 21) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) 12)) (-1570 (((-112) (-562) $) 14)) (-2767 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-639 $)) NIL))) +(((-644 |#1| |#2|) (-10 -8 (-15 -3297 (|#1| |#1| |#1| (-562))) (-15 -3297 (|#1| |#2| |#1| (-562))) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -3874 ((-562) |#1|)) (-15 -2093 ((-639 (-562)) |#1|)) (-15 -1570 ((-112) (-562) |#1|))) (-645 |#2|) (-1207)) (T -644)) +NIL +(-10 -8 (-15 -3297 (|#1| |#1| |#1| (-562))) (-15 -3297 (|#1| |#2| |#1| (-562))) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -3874 ((-562) |#1|)) (-15 -2093 ((-639 (-562)) |#1|)) (-15 -1570 ((-112) (-562) |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3052 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 51)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-1458 (($ (-766) |#1|) 69)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 43 (|has| (-562) (-845)))) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 44 (|has| (-562) (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-2093 (((-639 (-562)) $) 46)) (-1570 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2716 (($ $ |#1|) 41 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-645 |#1|) (-139) (-1207)) (T -645)) +((-1458 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-2767 (*1 *1 *1 *2) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) (-2767 (*1 *1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) (-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-4152 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-2880 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-2880 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-3297 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-645 *2)) (-4 *2 (-1207)))) (-3297 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1223 (-562))) (|has| *1 (-6 -4403)) (-4 *1 (-645 *2)) (-4 *2 (-1207))))) +(-13 (-600 (-562) |t#1|) (-150 |t#1|) (-10 -8 (-15 -1458 ($ (-766) |t#1|)) (-15 -2767 ($ $ |t#1|)) (-15 -2767 ($ |t#1| $)) (-15 -2767 ($ $ $)) (-15 -2767 ($ (-639 $))) (-15 -4152 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2343 ($ $ (-1223 (-562)))) (-15 -2880 ($ $ (-562))) (-15 -2880 ($ $ (-1223 (-562)))) (-15 -3297 ($ |t#1| $ (-562))) (-15 -3297 ($ $ $ (-562))) (IF (|has| $ (-6 -4403)) (-15 -4200 (|t#1| $ (-1223 (-562)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-4351 (((-3 |#2| "failed") |#3| |#2| (-1168) |#2| (-639 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) "failed") |#3| |#2| (-1168)) 44))) +(((-646 |#1| |#2| |#3|) (-10 -7 (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) "failed") |#3| |#2| (-1168))) (-15 -4351 ((-3 |#2| "failed") |#3| |#2| (-1168) |#2| (-639 |#2|)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954)) (-650 |#2|)) (T -646)) +((-4351 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 *2)) (-4 *2 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-646 *6 *2 *3)) (-4 *3 (-650 *2)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1168)) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-4 *4 (-13 (-29 *6) (-1192) (-954))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3928 (-639 *4)))) (-5 *1 (-646 *6 *4 *3)) (-4 *3 (-650 *4))))) +(-10 -7 (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) "failed") |#3| |#2| (-1168))) (-15 -4351 ((-3 |#2| "failed") |#3| |#2| (-1168) |#2| (-639 |#2|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-2155 (($ $) NIL (|has| |#1| (-362)))) (-2639 (($ $ $) NIL (|has| |#1| (-362)))) (-1439 (($ $ (-766)) NIL (|has| |#1| (-362)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1896 (($ $ $) NIL (|has| |#1| (-362)))) (-3688 (($ $ $) NIL (|has| |#1| (-362)))) (-2488 (($ $ $) NIL (|has| |#1| (-362)))) (-4282 (($ $ $) NIL (|has| |#1| (-362)))) (-2703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-3041 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2227 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-451)))) (-1957 (((-112) $) NIL)) (-1378 (($ |#1| (-766)) NIL)) (-1664 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-554)))) (-1736 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-554)))) (-2076 (((-766) $) NIL)) (-1639 (($ $ $) NIL (|has| |#1| (-362)))) (-2492 (($ $ $) NIL (|has| |#1| (-362)))) (-4132 (($ $ $) NIL (|has| |#1| (-362)))) (-3671 (($ $ $) NIL (|has| |#1| (-362)))) (-2189 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-2075 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1535 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-2343 ((|#1| $ |#1|) NIL)) (-2297 (($ $ $) NIL (|has| |#1| (-362)))) (-3598 (((-766) $) NIL)) (-3900 ((|#1| $) NIL (|has| |#1| (-451)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) NIL)) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-766)) NIL)) (-2579 (((-766)) NIL)) (-1360 ((|#1| $ |#1| |#1|) NIL)) (-1563 (($ $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($) NIL)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-647 |#1|) (-650 |#1|) (-232)) (T -647)) +NIL +(-650 |#1|) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-2155 (($ $) NIL (|has| |#1| (-362)))) (-2639 (($ $ $) NIL (|has| |#1| (-362)))) (-1439 (($ $ (-766)) NIL (|has| |#1| (-362)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1896 (($ $ $) NIL (|has| |#1| (-362)))) (-3688 (($ $ $) NIL (|has| |#1| (-362)))) (-2488 (($ $ $) NIL (|has| |#1| (-362)))) (-4282 (($ $ $) NIL (|has| |#1| (-362)))) (-2703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-3041 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2227 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-451)))) (-1957 (((-112) $) NIL)) (-1378 (($ |#1| (-766)) NIL)) (-1664 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-554)))) (-1736 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-554)))) (-2076 (((-766) $) NIL)) (-1639 (($ $ $) NIL (|has| |#1| (-362)))) (-2492 (($ $ $) NIL (|has| |#1| (-362)))) (-4132 (($ $ $) NIL (|has| |#1| (-362)))) (-3671 (($ $ $) NIL (|has| |#1| (-362)))) (-2189 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-2075 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1535 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-2343 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2297 (($ $ $) NIL (|has| |#1| (-362)))) (-3598 (((-766) $) NIL)) (-3900 ((|#1| $) NIL (|has| |#1| (-451)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) NIL)) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-766)) NIL)) (-2579 (((-766)) NIL)) (-1360 ((|#1| $ |#1| |#1|) NIL)) (-1563 (($ $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($) NIL)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-648 |#1| |#2|) (-13 (-650 |#1|) (-285 |#2| |#2|)) (-232) (-13 (-642 |#1|) (-10 -8 (-15 -4029 ($ $))))) (T -648)) +NIL +(-13 (-650 |#1|) (-285 |#2| |#2|)) +((-2155 (($ $) 26)) (-1563 (($ $) 24)) (-3114 (($) 12))) +(((-649 |#1| |#2|) (-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -3114 (|#1|))) (-650 |#2|) (-1044)) (T -649)) +NIL +(-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -3114 (|#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-2155 (($ $) 81 (|has| |#1| (-362)))) (-2639 (($ $ $) 83 (|has| |#1| (-362)))) (-1439 (($ $ (-766)) 82 (|has| |#1| (-362)))) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-1896 (($ $ $) 44 (|has| |#1| (-362)))) (-3688 (($ $ $) 45 (|has| |#1| (-362)))) (-2488 (($ $ $) 47 (|has| |#1| (-362)))) (-4282 (($ $ $) 42 (|has| |#1| (-362)))) (-2703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 41 (|has| |#1| (-362)))) (-3041 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-2227 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 46 (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) 74 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 71 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 68)) (-3961 (((-562) $) 73 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 70 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 69)) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-1498 (($ $) 54 (|has| |#1| (-451)))) (-1957 (((-112) $) 31)) (-1378 (($ |#1| (-766)) 61)) (-1664 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 56 (|has| |#1| (-554)))) (-1736 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 57 (|has| |#1| (-554)))) (-2076 (((-766) $) 65)) (-1639 (($ $ $) 51 (|has| |#1| (-362)))) (-2492 (($ $ $) 52 (|has| |#1| (-362)))) (-4132 (($ $ $) 40 (|has| |#1| (-362)))) (-3671 (($ $ $) 49 (|has| |#1| (-362)))) (-2189 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 48 (|has| |#1| (-362)))) (-2075 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-1535 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 53 (|has| |#1| (-362)))) (-1573 ((|#1| $) 64)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-554)))) (-2343 ((|#1| $ |#1|) 86)) (-2297 (($ $ $) 80 (|has| |#1| (-362)))) (-3598 (((-766) $) 66)) (-3900 ((|#1| $) 55 (|has| |#1| (-451)))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 72 (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 67)) (-4358 (((-639 |#1|) $) 60)) (-3906 ((|#1| $ (-766)) 62)) (-2579 (((-766)) 28)) (-1360 ((|#1| $ |#1| |#1|) 59)) (-1563 (($ $) 84)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($) 85)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-650 |#1|) (-139) (-1044)) (T -650)) +((-3114 (*1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)))) (-1563 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)))) (-2639 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-1439 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-650 *3)) (-4 *3 (-1044)) (-4 *3 (-362)))) (-2155 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-2297 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(-13 (-847 |t#1|) (-285 |t#1| |t#1|) (-10 -8 (-15 -3114 ($)) (-15 -1563 ($ $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2639 ($ $ $)) (-15 -1439 ($ $ (-766))) (-15 -2155 ($ $)) (-15 -2297 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 #0=(-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-285 |#1| |#1|) . T) ((-410 |#1|) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) |has| |#1| (-171)) ((-721) . T) ((-1033 #0#) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-847 |#1|) . T)) +((-3955 (((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|))) 74 (|has| |#1| (-27)))) (-1635 (((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|))) 73 (|has| |#1| (-27))) (((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|)) 17))) +(((-651 |#1| |#2|) (-10 -7 (-15 -1635 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1635 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)))) (-15 -3955 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|))))) |%noBranch|)) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -651)) +((-3955 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-647 (-406 *5)))) (-5 *1 (-651 *4 *5)) (-5 *3 (-647 (-406 *5))))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-647 (-406 *5)))) (-5 *1 (-651 *4 *5)) (-5 *3 (-647 (-406 *5))))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-647 (-406 *6)))) (-5 *1 (-651 *5 *6)) (-5 *3 (-647 (-406 *6)))))) +(-10 -7 (-15 -1635 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1635 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)))) (-15 -3955 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|))))) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-2155 (($ $) NIL (|has| |#1| (-362)))) (-2639 (($ $ $) 28 (|has| |#1| (-362)))) (-1439 (($ $ (-766)) 31 (|has| |#1| (-362)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1896 (($ $ $) NIL (|has| |#1| (-362)))) (-3688 (($ $ $) NIL (|has| |#1| (-362)))) (-2488 (($ $ $) NIL (|has| |#1| (-362)))) (-4282 (($ $ $) NIL (|has| |#1| (-362)))) (-2703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-3041 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2227 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-451)))) (-1957 (((-112) $) NIL)) (-1378 (($ |#1| (-766)) NIL)) (-1664 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-554)))) (-1736 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-554)))) (-2076 (((-766) $) NIL)) (-1639 (($ $ $) NIL (|has| |#1| (-362)))) (-2492 (($ $ $) NIL (|has| |#1| (-362)))) (-4132 (($ $ $) NIL (|has| |#1| (-362)))) (-3671 (($ $ $) NIL (|has| |#1| (-362)))) (-2189 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-2075 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1535 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-2343 ((|#1| $ |#1|) 24)) (-2297 (($ $ $) 33 (|has| |#1| (-362)))) (-3598 (((-766) $) NIL)) (-3900 ((|#1| $) NIL (|has| |#1| (-451)))) (-4054 (((-857) $) 20) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) NIL)) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-766)) NIL)) (-2579 (((-766)) NIL)) (-1360 ((|#1| $ |#1| |#1|) 23)) (-1563 (($ $) NIL)) (-2286 (($) 21 T CONST)) (-2294 (($) 8 T CONST)) (-3114 (($) NIL)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-652 |#1| |#2|) (-650 |#1|) (-1044) (-1 |#1| |#1|)) (T -652)) +NIL +(-650 |#1|) +((-2639 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1439 ((|#2| |#2| (-766) (-1 |#1| |#1|)) 40)) (-2297 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-653 |#1| |#2|) (-10 -7 (-15 -2639 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1439 (|#2| |#2| (-766) (-1 |#1| |#1|))) (-15 -2297 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-362) (-650 |#1|)) (T -653)) +((-2297 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) (-4 *2 (-650 *4)))) (-1439 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-653 *5 *2)) (-4 *2 (-650 *5)))) (-2639 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) (-4 *2 (-650 *4))))) +(-10 -7 (-15 -2639 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1439 (|#2| |#2| (-766) (-1 |#1| |#1|))) (-15 -2297 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2308 (($ $ $) 9))) +(((-654 |#1|) (-10 -8 (-15 -2308 (|#1| |#1| |#1|))) (-655)) (T -654)) +NIL +(-10 -8 (-15 -2308 (|#1| |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-3295 (($ $) 10)) (-2308 (($ $ $) 8)) (-1731 (((-112) $ $) 6)) (-2298 (($ $ $) 9))) (((-655) (-139)) (T -655)) -((-2430 (*1 *1 *1) (-4 *1 (-655))) (-2429 (*1 *1 *1 *1) (-4 *1 (-655))) (-2428 (*1 *1 *1 *1) (-4 *1 (-655)))) -(-13 (-102) (-10 -8 (-15 -2430 ($ $)) (-15 -2429 ($ $ $)) (-15 -2428 ($ $ $)))) +((-3295 (*1 *1 *1) (-4 *1 (-655))) (-2298 (*1 *1 *1 *1) (-4 *1 (-655))) (-2308 (*1 *1 *1 *1) (-4 *1 (-655)))) +(-13 (-102) (-10 -8 (-15 -3295 ($ $)) (-15 -2298 ($ $ $)) (-15 -2308 ($ $ $)))) (((-102) . T)) -((-2431 (((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|)) 33))) -(((-656 |#1|) (-10 -7 (-15 -2431 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|)))) (-903)) (T -656)) -((-2431 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *4))) (-5 *3 (-1160 *4)) (-4 *4 (-903)) (-5 *1 (-656 *4))))) -(-10 -7 (-15 -2431 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4341 (((-635 |#1|) $) 82)) (-4354 (($ $ (-765)) 90)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4346 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 48)) (-3558 (((-3 (-665 |#1|) "failed") $) NIL)) (-3557 (((-665 |#1|) $) NIL)) (-4366 (($ $) 89)) (-2553 (((-765) $) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-665 |#1|) |#2|) 68)) (-4343 (($ $) 86)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-4347 (((-1278 |#1| |#2|) (-1278 |#1| |#2|) $) 47)) (-1893 (((-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3277 (((-665 |#1|) $) NIL)) (-3575 ((|#2| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4174 (($ $ |#1| $) 30) (($ $ (-635 |#1|) (-635 $)) 32)) (-4355 (((-765) $) 88)) (-3929 (($ $ $) 20) (($ (-665 |#1|) (-665 |#1|)) 77) (($ (-665 |#1|) $) 75) (($ $ (-665 |#1|)) 76)) (-4353 (((-857) $) NIL) (($ |#1|) 74) (((-1269 |#1| |#2|) $) 58) (((-1278 |#1| |#2|) $) 41) (($ (-665 |#1|)) 25)) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-665 |#1|)) NIL)) (-4361 ((|#2| (-1278 |#1| |#2|) $) 43)) (-3040 (($) 23 T CONST)) (-3045 (((-635 (-2 (|:| |k| (-665 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4352 (((-3 $ "failed") (-1269 |#1| |#2|)) 60)) (-1877 (($ (-665 |#1|)) 14)) (-3437 (((-112) $ $) 44)) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) 66) (($ $ $) NIL)) (-4246 (($ $ $) 29)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-665 |#1|)) NIL))) -(((-657 |#1| |#2|) (-13 (-373 |#1| |#2|) (-383 |#2| (-665 |#1|)) (-10 -8 (-15 -4352 ((-3 $ "failed") (-1269 |#1| |#2|))) (-15 -3929 ($ (-665 |#1|) (-665 |#1|))) (-15 -3929 ($ (-665 |#1|) $)) (-15 -3929 ($ $ (-665 |#1|))))) (-844) (-171)) (T -657)) -((-4352 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *1 (-657 *3 *4)))) (-3929 (*1 *1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) (-3929 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171))))) -(-13 (-373 |#1| |#2|) (-383 |#2| (-665 |#1|)) (-10 -8 (-15 -4352 ((-3 $ "failed") (-1269 |#1| |#2|))) (-15 -3929 ($ (-665 |#1|) (-665 |#1|))) (-15 -3929 ($ (-665 |#1|) $)) (-15 -3929 ($ $ (-665 |#1|))))) -((-1876 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-1874 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1659 (($ (-1 (-112) |#2|) $) 27)) (-2416 (($ $) 55)) (-2498 (($ $) 63)) (-3809 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-4249 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-3823 (((-544) |#2| $ (-544)) 60) (((-544) |#2| $) NIL) (((-544) (-1 (-112) |#2|) $) 46)) (-4021 (($ (-765) |#2|) 53)) (-3241 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-3917 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4365 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3941 (($ |#2|) 15)) (-4014 (($ $ $ (-544)) 35) (($ |#2| $ (-544)) 33)) (-1425 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-1660 (($ $ (-1220 (-544))) 43) (($ $ (-544)) 37)) (-1875 (($ $ $ (-544)) 59)) (-3804 (($ $) 57)) (-3067 (((-112) $ $) 65))) -(((-658 |#1| |#2|) (-10 -8 (-15 -3941 (|#1| |#2|)) (-15 -1660 (|#1| |#1| (-544))) (-15 -1660 (|#1| |#1| (-1220 (-544)))) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4014 (|#1| |#2| |#1| (-544))) (-15 -4014 (|#1| |#1| |#1| (-544))) (-15 -3241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1659 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -2498 (|#1| |#1|)) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3917 (|#1| |#1| |#1|)) (-15 -1876 ((-112) |#1|)) (-15 -1875 (|#1| |#1| |#1| (-544))) (-15 -2416 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4021 (|#1| (-765) |#2|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3804 (|#1| |#1|))) (-659 |#2|) (-1204)) (T -658)) -NIL -(-10 -8 (-15 -3941 (|#1| |#2|)) (-15 -1660 (|#1| |#1| (-544))) (-15 -1660 (|#1| |#1| (-1220 (-544)))) (-15 -3809 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4014 (|#1| |#2| |#1| (-544))) (-15 -4014 (|#1| |#1| |#1| (-544))) (-15 -3241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1659 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3809 (|#1| |#2| |#1|)) (-15 -2498 (|#1| |#1|)) (-15 -3241 (|#1| |#1| |#1|)) (-15 -3917 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1876 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3823 ((-544) (-1 (-112) |#2|) |#1|)) (-15 -3823 ((-544) |#2| |#1|)) (-15 -3823 ((-544) |#2| |#1| (-544))) (-15 -3917 (|#1| |#1| |#1|)) (-15 -1876 ((-112) |#1|)) (-15 -1875 (|#1| |#1| |#1| (-544))) (-15 -2416 (|#1| |#1|)) (-15 -1874 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4249 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1425 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4021 (|#1| (-765) |#2|)) (-15 -4365 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3804 (|#1| |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4201 ((|#1| $) 65)) (-4203 (($ $) 67)) (-2344 (((-1259) $ (-544) (-544)) 97 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 52 (|has| $ (-6 -4401)))) (-1876 (((-112) $) 142 (|has| |#1| (-844))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1874 (($ $) 146 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4401)))) (-3292 (($ $) 141 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 56 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) 54 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 58 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 117 (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) 86 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-1659 (($ (-1 (-112) |#1|) $) 129)) (-4117 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4400)))) (-4202 ((|#1| $) 66)) (-4131 (($) 7 T CONST)) (-2416 (($ $) 144 (|has| $ (-6 -4401)))) (-2417 (($ $) 134)) (-4205 (($ $) 73) (($ $ (-765)) 71)) (-2498 (($ $) 131 (|has| |#1| (-1091)))) (-1424 (($ $) 99 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 130 (|has| |#1| (-1091))) (($ (-1 (-112) |#1|) $) 125)) (-3810 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4400))) (($ |#1| $) 100 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1665 ((|#1| $ (-544) |#1|) 85 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 87)) (-3846 (((-112) $) 83)) (-3823 (((-544) |#1| $ (-544)) 139 (|has| |#1| (-1091))) (((-544) |#1| $) 138 (|has| |#1| (-1091))) (((-544) (-1 (-112) |#1|) $) 137)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) 108)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 95 (|has| (-544) (-844)))) (-2913 (($ $ $) 147 (|has| |#1| (-844)))) (-3241 (($ $ $) 132 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3917 (($ $ $) 140 (|has| |#1| (-844))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 94 (|has| (-544) (-844)))) (-3242 (($ $ $) 148 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3941 (($ |#1|) 122)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 70) (($ $ (-765)) 68)) (-4014 (($ $ $ (-544)) 127) (($ |#1| $ (-544)) 126)) (-2421 (($ $ $ (-544)) 116) (($ |#1| $ (-544)) 115)) (-2349 (((-635 (-544)) $) 92)) (-2350 (((-112) (-544) $) 91)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 76) (($ $ (-765)) 74)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2345 (($ $ |#1|) 96 (|has| $ (-6 -4401)))) (-3847 (((-112) $) 84)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 90)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1220 (-544))) 112) ((|#1| $ (-544)) 89) ((|#1| $ (-544) |#1|) 88)) (-3412 (((-544) $ $) 44)) (-1660 (($ $ (-1220 (-544))) 124) (($ $ (-544)) 123)) (-2422 (($ $ (-1220 (-544))) 114) (($ $ (-544)) 113)) (-4040 (((-112) $) 46)) (-4198 (($ $) 62)) (-4196 (($ $) 59 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 63)) (-4200 (($ $) 64)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 143 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 98 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 107)) (-4197 (($ $ $) 61) (($ $ |#1|) 60)) (-4208 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 150 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 151 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 149 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 152 (|has| |#1| (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-659 |#1|) (-139) (-1204)) (T -659)) -((-3941 (*1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1204))))) -(-13 (-1139 |t#1|) (-371 |t#1|) (-281 |t#1|) (-10 -8 (-15 -3941 ($ |t#1|)))) -(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-281 |#1|) . T) ((-371 |#1|) . T) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1003 |#1|) . T) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1139 |#1|) . T) ((-1204) . T) ((-1242 |#1|) . T)) -((-3980 (((-635 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2162 (-635 |#3|)))) |#4| (-635 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2162 (-635 |#3|))) |#4| |#3|) 45)) (-3494 (((-765) |#4| |#3|) 17)) (-3744 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2432 (((-112) |#4| |#3|) 13))) -(((-660 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3980 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|)) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2162 (-635 |#3|)))) |#4| (-635 |#3|))) (-15 -3744 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2432 ((-112) |#4| |#3|)) (-15 -3494 ((-765) |#4| |#3|))) (-362) (-13 (-371 |#1|) (-10 -7 (-6 -4401))) (-13 (-371 |#1|) (-10 -7 (-6 -4401))) (-679 |#1| |#2| |#3|)) (T -660)) -((-3494 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-765)) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))) (-2432 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-112)) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))) (-3744 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-371 *4) (-10 -7 (-6 -4401)))) (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))) (-5 *1 (-660 *4 *5 *2 *3)) (-4 *3 (-679 *4 *5 *2)))) (-3980 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-4 *7 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-635 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2162 (-635 *7))))) (-5 *1 (-660 *5 *6 *7 *3)) (-5 *4 (-635 *7)) (-4 *3 (-679 *5 *6 *7)))) (-3980 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4)))) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4))))) -(-10 -7 (-15 -3980 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|)) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2162 (-635 |#3|)))) |#4| (-635 |#3|))) (-15 -3744 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2432 ((-112) |#4| |#3|)) (-15 -3494 ((-765) |#4| |#3|))) -((-3980 (((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1="failed")) (|:| -2162 (-635 (-1253 |#1|))))) (-635 (-635 |#1|)) (-635 (-1253 |#1|))) 22) (((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-682 |#1|) (-635 (-1253 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|)))) (-635 (-635 |#1|)) (-1253 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)) 14)) (-3494 (((-765) (-682 |#1|) (-1253 |#1|)) 30)) (-3744 (((-3 (-1253 |#1|) #1#) (-682 |#1|) (-1253 |#1|)) 24)) (-2432 (((-112) (-682 |#1|) (-1253 |#1|)) 27))) -(((-661 |#1|) (-10 -7 (-15 -3980 ((-2 (|:| |particular| (-3 (-1253 |#1|) #1="failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|))) (-15 -3980 ((-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|)))) (-635 (-635 |#1|)) (-1253 |#1|))) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-682 |#1|) (-635 (-1253 |#1|)))) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-635 (-635 |#1|)) (-635 (-1253 |#1|)))) (-15 -3744 ((-3 (-1253 |#1|) #1#) (-682 |#1|) (-1253 |#1|))) (-15 -2432 ((-112) (-682 |#1|) (-1253 |#1|))) (-15 -3494 ((-765) (-682 |#1|) (-1253 |#1|)))) (-362)) (T -661)) -((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-765)) (-5 *1 (-661 *5)))) (-2432 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-112)) (-5 *1 (-661 *5)))) (-3744 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1253 *4)) (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *1 (-661 *4)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| |particular| (-3 (-1253 *5) #1="failed")) (|:| -2162 (-635 (-1253 *5)))))) (-5 *1 (-661 *5)) (-5 *4 (-635 (-1253 *5))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| |particular| (-3 (-1253 *5) #1#)) (|:| -2162 (-635 (-1253 *5)))))) (-5 *1 (-661 *5)) (-5 *4 (-635 (-1253 *5))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 *5) #1#)) (|:| -2162 (-635 (-1253 *5))))) (-5 *1 (-661 *5)) (-5 *4 (-1253 *5)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 *5) #1#)) (|:| -2162 (-635 (-1253 *5))))) (-5 *1 (-661 *5)) (-5 *4 (-1253 *5))))) -(-10 -7 (-15 -3980 ((-2 (|:| |particular| (-3 (-1253 |#1|) #1="failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|))) (-15 -3980 ((-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|)))) (-635 (-635 |#1|)) (-1253 |#1|))) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-682 |#1|) (-635 (-1253 |#1|)))) (-15 -3980 ((-635 (-2 (|:| |particular| (-3 (-1253 |#1|) #1#)) (|:| -2162 (-635 (-1253 |#1|))))) (-635 (-635 |#1|)) (-635 (-1253 |#1|)))) (-15 -3744 ((-3 (-1253 |#1|) #1#) (-682 |#1|) (-1253 |#1|))) (-15 -2432 ((-112) (-682 |#1|) (-1253 |#1|))) (-15 -3494 ((-765) (-682 |#1|) (-1253 |#1|)))) -((-2433 (((-2 (|:| |particular| (-3 (-1253 (-406 |#4|)) "failed")) (|:| -2162 (-635 (-1253 (-406 |#4|))))) (-635 |#4|) (-635 |#3|)) 45))) -(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2433 ((-2 (|:| |particular| (-3 (-1253 (-406 |#4|)) "failed")) (|:| -2162 (-635 (-1253 (-406 |#4|))))) (-635 |#4|) (-635 |#3|)))) (-554) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -662)) -((-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *7)) (-4 *7 (-844)) (-4 *8 (-943 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 (-406 *8)) "failed")) (|:| -2162 (-635 (-1253 (-406 *8)))))) (-5 *1 (-662 *5 *6 *7 *8))))) -(-10 -7 (-15 -2433 ((-2 (|:| |particular| (-3 (-1253 (-406 |#4|)) "failed")) (|:| -2162 (-635 (-1253 (-406 |#4|))))) (-635 |#4|) (-635 |#3|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1920 (((-3 $ #1="failed")) NIL (|has| |#2| (-554)))) (-3734 ((|#2| $) NIL)) (-3506 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3624 (((-1253 (-682 |#2|))) NIL) (((-1253 (-682 |#2|)) (-1253 $)) NIL)) (-3508 (((-112) $) NIL)) (-1873 (((-1253 $)) 37)) (-1293 (((-112) $ (-765)) NIL)) (-3737 (($ |#2|) NIL)) (-4131 (($) NIL T CONST)) (-3495 (($ $) NIL (|has| |#2| (-306)))) (-3497 (((-238 |#1| |#2|) $ (-544)) NIL)) (-2056 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (|has| |#2| (-554)))) (-1847 (((-3 $ #1#)) NIL (|has| |#2| (-554)))) (-1935 (((-682 |#2|)) NIL) (((-682 |#2|) (-1253 $)) NIL)) (-1871 ((|#2| $) NIL)) (-1933 (((-682 |#2|) $) NIL) (((-682 |#2|) $ (-1253 $)) NIL)) (-2539 (((-3 $ #1#) $) NIL (|has| |#2| (-554)))) (-2050 (((-1160 (-939 |#2|))) NIL (|has| |#2| (-362)))) (-2542 (($ $ (-912)) NIL)) (-1869 ((|#2| $) NIL)) (-1849 (((-1160 |#2|) $) NIL (|has| |#2| (-554)))) (-1937 ((|#2|) NIL) ((|#2| (-1253 $)) NIL)) (-1867 (((-1160 |#2|) $) NIL)) (-1861 (((-112)) NIL)) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 |#2| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) ((|#2| $) NIL)) (-1939 (($ (-1253 |#2|)) NIL) (($ (-1253 |#2|) (-1253 $)) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3494 (((-765) $) NIL (|has| |#2| (-554))) (((-912)) 38)) (-3498 ((|#2| $ (-544) (-544)) NIL)) (-1858 (((-112)) NIL)) (-2567 (($ $ (-912)) NIL)) (-2096 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL)) (-3493 (((-765) $) NIL (|has| |#2| (-554)))) (-3492 (((-635 (-238 |#1| |#2|)) $) NIL (|has| |#2| (-554)))) (-3500 (((-765) $) NIL)) (-1854 (((-112)) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#2| $) NIL (|has| |#2| (-6 (-4402 #3="*"))))) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#2|))) NIL)) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4000 (((-635 (-635 |#2|)) $) NIL)) (-1852 (((-112)) NIL)) (-1856 (((-112)) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-2057 (((-3 (-2 (|:| |particular| $) (|:| -2162 (-635 $))) #1#)) NIL (|has| |#2| (-554)))) (-1848 (((-3 $ #1#)) NIL (|has| |#2| (-554)))) (-1936 (((-682 |#2|)) NIL) (((-682 |#2|) (-1253 $)) NIL)) (-1872 ((|#2| $) NIL)) (-1934 (((-682 |#2|) $) NIL) (((-682 |#2|) $ (-1253 $)) NIL)) (-2540 (((-3 $ #1#) $) NIL (|has| |#2| (-554)))) (-2054 (((-1160 (-939 |#2|))) NIL (|has| |#2| (-362)))) (-2541 (($ $ (-912)) NIL)) (-1870 ((|#2| $) NIL)) (-1850 (((-1160 |#2|) $) NIL (|has| |#2| (-554)))) (-1938 ((|#2|) NIL) ((|#2| (-1253 $)) NIL)) (-1868 (((-1160 |#2|) $) NIL)) (-1862 (((-112)) NIL)) (-3643 (((-1148) $) NIL)) (-1853 (((-112)) NIL)) (-1855 (((-112)) NIL)) (-1857 (((-112)) NIL)) (-3996 (((-3 $ "failed") $) NIL (|has| |#2| (-362)))) (-3644 (((-1110) $) NIL)) (-1860 (((-112)) NIL)) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-2098 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) (-544) |#2|) NIL) ((|#2| $ (-544) (-544)) 22) ((|#2| $ (-544)) NIL)) (-4217 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3733 ((|#2| $) NIL)) (-3736 (($ (-635 |#2|)) NIL)) (-3507 (((-112) $) NIL)) (-3735 (((-238 |#1| |#2|) $) NIL)) (-3732 ((|#2| $) NIL (|has| |#2| (-6 (-4402 #3#))))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-3625 (((-682 |#2|) (-1253 $)) NIL) (((-1253 |#2|) $) NIL) (((-682 |#2|) (-1253 $) (-1253 $)) NIL) (((-1253 |#2|) $ (-1253 $)) 25)) (-4377 (($ (-1253 |#2|)) NIL) (((-1253 |#2|) $) NIL)) (-2042 (((-635 (-939 |#2|))) NIL) (((-635 (-939 |#2|)) (-1253 $)) NIL)) (-2729 (($ $ $) NIL)) (-1866 (((-112)) NIL)) (-3496 (((-238 |#1| |#2|) $ (-544)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#2| (-1031 (-406 (-544))))) (($ |#2|) NIL) (((-682 |#2|) $) NIL)) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) 36)) (-1851 (((-635 (-1253 |#2|))) NIL (|has| |#2| (-554)))) (-2730 (($ $ $ $) NIL)) (-1864 (((-112)) NIL)) (-2927 (($ (-682 |#2|) $) NIL)) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-2728 (($ $ $) NIL)) (-1865 (((-112)) NIL)) (-1863 (((-112)) NIL)) (-1859 (((-112)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#2| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-238 |#1| |#2|) $ (-238 |#1| |#2|)) NIL) (((-238 |#1| |#2|) (-238 |#1| |#2|) $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-663 |#1| |#2|) (-13 (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-608 (-682 |#2|)) (-417 |#2|)) (-912) (-171)) (T -663)) -NIL -(-13 (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-608 (-682 |#2|)) (-417 |#2|)) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3649 (((-635 (-1125)) $) 10)) (-4353 (((-857) $) 18) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-664) (-13 (-1073) (-10 -8 (-15 -3649 ((-635 (-1125)) $))))) (T -664)) -((-3649 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-664))))) -(-13 (-1073) (-10 -8 (-15 -3649 ((-635 (-1125)) $)))) -((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) NIL)) (-3522 (($ $) 51)) (-3044 (((-112) $) NIL)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-2436 (((-3 $ "failed") (-813 |#1|)) 23)) (-2438 (((-112) (-813 |#1|)) 15)) (-2437 (($ (-813 |#1|)) 24)) (-2818 (((-112) $ $) 29)) (-4240 (((-912) $) 36)) (-3523 (($ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4139 (((-635 $) (-813 |#1|)) 17)) (-4353 (((-857) $) 42) (($ |#1|) 33) (((-813 |#1|) $) 38) (((-670 |#1|) $) 43)) (-2435 (((-58 (-635 $)) (-635 |#1|) (-912)) 56)) (-2434 (((-635 $) (-635 |#1|) (-912)) 59)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 52)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 37))) -(((-665 |#1|) (-13 (-844) (-1031 |#1|) (-10 -8 (-15 -3044 ((-112) $)) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -4240 ((-912) $)) (-15 -2818 ((-112) $ $)) (-15 -4353 ((-813 |#1|) $)) (-15 -4353 ((-670 |#1|) $)) (-15 -4139 ((-635 $) (-813 |#1|))) (-15 -2438 ((-112) (-813 |#1|))) (-15 -2437 ($ (-813 |#1|))) (-15 -2436 ((-3 $ "failed") (-813 |#1|))) (-15 -4341 ((-635 |#1|) $)) (-15 -2435 ((-58 (-635 $)) (-635 |#1|) (-912))) (-15 -2434 ((-635 $) (-635 |#1|) (-912))))) (-844)) (T -665)) -((-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-2818 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-635 (-665 *4))) (-5 *1 (-665 *4)))) (-2438 (*1 *2 *3) (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-112)) (-5 *1 (-665 *4)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))) (-2436 (*1 *1 *2) (|partial| -12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-912)) (-4 *5 (-844)) (-5 *2 (-58 (-635 (-665 *5)))) (-5 *1 (-665 *5)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-912)) (-4 *5 (-844)) (-5 *2 (-635 (-665 *5))) (-5 *1 (-665 *5))))) -(-13 (-844) (-1031 |#1|) (-10 -8 (-15 -3044 ((-112) $)) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -4240 ((-912) $)) (-15 -2818 ((-112) $ $)) (-15 -4353 ((-813 |#1|) $)) (-15 -4353 ((-670 |#1|) $)) (-15 -4139 ((-635 $) (-813 |#1|))) (-15 -2438 ((-112) (-813 |#1|))) (-15 -2437 ($ (-813 |#1|))) (-15 -2436 ((-3 $ "failed") (-813 |#1|))) (-15 -4341 ((-635 |#1|) $)) (-15 -2435 ((-58 (-635 $)) (-635 |#1|) (-912))) (-15 -2434 ((-635 $) (-635 |#1|) (-912))))) -((-3806 ((|#2| $) 76)) (-4203 (($ $) 96)) (-1293 (((-112) $ (-765)) 26)) (-4205 (($ $) 85) (($ $ (-765)) 88)) (-3846 (((-112) $) 97)) (-3414 (((-635 $) $) 72)) (-3410 (((-112) $ $) 71)) (-4126 (((-112) $ (-765)) 24)) (-2346 (((-544) $) 46)) (-2347 (((-544) $) 45)) (-4123 (((-112) $ (-765)) 22)) (-3926 (((-112) $) 74)) (-4204 ((|#2| $) 89) (($ $ (-765)) 92)) (-2421 (($ $ $ (-544)) 62) (($ |#2| $ (-544)) 61)) (-2349 (((-635 (-544)) $) 44)) (-2350 (((-112) (-544) $) 42)) (-4207 ((|#2| $) NIL) (($ $ (-765)) 84)) (-4175 (($ $ (-544)) 99)) (-3847 (((-112) $) 98)) (-2098 (((-112) (-1 (-112) |#2|) $) 32)) (-2351 (((-635 |#2|) $) 33)) (-4206 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1220 (-544))) 58) ((|#2| $ (-544)) 40) ((|#2| $ (-544) |#2|) 41)) (-3412 (((-544) $ $) 70)) (-2422 (($ $ (-1220 (-544))) 57) (($ $ (-544)) 51)) (-4040 (((-112) $) 66)) (-4198 (($ $) 81)) (-4199 (((-765) $) 80)) (-4200 (($ $) 79)) (-3929 (($ (-635 |#2|)) 37)) (-3274 (($ $) 100)) (-3921 (((-635 $) $) 69)) (-3411 (((-112) $ $) 68)) (-2099 (((-112) (-1 (-112) |#2|) $) 31)) (-3437 (((-112) $ $) 18)) (-4364 (((-765) $) 29))) -(((-666 |#1| |#2|) (-10 -8 (-15 -3274 (|#1| |#1|)) (-15 -4175 (|#1| |#1| (-544))) (-15 -3846 ((-112) |#1|)) (-15 -3847 ((-112) |#1|)) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -2351 ((-635 |#2|) |#1|)) (-15 -2350 ((-112) (-544) |#1|)) (-15 -2349 ((-635 (-544)) |#1|)) (-15 -2347 ((-544) |#1|)) (-15 -2346 ((-544) |#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -4198 (|#1| |#1|)) (-15 -4199 ((-765) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4204 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "last")) (-15 -4204 (|#2| |#1|)) (-15 -4205 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| "rest")) (-15 -4205 (|#1| |#1|)) (-15 -4207 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "first")) (-15 -4207 (|#2| |#1|)) (-15 -3410 ((-112) |#1| |#1|)) (-15 -3411 ((-112) |#1| |#1|)) (-15 -3412 ((-544) |#1| |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| "value")) (-15 -3806 (|#2| |#1|)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765)))) (-667 |#2|) (-1204)) (T -666)) -NIL -(-10 -8 (-15 -3274 (|#1| |#1|)) (-15 -4175 (|#1| |#1| (-544))) (-15 -3846 ((-112) |#1|)) (-15 -3847 ((-112) |#1|)) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -2351 ((-635 |#2|) |#1|)) (-15 -2350 ((-112) (-544) |#1|)) (-15 -2349 ((-635 (-544)) |#1|)) (-15 -2347 ((-544) |#1|)) (-15 -2346 ((-544) |#1|)) (-15 -3929 (|#1| (-635 |#2|))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -2422 (|#1| |#1| (-544))) (-15 -2422 (|#1| |#1| (-1220 (-544)))) (-15 -2421 (|#1| |#2| |#1| (-544))) (-15 -2421 (|#1| |#1| |#1| (-544))) (-15 -4198 (|#1| |#1|)) (-15 -4199 ((-765) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4204 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "last")) (-15 -4204 (|#2| |#1|)) (-15 -4205 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| "rest")) (-15 -4205 (|#1| |#1|)) (-15 -4207 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "first")) (-15 -4207 (|#2| |#1|)) (-15 -3410 ((-112) |#1| |#1|)) (-15 -3411 ((-112) |#1| |#1|)) (-15 -3412 ((-544) |#1| |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| "value")) (-15 -3806 (|#2| |#1|)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -2098 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765)))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4201 ((|#1| $) 65)) (-4203 (($ $) 67)) (-2344 (((-1259) $ (-544) (-544)) 97 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 52 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 56 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) 54 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 58 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 117 (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) 86 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 102)) (-4202 ((|#1| $) 66)) (-4131 (($) 7 T CONST)) (-2440 (($ $) 124)) (-4205 (($ $) 73) (($ $ (-765)) 71)) (-1424 (($ $) 99 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 100 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 103)) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1665 ((|#1| $ (-544) |#1|) 85 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 87)) (-3846 (((-112) $) 83)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-2439 (((-765) $) 123)) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) 108)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 95 (|has| (-544) (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 94 (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-2442 (($ $) 126)) (-2443 (((-112) $) 127)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 70) (($ $ (-765)) 68)) (-2421 (($ $ $ (-544)) 116) (($ |#1| $ (-544)) 115)) (-2349 (((-635 (-544)) $) 92)) (-2350 (((-112) (-544) $) 91)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2441 ((|#1| $) 125)) (-4207 ((|#1| $) 76) (($ $ (-765)) 74)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2345 (($ $ |#1|) 96 (|has| $ (-6 -4401)))) (-4175 (($ $ (-544)) 122)) (-3847 (((-112) $) 84)) (-2444 (((-112) $) 128)) (-2445 (((-112) $) 129)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 90)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1220 (-544))) 112) ((|#1| $ (-544)) 89) ((|#1| $ (-544) |#1|) 88)) (-3412 (((-544) $ $) 44)) (-2422 (($ $ (-1220 (-544))) 114) (($ $ (-544)) 113)) (-4040 (((-112) $) 46)) (-4198 (($ $) 62)) (-4196 (($ $) 59 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 63)) (-4200 (($ $) 64)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 98 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 107)) (-4197 (($ $ $) 61 (|has| $ (-6 -4401))) (($ $ |#1|) 60 (|has| $ (-6 -4401)))) (-4208 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-3274 (($ $) 121)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-667 |#1|) (-139) (-1204)) (T -667)) -((-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1204)))) (-4117 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1204)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-2442 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))) (-2441 (*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))) (-2440 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-667 *3)) (-4 *3 (-1204)))) (-3274 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204))))) -(-13 (-1139 |t#1|) (-10 -8 (-15 -3810 ($ (-1 (-112) |t#1|) $)) (-15 -4117 ($ (-1 (-112) |t#1|) $)) (-15 -2445 ((-112) $)) (-15 -2444 ((-112) $)) (-15 -2443 ((-112) $)) (-15 -2442 ($ $)) (-15 -2441 (|t#1| $)) (-15 -2440 ($ $)) (-15 -2439 ((-765) $)) (-15 -4175 ($ $ (-544))) (-15 -3274 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1139 |#1|) . T) ((-1204) . T) ((-1242 |#1|) . T)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2451 (($ (-765) (-765) (-765)) 33 (|has| |#1| (-1042)))) (-1293 (((-112) $ (-765)) NIL)) (-2448 ((|#1| $ (-765) (-765) (-765) |#1|) 27)) (-4131 (($) NIL T CONST)) (-2449 (($ $ $) 37 (|has| |#1| (-1042)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2446 (((-1253 (-765)) $) 9)) (-2447 (($ (-1166) $ $) 22)) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2450 (($ (-765)) 35 (|has| |#1| (-1042)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-765) (-765) (-765)) 25)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-3929 (($ (-635 (-635 (-635 |#1|)))) 44)) (-4353 (($ (-951 (-951 (-951 |#1|)))) 15) (((-951 (-951 (-951 |#1|))) $) 12) (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-668 |#1|) (-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1042)) (PROGN (-15 -2451 ($ (-765) (-765) (-765))) (-15 -2450 ($ (-765))) (-15 -2449 ($ $ $))) |%noBranch|) (-15 -3929 ($ (-635 (-635 (-635 |#1|))))) (-15 -4206 (|#1| $ (-765) (-765) (-765))) (-15 -2448 (|#1| $ (-765) (-765) (-765) |#1|)) (-15 -4353 ($ (-951 (-951 (-951 |#1|))))) (-15 -4353 ((-951 (-951 (-951 |#1|))) $)) (-15 -2447 ($ (-1166) $ $)) (-15 -2446 ((-1253 (-765)) $)))) (-1091)) (T -668)) -((-2451 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1091)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1091)))) (-2449 (*1 *1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1042)) (-4 *2 (-1091)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-635 *3)))) (-4 *3 (-1091)) (-5 *1 (-668 *3)))) (-4206 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1091)))) (-2448 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1091)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-4 *3 (-1091)) (-5 *1 (-668 *3)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-5 *1 (-668 *3)) (-4 *3 (-1091)))) (-2447 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-668 *3)) (-4 *3 (-1091)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-1253 (-765))) (-5 *1 (-668 *3)) (-4 *3 (-1091))))) -(-13 (-487 |#1|) (-10 -8 (IF (|has| |#1| (-1042)) (PROGN (-15 -2451 ($ (-765) (-765) (-765))) (-15 -2450 ($ (-765))) (-15 -2449 ($ $ $))) |%noBranch|) (-15 -3929 ($ (-635 (-635 (-635 |#1|))))) (-15 -4206 (|#1| $ (-765) (-765) (-765))) (-15 -2448 (|#1| $ (-765) (-765) (-765) |#1|)) (-15 -4353 ($ (-951 (-951 (-951 |#1|))))) (-15 -4353 ((-951 (-951 (-951 |#1|))) $)) (-15 -2447 ($ (-1166) $ $)) (-15 -2446 ((-1253 (-765)) $)))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3579 (((-481) $) 10)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 12)) (-3437 (((-112) $ $) NIL))) -(((-669) (-13 (-1073) (-10 -8 (-15 -3579 ((-481) $)) (-15 -3634 ((-1125) $))))) (T -669)) -((-3579 (*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-669)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-669))))) -(-13 (-1073) (-10 -8 (-15 -3579 ((-481) $)) (-15 -3634 ((-1125) $)))) -((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) 14)) (-3522 (($ $) 18)) (-3044 (((-112) $) 19)) (-3558 (((-3 |#1| "failed") $) 22)) (-3557 ((|#1| $) 20)) (-4205 (($ $) 36)) (-4343 (($ $) 24)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-2818 (((-112) $ $) 41)) (-4240 (((-912) $) 38)) (-3523 (($ $) 17)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 ((|#1| $) 35)) (-4353 (((-857) $) 31) (($ |#1|) 23) (((-813 |#1|) $) 27)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 12)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 40)) (* (($ $ $) 34))) -(((-670 |#1|) (-13 (-844) (-1031 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4353 ((-813 |#1|) $)) (-15 -4207 (|#1| $)) (-15 -3523 ($ $)) (-15 -4240 ((-912) $)) (-15 -2818 ((-112) $ $)) (-15 -4343 ($ $)) (-15 -4205 ($ $)) (-15 -3044 ((-112) $)) (-15 -3522 ($ $)) (-15 -4341 ((-635 |#1|) $)))) (-844)) (T -670)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-4207 (*1 *2 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-2818 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4205 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844))))) -(-13 (-844) (-1031 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4353 ((-813 |#1|) $)) (-15 -4207 (|#1| $)) (-15 -3523 ($ $)) (-15 -4240 ((-912) $)) (-15 -2818 ((-112) $ $)) (-15 -4343 ($ $)) (-15 -4205 ($ $)) (-15 -3044 ((-112) $)) (-15 -3522 ($ $)) (-15 -4341 ((-635 |#1|) $)))) -((-2460 ((|#1| (-1 |#1| (-765) |#1|) (-765) |#1|) 11)) (-2452 ((|#1| (-1 |#1| |#1|) (-765) |#1|) 9))) -(((-671 |#1|) (-10 -7 (-15 -2452 (|#1| (-1 |#1| |#1|) (-765) |#1|)) (-15 -2460 (|#1| (-1 |#1| (-765) |#1|) (-765) |#1|))) (-1091)) (T -671)) -((-2460 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-765) *2)) (-5 *4 (-765)) (-4 *2 (-1091)) (-5 *1 (-671 *2)))) (-2452 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-765)) (-4 *2 (-1091)) (-5 *1 (-671 *2))))) -(-10 -7 (-15 -2452 (|#1| (-1 |#1| |#1|) (-765) |#1|)) (-15 -2460 (|#1| (-1 |#1| (-765) |#1|) (-765) |#1|))) -((-2454 ((|#2| |#1| |#2|) 9)) (-2453 ((|#1| |#1| |#2|) 8))) -(((-672 |#1| |#2|) (-10 -7 (-15 -2453 (|#1| |#1| |#2|)) (-15 -2454 (|#2| |#1| |#2|))) (-1091) (-1091)) (T -672)) -((-2454 (*1 *2 *3 *2) (-12 (-5 *1 (-672 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-2453 (*1 *2 *2 *3) (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))) -(-10 -7 (-15 -2453 (|#1| |#1| |#2|)) (-15 -2454 (|#2| |#1| |#2|))) -((-2455 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -2455 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1091) (-1091) (-1091)) (T -673)) -((-2455 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)) (-5 *1 (-673 *5 *6 *2))))) -(-10 -7 (-15 -2455 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2947 (((-112) $ $) NIL)) (-3719 (((-1205) $) 20)) (-3718 (((-635 (-1205)) $) 18)) (-2456 (($ (-635 (-1205)) (-1205)) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 29) (($ (-1171)) NIL) (((-1171) $) NIL) (((-1205) $) 21) (($ (-1105)) 10)) (-3437 (((-112) $ $) NIL))) -(((-674) (-13 (-1073) (-608 (-1205)) (-10 -8 (-15 -4353 ($ (-1105))) (-15 -2456 ($ (-635 (-1205)) (-1205))) (-15 -3718 ((-635 (-1205)) $)) (-15 -3719 ((-1205) $))))) (T -674)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-674)))) (-2456 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1205))) (-5 *3 (-1205)) (-5 *1 (-674)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-674)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-674))))) -(-13 (-1073) (-608 (-1205)) (-10 -8 (-15 -4353 ($ (-1105))) (-15 -2456 ($ (-635 (-1205)) (-1205))) (-15 -3718 ((-635 (-1205)) $)) (-15 -3719 ((-1205) $)))) -((-2460 (((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|)) 23)) (-2457 (((-1 |#1|) |#1|) 8)) (-2459 ((|#1| |#1|) 16)) (-2458 (((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-544)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4353 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-765)) 20))) -(((-675 |#1|) (-10 -7 (-15 -2457 ((-1 |#1|) |#1|)) (-15 -4353 ((-1 |#1|) |#1|)) (-15 -2458 (|#1| (-1 |#1| |#1|))) (-15 -2458 ((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-544))) (-15 -2459 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-765))) (-15 -2460 ((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|)))) (-1091)) (T -675)) -((-2460 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-765) *3)) (-4 *3 (-1091)) (-5 *1 (-675 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *4 (-1091)) (-5 *1 (-675 *4)))) (-2459 (*1 *2 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1091)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-635 *5) (-635 *5))) (-5 *4 (-544)) (-5 *2 (-635 *5)) (-5 *1 (-675 *5)) (-4 *5 (-1091)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-675 *2)) (-4 *2 (-1091)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1091)))) (-2457 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1091))))) -(-10 -7 (-15 -2457 ((-1 |#1|) |#1|)) (-15 -4353 ((-1 |#1|) |#1|)) (-15 -2458 (|#1| (-1 |#1| |#1|))) (-15 -2458 ((-635 |#1|) (-1 (-635 |#1|) (-635 |#1|)) (-544))) (-15 -2459 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-765))) (-15 -2460 ((-1 |#1| (-765) |#1|) (-1 |#1| (-765) |#1|)))) -((-2463 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2462 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4359 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2461 (((-1 |#2| |#1|) |#2|) 11))) -(((-676 |#1| |#2|) (-10 -7 (-15 -2461 ((-1 |#2| |#1|) |#2|)) (-15 -2462 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4359 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2463 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1091) (-1091)) (T -676)) -((-2463 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1091)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)) (-4 *4 (-1091)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-5 *2 (-1 *5)) (-5 *1 (-676 *4 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-676 *4 *3)) (-4 *4 (-1091)) (-4 *3 (-1091))))) -(-10 -7 (-15 -2461 ((-1 |#2| |#1|) |#2|)) (-15 -2462 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4359 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2463 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2468 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2464 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2465 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2466 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2467 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -2464 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2465 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2466 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2467 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2468 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1091) (-1091) (-1091)) (T -677)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-1 *7 *5)) (-5 *1 (-677 *5 *6 *7)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-677 *4 *5 *6)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *4 (-1091)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-677 *4 *5 *6)) (-4 *5 (-1091)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *4 *5 *6)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1091)) (-4 *4 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *5 *4 *6))))) -(-10 -7 (-15 -2464 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2465 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2466 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2467 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2468 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-4245 (($ (-765) (-765)) 33)) (-2473 (($ $ $) 56)) (-3818 (($ |#3|) 52) (($ $) 53)) (-3506 (((-112) $) 28)) (-2472 (($ $ (-544) (-544)) 58)) (-2471 (($ $ (-544) (-544)) 59)) (-2470 (($ $ (-544) (-544) (-544) (-544)) 63)) (-2475 (($ $) 54)) (-3508 (((-112) $) 14)) (-2469 (($ $ (-544) (-544) $) 64)) (-4194 ((|#2| $ (-544) (-544) |#2|) NIL) (($ $ (-635 (-544)) (-635 (-544)) $) 62)) (-3737 (($ (-765) |#2|) 39)) (-3509 (($ (-635 (-635 |#2|))) 37)) (-4000 (((-635 (-635 |#2|)) $) 57)) (-2474 (($ $ $) 55)) (-3865 (((-3 $ "failed") $ |#2|) 91)) (-4206 ((|#2| $ (-544) (-544)) NIL) ((|#2| $ (-544) (-544) |#2|) NIL) (($ $ (-635 (-544)) (-635 (-544))) 61)) (-3736 (($ (-635 |#2|)) 40) (($ (-635 $)) 42)) (-3507 (((-112) $) 24)) (-4353 (($ |#4|) 47) (((-857) $) NIL)) (-3505 (((-112) $) 30)) (-4356 (($ $ |#2|) 93)) (-4244 (($ $ $) 68) (($ $) 71)) (-4246 (($ $ $) 66)) (** (($ $ (-765)) 80) (($ $ (-544)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-544) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-678 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -4356 (|#1| |#1| |#2|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -2469 (|#1| |#1| (-544) (-544) |#1|)) (-15 -2470 (|#1| |#1| (-544) (-544) (-544) (-544))) (-15 -2471 (|#1| |#1| (-544) (-544))) (-15 -2472 (|#1| |#1| (-544) (-544))) (-15 -4194 (|#1| |#1| (-635 (-544)) (-635 (-544)) |#1|)) (-15 -4206 (|#1| |#1| (-635 (-544)) (-635 (-544)))) (-15 -4000 ((-635 (-635 |#2|)) |#1|)) (-15 -2473 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3818 (|#1| |#3|)) (-15 -4353 (|#1| |#4|)) (-15 -3736 (|#1| (-635 |#1|))) (-15 -3736 (|#1| (-635 |#2|))) (-15 -3737 (|#1| (-765) |#2|)) (-15 -3509 (|#1| (-635 (-635 |#2|)))) (-15 -4245 (|#1| (-765) (-765))) (-15 -3505 ((-112) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -3508 ((-112) |#1|)) (-15 -4194 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544)))) (-679 |#2| |#3| |#4|) (-1042) (-371 |#2|) (-371 |#2|)) (T -678)) -NIL -(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -4356 (|#1| |#1| |#2|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-765))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -2469 (|#1| |#1| (-544) (-544) |#1|)) (-15 -2470 (|#1| |#1| (-544) (-544) (-544) (-544))) (-15 -2471 (|#1| |#1| (-544) (-544))) (-15 -2472 (|#1| |#1| (-544) (-544))) (-15 -4194 (|#1| |#1| (-635 (-544)) (-635 (-544)) |#1|)) (-15 -4206 (|#1| |#1| (-635 (-544)) (-635 (-544)))) (-15 -4000 ((-635 (-635 |#2|)) |#1|)) (-15 -2473 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -3818 (|#1| |#3|)) (-15 -4353 (|#1| |#4|)) (-15 -3736 (|#1| (-635 |#1|))) (-15 -3736 (|#1| (-635 |#2|))) (-15 -3737 (|#1| (-765) |#2|)) (-15 -3509 (|#1| (-635 (-635 |#2|)))) (-15 -4245 (|#1| (-765) (-765))) (-15 -3505 ((-112) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -3508 ((-112) |#1|)) (-15 -4194 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) (-544)))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-4245 (($ (-765) (-765)) 97)) (-2473 (($ $ $) 87)) (-3818 (($ |#2|) 91) (($ $) 90)) (-3506 (((-112) $) 99)) (-2472 (($ $ (-544) (-544)) 83)) (-2471 (($ $ (-544) (-544)) 82)) (-2470 (($ $ (-544) (-544) (-544) (-544)) 81)) (-2475 (($ $) 89)) (-3508 (((-112) $) 101)) (-1293 (((-112) $ (-765)) 8)) (-2469 (($ $ (-544) (-544) $) 80)) (-4194 ((|#1| $ (-544) (-544) |#1|) 44) (($ $ (-635 (-544)) (-635 (-544)) $) 84)) (-1332 (($ $ (-544) |#2|) 42)) (-1331 (($ $ (-544) |#3|) 41)) (-3737 (($ (-765) |#1|) 95)) (-4131 (($) 7 T CONST)) (-3495 (($ $) 67 (|has| |#1| (-306)))) (-3497 ((|#2| $ (-544)) 46)) (-3494 (((-765) $) 66 (|has| |#1| (-554)))) (-1665 ((|#1| $ (-544) (-544) |#1|) 43)) (-3498 ((|#1| $ (-544) (-544)) 48)) (-2096 (((-635 |#1|) $) 30)) (-3493 (((-765) $) 65 (|has| |#1| (-554)))) (-3492 (((-635 |#3|) $) 64 (|has| |#1| (-554)))) (-3500 (((-765) $) 51)) (-4021 (($ (-765) (-765) |#1|) 57)) (-3499 (((-765) $) 50)) (-4126 (((-112) $ (-765)) 9)) (-3731 ((|#1| $) 62 (|has| |#1| (-6 (-4402 #1="*"))))) (-3504 (((-544) $) 55)) (-3502 (((-544) $) 53)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3503 (((-544) $) 54)) (-3501 (((-544) $) 52)) (-3509 (($ (-635 (-635 |#1|))) 96)) (-2100 (($ (-1 |#1| |#1|) $) 34)) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4000 (((-635 (-635 |#1|)) $) 86)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3996 (((-3 $ "failed") $) 61 (|has| |#1| (-362)))) (-2474 (($ $ $) 88)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) 56)) (-3865 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-554)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) (-544)) 49) ((|#1| $ (-544) (-544) |#1|) 47) (($ $ (-635 (-544)) (-635 (-544))) 85)) (-3736 (($ (-635 |#1|)) 94) (($ (-635 $)) 93)) (-3507 (((-112) $) 100)) (-3732 ((|#1| $) 63 (|has| |#1| (-6 (-4402 #1#))))) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-3496 ((|#3| $ (-544)) 45)) (-4353 (($ |#3|) 92) (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3505 (((-112) $) 98)) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) 68 (|has| |#1| (-362)))) (-4244 (($ $ $) 78) (($ $) 77)) (-4246 (($ $ $) 79)) (** (($ $ (-765)) 70) (($ $ (-544)) 60 (|has| |#1| (-362)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-544) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-679 |#1| |#2| |#3|) (-139) (-1042) (-371 |t#1|) (-371 |t#1|)) (T -679)) -((-3508 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-112)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-112)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-112)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-112)))) (-4245 (*1 *1 *2 *2) (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3737 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4353 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *2)) (-4 *4 (-371 *3)) (-4 *2 (-371 *3)))) (-3818 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *1 (-679 *3 *2 *4)) (-4 *2 (-371 *3)) (-4 *4 (-371 *3)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-2475 (*1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-2474 (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-2473 (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-635 (-635 *3))))) (-4206 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4194 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-635 (-544))) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2472 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2471 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2470 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-2469 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-4246 (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-679 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *2 (-371 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-679 *3 *2 *4)) (-4 *3 (-1042)) (-4 *2 (-371 *3)) (-4 *4 (-371 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (-4 *2 (-554)))) (-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (-4 *2 (-362)))) (-3495 (*1 *1 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (-4 *2 (-306)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-765)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-765)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-635 *5)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (|has| *2 (-6 (-4402 #1="*"))) (-4 *2 (-1042)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (|has| *2 (-6 (-4402 #1#))) (-4 *2 (-1042)))) (-3996 (*1 *1 *1) (|partial| -12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) (-4 *2 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-4 *3 (-362))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4401) (-6 -4400) (-15 -3508 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -3506 ((-112) $)) (-15 -3505 ((-112) $)) (-15 -4245 ($ (-765) (-765))) (-15 -3509 ($ (-635 (-635 |t#1|)))) (-15 -3737 ($ (-765) |t#1|)) (-15 -3736 ($ (-635 |t#1|))) (-15 -3736 ($ (-635 $))) (-15 -4353 ($ |t#3|)) (-15 -3818 ($ |t#2|)) (-15 -3818 ($ $)) (-15 -2475 ($ $)) (-15 -2474 ($ $ $)) (-15 -2473 ($ $ $)) (-15 -4000 ((-635 (-635 |t#1|)) $)) (-15 -4206 ($ $ (-635 (-544)) (-635 (-544)))) (-15 -4194 ($ $ (-635 (-544)) (-635 (-544)) $)) (-15 -2472 ($ $ (-544) (-544))) (-15 -2471 ($ $ (-544) (-544))) (-15 -2470 ($ $ (-544) (-544) (-544) (-544))) (-15 -2469 ($ $ (-544) (-544) $)) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4244 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-544) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-765))) (IF (|has| |t#1| (-554)) (-15 -3865 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -4356 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-306)) (-15 -3495 ($ $)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -3494 ((-765) $)) (-15 -3493 ((-765) $)) (-15 -3492 ((-635 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4402 "*"))) (PROGN (-15 -3732 (|t#1| $)) (-15 -3731 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -3996 ((-3 $ "failed") $)) (-15 ** ($ $ (-544)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-57 |#1| |#2| |#3|) . T) ((-1204) . T)) -((-4249 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4365 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-680 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4365 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4365 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4249 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1042) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|) (-1042) (-371 |#5|) (-371 |#5|) (-679 |#5| |#6| |#7|)) (T -680)) -((-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1042)) (-4 *2 (-1042)) (-4 *6 (-371 *5)) (-4 *7 (-371 *5)) (-4 *8 (-371 *2)) (-4 *9 (-371 *2)) (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-679 *5 *6 *7)) (-4 *10 (-679 *2 *8 *9)))) (-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-371 *5)) (-4 *7 (-371 *5)) (-4 *2 (-679 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-679 *5 *6 *7)) (-4 *9 (-371 *8)) (-4 *10 (-371 *8)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-371 *5)) (-4 *7 (-371 *5)) (-4 *2 (-679 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-679 *5 *6 *7)) (-4 *9 (-371 *8)) (-4 *10 (-371 *8))))) -(-10 -7 (-15 -4365 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4365 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4249 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3495 ((|#4| |#4|) 71 (|has| |#1| (-306)))) (-3494 (((-765) |#4|) 98 (|has| |#1| (-554)))) (-3493 (((-765) |#4|) 75 (|has| |#1| (-554)))) (-3492 (((-635 |#3|) |#4|) 82 (|has| |#1| (-554)))) (-2514 (((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|) 110 (|has| |#1| (-306)))) (-3731 ((|#1| |#4|) 34)) (-2480 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-554)))) (-3996 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-362)))) (-2479 ((|#4| |#4|) 67 (|has| |#1| (-554)))) (-2477 ((|#4| |#4| |#1| (-544) (-544)) 42)) (-2476 ((|#4| |#4| (-544) (-544)) 37)) (-2478 ((|#4| |#4| |#1| (-544) (-544)) 47)) (-3732 ((|#1| |#4|) 77)) (-2899 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-554))))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 (|#1| |#4|)) (-15 -3731 (|#1| |#4|)) (-15 -2476 (|#4| |#4| (-544) (-544))) (-15 -2477 (|#4| |#4| |#1| (-544) (-544))) (-15 -2478 (|#4| |#4| |#1| (-544) (-544))) (IF (|has| |#1| (-554)) (PROGN (-15 -3494 ((-765) |#4|)) (-15 -3493 ((-765) |#4|)) (-15 -3492 ((-635 |#3|) |#4|)) (-15 -2479 (|#4| |#4|)) (-15 -2480 ((-3 |#4| "failed") |#4|)) (-15 -2899 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -3495 (|#4| |#4|)) (-15 -2514 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3996 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-171) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|)) (T -681)) -((-3996 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-2514 (*1 *2 *3 *3) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-681 *3 *4 *5 *6)) (-4 *6 (-679 *3 *4 *5)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-2480 (*1 *2 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-3492 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-635 *6)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3493 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3494 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-2478 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-544)) (-4 *3 (-171)) (-4 *5 (-371 *3)) (-4 *6 (-371 *3)) (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-679 *3 *5 *6)))) (-2477 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-544)) (-4 *3 (-171)) (-4 *5 (-371 *3)) (-4 *6 (-371 *3)) (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-679 *3 *5 *6)))) (-2476 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-544)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *1 (-681 *4 *5 *6 *2)) (-4 *2 (-679 *4 *5 *6)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-171)) (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-171)) (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5))))) -(-10 -7 (-15 -3732 (|#1| |#4|)) (-15 -3731 (|#1| |#4|)) (-15 -2476 (|#4| |#4| (-544) (-544))) (-15 -2477 (|#4| |#4| |#1| (-544) (-544))) (-15 -2478 (|#4| |#4| |#1| (-544) (-544))) (IF (|has| |#1| (-554)) (PROGN (-15 -3494 ((-765) |#4|)) (-15 -3493 ((-765) |#4|)) (-15 -3492 ((-635 |#3|) |#4|)) (-15 -2479 (|#4| |#4|)) (-15 -2480 ((-3 |#4| "failed") |#4|)) (-15 -2899 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -3495 (|#4| |#4|)) (-15 -2514 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3996 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765) (-765)) 47)) (-2473 (($ $ $) NIL)) (-3818 (($ (-1253 |#1|)) NIL) (($ $) NIL)) (-3506 (((-112) $) NIL)) (-2472 (($ $ (-544) (-544)) 12)) (-2471 (($ $ (-544) (-544)) NIL)) (-2470 (($ $ (-544) (-544) (-544) (-544)) NIL)) (-2475 (($ $) NIL)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-2469 (($ $ (-544) (-544) $) NIL)) (-4194 ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544)) $) NIL)) (-1332 (($ $ (-544) (-1253 |#1|)) NIL)) (-1331 (($ $ (-544) (-1253 |#1|)) NIL)) (-3737 (($ (-765) |#1|) 22)) (-4131 (($) NIL T CONST)) (-3495 (($ $) 31 (|has| |#1| (-306)))) (-3497 (((-1253 |#1|) $ (-544)) NIL)) (-3494 (((-765) $) 33 (|has| |#1| (-554)))) (-1665 ((|#1| $ (-544) (-544) |#1|) 51)) (-3498 ((|#1| $ (-544) (-544)) NIL)) (-2096 (((-635 |#1|) $) NIL)) (-3493 (((-765) $) 35 (|has| |#1| (-554)))) (-3492 (((-635 (-1253 |#1|)) $) 38 (|has| |#1| (-554)))) (-3500 (((-765) $) 20)) (-4021 (($ (-765) (-765) |#1|) 16)) (-3499 (((-765) $) 21)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#1| $) 29 (|has| |#1| (-6 (-4402 #1="*"))))) (-3504 (((-544) $) 9)) (-3502 (((-544) $) 10)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3503 (((-544) $) 11)) (-3501 (((-544) $) 48)) (-3509 (($ (-635 (-635 |#1|))) NIL)) (-2100 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4000 (((-635 (-635 |#1|)) $) 60)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3996 (((-3 $ #2="failed") $) 45 (|has| |#1| (-362)))) (-2474 (($ $ $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2345 (($ $ |#1|) NIL)) (-3865 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-554)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) (-544)) NIL) ((|#1| $ (-544) (-544) |#1|) NIL) (($ $ (-635 (-544)) (-635 (-544))) NIL)) (-3736 (($ (-635 |#1|)) NIL) (($ (-635 $)) NIL) (($ (-1253 |#1|)) 52)) (-3507 (((-112) $) NIL)) (-3732 ((|#1| $) 27 (|has| |#1| (-6 (-4402 #1#))))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 64 (|has| |#1| (-609 (-533))))) (-3496 (((-1253 |#1|) $ (-544)) NIL)) (-4353 (($ (-1253 |#1|)) NIL) (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $ $) NIL) (($ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) 23) (($ $ (-544)) 46 (|has| |#1| (-362)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-544) $) NIL) (((-1253 |#1|) $ (-1253 |#1|)) NIL) (((-1253 |#1|) (-1253 |#1|) $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-682 |#1|) (-13 (-679 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 -3736 ($ (-1253 |#1|))) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3996 ((-3 $ "failed") $)) |%noBranch|))) (-1042)) (T -682)) -((-3996 (*1 *1 *1) (|partial| -12 (-5 *1 (-682 *2)) (-4 *2 (-362)) (-4 *2 (-1042)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-682 *3))))) -(-13 (-679 |#1| (-1253 |#1|) (-1253 |#1|)) (-10 -8 (-15 -3736 ($ (-1253 |#1|))) (IF (|has| |#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3996 ((-3 $ "failed") $)) |%noBranch|))) -((-2486 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 25)) (-2485 (((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|) 21)) (-2487 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765)) 26)) (-2482 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 14)) (-2483 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|)) 18) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 16)) (-2484 (((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|)) 20)) (-2481 (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 12)) (** (((-682 |#1|) (-682 |#1|) (-765)) 30))) -(((-683 |#1|) (-10 -7 (-15 -2481 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2482 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2483 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2483 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2484 ((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|))) (-15 -2485 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2486 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2487 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765))) (-15 ** ((-682 |#1|) (-682 |#1|) (-765)))) (-1042)) (T -683)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))) (-2487 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))) (-2486 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2485 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2484 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2483 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2483 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2482 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) (-2481 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))) -(-10 -7 (-15 -2481 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2482 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2483 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2483 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2484 ((-682 |#1|) (-682 |#1|) |#1| (-682 |#1|))) (-15 -2485 ((-682 |#1|) (-682 |#1|) (-682 |#1|) |#1|)) (-15 -2486 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -2487 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-682 |#1|) (-765))) (-15 ** ((-682 |#1|) (-682 |#1|) (-765)))) -((-3558 (((-3 |#1| "failed") $) 17)) (-3557 ((|#1| $) NIL)) (-2488 (($) 7 T CONST)) (-2489 (($ |#1|) 8)) (-4353 (($ |#1|) 15) (((-857) $) 22)) (-3973 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -2488)) 11)) (-3979 ((|#1| $) 14))) -(((-684 |#1|) (-13 (-1249) (-1031 |#1|) (-608 (-857)) (-10 -8 (-15 -2489 ($ |#1|)) (-15 -3973 ((-112) $ (|[\|\|]| |#1|))) (-15 -3973 ((-112) $ (|[\|\|]| -2488))) (-15 -3979 (|#1| $)) (-15 -2488 ($) -4359))) (-608 (-857))) (T -684)) -((-2489 (*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857))))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-608 (-857))) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2488)) (-5 *2 (-112)) (-5 *1 (-684 *4)) (-4 *4 (-608 (-857))))) (-3979 (*1 *2 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857))))) (-2488 (*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857)))))) -(-13 (-1249) (-1031 |#1|) (-608 (-857)) (-10 -8 (-15 -2489 ($ |#1|)) (-15 -3973 ((-112) $ (|[\|\|]| |#1|))) (-15 -3973 ((-112) $ (|[\|\|]| -2488))) (-15 -3979 (|#1| $)) (-15 -2488 ($) -4359))) -((-2492 ((|#2| |#2| |#4|) 25)) (-2495 (((-682 |#2|) |#3| |#4|) 31)) (-2493 (((-682 |#2|) |#2| |#4|) 30)) (-2490 (((-1253 |#2|) |#2| |#4|) 16)) (-2491 ((|#2| |#3| |#4|) 24)) (-2496 (((-682 |#2|) |#3| |#4| (-765) (-765)) 38)) (-2494 (((-682 |#2|) |#2| |#4| (-765)) 37))) -(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2490 ((-1253 |#2|) |#2| |#4|)) (-15 -2491 (|#2| |#3| |#4|)) (-15 -2492 (|#2| |#2| |#4|)) (-15 -2493 ((-682 |#2|) |#2| |#4|)) (-15 -2494 ((-682 |#2|) |#2| |#4| (-765))) (-15 -2495 ((-682 |#2|) |#3| |#4|)) (-15 -2496 ((-682 |#2|) |#3| |#4| (-765) (-765)))) (-1091) (-893 |#1|) (-371 |#2|) (-13 (-371 |#1|) (-10 -7 (-6 -4400)))) (T -685)) -((-2496 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-765)) (-4 *6 (-1091)) (-4 *7 (-893 *6)) (-5 *2 (-682 *7)) (-5 *1 (-685 *6 *7 *3 *4)) (-4 *3 (-371 *7)) (-4 *4 (-13 (-371 *6) (-10 -7 (-6 -4400)))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *6 (-893 *5)) (-5 *2 (-682 *6)) (-5 *1 (-685 *5 *6 *3 *4)) (-4 *3 (-371 *6)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))) (-2494 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-1091)) (-4 *3 (-893 *6)) (-5 *2 (-682 *3)) (-5 *1 (-685 *6 *3 *7 *4)) (-4 *7 (-371 *3)) (-4 *4 (-13 (-371 *6) (-10 -7 (-6 -4400)))))) (-2493 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *3 (-893 *5)) (-5 *2 (-682 *3)) (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-371 *3)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))) (-2492 (*1 *2 *2 *3) (-12 (-4 *4 (-1091)) (-4 *2 (-893 *4)) (-5 *1 (-685 *4 *2 *5 *3)) (-4 *5 (-371 *2)) (-4 *3 (-13 (-371 *4) (-10 -7 (-6 -4400)))))) (-2491 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *2 (-893 *5)) (-5 *1 (-685 *5 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400)))))) (-2490 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *3 (-893 *5)) (-5 *2 (-1253 *3)) (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-371 *3)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400))))))) -(-10 -7 (-15 -2490 ((-1253 |#2|) |#2| |#4|)) (-15 -2491 (|#2| |#3| |#4|)) (-15 -2492 (|#2| |#2| |#4|)) (-15 -2493 ((-682 |#2|) |#2| |#4|)) (-15 -2494 ((-682 |#2|) |#2| |#4| (-765))) (-15 -2495 ((-682 |#2|) |#3| |#4|)) (-15 -2496 ((-682 |#2|) |#3| |#4| (-765) (-765)))) -((-4148 (((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|)) 20)) (-4146 ((|#1| (-682 |#2|)) 9)) (-4147 (((-682 |#1|) (-682 |#2|)) 18))) -(((-686 |#1| |#2|) (-10 -7 (-15 -4146 (|#1| (-682 |#2|))) (-15 -4147 ((-682 |#1|) (-682 |#2|))) (-15 -4148 ((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|)))) (-554) (-984 |#1|)) (T -686)) -((-4148 (*1 *2 *3) (-12 (-5 *3 (-682 *5)) (-4 *5 (-984 *4)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |num| (-682 *4)) (|:| |den| *4))) (-5 *1 (-686 *4 *5)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-682 *5)) (-4 *5 (-984 *4)) (-4 *4 (-554)) (-5 *2 (-682 *4)) (-5 *1 (-686 *4 *5)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-682 *4)) (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-686 *2 *4))))) -(-10 -7 (-15 -4146 (|#1| (-682 |#2|))) (-15 -4147 ((-682 |#1|) (-682 |#2|))) (-15 -4148 ((-2 (|:| |num| (-682 |#1|)) (|:| |den| |#1|)) (-682 |#2|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1929 (((-682 (-692))) NIL) (((-682 (-692)) (-1253 $)) NIL)) (-3734 (((-692) $) NIL)) (-3891 (($ $) NIL (|has| (-692) (-1190)))) (-4046 (($ $) NIL (|has| (-692) (-1190)))) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-692) (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-903))))) (-4181 (($ $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| (-692) (-903))) (|has| (-692) (-362))))) (-4376 (((-404 $) $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| (-692) (-903))) (|has| (-692) (-362))))) (-3420 (($ $) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-903))))) (-1733 (((-112) $ $) NIL (|has| (-692) (-306)))) (-3521 (((-765)) NIL (|has| (-692) (-367)))) (-3889 (($ $) NIL (|has| (-692) (-1190)))) (-4045 (($ $) NIL (|has| (-692) (-1190)))) (-3893 (($ $) NIL (|has| (-692) (-1190)))) (-4044 (($ $) NIL (|has| (-692) (-1190)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) NIL) (((-3 (-692) #2#) $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-692) (-1031 (-406 (-544)))))) (-3557 (((-544) $) NIL) (((-692) $) NIL) (((-406 (-544)) $) NIL (|has| (-692) (-1031 (-406 (-544)))))) (-1939 (($ (-1253 (-692))) NIL) (($ (-1253 (-692)) (-1253 $)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-692) (-349)))) (-2943 (($ $ $) NIL (|has| (-692) (-306)))) (-1928 (((-682 (-692)) $) NIL) (((-682 (-692)) $ (-1253 $)) NIL)) (-2401 (((-682 (-692)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-692))) (|:| |vec| (-1253 (-692)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-692) (-634 (-544)))) (((-682 (-544)) (-682 $)) NIL (|has| (-692) (-634 (-544))))) (-4249 (((-3 $ "failed") (-406 (-1160 (-692)))) NIL (|has| (-692) (-362))) (($ (-1160 (-692))) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4050 (((-692) $) 29)) (-3407 (((-3 (-406 (-544)) #3="failed") $) NIL (|has| (-692) (-543)))) (-3406 (((-112) $) NIL (|has| (-692) (-543)))) (-3405 (((-406 (-544)) $) NIL (|has| (-692) (-543)))) (-3494 (((-912)) NIL)) (-3377 (($) NIL (|has| (-692) (-367)))) (-2942 (($ $ $) NIL (|has| (-692) (-306)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| (-692) (-306)))) (-3215 (($) NIL (|has| (-692) (-349)))) (-1824 (((-112) $) NIL (|has| (-692) (-349)))) (-1914 (($ $) NIL (|has| (-692) (-349))) (($ $ (-765)) NIL (|has| (-692) (-349)))) (-4130 (((-112) $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| (-692) (-903))) (|has| (-692) (-362))))) (-1446 (((-2 (|:| |r| (-692)) (|:| |phi| (-692))) $) NIL (-12 (|has| (-692) (-1051)) (|has| (-692) (-1190))))) (-4034 (($) NIL (|has| (-692) (-1190)))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-692) (-879 (-377)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-692) (-879 (-544))))) (-4178 (((-826 (-912)) $) NIL (|has| (-692) (-349))) (((-912) $) NIL (|has| (-692) (-349)))) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190))))) (-3517 (((-692) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-692) (-349)))) (-1730 (((-3 (-635 $) #4="failed") (-635 $) $) NIL (|has| (-692) (-306)))) (-2164 (((-1160 (-692)) $) NIL (|has| (-692) (-362)))) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4365 (($ (-1 (-692) (-692)) $) NIL)) (-2160 (((-912) $) NIL (|has| (-692) (-367)))) (-4349 (($ $) NIL (|has| (-692) (-1190)))) (-3463 (((-1160 (-692)) $) NIL)) (-2041 (($ (-635 $)) NIL (|has| (-692) (-306))) (($ $ $) NIL (|has| (-692) (-306)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| (-692) (-362)))) (-3849 (($) NIL (|has| (-692) (-349)) CONST)) (-2535 (($ (-912)) NIL (|has| (-692) (-367)))) (-1448 (($) NIL)) (-4051 (((-692) $) 31)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| (-692) (-306)))) (-3545 (($ (-635 $)) NIL (|has| (-692) (-306))) (($ $ $) NIL (|has| (-692) (-306)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-692) (-349)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-903))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-692) (-306)) (|has| (-692) (-903))))) (-4139 (((-404 $) $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| (-692) (-903))) (|has| (-692) (-362))))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-692) (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| (-692) (-306)))) (-3865 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-692)) NIL (|has| (-692) (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-692) (-306)))) (-4350 (($ $) NIL (|has| (-692) (-1190)))) (-4174 (($ $ (-1166) (-692)) NIL (|has| (-692) (-512 (-1166) (-692)))) (($ $ (-635 (-1166)) (-635 (-692))) NIL (|has| (-692) (-512 (-1166) (-692)))) (($ $ (-635 (-292 (-692)))) NIL (|has| (-692) (-308 (-692)))) (($ $ (-292 (-692))) NIL (|has| (-692) (-308 (-692)))) (($ $ (-692) (-692)) NIL (|has| (-692) (-308 (-692)))) (($ $ (-635 (-692)) (-635 (-692))) NIL (|has| (-692) (-308 (-692))))) (-1732 (((-765) $) NIL (|has| (-692) (-306)))) (-4206 (($ $ (-692)) NIL (|has| (-692) (-285 (-692) (-692))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| (-692) (-306)))) (-4164 (((-692)) NIL) (((-692) (-1253 $)) NIL)) (-1915 (((-3 (-765) "failed") $ $) NIL (|has| (-692) (-349))) (((-765) $) NIL (|has| (-692) (-349)))) (-4217 (($ $ (-1 (-692) (-692))) NIL) (($ $ (-1 (-692) (-692)) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-765)) NIL (|has| (-692) (-232))) (($ $) NIL (|has| (-692) (-232)))) (-2543 (((-682 (-692)) (-1253 $) (-1 (-692) (-692))) NIL (|has| (-692) (-362)))) (-3586 (((-1160 (-692))) NIL)) (-3894 (($ $) NIL (|has| (-692) (-1190)))) (-4043 (($ $) NIL (|has| (-692) (-1190)))) (-1818 (($) NIL (|has| (-692) (-349)))) (-3892 (($ $) NIL (|has| (-692) (-1190)))) (-4042 (($ $) NIL (|has| (-692) (-1190)))) (-3890 (($ $) NIL (|has| (-692) (-1190)))) (-4041 (($ $) NIL (|has| (-692) (-1190)))) (-3625 (((-682 (-692)) (-1253 $)) NIL) (((-1253 (-692)) $) NIL) (((-682 (-692)) (-1253 $) (-1253 $)) NIL) (((-1253 (-692)) $ (-1253 $)) NIL)) (-4377 (((-533) $) NIL (|has| (-692) (-609 (-533)))) (((-167 (-224)) $) NIL (|has| (-692) (-1013))) (((-167 (-377)) $) NIL (|has| (-692) (-1013))) (((-883 (-377)) $) NIL (|has| (-692) (-609 (-883 (-377))))) (((-883 (-544)) $) NIL (|has| (-692) (-609 (-883 (-544))))) (($ (-1160 (-692))) NIL) (((-1160 (-692)) $) NIL) (($ (-1253 (-692))) NIL) (((-1253 (-692)) $) NIL)) (-3392 (($ $) NIL)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| $ (-144)) (|has| (-692) (-903))) (|has| (-692) (-349))))) (-1447 (($ (-692) (-692)) 12)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-544)) NIL) (($ (-692)) NIL) (($ (-167 (-377))) 13) (($ (-167 (-544))) 19) (($ (-167 (-692))) 28) (($ (-167 (-694))) 25) (((-167 (-377)) $) 33) (($ (-406 (-544))) NIL (-3936 (|has| (-692) (-362)) (|has| (-692) (-1031 (-406 (-544))))))) (-3084 (($ $) NIL (|has| (-692) (-349))) (((-3 $ #1#) $) NIL (-3936 (-12 (|has| (-692) (-306)) (|has| $ (-144)) (|has| (-692) (-903))) (|has| (-692) (-144))))) (-2743 (((-1160 (-692)) $) NIL)) (-3511 (((-765)) NIL)) (-2162 (((-1253 $)) NIL)) (-3897 (($ $) NIL (|has| (-692) (-1190)))) (-3885 (($ $) NIL (|has| (-692) (-1190)))) (-2212 (((-112) $ $) NIL)) (-3895 (($ $) NIL (|has| (-692) (-1190)))) (-3883 (($ $) NIL (|has| (-692) (-1190)))) (-3899 (($ $) NIL (|has| (-692) (-1190)))) (-3887 (($ $) NIL (|has| (-692) (-1190)))) (-2357 (((-692) $) NIL (|has| (-692) (-1190)))) (-3900 (($ $) NIL (|has| (-692) (-1190)))) (-3888 (($ $) NIL (|has| (-692) (-1190)))) (-3898 (($ $) NIL (|has| (-692) (-1190)))) (-3886 (($ $) NIL (|has| (-692) (-1190)))) (-3896 (($ $) NIL (|has| (-692) (-1190)))) (-3884 (($ $) NIL (|has| (-692) (-1190)))) (-3787 (($ $) NIL (|has| (-692) (-1051)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1 (-692) (-692))) NIL) (($ $ (-1 (-692) (-692)) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-1166)) NIL (|has| (-692) (-893 (-1166)))) (($ $ (-765)) NIL (|has| (-692) (-232))) (($ $) NIL (|has| (-692) (-232)))) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL (|has| (-692) (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ $) NIL (|has| (-692) (-1190))) (($ $ (-406 (-544))) NIL (-12 (|has| (-692) (-995)) (|has| (-692) (-1190)))) (($ $ (-544)) NIL (|has| (-692) (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ (-692) $) NIL) (($ $ (-692)) NIL) (($ (-406 (-544)) $) NIL (|has| (-692) (-362))) (($ $ (-406 (-544))) NIL (|has| (-692) (-362))))) -(((-687) (-13 (-386) (-165 (-692)) (-10 -8 (-15 -4353 ($ (-167 (-377)))) (-15 -4353 ($ (-167 (-544)))) (-15 -4353 ($ (-167 (-692)))) (-15 -4353 ($ (-167 (-694)))) (-15 -4353 ((-167 (-377)) $))))) (T -687)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-687)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-167 (-544))) (-5 *1 (-687)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-167 (-692))) (-5 *1 (-687)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-167 (-694))) (-5 *1 (-687)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-687))))) -(-13 (-386) (-165 (-692)) (-10 -8 (-15 -4353 ($ (-167 (-377)))) (-15 -4353 ($ (-167 (-544)))) (-15 -4353 ($ (-167 (-692)))) (-15 -4353 ($ (-167 (-694)))) (-15 -4353 ((-167 (-377)) $)))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2498 (($ $) 62)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 61)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-688 |#1|) (-139) (-1091)) (T -688)) -((-4014 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-688 *2)) (-4 *2 (-1091)))) (-2498 (*1 *1 *1) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1091)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-688 *3)) (-4 *3 (-1091)) (-5 *2 (-635 (-2 (|:| -2226 *3) (|:| -2097 (-765)))))))) -(-13 (-234 |t#1|) (-10 -8 (-15 -4014 ($ |t#1| $ (-765))) (-15 -2498 ($ $)) (-15 -2497 ((-635 (-2 (|:| -2226 |t#1|) (|:| -2097 (-765)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-2501 (((-635 |#1|) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) (-544)) 47)) (-2499 ((|#1| |#1| (-544)) 46)) (-3545 ((|#1| |#1| |#1| (-544)) 36)) (-4139 (((-635 |#1|) |#1| (-544)) 39)) (-2502 ((|#1| |#1| (-544) |#1| (-544)) 32)) (-2500 (((-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) |#1| (-544)) 45))) -(((-689 |#1|) (-10 -7 (-15 -3545 (|#1| |#1| |#1| (-544))) (-15 -2499 (|#1| |#1| (-544))) (-15 -4139 ((-635 |#1|) |#1| (-544))) (-15 -2500 ((-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) |#1| (-544))) (-15 -2501 ((-635 |#1|) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) (-544))) (-15 -2502 (|#1| |#1| (-544) |#1| (-544)))) (-1229 (-544))) (T -689)) -((-2502 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| -4139 *5) (|:| -4355 (-544))))) (-5 *4 (-544)) (-4 *5 (-1229 *4)) (-5 *2 (-635 *5)) (-5 *1 (-689 *5)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-5 *2 (-635 (-2 (|:| -4139 *3) (|:| -4355 *4)))) (-5 *1 (-689 *3)) (-4 *3 (-1229 *4)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-5 *2 (-635 *3)) (-5 *1 (-689 *3)) (-4 *3 (-1229 *4)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))) (-3545 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3))))) -(-10 -7 (-15 -3545 (|#1| |#1| |#1| (-544))) (-15 -2499 (|#1| |#1| (-544))) (-15 -4139 ((-635 |#1|) |#1| (-544))) (-15 -2500 ((-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) |#1| (-544))) (-15 -2501 ((-635 |#1|) (-635 (-2 (|:| -4139 |#1|) (|:| -4355 (-544)))) (-544))) (-15 -2502 (|#1| |#1| (-544) |#1| (-544)))) -((-2506 (((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 17)) (-2503 (((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260))) 40) (((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260))) 42) (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1="undefined") (-1079 (-224)) (-1079 (-224)) (-635 (-260))) 44)) (-2505 (((-1123 (-224)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-635 (-260))) NIL)) (-2504 (((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1#) (-1079 (-224)) (-1079 (-224)) (-635 (-260))) 45))) -(((-690) (-10 -7 (-15 -2503 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1="undefined") (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2503 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2503 ((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2504 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1#) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2505 ((-1123 (-224)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2506 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -690)) -((-2506 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1 (-224) (-224) (-224) (-224))) (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *1 (-690)))) (-2505 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-2504 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) #1="undefined")) (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-2503 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-224))) (-5 *5 (-635 (-260))) (-5 *1 (-690)))) (-2503 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-224))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) (-2503 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) #1#)) (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690))))) -(-10 -7 (-15 -2503 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1="undefined") (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2503 ((-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2503 ((-1123 (-224)) (-1123 (-224)) (-1 (-936 (-224)) (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2504 ((-1123 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) #1#) (-1079 (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2505 ((-1123 (-224)) (-313 (-544)) (-313 (-544)) (-313 (-544)) (-1 (-224) (-224)) (-1079 (-224)) (-635 (-260)))) (-15 -2506 ((-1 (-936 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))))) -((-4139 (((-404 (-1160 |#4|)) (-1160 |#4|)) 73) (((-404 |#4|) |#4|) 220))) -(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4|)) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|)))) (-844) (-787) (-349) (-943 |#3| |#2| |#1|)) (T -691)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-349)) (-4 *7 (-943 *6 *5 *4)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4))))) -(-10 -7 (-15 -4139 ((-404 |#4|) |#4|)) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 84)) (-3514 (((-544) $) 30)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4177 (($ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL)) (-4131 (($) NIL T CONST)) (-3512 (($ $) NIL)) (-3558 (((-3 (-544) #1="failed") $) 73) (((-3 (-406 (-544)) #1#) $) 26) (((-3 (-377) #1#) $) 70)) (-3557 (((-544) $) 75) (((-406 (-544)) $) 67) (((-377) $) 68)) (-2943 (($ $ $) 96)) (-3866 (((-3 $ "failed") $) 87)) (-2942 (($ $ $) 95)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2509 (((-912)) 77) (((-912) (-912)) 76)) (-3587 (((-112) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL)) (-4178 (((-544) $) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL)) (-3517 (($ $) NIL)) (-3588 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL)) (-2507 (((-544) (-544)) 81) (((-544)) 82)) (-2913 (($ $ $) NIL) (($) NIL (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-2508 (((-544) (-544)) 79) (((-544)) 80)) (-3242 (($ $ $) NIL) (($) NIL (-12 (-3726 (|has| $ (-6 -4383))) (-3726 (|has| $ (-6 -4391)))))) (-2510 (((-544) $) 16)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 91)) (-1917 (((-912) (-544)) NIL (|has| $ (-6 -4391)))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL)) (-3515 (($ $) NIL)) (-3655 (($ (-544) (-544)) NIL) (($ (-544) (-544) (-912)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) 92)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2536 (((-544) $) 22)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 94)) (-2993 (((-912)) NIL) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-1916 (((-912) (-544)) NIL (|has| $ (-6 -4391)))) (-4377 (((-377) $) NIL) (((-224) $) NIL) (((-883 (-377)) $) NIL)) (-4353 (((-857) $) 52) (($ (-544)) 63) (($ $) NIL) (($ (-406 (-544))) 66) (($ (-544)) 63) (($ (-406 (-544))) 66) (($ (-377)) 60) (((-377) $) 50) (($ (-694)) 55)) (-3511 (((-765)) 103)) (-3330 (($ (-544) (-544) (-912)) 44)) (-3516 (($ $) NIL)) (-1918 (((-912)) NIL) (((-912) (-912)) NIL (|has| $ (-6 -4391)))) (-3076 (((-912)) 35) (((-912) (-912)) 78)) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL)) (-3040 (($) 32 T CONST)) (-3046 (($) 17 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 83)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 101)) (-4356 (($ $ $) 65)) (-4244 (($ $) 99) (($ $ $) 100)) (-4246 (($ $ $) 98)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL) (($ $ (-406 (-544))) 90)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 97) (($ $ $) 88) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL))) -(((-692) (-13 (-403) (-386) (-362) (-1031 (-377)) (-1031 (-406 (-544))) (-146) (-10 -8 (-15 -2509 ((-912) (-912))) (-15 -2509 ((-912))) (-15 -3076 ((-912) (-912))) (-15 -2508 ((-544) (-544))) (-15 -2508 ((-544))) (-15 -2507 ((-544) (-544))) (-15 -2507 ((-544))) (-15 -4353 ((-377) $)) (-15 -4353 ($ (-694))) (-15 -2510 ((-544) $)) (-15 -2536 ((-544) $)) (-15 -3330 ($ (-544) (-544) (-912)))))) (T -692)) -((-2536 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2509 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692)))) (-3076 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692)))) (-2508 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2508 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2507 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-2507 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-377)) (-5 *1 (-692)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-692)))) (-3330 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-912)) (-5 *1 (-692))))) -(-13 (-403) (-386) (-362) (-1031 (-377)) (-1031 (-406 (-544))) (-146) (-10 -8 (-15 -2509 ((-912) (-912))) (-15 -2509 ((-912))) (-15 -3076 ((-912) (-912))) (-15 -2508 ((-544) (-544))) (-15 -2508 ((-544))) (-15 -2507 ((-544) (-544))) (-15 -2507 ((-544))) (-15 -4353 ((-377) $)) (-15 -4353 ($ (-694))) (-15 -2510 ((-544) $)) (-15 -2536 ((-544) $)) (-15 -3330 ($ (-544) (-544) (-912))))) -((-2513 (((-682 |#1|) (-682 |#1|) |#1| |#1|) 65)) (-3495 (((-682 |#1|) (-682 |#1|) |#1|) 48)) (-2512 (((-682 |#1|) (-682 |#1|) |#1|) 66)) (-2511 (((-682 |#1|) (-682 |#1|)) 49)) (-2514 (((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|) 64))) -(((-693 |#1|) (-10 -7 (-15 -2511 ((-682 |#1|) (-682 |#1|))) (-15 -3495 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2512 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2513 ((-682 |#1|) (-682 |#1|) |#1| |#1|)) (-15 -2514 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|))) (-306)) (T -693)) -((-2514 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-693 *3)) (-4 *3 (-306)))) (-2513 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-2512 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-3495 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) (-2511 (*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3))))) -(-10 -7 (-15 -2511 ((-682 |#1|) (-682 |#1|))) (-15 -3495 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2512 ((-682 |#1|) (-682 |#1|) |#1|)) (-15 -2513 ((-682 |#1|) (-682 |#1|) |#1| |#1|)) (-15 -2514 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2197 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2192 (($ $ $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL)) (-2735 (($ $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) "failed") $) 27)) (-3557 (((-544) $) 25)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL)) (-3406 (((-112) $) NIL)) (-3405 (((-406 (-544)) $) NIL)) (-3377 (($ $) NIL) (($) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2190 (($ $ $ $) NIL)) (-2198 (($ $ $) NIL)) (-3587 (((-112) $) NIL)) (-1440 (($ $ $) NIL)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL)) (-2545 (((-112) $) NIL)) (-3055 (((-112) $) NIL)) (-3848 (((-3 $ "failed") $) NIL)) (-3588 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2191 (($ $ $ $) NIL)) (-2913 (($ $ $) NIL)) (-2515 (((-912) (-912)) 10) (((-912)) 9)) (-3242 (($ $ $) NIL)) (-2194 (($ $) NIL)) (-4240 (($ $) NIL)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2189 (($ $ $) NIL)) (-3849 (($) NIL T CONST)) (-2196 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-1438 (($ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL) (($ $ (-765)) NIL)) (-2195 (($ $) NIL)) (-3804 (($ $) NIL)) (-4377 (((-224) $) NIL) (((-377) $) NIL) (((-883 (-544)) $) NIL) (((-533) $) NIL) (((-544) $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) 24) (($ $) NIL) (($ (-544)) 24) (((-313 $) (-313 (-544))) 18)) (-3511 (((-765)) NIL)) (-2199 (((-112) $ $) NIL)) (-3487 (($ $ $) NIL)) (-3076 (($) NIL)) (-2212 (((-112) $ $) NIL)) (-2193 (($ $ $ $) NIL)) (-3787 (($ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL) (($ $ (-765)) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL))) -(((-694) (-13 (-386) (-543) (-10 -8 (-15 -2515 ((-912) (-912))) (-15 -2515 ((-912))) (-15 -4353 ((-313 $) (-313 (-544))))))) (T -694)) -((-2515 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-694)))) (-2515 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-694)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-313 (-544))) (-5 *2 (-313 (-694))) (-5 *1 (-694))))) -(-13 (-386) (-543) (-10 -8 (-15 -2515 ((-912) (-912))) (-15 -2515 ((-912))) (-15 -4353 ((-313 $) (-313 (-544)))))) -((-2521 (((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166)) 19)) (-2516 (((-1 |#4| |#2| |#3|) (-1166)) 12))) -(((-695 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2516 ((-1 |#4| |#2| |#3|) (-1166))) (-15 -2521 ((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166)))) (-609 (-533)) (-1204) (-1204) (-1204)) (T -695)) -((-2521 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *3 *5 *6 *7)) (-4 *3 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *7 (-1204)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *4 *5 *6 *7)) (-4 *4 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *7 (-1204))))) -(-10 -7 (-15 -2516 ((-1 |#4| |#2| |#3|) (-1166))) (-15 -2521 ((-1 |#4| |#2| |#3|) |#1| (-1166) (-1166)))) -((-2947 (((-112) $ $) NIL)) (-1392 (((-1259) $ (-765)) 14)) (-3823 (((-765) $) 12)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 25)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 24))) -(((-696 |#1|) (-13 (-131) (-488 |#1|)) (-1091)) (T -696)) -NIL -(-13 (-131) (-488 |#1|)) -((-2517 (((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166)) 34) (((-1 (-224) (-224)) |#1| (-1166)) 39))) -(((-697 |#1|) (-10 -7 (-15 -2517 ((-1 (-224) (-224)) |#1| (-1166))) (-15 -2517 ((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166)))) (-609 (-533))) (T -697)) -((-2517 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-697 *3)) (-4 *3 (-609 (-533))))) (-2517 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-697 *3)) (-4 *3 (-609 (-533)))))) -(-10 -7 (-15 -2517 ((-1 (-224) (-224)) |#1| (-1166))) (-15 -2517 ((-1 (-224) (-224) (-224)) |#1| (-1166) (-1166)))) -((-2518 (((-1166) |#1| (-1166) (-635 (-1166))) 9) (((-1166) |#1| (-1166) (-1166) (-1166)) 12) (((-1166) |#1| (-1166) (-1166)) 11) (((-1166) |#1| (-1166)) 10))) -(((-698 |#1|) (-10 -7 (-15 -2518 ((-1166) |#1| (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-1166) (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-635 (-1166))))) (-609 (-533))) (T -698)) -((-2518 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-635 (-1166))) (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))) (-2518 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))) (-2518 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))) (-2518 (*1 *2 *3 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533)))))) -(-10 -7 (-15 -2518 ((-1166) |#1| (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-1166) (-1166))) (-15 -2518 ((-1166) |#1| (-1166) (-635 (-1166))))) -((-2519 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-699 |#1| |#2|) (-10 -7 (-15 -2519 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1204) (-1204)) (T -699)) -((-2519 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-699 *3 *4)) (-4 *3 (-1204)) (-4 *4 (-1204))))) -(-10 -7 (-15 -2519 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2520 (((-1 |#3| |#2|) (-1166)) 11)) (-2521 (((-1 |#3| |#2|) |#1| (-1166)) 21))) -(((-700 |#1| |#2| |#3|) (-10 -7 (-15 -2520 ((-1 |#3| |#2|) (-1166))) (-15 -2521 ((-1 |#3| |#2|) |#1| (-1166)))) (-609 (-533)) (-1204) (-1204)) (T -700)) -((-2521 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *3 *5 *6)) (-4 *3 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)))) (-2520 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *4 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204))))) -(-10 -7 (-15 -2520 ((-1 |#3| |#2|) (-1166))) (-15 -2521 ((-1 |#3| |#2|) |#1| (-1166)))) -((-2524 (((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#4|)))) (-635 (-765)) (-1253 (-635 (-1160 |#3|))) |#3|) 61)) (-2523 (((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-765)) |#3|) 74)) (-2522 (((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-765)) (-635 (-1160 |#4|)) (-1253 (-635 (-1160 |#3|))) |#3|) 34))) -(((-701 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-765)) (-635 (-1160 |#4|)) (-1253 (-635 (-1160 |#3|))) |#3|)) (-15 -2523 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-765)) |#3|)) (-15 -2524 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#4|)))) (-635 (-765)) (-1253 (-635 (-1160 |#3|))) |#3|))) (-787) (-844) (-306) (-943 |#3| |#1| |#2|)) (T -701)) -((-2524 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-635 (-1160 *13))) (-5 *3 (-1160 *13)) (-5 *4 (-635 *12)) (-5 *5 (-635 *10)) (-5 *6 (-635 *13)) (-5 *7 (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| *13))))) (-5 *8 (-635 (-765))) (-5 *9 (-1253 (-635 (-1160 *10)))) (-4 *12 (-844)) (-4 *10 (-306)) (-4 *13 (-943 *10 *11 *12)) (-4 *11 (-787)) (-5 *1 (-701 *11 *12 *10 *13)))) (-2523 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-635 *11)) (-5 *5 (-635 (-1160 *9))) (-5 *6 (-635 *9)) (-5 *7 (-635 *12)) (-5 *8 (-635 (-765))) (-4 *11 (-844)) (-4 *9 (-306)) (-4 *12 (-943 *9 *10 *11)) (-4 *10 (-787)) (-5 *2 (-635 (-1160 *12))) (-5 *1 (-701 *10 *11 *9 *12)) (-5 *3 (-1160 *12)))) (-2522 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-635 (-1160 *11))) (-5 *3 (-1160 *11)) (-5 *4 (-635 *10)) (-5 *5 (-635 *8)) (-5 *6 (-635 (-765))) (-5 *7 (-1253 (-635 (-1160 *8)))) (-4 *10 (-844)) (-4 *8 (-306)) (-4 *11 (-943 *8 *9 *10)) (-4 *9 (-787)) (-5 *1 (-701 *9 *10 *8 *11))))) -(-10 -7 (-15 -2522 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 |#3|) (-635 (-765)) (-635 (-1160 |#4|)) (-1253 (-635 (-1160 |#3|))) |#3|)) (-15 -2523 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#3|)) (-635 |#3|) (-635 |#4|) (-635 (-765)) |#3|)) (-15 -2524 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-635 |#2|) (-635 (-1160 |#4|)) (-635 |#3|) (-635 |#4|) (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#4|)))) (-635 (-765)) (-1253 (-635 (-1160 |#3|))) |#3|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4366 (($ $) 42)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3276 (($ |#1| (-765)) 40)) (-3202 (((-765) $) 44)) (-3575 ((|#1| $) 43)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4355 (((-765) $) 45)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 39 (|has| |#1| (-171)))) (-4084 ((|#1| $ (-765)) 41)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-702 |#1|) (-139) (-1042)) (T -702)) -((-4355 (*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042))))) -(-13 (-1042) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4355 ((-765) $)) (-15 -3202 ((-765) $)) (-15 -3575 (|t#1| $)) (-15 -4366 ($ $)) (-15 -4084 (|t#1| $ (-765))) (-15 -3276 ($ |t#1| (-765))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-4365 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-703 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4365 (|#6| (-1 |#4| |#1|) |#3|))) (-554) (-1229 |#1|) (-1229 (-406 |#2|)) (-554) (-1229 |#4|) (-1229 (-406 |#5|))) (T -703)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-554)) (-4 *7 (-554)) (-4 *6 (-1229 *5)) (-4 *2 (-1229 (-406 *8))) (-5 *1 (-703 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1229 (-406 *6))) (-4 *8 (-1229 *7))))) -(-10 -7 (-15 -4365 (|#6| (-1 |#4| |#1|) |#3|))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2525 (((-1148) (-857)) 31)) (-4024 (((-1259) (-1148)) 28)) (-2527 (((-1148) (-857)) 24)) (-2526 (((-1148) (-857)) 25)) (-4353 (((-857) $) NIL) (((-1148) (-857)) 23)) (-3437 (((-112) $ $) NIL))) -(((-704) (-13 (-1091) (-10 -7 (-15 -4353 ((-1148) (-857))) (-15 -2527 ((-1148) (-857))) (-15 -2526 ((-1148) (-857))) (-15 -2525 ((-1148) (-857))) (-15 -4024 ((-1259) (-1148)))))) (T -704)) -((-4353 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-2525 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-704))))) -(-13 (-1091) (-10 -7 (-15 -4353 ((-1148) (-857))) (-15 -2527 ((-1148) (-857))) (-15 -2526 ((-1148) (-857))) (-15 -2525 ((-1148) (-857))) (-15 -4024 ((-1259) (-1148))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL)) (-4249 (($ |#1| |#2|) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 ((|#2| $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-2537 (((-3 $ "failed") $ $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) ((|#1| $) NIL)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL))) -(((-705 |#1| |#2| |#3| |#4| |#5|) (-13 (-362) (-10 -8 (-15 -2992 (|#2| $)) (-15 -4353 (|#1| $)) (-15 -4249 ($ |#1| |#2|)) (-15 -2537 ((-3 $ "failed") $ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -705)) -((-2992 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4353 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4249 (*1 *1 *2 *3) (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-362) (-10 -8 (-15 -2992 (|#2| $)) (-15 -4353 (|#1| $)) (-15 -4249 ($ |#1| |#2|)) (-15 -2537 ((-3 $ "failed") $ $)))) -((-2947 (((-112) $ $) 77)) (-3589 (((-112) $) 30)) (-4173 (((-1253 |#1|) $ (-765)) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4171 (($ (-1160 |#1|)) NIL)) (-3469 (((-1160 $) $ (-1072)) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4162 (($ $ $) NIL (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3521 (((-765)) 46 (|has| |#1| (-367)))) (-4167 (($ $ (-765)) NIL)) (-4166 (($ $ (-765)) NIL)) (-2534 ((|#2| |#2|) 43)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1072) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1072) $) NIL)) (-4163 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) NIL (|has| |#1| (-171)))) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 33)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-4249 (($ |#2|) 41)) (-3866 (((-3 $ "failed") $) 85)) (-3377 (($) 50 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4165 (($ $ $) NIL)) (-4160 (($ $ $) NIL (|has| |#1| (-554)))) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-2530 (((-951 $)) 79)) (-1749 (($ $ |#1| (-765) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1072) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1072) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ $) NIL (|has| |#1| (-554)))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-3470 (($ (-1160 |#1|) (-1072)) NIL) (($ (-1160 $) (-1072)) NIL)) (-4183 (($ $ (-765)) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) 76) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) NIL) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2992 ((|#2|) 44)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4172 (((-1160 |#1|) $) NIL)) (-3468 (((-3 (-1072) #4="failed") $) NIL)) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-3463 ((|#2| $) 40)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) 28)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) NIL)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) NIL)) (-4219 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (|has| |#1| (-1141)) CONST)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-2528 (($ $) 78 (|has| |#1| (-349)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-635 (-1072)) (-635 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-635 (-1072)) (-635 $)) NIL)) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-4170 (((-3 $ #5="failed") $ (-765)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 86 (|has| |#1| (-362)))) (-4164 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4355 (((-765) $) 31) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1072) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-2529 (((-951 $)) 35)) (-4161 (((-3 $ #5#) $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) #5#) (-406 $) $) NIL (|has| |#1| (-554)))) (-4353 (((-857) $) 60) (($ (-544)) NIL) (($ |#1|) 57) (($ (-1072)) NIL) (($ |#2|) 67) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) 62) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 20 T CONST)) (-2533 (((-1253 |#1|) $) 74)) (-2532 (($ (-1253 |#1|)) 49)) (-3046 (($) 8 T CONST)) (-3051 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2531 (((-1253 |#1|) $) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 68)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) 71) (($ $ $) NIL)) (-4246 (($ $ $) 32)) (** (($ $ (-912)) NIL) (($ $ (-765)) 80)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 56) (($ $ $) 73) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 54) (($ $ |#1|) NIL))) -(((-706 |#1| |#2|) (-13 (-1229 |#1|) (-611 |#2|) (-10 -8 (-15 -2534 (|#2| |#2|)) (-15 -2992 (|#2|)) (-15 -4249 ($ |#2|)) (-15 -3463 (|#2| $)) (-15 -2533 ((-1253 |#1|) $)) (-15 -2532 ($ (-1253 |#1|))) (-15 -2531 ((-1253 |#1|) $)) (-15 -2530 ((-951 $))) (-15 -2529 ((-951 $))) (IF (|has| |#1| (-349)) (-15 -2528 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) (-1042) (-1229 |#1|)) (T -706)) -((-2534 (*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3)))) (-2992 (*1 *2) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) (-4249 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3)))) (-3463 (*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) (-2533 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2531 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2530 (*1 *2) (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2529 (*1 *2) (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) (-4 *4 (-1229 *3)))) (-2528 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1042)) (-5 *1 (-706 *2 *3)) (-4 *3 (-1229 *2))))) -(-13 (-1229 |#1|) (-611 |#2|) (-10 -8 (-15 -2534 (|#2| |#2|)) (-15 -2992 (|#2|)) (-15 -4249 ($ |#2|)) (-15 -3463 (|#2| $)) (-15 -2533 ((-1253 |#1|) $)) (-15 -2532 ($ (-1253 |#1|))) (-15 -2531 ((-1253 |#1|) $)) (-15 -2530 ((-951 $))) (-15 -2529 ((-951 $))) (IF (|has| |#1| (-349)) (-15 -2528 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 ((|#1| $) 13)) (-3644 (((-1110) $) NIL)) (-2536 ((|#2| $) 12)) (-3929 (($ |#1| |#2|) 16)) (-4353 (((-857) $) NIL) (($ (-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) 15) (((-2 (|:| -2535 |#1|) (|:| -2536 |#2|)) $) 14)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 11))) -(((-707 |#1| |#2| |#3|) (-13 (-844) (-488 (-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) (-10 -8 (-15 -2536 (|#2| $)) (-15 -2535 (|#1| $)) (-15 -3929 ($ |#1| |#2|)))) (-844) (-1091) (-1 (-112) (-2 (|:| -2535 |#1|) (|:| -2536 |#2|)) (-2 (|:| -2535 |#1|) (|:| -2536 |#2|)))) (T -707)) -((-2536 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-707 *3 *2 *4)) (-4 *3 (-844)) (-14 *4 (-1 (-112) (-2 (|:| -2535 *3) (|:| -2536 *2)) (-2 (|:| -2535 *3) (|:| -2536 *2)))))) (-2535 (*1 *2 *1) (-12 (-4 *2 (-844)) (-5 *1 (-707 *2 *3 *4)) (-4 *3 (-1091)) (-14 *4 (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *3)) (-2 (|:| -2535 *2) (|:| -2536 *3)))))) (-3929 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-1091)) (-14 *4 (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *3)) (-2 (|:| -2535 *2) (|:| -2536 *3))))))) -(-13 (-844) (-488 (-2 (|:| -2535 |#1|) (|:| -2536 |#2|))) (-10 -8 (-15 -2536 (|#2| $)) (-15 -2535 (|#1| $)) (-15 -3929 ($ |#1| |#2|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 59)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #1="failed") $) 89) (((-3 (-113) #1#) $) 95)) (-3557 ((|#1| $) NIL) (((-113) $) 39)) (-3866 (((-3 $ "failed") $) 90)) (-2895 ((|#2| (-113) |#2|) 82)) (-2545 (((-112) $) NIL)) (-2894 (($ |#1| (-360 (-113))) 14)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2896 (($ $ (-1 |#2| |#2|)) 58)) (-2897 (($ $ (-1 |#2| |#2|)) 44)) (-4206 ((|#2| $ |#2|) 33)) (-2898 ((|#1| |#1|) 105 (|has| |#1| (-171)))) (-4353 (((-857) $) 66) (($ (-544)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 37)) (-2899 (($ $) 99 (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-171)))) (-3040 (($) 21 T CONST)) (-3046 (($) 9 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) 48) (($ $ $) NIL)) (-4246 (($ $ $) 73)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ (-113) (-544)) NIL) (($ $ (-544)) 57)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-171))) (($ $ |#1|) 97 (|has| |#1| (-171))))) -(((-708 |#1| |#2|) (-13 (-1042) (-1031 |#1|) (-1031 (-113)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2899 ($ $)) (-15 -2899 ($ $ $)) (-15 -2898 (|#1| |#1|))) |%noBranch|) (-15 -2897 ($ $ (-1 |#2| |#2|))) (-15 -2896 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-544))) (-15 ** ($ $ (-544))) (-15 -2895 (|#2| (-113) |#2|)) (-15 -2894 ($ |#1| (-360 (-113)))))) (-1042) (-641 |#1|)) (T -708)) -((-2899 (*1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-2899 (*1 *1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-2898 (*1 *2 *2) (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *5)) (-4 *5 (-641 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)) (-4 *4 (-641 *3)))) (-2895 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *2)) (-4 *2 (-641 *4)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-113))) (-4 *2 (-1042)) (-5 *1 (-708 *2 *4)) (-4 *4 (-641 *2))))) -(-13 (-1042) (-1031 |#1|) (-1031 (-113)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2899 ($ $)) (-15 -2899 ($ $ $)) (-15 -2898 (|#1| |#1|))) |%noBranch|) (-15 -2897 ($ $ (-1 |#2| |#2|))) (-15 -2896 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-544))) (-15 ** ($ $ (-544))) (-15 -2895 (|#2| (-113) |#2|)) (-15 -2894 ($ |#1| (-360 (-113)))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 33)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4249 (($ |#1| |#2|) 25)) (-3866 (((-3 $ "failed") $) 48)) (-2545 (((-112) $) 35)) (-2992 ((|#2| $) 12)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 49)) (-3644 (((-1110) $) NIL)) (-2537 (((-3 $ "failed") $ $) 47)) (-4353 (((-857) $) 24) (($ (-544)) 19) ((|#1| $) 13)) (-3511 (((-765)) 28)) (-3040 (($) 16 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 38)) (-4244 (($ $) 43) (($ $ $) 37)) (-4246 (($ $ $) 40)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 21) (($ $ $) 20))) -(((-709 |#1| |#2| |#3| |#4| |#5|) (-13 (-1042) (-10 -8 (-15 -2992 (|#2| $)) (-15 -4353 (|#1| $)) (-15 -4249 ($ |#1| |#2|)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -3866 ((-3 $ "failed") $)) (-15 -2779 ($ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -709)) -((-3866 (*1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2992 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4353 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4249 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2779 (*1 *1 *1) (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-1042) (-10 -8 (-15 -2992 (|#2| $)) (-15 -4353 (|#1| $)) (-15 -4249 ($ |#1| |#2|)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -3866 ((-3 $ "failed") $)) (-15 -2779 ($ $)))) -((* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-710 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-711 |#2|) (-171)) (T -710)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-711 |#1|) (-139) (-171)) (T -711)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 15)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4065 ((|#1| $) 21)) (-1551 (($ $ $) NIL (|has| |#1| (-786)))) (-2993 (($ $ $) NIL (|has| |#1| (-786)))) (-2913 (((-1150) $) 46)) (-1709 (((-1112) $) NIL)) (-4076 ((|#3| $) 22)) (-4054 (((-857) $) 42)) (-2286 (($) 10 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-786)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-786)))) (-1731 (((-112) $ $) 20)) (-1785 (((-112) $ $) NIL (|has| |#1| (-786)))) (-1759 (((-112) $ $) 24 (|has| |#1| (-786)))) (-1859 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1848 (($ $) 17) (($ $ $) NIL)) (-1835 (($ $ $) 27)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-656 |#1| |#2| |#3|) (-13 (-712 |#2|) (-10 -8 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (-15 -1859 ($ $ |#3|)) (-15 -1859 ($ |#1| |#3|)) (-15 -4065 (|#1| $)) (-15 -4076 (|#3| $)))) (-712 |#2|) (-171) (|SubsetCategory| (-721) |#2|)) (T -656)) +((-1859 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-656 *3 *4 *2)) (-4 *3 (-712 *4)) (-4 *2 (|SubsetCategory| (-721) *4)))) (-1859 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-656 *2 *4 *3)) (-4 *2 (-712 *4)) (-4 *3 (|SubsetCategory| (-721) *4)))) (-4065 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-712 *3)) (-5 *1 (-656 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-721) *3)))) (-4076 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-721) *4)) (-5 *1 (-656 *3 *4 *2)) (-4 *3 (-712 *4))))) +(-13 (-712 |#2|) (-10 -8 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (-15 -1859 ($ $ |#3|)) (-15 -1859 ($ |#1| |#3|)) (-15 -4065 (|#1| $)) (-15 -4076 (|#3| $)))) +((-4254 (((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|)) 33))) +(((-657 |#1|) (-10 -7 (-15 -4254 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|)))) (-904)) (T -657)) +((-4254 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *4))) (-5 *3 (-1164 *4)) (-4 *4 (-904)) (-5 *1 (-657 *4))))) +(-10 -7 (-15 -4254 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-2852 (((-639 |#1|) $) 82)) (-1881 (($ $ (-766)) 90)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-2415 (((-1280 |#1| |#2|) (-1280 |#1| |#2|) $) 48)) (-4048 (((-3 (-666 |#1|) "failed") $) NIL)) (-3961 (((-666 |#1|) $) NIL)) (-1601 (($ $) 89)) (-1694 (((-766) $) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-3045 (($ (-666 |#1|) |#2|) 68)) (-3818 (($ $) 86)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-2221 (((-1280 |#1| |#2|) (-1280 |#1| |#2|) $) 47)) (-1468 (((-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1560 (((-666 |#1|) $) NIL)) (-1573 ((|#2| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1433 (($ $ |#1| $) 30) (($ $ (-639 |#1|) (-639 $)) 32)) (-3598 (((-766) $) 88)) (-4066 (($ $ $) 20) (($ (-666 |#1|) (-666 |#1|)) 77) (($ (-666 |#1|) $) 75) (($ $ (-666 |#1|)) 76)) (-4054 (((-857) $) NIL) (($ |#1|) 74) (((-1271 |#1| |#2|) $) 58) (((-1280 |#1| |#2|) $) 41) (($ (-666 |#1|)) 25)) (-4358 (((-639 |#2|) $) NIL)) (-3906 ((|#2| $ (-666 |#1|)) NIL)) (-4221 ((|#2| (-1280 |#1| |#2|) $) 43)) (-2286 (($) 23 T CONST)) (-2516 (((-639 (-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3134 (((-3 $ "failed") (-1271 |#1| |#2|)) 60)) (-4031 (($ (-666 |#1|)) 14)) (-1731 (((-112) $ $) 44)) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $) 66) (($ $ $) NIL)) (-1835 (($ $ $) 29)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-666 |#1|)) NIL))) +(((-658 |#1| |#2|) (-13 (-373 |#1| |#2|) (-381 |#2| (-666 |#1|)) (-10 -8 (-15 -3134 ((-3 $ "failed") (-1271 |#1| |#2|))) (-15 -4066 ($ (-666 |#1|) (-666 |#1|))) (-15 -4066 ($ (-666 |#1|) $)) (-15 -4066 ($ $ (-666 |#1|))))) (-845) (-171)) (T -658)) +((-3134 (*1 *1 *2) (|partial| -12 (-5 *2 (-1271 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *1 (-658 *3 *4)))) (-4066 (*1 *1 *2 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) (-4 *4 (-171)))) (-4066 (*1 *1 *2 *1) (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) (-4 *4 (-171)))) (-4066 (*1 *1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) (-4 *4 (-171))))) +(-13 (-373 |#1| |#2|) (-381 |#2| (-666 |#1|)) (-10 -8 (-15 -3134 ((-3 $ "failed") (-1271 |#1| |#2|))) (-15 -4066 ($ (-666 |#1|) (-666 |#1|))) (-15 -4066 ($ (-666 |#1|) $)) (-15 -4066 ($ $ (-666 |#1|))))) +((-1399 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-3381 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3111 (($ (-1 (-112) |#2|) $) 27)) (-2447 (($ $) 55)) (-4354 (($ $) 63)) (-4000 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-1955 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-4264 (((-562) |#2| $ (-562)) 60) (((-562) |#2| $) NIL) (((-562) (-1 (-112) |#2|) $) 46)) (-1458 (($ (-766) |#2|) 53)) (-2673 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-1610 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4152 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3716 (($ |#2|) 15)) (-4300 (($ $ $ (-562)) 35) (($ |#2| $ (-562)) 33)) (-3251 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-2878 (($ $ (-1223 (-562))) 43) (($ $ (-562)) 37)) (-1853 (($ $ $ (-562)) 59)) (-4220 (($ $) 57)) (-1759 (((-112) $ $) 65))) +(((-659 |#1| |#2|) (-10 -8 (-15 -3716 (|#1| |#2|)) (-15 -2878 (|#1| |#1| (-562))) (-15 -2878 (|#1| |#1| (-1223 (-562)))) (-15 -4000 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4300 (|#1| |#2| |#1| (-562))) (-15 -4300 (|#1| |#1| |#1| (-562))) (-15 -2673 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3111 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4000 (|#1| |#2| |#1|)) (-15 -4354 (|#1| |#1|)) (-15 -2673 (|#1| |#1| |#1|)) (-15 -1610 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1399 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4264 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -4264 ((-562) |#2| |#1|)) (-15 -4264 ((-562) |#2| |#1| (-562))) (-15 -1610 (|#1| |#1| |#1|)) (-15 -1399 ((-112) |#1|)) (-15 -1853 (|#1| |#1| |#1| (-562))) (-15 -2447 (|#1| |#1|)) (-15 -3381 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3381 (|#1| |#1|)) (-15 -1759 ((-112) |#1| |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3251 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1458 (|#1| (-766) |#2|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4220 (|#1| |#1|))) (-660 |#2|) (-1207)) (T -659)) +NIL +(-10 -8 (-15 -3716 (|#1| |#2|)) (-15 -2878 (|#1| |#1| (-562))) (-15 -2878 (|#1| |#1| (-1223 (-562)))) (-15 -4000 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4300 (|#1| |#2| |#1| (-562))) (-15 -4300 (|#1| |#1| |#1| (-562))) (-15 -2673 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3111 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4000 (|#1| |#2| |#1|)) (-15 -4354 (|#1| |#1|)) (-15 -2673 (|#1| |#1| |#1|)) (-15 -1610 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1399 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4264 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -4264 ((-562) |#2| |#1|)) (-15 -4264 ((-562) |#2| |#1| (-562))) (-15 -1610 (|#1| |#1| |#1|)) (-15 -1399 ((-112) |#1|)) (-15 -1853 (|#1| |#1| |#1| (-562))) (-15 -2447 (|#1| |#1|)) (-15 -3381 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3381 (|#1| |#1|)) (-15 -1759 ((-112) |#1| |#1|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1955 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3251 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1458 (|#1| (-766) |#2|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4220 (|#1| |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2534 ((|#1| $) 48)) (-2359 ((|#1| $) 65)) (-3121 (($ $) 67)) (-3052 (((-1261) $ (-562) (-562)) 97 (|has| $ (-6 -4403)))) (-2254 (($ $ (-562)) 52 (|has| $ (-6 -4403)))) (-1399 (((-112) $) 142 (|has| |#1| (-845))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-3381 (($ $) 146 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4403)))) (-1395 (($ $) 141 (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-4336 (((-112) $ (-766)) 8)) (-1512 ((|#1| $ |#1|) 39 (|has| $ (-6 -4403)))) (-3012 (($ $ $) 56 (|has| $ (-6 -4403)))) (-3950 ((|#1| $ |#1|) 54 (|has| $ (-6 -4403)))) (-2687 ((|#1| $ |#1|) 58 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4403))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4403))) (($ $ "rest" $) 55 (|has| $ (-6 -4403))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 117 (|has| $ (-6 -4403))) ((|#1| $ (-562) |#1|) 86 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 41 (|has| $ (-6 -4403)))) (-3111 (($ (-1 (-112) |#1|) $) 129)) (-3556 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4402)))) (-2350 ((|#1| $) 66)) (-1800 (($) 7 T CONST)) (-2447 (($ $) 144 (|has| $ (-6 -4403)))) (-2677 (($ $) 134)) (-1434 (($ $) 73) (($ $ (-766)) 71)) (-4354 (($ $) 131 (|has| |#1| (-1092)))) (-1459 (($ $) 99 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ |#1| $) 130 (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) 125)) (-1475 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4402))) (($ |#1| $) 100 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1505 ((|#1| $ (-562) |#1|) 85 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 87)) (-3266 (((-112) $) 83)) (-4264 (((-562) |#1| $ (-562)) 139 (|has| |#1| (-1092))) (((-562) |#1| $) 138 (|has| |#1| (-1092))) (((-562) (-1 (-112) |#1|) $) 137)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 50)) (-4379 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) 108)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 95 (|has| (-562) (-845)))) (-1551 (($ $ $) 147 (|has| |#1| (-845)))) (-2673 (($ $ $) 132 (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-1610 (($ $ $) 140 (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 94 (|has| (-562) (-845)))) (-2993 (($ $ $) 148 (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3716 (($ |#1|) 122)) (-3289 (((-112) $ (-766)) 10)) (-4007 (((-639 |#1|) $) 45)) (-3449 (((-112) $) 49)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 70) (($ $ (-766)) 68)) (-4300 (($ $ $ (-562)) 127) (($ |#1| $ (-562)) 126)) (-3297 (($ $ $ (-562)) 116) (($ |#1| $ (-562)) 115)) (-2093 (((-639 (-562)) $) 92)) (-1570 (((-112) (-562) $) 91)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 76) (($ $ (-766)) 74)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2716 (($ $ |#1|) 96 (|has| $ (-6 -4403)))) (-2017 (((-112) $) 84)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) 90)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1223 (-562))) 112) ((|#1| $ (-562)) 89) ((|#1| $ (-562) |#1|) 88)) (-2568 (((-562) $ $) 44)) (-2878 (($ $ (-1223 (-562))) 124) (($ $ (-562)) 123)) (-2880 (($ $ (-1223 (-562))) 114) (($ $ (-562)) 113)) (-2424 (((-112) $) 46)) (-2613 (($ $) 62)) (-4327 (($ $) 59 (|has| $ (-6 -4403)))) (-2296 (((-766) $) 63)) (-3913 (($ $) 64)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1853 (($ $ $ (-562)) 143 (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 98 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 107)) (-4142 (($ $ $) 61) (($ $ |#1|) 60)) (-2767 (($ $ $) 78) (($ |#1| $) 77) (($ (-639 $)) 110) (($ $ |#1|) 109)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) 51)) (-4055 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) 150 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 151 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 149 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 152 (|has| |#1| (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-660 |#1|) (-139) (-1207)) (T -660)) +((-3716 (*1 *1 *2) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1207))))) +(-13 (-1141 |t#1|) (-372 |t#1|) (-281 |t#1|) (-10 -8 (-15 -3716 ($ |t#1|)))) +(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-281 |#1|) . T) ((-372 |#1|) . T) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1005 |#1|) . T) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1141 |#1|) . T) ((-1207) . T) ((-1244 |#1|) . T)) +((-4351 (((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|))))) (-639 (-639 |#1|)) (-639 (-1256 |#1|))) 22) (((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|))))) (-683 |#1|) (-639 (-1256 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|)))) (-639 (-639 |#1|)) (-1256 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|)) 14)) (-2173 (((-766) (-683 |#1|) (-1256 |#1|)) 30)) (-2106 (((-3 (-1256 |#1|) "failed") (-683 |#1|) (-1256 |#1|)) 24)) (-3249 (((-112) (-683 |#1|) (-1256 |#1|)) 27))) +(((-661 |#1|) (-10 -7 (-15 -4351 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|))) (-15 -4351 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|)))) (-639 (-639 |#1|)) (-1256 |#1|))) (-15 -4351 ((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|))))) (-683 |#1|) (-639 (-1256 |#1|)))) (-15 -4351 ((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|))))) (-639 (-639 |#1|)) (-639 (-1256 |#1|)))) (-15 -2106 ((-3 (-1256 |#1|) "failed") (-683 |#1|) (-1256 |#1|))) (-15 -3249 ((-112) (-683 |#1|) (-1256 |#1|))) (-15 -2173 ((-766) (-683 |#1|) (-1256 |#1|)))) (-362)) (T -661)) +((-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-362)) (-5 *2 (-766)) (-5 *1 (-661 *5)))) (-3249 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-362)) (-5 *2 (-112)) (-5 *1 (-661 *5)))) (-2106 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1256 *4)) (-5 *3 (-683 *4)) (-4 *4 (-362)) (-5 *1 (-661 *4)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 *5))) (-4 *5 (-362)) (-5 *2 (-639 (-2 (|:| |particular| (-3 (-1256 *5) "failed")) (|:| -3928 (-639 (-1256 *5)))))) (-5 *1 (-661 *5)) (-5 *4 (-639 (-1256 *5))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *5)) (-4 *5 (-362)) (-5 *2 (-639 (-2 (|:| |particular| (-3 (-1256 *5) "failed")) (|:| -3928 (-639 (-1256 *5)))))) (-5 *1 (-661 *5)) (-5 *4 (-639 (-1256 *5))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 *5))) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 *5) "failed")) (|:| -3928 (-639 (-1256 *5))))) (-5 *1 (-661 *5)) (-5 *4 (-1256 *5)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 *5) "failed")) (|:| -3928 (-639 (-1256 *5))))) (-5 *1 (-661 *5)) (-5 *4 (-1256 *5))))) +(-10 -7 (-15 -4351 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|))) (-15 -4351 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|)))) (-639 (-639 |#1|)) (-1256 |#1|))) (-15 -4351 ((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|))))) (-683 |#1|) (-639 (-1256 |#1|)))) (-15 -4351 ((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|))))) (-639 (-639 |#1|)) (-639 (-1256 |#1|)))) (-15 -2106 ((-3 (-1256 |#1|) "failed") (-683 |#1|) (-1256 |#1|))) (-15 -3249 ((-112) (-683 |#1|) (-1256 |#1|))) (-15 -2173 ((-766) (-683 |#1|) (-1256 |#1|)))) +((-4351 (((-639 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3928 (-639 |#3|)))) |#4| (-639 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3928 (-639 |#3|))) |#4| |#3|) 45)) (-2173 (((-766) |#4| |#3|) 17)) (-2106 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3249 (((-112) |#4| |#3|) 13))) +(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4351 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3928 (-639 |#3|))) |#4| |#3|)) (-15 -4351 ((-639 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3928 (-639 |#3|)))) |#4| (-639 |#3|))) (-15 -2106 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3249 ((-112) |#4| |#3|)) (-15 -2173 ((-766) |#4| |#3|))) (-362) (-13 (-372 |#1|) (-10 -7 (-6 -4403))) (-13 (-372 |#1|) (-10 -7 (-6 -4403))) (-681 |#1| |#2| |#3|)) (T -662)) +((-2173 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-5 *2 (-766)) (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) (-3249 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-5 *2 (-112)) (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) (-2106 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4403)))) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4403)))) (-5 *1 (-662 *4 *5 *2 *3)) (-4 *3 (-681 *4 *5 *2)))) (-4351 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-5 *2 (-639 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3928 (-639 *7))))) (-5 *1 (-662 *5 *6 *7 *3)) (-5 *4 (-639 *7)) (-4 *3 (-681 *5 *6 *7)))) (-4351 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4))))) +(-10 -7 (-15 -4351 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3928 (-639 |#3|))) |#4| |#3|)) (-15 -4351 ((-639 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3928 (-639 |#3|)))) |#4| (-639 |#3|))) (-15 -2106 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3249 ((-112) |#4| |#3|)) (-15 -2173 ((-766) |#4| |#3|))) +((-2140 (((-2 (|:| |particular| (-3 (-1256 (-406 |#4|)) "failed")) (|:| -3928 (-639 (-1256 (-406 |#4|))))) (-639 |#4|) (-639 |#3|)) 45))) +(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2140 ((-2 (|:| |particular| (-3 (-1256 (-406 |#4|)) "failed")) (|:| -3928 (-639 (-1256 (-406 |#4|))))) (-639 |#4|) (-639 |#3|)))) (-554) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -663)) +((-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *7)) (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 (-406 *8)) "failed")) (|:| -3928 (-639 (-1256 (-406 *8)))))) (-5 *1 (-663 *5 *6 *7 *8))))) +(-10 -7 (-15 -2140 ((-2 (|:| |particular| (-3 (-1256 (-406 |#4|)) "failed")) (|:| -3928 (-639 (-1256 (-406 |#4|))))) (-639 |#4|) (-639 |#3|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3931 (((-3 $ "failed")) NIL (|has| |#2| (-554)))) (-1748 ((|#2| $) NIL)) (-2952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1902 (((-1256 (-683 |#2|))) NIL) (((-1256 (-683 |#2|)) (-1256 $)) NIL)) (-3220 (((-112) $) NIL)) (-3655 (((-1256 $)) 37)) (-4336 (((-112) $ (-766)) NIL)) (-2554 (($ |#2|) NIL)) (-1800 (($) NIL T CONST)) (-2522 (($ $) NIL (|has| |#2| (-306)))) (-3796 (((-239 |#1| |#2|) $ (-562)) NIL)) (-2874 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL (|has| |#2| (-554)))) (-2117 (((-3 $ "failed")) NIL (|has| |#2| (-554)))) (-4356 (((-683 |#2|)) NIL) (((-683 |#2|) (-1256 $)) NIL)) (-2422 ((|#2| $) NIL)) (-2966 (((-683 |#2|) $) NIL) (((-683 |#2|) $ (-1256 $)) NIL)) (-2545 (((-3 $ "failed") $) NIL (|has| |#2| (-554)))) (-3407 (((-1164 (-947 |#2|))) NIL (|has| |#2| (-362)))) (-1379 (($ $ (-916)) NIL)) (-2355 ((|#2| $) NIL)) (-3474 (((-1164 |#2|) $) NIL (|has| |#2| (-554)))) (-2819 ((|#2|) NIL) ((|#2| (-1256 $)) NIL)) (-2964 (((-1164 |#2|) $) NIL)) (-2380 (((-112)) NIL)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 |#2| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) ((|#2| $) NIL)) (-4018 (($ (-1256 |#2|)) NIL) (($ (-1256 |#2|) (-1256 $)) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-2173 (((-766) $) NIL (|has| |#2| (-554))) (((-916)) 38)) (-1420 ((|#2| $ (-562) (-562)) NIL)) (-1321 (((-112)) NIL)) (-3650 (($ $ (-916)) NIL)) (-1720 (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1957 (((-112) $) NIL)) (-3922 (((-766) $) NIL (|has| |#2| (-554)))) (-2318 (((-639 (-239 |#1| |#2|)) $) NIL (|has| |#2| (-554)))) (-2699 (((-766) $) NIL)) (-3813 (((-112)) NIL)) (-2709 (((-766) $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-2280 ((|#2| $) NIL (|has| |#2| (-6 (-4404 "*"))))) (-2783 (((-562) $) NIL)) (-4217 (((-562) $) NIL)) (-1912 (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-4088 (((-562) $) NIL)) (-2453 (((-562) $) NIL)) (-2885 (($ (-639 (-639 |#2|))) NIL)) (-1490 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2824 (((-639 (-639 |#2|)) $) NIL)) (-3375 (((-112)) NIL)) (-4258 (((-112)) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-1681 (((-3 (-2 (|:| |particular| $) (|:| -3928 (-639 $))) "failed")) NIL (|has| |#2| (-554)))) (-3700 (((-3 $ "failed")) NIL (|has| |#2| (-554)))) (-3025 (((-683 |#2|)) NIL) (((-683 |#2|) (-1256 $)) NIL)) (-4153 ((|#2| $) NIL)) (-1671 (((-683 |#2|) $) NIL) (((-683 |#2|) $ (-1256 $)) NIL)) (-4238 (((-3 $ "failed") $) NIL (|has| |#2| (-554)))) (-2743 (((-1164 (-947 |#2|))) NIL (|has| |#2| (-362)))) (-2991 (($ $ (-916)) NIL)) (-1680 ((|#2| $) NIL)) (-2026 (((-1164 |#2|) $) NIL (|has| |#2| (-554)))) (-1305 ((|#2|) NIL) ((|#2| (-1256 $)) NIL)) (-2670 (((-1164 |#2|) $) NIL)) (-2090 (((-112)) NIL)) (-2913 (((-1150) $) NIL)) (-2144 (((-112)) NIL)) (-2580 (((-112)) NIL)) (-2809 (((-112)) NIL)) (-3494 (((-3 $ "failed") $) NIL (|has| |#2| (-362)))) (-1709 (((-1112) $) NIL)) (-4323 (((-112)) NIL)) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-1763 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ (-562) (-562) |#2|) NIL) ((|#2| $ (-562) (-562)) 22) ((|#2| $ (-562)) NIL)) (-4029 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3436 ((|#2| $) NIL)) (-3448 (($ (-639 |#2|)) NIL)) (-1544 (((-112) $) NIL)) (-3798 (((-239 |#1| |#2|) $) NIL)) (-3770 ((|#2| $) NIL (|has| |#2| (-6 (-4404 "*"))))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-3593 (((-683 |#2|) (-1256 $)) NIL) (((-1256 |#2|) $) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $ (-1256 $)) 25)) (-4208 (($ (-1256 |#2|)) NIL) (((-1256 |#2|) $) NIL)) (-4136 (((-639 (-947 |#2|))) NIL) (((-639 (-947 |#2|)) (-1256 $)) NIL)) (-1911 (($ $ $) NIL)) (-1396 (((-112)) NIL)) (-2211 (((-239 |#1| |#2|) $ (-562)) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#2| (-1033 (-406 (-562))))) (($ |#2|) NIL) (((-683 |#2|) $) NIL)) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) 36)) (-3553 (((-639 (-1256 |#2|))) NIL (|has| |#2| (-554)))) (-2436 (($ $ $ $) NIL)) (-2850 (((-112)) NIL)) (-1360 (($ (-683 |#2|) $) NIL)) (-1744 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1335 (((-112) $) NIL)) (-3626 (($ $ $) NIL)) (-1981 (((-112)) NIL)) (-3199 (((-112)) NIL)) (-4114 (((-112)) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#2| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) NIL) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-664 |#1| |#2|) (-13 (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-609 (-683 |#2|)) (-416 |#2|)) (-916) (-171)) (T -664)) +NIL +(-13 (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-609 (-683 |#2|)) (-416 |#2|)) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3885 (((-639 (-1127)) $) 10)) (-4054 (((-857) $) 18) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-665) (-13 (-1075) (-10 -8 (-15 -3885 ((-639 (-1127)) $))))) (T -665)) +((-3885 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-665))))) +(-13 (-1075) (-10 -8 (-15 -3885 ((-639 (-1127)) $)))) +((-4041 (((-112) $ $) NIL)) (-2852 (((-639 |#1|) $) NIL)) (-1602 (($ $) 51)) (-2585 (((-112) $) NIL)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4042 (((-3 $ "failed") (-814 |#1|)) 23)) (-2810 (((-112) (-814 |#1|)) 15)) (-2138 (($ (-814 |#1|)) 24)) (-3496 (((-112) $ $) 29)) (-3641 (((-916) $) 36)) (-1588 (($ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1635 (((-639 $) (-814 |#1|)) 17)) (-4054 (((-857) $) 42) (($ |#1|) 33) (((-814 |#1|) $) 38) (((-671 |#1|) $) 43)) (-2351 (((-59 (-639 $)) (-639 |#1|) (-916)) 56)) (-2577 (((-639 $) (-639 |#1|) (-916)) 59)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 52)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 37))) +(((-666 |#1|) (-13 (-845) (-1033 |#1|) (-10 -8 (-15 -2585 ((-112) $)) (-15 -1588 ($ $)) (-15 -1602 ($ $)) (-15 -3641 ((-916) $)) (-15 -3496 ((-112) $ $)) (-15 -4054 ((-814 |#1|) $)) (-15 -4054 ((-671 |#1|) $)) (-15 -1635 ((-639 $) (-814 |#1|))) (-15 -2810 ((-112) (-814 |#1|))) (-15 -2138 ($ (-814 |#1|))) (-15 -4042 ((-3 $ "failed") (-814 |#1|))) (-15 -2852 ((-639 |#1|) $)) (-15 -2351 ((-59 (-639 $)) (-639 |#1|) (-916))) (-15 -2577 ((-639 $) (-639 |#1|) (-916))))) (-845)) (T -666)) +((-2585 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-1588 (*1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-845)))) (-1602 (*1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-845)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-3496 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-671 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-845)) (-5 *2 (-639 (-666 *4))) (-5 *1 (-666 *4)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-845)) (-5 *2 (-112)) (-5 *1 (-666 *4)))) (-2138 (*1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *3 (-845)) (-5 *1 (-666 *3)))) (-4042 (*1 *1 *2) (|partial| -12 (-5 *2 (-814 *3)) (-4 *3 (-845)) (-5 *1 (-666 *3)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-2351 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-916)) (-4 *5 (-845)) (-5 *2 (-59 (-639 (-666 *5)))) (-5 *1 (-666 *5)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-916)) (-4 *5 (-845)) (-5 *2 (-639 (-666 *5))) (-5 *1 (-666 *5))))) +(-13 (-845) (-1033 |#1|) (-10 -8 (-15 -2585 ((-112) $)) (-15 -1588 ($ $)) (-15 -1602 ($ $)) (-15 -3641 ((-916) $)) (-15 -3496 ((-112) $ $)) (-15 -4054 ((-814 |#1|) $)) (-15 -4054 ((-671 |#1|) $)) (-15 -1635 ((-639 $) (-814 |#1|))) (-15 -2810 ((-112) (-814 |#1|))) (-15 -2138 ($ (-814 |#1|))) (-15 -4042 ((-3 $ "failed") (-814 |#1|))) (-15 -2852 ((-639 |#1|) $)) (-15 -2351 ((-59 (-639 $)) (-639 |#1|) (-916))) (-15 -2577 ((-639 $) (-639 |#1|) (-916))))) +((-2534 ((|#2| $) 76)) (-3121 (($ $) 96)) (-4336 (((-112) $ (-766)) 26)) (-1434 (($ $) 85) (($ $ (-766)) 88)) (-3266 (((-112) $) 97)) (-2720 (((-639 $) $) 72)) (-4379 (((-112) $ $) 71)) (-3292 (((-112) $ (-766)) 24)) (-4197 (((-562) $) 46)) (-3874 (((-562) $) 45)) (-3289 (((-112) $ (-766)) 22)) (-3449 (((-112) $) 74)) (-1504 ((|#2| $) 89) (($ $ (-766)) 92)) (-3297 (($ $ $ (-562)) 62) (($ |#2| $ (-562)) 61)) (-2093 (((-639 (-562)) $) 44)) (-1570 (((-112) (-562) $) 42)) (-1421 ((|#2| $) NIL) (($ $ (-766)) 84)) (-1353 (($ $ (-562)) 99)) (-2017 (((-112) $) 98)) (-1763 (((-112) (-1 (-112) |#2|) $) 32)) (-2411 (((-639 |#2|) $) 33)) (-2343 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1223 (-562))) 58) ((|#2| $ (-562)) 40) ((|#2| $ (-562) |#2|) 41)) (-2568 (((-562) $ $) 70)) (-2880 (($ $ (-1223 (-562))) 57) (($ $ (-562)) 51)) (-2424 (((-112) $) 66)) (-2613 (($ $) 81)) (-2296 (((-766) $) 80)) (-3913 (($ $) 79)) (-4066 (($ (-639 |#2|)) 37)) (-2256 (($ $) 100)) (-2906 (((-639 $) $) 69)) (-4055 (((-112) $ $) 68)) (-1744 (((-112) (-1 (-112) |#2|) $) 31)) (-1731 (((-112) $ $) 18)) (-3492 (((-766) $) 29))) +(((-667 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1353 (|#1| |#1| (-562))) (-15 -3266 ((-112) |#1|)) (-15 -2017 ((-112) |#1|)) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2411 ((-639 |#2|) |#1|)) (-15 -1570 ((-112) (-562) |#1|)) (-15 -2093 ((-639 (-562)) |#1|)) (-15 -3874 ((-562) |#1|)) (-15 -4197 ((-562) |#1|)) (-15 -4066 (|#1| (-639 |#2|))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -3297 (|#1| |#2| |#1| (-562))) (-15 -3297 (|#1| |#1| |#1| (-562))) (-15 -2613 (|#1| |#1|)) (-15 -2296 ((-766) |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3121 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "last")) (-15 -1504 (|#2| |#1|)) (-15 -1434 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| "rest")) (-15 -1434 (|#1| |#1|)) (-15 -1421 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "first")) (-15 -1421 (|#2| |#1|)) (-15 -4379 ((-112) |#1| |#1|)) (-15 -4055 ((-112) |#1| |#1|)) (-15 -2568 ((-562) |#1| |#1|)) (-15 -2424 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -2534 (|#2| |#1|)) (-15 -3449 ((-112) |#1|)) (-15 -2720 ((-639 |#1|) |#1|)) (-15 -2906 ((-639 |#1|) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4336 ((-112) |#1| (-766))) (-15 -3292 ((-112) |#1| (-766))) (-15 -3289 ((-112) |#1| (-766)))) (-668 |#2|) (-1207)) (T -667)) +NIL +(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1353 (|#1| |#1| (-562))) (-15 -3266 ((-112) |#1|)) (-15 -2017 ((-112) |#1|)) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2411 ((-639 |#2|) |#1|)) (-15 -1570 ((-112) (-562) |#1|)) (-15 -2093 ((-639 (-562)) |#1|)) (-15 -3874 ((-562) |#1|)) (-15 -4197 ((-562) |#1|)) (-15 -4066 (|#1| (-639 |#2|))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -3297 (|#1| |#2| |#1| (-562))) (-15 -3297 (|#1| |#1| |#1| (-562))) (-15 -2613 (|#1| |#1|)) (-15 -2296 ((-766) |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3121 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "last")) (-15 -1504 (|#2| |#1|)) (-15 -1434 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| "rest")) (-15 -1434 (|#1| |#1|)) (-15 -1421 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "first")) (-15 -1421 (|#2| |#1|)) (-15 -4379 ((-112) |#1| |#1|)) (-15 -4055 ((-112) |#1| |#1|)) (-15 -2568 ((-562) |#1| |#1|)) (-15 -2424 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -2534 (|#2| |#1|)) (-15 -3449 ((-112) |#1|)) (-15 -2720 ((-639 |#1|) |#1|)) (-15 -2906 ((-639 |#1|) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -1763 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4336 ((-112) |#1| (-766))) (-15 -3292 ((-112) |#1| (-766))) (-15 -3289 ((-112) |#1| (-766)))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2534 ((|#1| $) 48)) (-2359 ((|#1| $) 65)) (-3121 (($ $) 67)) (-3052 (((-1261) $ (-562) (-562)) 97 (|has| $ (-6 -4403)))) (-2254 (($ $ (-562)) 52 (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) 8)) (-1512 ((|#1| $ |#1|) 39 (|has| $ (-6 -4403)))) (-3012 (($ $ $) 56 (|has| $ (-6 -4403)))) (-3950 ((|#1| $ |#1|) 54 (|has| $ (-6 -4403)))) (-2687 ((|#1| $ |#1|) 58 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4403))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4403))) (($ $ "rest" $) 55 (|has| $ (-6 -4403))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 117 (|has| $ (-6 -4403))) ((|#1| $ (-562) |#1|) 86 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 41 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 102)) (-2350 ((|#1| $) 66)) (-1800 (($) 7 T CONST)) (-4293 (($ $) 124)) (-1434 (($ $) 73) (($ $ (-766)) 71)) (-1459 (($ $) 99 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#1| $) 100 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 103)) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1505 ((|#1| $ (-562) |#1|) 85 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 87)) (-3266 (((-112) $) 83)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2505 (((-766) $) 123)) (-2720 (((-639 $) $) 50)) (-4379 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) 108)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 95 (|has| (-562) (-845)))) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 94 (|has| (-562) (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3289 (((-112) $ (-766)) 10)) (-4007 (((-639 |#1|) $) 45)) (-3449 (((-112) $) 49)) (-1892 (($ $) 126)) (-3718 (((-112) $) 127)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 70) (($ $ (-766)) 68)) (-3297 (($ $ $ (-562)) 116) (($ |#1| $ (-562)) 115)) (-2093 (((-639 (-562)) $) 92)) (-1570 (((-112) (-562) $) 91)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3038 ((|#1| $) 125)) (-1421 ((|#1| $) 76) (($ $ (-766)) 74)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2716 (($ $ |#1|) 96 (|has| $ (-6 -4403)))) (-1353 (($ $ (-562)) 122)) (-2017 (((-112) $) 84)) (-3663 (((-112) $) 128)) (-3431 (((-112) $) 129)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) 90)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1223 (-562))) 112) ((|#1| $ (-562)) 89) ((|#1| $ (-562) |#1|) 88)) (-2568 (((-562) $ $) 44)) (-2880 (($ $ (-1223 (-562))) 114) (($ $ (-562)) 113)) (-2424 (((-112) $) 46)) (-2613 (($ $) 62)) (-4327 (($ $) 59 (|has| $ (-6 -4403)))) (-2296 (((-766) $) 63)) (-3913 (($ $) 64)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 98 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 107)) (-4142 (($ $ $) 61 (|has| $ (-6 -4403))) (($ $ |#1|) 60 (|has| $ (-6 -4403)))) (-2767 (($ $ $) 78) (($ |#1| $) 77) (($ (-639 $)) 110) (($ $ |#1|) 109)) (-2256 (($ $) 121)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) 51)) (-4055 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-668 |#1|) (-139) (-1207)) (T -668)) +((-1475 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) (-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) (-3431 (*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-1892 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207)))) (-3038 (*1 *2 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207)))) (-4293 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) (-1353 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) (-2256 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207))))) +(-13 (-1141 |t#1|) (-10 -8 (-15 -1475 ($ (-1 (-112) |t#1|) $)) (-15 -3556 ($ (-1 (-112) |t#1|) $)) (-15 -3431 ((-112) $)) (-15 -3663 ((-112) $)) (-15 -3718 ((-112) $)) (-15 -1892 ($ $)) (-15 -3038 (|t#1| $)) (-15 -4293 ($ $)) (-15 -2505 ((-766) $)) (-15 -1353 ($ $ (-562))) (-15 -2256 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1141 |#1|) . T) ((-1207) . T) ((-1244 |#1|) . T)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2496 (($ (-766) (-766) (-766)) 33 (|has| |#1| (-1044)))) (-4336 (((-112) $ (-766)) NIL)) (-3629 ((|#1| $ (-766) (-766) (-766) |#1|) 27)) (-1800 (($) NIL T CONST)) (-2960 (($ $ $) 37 (|has| |#1| (-1044)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3161 (((-1256 (-766)) $) 9)) (-1951 (($ (-1168) $ $) 22)) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-4057 (($ (-766)) 35 (|has| |#1| (-1044)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-766) (-766) (-766)) 25)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4066 (($ (-639 (-639 (-639 |#1|)))) 44)) (-4054 (($ (-953 (-953 (-953 |#1|)))) 15) (((-953 (-953 (-953 |#1|))) $) 12) (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-669 |#1|) (-13 (-488 |#1|) (-10 -8 (IF (|has| |#1| (-1044)) (PROGN (-15 -2496 ($ (-766) (-766) (-766))) (-15 -4057 ($ (-766))) (-15 -2960 ($ $ $))) |%noBranch|) (-15 -4066 ($ (-639 (-639 (-639 |#1|))))) (-15 -2343 (|#1| $ (-766) (-766) (-766))) (-15 -3629 (|#1| $ (-766) (-766) (-766) |#1|)) (-15 -4054 ($ (-953 (-953 (-953 |#1|))))) (-15 -4054 ((-953 (-953 (-953 |#1|))) $)) (-15 -1951 ($ (-1168) $ $)) (-15 -3161 ((-1256 (-766)) $)))) (-1092)) (T -669)) +((-2496 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-669 *3)) (-4 *3 (-1044)) (-4 *3 (-1092)))) (-4057 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-669 *3)) (-4 *3 (-1044)) (-4 *3 (-1092)))) (-2960 (*1 *1 *1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1044)) (-4 *2 (-1092)))) (-4066 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-639 *3)))) (-4 *3 (-1092)) (-5 *1 (-669 *3)))) (-2343 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-766)) (-5 *1 (-669 *2)) (-4 *2 (-1092)))) (-3629 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-669 *2)) (-4 *2 (-1092)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-953 (-953 (-953 *3)))) (-4 *3 (-1092)) (-5 *1 (-669 *3)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-953 (-953 (-953 *3)))) (-5 *1 (-669 *3)) (-4 *3 (-1092)))) (-1951 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-669 *3)) (-4 *3 (-1092)))) (-3161 (*1 *2 *1) (-12 (-5 *2 (-1256 (-766))) (-5 *1 (-669 *3)) (-4 *3 (-1092))))) +(-13 (-488 |#1|) (-10 -8 (IF (|has| |#1| (-1044)) (PROGN (-15 -2496 ($ (-766) (-766) (-766))) (-15 -4057 ($ (-766))) (-15 -2960 ($ $ $))) |%noBranch|) (-15 -4066 ($ (-639 (-639 (-639 |#1|))))) (-15 -2343 (|#1| $ (-766) (-766) (-766))) (-15 -3629 (|#1| $ (-766) (-766) (-766) |#1|)) (-15 -4054 ($ (-953 (-953 (-953 |#1|))))) (-15 -4054 ((-953 (-953 (-953 |#1|))) $)) (-15 -1951 ($ (-1168) $ $)) (-15 -3161 ((-1256 (-766)) $)))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-3063 (((-482) $) 10)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 12)) (-1731 (((-112) $ $) NIL))) +(((-670) (-13 (-1075) (-10 -8 (-15 -3063 ((-482) $)) (-15 -3265 ((-1127) $))))) (T -670)) +((-3063 (*1 *2 *1) (-12 (-5 *2 (-482)) (-5 *1 (-670)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-670))))) +(-13 (-1075) (-10 -8 (-15 -3063 ((-482) $)) (-15 -3265 ((-1127) $)))) +((-4041 (((-112) $ $) NIL)) (-2852 (((-639 |#1|) $) 14)) (-1602 (($ $) 18)) (-2585 (((-112) $) 19)) (-4048 (((-3 |#1| "failed") $) 22)) (-3961 ((|#1| $) 20)) (-1434 (($ $) 36)) (-3818 (($ $) 24)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3496 (((-112) $ $) 41)) (-3641 (((-916) $) 38)) (-1588 (($ $) 17)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 ((|#1| $) 35)) (-4054 (((-857) $) 31) (($ |#1|) 23) (((-814 |#1|) $) 27)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 12)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 40)) (* (($ $ $) 34))) +(((-671 |#1|) (-13 (-845) (-1033 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4054 ((-814 |#1|) $)) (-15 -1421 (|#1| $)) (-15 -1588 ($ $)) (-15 -3641 ((-916) $)) (-15 -3496 ((-112) $ $)) (-15 -3818 ($ $)) (-15 -1434 ($ $)) (-15 -2585 ((-112) $)) (-15 -1602 ($ $)) (-15 -2852 ((-639 |#1|) $)))) (-845)) (T -671)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) (-1421 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-1588 (*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) (-3496 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-1434 (*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) (-1602 (*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-671 *3)) (-4 *3 (-845))))) +(-13 (-845) (-1033 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4054 ((-814 |#1|) $)) (-15 -1421 (|#1| $)) (-15 -1588 ($ $)) (-15 -3641 ((-916) $)) (-15 -3496 ((-112) $ $)) (-15 -3818 ($ $)) (-15 -1434 ($ $)) (-15 -2585 ((-112) $)) (-15 -1602 ($ $)) (-15 -2852 ((-639 |#1|) $)))) +((-2132 ((|#1| (-1 |#1| (-766) |#1|) (-766) |#1|) 11)) (-3354 ((|#1| (-1 |#1| |#1|) (-766) |#1|) 9))) +(((-672 |#1|) (-10 -7 (-15 -3354 (|#1| (-1 |#1| |#1|) (-766) |#1|)) (-15 -2132 (|#1| (-1 |#1| (-766) |#1|) (-766) |#1|))) (-1092)) (T -672)) +((-2132 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-766) *2)) (-5 *4 (-766)) (-4 *2 (-1092)) (-5 *1 (-672 *2)))) (-3354 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-766)) (-4 *2 (-1092)) (-5 *1 (-672 *2))))) +(-10 -7 (-15 -3354 (|#1| (-1 |#1| |#1|) (-766) |#1|)) (-15 -2132 (|#1| (-1 |#1| (-766) |#1|) (-766) |#1|))) +((-3755 ((|#2| |#1| |#2|) 9)) (-3743 ((|#1| |#1| |#2|) 8))) +(((-673 |#1| |#2|) (-10 -7 (-15 -3743 (|#1| |#1| |#2|)) (-15 -3755 (|#2| |#1| |#2|))) (-1092) (-1092)) (T -673)) +((-3755 (*1 *2 *3 *2) (-12 (-5 *1 (-673 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-3743 (*1 *2 *2 *3) (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) +(-10 -7 (-15 -3743 (|#1| |#1| |#2|)) (-15 -3755 (|#2| |#1| |#2|))) +((-4310 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -4310 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1092) (-1092) (-1092)) (T -674)) +((-4310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)) (-5 *1 (-674 *5 *6 *2))))) +(-10 -7 (-15 -4310 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-4041 (((-112) $ $) NIL)) (-4084 (((-1206) $) 20)) (-4020 (((-639 (-1206)) $) 18)) (-2216 (($ (-639 (-1206)) (-1206)) 13)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 29) (($ (-1173)) NIL) (((-1173) $) NIL) (((-1206) $) 21) (($ (-1110)) 10)) (-1731 (((-112) $ $) NIL))) +(((-675) (-13 (-1075) (-609 (-1206)) (-10 -8 (-15 -4054 ($ (-1110))) (-15 -2216 ($ (-639 (-1206)) (-1206))) (-15 -4020 ((-639 (-1206)) $)) (-15 -4084 ((-1206) $))))) (T -675)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-675)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-639 (-1206))) (-5 *3 (-1206)) (-5 *1 (-675)))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-675)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-675))))) +(-13 (-1075) (-609 (-1206)) (-10 -8 (-15 -4054 ($ (-1110))) (-15 -2216 ($ (-639 (-1206)) (-1206))) (-15 -4020 ((-639 (-1206)) $)) (-15 -4084 ((-1206) $)))) +((-2132 (((-1 |#1| (-766) |#1|) (-1 |#1| (-766) |#1|)) 23)) (-3815 (((-1 |#1|) |#1|) 8)) (-1416 ((|#1| |#1|) 16)) (-2429 (((-639 |#1|) (-1 (-639 |#1|) (-639 |#1|)) (-562)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4054 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-766)) 20))) +(((-676 |#1|) (-10 -7 (-15 -3815 ((-1 |#1|) |#1|)) (-15 -4054 ((-1 |#1|) |#1|)) (-15 -2429 (|#1| (-1 |#1| |#1|))) (-15 -2429 ((-639 |#1|) (-1 (-639 |#1|) (-639 |#1|)) (-562))) (-15 -1416 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-766))) (-15 -2132 ((-1 |#1| (-766) |#1|) (-1 |#1| (-766) |#1|)))) (-1092)) (T -676)) +((-2132 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-766) *3)) (-4 *3 (-1092)) (-5 *1 (-676 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *4 (-1092)) (-5 *1 (-676 *4)))) (-1416 (*1 *2 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1092)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-639 *5) (-639 *5))) (-5 *4 (-562)) (-5 *2 (-639 *5)) (-5 *1 (-676 *5)) (-4 *5 (-1092)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-676 *2)) (-4 *2 (-1092)))) (-4054 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1092)))) (-3815 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1092))))) +(-10 -7 (-15 -3815 ((-1 |#1|) |#1|)) (-15 -4054 ((-1 |#1|) |#1|)) (-15 -2429 (|#1| (-1 |#1| |#1|))) (-15 -2429 ((-639 |#1|) (-1 (-639 |#1|) (-639 |#1|)) (-562))) (-15 -1416 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-766))) (-15 -2132 ((-1 |#1| (-766) |#1|) (-1 |#1| (-766) |#1|)))) +((-2278 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2357 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1497 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3670 (((-1 |#2| |#1|) |#2|) 11))) +(((-677 |#1| |#2|) (-10 -7 (-15 -3670 ((-1 |#2| |#1|) |#2|)) (-15 -2357 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1497 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2278 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1092) (-1092)) (T -677)) +((-2278 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-5 *2 (-1 *5 *4)) (-5 *1 (-677 *4 *5)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1092)) (-5 *2 (-1 *5 *4)) (-5 *1 (-677 *4 *5)) (-4 *4 (-1092)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-5 *2 (-1 *5)) (-5 *1 (-677 *4 *5)))) (-3670 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-677 *4 *3)) (-4 *4 (-1092)) (-4 *3 (-1092))))) +(-10 -7 (-15 -3670 ((-1 |#2| |#1|) |#2|)) (-15 -2357 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1497 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2278 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-1424 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3954 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2691 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4352 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2869 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-678 |#1| |#2| |#3|) (-10 -7 (-15 -3954 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2691 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4352 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2869 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1424 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1092) (-1092) (-1092)) (T -678)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-1 *7 *5)) (-5 *1 (-678 *5 *6 *7)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-678 *4 *5 *6)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-678 *4 *5 *6)) (-4 *4 (-1092)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-678 *4 *5 *6)) (-4 *5 (-1092)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-678 *4 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1092)) (-4 *4 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-678 *5 *4 *6))))) +(-10 -7 (-15 -3954 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2691 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4352 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2869 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1424 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-1955 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4152 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-679 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4152 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4152 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1955 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1044) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|) (-1044) (-372 |#5|) (-372 |#5|) (-681 |#5| |#6| |#7|)) (T -679)) +((-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1044)) (-4 *2 (-1044)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) (-4 *9 (-372 *2)) (-5 *1 (-679 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-681 *5 *6 *7)) (-4 *10 (-681 *2 *8 *9)))) (-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1044)) (-4 *8 (-1044)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10)) (-5 *1 (-679 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1044)) (-4 *8 (-1044)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10)) (-5 *1 (-679 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))) +(-10 -7 (-15 -4152 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4152 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1955 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2911 (($ (-766) (-766)) 33)) (-2654 (($ $ $) 56)) (-2529 (($ |#3|) 52) (($ $) 53)) (-2952 (((-112) $) 28)) (-2188 (($ $ (-562) (-562)) 58)) (-2467 (($ $ (-562) (-562)) 59)) (-1593 (($ $ (-562) (-562) (-562) (-562)) 63)) (-3886 (($ $) 54)) (-3220 (((-112) $) 14)) (-4212 (($ $ (-562) (-562) $) 64)) (-4200 ((|#2| $ (-562) (-562) |#2|) NIL) (($ $ (-639 (-562)) (-639 (-562)) $) 62)) (-2554 (($ (-766) |#2|) 39)) (-2885 (($ (-639 (-639 |#2|))) 37)) (-2824 (((-639 (-639 |#2|)) $) 57)) (-2309 (($ $ $) 55)) (-1762 (((-3 $ "failed") $ |#2|) 91)) (-2343 ((|#2| $ (-562) (-562)) NIL) ((|#2| $ (-562) (-562) |#2|) NIL) (($ $ (-639 (-562)) (-639 (-562))) 61)) (-3448 (($ (-639 |#2|)) 40) (($ (-639 $)) 42)) (-1544 (((-112) $) 24)) (-4054 (($ |#4|) 47) (((-857) $) NIL)) (-1335 (((-112) $) 30)) (-1859 (($ $ |#2|) 93)) (-1848 (($ $ $) 68) (($ $) 71)) (-1835 (($ $ $) 66)) (** (($ $ (-766)) 80) (($ $ (-562)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-562) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4054 ((-857) |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1859 (|#1| |#1| |#2|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-766))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4212 (|#1| |#1| (-562) (-562) |#1|)) (-15 -1593 (|#1| |#1| (-562) (-562) (-562) (-562))) (-15 -2467 (|#1| |#1| (-562) (-562))) (-15 -2188 (|#1| |#1| (-562) (-562))) (-15 -4200 (|#1| |#1| (-639 (-562)) (-639 (-562)) |#1|)) (-15 -2343 (|#1| |#1| (-639 (-562)) (-639 (-562)))) (-15 -2824 ((-639 (-639 |#2|)) |#1|)) (-15 -2654 (|#1| |#1| |#1|)) (-15 -2309 (|#1| |#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -2529 (|#1| |#1|)) (-15 -2529 (|#1| |#3|)) (-15 -4054 (|#1| |#4|)) (-15 -3448 (|#1| (-639 |#1|))) (-15 -3448 (|#1| (-639 |#2|))) (-15 -2554 (|#1| (-766) |#2|)) (-15 -2885 (|#1| (-639 (-639 |#2|)))) (-15 -2911 (|#1| (-766) (-766))) (-15 -1335 ((-112) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 -1544 ((-112) |#1|)) (-15 -3220 ((-112) |#1|)) (-15 -4200 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562)))) (-681 |#2| |#3| |#4|) (-1044) (-372 |#2|) (-372 |#2|)) (T -680)) +NIL +(-10 -8 (-15 -4054 ((-857) |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1859 (|#1| |#1| |#2|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-766))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4212 (|#1| |#1| (-562) (-562) |#1|)) (-15 -1593 (|#1| |#1| (-562) (-562) (-562) (-562))) (-15 -2467 (|#1| |#1| (-562) (-562))) (-15 -2188 (|#1| |#1| (-562) (-562))) (-15 -4200 (|#1| |#1| (-639 (-562)) (-639 (-562)) |#1|)) (-15 -2343 (|#1| |#1| (-639 (-562)) (-639 (-562)))) (-15 -2824 ((-639 (-639 |#2|)) |#1|)) (-15 -2654 (|#1| |#1| |#1|)) (-15 -2309 (|#1| |#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -2529 (|#1| |#1|)) (-15 -2529 (|#1| |#3|)) (-15 -4054 (|#1| |#4|)) (-15 -3448 (|#1| (-639 |#1|))) (-15 -3448 (|#1| (-639 |#2|))) (-15 -2554 (|#1| (-766) |#2|)) (-15 -2885 (|#1| (-639 (-639 |#2|)))) (-15 -2911 (|#1| (-766) (-766))) (-15 -1335 ((-112) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 -1544 ((-112) |#1|)) (-15 -3220 ((-112) |#1|)) (-15 -4200 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562)))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2911 (($ (-766) (-766)) 97)) (-2654 (($ $ $) 87)) (-2529 (($ |#2|) 91) (($ $) 90)) (-2952 (((-112) $) 99)) (-2188 (($ $ (-562) (-562)) 83)) (-2467 (($ $ (-562) (-562)) 82)) (-1593 (($ $ (-562) (-562) (-562) (-562)) 81)) (-3886 (($ $) 89)) (-3220 (((-112) $) 101)) (-4336 (((-112) $ (-766)) 8)) (-4212 (($ $ (-562) (-562) $) 80)) (-4200 ((|#1| $ (-562) (-562) |#1|) 44) (($ $ (-639 (-562)) (-639 (-562)) $) 84)) (-1928 (($ $ (-562) |#2|) 42)) (-3003 (($ $ (-562) |#3|) 41)) (-2554 (($ (-766) |#1|) 95)) (-1800 (($) 7 T CONST)) (-2522 (($ $) 67 (|has| |#1| (-306)))) (-3796 ((|#2| $ (-562)) 46)) (-2173 (((-766) $) 66 (|has| |#1| (-554)))) (-1505 ((|#1| $ (-562) (-562) |#1|) 43)) (-1420 ((|#1| $ (-562) (-562)) 48)) (-1720 (((-639 |#1|) $) 30)) (-3922 (((-766) $) 65 (|has| |#1| (-554)))) (-2318 (((-639 |#3|) $) 64 (|has| |#1| (-554)))) (-2699 (((-766) $) 51)) (-1458 (($ (-766) (-766) |#1|) 57)) (-2709 (((-766) $) 50)) (-3292 (((-112) $ (-766)) 9)) (-2280 ((|#1| $) 62 (|has| |#1| (-6 (-4404 "*"))))) (-2783 (((-562) $) 55)) (-4217 (((-562) $) 53)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4088 (((-562) $) 54)) (-2453 (((-562) $) 52)) (-2885 (($ (-639 (-639 |#1|))) 96)) (-1490 (($ (-1 |#1| |#1|) $) 34)) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2824 (((-639 (-639 |#1|)) $) 86)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3494 (((-3 $ "failed") $) 61 (|has| |#1| (-362)))) (-2309 (($ $ $) 88)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-2716 (($ $ |#1|) 56)) (-1762 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-554)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ (-562) (-562)) 49) ((|#1| $ (-562) (-562) |#1|) 47) (($ $ (-639 (-562)) (-639 (-562))) 85)) (-3448 (($ (-639 |#1|)) 94) (($ (-639 $)) 93)) (-1544 (((-112) $) 100)) (-3770 ((|#1| $) 63 (|has| |#1| (-6 (-4404 "*"))))) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-2211 ((|#3| $ (-562)) 45)) (-4054 (($ |#3|) 92) (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1335 (((-112) $) 98)) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) 68 (|has| |#1| (-362)))) (-1848 (($ $ $) 78) (($ $) 77)) (-1835 (($ $ $) 79)) (** (($ $ (-766)) 70) (($ $ (-562)) 60 (|has| |#1| (-362)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-562) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-681 |#1| |#2| |#3|) (-139) (-1044) (-372 |t#1|) (-372 |t#1|)) (T -681)) +((-3220 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2911 (*1 *1 *2 *2) (-12 (-5 *2 (-766)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2885 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2554 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4054 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *2)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (-2529 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-4 *1 (-681 *3 *2 *4)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (-2529 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3886 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2309 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2654 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-639 (-639 *3))))) (-2343 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-639 (-562))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4200 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-639 (-562))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2188 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2467 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1593 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4212 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1835 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1848 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1848 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-681 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-681 *3 *2 *4)) (-4 *3 (-1044)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-554)))) (-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (-2522 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-306)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-766)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-766)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-639 *5)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4404 "*"))) (-4 *2 (-1044)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4404 "*"))) (-4 *2 (-1044)))) (-3494 (*1 *1 *1) (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4403) (-6 -4402) (-15 -3220 ((-112) $)) (-15 -1544 ((-112) $)) (-15 -2952 ((-112) $)) (-15 -1335 ((-112) $)) (-15 -2911 ($ (-766) (-766))) (-15 -2885 ($ (-639 (-639 |t#1|)))) (-15 -2554 ($ (-766) |t#1|)) (-15 -3448 ($ (-639 |t#1|))) (-15 -3448 ($ (-639 $))) (-15 -4054 ($ |t#3|)) (-15 -2529 ($ |t#2|)) (-15 -2529 ($ $)) (-15 -3886 ($ $)) (-15 -2309 ($ $ $)) (-15 -2654 ($ $ $)) (-15 -2824 ((-639 (-639 |t#1|)) $)) (-15 -2343 ($ $ (-639 (-562)) (-639 (-562)))) (-15 -4200 ($ $ (-639 (-562)) (-639 (-562)) $)) (-15 -2188 ($ $ (-562) (-562))) (-15 -2467 ($ $ (-562) (-562))) (-15 -1593 ($ $ (-562) (-562) (-562) (-562))) (-15 -4212 ($ $ (-562) (-562) $)) (-15 -1835 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -1848 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-562) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-766))) (IF (|has| |t#1| (-554)) (-15 -1762 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1859 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-306)) (-15 -2522 ($ $)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2173 ((-766) $)) (-15 -3922 ((-766) $)) (-15 -2318 ((-639 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4404 "*"))) (PROGN (-15 -3770 (|t#1| $)) (-15 -2280 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -3494 ((-3 $ "failed") $)) (-15 ** ($ $ (-562)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-57 |#1| |#2| |#3|) . T) ((-1207) . T)) +((-2522 ((|#4| |#4|) 71 (|has| |#1| (-306)))) (-2173 (((-766) |#4|) 98 (|has| |#1| (-554)))) (-3922 (((-766) |#4|) 75 (|has| |#1| (-554)))) (-2318 (((-639 |#3|) |#4|) 82 (|has| |#1| (-554)))) (-3106 (((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|) 110 (|has| |#1| (-306)))) (-2280 ((|#1| |#4|) 34)) (-3585 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-554)))) (-3494 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-362)))) (-3432 ((|#4| |#4|) 67 (|has| |#1| (-554)))) (-2123 ((|#4| |#4| |#1| (-562) (-562)) 42)) (-2490 ((|#4| |#4| (-562) (-562)) 37)) (-3673 ((|#4| |#4| |#1| (-562) (-562)) 47)) (-3770 ((|#1| |#4|) 77)) (-1563 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-554))))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3770 (|#1| |#4|)) (-15 -2280 (|#1| |#4|)) (-15 -2490 (|#4| |#4| (-562) (-562))) (-15 -2123 (|#4| |#4| |#1| (-562) (-562))) (-15 -3673 (|#4| |#4| |#1| (-562) (-562))) (IF (|has| |#1| (-554)) (PROGN (-15 -2173 ((-766) |#4|)) (-15 -3922 ((-766) |#4|)) (-15 -2318 ((-639 |#3|) |#4|)) (-15 -3432 (|#4| |#4|)) (-15 -3585 ((-3 |#4| "failed") |#4|)) (-15 -1563 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -2522 (|#4| |#4|)) (-15 -3106 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3494 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-171) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -682)) +((-3494 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3106 (*1 *2 *3 *3) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-682 *3 *4 *5 *6)) (-4 *6 (-681 *3 *4 *5)))) (-2522 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-1563 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3585 (*1 *2 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3432 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-2318 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-639 *6)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2173 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3673 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-562)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-682 *3 *5 *6 *2)) (-4 *2 (-681 *3 *5 *6)))) (-2123 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-562)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-682 *3 *5 *6 *2)) (-4 *2 (-681 *3 *5 *6)))) (-2490 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-562)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *1 (-682 *4 *5 *6 *2)) (-4 *2 (-681 *4 *5 *6)))) (-2280 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-682 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-682 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5))))) +(-10 -7 (-15 -3770 (|#1| |#4|)) (-15 -2280 (|#1| |#4|)) (-15 -2490 (|#4| |#4| (-562) (-562))) (-15 -2123 (|#4| |#4| |#1| (-562) (-562))) (-15 -3673 (|#4| |#4| |#1| (-562) (-562))) (IF (|has| |#1| (-554)) (PROGN (-15 -2173 ((-766) |#4|)) (-15 -3922 ((-766) |#4|)) (-15 -2318 ((-639 |#3|) |#4|)) (-15 -3432 (|#4| |#4|)) (-15 -3585 ((-3 |#4| "failed") |#4|)) (-15 -1563 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -2522 (|#4| |#4|)) (-15 -3106 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3494 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2911 (($ (-766) (-766)) 47)) (-2654 (($ $ $) NIL)) (-2529 (($ (-1256 |#1|)) NIL) (($ $) NIL)) (-2952 (((-112) $) NIL)) (-2188 (($ $ (-562) (-562)) 12)) (-2467 (($ $ (-562) (-562)) NIL)) (-1593 (($ $ (-562) (-562) (-562) (-562)) NIL)) (-3886 (($ $) NIL)) (-3220 (((-112) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-4212 (($ $ (-562) (-562) $) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562)) $) NIL)) (-1928 (($ $ (-562) (-1256 |#1|)) NIL)) (-3003 (($ $ (-562) (-1256 |#1|)) NIL)) (-2554 (($ (-766) |#1|) 22)) (-1800 (($) NIL T CONST)) (-2522 (($ $) 31 (|has| |#1| (-306)))) (-3796 (((-1256 |#1|) $ (-562)) NIL)) (-2173 (((-766) $) 33 (|has| |#1| (-554)))) (-1505 ((|#1| $ (-562) (-562) |#1|) 51)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-3922 (((-766) $) 35 (|has| |#1| (-554)))) (-2318 (((-639 (-1256 |#1|)) $) 38 (|has| |#1| (-554)))) (-2699 (((-766) $) 20)) (-1458 (($ (-766) (-766) |#1|) 16)) (-2709 (((-766) $) 21)) (-3292 (((-112) $ (-766)) NIL)) (-2280 ((|#1| $) 29 (|has| |#1| (-6 (-4404 "*"))))) (-2783 (((-562) $) 9)) (-4217 (((-562) $) 10)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4088 (((-562) $) 11)) (-2453 (((-562) $) 48)) (-2885 (($ (-639 (-639 |#1|))) NIL)) (-1490 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2824 (((-639 (-639 |#1|)) $) 60)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3494 (((-3 $ "failed") $) 45 (|has| |#1| (-362)))) (-2309 (($ $ $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2716 (($ $ |#1|) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562))) NIL)) (-3448 (($ (-639 |#1|)) NIL) (($ (-639 $)) NIL) (($ (-1256 |#1|)) 52)) (-1544 (((-112) $) NIL)) (-3770 ((|#1| $) 27 (|has| |#1| (-6 (-4404 "*"))))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 64 (|has| |#1| (-610 (-535))))) (-2211 (((-1256 |#1|) $ (-562)) NIL)) (-4054 (($ (-1256 |#1|)) NIL) (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1335 (((-112) $) NIL)) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $ $) NIL) (($ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-766)) 23) (($ $ (-562)) 46 (|has| |#1| (-362)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-562) $) NIL) (((-1256 |#1|) $ (-1256 |#1|)) NIL) (((-1256 |#1|) (-1256 |#1|) $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-683 |#1|) (-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 -3448 ($ (-1256 |#1|))) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3494 ((-3 $ "failed") $)) |%noBranch|))) (-1044)) (T -683)) +((-3494 (*1 *1 *1) (|partial| -12 (-5 *1 (-683 *2)) (-4 *2 (-362)) (-4 *2 (-1044)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1044)) (-5 *1 (-683 *3))))) +(-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 -3448 ($ (-1256 |#1|))) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -3494 ((-3 $ "failed") $)) |%noBranch|))) +((-1524 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|)) 25)) (-1965 (((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|) 21)) (-2915 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-766)) 26)) (-4283 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|)) 14)) (-3779 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|)) 18) (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 16)) (-2373 (((-683 |#1|) (-683 |#1|) |#1| (-683 |#1|)) 20)) (-2544 (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 12)) (** (((-683 |#1|) (-683 |#1|) (-766)) 30))) +(((-684 |#1|) (-10 -7 (-15 -2544 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -4283 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3779 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3779 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2373 ((-683 |#1|) (-683 |#1|) |#1| (-683 |#1|))) (-15 -1965 ((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|)) (-15 -1524 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2915 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-766))) (-15 ** ((-683 |#1|) (-683 |#1|) (-766)))) (-1044)) (T -684)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-683 *4)) (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *1 (-684 *4)))) (-2915 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-683 *4)) (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *1 (-684 *4)))) (-1524 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-1965 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-2373 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-3779 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-3779 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-4283 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-2544 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) +(-10 -7 (-15 -2544 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -4283 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3779 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3779 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2373 ((-683 |#1|) (-683 |#1|) |#1| (-683 |#1|))) (-15 -1965 ((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|)) (-15 -1524 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2915 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-766))) (-15 ** ((-683 |#1|) (-683 |#1|) (-766)))) +((-4048 (((-3 |#1| "failed") $) 17)) (-3961 ((|#1| $) NIL)) (-1918 (($) 7 T CONST)) (-4295 (($ |#1|) 8)) (-4054 (($ |#1|) 15) (((-857) $) 22)) (-2276 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -1918)) 11)) (-4247 ((|#1| $) 14))) +(((-685 |#1|) (-13 (-1251) (-1033 |#1|) (-609 (-857)) (-10 -8 (-15 -4295 ($ |#1|)) (-15 -2276 ((-112) $ (|[\|\|]| |#1|))) (-15 -2276 ((-112) $ (|[\|\|]| -1918))) (-15 -4247 (|#1| $)) (-15 -1918 ($) -1497))) (-609 (-857))) (T -685)) +((-4295 (*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857))))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-609 (-857))) (-5 *2 (-112)) (-5 *1 (-685 *4)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1918)) (-5 *2 (-112)) (-5 *1 (-685 *4)) (-4 *4 (-609 (-857))))) (-4247 (*1 *2 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857))))) (-1918 (*1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857)))))) +(-13 (-1251) (-1033 |#1|) (-609 (-857)) (-10 -8 (-15 -4295 ($ |#1|)) (-15 -2276 ((-112) $ (|[\|\|]| |#1|))) (-15 -2276 ((-112) $ (|[\|\|]| -1918))) (-15 -4247 (|#1| $)) (-15 -1918 ($) -1497))) +((-2371 ((|#2| |#2| |#4|) 25)) (-4326 (((-683 |#2|) |#3| |#4|) 31)) (-2078 (((-683 |#2|) |#2| |#4|) 30)) (-3969 (((-1256 |#2|) |#2| |#4|) 16)) (-3365 ((|#2| |#3| |#4|) 24)) (-4099 (((-683 |#2|) |#3| |#4| (-766) (-766)) 38)) (-3649 (((-683 |#2|) |#2| |#4| (-766)) 37))) +(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3969 ((-1256 |#2|) |#2| |#4|)) (-15 -3365 (|#2| |#3| |#4|)) (-15 -2371 (|#2| |#2| |#4|)) (-15 -2078 ((-683 |#2|) |#2| |#4|)) (-15 -3649 ((-683 |#2|) |#2| |#4| (-766))) (-15 -4326 ((-683 |#2|) |#3| |#4|)) (-15 -4099 ((-683 |#2|) |#3| |#4| (-766) (-766)))) (-1092) (-895 |#1|) (-372 |#2|) (-13 (-372 |#1|) (-10 -7 (-6 -4402)))) (T -686)) +((-4099 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-766)) (-4 *6 (-1092)) (-4 *7 (-895 *6)) (-5 *2 (-683 *7)) (-5 *1 (-686 *6 *7 *3 *4)) (-4 *3 (-372 *7)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4402)))))) (-4326 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *6 (-895 *5)) (-5 *2 (-683 *6)) (-5 *1 (-686 *5 *6 *3 *4)) (-4 *3 (-372 *6)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4402)))))) (-3649 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-1092)) (-4 *3 (-895 *6)) (-5 *2 (-683 *3)) (-5 *1 (-686 *6 *3 *7 *4)) (-4 *7 (-372 *3)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4402)))))) (-2078 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *3 (-895 *5)) (-5 *2 (-683 *3)) (-5 *1 (-686 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4402)))))) (-2371 (*1 *2 *2 *3) (-12 (-4 *4 (-1092)) (-4 *2 (-895 *4)) (-5 *1 (-686 *4 *2 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4402)))))) (-3365 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *2 (-895 *5)) (-5 *1 (-686 *5 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4402)))))) (-3969 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *3 (-895 *5)) (-5 *2 (-1256 *3)) (-5 *1 (-686 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4402))))))) +(-10 -7 (-15 -3969 ((-1256 |#2|) |#2| |#4|)) (-15 -3365 (|#2| |#3| |#4|)) (-15 -2371 (|#2| |#2| |#4|)) (-15 -2078 ((-683 |#2|) |#2| |#4|)) (-15 -3649 ((-683 |#2|) |#2| |#4| (-766))) (-15 -4326 ((-683 |#2|) |#3| |#4|)) (-15 -4099 ((-683 |#2|) |#3| |#4| (-766) (-766)))) +((-4096 (((-2 (|:| |num| (-683 |#1|)) (|:| |den| |#1|)) (-683 |#2|)) 20)) (-1917 ((|#1| (-683 |#2|)) 9)) (-1471 (((-683 |#1|) (-683 |#2|)) 18))) +(((-687 |#1| |#2|) (-10 -7 (-15 -1917 (|#1| (-683 |#2|))) (-15 -1471 ((-683 |#1|) (-683 |#2|))) (-15 -4096 ((-2 (|:| |num| (-683 |#1|)) (|:| |den| |#1|)) (-683 |#2|)))) (-554) (-987 |#1|)) (T -687)) +((-4096 (*1 *2 *3) (-12 (-5 *3 (-683 *5)) (-4 *5 (-987 *4)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |num| (-683 *4)) (|:| |den| *4))) (-5 *1 (-687 *4 *5)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-683 *5)) (-4 *5 (-987 *4)) (-4 *4 (-554)) (-5 *2 (-683 *4)) (-5 *1 (-687 *4 *5)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-683 *4)) (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-687 *2 *4))))) +(-10 -7 (-15 -1917 (|#1| (-683 |#2|))) (-15 -1471 ((-683 |#1|) (-683 |#2|))) (-15 -4096 ((-2 (|:| |num| (-683 |#1|)) (|:| |den| |#1|)) (-683 |#2|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-1636 (((-683 (-693))) NIL) (((-683 (-693)) (-1256 $)) NIL)) (-1748 (((-693) $) NIL)) (-2988 (($ $) NIL (|has| (-693) (-1192)))) (-4097 (($ $) NIL (|has| (-693) (-1192)))) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-693) (-348)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-693) (-306)) (|has| (-693) (-904))))) (-2798 (($ $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| (-693) (-904))) (|has| (-693) (-362))))) (-2921 (((-417 $) $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| (-693) (-904))) (|has| (-693) (-362))))) (-1643 (($ $) NIL (-12 (|has| (-693) (-997)) (|has| (-693) (-1192))))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-693) (-306)) (|has| (-693) (-904))))) (-2569 (((-112) $ $) NIL (|has| (-693) (-306)))) (-1382 (((-766)) NIL (|has| (-693) (-367)))) (-4207 (($ $) NIL (|has| (-693) (-1192)))) (-4074 (($ $) NIL (|has| (-693) (-1192)))) (-3014 (($ $) NIL (|has| (-693) (-1192)))) (-4119 (($ $) NIL (|has| (-693) (-1192)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-693) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-693) (-1033 (-406 (-562)))))) (-3961 (((-562) $) NIL) (((-693) $) NIL) (((-406 (-562)) $) NIL (|has| (-693) (-1033 (-406 (-562)))))) (-4018 (($ (-1256 (-693))) NIL) (($ (-1256 (-693)) (-1256 $)) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-693) (-348)))) (-1811 (($ $ $) NIL (|has| (-693) (-306)))) (-1958 (((-683 (-693)) $) NIL) (((-683 (-693)) $ (-1256 $)) NIL)) (-2406 (((-683 (-693)) (-683 $)) NIL) (((-2 (|:| -1545 (-683 (-693))) (|:| |vec| (-1256 (-693)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-693) (-635 (-562)))) (((-683 (-562)) (-683 $)) NIL (|has| (-693) (-635 (-562))))) (-1955 (((-3 $ "failed") (-406 (-1164 (-693)))) NIL (|has| (-693) (-362))) (($ (-1164 (-693))) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1657 (((-693) $) 29)) (-1726 (((-3 (-406 (-562)) "failed") $) NIL (|has| (-693) (-544)))) (-3035 (((-112) $) NIL (|has| (-693) (-544)))) (-1291 (((-406 (-562)) $) NIL (|has| (-693) (-544)))) (-2173 (((-916)) NIL)) (-1448 (($) NIL (|has| (-693) (-367)))) (-1787 (($ $ $) NIL (|has| (-693) (-306)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| (-693) (-306)))) (-3529 (($) NIL (|has| (-693) (-348)))) (-1322 (((-112) $) NIL (|has| (-693) (-348)))) (-3589 (($ $) NIL (|has| (-693) (-348))) (($ $ (-766)) NIL (|has| (-693) (-348)))) (-2717 (((-112) $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| (-693) (-904))) (|has| (-693) (-362))))) (-2362 (((-2 (|:| |r| (-693)) (|:| |phi| (-693))) $) NIL (-12 (|has| (-693) (-1053)) (|has| (-693) (-1192))))) (-4100 (($) NIL (|has| (-693) (-1192)))) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-693) (-881 (-378)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-693) (-881 (-562))))) (-1900 (((-828 (-916)) $) NIL (|has| (-693) (-348))) (((-916) $) NIL (|has| (-693) (-348)))) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL (-12 (|has| (-693) (-997)) (|has| (-693) (-1192))))) (-2247 (((-693) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| (-693) (-348)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-693) (-306)))) (-1565 (((-1164 (-693)) $) NIL (|has| (-693) (-362)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 (-693) (-693)) $) NIL)) (-1999 (((-916) $) NIL (|has| (-693) (-367)))) (-4365 (($ $) NIL (|has| (-693) (-1192)))) (-1943 (((-1164 (-693)) $) NIL)) (-1564 (($ (-639 $)) NIL (|has| (-693) (-306))) (($ $ $) NIL (|has| (-693) (-306)))) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| (-693) (-362)))) (-3729 (($) NIL (|has| (-693) (-348)) CONST)) (-2466 (($ (-916)) NIL (|has| (-693) (-367)))) (-2112 (($) NIL)) (-1670 (((-693) $) 31)) (-1709 (((-1112) $) NIL)) (-3148 (($) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| (-693) (-306)))) (-1606 (($ (-639 $)) NIL (|has| (-693) (-306))) (($ $ $) NIL (|has| (-693) (-306)))) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| (-693) (-348)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-693) (-306)) (|has| (-693) (-904))))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-693) (-306)) (|has| (-693) (-904))))) (-1635 (((-417 $) $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| (-693) (-904))) (|has| (-693) (-362))))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-693) (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| (-693) (-306)))) (-1762 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-693)) NIL (|has| (-693) (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-693) (-306)))) (-3430 (($ $) NIL (|has| (-693) (-1192)))) (-1433 (($ $ (-1168) (-693)) NIL (|has| (-693) (-513 (-1168) (-693)))) (($ $ (-639 (-1168)) (-639 (-693))) NIL (|has| (-693) (-513 (-1168) (-693)))) (($ $ (-639 (-293 (-693)))) NIL (|has| (-693) (-308 (-693)))) (($ $ (-293 (-693))) NIL (|has| (-693) (-308 (-693)))) (($ $ (-693) (-693)) NIL (|has| (-693) (-308 (-693)))) (($ $ (-639 (-693)) (-639 (-693))) NIL (|has| (-693) (-308 (-693))))) (-1577 (((-766) $) NIL (|has| (-693) (-306)))) (-2343 (($ $ (-693)) NIL (|has| (-693) (-285 (-693) (-693))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| (-693) (-306)))) (-2455 (((-693)) NIL) (((-693) (-1256 $)) NIL)) (-3362 (((-3 (-766) "failed") $ $) NIL (|has| (-693) (-348))) (((-766) $) NIL (|has| (-693) (-348)))) (-4029 (($ $ (-1 (-693) (-693))) NIL) (($ $ (-1 (-693) (-693)) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-1168)) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-766)) NIL (|has| (-693) (-232))) (($ $) NIL (|has| (-693) (-232)))) (-3187 (((-683 (-693)) (-1256 $) (-1 (-693) (-693))) NIL (|has| (-693) (-362)))) (-2096 (((-1164 (-693))) NIL)) (-3023 (($ $) NIL (|has| (-693) (-1192)))) (-4130 (($ $) NIL (|has| (-693) (-1192)))) (-2283 (($) NIL (|has| (-693) (-348)))) (-3001 (($ $) NIL (|has| (-693) (-1192)))) (-4108 (($ $) NIL (|has| (-693) (-1192)))) (-2978 (($ $) NIL (|has| (-693) (-1192)))) (-4087 (($ $) NIL (|has| (-693) (-1192)))) (-3593 (((-683 (-693)) (-1256 $)) NIL) (((-1256 (-693)) $) NIL) (((-683 (-693)) (-1256 $) (-1256 $)) NIL) (((-1256 (-693)) $ (-1256 $)) NIL)) (-4208 (((-535) $) NIL (|has| (-693) (-610 (-535)))) (((-168 (-224)) $) NIL (|has| (-693) (-1017))) (((-168 (-378)) $) NIL (|has| (-693) (-1017))) (((-887 (-378)) $) NIL (|has| (-693) (-610 (-887 (-378))))) (((-887 (-562)) $) NIL (|has| (-693) (-610 (-887 (-562))))) (($ (-1164 (-693))) NIL) (((-1164 (-693)) $) NIL) (($ (-1256 (-693))) NIL) (((-1256 (-693)) $) NIL)) (-3665 (($ $) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| $ (-144)) (|has| (-693) (-904))) (|has| (-693) (-348))))) (-1418 (($ (-693) (-693)) 12)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-562)) NIL) (($ (-693)) NIL) (($ (-168 (-378))) 13) (($ (-168 (-562))) 19) (($ (-168 (-693))) 28) (($ (-168 (-695))) 25) (((-168 (-378)) $) 33) (($ (-406 (-562))) NIL (-4037 (|has| (-693) (-1033 (-406 (-562)))) (|has| (-693) (-362))))) (-2805 (($ $) NIL (|has| (-693) (-348))) (((-3 $ "failed") $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| $ (-144)) (|has| (-693) (-904))) (|has| (-693) (-144))))) (-3376 (((-1164 (-693)) $) NIL)) (-2579 (((-766)) NIL)) (-3928 (((-1256 $)) NIL)) (-3055 (($ $) NIL (|has| (-693) (-1192)))) (-4165 (($ $) NIL (|has| (-693) (-1192)))) (-2922 (((-112) $ $) NIL)) (-3033 (($ $) NIL (|has| (-693) (-1192)))) (-4138 (($ $) NIL (|has| (-693) (-1192)))) (-3078 (($ $) NIL (|has| (-693) (-1192)))) (-4182 (($ $) NIL (|has| (-693) (-1192)))) (-2828 (((-693) $) NIL (|has| (-693) (-1192)))) (-1566 (($ $) NIL (|has| (-693) (-1192)))) (-4195 (($ $) NIL (|has| (-693) (-1192)))) (-3066 (($ $) NIL (|has| (-693) (-1192)))) (-4174 (($ $) NIL (|has| (-693) (-1192)))) (-3044 (($ $) NIL (|has| (-693) (-1192)))) (-4151 (($ $) NIL (|has| (-693) (-1192)))) (-3526 (($ $) NIL (|has| (-693) (-1053)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-1 (-693) (-693))) NIL) (($ $ (-1 (-693) (-693)) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-1168)) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-766)) NIL (|has| (-693) (-232))) (($ $) NIL (|has| (-693) (-232)))) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL (|has| (-693) (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ $) NIL (|has| (-693) (-1192))) (($ $ (-406 (-562))) NIL (-12 (|has| (-693) (-997)) (|has| (-693) (-1192)))) (($ $ (-562)) NIL (|has| (-693) (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ (-693) $) NIL) (($ $ (-693)) NIL) (($ (-406 (-562)) $) NIL (|has| (-693) (-362))) (($ $ (-406 (-562))) NIL (|has| (-693) (-362))))) +(((-688) (-13 (-386) (-165 (-693)) (-10 -8 (-15 -4054 ($ (-168 (-378)))) (-15 -4054 ($ (-168 (-562)))) (-15 -4054 ($ (-168 (-693)))) (-15 -4054 ($ (-168 (-695)))) (-15 -4054 ((-168 (-378)) $))))) (T -688)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-688)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-168 (-562))) (-5 *1 (-688)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-168 (-693))) (-5 *1 (-688)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-168 (-695))) (-5 *1 (-688)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-688))))) +(-13 (-386) (-165 (-693)) (-10 -8 (-15 -4054 ($ (-168 (-378)))) (-15 -4054 ($ (-168 (-562)))) (-15 -4054 ($ (-168 (-693)))) (-15 -4054 ($ (-168 (-695)))) (-15 -4054 ((-168 (-378)) $)))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-3111 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-4354 (($ $) 62)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ |#1| $) 47 (|has| $ (-6 -4402))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4402)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4402)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40) (($ |#1| $ (-766)) 63)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2671 (((-639 (-2 (|:| -2694 |#1|) (|:| -1723 (-766)))) $) 61)) (-3564 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 50)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) 42)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-689 |#1|) (-139) (-1092)) (T -689)) +((-4300 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-689 *2)) (-4 *2 (-1092)))) (-4354 (*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1092)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1092)) (-5 *2 (-639 (-2 (|:| -2694 *3) (|:| -1723 (-766)))))))) +(-13 (-234 |t#1|) (-10 -8 (-15 -4300 ($ |t#1| $ (-766))) (-15 -4354 ($ $)) (-15 -2671 ((-639 (-2 (|:| -2694 |t#1|) (|:| -1723 (-766)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-1797 (((-639 |#1|) (-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))) (-562)) 47)) (-4118 ((|#1| |#1| (-562)) 46)) (-1606 ((|#1| |#1| |#1| (-562)) 36)) (-1635 (((-639 |#1|) |#1| (-562)) 39)) (-1293 ((|#1| |#1| (-562) |#1| (-562)) 32)) (-2608 (((-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))) |#1| (-562)) 45))) +(((-690 |#1|) (-10 -7 (-15 -1606 (|#1| |#1| |#1| (-562))) (-15 -4118 (|#1| |#1| (-562))) (-15 -1635 ((-639 |#1|) |#1| (-562))) (-15 -2608 ((-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))) |#1| (-562))) (-15 -1797 ((-639 |#1|) (-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))) (-562))) (-15 -1293 (|#1| |#1| (-562) |#1| (-562)))) (-1232 (-562))) (T -690)) +((-1293 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| -1635 *5) (|:| -3598 (-562))))) (-5 *4 (-562)) (-4 *5 (-1232 *4)) (-5 *2 (-639 *5)) (-5 *1 (-690 *5)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-5 *2 (-639 (-2 (|:| -1635 *3) (|:| -3598 *4)))) (-5 *1 (-690 *3)) (-4 *3 (-1232 *4)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-5 *2 (-639 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1232 *4)))) (-4118 (*1 *2 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3)))) (-1606 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3))))) +(-10 -7 (-15 -1606 (|#1| |#1| |#1| (-562))) (-15 -4118 (|#1| |#1| (-562))) (-15 -1635 ((-639 |#1|) |#1| (-562))) (-15 -2608 ((-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))) |#1| (-562))) (-15 -1797 ((-639 |#1|) (-639 (-2 (|:| -1635 |#1|) (|:| -3598 (-562)))) (-562))) (-15 -1293 (|#1| |#1| (-562) |#1| (-562)))) +((-3907 (((-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 17)) (-3438 (((-1125 (-224)) (-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262))) 40) (((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262))) 42) (((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262))) 44)) (-2073 (((-1125 (-224)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-639 (-262))) NIL)) (-3208 (((-1125 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262))) 45))) +(((-691) (-10 -7 (-15 -3438 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3438 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3438 ((-1125 (-224)) (-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3208 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -2073 ((-1125 (-224)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3907 ((-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -691)) +((-3907 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1 (-224) (-224) (-224) (-224))) (-5 *2 (-1 (-938 (-224)) (-224) (-224))) (-5 *1 (-691)))) (-2073 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691)))) (-3208 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691)))) (-3438 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-224))) (-5 *5 (-639 (-262))) (-5 *1 (-691)))) (-3438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-224))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691)))) (-3438 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691))))) +(-10 -7 (-15 -3438 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3438 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3438 ((-1125 (-224)) (-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3208 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -2073 ((-1125 (-224)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3907 ((-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))))) +((-1635 (((-417 (-1164 |#4|)) (-1164 |#4|)) 73) (((-417 |#4|) |#4|) 220))) +(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4|)) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|)))) (-845) (-788) (-348) (-944 |#3| |#2| |#1|)) (T -692)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-348)) (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-692 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-692 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4))))) +(-10 -7 (-15 -1635 ((-417 |#4|) |#4|)) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 84)) (-4246 (((-562) $) 30)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2557 (($ $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-1643 (($ $) NIL)) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL)) (-1800 (($) NIL T CONST)) (-4103 (($ $) NIL)) (-4048 (((-3 (-562) "failed") $) 73) (((-3 (-406 (-562)) "failed") $) 26) (((-3 (-378) "failed") $) 70)) (-3961 (((-562) $) 75) (((-406 (-562)) $) 67) (((-378) $) 68)) (-1811 (($ $ $) 96)) (-3668 (((-3 $ "failed") $) 87)) (-1787 (($ $ $) 95)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3327 (((-916)) 77) (((-916) (-916)) 76)) (-3519 (((-112) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL)) (-1900 (((-562) $) NIL)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL)) (-2247 (($ $) NIL)) (-3392 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2131 (((-562) (-562)) 81) (((-562)) 82)) (-1551 (($ $ $) NIL) (($) NIL (-12 (-2236 (|has| $ (-6 -4385))) (-2236 (|has| $ (-6 -4393)))))) (-1571 (((-562) (-562)) 79) (((-562)) 80)) (-2993 (($ $ $) NIL) (($) NIL (-12 (-2236 (|has| $ (-6 -4385))) (-2236 (|has| $ (-6 -4393)))))) (-3946 (((-562) $) 16)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 91)) (-3544 (((-916) (-562)) NIL (|has| $ (-6 -4393)))) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL)) (-4014 (($ $) NIL)) (-4235 (($ (-562) (-562)) NIL) (($ (-562) (-562) (-916)) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) 92)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1960 (((-562) $) 22)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 94)) (-3280 (((-916)) NIL) (((-916) (-916)) NIL (|has| $ (-6 -4393)))) (-2015 (((-916) (-562)) NIL (|has| $ (-6 -4393)))) (-4208 (((-378) $) NIL) (((-224) $) NIL) (((-887 (-378)) $) NIL)) (-4054 (((-857) $) 52) (($ (-562)) 63) (($ $) NIL) (($ (-406 (-562))) 66) (($ (-562)) 63) (($ (-406 (-562))) 66) (($ (-378)) 60) (((-378) $) 50) (($ (-695)) 55)) (-2579 (((-766)) 103)) (-3011 (($ (-562) (-562) (-916)) 44)) (-2604 (($ $) NIL)) (-3366 (((-916)) NIL) (((-916) (-916)) NIL (|has| $ (-6 -4393)))) (-3241 (((-916)) 35) (((-916) (-916)) 78)) (-2922 (((-112) $ $) NIL)) (-3526 (($ $) NIL)) (-2286 (($) 32 T CONST)) (-2294 (($) 17 T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 83)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 101)) (-1859 (($ $ $) 65)) (-1848 (($ $) 99) (($ $ $) 100)) (-1835 (($ $ $) 98)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL) (($ $ (-406 (-562))) 90)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 97) (($ $ $) 88) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) +(((-693) (-13 (-403) (-386) (-362) (-1033 (-378)) (-1033 (-406 (-562))) (-146) (-10 -8 (-15 -3327 ((-916) (-916))) (-15 -3327 ((-916))) (-15 -3241 ((-916) (-916))) (-15 -1571 ((-562) (-562))) (-15 -1571 ((-562))) (-15 -2131 ((-562) (-562))) (-15 -2131 ((-562))) (-15 -4054 ((-378) $)) (-15 -4054 ($ (-695))) (-15 -3946 ((-562) $)) (-15 -1960 ((-562) $)) (-15 -3011 ($ (-562) (-562) (-916)))))) (T -693)) +((-1960 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-3327 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) (-3327 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) (-1571 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-1571 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-2131 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-693)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-693)))) (-3011 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-916)) (-5 *1 (-693))))) +(-13 (-403) (-386) (-362) (-1033 (-378)) (-1033 (-406 (-562))) (-146) (-10 -8 (-15 -3327 ((-916) (-916))) (-15 -3327 ((-916))) (-15 -3241 ((-916) (-916))) (-15 -1571 ((-562) (-562))) (-15 -1571 ((-562))) (-15 -2131 ((-562) (-562))) (-15 -2131 ((-562))) (-15 -4054 ((-378) $)) (-15 -4054 ($ (-695))) (-15 -3946 ((-562) $)) (-15 -1960 ((-562) $)) (-15 -3011 ($ (-562) (-562) (-916))))) +((-1953 (((-683 |#1|) (-683 |#1|) |#1| |#1|) 65)) (-2522 (((-683 |#1|) (-683 |#1|) |#1|) 48)) (-2659 (((-683 |#1|) (-683 |#1|) |#1|) 66)) (-2098 (((-683 |#1|) (-683 |#1|)) 49)) (-3106 (((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|) 64))) +(((-694 |#1|) (-10 -7 (-15 -2098 ((-683 |#1|) (-683 |#1|))) (-15 -2522 ((-683 |#1|) (-683 |#1|) |#1|)) (-15 -2659 ((-683 |#1|) (-683 |#1|) |#1|)) (-15 -1953 ((-683 |#1|) (-683 |#1|) |#1| |#1|)) (-15 -3106 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|))) (-306)) (T -694)) +((-3106 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-694 *3)) (-4 *3 (-306)))) (-1953 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3)))) (-2659 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3)))) (-2522 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3))))) +(-10 -7 (-15 -2098 ((-683 |#1|) (-683 |#1|))) (-15 -2522 ((-683 |#1|) (-683 |#1|) |#1|)) (-15 -2659 ((-683 |#1|) (-683 |#1|) |#1|)) (-15 -1953 ((-683 |#1|) (-683 |#1|) |#1| |#1|)) (-15 -3106 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-1685 (($ $ $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-4375 (($ $ $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL)) (-3358 (($ $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) 27)) (-3961 (((-562) $) 25)) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1726 (((-3 (-406 (-562)) "failed") $) NIL)) (-3035 (((-112) $) NIL)) (-1291 (((-406 (-562)) $) NIL)) (-1448 (($ $) NIL) (($) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3854 (($ $ $ $) NIL)) (-1292 (($ $ $) NIL)) (-3519 (((-112) $) NIL)) (-2794 (($ $ $) NIL)) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL)) (-1957 (((-112) $) NIL)) (-3130 (((-112) $) NIL)) (-3699 (((-3 $ "failed") $) NIL)) (-3392 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2504 (($ $ $ $) NIL)) (-1551 (($ $ $) NIL)) (-1857 (((-916) (-916)) 10) (((-916)) 9)) (-2993 (($ $ $) NIL)) (-3930 (($ $) NIL)) (-3641 (($ $) NIL)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1809 (($ $ $) NIL)) (-3729 (($) NIL T CONST)) (-4137 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-1351 (($ $) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3803 (((-112) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) NIL) (($ $ (-766)) NIL)) (-2372 (($ $) NIL)) (-4220 (($ $) NIL)) (-4208 (((-224) $) NIL) (((-378) $) NIL) (((-887 (-562)) $) NIL) (((-535) $) NIL) (((-562) $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) 24) (($ $) NIL) (($ (-562)) 24) (((-315 $) (-315 (-562))) 18)) (-2579 (((-766)) NIL)) (-2929 (((-112) $ $) NIL)) (-3261 (($ $ $) NIL)) (-3241 (($) NIL)) (-2922 (((-112) $ $) NIL)) (-3131 (($ $ $ $) NIL)) (-3526 (($ $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $) NIL) (($ $ (-766)) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL))) +(((-695) (-13 (-386) (-544) (-10 -8 (-15 -1857 ((-916) (-916))) (-15 -1857 ((-916))) (-15 -4054 ((-315 $) (-315 (-562))))))) (T -695)) +((-1857 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-695)))) (-1857 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-695)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-315 (-562))) (-5 *2 (-315 (-695))) (-5 *1 (-695))))) +(-13 (-386) (-544) (-10 -8 (-15 -1857 ((-916) (-916))) (-15 -1857 ((-916))) (-15 -4054 ((-315 $) (-315 (-562)))))) +((-2484 (((-1 |#4| |#2| |#3|) |#1| (-1168) (-1168)) 19)) (-3507 (((-1 |#4| |#2| |#3|) (-1168)) 12))) +(((-696 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3507 ((-1 |#4| |#2| |#3|) (-1168))) (-15 -2484 ((-1 |#4| |#2| |#3|) |#1| (-1168) (-1168)))) (-610 (-535)) (-1207) (-1207) (-1207)) (T -696)) +((-2484 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-696 *3 *5 *6 *7)) (-4 *3 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *7 (-1207)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-696 *4 *5 *6 *7)) (-4 *4 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *7 (-1207))))) +(-10 -7 (-15 -3507 ((-1 |#4| |#2| |#3|) (-1168))) (-15 -2484 ((-1 |#4| |#2| |#3|) |#1| (-1168) (-1168)))) +((-4041 (((-112) $ $) NIL)) (-2111 (((-1261) $ (-766)) 14)) (-4264 (((-766) $) 12)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 25)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 24))) +(((-697 |#1|) (-13 (-131) (-489 |#1|)) (-1092)) (T -697)) +NIL +(-13 (-131) (-489 |#1|)) +((-3401 (((-1 (-224) (-224) (-224)) |#1| (-1168) (-1168)) 34) (((-1 (-224) (-224)) |#1| (-1168)) 39))) +(((-698 |#1|) (-10 -7 (-15 -3401 ((-1 (-224) (-224)) |#1| (-1168))) (-15 -3401 ((-1 (-224) (-224) (-224)) |#1| (-1168) (-1168)))) (-610 (-535))) (T -698)) +((-3401 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-698 *3)) (-4 *3 (-610 (-535))))) (-3401 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-698 *3)) (-4 *3 (-610 (-535)))))) +(-10 -7 (-15 -3401 ((-1 (-224) (-224)) |#1| (-1168))) (-15 -3401 ((-1 (-224) (-224) (-224)) |#1| (-1168) (-1168)))) +((-1407 (((-1168) |#1| (-1168) (-639 (-1168))) 9) (((-1168) |#1| (-1168) (-1168) (-1168)) 12) (((-1168) |#1| (-1168) (-1168)) 11) (((-1168) |#1| (-1168)) 10))) +(((-699 |#1|) (-10 -7 (-15 -1407 ((-1168) |#1| (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-1168) (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-639 (-1168))))) (-610 (-535))) (T -699)) +((-1407 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-639 (-1168))) (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) (-1407 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) (-1407 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) (-1407 (*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535)))))) +(-10 -7 (-15 -1407 ((-1168) |#1| (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-1168) (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-639 (-1168))))) +((-3617 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-700 |#1| |#2|) (-10 -7 (-15 -3617 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1207) (-1207)) (T -700)) +((-3617 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-700 *3 *4)) (-4 *3 (-1207)) (-4 *4 (-1207))))) +(-10 -7 (-15 -3617 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-4045 (((-1 |#3| |#2|) (-1168)) 11)) (-2484 (((-1 |#3| |#2|) |#1| (-1168)) 21))) +(((-701 |#1| |#2| |#3|) (-10 -7 (-15 -4045 ((-1 |#3| |#2|) (-1168))) (-15 -2484 ((-1 |#3| |#2|) |#1| (-1168)))) (-610 (-535)) (-1207) (-1207)) (T -701)) +((-2484 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-1 *6 *5)) (-5 *1 (-701 *3 *5 *6)) (-4 *3 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1 *6 *5)) (-5 *1 (-701 *4 *5 *6)) (-4 *4 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207))))) +(-10 -7 (-15 -4045 ((-1 |#3| |#2|) (-1168))) (-15 -2484 ((-1 |#3| |#2|) |#1| (-1168)))) +((-3454 (((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#4|)) (-639 |#3|) (-639 |#4|) (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| |#4|)))) (-639 (-766)) (-1256 (-639 (-1164 |#3|))) |#3|) 61)) (-3689 (((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#3|)) (-639 |#3|) (-639 |#4|) (-639 (-766)) |#3|) 74)) (-2206 (((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 |#3|) (-639 (-766)) (-639 (-1164 |#4|)) (-1256 (-639 (-1164 |#3|))) |#3|) 34))) +(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2206 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 |#3|) (-639 (-766)) (-639 (-1164 |#4|)) (-1256 (-639 (-1164 |#3|))) |#3|)) (-15 -3689 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#3|)) (-639 |#3|) (-639 |#4|) (-639 (-766)) |#3|)) (-15 -3454 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#4|)) (-639 |#3|) (-639 |#4|) (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| |#4|)))) (-639 (-766)) (-1256 (-639 (-1164 |#3|))) |#3|))) (-788) (-845) (-306) (-944 |#3| |#1| |#2|)) (T -702)) +((-3454 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-639 (-1164 *13))) (-5 *3 (-1164 *13)) (-5 *4 (-639 *12)) (-5 *5 (-639 *10)) (-5 *6 (-639 *13)) (-5 *7 (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| *13))))) (-5 *8 (-639 (-766))) (-5 *9 (-1256 (-639 (-1164 *10)))) (-4 *12 (-845)) (-4 *10 (-306)) (-4 *13 (-944 *10 *11 *12)) (-4 *11 (-788)) (-5 *1 (-702 *11 *12 *10 *13)))) (-3689 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-639 *11)) (-5 *5 (-639 (-1164 *9))) (-5 *6 (-639 *9)) (-5 *7 (-639 *12)) (-5 *8 (-639 (-766))) (-4 *11 (-845)) (-4 *9 (-306)) (-4 *12 (-944 *9 *10 *11)) (-4 *10 (-788)) (-5 *2 (-639 (-1164 *12))) (-5 *1 (-702 *10 *11 *9 *12)) (-5 *3 (-1164 *12)))) (-2206 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-639 (-1164 *11))) (-5 *3 (-1164 *11)) (-5 *4 (-639 *10)) (-5 *5 (-639 *8)) (-5 *6 (-639 (-766))) (-5 *7 (-1256 (-639 (-1164 *8)))) (-4 *10 (-845)) (-4 *8 (-306)) (-4 *11 (-944 *8 *9 *10)) (-4 *9 (-788)) (-5 *1 (-702 *9 *10 *8 *11))))) +(-10 -7 (-15 -2206 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 |#3|) (-639 (-766)) (-639 (-1164 |#4|)) (-1256 (-639 (-1164 |#3|))) |#3|)) (-15 -3689 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#3|)) (-639 |#3|) (-639 |#4|) (-639 (-766)) |#3|)) (-15 -3454 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#4|)) (-639 |#3|) (-639 |#4|) (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| |#4|)))) (-639 (-766)) (-1256 (-639 (-1164 |#3|))) |#3|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-1601 (($ $) 42)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-1378 (($ |#1| (-766)) 40)) (-2076 (((-766) $) 44)) (-1573 ((|#1| $) 43)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-3598 (((-766) $) 45)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 39 (|has| |#1| (-171)))) (-3906 ((|#1| $ (-766)) 41)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-703 |#1|) (-139) (-1044)) (T -703)) +((-3598 (*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1044)))) (-1601 (*1 *1 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1044)))) (-3906 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-703 *2)) (-4 *2 (-1044)))) (-1378 (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-703 *2)) (-4 *2 (-1044))))) +(-13 (-1044) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3598 ((-766) $)) (-15 -2076 ((-766) $)) (-15 -1573 (|t#1| $)) (-15 -1601 ($ $)) (-15 -3906 (|t#1| $ (-766))) (-15 -1378 ($ |t#1| (-766))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) |has| |#1| (-171)) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4152 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-704 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4152 (|#6| (-1 |#4| |#1|) |#3|))) (-554) (-1232 |#1|) (-1232 (-406 |#2|)) (-554) (-1232 |#4|) (-1232 (-406 |#5|))) (T -704)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-554)) (-4 *7 (-554)) (-4 *6 (-1232 *5)) (-4 *2 (-1232 (-406 *8))) (-5 *1 (-704 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1232 (-406 *6))) (-4 *8 (-1232 *7))))) +(-10 -7 (-15 -4152 (|#6| (-1 |#4| |#1|) |#3|))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2114 (((-1150) (-857)) 31)) (-1479 (((-1261) (-1150)) 28)) (-2346 (((-1150) (-857)) 24)) (-3660 (((-1150) (-857)) 25)) (-4054 (((-857) $) NIL) (((-1150) (-857)) 23)) (-1731 (((-112) $ $) NIL))) +(((-705) (-13 (-1092) (-10 -7 (-15 -4054 ((-1150) (-857))) (-15 -2346 ((-1150) (-857))) (-15 -3660 ((-1150) (-857))) (-15 -2114 ((-1150) (-857))) (-15 -1479 ((-1261) (-1150)))))) (T -705)) +((-4054 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) (-2114 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-705))))) +(-13 (-1092) (-10 -7 (-15 -4054 ((-1150) (-857))) (-15 -2346 ((-1150) (-857))) (-15 -3660 ((-1150) (-857))) (-15 -2114 ((-1150) (-857))) (-15 -1479 ((-1261) (-1150))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-1811 (($ $ $) NIL)) (-1955 (($ |#1| |#2|) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-1957 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3518 ((|#2| $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2302 (((-3 $ "failed") $ $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) ((|#1| $) NIL)) (-2579 (((-766)) NIL)) (-2922 (((-112) $ $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) +(((-706 |#1| |#2| |#3| |#4| |#5|) (-13 (-362) (-10 -8 (-15 -3518 (|#2| $)) (-15 -4054 (|#1| $)) (-15 -1955 ($ |#1| |#2|)) (-15 -2302 ((-3 $ "failed") $ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -706)) +((-3518 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-706 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4054 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2302 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-362) (-10 -8 (-15 -3518 (|#2| $)) (-15 -4054 (|#1| $)) (-15 -1955 ($ |#1| |#2|)) (-15 -2302 ((-3 $ "failed") $ $)))) +((-4041 (((-112) $ $) 77)) (-1952 (((-112) $) 30)) (-2844 (((-1256 |#1|) $ (-766)) NIL)) (-1402 (((-639 (-1074)) $) NIL)) (-2427 (($ (-1164 |#1|)) NIL)) (-1599 (((-1164 $) $ (-1074)) NIL) (((-1164 |#1|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-1074))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3258 (($ $ $) NIL (|has| |#1| (-554)))) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2798 (($ $) NIL (|has| |#1| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1382 (((-766)) 46 (|has| |#1| (-367)))) (-2897 (($ $ (-766)) NIL)) (-3028 (($ $ (-766)) NIL)) (-3669 ((|#2| |#2|) 43)) (-4157 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-451)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1074) "failed") $) NIL)) (-3961 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1074) $) NIL)) (-2835 (($ $ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $ $) NIL (|has| |#1| (-171)))) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) 33)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1955 (($ |#2|) 41)) (-3668 (((-3 $ "failed") $) 85)) (-1448 (($) 50 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-4267 (($ $ $) NIL)) (-2375 (($ $ $) NIL (|has| |#1| (-554)))) (-2622 (((-2 (|:| -4221 |#1|) (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-554)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-1498 (($ $) NIL (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#1| (-904)))) (-2762 (((-953 $)) 79)) (-3122 (($ $ |#1| (-766) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1900 (((-766) $ $) NIL (|has| |#1| (-554)))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)))) (-1390 (($ (-1164 |#1|) (-1074)) NIL) (($ (-1164 $) (-1074)) NIL)) (-3374 (($ $ (-766)) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-766)) 76) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-1074)) NIL) (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3518 ((|#2|) 44)) (-2076 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2836 (($ (-1 (-766) (-766)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4298 (((-1164 |#1|) $) NIL)) (-3372 (((-3 (-1074) "failed") $) NIL)) (-1999 (((-916) $) NIL (|has| |#1| (-367)))) (-1943 ((|#2| $) 40)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) 28)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-2913 (((-1150) $) NIL)) (-3594 (((-2 (|:| -2097 $) (|:| -2264 $)) $ (-766)) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-1074)) (|:| -1960 (-766))) "failed") $) NIL)) (-2667 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3729 (($) NIL (|has| |#1| (-1143)) CONST)) (-2466 (($ (-916)) NIL (|has| |#1| (-367)))) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-2258 (($ $) 78 (|has| |#1| (-348)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#1|) NIL) (($ $ (-639 (-1074)) (-639 |#1|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-639 (-1074)) (-639 $)) NIL)) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-1530 (((-3 $ "failed") $ (-766)) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 86 (|has| |#1| (-362)))) (-2455 (($ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3598 (((-766) $) 31) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-3900 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4064 (((-953 $)) 35)) (-3586 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-554)))) (-4054 (((-857) $) 60) (($ (-562)) NIL) (($ |#1|) 57) (($ (-1074)) NIL) (($ |#2|) 67) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-766)) 62) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) 20 T CONST)) (-2218 (((-1256 |#1|) $) 74)) (-2617 (($ (-1256 |#1|)) 49)) (-2294 (($) 8 T CONST)) (-3114 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4251 (((-1256 |#1|) $) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) 68)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) 71) (($ $ $) NIL)) (-1835 (($ $ $) 32)) (** (($ $ (-916)) NIL) (($ $ (-766)) 80)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 56) (($ $ $) 73) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 54) (($ $ |#1|) NIL))) +(((-707 |#1| |#2|) (-13 (-1232 |#1|) (-612 |#2|) (-10 -8 (-15 -3669 (|#2| |#2|)) (-15 -3518 (|#2|)) (-15 -1955 ($ |#2|)) (-15 -1943 (|#2| $)) (-15 -2218 ((-1256 |#1|) $)) (-15 -2617 ($ (-1256 |#1|))) (-15 -4251 ((-1256 |#1|) $)) (-15 -2762 ((-953 $))) (-15 -4064 ((-953 $))) (IF (|has| |#1| (-348)) (-15 -2258 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) (-1044) (-1232 |#1|)) (T -707)) +((-3669 (*1 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-707 *3 *2)) (-4 *2 (-1232 *3)))) (-3518 (*1 *2) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-707 *3 *2)) (-4 *3 (-1044)))) (-1955 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-707 *3 *2)) (-4 *2 (-1232 *3)))) (-1943 (*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-707 *3 *2)) (-4 *3 (-1044)))) (-2218 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-1256 *3)) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-2617 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1044)) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-4251 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-1256 *3)) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-2762 (*1 *2) (-12 (-4 *3 (-1044)) (-5 *2 (-953 (-707 *3 *4))) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-4064 (*1 *2) (-12 (-4 *3 (-1044)) (-5 *2 (-953 (-707 *3 *4))) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-2258 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *2 (-1044)) (-5 *1 (-707 *2 *3)) (-4 *3 (-1232 *2))))) +(-13 (-1232 |#1|) (-612 |#2|) (-10 -8 (-15 -3669 (|#2| |#2|)) (-15 -3518 (|#2|)) (-15 -1955 ($ |#2|)) (-15 -1943 (|#2| $)) (-15 -2218 ((-1256 |#1|) $)) (-15 -2617 ($ (-1256 |#1|))) (-15 -4251 ((-1256 |#1|) $)) (-15 -2762 ((-953 $))) (-15 -4064 ((-953 $))) (IF (|has| |#1| (-348)) (-15 -2258 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-2466 ((|#1| $) 13)) (-1709 (((-1112) $) NIL)) (-1960 ((|#2| $) 12)) (-4066 (($ |#1| |#2|) 16)) (-4054 (((-857) $) NIL) (($ (-2 (|:| -2466 |#1|) (|:| -1960 |#2|))) 15) (((-2 (|:| -2466 |#1|) (|:| -1960 |#2|)) $) 14)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 11))) +(((-708 |#1| |#2| |#3|) (-13 (-845) (-489 (-2 (|:| -2466 |#1|) (|:| -1960 |#2|))) (-10 -8 (-15 -1960 (|#2| $)) (-15 -2466 (|#1| $)) (-15 -4066 ($ |#1| |#2|)))) (-845) (-1092) (-1 (-112) (-2 (|:| -2466 |#1|) (|:| -1960 |#2|)) (-2 (|:| -2466 |#1|) (|:| -1960 |#2|)))) (T -708)) +((-1960 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-708 *3 *2 *4)) (-4 *3 (-845)) (-14 *4 (-1 (-112) (-2 (|:| -2466 *3) (|:| -1960 *2)) (-2 (|:| -2466 *3) (|:| -1960 *2)))))) (-2466 (*1 *2 *1) (-12 (-4 *2 (-845)) (-5 *1 (-708 *2 *3 *4)) (-4 *3 (-1092)) (-14 *4 (-1 (-112) (-2 (|:| -2466 *2) (|:| -1960 *3)) (-2 (|:| -2466 *2) (|:| -1960 *3)))))) (-4066 (*1 *1 *2 *3) (-12 (-5 *1 (-708 *2 *3 *4)) (-4 *2 (-845)) (-4 *3 (-1092)) (-14 *4 (-1 (-112) (-2 (|:| -2466 *2) (|:| -1960 *3)) (-2 (|:| -2466 *2) (|:| -1960 *3))))))) +(-13 (-845) (-489 (-2 (|:| -2466 |#1|) (|:| -1960 |#2|))) (-10 -8 (-15 -1960 (|#2| $)) (-15 -2466 (|#1| $)) (-15 -4066 ($ |#1| |#2|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 59)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-3961 ((|#1| $) NIL) (((-114) $) 39)) (-3668 (((-3 $ "failed") $) 90)) (-1786 ((|#2| (-114) |#2|) 82)) (-1957 (((-112) $) NIL)) (-1860 (($ |#1| (-360 (-114))) 14)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1422 (($ $ (-1 |#2| |#2|)) 58)) (-3048 (($ $ (-1 |#2| |#2|)) 44)) (-2343 ((|#2| $ |#2|) 33)) (-2838 ((|#1| |#1|) 105 (|has| |#1| (-171)))) (-4054 (((-857) $) 66) (($ (-562)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) 37)) (-1563 (($ $) 99 (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-171)))) (-2286 (($) 21 T CONST)) (-2294 (($) 9 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) 48) (($ $ $) NIL)) (-1835 (($ $ $) 73)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ (-114) (-562)) NIL) (($ $ (-562)) 57)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-171))) (($ $ |#1|) 97 (|has| |#1| (-171))))) +(((-709 |#1| |#2|) (-13 (-1044) (-1033 |#1|) (-1033 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1563 ($ $)) (-15 -1563 ($ $ $)) (-15 -2838 (|#1| |#1|))) |%noBranch|) (-15 -3048 ($ $ (-1 |#2| |#2|))) (-15 -1422 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-562))) (-15 ** ($ $ (-562))) (-15 -1786 (|#2| (-114) |#2|)) (-15 -1860 ($ |#1| (-360 (-114)))))) (-1044) (-642 |#1|)) (T -709)) +((-1563 (*1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) (-4 *3 (-642 *2)))) (-1563 (*1 *1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) (-4 *3 (-642 *2)))) (-2838 (*1 *2 *2) (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) (-4 *3 (-642 *2)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-642 *3)) (-4 *3 (-1044)) (-5 *1 (-709 *3 *4)))) (-1422 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-642 *3)) (-4 *3 (-1044)) (-5 *1 (-709 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-562)) (-4 *4 (-1044)) (-5 *1 (-709 *4 *5)) (-4 *5 (-642 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *3 (-1044)) (-5 *1 (-709 *3 *4)) (-4 *4 (-642 *3)))) (-1786 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1044)) (-5 *1 (-709 *4 *2)) (-4 *2 (-642 *4)))) (-1860 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1044)) (-5 *1 (-709 *2 *4)) (-4 *4 (-642 *2))))) +(-13 (-1044) (-1033 |#1|) (-1033 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1563 ($ $)) (-15 -1563 ($ $ $)) (-15 -2838 (|#1| |#1|))) |%noBranch|) (-15 -3048 ($ $ (-1 |#2| |#2|))) (-15 -1422 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-562))) (-15 ** ($ $ (-562))) (-15 -1786 (|#2| (-114) |#2|)) (-15 -1860 ($ |#1| (-360 (-114)))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 33)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1955 (($ |#1| |#2|) 25)) (-3668 (((-3 $ "failed") $) 48)) (-1957 (((-112) $) 35)) (-3518 ((|#2| $) 12)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 49)) (-1709 (((-1112) $) NIL)) (-2302 (((-3 $ "failed") $ $) 47)) (-4054 (((-857) $) 24) (($ (-562)) 19) ((|#1| $) 13)) (-2579 (((-766)) 28)) (-2286 (($) 16 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 38)) (-1848 (($ $) 43) (($ $ $) 37)) (-1835 (($ $ $) 40)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 21) (($ $ $) 20))) +(((-710 |#1| |#2| |#3| |#4| |#5|) (-13 (-1044) (-10 -8 (-15 -3518 (|#2| $)) (-15 -4054 (|#1| $)) (-15 -1955 ($ |#1| |#2|)) (-15 -2302 ((-3 $ "failed") $ $)) (-15 -3668 ((-3 $ "failed") $)) (-15 -1525 ($ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -710)) +((-3668 (*1 *1 *1) (|partial| -12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3518 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-710 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4054 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2302 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1525 (*1 *1 *1) (-12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1044) (-10 -8 (-15 -3518 (|#2| $)) (-15 -4054 (|#1| $)) (-15 -1955 ($ |#1| |#2|)) (-15 -2302 ((-3 $ "failed") $ $)) (-15 -3668 ((-3 $ "failed") $)) (-15 -1525 ($ $)))) +((* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-711 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-712 |#2|) (-171)) (T -711)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-712 |#1|) (-139) (-171)) (T -712)) NIL (-13 (-111 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-1048 |#1|) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-2735 (($ |#1|) 17) (($ $ |#1|) 20)) (-4254 (($ |#1|) 18) (($ $ |#1|) 21)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2545 (((-112) $) NIL)) (-2538 (($ |#1| |#1| |#1| |#1|) 8)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 16)) (-3644 (((-1110) $) NIL)) (-4174 ((|#1| $ |#1|) 24) (((-826 |#1|) $ (-826 |#1|)) 32)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-4353 (((-857) $) 39)) (-3046 (($) 9 T CONST)) (-3437 (((-112) $ $) 44)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ $ $) 14))) -(((-712 |#1|) (-13 (-471) (-10 -8 (-15 -2538 ($ |#1| |#1| |#1| |#1|)) (-15 -2735 ($ |#1|)) (-15 -4254 ($ |#1|)) (-15 -3866 ($)) (-15 -2735 ($ $ |#1|)) (-15 -4254 ($ $ |#1|)) (-15 -3866 ($ $)) (-15 -4174 (|#1| $ |#1|)) (-15 -4174 ((-826 |#1|) $ (-826 |#1|))))) (-362)) (T -712)) -((-2538 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-2735 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-4254 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3866 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-4254 (*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-3866 (*1 *1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-4174 (*1 *2 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) (-4174 (*1 *2 *1 *2) (-12 (-5 *2 (-826 *3)) (-4 *3 (-362)) (-5 *1 (-712 *3))))) -(-13 (-471) (-10 -8 (-15 -2538 ($ |#1| |#1| |#1| |#1|)) (-15 -2735 ($ |#1|)) (-15 -4254 ($ |#1|)) (-15 -3866 ($)) (-15 -2735 ($ $ |#1|)) (-15 -4254 ($ $ |#1|)) (-15 -3866 ($ $)) (-15 -4174 (|#1| $ |#1|)) (-15 -4174 ((-826 |#1|) $ (-826 |#1|))))) -((-2542 (($ $ (-912)) 12)) (-2541 (($ $ (-912)) 13)) (** (($ $ (-912)) 10))) -(((-713 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-912))) (-15 -2541 (|#1| |#1| (-912))) (-15 -2542 (|#1| |#1| (-912)))) (-714)) (T -713)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-912))) (-15 -2541 (|#1| |#1| (-912))) (-15 -2542 (|#1| |#1| (-912)))) -((-2947 (((-112) $ $) 7)) (-2542 (($ $ (-912)) 15)) (-2541 (($ $ (-912)) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)) (** (($ $ (-912)) 13)) (* (($ $ $) 16))) -(((-714) (-139)) (T -714)) -((* (*1 *1 *1 *1) (-4 *1 (-714))) (-2542 (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912)))) (-2541 (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912))))) -(-13 (-1091) (-10 -8 (-15 * ($ $ $)) (-15 -2542 ($ $ (-912))) (-15 -2541 ($ $ (-912))) (-15 ** ($ $ (-912))))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2542 (($ $ (-912)) NIL) (($ $ (-765)) 17)) (-2545 (((-112) $) 10)) (-2541 (($ $ (-912)) NIL) (($ $ (-765)) 18)) (** (($ $ (-912)) NIL) (($ $ (-765)) 15))) -(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-765))) (-15 -2541 (|#1| |#1| (-765))) (-15 -2542 (|#1| |#1| (-765))) (-15 -2545 ((-112) |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 -2541 (|#1| |#1| (-912))) (-15 -2542 (|#1| |#1| (-912)))) (-716)) (T -715)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-765))) (-15 -2541 (|#1| |#1| (-765))) (-15 -2542 (|#1| |#1| (-765))) (-15 -2545 ((-112) |#1|)) (-15 ** (|#1| |#1| (-912))) (-15 -2541 (|#1| |#1| (-912))) (-15 -2542 (|#1| |#1| (-912)))) -((-2947 (((-112) $ $) 7)) (-2539 (((-3 $ "failed") $) 17)) (-2542 (($ $ (-912)) 15) (($ $ (-765)) 22)) (-3866 (((-3 $ "failed") $) 19)) (-2545 (((-112) $) 23)) (-2540 (((-3 $ "failed") $) 18)) (-2541 (($ $ (-912)) 14) (($ $ (-765)) 21)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3046 (($) 24 T CONST)) (-3437 (((-112) $ $) 6)) (** (($ $ (-912)) 13) (($ $ (-765)) 20)) (* (($ $ $) 16))) -(((-716) (-139)) (T -716)) -((-3046 (*1 *1) (-4 *1 (-716))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-112)))) (-2542 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (-2541 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) (-3866 (*1 *1 *1) (|partial| -4 *1 (-716))) (-2540 (*1 *1 *1) (|partial| -4 *1 (-716))) (-2539 (*1 *1 *1) (|partial| -4 *1 (-716)))) -(-13 (-714) (-10 -8 (-15 (-3046) ($) -4359) (-15 -2545 ((-112) $)) (-15 -2542 ($ $ (-765))) (-15 -2541 ($ $ (-765))) (-15 ** ($ $ (-765))) (-15 -3866 ((-3 $ "failed") $)) (-15 -2540 ((-3 $ "failed") $)) (-15 -2539 ((-3 $ "failed") $)))) -(((-102) . T) ((-608 (-857)) . T) ((-714) . T) ((-1091) . T)) -((-3521 (((-765)) 35)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#2| $) 22)) (-4249 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) 45)) (-3866 (((-3 $ "failed") $) 65)) (-3377 (($) 39)) (-3517 ((|#2| $) 20)) (-2544 (($) 17)) (-4217 (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-2543 (((-682 |#2|) (-1253 $) (-1 |#2| |#2|)) 60)) (-4377 (((-1253 |#2|) $) NIL) (($ (-1253 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2743 ((|#3| $) 32)) (-2162 (((-1253 $)) 29))) -(((-717 |#1| |#2| |#3|) (-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3377 (|#1|)) (-15 -3521 ((-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -2543 ((-682 |#2|) (-1253 |#1|) (-1 |#2| |#2|))) (-15 -4249 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4377 (|#1| |#3|)) (-15 -4249 (|#1| |#3|)) (-15 -2544 (|#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 (|#3| |#1|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -2162 ((-1253 |#1|))) (-15 -2743 (|#3| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|))) (-718 |#2| |#3|) (-171) (-1229 |#2|)) (T -717)) -((-3521 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-765)) (-5 *1 (-717 *3 *4 *5)) (-4 *3 (-718 *4 *5))))) -(-10 -8 (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -3377 (|#1|)) (-15 -3521 ((-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -2543 ((-682 |#2|) (-1253 |#1|) (-1 |#2| |#2|))) (-15 -4249 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4377 (|#1| |#3|)) (-15 -4249 (|#1| |#3|)) (-15 -2544 (|#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4377 (|#3| |#1|)) (-15 -4377 (|#1| (-1253 |#2|))) (-15 -4377 ((-1253 |#2|) |#1|)) (-15 -2162 ((-1253 |#1|))) (-15 -2743 (|#3| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3866 ((-3 |#1| "failed") |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 93 (|has| |#1| (-362)))) (-2213 (($ $) 94 (|has| |#1| (-362)))) (-2211 (((-112) $) 96 (|has| |#1| (-362)))) (-1929 (((-682 |#1|) (-1253 $)) 47) (((-682 |#1|)) 62)) (-3734 ((|#1| $) 53)) (-1819 (((-1177 (-912) (-765)) (-544)) 146 (|has| |#1| (-349)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 113 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 114 (|has| |#1| (-362)))) (-1733 (((-112) $ $) 104 (|has| |#1| (-362)))) (-3521 (((-765)) 87 (|has| |#1| (-367)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 169 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 167 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 164)) (-3557 (((-544) $) 168 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 166 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 165)) (-1939 (($ (-1253 |#1|) (-1253 $)) 49) (($ (-1253 |#1|)) 65)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-2943 (($ $ $) 108 (|has| |#1| (-362)))) (-1928 (((-682 |#1|) $ (-1253 $)) 54) (((-682 |#1|) $) 60)) (-2401 (((-682 (-544)) (-682 $)) 163 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 162 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 161) (((-682 |#1|) (-682 $)) 160)) (-4249 (($ |#2|) 157) (((-3 $ "failed") (-406 |#2|)) 154 (|has| |#1| (-362)))) (-3866 (((-3 $ "failed") $) 33)) (-3494 (((-912)) 55)) (-3377 (($) 90 (|has| |#1| (-367)))) (-2942 (($ $ $) 107 (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 102 (|has| |#1| (-362)))) (-3215 (($) 148 (|has| |#1| (-349)))) (-1824 (((-112) $) 149 (|has| |#1| (-349)))) (-1914 (($ $ (-765)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-4130 (((-112) $) 115 (|has| |#1| (-362)))) (-4178 (((-912) $) 151 (|has| |#1| (-349))) (((-826 (-912)) $) 137 (|has| |#1| (-349)))) (-2545 (((-112) $) 31)) (-3517 ((|#1| $) 52)) (-3848 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 111 (|has| |#1| (-362)))) (-2164 ((|#2| $) 45 (|has| |#1| (-362)))) (-2160 (((-912) $) 89 (|has| |#1| (-367)))) (-3463 ((|#2| $) 155)) (-2041 (($ (-635 $)) 100 (|has| |#1| (-362))) (($ $ $) 99 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 116 (|has| |#1| (-362)))) (-3849 (($) 142 (|has| |#1| (-349)) CONST)) (-2535 (($ (-912)) 88 (|has| |#1| (-367)))) (-3644 (((-1110) $) 10)) (-2544 (($) 159)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 101 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 98 (|has| |#1| (-362))) (($ $ $) 97 (|has| |#1| (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) 145 (|has| |#1| (-349)))) (-4139 (((-404 $) $) 112 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 110 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 109 (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ $) 92 (|has| |#1| (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 103 (|has| |#1| (-362)))) (-1732 (((-765) $) 105 (|has| |#1| (-362)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 106 (|has| |#1| (-362)))) (-4164 ((|#1| (-1253 $)) 48) ((|#1|) 61)) (-1915 (((-765) $) 150 (|has| |#1| (-349))) (((-3 (-765) "failed") $ $) 138 (|has| |#1| (-349)))) (-4217 (($ $) 136 (-3936 (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-765)) 134 (-3936 (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-1166)) 132 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-635 (-1166))) 131 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1166) (-765)) 130 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 (-765))) 129 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-765)) 122 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-362)))) (-2543 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3586 ((|#2|) 158)) (-1818 (($) 147 (|has| |#1| (-349)))) (-3625 (((-1253 |#1|) $ (-1253 $)) 51) (((-682 |#1|) (-1253 $) (-1253 $)) 50) (((-1253 |#1|) $) 67) (((-682 |#1|) (-1253 $)) 66)) (-4377 (((-1253 |#1|) $) 64) (($ (-1253 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 144 (|has| |#1| (-349)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-362))) (($ (-406 (-544))) 86 (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-2743 ((|#2| $) 46)) (-3511 (((-765)) 28)) (-2162 (((-1253 $)) 68)) (-2212 (((-112) $ $) 95 (|has| |#1| (-362)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $) 135 (-3936 (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-765)) 133 (-3936 (-3240 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-1166)) 128 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-635 (-1166))) 127 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1166) (-765)) 126 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 (-765))) 125 (-3240 (|has| |#1| (-893 (-1166))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-765)) 124 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-362)))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 120 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 117 (|has| |#1| (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-544)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-544))) 118 (|has| |#1| (-362))))) -(((-718 |#1| |#2|) (-139) (-171) (-1229 |t#1|)) (T -718)) -((-2544 (*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-718 *2 *3)) (-4 *3 (-1229 *2)))) (-3586 (*1 *2) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) (-4249 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3)))) (-4377 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) (-4249 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-362)) (-4 *3 (-171)) (-4 *1 (-718 *3 *4)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-1253 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-4 *1 (-718 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *5))))) -(-13 (-409 |t#1| |t#2|) (-171) (-609 |t#2|) (-411 |t#1|) (-376 |t#1|) (-10 -8 (-15 -2544 ($)) (-15 -3586 (|t#2|)) (-15 -4249 ($ |t#2|)) (-15 -4377 ($ |t#2|)) (-15 -3463 (|t#2| $)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-6 (-230 |t#1|)) (-15 -4249 ((-3 $ "failed") (-406 |t#2|))) (-15 -2543 ((-682 |t#1|) (-1253 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-102) . T) ((-111 #1# #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| |#1| (-349)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-349)) (|has| |#1| (-362))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) . T) ((-609 |#2|) . T) ((-230 |#1|) |has| |#1| (-362)) ((-232) -3936 (|has| |#1| (-349)) (-12 (|has| |#1| (-232)) (|has| |#1| (-362)))) ((-242) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-289) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-306) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-362) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-401) |has| |#1| (-349)) ((-367) -3936 (|has| |#1| (-349)) (|has| |#1| (-367))) ((-349) |has| |#1| (-349)) ((-369 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-554) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-641 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-711 |#1|) . T) ((-711 $) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166)))) ((-914) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 #1#) -3936 (|has| |#1| (-349)) (|has| |#1| (-362))) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-349)) ((-1209) -3936 (|has| |#1| (-349)) (|has| |#1| (-362)))) -((-4131 (($) 11)) (-3866 (((-3 $ "failed") $) 13)) (-2545 (((-112) $) 10)) (** (($ $ (-912)) NIL) (($ $ (-765)) 18))) -(((-719 |#1|) (-10 -8 (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 -2545 ((-112) |#1|)) (-15 -4131 (|#1|)) (-15 ** (|#1| |#1| (-912)))) (-720)) (T -719)) -NIL -(-10 -8 (-15 -3866 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-765))) (-15 -2545 ((-112) |#1|)) (-15 -4131 (|#1|)) (-15 ** (|#1| |#1| (-912)))) -((-2947 (((-112) $ $) 7)) (-4131 (($) 18 T CONST)) (-3866 (((-3 $ "failed") $) 15)) (-2545 (((-112) $) 17)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3046 (($) 19 T CONST)) (-3437 (((-112) $ $) 6)) (** (($ $ (-912)) 13) (($ $ (-765)) 16)) (* (($ $ $) 14))) -(((-720) (-139)) (T -720)) -((-3046 (*1 *1) (-4 *1 (-720))) (-4131 (*1 *1) (-4 *1 (-720))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-765)))) (-3866 (*1 *1 *1) (|partial| -4 *1 (-720)))) -(-13 (-1102) (-10 -8 (-15 (-3046) ($) -4359) (-15 -4131 ($) -4359) (-15 -2545 ((-112) $)) (-15 ** ($ $ (-765))) (-15 -3866 ((-3 $ "failed") $)))) -(((-102) . T) ((-608 (-857)) . T) ((-1102) . T) ((-1091) . T)) -((-2546 (((-2 (|:| -3475 (-404 |#2|)) (|:| |special| (-404 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3822 (((-2 (|:| -3475 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2547 ((|#2| (-406 |#2|) (-1 |#2| |#2|)) 13)) (-3839 (((-2 (|:| |poly| |#2|) (|:| -3475 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)) 47))) -(((-721 |#1| |#2|) (-10 -7 (-15 -3822 ((-2 (|:| -3475 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2546 ((-2 (|:| -3475 (-404 |#2|)) (|:| |special| (-404 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2547 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -3839 ((-2 (|:| |poly| |#2|) (|:| -3475 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1229 |#1|)) (T -721)) -((-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3475 (-406 *6)) (|:| |special| (-406 *6)))) (-5 *1 (-721 *5 *6)) (-5 *3 (-406 *6)))) (-2547 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-721 *5 *2)) (-4 *5 (-362)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -3475 (-404 *3)) (|:| |special| (-404 *3)))) (-5 *1 (-721 *5 *3)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -3475 *3) (|:| |special| *3))) (-5 *1 (-721 *5 *3))))) -(-10 -7 (-15 -3822 ((-2 (|:| -3475 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2546 ((-2 (|:| -3475 (-404 |#2|)) (|:| |special| (-404 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2547 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -3839 ((-2 (|:| |poly| |#2|) (|:| -3475 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) -((-2548 ((|#7| (-635 |#5|) |#6|) NIL)) (-4365 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-722 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4365 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2548 (|#7| (-635 |#5|) |#6|))) (-844) (-787) (-787) (-1042) (-1042) (-943 |#4| |#2| |#1|) (-943 |#5| |#3| |#1|)) (T -722)) -((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *9)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-1042)) (-4 *2 (-943 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787)) (-4 *4 (-943 *8 *6 *5)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1042)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-4 *2 (-943 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-787)) (-4 *4 (-943 *8 *6 *5))))) -(-10 -7 (-15 -4365 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2548 (|#7| (-635 |#5|) |#6|))) -((-4365 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-723 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4365 (|#7| (-1 |#2| |#1|) |#6|))) (-844) (-844) (-787) (-787) (-1042) (-943 |#5| |#3| |#1|) (-943 |#5| |#4| |#2|)) (T -723)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-4 *7 (-787)) (-4 *9 (-1042)) (-4 *2 (-943 *9 *8 *6)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-787)) (-4 *4 (-943 *9 *7 *5))))) -(-10 -7 (-15 -4365 (|#7| (-1 |#2| |#1|) |#6|))) -((-4139 (((-404 |#4|) |#4|) 41))) -(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4|))) (-787) (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166))))) (-306) (-943 (-939 |#3|) |#1| |#2|)) (T -724)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166)))))) (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-943 (-939 *6) *4 *5))))) -(-10 -7 (-15 -4139 ((-404 |#4|) |#4|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-858 |#1|)) $) NIL)) (-3469 (((-1160 $) $ (-858 |#1|)) NIL) (((-1160 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-858 |#1|))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-858 |#1|) #2#) $) NIL)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-858 |#1|) $) NIL)) (-4163 (($ $ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| (-529 (-858 |#1|)) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-858 |#1|) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#2|) (-858 |#1|)) NIL) (($ (-1160 $) (-858 |#1|)) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#2| (-529 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-858 |#1|)) NIL)) (-3202 (((-529 (-858 |#1|)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 (-529 (-858 |#1|)) (-529 (-858 |#1|))) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-3 (-858 |#1|) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-858 |#1|)) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#2| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-858 |#1|) |#2|) NIL) (($ $ (-635 (-858 |#1|)) (-635 |#2|)) NIL) (($ $ (-858 |#1|) $) NIL) (($ $ (-635 (-858 |#1|)) (-635 $)) NIL)) (-4164 (($ $ (-858 |#1|)) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-4355 (((-529 (-858 |#1|)) $) NIL) (((-765) $ (-858 |#1|)) NIL) (((-635 (-765)) $ (-635 (-858 |#1|))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-858 |#1|) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-858 |#1|) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-858 |#1|)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-858 |#1|)) NIL) (($ $) NIL (|has| |#2| (-554))) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544))))))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-529 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-858 |#1|)) NIL) (($ $ (-635 (-858 |#1|))) NIL) (($ $ (-858 |#1|) (-765)) NIL) (($ $ (-635 (-858 |#1|)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-725 |#1| |#2|) (-943 |#2| (-529 (-858 |#1|)) (-858 |#1|)) (-635 (-1166)) (-1042)) (T -725)) -NIL -(-943 |#2| (-529 (-858 |#1|)) (-858 |#1|)) -((-2549 (((-2 (|:| -2778 (-939 |#3|)) (|:| -2208 (-939 |#3|))) |#4|) 14)) (-3369 ((|#4| |#4| |#2|) 33)) (-2552 ((|#4| (-406 (-939 |#3|)) |#2|) 64)) (-2551 ((|#4| (-1160 (-939 |#3|)) |#2|) 77)) (-2550 ((|#4| (-1160 |#4|) |#2|) 51)) (-3368 ((|#4| |#4| |#2|) 54)) (-4139 (((-404 |#4|) |#4|) 40))) -(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2549 ((-2 (|:| -2778 (-939 |#3|)) (|:| -2208 (-939 |#3|))) |#4|)) (-15 -3368 (|#4| |#4| |#2|)) (-15 -2550 (|#4| (-1160 |#4|) |#2|)) (-15 -3369 (|#4| |#4| |#2|)) (-15 -2551 (|#4| (-1160 (-939 |#3|)) |#2|)) (-15 -2552 (|#4| (-406 (-939 |#3|)) |#2|)) (-15 -4139 ((-404 |#4|) |#4|))) (-787) (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)))) (-554) (-943 (-406 (-939 |#3|)) |#1| |#2|)) (T -726)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *6 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-943 (-406 (-939 *6)) *4 *5)))) (-2552 (*1 *2 *3 *4) (-12 (-4 *6 (-554)) (-4 *2 (-943 *3 *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-5 *3 (-406 (-939 *6))) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 (-939 *6))) (-4 *6 (-554)) (-4 *2 (-943 (-406 (-939 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))))) (-3369 (*1 *2 *2 *3) (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *5 (-554)) (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-943 (-406 (-939 *5)) *4 *3)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-1160 *2)) (-4 *2 (-943 (-406 (-939 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *6 (-554)))) (-3368 (*1 *2 *2 *3) (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *5 (-554)) (-5 *1 (-726 *4 *3 *5 *2)) (-4 *2 (-943 (-406 (-939 *5)) *4 *3)))) (-2549 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *6 (-554)) (-5 *2 (-2 (|:| -2778 (-939 *6)) (|:| -2208 (-939 *6)))) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-943 (-406 (-939 *6)) *4 *5))))) -(-10 -7 (-15 -2549 ((-2 (|:| -2778 (-939 |#3|)) (|:| -2208 (-939 |#3|))) |#4|)) (-15 -3368 (|#4| |#4| |#2|)) (-15 -2550 (|#4| (-1160 |#4|) |#2|)) (-15 -3369 (|#4| |#4| |#2|)) (-15 -2551 (|#4| (-1160 (-939 |#3|)) |#2|)) (-15 -2552 (|#4| (-406 (-939 |#3|)) |#2|)) (-15 -4139 ((-404 |#4|) |#4|))) -((-4139 (((-404 |#4|) |#4|) 52))) -(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4|))) (-787) (-844) (-13 (-306) (-146)) (-943 (-406 |#3|) |#1| |#2|)) (T -727)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-943 (-406 *6) *4 *5))))) -(-10 -7 (-15 -4139 ((-404 |#4|) |#4|))) -((-4365 (((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|)) 18))) -(((-728 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|)))) (-1042) (-1042) (-720)) (T -728)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5 *7)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *7 (-720)) (-5 *2 (-729 *6 *7)) (-5 *1 (-728 *5 *6 *7))))) -(-10 -7 (-15 -4365 ((-729 |#2| |#3|) (-1 |#2| |#1|) (-729 |#1| |#3|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 28)) (-4180 (((-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))) $) 29)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765)) 20 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3557 ((|#2| $) NIL) ((|#1| $) NIL)) (-4366 (($ $) 79 (|has| |#2| (-844)))) (-3866 (((-3 $ "failed") $) 65)) (-3377 (($) 35 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) 55)) (-3203 (((-635 $) $) 39)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| |#2|) 16)) (-4365 (($ (-1 |#1| |#1|) $) 54)) (-2160 (((-912) $) 32 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-3277 ((|#2| $) 78 (|has| |#2| (-844)))) (-3575 ((|#1| $) 77 (|has| |#2| (-844)))) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) 27 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 76) (($ (-544)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|)))) 11)) (-4224 (((-635 |#1|) $) 41)) (-4084 ((|#1| $ |#2|) 87)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3040 (($) 12 T CONST)) (-3046 (($) 33 T CONST)) (-3437 (((-112) $ $) 80)) (-4244 (($ $) 47) (($ $ $) NIL)) (-4246 (($ $ $) 26)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 52) (($ $ $) 89) (($ |#1| $) 49 (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) -(((-729 |#1| |#2|) (-13 (-1042) (-1031 |#2|) (-1031 |#1|) (-10 -8 (-15 -3276 ($ |#1| |#2|)) (-15 -4084 (|#1| $ |#2|)) (-15 -4353 ($ (-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))))) (-15 -4180 ((-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))) $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (-15 -4344 ((-112) $)) (-15 -4224 ((-635 |#1|) $)) (-15 -3203 ((-635 $) $)) (-15 -2553 ((-765) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-844)) (PROGN (-15 -3277 (|#2| $)) (-15 -3575 (|#1| $)) (-15 -4366 ($ $))) |%noBranch|))) (-1042) (-720)) (T -729)) -((-3276 (*1 *1 *2 *3) (-12 (-5 *1 (-729 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-720)))) (-4084 (*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-720)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4361 *3) (|:| -4345 *4)))) (-4 *3 (-1042)) (-4 *4 (-720)) (-5 *1 (-729 *3 *4)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -4361 *3) (|:| -4345 *4)))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-729 *3 *4)) (-4 *4 (-720)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-635 (-729 *3 *4))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) (-3277 (*1 *2 *1) (-12 (-4 *2 (-720)) (-4 *2 (-844)) (-5 *1 (-729 *3 *2)) (-4 *3 (-1042)))) (-3575 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *3 (-720)))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1042)) (-4 *3 (-720))))) -(-13 (-1042) (-1031 |#2|) (-1031 |#1|) (-10 -8 (-15 -3276 ($ |#1| |#2|)) (-15 -4084 (|#1| $ |#2|)) (-15 -4353 ($ (-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))))) (-15 -4180 ((-635 (-2 (|:| -4361 |#1|) (|:| -4345 |#2|))) $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (-15 -4344 ((-112) $)) (-15 -4224 ((-635 |#1|) $)) (-15 -3203 ((-635 $) $)) (-15 -2553 ((-765) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-844)) (PROGN (-15 -3277 (|#2| $)) (-15 -3575 (|#1| $)) (-15 -4366 ($ $))) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-3635 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3637 (($ $ $) 79)) (-3636 (((-112) $ $) 83)) (-1293 (((-112) $ (-765)) NIL)) (-3640 (($ (-635 |#1|)) 24) (($) 16)) (-1659 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2498 (($ $) 71)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) 61 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 65 (|has| $ (-6 -4400))) (($ |#1| $ (-544)) 63) (($ (-1 (-112) |#1|) $ (-544)) 66)) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (($ |#1| $ (-544)) 68) (($ (-1 (-112) |#1|) $ (-544)) 69)) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 32 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 82)) (-2555 (($) 14) (($ |#1|) 26) (($ (-635 |#1|)) 21)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) 38)) (-3646 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 75)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3639 (($ $ $) 77)) (-1356 ((|#1| $) 55)) (-4014 (($ |#1| $) 56) (($ |#1| $ (-765)) 72)) (-3644 (((-1110) $) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1357 ((|#1| $) 54)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 50)) (-3972 (($) 13)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 48)) (-3638 (($ $ |#1|) NIL) (($ $ $) 78)) (-1550 (($) 15) (($ (-635 |#1|)) 23)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) 60 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 67)) (-4377 (((-533) $) 36 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 20)) (-4353 (((-857) $) 44)) (-3641 (($ (-635 |#1|)) 25) (($) 17)) (-1358 (($ (-635 |#1|)) 22)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 81)) (-4364 (((-765) $) 59 (|has| $ (-6 -4400))))) -(((-730 |#1|) (-13 (-731 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -2555 ($)) (-15 -2555 ($ |#1|)) (-15 -2555 ($ (-635 |#1|))) (-15 -2554 ((-635 |#1|) $)) (-15 -3810 ($ |#1| $ (-544))) (-15 -3810 ($ (-1 (-112) |#1|) $ (-544))) (-15 -3809 ($ |#1| $ (-544))) (-15 -3809 ($ (-1 (-112) |#1|) $ (-544))))) (-1091)) (T -730)) -((-2555 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-1091)))) (-2555 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-1091)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-730 *3)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-730 *3)) (-4 *3 (-1091)))) (-3810 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-730 *2)) (-4 *2 (-1091)))) (-3810 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-544)) (-4 *4 (-1091)) (-5 *1 (-730 *4)))) (-3809 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-730 *2)) (-4 *2 (-1091)))) (-3809 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-544)) (-4 *4 (-1091)) (-5 *1 (-730 *4))))) -(-13 (-731 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -2555 ($)) (-15 -2555 ($ |#1|)) (-15 -2555 ($ (-635 |#1|))) (-15 -2554 ((-635 |#1|) $)) (-15 -3810 ($ |#1| $ (-544))) (-15 -3810 ($ (-1 (-112) |#1|) $ (-544))) (-15 -3809 ($ |#1| $ (-544))) (-15 -3809 ($ (-1 (-112) |#1|) $ (-544))))) -((-2947 (((-112) $ $) 19)) (-3635 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3637 (($ $ $) 72)) (-3636 (((-112) $ $) 73)) (-1293 (((-112) $ (-765)) 8)) (-3640 (($ (-635 |#1|)) 68) (($) 67)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2498 (($ $) 62)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 64)) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22)) (-3639 (($ $ $) 69)) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-3644 (((-1110) $) 21)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 61)) (-3638 (($ $ |#1|) 71) (($ $ $) 70)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18)) (-3641 (($ (-635 |#1|)) 66) (($) 65)) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-731 |#1|) (-139) (-1091)) (T -731)) -NIL -(-13 (-688 |t#1|) (-1089 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-688 |#1|) . T) ((-1089 |#1|) . T) ((-1091) . T) ((-1204) . T)) -((-2556 (((-1259) (-1148)) 8))) -(((-732) (-10 -7 (-15 -2556 ((-1259) (-1148))))) (T -732)) -((-2556 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-732))))) -(-10 -7 (-15 -2556 ((-1259) (-1148)))) -((-2557 (((-635 |#1|) (-635 |#1|) (-635 |#1|)) 10))) -(((-733 |#1|) (-10 -7 (-15 -2557 ((-635 |#1|) (-635 |#1|) (-635 |#1|)))) (-844)) (T -733)) -((-2557 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-733 *3))))) -(-10 -7 (-15 -2557 ((-635 |#1|) (-635 |#1|) (-635 |#1|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 |#2|) $) 139)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 132 (|has| |#1| (-554)))) (-2213 (($ $) 131 (|has| |#1| (-554)))) (-2211 (((-112) $) 129 (|has| |#1| (-554)))) (-3891 (($ $) 88 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 71 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-3420 (($ $) 70 (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) 87 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 72 (|has| |#1| (-38 (-406 (-544)))))) (-3893 (($ $) 86 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 73 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-4366 (($ $) 123)) (-3866 (((-3 $ "failed") $) 33)) (-4221 (((-939 |#1|) $ (-765)) 101) (((-939 |#1|) $ (-765) (-765)) 100)) (-3275 (((-112) $) 140)) (-4034 (($) 98 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $ |#2|) 103) (((-765) $ |#2| (-765)) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 69 (|has| |#1| (-38 (-406 (-544)))))) (-4344 (((-112) $) 121)) (-3276 (($ $ (-635 |#2|) (-635 (-529 |#2|))) 138) (($ $ |#2| (-529 |#2|)) 137) (($ |#1| (-529 |#2|)) 122) (($ $ |#2| (-765)) 105) (($ $ (-635 |#2|) (-635 (-765))) 104)) (-4365 (($ (-1 |#1| |#1|) $) 120)) (-4349 (($ $) 95 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 118)) (-3575 ((|#1| $) 117)) (-3643 (((-1148) $) 9)) (-4219 (($ $ |#2|) 99 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) 10)) (-4175 (($ $ (-765)) 106)) (-3865 (((-3 $ "failed") $ $) 133 (|has| |#1| (-554)))) (-4350 (($ $) 96 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (($ $ |#2| $) 114) (($ $ (-635 |#2|) (-635 $)) 113) (($ $ (-635 (-292 $))) 112) (($ $ (-292 $)) 111) (($ $ $ $) 110) (($ $ (-635 $) (-635 $)) 109)) (-4217 (($ $ |#2|) 42) (($ $ (-635 |#2|)) 41) (($ $ |#2| (-765)) 40) (($ $ (-635 |#2|) (-635 (-765))) 39)) (-4355 (((-529 |#2|) $) 119)) (-3894 (($ $) 85 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 74 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 84 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 75 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 83 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 76 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 141)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 136 (|has| |#1| (-171))) (($ $) 134 (|has| |#1| (-554))) (($ (-406 (-544))) 126 (|has| |#1| (-38 (-406 (-544)))))) (-4084 ((|#1| $ (-529 |#2|)) 124) (($ $ |#2| (-765)) 108) (($ $ (-635 |#2|) (-635 (-765))) 107)) (-3084 (((-3 $ "failed") $) 135 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-3897 (($ $) 94 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 82 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 130 (|has| |#1| (-554)))) (-3895 (($ $) 93 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 81 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 92 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 80 (|has| |#1| (-38 (-406 (-544)))))) (-3900 (($ $) 91 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 79 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 90 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 78 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 89 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 77 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ |#2|) 38) (($ $ (-635 |#2|)) 37) (($ $ |#2| (-765)) 36) (($ $ (-635 |#2|) (-635 (-765))) 35)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 125 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ $) 97 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 68 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 128 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 127 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 116) (($ $ |#1|) 115))) -(((-734 |#1| |#2|) (-139) (-1042) (-844)) (T -734)) -((-4084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-765))) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-734 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-844)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-765))) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4178 (*1 *2 *1 *3) (-12 (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4178 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-765)) (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) (-5 *2 (-939 *4)))) (-4221 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) (-5 *2 (-939 *4)))) (-4219 (*1 *1 *1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844)) (-4 *3 (-38 (-406 (-544))))))) -(-13 (-893 |t#2|) (-966 |t#1| (-529 |t#2|) |t#2|) (-512 |t#2| $) (-308 $) (-10 -8 (-15 -4084 ($ $ |t#2| (-765))) (-15 -4084 ($ $ (-635 |t#2|) (-635 (-765)))) (-15 -4175 ($ $ (-765))) (-15 -3276 ($ $ |t#2| (-765))) (-15 -3276 ($ $ (-635 |t#2|) (-635 (-765)))) (-15 -4178 ((-765) $ |t#2|)) (-15 -4178 ((-765) $ |t#2| (-765))) (-15 -4221 ((-939 |t#1|) $ (-765))) (-15 -4221 ((-939 |t#1|) $ (-765) (-765))) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ |t#2|)) (-6 (-995)) (-6 (-1190))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-529 |#2|)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-289) |has| |#1| (-554)) ((-308 $) . T) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-512 |#2| $) . T) ((-512 $ $) . T) ((-554) |has| |#1| (-554)) ((-641 #2#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-893 |#2|) . T) ((-966 |#1| #1# |#2|) . T) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1048 #2#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544))))) -((-4139 (((-404 (-1160 |#4|)) (-1160 |#4|)) 30) (((-404 |#4|) |#4|) 26))) -(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 |#4|) |#4|)) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|)))) (-844) (-787) (-13 (-306) (-146)) (-943 |#3| |#2| |#1|)) (T -735)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-943 *6 *5 *4)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-735 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4))))) -(-10 -7 (-15 -4139 ((-404 |#4|) |#4|)) (-15 -4139 ((-404 (-1160 |#4|)) (-1160 |#4|)))) -((-2560 (((-404 |#4|) |#4| |#2|) 118)) (-2558 (((-404 |#4|) |#4|) NIL)) (-4376 (((-404 (-1160 |#4|)) (-1160 |#4|)) 109) (((-404 |#4|) |#4|) 40)) (-2562 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 |#4|)) (|:| -2536 (-544)))))) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|))) 68)) (-2566 (((-1160 |#3|) (-1160 |#3|) (-544)) 136)) (-2565 (((-635 (-765)) (-1160 |#4|) (-635 |#2|) (-765)) 60)) (-3463 (((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-1160 |#3|) (-1160 |#3|) |#4| (-635 |#2|) (-635 (-765)) (-635 |#3|)) 64)) (-2563 (((-2 (|:| |upol| (-1160 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) (|:| |ctpol| |#3|)) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|))) 25)) (-2561 (((-2 (|:| -2154 (-1160 |#4|)) (|:| |polval| (-1160 |#3|))) (-1160 |#4|) (-1160 |#3|) (-544)) 56)) (-2559 (((-544) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) 133)) (-2564 ((|#4| (-544) (-404 |#4|)) 57)) (-3761 (((-112) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) NIL))) -(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 ((-404 |#4|) |#4|)) (-15 -4376 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -2558 ((-404 |#4|) |#4|)) (-15 -2559 ((-544) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))))) (-15 -2560 ((-404 |#4|) |#4| |#2|)) (-15 -2561 ((-2 (|:| -2154 (-1160 |#4|)) (|:| |polval| (-1160 |#3|))) (-1160 |#4|) (-1160 |#3|) (-544))) (-15 -2562 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 |#4|)) (|:| -2536 (-544)))))) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2563 ((-2 (|:| |upol| (-1160 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) (|:| |ctpol| |#3|)) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2564 (|#4| (-544) (-404 |#4|))) (-15 -3761 ((-112) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))))) (-15 -3463 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-1160 |#3|) (-1160 |#3|) |#4| (-635 |#2|) (-635 (-765)) (-635 |#3|))) (-15 -2565 ((-635 (-765)) (-1160 |#4|) (-635 |#2|) (-765))) (-15 -2566 ((-1160 |#3|) (-1160 |#3|) (-544)))) (-787) (-844) (-306) (-943 |#3| |#1| |#2|)) (T -736)) -((-2566 (*1 *2 *2 *3) (-12 (-5 *2 (-1160 *6)) (-5 *3 (-544)) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-2565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-4 *7 (-844)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-4 *8 (-306)) (-5 *2 (-635 (-765))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *5 (-765)))) (-3463 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1160 *11)) (-5 *6 (-635 *10)) (-5 *7 (-635 (-765))) (-5 *8 (-635 *11)) (-4 *10 (-844)) (-4 *11 (-306)) (-4 *9 (-787)) (-4 *5 (-943 *11 *9 *10)) (-5 *2 (-635 (-1160 *5))) (-5 *1 (-736 *9 *10 *11 *5)) (-5 *3 (-1160 *5)))) (-3761 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-2 (|:| -4139 (-1160 *6)) (|:| -2536 (-544))))) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-544)) (-5 *4 (-404 *2)) (-4 *2 (-943 *7 *5 *6)) (-5 *1 (-736 *5 *6 *7 *2)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-306)))) (-2563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-2 (|:| |upol| (-1160 *8)) (|:| |Lval| (-635 *8)) (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 *8)) (|:| -2536 (-544))))) (|:| |ctpol| *8))) (-5 *1 (-736 *6 *7 *8 *9)))) (-2562 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *6 (-787)) (-4 *9 (-943 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 *9)) (|:| -2536 (-544))))))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1160 *9)))) (-2561 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-544)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-943 *8 *6 *7)) (-5 *2 (-2 (|:| -2154 (-1160 *9)) (|:| |polval| (-1160 *8)))) (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1160 *9)) (-5 *4 (-1160 *8)))) (-2560 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-736 *5 *4 *6 *3)) (-4 *3 (-943 *6 *5 *4)))) (-2559 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -4139 (-1160 *6)) (|:| -2536 (-544))))) (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-544)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-2558 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-943 *6 *4 *5)))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-943 *6 *4 *5))))) -(-10 -7 (-15 -4376 ((-404 |#4|) |#4|)) (-15 -4376 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -2558 ((-404 |#4|) |#4|)) (-15 -2559 ((-544) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))))) (-15 -2560 ((-404 |#4|) |#4| |#2|)) (-15 -2561 ((-2 (|:| -2154 (-1160 |#4|)) (|:| |polval| (-1160 |#3|))) (-1160 |#4|) (-1160 |#3|) (-544))) (-15 -2562 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 |#4|)) (|:| -2536 (-544)))))) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2563 ((-2 (|:| |upol| (-1160 |#3|)) (|:| |Lval| (-635 |#3|)) (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544))))) (|:| |ctpol| |#3|)) (-1160 |#4|) (-635 |#2|) (-635 (-635 |#3|)))) (-15 -2564 (|#4| (-544) (-404 |#4|))) (-15 -3761 ((-112) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))) (-635 (-2 (|:| -4139 (-1160 |#3|)) (|:| -2536 (-544)))))) (-15 -3463 ((-3 (-635 (-1160 |#4|)) "failed") (-1160 |#4|) (-1160 |#3|) (-1160 |#3|) |#4| (-635 |#2|) (-635 (-765)) (-635 |#3|))) (-15 -2565 ((-635 (-765)) (-1160 |#4|) (-635 |#2|) (-765))) (-15 -2566 ((-1160 |#3|) (-1160 |#3|) (-544)))) -((-2567 (($ $ (-912)) 12))) -(((-737 |#1| |#2|) (-10 -8 (-15 -2567 (|#1| |#1| (-912)))) (-738 |#2|) (-171)) (T -737)) -NIL -(-10 -8 (-15 -2567 (|#1| |#1| (-912)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2542 (($ $ (-912)) 28)) (-2567 (($ $ (-912)) 33)) (-2541 (($ $ (-912)) 29)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-2729 (($ $ $) 25)) (-4353 (((-857) $) 11)) (-2730 (($ $ $ $) 26)) (-2728 (($ $ $) 24)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-738 |#1|) (-139) (-171)) (T -738)) -((-2567 (*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-738 *3)) (-4 *3 (-171))))) -(-13 (-755) (-711 |t#1|) (-10 -8 (-15 -2567 ($ $ (-912))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-714) . T) ((-755) . T) ((-1048 |#1|) . T) ((-1091) . T)) -((-2569 (((-1028) (-682 (-224)) (-544) (-112) (-544)) 25)) (-2568 (((-1028) (-682 (-224)) (-544) (-112) (-544)) 24))) -(((-739) (-10 -7 (-15 -2568 ((-1028) (-682 (-224)) (-544) (-112) (-544))) (-15 -2569 ((-1028) (-682 (-224)) (-544) (-112) (-544))))) (T -739)) -((-2569 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-739)))) (-2568 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-739))))) -(-10 -7 (-15 -2568 ((-1028) (-682 (-224)) (-544) (-112) (-544))) (-15 -2569 ((-1028) (-682 (-224)) (-544) (-112) (-544)))) -((-2572 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) 43)) (-2571 (((-1028) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) 39)) (-2570 (((-1028) (-224) (-224) (-224) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 32))) -(((-740) (-10 -7 (-15 -2570 ((-1028) (-224) (-224) (-224) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2571 ((-1028) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2572 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))) (T -740)) -((-2572 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1028)) (-5 *1 (-740)))) (-2571 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1028)) (-5 *1 (-740)))) (-2570 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) (-5 *1 (-740))))) -(-10 -7 (-15 -2570 ((-1028) (-224) (-224) (-224) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2571 ((-1028) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2572 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))))) -((-2584 (((-1028) (-544) (-544) (-682 (-224)) (-544)) 34)) (-2583 (((-1028) (-544) (-544) (-682 (-224)) (-544)) 33)) (-2582 (((-1028) (-544) (-682 (-224)) (-544)) 32)) (-2581 (((-1028) (-544) (-682 (-224)) (-544)) 31)) (-2580 (((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 30)) (-2579 (((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 29)) (-2578 (((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544)) 28)) (-2577 (((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544)) 27)) (-2576 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 24)) (-2575 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544)) 23)) (-2574 (((-1028) (-544) (-682 (-224)) (-544)) 22)) (-2573 (((-1028) (-544) (-682 (-224)) (-544)) 21))) -(((-741) (-10 -7 (-15 -2573 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2574 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2575 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2576 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2577 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2578 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2579 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2580 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2581 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2582 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2583 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2584 ((-1028) (-544) (-544) (-682 (-224)) (-544))))) (T -741)) -((-2584 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2583 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2582 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2581 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2580 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2579 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2578 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2577 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2576 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2575 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2574 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741)))) (-2573 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741))))) -(-10 -7 (-15 -2573 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2574 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2575 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2576 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2577 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2578 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2579 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2580 ((-1028) (-544) (-544) (-1148) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2581 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2582 ((-1028) (-544) (-682 (-224)) (-544))) (-15 -2583 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2584 ((-1028) (-544) (-544) (-682 (-224)) (-544)))) -((-2596 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) 52)) (-2595 (((-1028) (-682 (-224)) (-682 (-224)) (-544) (-544)) 51)) (-2594 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) 50)) (-2593 (((-1028) (-224) (-224) (-544) (-544) (-544) (-544)) 46)) (-2592 (((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) 45)) (-2591 (((-1028) (-224) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) 44)) (-2590 (((-1028) (-224) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) 43)) (-2589 (((-1028) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) 42)) (-2588 (((-1028) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 38)) (-2587 (((-1028) (-224) (-224) (-544) (-682 (-224)) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 37)) (-2586 (((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 33)) (-2585 (((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) 32))) -(((-742) (-10 -7 (-15 -2585 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2586 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2587 ((-1028) (-224) (-224) (-544) (-682 (-224)) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2588 ((-1028) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2589 ((-1028) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2590 ((-1028) (-224) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2591 ((-1028) (-224) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2592 ((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2593 ((-1028) (-224) (-224) (-544) (-544) (-544) (-544))) (-15 -2594 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN))))) (-15 -2595 ((-1028) (-682 (-224)) (-682 (-224)) (-544) (-544))) (-15 -2596 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN))))))) (T -742)) -((-2596 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2595 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2594 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2593 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2592 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2591 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2590 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2589 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2588 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2587 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2586 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) (-5 *1 (-742)))) (-2585 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) (-5 *1 (-742))))) -(-10 -7 (-15 -2585 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2586 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2587 ((-1028) (-224) (-224) (-544) (-682 (-224)) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2588 ((-1028) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478))))) (-15 -2589 ((-1028) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2590 ((-1028) (-224) (-224) (-224) (-224) (-544) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2591 ((-1028) (-224) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2592 ((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G))))) (-15 -2593 ((-1028) (-224) (-224) (-544) (-544) (-544) (-544))) (-15 -2594 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN))))) (-15 -2595 ((-1028) (-682 (-224)) (-682 (-224)) (-544) (-544))) (-15 -2596 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-224) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))))) -((-2604 (((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76)) (-2603 (((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))) (-387) (-387)) 69) (((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) 68)) (-2602 (((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG)))) 57)) (-2601 (((-1028) (-682 (-224)) (-682 (-224)) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) 50)) (-2600 (((-1028) (-224) (-544) (-544) (-1148) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2599 (((-1028) (-224) (-544) (-544) (-224) (-1148) (-224) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2598 (((-1028) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) 42)) (-2597 (((-1028) (-224) (-544) (-544) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) 38))) -(((-743) (-10 -7 (-15 -2597 ((-1028) (-224) (-544) (-544) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2598 ((-1028) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))) (-15 -2599 ((-1028) (-224) (-544) (-544) (-224) (-1148) (-224) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2600 ((-1028) (-224) (-544) (-544) (-1148) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2601 ((-1028) (-682 (-224)) (-682 (-224)) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))) (-15 -2602 ((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG))))) (-15 -2603 ((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))))) (-15 -2603 ((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))) (-387) (-387))) (-15 -2604 ((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -743)) -((-2604 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2603 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-387)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2603 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2602 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2601 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2600 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2599 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2598 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743)))) (-2597 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-743))))) -(-10 -7 (-15 -2597 ((-1028) (-224) (-544) (-544) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2598 ((-1028) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))) (-15 -2599 ((-1028) (-224) (-544) (-544) (-224) (-1148) (-224) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2600 ((-1028) (-224) (-544) (-544) (-1148) (-544) (-224) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT))))) (-15 -2601 ((-1028) (-682 (-224)) (-682 (-224)) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN))))) (-15 -2602 ((-1028) (-224) (-224) (-544) (-224) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG))))) (-15 -2603 ((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))))) (-15 -2603 ((-1028) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL))) (-387) (-387))) (-15 -2604 ((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP)))))) -((-2607 (((-1028) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-668 (-224)) (-544)) 45)) (-2606 (((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-1148) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY)))) 41)) (-2605 (((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 23))) -(((-744) (-10 -7 (-15 -2605 ((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2606 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-1148) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY))))) (-15 -2607 ((-1028) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-668 (-224)) (-544))))) (T -744)) -((-2607 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-668 (-224))) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-744)))) (-2606 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1028)) (-5 *1 (-744)))) (-2605 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-744))))) -(-10 -7 (-15 -2605 ((-1028) (-544) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2606 ((-1028) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-1148) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY))))) (-15 -2607 ((-1028) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-668 (-224)) (-544)))) -((-2617 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-544)) 35)) (-2616 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-224) (-224) (-544)) 34)) (-2615 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-682 (-224)) (-224) (-224) (-544)) 33)) (-2614 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 29)) (-2613 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 28)) (-2612 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544)) 27)) (-2611 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544)) 24)) (-2610 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544)) 23)) (-2609 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544)) 22)) (-2608 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544)) 21))) -(((-745) (-10 -7 (-15 -2608 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))) (-15 -2609 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2610 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2611 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2612 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544))) (-15 -2613 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2614 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2615 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-682 (-224)) (-224) (-224) (-544))) (-15 -2616 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-224) (-224) (-544))) (-15 -2617 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-544))))) (T -745)) -((-2617 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2616 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2615 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *6 (-224)) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2614 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2613 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2612 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2611 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2610 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2609 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745)))) (-2608 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745))))) -(-10 -7 (-15 -2608 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))) (-15 -2609 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2610 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2611 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2612 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-224) (-544))) (-15 -2613 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2614 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2615 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-682 (-224)) (-224) (-224) (-544))) (-15 -2616 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-224) (-224) (-544))) (-15 -2617 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-682 (-224)) (-224) (-224) (-544)))) -((-2635 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544)) 45)) (-2634 (((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-544)) 44)) (-2633 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544)) 43)) (-2632 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 42)) (-2631 (((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544)) 41)) (-2630 (((-1028) (-1148) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544)) 40)) (-2629 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544) (-544) (-544) (-224) (-682 (-224)) (-544)) 39)) (-2628 (((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544))) 38)) (-2627 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544)) 35)) (-2626 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544)) 34)) (-2625 (((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544)) 33)) (-2624 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 32)) (-2623 (((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544)) 31)) (-2622 (((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-544)) 30)) (-2621 (((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-544) (-544) (-544)) 29)) (-2620 (((-1028) (-544) (-544) (-544) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-544)) (-544) (-544) (-544)) 28)) (-2619 (((-1028) (-544) (-682 (-224)) (-224) (-544)) 24)) (-2618 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 21))) -(((-746) (-10 -7 (-15 -2618 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2619 ((-1028) (-544) (-682 (-224)) (-224) (-544))) (-15 -2620 ((-1028) (-544) (-544) (-544) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-544)) (-544) (-544) (-544))) (-15 -2621 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-544) (-544) (-544))) (-15 -2622 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-544))) (-15 -2623 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544))) (-15 -2624 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2625 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544))) (-15 -2626 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544))) (-15 -2627 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2628 ((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)))) (-15 -2629 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544) (-544) (-544) (-224) (-682 (-224)) (-544))) (-15 -2630 ((-1028) (-1148) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544))) (-15 -2631 ((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2632 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2633 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))) (-15 -2634 ((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2635 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))))) (T -746)) -((-2635 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2634 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2633 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2632 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2631 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2630 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *7 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2629 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *6 (-224)) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2628 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) (-5 *7 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2627 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2626 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2625 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2624 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2623 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2622 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2621 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2620 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) (-5 *3 (-544)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2619 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) (-5 *1 (-746)))) (-2618 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746))))) -(-10 -7 (-15 -2618 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2619 ((-1028) (-544) (-682 (-224)) (-224) (-544))) (-15 -2620 ((-1028) (-544) (-544) (-544) (-224) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-544)) (-544) (-544) (-544))) (-15 -2621 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-544) (-544) (-544))) (-15 -2622 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544) (-544) (-544))) (-15 -2623 ((-1028) (-544) (-224) (-224) (-682 (-224)) (-544) (-544) (-224) (-544))) (-15 -2624 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2625 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544))) (-15 -2626 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544))) (-15 -2627 ((-1028) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2628 ((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)))) (-15 -2629 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544) (-544) (-544) (-224) (-682 (-224)) (-544))) (-15 -2630 ((-1028) (-1148) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544))) (-15 -2631 ((-1028) (-1148) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2632 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2633 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544))) (-15 -2634 ((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2635 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544) (-682 (-224)) (-682 (-224)) (-544) (-544) (-544)))) -((-2643 (((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-544) (-682 (-224)) (-544)) 63)) (-2642 (((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-112) (-224) (-544) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-544) (-544) (-544) (-544) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) 62)) (-2641 (((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-544) (-544) (-682 (-224)) (-682 (-544)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) 58)) (-2640 (((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-544) (-544) (-682 (-224)) (-544)) 51)) (-2639 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2638 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2)))) 46)) (-2637 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2636 (((-1028) (-544) (-224) (-224) (-544) (-224) (-112) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) 38))) -(((-747) (-10 -7 (-15 -2636 ((-1028) (-544) (-224) (-224) (-544) (-224) (-112) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN))))) (-15 -2637 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -2638 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2))))) (-15 -2639 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2640 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-544) (-544) (-682 (-224)) (-544))) (-15 -2641 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-544) (-544) (-682 (-224)) (-682 (-544)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -2642 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-112) (-224) (-544) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-544) (-544) (-544) (-544) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN))))) (-15 -2643 ((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-544) (-682 (-224)) (-544))))) (T -747)) -((-2643 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2642 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-682 (-544))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2641 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-682 (-224))) (-5 *6 (-112)) (-5 *7 (-682 (-544))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-544)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2640 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2639 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2638 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2637 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1028)) (-5 *1 (-747)))) (-2636 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-544)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747))))) -(-10 -7 (-15 -2636 ((-1028) (-544) (-224) (-224) (-544) (-224) (-112) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN))))) (-15 -2637 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -2638 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2))))) (-15 -2639 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2640 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-544) (-544) (-682 (-224)) (-544))) (-15 -2641 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-224) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-112) (-112) (-112) (-544) (-544) (-682 (-224)) (-682 (-544)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -2642 ((-1028) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-544) (-112) (-224) (-544) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-544) (-544) (-544) (-544) (-544) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-544) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN))))) (-15 -2643 ((-1028) (-544) (-544) (-544) (-224) (-682 (-224)) (-544) (-682 (-224)) (-544)))) -((-2653 (((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544)) 47)) (-2652 (((-1028) (-1148) (-1148) (-544) (-544) (-682 (-167 (-224))) (-544) (-682 (-167 (-224))) (-544) (-544) (-682 (-167 (-224))) (-544)) 46)) (-2651 (((-1028) (-544) (-544) (-544) (-682 (-167 (-224))) (-544)) 45)) (-2650 (((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 40)) (-2649 (((-1028) (-1148) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-682 (-224)) (-544)) 39)) (-2648 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-544)) 36)) (-2647 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544)) 35)) (-2646 (((-1028) (-544) (-544) (-544) (-544) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-224) (-224) (-544)) 34)) (-2645 (((-1028) (-544) (-544) (-544) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-112) (-224) (-112) (-682 (-544)) (-682 (-224)) (-544)) 33)) (-2644 (((-1028) (-544) (-544) (-544) (-544) (-224) (-112) (-112) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-544)) 32))) -(((-748) (-10 -7 (-15 -2644 ((-1028) (-544) (-544) (-544) (-544) (-224) (-112) (-112) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-544))) (-15 -2645 ((-1028) (-544) (-544) (-544) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-112) (-224) (-112) (-682 (-544)) (-682 (-224)) (-544))) (-15 -2646 ((-1028) (-544) (-544) (-544) (-544) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-224) (-224) (-544))) (-15 -2647 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544))) (-15 -2648 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-544))) (-15 -2649 ((-1028) (-1148) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-682 (-224)) (-544))) (-15 -2650 ((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2651 ((-1028) (-544) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2652 ((-1028) (-1148) (-1148) (-544) (-544) (-682 (-167 (-224))) (-544) (-682 (-167 (-224))) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2653 ((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544))))) (T -748)) -((-2653 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2652 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2651 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2650 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2649 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2648 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2647 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2646 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-635 (-112))) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) (-5 *7 (-224)) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2645 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-682 (-544))) (-5 *5 (-112)) (-5 *7 (-682 (-224))) (-5 *3 (-544)) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-748)))) (-2644 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-635 (-112))) (-5 *7 (-682 (-224))) (-5 *8 (-682 (-544))) (-5 *3 (-544)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1028)) (-5 *1 (-748))))) -(-10 -7 (-15 -2644 ((-1028) (-544) (-544) (-544) (-544) (-224) (-112) (-112) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-544))) (-15 -2645 ((-1028) (-544) (-544) (-544) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-682 (-544)) (-112) (-224) (-112) (-682 (-544)) (-682 (-224)) (-544))) (-15 -2646 ((-1028) (-544) (-544) (-544) (-544) (-635 (-112)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-224) (-224) (-544))) (-15 -2647 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544))) (-15 -2648 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-544))) (-15 -2649 ((-1028) (-1148) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-682 (-224)) (-544))) (-15 -2650 ((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2651 ((-1028) (-544) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2652 ((-1028) (-1148) (-1148) (-544) (-544) (-682 (-167 (-224))) (-544) (-682 (-167 (-224))) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2653 ((-1028) (-1148) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544)))) -((-2668 (((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544)) 66)) (-2667 (((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544)) 61)) (-2666 (((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387)) 56) (((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) 55)) (-2665 (((-1028) (-544) (-544) (-544) (-224) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544)) 37)) (-2664 (((-1028) (-544) (-544) (-224) (-224) (-544) (-544) (-682 (-224)) (-544)) 33)) (-2663 (((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544) (-544)) 30)) (-2662 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 29)) (-2661 (((-1028) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 28)) (-2660 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 27)) (-2659 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544)) 26)) (-2658 (((-1028) (-544) (-544) (-682 (-224)) (-544)) 25)) (-2657 (((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 24)) (-2656 (((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544)) 23)) (-2655 (((-1028) (-682 (-224)) (-544) (-544) (-544) (-544)) 22)) (-2654 (((-1028) (-544) (-544) (-682 (-224)) (-544)) 21))) -(((-749) (-10 -7 (-15 -2654 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2655 ((-1028) (-682 (-224)) (-544) (-544) (-544) (-544))) (-15 -2656 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2657 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2658 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2659 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544))) (-15 -2660 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2661 ((-1028) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2662 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2663 ((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544) (-544))) (-15 -2664 ((-1028) (-544) (-544) (-224) (-224) (-544) (-544) (-682 (-224)) (-544))) (-15 -2665 ((-1028) (-544) (-544) (-544) (-224) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2666 ((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -2666 ((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -2667 ((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2668 ((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544))))) (T -749)) -((-2668 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-112)) (-5 *5 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2667 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *4 (-112)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2666 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2666 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2665 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-544)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2664 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2663 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2662 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2661 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2660 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2659 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2658 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2657 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2656 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2655 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-749)))) (-2654 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749))))) -(-10 -7 (-15 -2654 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2655 ((-1028) (-682 (-224)) (-544) (-544) (-544) (-544))) (-15 -2656 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2657 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2658 ((-1028) (-544) (-544) (-682 (-224)) (-544))) (-15 -2659 ((-1028) (-544) (-544) (-544) (-544) (-682 (-224)) (-544))) (-15 -2660 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2661 ((-1028) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2662 ((-1028) (-544) (-544) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2663 ((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544) (-544))) (-15 -2664 ((-1028) (-544) (-544) (-224) (-224) (-544) (-544) (-682 (-224)) (-544))) (-15 -2665 ((-1028) (-544) (-544) (-544) (-224) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2666 ((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -2666 ((-1028) (-544) (-544) (-224) (-544) (-544) (-544) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -2667 ((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2668 ((-1028) (-544) (-544) (-544) (-544) (-544) (-112) (-544) (-112) (-544) (-682 (-167 (-224))) (-682 (-167 (-224))) (-544)))) -((-2679 (((-1028) (-544) (-544) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) 61)) (-2678 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544)) 57)) (-2677 (((-1028) (-544) (-682 (-224)) (-112) (-224) (-544) (-544) (-544) (-544) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) 56)) (-2676 (((-1028) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544)) 37)) (-2675 (((-1028) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-544)) 36)) (-2674 (((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544)) 33)) (-2673 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224))) 32)) (-2672 (((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544)) 28)) (-2671 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544)) 27)) (-2670 (((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544)) 26)) (-2669 (((-1028) (-544) (-682 (-167 (-224))) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-544)) 22))) -(((-750) (-10 -7 (-15 -2669 ((-1028) (-544) (-682 (-167 (-224))) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2670 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2671 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2672 ((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544))) (-15 -2673 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)))) (-15 -2674 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2675 ((-1028) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2676 ((-1028) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544))) (-15 -2677 ((-1028) (-544) (-682 (-224)) (-112) (-224) (-544) (-544) (-544) (-544) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2678 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544))) (-15 -2679 ((-1028) (-544) (-544) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))) (T -750)) -((-2679 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2678 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2677 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2676 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2675 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2674 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2673 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2672 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2671 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2670 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750)))) (-2669 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-167 (-224)))) (-5 *2 (-1028)) (-5 *1 (-750))))) -(-10 -7 (-15 -2669 ((-1028) (-544) (-682 (-167 (-224))) (-544) (-544) (-544) (-544) (-682 (-167 (-224))) (-544))) (-15 -2670 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2671 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-544))) (-15 -2672 ((-1028) (-682 (-224)) (-544) (-682 (-224)) (-544) (-544) (-544))) (-15 -2673 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-544)) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)))) (-15 -2674 ((-1028) (-544) (-544) (-682 (-224)) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2675 ((-1028) (-544) (-544) (-544) (-224) (-544) (-682 (-224)) (-682 (-224)) (-544))) (-15 -2676 ((-1028) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-544)) (-682 (-224)) (-682 (-544)) (-682 (-544)) (-682 (-224)) (-682 (-224)) (-682 (-544)) (-544))) (-15 -2677 ((-1028) (-544) (-682 (-224)) (-112) (-224) (-544) (-544) (-544) (-544) (-224) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -2678 ((-1028) (-544) (-682 (-224)) (-544) (-682 (-224)) (-682 (-544)) (-544) (-682 (-224)) (-544) (-544) (-544) (-544))) (-15 -2679 ((-1028) (-544) (-544) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-682 (-224)) (-544) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))))) -((-2683 (((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-544) (-682 (-224))) 29)) (-2682 (((-1028) (-1148) (-544) (-544) (-682 (-224))) 28)) (-2681 (((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-224))) 27)) (-2680 (((-1028) (-544) (-544) (-544) (-682 (-224))) 21))) -(((-751) (-10 -7 (-15 -2680 ((-1028) (-544) (-544) (-544) (-682 (-224)))) (-15 -2681 ((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-224)))) (-15 -2682 ((-1028) (-1148) (-544) (-544) (-682 (-224)))) (-15 -2683 ((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-544) (-682 (-224)))))) (T -751)) -((-2683 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))) (-2682 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751)))) (-2681 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-751)))) (-2680 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751))))) -(-10 -7 (-15 -2680 ((-1028) (-544) (-544) (-544) (-682 (-224)))) (-15 -2681 ((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-682 (-544)) (-544) (-682 (-224)))) (-15 -2682 ((-1028) (-1148) (-544) (-544) (-682 (-224)))) (-15 -2683 ((-1028) (-1148) (-544) (-544) (-682 (-224)) (-544) (-544) (-682 (-224))))) -((-2721 (((-1028) (-224) (-224) (-224) (-224) (-544)) 62)) (-2720 (((-1028) (-224) (-224) (-224) (-544)) 61)) (-2719 (((-1028) (-224) (-224) (-224) (-544)) 60)) (-2718 (((-1028) (-224) (-224) (-544)) 59)) (-2717 (((-1028) (-224) (-544)) 58)) (-2716 (((-1028) (-224) (-544)) 57)) (-2715 (((-1028) (-224) (-544)) 56)) (-2714 (((-1028) (-224) (-544)) 55)) (-2713 (((-1028) (-224) (-544)) 54)) (-2712 (((-1028) (-224) (-544)) 53)) (-2711 (((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544)) 52)) (-2710 (((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544)) 51)) (-2709 (((-1028) (-224) (-544)) 50)) (-2708 (((-1028) (-224) (-544)) 49)) (-2707 (((-1028) (-224) (-544)) 48)) (-2706 (((-1028) (-224) (-544)) 47)) (-2705 (((-1028) (-544) (-224) (-167 (-224)) (-544) (-1148) (-544)) 46)) (-2704 (((-1028) (-1148) (-167 (-224)) (-1148) (-544)) 45)) (-2703 (((-1028) (-1148) (-167 (-224)) (-1148) (-544)) 44)) (-2702 (((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544)) 43)) (-2701 (((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544)) 42)) (-2700 (((-1028) (-224) (-544)) 39)) (-2699 (((-1028) (-224) (-544)) 38)) (-2698 (((-1028) (-224) (-544)) 37)) (-2697 (((-1028) (-224) (-544)) 36)) (-2696 (((-1028) (-224) (-544)) 35)) (-2695 (((-1028) (-224) (-544)) 34)) (-2694 (((-1028) (-224) (-544)) 33)) (-2693 (((-1028) (-224) (-544)) 32)) (-2692 (((-1028) (-224) (-544)) 31)) (-2691 (((-1028) (-224) (-544)) 30)) (-2690 (((-1028) (-224) (-224) (-224) (-544)) 29)) (-2689 (((-1028) (-224) (-544)) 28)) (-2688 (((-1028) (-224) (-544)) 27)) (-2687 (((-1028) (-224) (-544)) 26)) (-2686 (((-1028) (-224) (-544)) 25)) (-2685 (((-1028) (-224) (-544)) 24)) (-2684 (((-1028) (-167 (-224)) (-544)) 21))) -(((-752) (-10 -7 (-15 -2684 ((-1028) (-167 (-224)) (-544))) (-15 -2685 ((-1028) (-224) (-544))) (-15 -2686 ((-1028) (-224) (-544))) (-15 -2687 ((-1028) (-224) (-544))) (-15 -2688 ((-1028) (-224) (-544))) (-15 -2689 ((-1028) (-224) (-544))) (-15 -2690 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2691 ((-1028) (-224) (-544))) (-15 -2692 ((-1028) (-224) (-544))) (-15 -2693 ((-1028) (-224) (-544))) (-15 -2694 ((-1028) (-224) (-544))) (-15 -2695 ((-1028) (-224) (-544))) (-15 -2696 ((-1028) (-224) (-544))) (-15 -2697 ((-1028) (-224) (-544))) (-15 -2698 ((-1028) (-224) (-544))) (-15 -2699 ((-1028) (-224) (-544))) (-15 -2700 ((-1028) (-224) (-544))) (-15 -2701 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2702 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2703 ((-1028) (-1148) (-167 (-224)) (-1148) (-544))) (-15 -2704 ((-1028) (-1148) (-167 (-224)) (-1148) (-544))) (-15 -2705 ((-1028) (-544) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2706 ((-1028) (-224) (-544))) (-15 -2707 ((-1028) (-224) (-544))) (-15 -2708 ((-1028) (-224) (-544))) (-15 -2709 ((-1028) (-224) (-544))) (-15 -2710 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2711 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2712 ((-1028) (-224) (-544))) (-15 -2713 ((-1028) (-224) (-544))) (-15 -2714 ((-1028) (-224) (-544))) (-15 -2715 ((-1028) (-224) (-544))) (-15 -2716 ((-1028) (-224) (-544))) (-15 -2717 ((-1028) (-224) (-544))) (-15 -2718 ((-1028) (-224) (-224) (-544))) (-15 -2719 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2720 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2721 ((-1028) (-224) (-224) (-224) (-224) (-544))))) (T -752)) -((-2721 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2720 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2719 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2718 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2717 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2716 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2711 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2710 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2705 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-544)) (-5 *5 (-167 (-224))) (-5 *6 (-1148)) (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2704 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1148)) (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2702 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2701 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2699 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2692 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2690 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2686 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2685 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(-10 -7 (-15 -2684 ((-1028) (-167 (-224)) (-544))) (-15 -2685 ((-1028) (-224) (-544))) (-15 -2686 ((-1028) (-224) (-544))) (-15 -2687 ((-1028) (-224) (-544))) (-15 -2688 ((-1028) (-224) (-544))) (-15 -2689 ((-1028) (-224) (-544))) (-15 -2690 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2691 ((-1028) (-224) (-544))) (-15 -2692 ((-1028) (-224) (-544))) (-15 -2693 ((-1028) (-224) (-544))) (-15 -2694 ((-1028) (-224) (-544))) (-15 -2695 ((-1028) (-224) (-544))) (-15 -2696 ((-1028) (-224) (-544))) (-15 -2697 ((-1028) (-224) (-544))) (-15 -2698 ((-1028) (-224) (-544))) (-15 -2699 ((-1028) (-224) (-544))) (-15 -2700 ((-1028) (-224) (-544))) (-15 -2701 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2702 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2703 ((-1028) (-1148) (-167 (-224)) (-1148) (-544))) (-15 -2704 ((-1028) (-1148) (-167 (-224)) (-1148) (-544))) (-15 -2705 ((-1028) (-544) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2706 ((-1028) (-224) (-544))) (-15 -2707 ((-1028) (-224) (-544))) (-15 -2708 ((-1028) (-224) (-544))) (-15 -2709 ((-1028) (-224) (-544))) (-15 -2710 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2711 ((-1028) (-224) (-167 (-224)) (-544) (-1148) (-544))) (-15 -2712 ((-1028) (-224) (-544))) (-15 -2713 ((-1028) (-224) (-544))) (-15 -2714 ((-1028) (-224) (-544))) (-15 -2715 ((-1028) (-224) (-544))) (-15 -2716 ((-1028) (-224) (-544))) (-15 -2717 ((-1028) (-224) (-544))) (-15 -2718 ((-1028) (-224) (-224) (-544))) (-15 -2719 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2720 ((-1028) (-224) (-224) (-224) (-544))) (-15 -2721 ((-1028) (-224) (-224) (-224) (-224) (-544)))) -((-2727 (((-1259)) 18)) (-2723 (((-1148)) 22)) (-2722 (((-1148)) 21)) (-2725 (((-1093) (-1166) (-682 (-544))) 37) (((-1093) (-1166) (-682 (-224))) 32)) (-2726 (((-112)) 16)) (-2724 (((-1148) (-1148)) 25))) -(((-753) (-10 -7 (-15 -2722 ((-1148))) (-15 -2723 ((-1148))) (-15 -2724 ((-1148) (-1148))) (-15 -2725 ((-1093) (-1166) (-682 (-224)))) (-15 -2725 ((-1093) (-1166) (-682 (-544)))) (-15 -2726 ((-112))) (-15 -2727 ((-1259))))) (T -753)) -((-2727 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-753)))) (-2726 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-753)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-544))) (-5 *2 (-1093)) (-5 *1 (-753)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-224))) (-5 *2 (-1093)) (-5 *1 (-753)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))) (-2723 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753)))) (-2722 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753))))) -(-10 -7 (-15 -2722 ((-1148))) (-15 -2723 ((-1148))) (-15 -2724 ((-1148) (-1148))) (-15 -2725 ((-1093) (-1166) (-682 (-224)))) (-15 -2725 ((-1093) (-1166) (-682 (-544)))) (-15 -2726 ((-112))) (-15 -2727 ((-1259)))) -((-2729 (($ $ $) 10)) (-2730 (($ $ $ $) 9)) (-2728 (($ $ $) 12))) -(((-754 |#1|) (-10 -8 (-15 -2728 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1| |#1|)) (-15 -2730 (|#1| |#1| |#1| |#1|))) (-755)) (T -754)) -NIL -(-10 -8 (-15 -2728 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1| |#1|)) (-15 -2730 (|#1| |#1| |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2542 (($ $ (-912)) 28)) (-2541 (($ $ (-912)) 29)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-2729 (($ $ $) 25)) (-4353 (((-857) $) 11)) (-2730 (($ $ $ $) 26)) (-2728 (($ $ $) 24)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27))) -(((-755) (-139)) (T -755)) -((-2730 (*1 *1 *1 *1 *1) (-4 *1 (-755))) (-2729 (*1 *1 *1 *1) (-4 *1 (-755))) (-2728 (*1 *1 *1 *1) (-4 *1 (-755)))) -(-13 (-21) (-714) (-10 -8 (-15 -2730 ($ $ $ $)) (-15 -2729 ($ $ $)) (-15 -2728 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-714) . T) ((-1091) . T)) -((-4353 (((-857) $) NIL) (($ (-544)) 10))) -(((-756 |#1|) (-10 -8 (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-757)) (T -756)) -NIL -(-10 -8 (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2539 (((-3 $ #1="failed") $) 40)) (-2542 (($ $ (-912)) 28) (($ $ (-765)) 35)) (-3866 (((-3 $ #1#) $) 38)) (-2545 (((-112) $) 34)) (-2540 (((-3 $ #1#) $) 39)) (-2541 (($ $ (-912)) 29) (($ $ (-765)) 36)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-2729 (($ $ $) 25)) (-4353 (((-857) $) 11) (($ (-544)) 31)) (-3511 (((-765)) 32)) (-2730 (($ $ $ $) 26)) (-2728 (($ $ $) 24)) (-3040 (($) 18 T CONST)) (-3046 (($) 33 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 30) (($ $ (-765)) 37)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 27))) -(((-757) (-139)) (T -757)) -((-3511 (*1 *2) (-12 (-4 *1 (-757)) (-5 *2 (-765)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-757))))) -(-13 (-755) (-716) (-10 -8 (-15 -3511 ((-765))) (-15 -4353 ($ (-544))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-714) . T) ((-716) . T) ((-755) . T) ((-1091) . T)) -((-2732 (((-635 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 (-167 |#1|)))))) (-682 (-167 (-406 (-544)))) |#1|) 33)) (-2731 (((-635 (-167 |#1|)) (-682 (-167 (-406 (-544)))) |#1|) 23)) (-2743 (((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))) (-1166)) 20) (((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544))))) 19))) -(((-758 |#1|) (-10 -7 (-15 -2743 ((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))))) (-15 -2743 ((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))) (-1166))) (-15 -2731 ((-635 (-167 |#1|)) (-682 (-167 (-406 (-544)))) |#1|)) (-15 -2732 ((-635 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 (-167 |#1|)))))) (-682 (-167 (-406 (-544)))) |#1|))) (-13 (-362) (-842))) (T -758)) -((-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-635 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 (-167 *4))))))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))) (-2731 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-635 (-167 *4))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *4 (-1166)) (-5 *2 (-939 (-167 (-406 (-544))))) (-5 *1 (-758 *5)) (-4 *5 (-13 (-362) (-842))))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-939 (-167 (-406 (-544))))) (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842)))))) -(-10 -7 (-15 -2743 ((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))))) (-15 -2743 ((-939 (-167 (-406 (-544)))) (-682 (-167 (-406 (-544)))) (-1166))) (-15 -2731 ((-635 (-167 |#1|)) (-682 (-167 (-406 (-544)))) |#1|)) (-15 -2732 ((-635 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 (-167 |#1|)))))) (-682 (-167 (-406 (-544)))) |#1|))) -((-2994 (((-173 (-544)) |#1|) 25))) -(((-759 |#1|) (-10 -7 (-15 -2994 ((-173 (-544)) |#1|))) (-403)) (T -759)) -((-2994 (*1 *2 *3) (-12 (-5 *2 (-173 (-544))) (-5 *1 (-759 *3)) (-4 *3 (-403))))) -(-10 -7 (-15 -2994 ((-173 (-544)) |#1|))) -((-2924 ((|#1| |#1| |#1|) 24)) (-2925 ((|#1| |#1| |#1|) 23)) (-2914 ((|#1| |#1| |#1|) 32)) (-2922 ((|#1| |#1| |#1|) 28)) (-2923 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2930 (((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|) 22))) -(((-760 |#1| |#2|) (-10 -7 (-15 -2930 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2914 (|#1| |#1| |#1|))) (-702 |#2|) (-362)) (T -760)) -((-2914 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2922 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2923 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2924 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2925 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) (-2930 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-760 *3 *4)) (-4 *3 (-702 *4))))) -(-10 -7 (-15 -2930 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2914 (|#1| |#1| |#1|))) -((-2937 (((-684 (-1212)) $ (-1212)) 26)) (-2938 (((-684 (-547)) $ (-547)) 25)) (-2936 (((-765) $ (-129)) 27)) (-2939 (((-684 (-128)) $ (-128)) 24)) (-2150 (((-684 (-1212)) $) 12)) (-2146 (((-684 (-1211)) $) 8)) (-2148 (((-684 (-1210)) $) 10)) (-2151 (((-684 (-547)) $) 13)) (-2147 (((-684 (-546)) $) 9)) (-2149 (((-684 (-545)) $) 11)) (-2145 (((-765) $ (-129)) 7)) (-2152 (((-684 (-128)) $) 14)) (-2733 (((-112) $) 31)) (-2734 (((-684 $) |#1| (-947)) 32)) (-1844 (($ $) 6))) -(((-761 |#1|) (-139) (-1091)) (T -761)) -((-2734 (*1 *2 *3 *4) (-12 (-5 *4 (-947)) (-4 *3 (-1091)) (-5 *2 (-684 *1)) (-4 *1 (-761 *3)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-1091)) (-5 *2 (-112))))) -(-13 (-573) (-10 -8 (-15 -2734 ((-684 $) |t#1| (-947))) (-15 -2733 ((-112) $)))) -(((-172) . T) ((-525) . T) ((-573) . T) ((-855) . T)) -((-4326 (((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))) (-544)) 59)) (-4325 (((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544))))) 57)) (-4164 (((-544)) 70))) -(((-762 |#1| |#2|) (-10 -7 (-15 -4164 ((-544))) (-15 -4325 ((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))))) (-15 -4326 ((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))) (-544)))) (-1229 (-544)) (-409 (-544) |#1|)) (T -762)) -((-4326 (*1 *2 *3) (-12 (-5 *3 (-544)) (-4 *4 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-762 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4325 (*1 *2) (-12 (-4 *3 (-1229 (-544))) (-5 *2 (-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544))))) (-5 *1 (-762 *3 *4)) (-4 *4 (-409 (-544) *3)))) (-4164 (*1 *2) (-12 (-4 *3 (-1229 *2)) (-5 *2 (-544)) (-5 *1 (-762 *3 *4)) (-4 *4 (-409 *2 *3))))) -(-10 -7 (-15 -4164 ((-544))) (-15 -4325 ((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))))) (-15 -4326 ((-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) (|:| |basisInv| (-682 (-544)))) (-544)))) -((-2947 (((-112) $ $) NIL)) (-3557 (((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $) 21)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13) (($ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) 18)) (-3437 (((-112) $ $) NIL))) -(((-763) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4353 ($ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4353 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3557 ((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))) (T -763)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-763)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-763)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-763)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-763))))) -(-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4353 ($ (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4353 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3557 ((-3 (|:| |nia| (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $)))) -((-2809 (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|))) 18) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166))) 17)) (-3980 (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|))) 20) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166))) 19))) -(((-764 |#1|) (-10 -7 (-15 -2809 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -2809 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|))))) (-554)) (T -764)) -((-3980 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-764 *4)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-764 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-764 *4)))) (-2809 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-764 *5))))) -(-10 -7 (-15 -2809 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -2809 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-939 |#1|))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2778 (($ $ $) 6)) (-1391 (((-3 $ "failed") $ $) 9)) (-2735 (($ $ (-544)) 7)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($ $) NIL)) (-2942 (($ $ $) NIL)) (-2545 (((-112) $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3545 (($ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4353 (((-857) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ $ $) NIL))) -(((-765) (-13 (-787) (-720) (-10 -8 (-15 -2942 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -3545 ($ $ $)) (-15 -3264 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -3865 ((-3 $ "failed") $ $)) (-15 -2735 ($ $ (-544))) (-15 -3377 ($ $)) (-6 (-4402 "*"))))) (T -765)) -((-2942 (*1 *1 *1 *1) (-5 *1 (-765))) (-2943 (*1 *1 *1 *1) (-5 *1 (-765))) (-3545 (*1 *1 *1 *1) (-5 *1 (-765))) (-3264 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2124 (-765)) (|:| -3285 (-765)))) (-5 *1 (-765)))) (-3865 (*1 *1 *1 *1) (|partial| -5 *1 (-765))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-765)))) (-3377 (*1 *1 *1) (-5 *1 (-765)))) -(-13 (-787) (-720) (-10 -8 (-15 -2942 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -3545 ($ $ $)) (-15 -3264 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -3865 ((-3 $ "failed") $ $)) (-15 -2735 ($ $ (-544))) (-15 -3377 ($ $)) (-6 (-4402 "*")))) -((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) (#1=(QUOTE T) #1#))) -((-3980 (((-3 |#2| "failed") |#2| |#2| (-113) (-1166)) 35))) -(((-766 |#1| |#2|) (-10 -7 (-15 -3980 ((-3 |#2| "failed") |#2| |#2| (-113) (-1166)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953))) (T -766)) -((-3980 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-766 *5 *2)) (-4 *2 (-13 (-29 *5) (-1190) (-953)))))) -(-10 -7 (-15 -3980 ((-3 |#2| "failed") |#2| |#2| (-113) (-1166)))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 7)) (-3437 (((-112) $ $) 9))) -(((-767) (-1091)) (T -767)) -NIL -(-1091) -((-4353 (((-767) |#1|) 8))) -(((-768 |#1|) (-10 -7 (-15 -4353 ((-767) |#1|))) (-1204)) (T -768)) -((-4353 (*1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-768 *3)) (-4 *3 (-1204))))) -(-10 -7 (-15 -4353 ((-767) |#1|))) -((-3517 ((|#2| |#4|) 35))) -(((-769 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3517 (|#2| |#4|))) (-450) (-1229 |#1|) (-718 |#1| |#2|) (-1229 |#3|)) (T -769)) -((-3517 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-718 *4 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-769 *4 *2 *5 *3)) (-4 *3 (-1229 *5))))) -(-10 -7 (-15 -3517 (|#2| |#4|))) -((-3866 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2738 (((-1259) (-1148) (-1148) |#4| |#5|) 33)) (-2736 ((|#4| |#4| |#5|) 72)) (-2737 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|) 76)) (-2739 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 16))) -(((-770 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3866 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2736 (|#4| |#4| |#5|)) (-15 -2737 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -2738 ((-1259) (-1148) (-1148) |#4| |#5|)) (-15 -2739 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -770)) -((-2739 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2738 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1148)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *4 (-1056 *6 *7 *8)) (-5 *2 (-1259)) (-5 *1 (-770 *6 *7 *8 *4 *5)) (-4 *5 (-1062 *6 *7 *8 *4)))) (-2737 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-2736 (*1 *2 *2 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *2 (-1056 *4 *5 *6)) (-5 *1 (-770 *4 *5 *6 *2 *3)) (-4 *3 (-1062 *4 *5 *6 *2)))) (-3866 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(-10 -7 (-15 -3866 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2736 (|#4| |#4| |#5|)) (-15 -2737 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -2738 ((-1259) (-1148) (-1148) |#4| |#5|)) (-15 -2739 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|))) -((-3558 (((-3 (-1160 (-1160 |#1|)) "failed") |#4|) 43)) (-2740 (((-635 |#4|) |#4|) 15)) (-4335 ((|#4| |#4|) 11))) -(((-771 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2740 ((-635 |#4|) |#4|)) (-15 -3558 ((-3 (-1160 (-1160 |#1|)) "failed") |#4|)) (-15 -4335 (|#4| |#4|))) (-349) (-328 |#1|) (-1229 |#2|) (-1229 |#3|) (-912)) (T -771)) -((-4335 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-328 *3)) (-4 *5 (-1229 *4)) (-5 *1 (-771 *3 *4 *5 *2 *6)) (-4 *2 (-1229 *5)) (-14 *6 (-912)))) (-3558 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5)) (-5 *2 (-1160 (-1160 *4))) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6)) (-14 *7 (-912)))) (-2740 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5)) (-5 *2 (-635 *3)) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6)) (-14 *7 (-912))))) -(-10 -7 (-15 -2740 ((-635 |#4|) |#4|)) (-15 -3558 ((-3 (-1160 (-1160 |#1|)) "failed") |#4|)) (-15 -4335 (|#4| |#4|))) -((-2741 (((-2 (|:| |deter| (-635 (-1160 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1160 |#5|) (-635 |#1|) (-635 |#5|)) 53)) (-2742 (((-635 (-765)) |#1|) 13))) -(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2741 ((-2 (|:| |deter| (-635 (-1160 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1160 |#5|) (-635 |#1|) (-635 |#5|))) (-15 -2742 ((-635 (-765)) |#1|))) (-1229 |#4|) (-787) (-844) (-306) (-943 |#4| |#2| |#3|)) (T -772)) -((-2742 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-635 (-765))) (-5 *1 (-772 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *6)) (-4 *7 (-943 *6 *4 *5)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1229 *9)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-306)) (-4 *10 (-943 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-635 (-1160 *10))) (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| *10))))) (|:| |nfacts| (-635 *6)) (|:| |nlead| (-635 *10)))) (-5 *1 (-772 *6 *7 *8 *9 *10)) (-5 *3 (-1160 *10)) (-5 *4 (-635 *6)) (-5 *5 (-635 *10))))) -(-10 -7 (-15 -2741 ((-2 (|:| |deter| (-635 (-1160 |#5|))) (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-635 |#1|)) (|:| |nlead| (-635 |#5|))) (-1160 |#5|) (-635 |#1|) (-635 |#5|))) (-15 -2742 ((-635 (-765)) |#1|))) -((-2745 (((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#1|))))) (-682 (-406 (-544))) |#1|) 31)) (-2744 (((-635 |#1|) (-682 (-406 (-544))) |#1|) 21)) (-2743 (((-939 (-406 (-544))) (-682 (-406 (-544))) (-1166)) 18) (((-939 (-406 (-544))) (-682 (-406 (-544)))) 17))) -(((-773 |#1|) (-10 -7 (-15 -2743 ((-939 (-406 (-544))) (-682 (-406 (-544))))) (-15 -2743 ((-939 (-406 (-544))) (-682 (-406 (-544))) (-1166))) (-15 -2744 ((-635 |#1|) (-682 (-406 (-544))) |#1|)) (-15 -2745 ((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#1|))))) (-682 (-406 (-544))) |#1|))) (-13 (-362) (-842))) (T -773)) -((-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-635 (-2 (|:| |outval| *4) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 *4)))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-635 *4)) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *4 (-1166)) (-5 *2 (-939 (-406 (-544)))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-362) (-842))))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-939 (-406 (-544)))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842)))))) -(-10 -7 (-15 -2743 ((-939 (-406 (-544))) (-682 (-406 (-544))))) (-15 -2743 ((-939 (-406 (-544))) (-682 (-406 (-544))) (-1166))) (-15 -2744 ((-635 |#1|) (-682 (-406 (-544))) |#1|)) (-15 -2745 ((-635 (-2 (|:| |outval| |#1|) (|:| |outmult| (-544)) (|:| |outvect| (-635 (-682 |#1|))))) (-682 (-406 (-544))) |#1|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 34)) (-3467 (((-635 |#2|) $) NIL)) (-3469 (((-1160 $) $ |#2|) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 |#2|)) NIL)) (-4203 (($ $) 28)) (-3567 (((-112) $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4162 (($ $ $) 92 (|has| |#1| (-554)))) (-3549 (((-635 $) $ $) 105 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-939 (-406 (-544)))) NIL (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))))) (((-3 $ #3#) (-939 (-544))) NIL (-3936 (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544)))))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166)))))) (((-3 $ #3#) (-939 |#1|)) NIL (-3936 (-12 (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-38 (-544))))) (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-984 (-544))))))) (((-3 (-1115 |#1| |#2|) #2#) $) 18)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) ((|#2| $) NIL) (($ (-939 (-406 (-544)))) NIL (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))))) (($ (-939 (-544))) NIL (-3936 (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544)))))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166)))))) (($ (-939 |#1|)) NIL (-3936 (-12 (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-38 (-544))))) (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-543)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-984 (-544))))))) (((-1115 |#1| |#2|) $) NIL)) (-4163 (($ $ $ |#2|) NIL (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-554)))) (-4366 (($ $) NIL) (($ $ |#2|) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-4101 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3573 (((-112) $) NIL)) (-4159 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 69)) (-3544 (($ $) 118 (|has| |#1| (-450)))) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-3555 (($ $) NIL (|has| |#1| (-554)))) (-3556 (($ $) NIL (|has| |#1| (-554)))) (-3566 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-3565 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-1749 (($ $ |#1| (-529 |#2|) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| |#1| (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| |#1| (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-4102 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-3546 (($ $ $ $ $) 89 (|has| |#1| (-554)))) (-3581 ((|#2| $) 19)) (-3470 (($ (-1160 |#1|) |#2|) NIL) (($ (-1160 $) |#2|) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-765)) 36) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-3560 (($ $ $) 60)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#2|) NIL)) (-3574 (((-112) $) NIL)) (-3202 (((-529 |#2|) $) NIL) (((-765) $ |#2|) NIL) (((-635 (-765)) $ (-635 |#2|)) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3580 (((-765) $) 20)) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3468 (((-3 |#2| #4="failed") $) NIL)) (-3541 (($ $) NIL (|has| |#1| (-450)))) (-3542 (($ $) NIL (|has| |#1| (-450)))) (-3569 (((-635 $) $) NIL)) (-3572 (($ $) 37)) (-3543 (($ $) NIL (|has| |#1| (-450)))) (-3570 (((-635 $) $) 41)) (-3571 (($ $) 39)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3559 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3880 (-765))) $ $) 81)) (-3561 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $) 66) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $ |#2|) NIL)) (-3562 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $) NIL) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $ |#2|) NIL)) (-3564 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-3563 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3643 (((-1148) $) NIL)) (-3591 (($ $ $) 107 (|has| |#1| (-554)))) (-3577 (((-635 $) $) 30)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-765))) #4#) $) NIL)) (-4098 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-4093 (($ $ $) NIL)) (-3849 (($ $) 21)) (-4106 (((-112) $ $) NIL)) (-4099 (((-112) $ $) NIL) (((-112) $ (-635 $)) NIL)) (-4094 (($ $ $) NIL)) (-3579 (($ $) 23)) (-3644 (((-1110) $) NIL)) (-3550 (((-2 (|:| -3545 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-554)))) (-3551 (((-2 (|:| -3545 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-554)))) (-1944 (((-112) $) 52)) (-1943 ((|#1| $) 55)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 ((|#1| |#1| $) 115 (|has| |#1| (-450))) (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3552 (((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-554)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-554)))) (-3553 (($ $ |#1|) 111 (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-3554 (($ $ |#1|) 110 (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-635 |#2|) (-635 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-635 |#2|) (-635 $)) NIL)) (-4164 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-4217 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4355 (((-529 |#2|) $) NIL) (((-765) $ |#2|) 43) (((-635 (-765)) $ (-635 |#2|)) NIL)) (-3578 (($ $) NIL)) (-3576 (($ $) 33)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| |#1| (-609 (-533))) (|has| |#2| (-609 (-533))))) (($ (-939 (-406 (-544)))) NIL (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166))))) (($ (-939 (-544))) NIL (-3936 (-12 (|has| |#1| (-38 (-544))) (|has| |#2| (-609 (-1166))) (-3726 (|has| |#1| (-38 (-406 (-544)))))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#2| (-609 (-1166)))))) (($ (-939 |#1|)) NIL (|has| |#2| (-609 (-1166)))) (((-1148) $) NIL (-12 (|has| |#1| (-1031 (-544))) (|has| |#2| (-609 (-1166))))) (((-939 |#1|) $) NIL (|has| |#2| (-609 (-1166))))) (-3199 ((|#1| $) 114 (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-939 |#1|) $) NIL (|has| |#2| (-609 (-1166)))) (((-1115 |#1| |#2|) $) 15) (($ (-1115 |#1| |#2|)) 16) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-765)) 44) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 13 T CONST)) (-3568 (((-3 (-112) #3#) $ $) NIL)) (-3046 (($) 35 T CONST)) (-3547 (($ $ $ $ (-765)) 87 (|has| |#1| (-554)))) (-3548 (($ $ $ (-765)) 86 (|has| |#1| (-554)))) (-3051 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 54)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) 63)) (-4246 (($ $ $) 73)) (** (($ $ (-912)) NIL) (($ $ (-765)) 61)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 59) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-774 |#1| |#2|) (-13 (-1056 |#1| (-529 |#2|) |#2|) (-608 (-1115 |#1| |#2|)) (-1031 (-1115 |#1| |#2|))) (-1042) (-844)) (T -774)) -NIL -(-13 (-1056 |#1| (-529 |#2|) |#2|) (-608 (-1115 |#1| |#2|)) (-1031 (-1115 |#1| |#2|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 12)) (-4173 (((-1253 |#1|) $ (-765)) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4171 (($ (-1160 |#1|)) NIL)) (-3469 (((-1160 $) $ (-1072)) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2749 (((-635 $) $ $) 39 (|has| |#1| (-554)))) (-4162 (($ $ $) 35 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4167 (($ $ (-765)) NIL)) (-4166 (($ $ (-765)) NIL)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1072) #2#) $) NIL) (((-3 (-1160 |#1|) #2#) $) 10)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1072) $) NIL) (((-1160 |#1|) $) NIL)) (-4163 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) 43 (|has| |#1| (-171)))) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4165 (($ $ $) NIL)) (-4160 (($ $ $) 71 (|has| |#1| (-554)))) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 $) (|:| -3285 $)) $ $) 70 (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-765) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1072) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1072) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ $) NIL (|has| |#1| (-554)))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-3470 (($ (-1160 |#1|) (-1072)) NIL) (($ (-1160 $) (-1072)) NIL)) (-4183 (($ $ (-765)) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3560 (($ $ $) 20)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) NIL) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4172 (((-1160 |#1|) $) NIL)) (-3468 (((-3 (-1072) #4="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3559 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3880 (-765))) $ $) 26)) (-2751 (($ $ $) 29)) (-2750 (($ $ $) 32)) (-3561 (((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $) 31)) (-3643 (((-1148) $) NIL)) (-3591 (($ $ $) 41 (|has| |#1| (-554)))) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) NIL)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) NIL)) (-4219 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3550 (((-2 (|:| -3545 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-554)))) (-3551 (((-2 (|:| -3545 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-554)))) (-2746 (((-2 (|:| -4163 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-554)))) (-2747 (((-2 (|:| -4163 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-554)))) (-1944 (((-112) $) 13)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-4145 (($ $ (-765) |#1| $) 19)) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3552 (((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-554)))) (-2748 (((-2 (|:| -4163 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-554)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-635 (-1072)) (-635 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-635 (-1072)) (-635 $)) NIL)) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-4170 (((-3 $ #5="failed") $ (-765)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4164 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4355 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1072) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4161 (((-3 $ #5#) $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) #5#) (-406 $) $) NIL (|has| |#1| (-554)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-1072)) NIL) (((-1160 |#1|) $) 7) (($ (-1160 |#1|)) 8) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 21 T CONST)) (-3046 (($) 24 T CONST)) (-3051 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) 28) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-775 |#1|) (-13 (-1229 |#1|) (-608 (-1160 |#1|)) (-1031 (-1160 |#1|)) (-10 -8 (-15 -4145 ($ $ (-765) |#1| $)) (-15 -3560 ($ $ $)) (-15 -3559 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3880 (-765))) $ $)) (-15 -2751 ($ $ $)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2750 ($ $ $)) (IF (|has| |#1| (-554)) (PROGN (-15 -2749 ((-635 $) $ $)) (-15 -3591 ($ $ $)) (-15 -3552 ((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3551 ((-2 (|:| -3545 $) (|:| |coef1| $)) $ $)) (-15 -3550 ((-2 (|:| -3545 $) (|:| |coef2| $)) $ $)) (-15 -2748 ((-2 (|:| -4163 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2747 ((-2 (|:| -4163 |#1|) (|:| |coef1| $)) $ $)) (-15 -2746 ((-2 (|:| -4163 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1042)) (T -775)) -((-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-775 *3)) (-4 *3 (-1042)))) (-3560 (*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042)))) (-3559 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-775 *3)) (|:| |polden| *3) (|:| -3880 (-765)))) (-5 *1 (-775 *3)) (-4 *3 (-1042)))) (-2751 (*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042)))) (-3561 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4361 *3) (|:| |gap| (-765)) (|:| -2124 (-775 *3)) (|:| -3285 (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-1042)))) (-2750 (*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042)))) (-2749 (*1 *2 *1 *1) (-12 (-5 *2 (-635 (-775 *3))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-3591 (*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-554)) (-4 *2 (-1042)))) (-3552 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef1| (-775 *3)) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-3551 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef1| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-3550 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-2748 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef1| (-775 *3)) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-2747 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef1| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) (-2746 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042))))) -(-13 (-1229 |#1|) (-608 (-1160 |#1|)) (-1031 (-1160 |#1|)) (-10 -8 (-15 -4145 ($ $ (-765) |#1| $)) (-15 -3560 ($ $ $)) (-15 -3559 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3880 (-765))) $ $)) (-15 -2751 ($ $ $)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2750 ($ $ $)) (IF (|has| |#1| (-554)) (PROGN (-15 -2749 ((-635 $) $ $)) (-15 -3591 ($ $ $)) (-15 -3552 ((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3551 ((-2 (|:| -3545 $) (|:| |coef1| $)) $ $)) (-15 -3550 ((-2 (|:| -3545 $) (|:| |coef2| $)) $ $)) (-15 -2748 ((-2 (|:| -4163 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2747 ((-2 (|:| -4163 |#1|) (|:| |coef1| $)) $ $)) (-15 -2746 ((-2 (|:| -4163 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4365 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 13))) -(((-776 |#1| |#2|) (-10 -7 (-15 -4365 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)))) (-1042) (-1042)) (T -776)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-775 *6)) (-5 *1 (-776 *5 *6))))) -(-10 -7 (-15 -4365 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)))) -((-2753 ((|#1| (-765) |#1|) 32 (|has| |#1| (-38 (-406 (-544)))))) (-3183 ((|#1| (-765) |#1|) 22)) (-2752 ((|#1| (-765) |#1|) 34 (|has| |#1| (-38 (-406 (-544))))))) -(((-777 |#1|) (-10 -7 (-15 -3183 (|#1| (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -2752 (|#1| (-765) |#1|)) (-15 -2753 (|#1| (-765) |#1|))) |%noBranch|)) (-171)) (T -777)) -((-2753 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-171)))) (-2752 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-171)))) (-3183 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-171))))) -(-10 -7 (-15 -3183 (|#1| (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -2752 (|#1| (-765) |#1|)) (-15 -2753 (|#1| (-765) |#1|))) |%noBranch|)) -((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 126)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ #1#) $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-3598 (((-112) |#4| $) 136)) (-3596 (((-112) |#4| $) 133)) (-3599 (((-112) |#4| $) 137) (((-112) $) 134)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 127)) (-4204 (((-3 |#4| #1#) $) 83)) (-3593 (((-635 $) |#4| $) 129)) (-3595 (((-3 (-112) (-635 $)) |#4| $) 132)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3639 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3844 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| #1#) $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ #1#) $ |#4|) 78)) (-4175 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3590 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-3597 (((-112) |#4| $) 135)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400))))) -(((-778 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -778)) -NIL -(-13 (-1062 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1199 |#1| |#2| |#3| |#4|) . T) ((-1204) . T)) -((-2756 (((-3 (-377) "failed") (-313 |#1|) (-912)) 62 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-377) "failed") (-313 |#1|)) 54 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-377) "failed") (-406 (-939 |#1|)) (-912)) 41 (|has| |#1| (-554))) (((-3 (-377) "failed") (-406 (-939 |#1|))) 40 (|has| |#1| (-554))) (((-3 (-377) "failed") (-939 |#1|) (-912)) 31 (|has| |#1| (-1042))) (((-3 (-377) "failed") (-939 |#1|)) 30 (|has| |#1| (-1042)))) (-2754 (((-377) (-313 |#1|) (-912)) 99 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-377) (-313 |#1|)) 94 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-377) (-406 (-939 |#1|)) (-912)) 91 (|has| |#1| (-554))) (((-377) (-406 (-939 |#1|))) 90 (|has| |#1| (-554))) (((-377) (-939 |#1|) (-912)) 86 (|has| |#1| (-1042))) (((-377) (-939 |#1|)) 85 (|has| |#1| (-1042))) (((-377) |#1| (-912)) 76) (((-377) |#1|) 22)) (-2757 (((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)) (-912)) 71 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-167 (-377)) "failed") (-313 (-167 |#1|))) 70 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-167 (-377)) "failed") (-313 |#1|) (-912)) 63 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-167 (-377)) "failed") (-313 |#1|)) 61 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))) (-912)) 46 (|has| |#1| (-554))) (((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|)))) 45 (|has| |#1| (-554))) (((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)) (-912)) 39 (|has| |#1| (-554))) (((-3 (-167 (-377)) "failed") (-406 (-939 |#1|))) 38 (|has| |#1| (-554))) (((-3 (-167 (-377)) "failed") (-939 |#1|) (-912)) 28 (|has| |#1| (-1042))) (((-3 (-167 (-377)) "failed") (-939 |#1|)) 26 (|has| |#1| (-1042))) (((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)) (-912)) 18 (|has| |#1| (-171))) (((-3 (-167 (-377)) "failed") (-939 (-167 |#1|))) 15 (|has| |#1| (-171)))) (-2755 (((-167 (-377)) (-313 (-167 |#1|)) (-912)) 102 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-167 (-377)) (-313 (-167 |#1|))) 101 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-167 (-377)) (-313 |#1|) (-912)) 100 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-167 (-377)) (-313 |#1|)) 98 (-12 (|has| |#1| (-554)) (|has| |#1| (-844)))) (((-167 (-377)) (-406 (-939 (-167 |#1|))) (-912)) 93 (|has| |#1| (-554))) (((-167 (-377)) (-406 (-939 (-167 |#1|)))) 92 (|has| |#1| (-554))) (((-167 (-377)) (-406 (-939 |#1|)) (-912)) 89 (|has| |#1| (-554))) (((-167 (-377)) (-406 (-939 |#1|))) 88 (|has| |#1| (-554))) (((-167 (-377)) (-939 |#1|) (-912)) 84 (|has| |#1| (-1042))) (((-167 (-377)) (-939 |#1|)) 83 (|has| |#1| (-1042))) (((-167 (-377)) (-939 (-167 |#1|)) (-912)) 78 (|has| |#1| (-171))) (((-167 (-377)) (-939 (-167 |#1|))) 77 (|has| |#1| (-171))) (((-167 (-377)) (-167 |#1|) (-912)) 80 (|has| |#1| (-171))) (((-167 (-377)) (-167 |#1|)) 79 (|has| |#1| (-171))) (((-167 (-377)) |#1| (-912)) 27) (((-167 (-377)) |#1|) 25))) -(((-779 |#1|) (-10 -7 (-15 -2754 ((-377) |#1|)) (-15 -2754 ((-377) |#1| (-912))) (-15 -2755 ((-167 (-377)) |#1|)) (-15 -2755 ((-167 (-377)) |#1| (-912))) (IF (|has| |#1| (-171)) (PROGN (-15 -2755 ((-167 (-377)) (-167 |#1|))) (-15 -2755 ((-167 (-377)) (-167 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-939 (-167 |#1|)))) (-15 -2755 ((-167 (-377)) (-939 (-167 |#1|)) (-912)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2754 ((-377) (-939 |#1|))) (-15 -2754 ((-377) (-939 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-939 |#1|))) (-15 -2755 ((-167 (-377)) (-939 |#1|) (-912)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2754 ((-377) (-406 (-939 |#1|)))) (-15 -2754 ((-377) (-406 (-939 |#1|)) (-912))) (-15 -2755 ((-167 (-377)) (-406 (-939 |#1|)))) (-15 -2755 ((-167 (-377)) (-406 (-939 |#1|)) (-912))) (-15 -2755 ((-167 (-377)) (-406 (-939 (-167 |#1|))))) (-15 -2755 ((-167 (-377)) (-406 (-939 (-167 |#1|))) (-912))) (IF (|has| |#1| (-844)) (PROGN (-15 -2754 ((-377) (-313 |#1|))) (-15 -2754 ((-377) (-313 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-313 |#1|))) (-15 -2755 ((-167 (-377)) (-313 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-313 (-167 |#1|)))) (-15 -2755 ((-167 (-377)) (-313 (-167 |#1|)) (-912)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)) (-912)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-939 |#1|))) (-15 -2756 ((-3 (-377) "failed") (-939 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 |#1|))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 |#1|) (-912)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-406 (-939 |#1|)))) (-15 -2756 ((-3 (-377) "failed") (-406 (-939 |#1|)) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))) (-912))) (IF (|has| |#1| (-844)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-313 |#1|))) (-15 -2756 ((-3 (-377) "failed") (-313 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 |#1|))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)) (-912)))) |%noBranch|)) |%noBranch|)) (-609 (-377))) (T -779)) -((-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-313 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-313 (-167 *4))) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-939 (-167 *5)))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 (-167 *4)))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-939 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-171)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2757 (*1 *2 *3) (|partial| -12 (-5 *3 (-939 (-167 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-313 (-167 *4))) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 (-167 *5)))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 (-167 *4)))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2754 (*1 *2 *3 *4) (-12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-939 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-171)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-939 (-167 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-912)) (-4 *5 (-171)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-171)) (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-5 *2 (-167 (-377))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-377))))) (-2755 (*1 *2 *3) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-377))))) (-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-5 *2 (-377)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2)))) (-2754 (*1 *2 *3) (-12 (-5 *2 (-377)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2))))) -(-10 -7 (-15 -2754 ((-377) |#1|)) (-15 -2754 ((-377) |#1| (-912))) (-15 -2755 ((-167 (-377)) |#1|)) (-15 -2755 ((-167 (-377)) |#1| (-912))) (IF (|has| |#1| (-171)) (PROGN (-15 -2755 ((-167 (-377)) (-167 |#1|))) (-15 -2755 ((-167 (-377)) (-167 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-939 (-167 |#1|)))) (-15 -2755 ((-167 (-377)) (-939 (-167 |#1|)) (-912)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2754 ((-377) (-939 |#1|))) (-15 -2754 ((-377) (-939 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-939 |#1|))) (-15 -2755 ((-167 (-377)) (-939 |#1|) (-912)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2754 ((-377) (-406 (-939 |#1|)))) (-15 -2754 ((-377) (-406 (-939 |#1|)) (-912))) (-15 -2755 ((-167 (-377)) (-406 (-939 |#1|)))) (-15 -2755 ((-167 (-377)) (-406 (-939 |#1|)) (-912))) (-15 -2755 ((-167 (-377)) (-406 (-939 (-167 |#1|))))) (-15 -2755 ((-167 (-377)) (-406 (-939 (-167 |#1|))) (-912))) (IF (|has| |#1| (-844)) (PROGN (-15 -2754 ((-377) (-313 |#1|))) (-15 -2754 ((-377) (-313 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-313 |#1|))) (-15 -2755 ((-167 (-377)) (-313 |#1|) (-912))) (-15 -2755 ((-167 (-377)) (-313 (-167 |#1|)))) (-15 -2755 ((-167 (-377)) (-313 (-167 |#1|)) (-912)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 (-167 |#1|)) (-912)))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-939 |#1|))) (-15 -2756 ((-3 (-377) "failed") (-939 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 |#1|))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-939 |#1|) (-912)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-406 (-939 |#1|)))) (-15 -2756 ((-3 (-377) "failed") (-406 (-939 |#1|)) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 |#1|)) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-406 (-939 (-167 |#1|))) (-912))) (IF (|has| |#1| (-844)) (PROGN (-15 -2756 ((-3 (-377) "failed") (-313 |#1|))) (-15 -2756 ((-3 (-377) "failed") (-313 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 |#1|))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 |#1|) (-912))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)))) (-15 -2757 ((-3 (-167 (-377)) "failed") (-313 (-167 |#1|)) (-912)))) |%noBranch|)) |%noBranch|)) -((-2761 (((-912) (-1148)) 64)) (-2763 (((-3 (-377) "failed") (-1148)) 32)) (-2762 (((-377) (-1148)) 30)) (-2759 (((-912) (-1148)) 53)) (-2760 (((-1148) (-912)) 54)) (-2758 (((-1148) (-912)) 52))) -(((-780) (-10 -7 (-15 -2758 ((-1148) (-912))) (-15 -2759 ((-912) (-1148))) (-15 -2760 ((-1148) (-912))) (-15 -2761 ((-912) (-1148))) (-15 -2762 ((-377) (-1148))) (-15 -2763 ((-3 (-377) "failed") (-1148))))) (T -780)) -((-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-780)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-780)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-912)) (-5 *1 (-780)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1148)) (-5 *1 (-780)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-912)) (-5 *1 (-780)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1148)) (-5 *1 (-780))))) -(-10 -7 (-15 -2758 ((-1148) (-912))) (-15 -2759 ((-912) (-1148))) (-15 -2760 ((-1148) (-912))) (-15 -2761 ((-912) (-1148))) (-15 -2762 ((-377) (-1148))) (-15 -2763 ((-3 (-377) "failed") (-1148)))) -((-2947 (((-112) $ $) 7)) (-2764 (((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 15) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028)) 13)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6))) -(((-781) (-139)) (T -781)) -((-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-781)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028)))))) (-2764 (*1 *2 *3 *2) (-12 (-4 *1 (-781)) (-5 *2 (-1028)) (-5 *3 (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-781)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028)))))) (-2764 (*1 *2 *3 *2) (-12 (-4 *1 (-781)) (-5 *2 (-1028)) (-5 *3 (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) -(-13 (-1091) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2764 ((-1028) (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) (|:| |extra| (-1028))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2764 ((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1028))))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2767 (((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377))) 44) (((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377))) 43)) (-2768 (((-1259) (-1253 (-377)) (-544) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377))) 50)) (-2766 (((-1259) (-1253 (-377)) (-544) (-377) (-377) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377))) 41)) (-2765 (((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377))) 52) (((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377))) 51))) -(((-782) (-10 -7 (-15 -2765 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2765 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)))) (-15 -2766 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2767 ((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2767 ((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)))) (-15 -2768 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))))) (T -782)) -((-2768 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2767 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-544)) (-5 *6 (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377)))) (-5 *7 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2767 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-544)) (-5 *6 (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377)))) (-5 *7 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2766 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2765 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) (-2765 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782))))) -(-10 -7 (-15 -2765 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2765 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)))) (-15 -2766 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2767 ((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)))) (-15 -2767 ((-1259) (-1253 (-377)) (-544) (-377) (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377))) (-377) (-1253 (-377)) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)) (-1253 (-377)))) (-15 -2768 ((-1259) (-1253 (-377)) (-544) (-377) (-377) (-544) (-1 (-1259) (-1253 (-377)) (-1253 (-377)) (-377))))) -((-2777 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 53)) (-2774 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 31)) (-2776 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 52)) (-2773 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 29)) (-2775 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 51)) (-2772 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)) 19)) (-2771 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544)) 32)) (-2770 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544)) 30)) (-2769 (((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544)) 28))) -(((-783) (-10 -7 (-15 -2769 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2770 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2771 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2772 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2773 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2774 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2775 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2776 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2777 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))))) (T -783)) -((-2777 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2776 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2775 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2774 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2773 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2772 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2771 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2770 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544)))) (-2769 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) (-5 *2 (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) (|:| |success| (-112)))) (-5 *1 (-783)) (-5 *5 (-544))))) -(-10 -7 (-15 -2769 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2770 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2771 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544) (-544))) (-15 -2772 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2773 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2774 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2775 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2776 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544))) (-15 -2777 ((-2 (|:| -3806 (-377)) (|:| -1684 (-377)) (|:| |totalpts| (-544)) (|:| |success| (-112))) (-1 (-377) (-377)) (-377) (-377) (-377) (-377) (-544) (-544)))) -((-4112 (((-1200 |#1|) |#1| (-224) (-544)) 46))) -(((-784 |#1|) (-10 -7 (-15 -4112 ((-1200 |#1|) |#1| (-224) (-544)))) (-967)) (T -784)) -((-4112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-224)) (-5 *5 (-544)) (-5 *2 (-1200 *3)) (-5 *1 (-784 *3)) (-4 *3 (-967))))) -(-10 -7 (-15 -4112 ((-1200 |#1|) |#1| (-224) (-544)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-1391 (((-3 $ "failed") $ $) 26)) (-4131 (($) 23 T CONST)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4244 (($ $ $) 28) (($ $) 27)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21) (($ (-765) $) 25) (($ (-544) $) 29))) -(((-785) (-139)) (T -785)) -NIL -(-13 (-791) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-844) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-4131 (($) 23 T CONST)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21) (($ (-765) $) 25))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-1050 |#1|) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-3358 (($ |#1|) 17) (($ $ |#1|) 20)) (-3878 (($ |#1|) 18) (($ $ |#1|) 21)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1957 (((-112) $) NIL)) (-2110 (($ |#1| |#1| |#1| |#1|) 8)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 16)) (-1709 (((-1112) $) NIL)) (-1433 ((|#1| $ |#1|) 24) (((-828 |#1|) $ (-828 |#1|)) 32)) (-3665 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-4054 (((-857) $) 39)) (-2294 (($) 9 T CONST)) (-1731 (((-112) $ $) 44)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ $ $) 14))) +(((-713 |#1|) (-13 (-472) (-10 -8 (-15 -2110 ($ |#1| |#1| |#1| |#1|)) (-15 -3358 ($ |#1|)) (-15 -3878 ($ |#1|)) (-15 -3668 ($)) (-15 -3358 ($ $ |#1|)) (-15 -3878 ($ $ |#1|)) (-15 -3668 ($ $)) (-15 -1433 (|#1| $ |#1|)) (-15 -1433 ((-828 |#1|) $ (-828 |#1|))))) (-362)) (T -713)) +((-2110 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-3358 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-3878 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-3668 (*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-3358 (*1 *1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-3668 (*1 *1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-1433 (*1 *2 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-1433 (*1 *2 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-362)) (-5 *1 (-713 *3))))) +(-13 (-472) (-10 -8 (-15 -2110 ($ |#1| |#1| |#1| |#1|)) (-15 -3358 ($ |#1|)) (-15 -3878 ($ |#1|)) (-15 -3668 ($)) (-15 -3358 ($ $ |#1|)) (-15 -3878 ($ $ |#1|)) (-15 -3668 ($ $)) (-15 -1433 (|#1| $ |#1|)) (-15 -1433 ((-828 |#1|) $ (-828 |#1|))))) +((-1379 (($ $ (-916)) 12)) (-2991 (($ $ (-916)) 13)) (** (($ $ (-916)) 10))) +(((-714 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-916))) (-15 -2991 (|#1| |#1| (-916))) (-15 -1379 (|#1| |#1| (-916)))) (-715)) (T -714)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-916))) (-15 -2991 (|#1| |#1| (-916))) (-15 -1379 (|#1| |#1| (-916)))) +((-4041 (((-112) $ $) 7)) (-1379 (($ $ (-916)) 15)) (-2991 (($ $ (-916)) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6)) (** (($ $ (-916)) 13)) (* (($ $ $) 16))) +(((-715) (-139)) (T -715)) +((* (*1 *1 *1 *1) (-4 *1 (-715))) (-1379 (*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) (-2991 (*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916))))) +(-13 (-1092) (-10 -8 (-15 * ($ $ $)) (-15 -1379 ($ $ (-916))) (-15 -2991 ($ $ (-916))) (-15 ** ($ $ (-916))))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-1379 (($ $ (-916)) NIL) (($ $ (-766)) 17)) (-1957 (((-112) $) 10)) (-2991 (($ $ (-916)) NIL) (($ $ (-766)) 18)) (** (($ $ (-916)) NIL) (($ $ (-766)) 15))) +(((-716 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-766))) (-15 -2991 (|#1| |#1| (-766))) (-15 -1379 (|#1| |#1| (-766))) (-15 -1957 ((-112) |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 -2991 (|#1| |#1| (-916))) (-15 -1379 (|#1| |#1| (-916)))) (-717)) (T -716)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-766))) (-15 -2991 (|#1| |#1| (-766))) (-15 -1379 (|#1| |#1| (-766))) (-15 -1957 ((-112) |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 -2991 (|#1| |#1| (-916))) (-15 -1379 (|#1| |#1| (-916)))) +((-4041 (((-112) $ $) 7)) (-2545 (((-3 $ "failed") $) 17)) (-1379 (($ $ (-916)) 15) (($ $ (-766)) 22)) (-3668 (((-3 $ "failed") $) 19)) (-1957 (((-112) $) 23)) (-4238 (((-3 $ "failed") $) 18)) (-2991 (($ $ (-916)) 14) (($ $ (-766)) 21)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2294 (($) 24 T CONST)) (-1731 (((-112) $ $) 6)) (** (($ $ (-916)) 13) (($ $ (-766)) 20)) (* (($ $ $) 16))) +(((-717) (-139)) (T -717)) +((-2294 (*1 *1) (-4 *1 (-717))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-112)))) (-1379 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766)))) (-2991 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766)))) (-3668 (*1 *1 *1) (|partial| -4 *1 (-717))) (-4238 (*1 *1 *1) (|partial| -4 *1 (-717))) (-2545 (*1 *1 *1) (|partial| -4 *1 (-717)))) +(-13 (-715) (-10 -8 (-15 (-2294) ($) -1497) (-15 -1957 ((-112) $)) (-15 -1379 ($ $ (-766))) (-15 -2991 ($ $ (-766))) (-15 ** ($ $ (-766))) (-15 -3668 ((-3 $ "failed") $)) (-15 -4238 ((-3 $ "failed") $)) (-15 -2545 ((-3 $ "failed") $)))) +(((-102) . T) ((-609 (-857)) . T) ((-715) . T) ((-1092) . T)) +((-1382 (((-766)) 35)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3961 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#2| $) 22)) (-1955 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) 45)) (-3668 (((-3 $ "failed") $) 65)) (-1448 (($) 39)) (-2247 ((|#2| $) 20)) (-3148 (($) 17)) (-4029 (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-3187 (((-683 |#2|) (-1256 $) (-1 |#2| |#2|)) 60)) (-4208 (((-1256 |#2|) $) NIL) (($ (-1256 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3376 ((|#3| $) 32)) (-3928 (((-1256 $)) 29))) +(((-718 |#1| |#2| |#3|) (-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -1448 (|#1|)) (-15 -1382 ((-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -3187 ((-683 |#2|) (-1256 |#1|) (-1 |#2| |#2|))) (-15 -1955 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4208 (|#1| |#3|)) (-15 -1955 (|#1| |#3|)) (-15 -3148 (|#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 (|#3| |#1|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -3928 ((-1256 |#1|))) (-15 -3376 (|#3| |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -3668 ((-3 |#1| "failed") |#1|))) (-719 |#2| |#3|) (-171) (-1232 |#2|)) (T -718)) +((-1382 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-766)) (-5 *1 (-718 *3 *4 *5)) (-4 *3 (-719 *4 *5))))) +(-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -1448 (|#1|)) (-15 -1382 ((-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -3187 ((-683 |#2|) (-1256 |#1|) (-1 |#2| |#2|))) (-15 -1955 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4208 (|#1| |#3|)) (-15 -1955 (|#1| |#3|)) (-15 -3148 (|#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 (|#3| |#1|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -3928 ((-1256 |#1|))) (-15 -3376 (|#3| |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -3668 ((-3 |#1| "failed") |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 93 (|has| |#1| (-362)))) (-2796 (($ $) 94 (|has| |#1| (-362)))) (-4370 (((-112) $) 96 (|has| |#1| (-362)))) (-1636 (((-683 |#1|) (-1256 $)) 47) (((-683 |#1|)) 62)) (-1748 ((|#1| $) 53)) (-3984 (((-1180 (-916) (-766)) (-562)) 146 (|has| |#1| (-348)))) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 113 (|has| |#1| (-362)))) (-2921 (((-417 $) $) 114 (|has| |#1| (-362)))) (-2569 (((-112) $ $) 104 (|has| |#1| (-362)))) (-1382 (((-766)) 87 (|has| |#1| (-367)))) (-1800 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 169 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 167 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 164)) (-3961 (((-562) $) 168 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 166 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 165)) (-4018 (($ (-1256 |#1|) (-1256 $)) 49) (($ (-1256 |#1|)) 65)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1811 (($ $ $) 108 (|has| |#1| (-362)))) (-1958 (((-683 |#1|) $ (-1256 $)) 54) (((-683 |#1|) $) 60)) (-2406 (((-683 (-562)) (-683 $)) 163 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 162 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 161) (((-683 |#1|) (-683 $)) 160)) (-1955 (($ |#2|) 157) (((-3 $ "failed") (-406 |#2|)) 154 (|has| |#1| (-362)))) (-3668 (((-3 $ "failed") $) 33)) (-2173 (((-916)) 55)) (-1448 (($) 90 (|has| |#1| (-367)))) (-1787 (($ $ $) 107 (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 102 (|has| |#1| (-362)))) (-3529 (($) 148 (|has| |#1| (-348)))) (-1322 (((-112) $) 149 (|has| |#1| (-348)))) (-3589 (($ $ (-766)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-2717 (((-112) $) 115 (|has| |#1| (-362)))) (-1900 (((-916) $) 151 (|has| |#1| (-348))) (((-828 (-916)) $) 137 (|has| |#1| (-348)))) (-1957 (((-112) $) 31)) (-2247 ((|#1| $) 52)) (-3699 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 111 (|has| |#1| (-362)))) (-1565 ((|#2| $) 45 (|has| |#1| (-362)))) (-1999 (((-916) $) 89 (|has| |#1| (-367)))) (-1943 ((|#2| $) 155)) (-1564 (($ (-639 $)) 100 (|has| |#1| (-362))) (($ $ $) 99 (|has| |#1| (-362)))) (-2913 (((-1150) $) 9)) (-1525 (($ $) 116 (|has| |#1| (-362)))) (-3729 (($) 142 (|has| |#1| (-348)) CONST)) (-2466 (($ (-916)) 88 (|has| |#1| (-367)))) (-1709 (((-1112) $) 10)) (-3148 (($) 159)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 101 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 98 (|has| |#1| (-362))) (($ $ $) 97 (|has| |#1| (-362)))) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) 145 (|has| |#1| (-348)))) (-1635 (((-417 $) $) 112 (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 109 (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ $) 92 (|has| |#1| (-362)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 103 (|has| |#1| (-362)))) (-1577 (((-766) $) 105 (|has| |#1| (-362)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 106 (|has| |#1| (-362)))) (-2455 ((|#1| (-1256 $)) 48) ((|#1|) 61)) (-3362 (((-766) $) 150 (|has| |#1| (-348))) (((-3 (-766) "failed") $ $) 138 (|has| |#1| (-348)))) (-4029 (($ $) 136 (-4037 (-2246 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-766)) 134 (-4037 (-2246 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1168)) 132 (-2246 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-639 (-1168))) 131 (-2246 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-1168) (-766)) 130 (-2246 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 (-766))) 129 (-2246 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-766)) 122 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-362)))) (-3187 (((-683 |#1|) (-1256 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-2096 ((|#2|) 158)) (-2283 (($) 147 (|has| |#1| (-348)))) (-3593 (((-1256 |#1|) $ (-1256 $)) 51) (((-683 |#1|) (-1256 $) (-1256 $)) 50) (((-1256 |#1|) $) 67) (((-683 |#1|) (-1256 $)) 66)) (-4208 (((-1256 |#1|) $) 64) (($ (-1256 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 144 (|has| |#1| (-348)))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-362))) (($ (-406 (-562))) 86 (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562))))))) (-2805 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-3376 ((|#2| $) 46)) (-2579 (((-766)) 28)) (-3928 (((-1256 $)) 68)) (-2922 (((-112) $ $) 95 (|has| |#1| (-362)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $) 135 (-4037 (-2246 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-766)) 133 (-4037 (-2246 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1168)) 128 (-2246 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-639 (-1168))) 127 (-2246 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-1168) (-766)) 126 (-2246 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 (-766))) 125 (-2246 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-766)) 124 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-362)))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ $) 120 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 117 (|has| |#1| (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-562)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-562))) 118 (|has| |#1| (-362))))) +(((-719 |#1| |#2|) (-139) (-171) (-1232 |t#1|)) (T -719)) +((-3148 (*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-719 *2 *3)) (-4 *3 (-1232 *2)))) (-2096 (*1 *2) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) (-1955 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-719 *3 *2)) (-4 *2 (-1232 *3)))) (-4208 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-719 *3 *2)) (-4 *2 (-1232 *3)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) (-1955 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-362)) (-4 *3 (-171)) (-4 *1 (-719 *3 *4)))) (-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-1256 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-4 *1 (-719 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1232 *5)) (-5 *2 (-683 *5))))) +(-13 (-408 |t#1| |t#2|) (-171) (-610 |t#2|) (-410 |t#1|) (-376 |t#1|) (-10 -8 (-15 -3148 ($)) (-15 -2096 (|t#2|)) (-15 -1955 ($ |t#2|)) (-15 -4208 ($ |t#2|)) (-15 -1943 (|t#2| $)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-6 (-230 |t#1|)) (-15 -1955 ((-3 $ "failed") (-406 |t#2|))) (-15 -3187 ((-683 |t#1|) (-1256 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-102) . T) ((-111 #0# #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) . T) ((-610 |#2|) . T) ((-230 |#1|) |has| |#1| (-362)) ((-232) -4037 (|has| |#1| (-348)) (-12 (|has| |#1| (-232)) (|has| |#1| (-362)))) ((-242) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-289) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-306) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-362) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -4037 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| |#2|) . T) ((-408 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-554) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-642 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-712 |#1|) . T) ((-712 $) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168)))) ((-915) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-348)) ((-1211) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)))) +((-1800 (($) 11)) (-3668 (((-3 $ "failed") $) 13)) (-1957 (((-112) $) 10)) (** (($ $ (-916)) NIL) (($ $ (-766)) 18))) +(((-720 |#1|) (-10 -8 (-15 -3668 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 -1957 ((-112) |#1|)) (-15 -1800 (|#1|)) (-15 ** (|#1| |#1| (-916)))) (-721)) (T -720)) +NIL +(-10 -8 (-15 -3668 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 -1957 ((-112) |#1|)) (-15 -1800 (|#1|)) (-15 ** (|#1| |#1| (-916)))) +((-4041 (((-112) $ $) 7)) (-1800 (($) 18 T CONST)) (-3668 (((-3 $ "failed") $) 15)) (-1957 (((-112) $) 17)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2294 (($) 19 T CONST)) (-1731 (((-112) $ $) 6)) (** (($ $ (-916)) 13) (($ $ (-766)) 16)) (* (($ $ $) 14))) +(((-721) (-139)) (T -721)) +((-2294 (*1 *1) (-4 *1 (-721))) (-1800 (*1 *1) (-4 *1 (-721))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-721)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-766)))) (-3668 (*1 *1 *1) (|partial| -4 *1 (-721)))) +(-13 (-1104) (-10 -8 (-15 (-2294) ($) -1497) (-15 -1800 ($) -1497) (-15 -1957 ((-112) $)) (-15 ** ($ $ (-766))) (-15 -3668 ((-3 $ "failed") $)))) +(((-102) . T) ((-609 (-857)) . T) ((-1104) . T) ((-1092) . T)) +((-1553 (((-2 (|:| -2451 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2176 (((-2 (|:| -2451 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3271 ((|#2| (-406 |#2|) (-1 |#2| |#2|)) 13)) (-2018 (((-2 (|:| |poly| |#2|) (|:| -2451 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)) 47))) +(((-722 |#1| |#2|) (-10 -7 (-15 -2176 ((-2 (|:| -2451 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1553 ((-2 (|:| -2451 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3271 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -2018 ((-2 (|:| |poly| |#2|) (|:| -2451 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1232 |#1|)) (T -722)) +((-2018 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2451 (-406 *6)) (|:| |special| (-406 *6)))) (-5 *1 (-722 *5 *6)) (-5 *3 (-406 *6)))) (-3271 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-722 *5 *2)) (-4 *5 (-362)))) (-1553 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2451 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-722 *5 *3)))) (-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2451 *3) (|:| |special| *3))) (-5 *1 (-722 *5 *3))))) +(-10 -7 (-15 -2176 ((-2 (|:| -2451 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1553 ((-2 (|:| -2451 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3271 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -2018 ((-2 (|:| |poly| |#2|) (|:| -2451 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) +((-4164 ((|#7| (-639 |#5|) |#6|) NIL)) (-4152 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-723 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4152 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4164 (|#7| (-639 |#5|) |#6|))) (-845) (-788) (-788) (-1044) (-1044) (-944 |#4| |#2| |#1|) (-944 |#5| |#3| |#1|)) (T -723)) +((-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *9)) (-4 *9 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) (-4 *8 (-1044)) (-4 *2 (-944 *9 *7 *5)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) (-4 *4 (-944 *8 *6 *5)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1044)) (-4 *9 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) (-4 *2 (-944 *9 *7 *5)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) (-4 *4 (-944 *8 *6 *5))))) +(-10 -7 (-15 -4152 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4164 (|#7| (-639 |#5|) |#6|))) +((-4152 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-724 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4152 (|#7| (-1 |#2| |#1|) |#6|))) (-845) (-845) (-788) (-788) (-1044) (-944 |#5| |#3| |#1|) (-944 |#5| |#4| |#2|)) (T -724)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-845)) (-4 *6 (-845)) (-4 *7 (-788)) (-4 *9 (-1044)) (-4 *2 (-944 *9 *8 *6)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-788)) (-4 *4 (-944 *9 *7 *5))))) +(-10 -7 (-15 -4152 (|#7| (-1 |#2| |#1|) |#6|))) +((-1635 (((-417 |#4|) |#4|) 41))) +(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4|))) (-788) (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168))))) (-306) (-944 (-947 |#3|) |#1| |#2|)) (T -725)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168)))))) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-944 (-947 *6) *4 *5))))) +(-10 -7 (-15 -1635 ((-417 |#4|) |#4|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-859 |#1|)) $) NIL)) (-1599 (((-1164 $) $ (-859 |#1|)) NIL) (((-1164 |#2|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2796 (($ $) NIL (|has| |#2| (-554)))) (-4370 (((-112) $) NIL (|has| |#2| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-859 |#1|))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-2798 (($ $) NIL (|has| |#2| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#2| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-859 |#1|) "failed") $) NIL)) (-3961 ((|#2| $) NIL) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-859 |#1|) $) NIL)) (-2835 (($ $ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-1601 (($ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#2| (-904)))) (-3122 (($ $ |#2| (-530 (-859 |#1|)) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1390 (($ (-1164 |#2|) (-859 |#1|)) NIL) (($ (-1164 $) (-859 |#1|)) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#2| (-530 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-859 |#1|)) NIL)) (-2076 (((-530 (-859 |#1|)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2836 (($ (-1 (-530 (-859 |#1|)) (-530 (-859 |#1|))) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3372 (((-3 (-859 |#1|) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-2913 (((-1150) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-859 |#1|)) (|:| -1960 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#2| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-859 |#1|) |#2|) NIL) (($ $ (-639 (-859 |#1|)) (-639 |#2|)) NIL) (($ $ (-859 |#1|) $) NIL) (($ $ (-639 (-859 |#1|)) (-639 $)) NIL)) (-2455 (($ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-3598 (((-530 (-859 |#1|)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-859 |#1|) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-3900 ((|#2| $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-859 |#1|)) NIL) (($ $) NIL (|has| |#2| (-554))) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))))) (-4358 (((-639 |#2|) $) NIL)) (-3906 ((|#2| $ (-530 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-726 |#1| |#2|) (-944 |#2| (-530 (-859 |#1|)) (-859 |#1|)) (-639 (-1168)) (-1044)) (T -726)) +NIL +(-944 |#2| (-530 (-859 |#1|)) (-859 |#1|)) +((-1829 (((-2 (|:| -3659 (-947 |#3|)) (|:| -1310 (-947 |#3|))) |#4|) 14)) (-3584 ((|#4| |#4| |#2|) 33)) (-1494 ((|#4| (-406 (-947 |#3|)) |#2|) 64)) (-2908 ((|#4| (-1164 (-947 |#3|)) |#2|) 77)) (-1496 ((|#4| (-1164 |#4|) |#2|) 51)) (-2103 ((|#4| |#4| |#2|) 54)) (-1635 (((-417 |#4|) |#4|) 40))) +(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1829 ((-2 (|:| -3659 (-947 |#3|)) (|:| -1310 (-947 |#3|))) |#4|)) (-15 -2103 (|#4| |#4| |#2|)) (-15 -1496 (|#4| (-1164 |#4|) |#2|)) (-15 -3584 (|#4| |#4| |#2|)) (-15 -2908 (|#4| (-1164 (-947 |#3|)) |#2|)) (-15 -1494 (|#4| (-406 (-947 |#3|)) |#2|)) (-15 -1635 ((-417 |#4|) |#4|))) (-788) (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)))) (-554) (-944 (-406 (-947 |#3|)) |#1| |#2|)) (T -727)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)) (-5 *2 (-417 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-944 (-406 (-947 *6)) *4 *5)))) (-1494 (*1 *2 *3 *4) (-12 (-4 *6 (-554)) (-4 *2 (-944 *3 *5 *4)) (-5 *1 (-727 *5 *4 *6 *2)) (-5 *3 (-406 (-947 *6))) (-4 *5 (-788)) (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))))) (-2908 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 (-947 *6))) (-4 *6 (-554)) (-4 *2 (-944 (-406 (-947 *6)) *5 *4)) (-5 *1 (-727 *5 *4 *6 *2)) (-4 *5 (-788)) (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))))) (-3584 (*1 *2 *2 *3) (-12 (-4 *4 (-788)) (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *5 (-554)) (-5 *1 (-727 *4 *3 *5 *2)) (-4 *2 (-944 (-406 (-947 *5)) *4 *3)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *2)) (-4 *2 (-944 (-406 (-947 *6)) *5 *4)) (-5 *1 (-727 *5 *4 *6 *2)) (-4 *5 (-788)) (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)))) (-2103 (*1 *2 *2 *3) (-12 (-4 *4 (-788)) (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *5 (-554)) (-5 *1 (-727 *4 *3 *5 *2)) (-4 *2 (-944 (-406 (-947 *5)) *4 *3)))) (-1829 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)) (-5 *2 (-2 (|:| -3659 (-947 *6)) (|:| -1310 (-947 *6)))) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-944 (-406 (-947 *6)) *4 *5))))) +(-10 -7 (-15 -1829 ((-2 (|:| -3659 (-947 |#3|)) (|:| -1310 (-947 |#3|))) |#4|)) (-15 -2103 (|#4| |#4| |#2|)) (-15 -1496 (|#4| (-1164 |#4|) |#2|)) (-15 -3584 (|#4| |#4| |#2|)) (-15 -2908 (|#4| (-1164 (-947 |#3|)) |#2|)) (-15 -1494 (|#4| (-406 (-947 |#3|)) |#2|)) (-15 -1635 ((-417 |#4|) |#4|))) +((-1635 (((-417 |#4|) |#4|) 52))) +(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4|))) (-788) (-845) (-13 (-306) (-146)) (-944 (-406 |#3|) |#1| |#2|)) (T -728)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-944 (-406 *6) *4 *5))))) +(-10 -7 (-15 -1635 ((-417 |#4|) |#4|))) +((-4152 (((-730 |#2| |#3|) (-1 |#2| |#1|) (-730 |#1| |#3|)) 18))) +(((-729 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-730 |#2| |#3|) (-1 |#2| |#1|) (-730 |#1| |#3|)))) (-1044) (-1044) (-721)) (T -729)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-730 *5 *7)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-4 *7 (-721)) (-5 *2 (-730 *6 *7)) (-5 *1 (-729 *5 *6 *7))))) +(-10 -7 (-15 -4152 ((-730 |#2| |#3|) (-1 |#2| |#1|) (-730 |#1| |#3|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 28)) (-1938 (((-639 (-2 (|:| -4221 |#1|) (|:| -3045 |#2|))) $) 29)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766)) 20 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3961 ((|#2| $) NIL) ((|#1| $) NIL)) (-1601 (($ $) 79 (|has| |#2| (-845)))) (-3668 (((-3 $ "failed") $) 65)) (-1448 (($) 35 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) 55)) (-1889 (((-639 $) $) 39)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| |#2|) 16)) (-4152 (($ (-1 |#1| |#1|) $) 54)) (-1999 (((-916) $) 32 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1560 ((|#2| $) 78 (|has| |#2| (-845)))) (-1573 ((|#1| $) 77 (|has| |#2| (-845)))) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) 27 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 76) (($ (-562)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-639 (-2 (|:| -4221 |#1|) (|:| -3045 |#2|)))) 11)) (-4358 (((-639 |#1|) $) 41)) (-3906 ((|#1| $ |#2|) 87)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-2286 (($) 12 T CONST)) (-2294 (($) 33 T CONST)) (-1731 (((-112) $ $) 80)) (-1848 (($ $) 47) (($ $ $) NIL)) (-1835 (($ $ $) 26)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 52) (($ $ $) 89) (($ |#1| $) 49 (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) +(((-730 |#1| |#2|) (-13 (-1044) (-1033 |#2|) (-1033 |#1|) (-10 -8 (-15 -1378 ($ |#1| |#2|)) (-15 -3906 (|#1| $ |#2|)) (-15 -4054 ($ (-639 (-2 (|:| -4221 |#1|) (|:| -3045 |#2|))))) (-15 -1938 ((-639 (-2 (|:| -4221 |#1|) (|:| -3045 |#2|))) $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (-15 -3536 ((-112) $)) (-15 -4358 ((-639 |#1|) $)) (-15 -1889 ((-639 $) $)) (-15 -1694 ((-766) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-845)) (PROGN (-15 -1560 (|#2| $)) (-15 -1573 (|#1| $)) (-15 -1601 ($ $))) |%noBranch|))) (-1044) (-721)) (T -730)) +((-1378 (*1 *1 *2 *3) (-12 (-5 *1 (-730 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-721)))) (-3906 (*1 *2 *1 *3) (-12 (-4 *2 (-1044)) (-5 *1 (-730 *2 *3)) (-4 *3 (-721)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -4221 *3) (|:| -3045 *4)))) (-4 *3 (-1044)) (-4 *4 (-721)) (-5 *1 (-730 *3 *4)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| -4221 *3) (|:| -3045 *4)))) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-730 *3 *4)) (-4 *4 (-721)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-639 (-730 *3 *4))) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-1560 (*1 *2 *1) (-12 (-4 *2 (-721)) (-4 *2 (-845)) (-5 *1 (-730 *3 *2)) (-4 *3 (-1044)))) (-1573 (*1 *2 *1) (-12 (-4 *2 (-1044)) (-5 *1 (-730 *2 *3)) (-4 *3 (-845)) (-4 *3 (-721)))) (-1601 (*1 *1 *1) (-12 (-5 *1 (-730 *2 *3)) (-4 *3 (-845)) (-4 *2 (-1044)) (-4 *3 (-721))))) +(-13 (-1044) (-1033 |#2|) (-1033 |#1|) (-10 -8 (-15 -1378 ($ |#1| |#2|)) (-15 -3906 (|#1| $ |#2|)) (-15 -4054 ($ (-639 (-2 (|:| -4221 |#1|) (|:| -3045 |#2|))))) (-15 -1938 ((-639 (-2 (|:| -4221 |#1|) (|:| -3045 |#2|))) $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (-15 -3536 ((-112) $)) (-15 -4358 ((-639 |#1|) $)) (-15 -1889 ((-639 $) $)) (-15 -1694 ((-766) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-845)) (PROGN (-15 -1560 (|#2| $)) (-15 -1573 (|#1| $)) (-15 -1601 ($ $))) |%noBranch|))) +((-4041 (((-112) $ $) 19)) (-2494 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2129 (($ $ $) 72)) (-2330 (((-112) $ $) 73)) (-4336 (((-112) $ (-766)) 8)) (-1608 (($ (-639 |#1|)) 68) (($) 67)) (-3111 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-4354 (($ $) 62)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ |#1| $) 47 (|has| $ (-6 -4402))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4402)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4402)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3027 (((-112) $ $) 64)) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22)) (-4376 (($ $ $) 69)) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40) (($ |#1| $ (-766)) 63)) (-1709 (((-1112) $) 21)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2671 (((-639 (-2 (|:| -2694 |#1|) (|:| -1723 (-766)))) $) 61)) (-3703 (($ $ |#1|) 71) (($ $ $) 70)) (-3564 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 50)) (-4054 (((-857) $) 18)) (-1703 (($ (-639 |#1|)) 66) (($) 65)) (-1932 (($ (-639 |#1|)) 42)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20)) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-731 |#1|) (-139) (-1092)) (T -731)) +NIL +(-13 (-689 |t#1|) (-1090 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-689 |#1|) . T) ((-1090 |#1|) . T) ((-1092) . T) ((-1207) . T)) +((-4041 (((-112) $ $) NIL)) (-2494 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2129 (($ $ $) 79)) (-2330 (((-112) $ $) 83)) (-4336 (((-112) $ (-766)) NIL)) (-1608 (($ (-639 |#1|)) 24) (($) 16)) (-3111 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-4354 (($ $) 71)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4000 (($ |#1| $) 61 (|has| $ (-6 -4402))) (($ (-1 (-112) |#1|) $) 65 (|has| $ (-6 -4402))) (($ |#1| $ (-562)) 63) (($ (-1 (-112) |#1|) $ (-562)) 66)) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (($ |#1| $ (-562)) 68) (($ (-1 (-112) |#1|) $ (-562)) 69)) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1720 (((-639 |#1|) $) 32 (|has| $ (-6 -4402)))) (-3027 (((-112) $ $) 82)) (-1839 (($) 14) (($ |#1|) 26) (($ (-639 |#1|)) 21)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) 38)) (-1669 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 75)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-4376 (($ $ $) 77)) (-3262 ((|#1| $) 55)) (-4300 (($ |#1| $) 56) (($ |#1| $ (-766)) 72)) (-1709 (((-1112) $) NIL)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1904 ((|#1| $) 54)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 50)) (-4307 (($) 13)) (-2671 (((-639 (-2 (|:| -2694 |#1|) (|:| -1723 (-766)))) $) 48)) (-3703 (($ $ |#1|) NIL) (($ $ $) 78)) (-3564 (($) 15) (($ (-639 |#1|)) 23)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) 60 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) 67)) (-4208 (((-535) $) 36 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 20)) (-4054 (((-857) $) 44)) (-1703 (($ (-639 |#1|)) 25) (($) 17)) (-1932 (($ (-639 |#1|)) 22)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 81)) (-3492 (((-766) $) 59 (|has| $ (-6 -4402))))) +(((-732 |#1|) (-13 (-731 |#1|) (-10 -8 (-6 -4402) (-6 -4403) (-15 -1839 ($)) (-15 -1839 ($ |#1|)) (-15 -1839 ($ (-639 |#1|))) (-15 -1912 ((-639 |#1|) $)) (-15 -1475 ($ |#1| $ (-562))) (-15 -1475 ($ (-1 (-112) |#1|) $ (-562))) (-15 -4000 ($ |#1| $ (-562))) (-15 -4000 ($ (-1 (-112) |#1|) $ (-562))))) (-1092)) (T -732)) +((-1839 (*1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1092)))) (-1839 (*1 *1 *2) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1092)))) (-1839 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-732 *3)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-732 *3)) (-4 *3 (-1092)))) (-1475 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-732 *2)) (-4 *2 (-1092)))) (-1475 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-562)) (-4 *4 (-1092)) (-5 *1 (-732 *4)))) (-4000 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-732 *2)) (-4 *2 (-1092)))) (-4000 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-562)) (-4 *4 (-1092)) (-5 *1 (-732 *4))))) +(-13 (-731 |#1|) (-10 -8 (-6 -4402) (-6 -4403) (-15 -1839 ($)) (-15 -1839 ($ |#1|)) (-15 -1839 ($ (-639 |#1|))) (-15 -1912 ((-639 |#1|) $)) (-15 -1475 ($ |#1| $ (-562))) (-15 -1475 ($ (-1 (-112) |#1|) $ (-562))) (-15 -4000 ($ |#1| $ (-562))) (-15 -4000 ($ (-1 (-112) |#1|) $ (-562))))) +((-2420 (((-1261) (-1150)) 8))) +(((-733) (-10 -7 (-15 -2420 ((-1261) (-1150))))) (T -733)) +((-2420 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-733))))) +(-10 -7 (-15 -2420 ((-1261) (-1150)))) +((-3447 (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 10))) +(((-734 |#1|) (-10 -7 (-15 -3447 ((-639 |#1|) (-639 |#1|) (-639 |#1|)))) (-845)) (T -734)) +((-3447 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-734 *3))))) +(-10 -7 (-15 -3447 ((-639 |#1|) (-639 |#1|) (-639 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1402 (((-639 |#2|) $) 139)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 132 (|has| |#1| (-554)))) (-2796 (($ $) 131 (|has| |#1| (-554)))) (-4370 (((-112) $) 129 (|has| |#1| (-554)))) (-2988 (($ $) 88 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 71 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) 19)) (-1643 (($ $) 70 (|has| |#1| (-38 (-406 (-562)))))) (-4207 (($ $) 87 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 72 (|has| |#1| (-38 (-406 (-562)))))) (-3014 (($ $) 86 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 73 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) 17 T CONST)) (-1601 (($ $) 123)) (-3668 (((-3 $ "failed") $) 33)) (-1454 (((-947 |#1|) $ (-766)) 101) (((-947 |#1|) $ (-766) (-766)) 100)) (-1756 (((-112) $) 140)) (-4100 (($) 98 (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-766) $ |#2|) 103) (((-766) $ |#2| (-766)) 102)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 69 (|has| |#1| (-38 (-406 (-562)))))) (-3536 (((-112) $) 121)) (-1378 (($ $ (-639 |#2|) (-639 (-530 |#2|))) 138) (($ $ |#2| (-530 |#2|)) 137) (($ |#1| (-530 |#2|)) 122) (($ $ |#2| (-766)) 105) (($ $ (-639 |#2|) (-639 (-766))) 104)) (-4152 (($ (-1 |#1| |#1|) $) 120)) (-4365 (($ $) 95 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 118)) (-1573 ((|#1| $) 117)) (-2913 (((-1150) $) 9)) (-2667 (($ $ |#2|) 99 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) 10)) (-1353 (($ $ (-766)) 106)) (-1762 (((-3 $ "failed") $ $) 133 (|has| |#1| (-554)))) (-3430 (($ $) 96 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (($ $ |#2| $) 114) (($ $ (-639 |#2|) (-639 $)) 113) (($ $ (-639 (-293 $))) 112) (($ $ (-293 $)) 111) (($ $ $ $) 110) (($ $ (-639 $) (-639 $)) 109)) (-4029 (($ $ |#2|) 42) (($ $ (-639 |#2|)) 41) (($ $ |#2| (-766)) 40) (($ $ (-639 |#2|) (-639 (-766))) 39)) (-3598 (((-530 |#2|) $) 119)) (-3023 (($ $) 85 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 74 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 84 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 75 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 83 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 76 (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) 141)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 136 (|has| |#1| (-171))) (($ $) 134 (|has| |#1| (-554))) (($ (-406 (-562))) 126 (|has| |#1| (-38 (-406 (-562)))))) (-3906 ((|#1| $ (-530 |#2|)) 124) (($ $ |#2| (-766)) 108) (($ $ (-639 |#2|) (-639 (-766))) 107)) (-2805 (((-3 $ "failed") $) 135 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-3055 (($ $) 94 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 82 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) 130 (|has| |#1| (-554)))) (-3033 (($ $) 93 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 81 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 92 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 80 (|has| |#1| (-38 (-406 (-562)))))) (-1566 (($ $) 91 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 79 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 90 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 78 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 89 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 77 (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ |#2|) 38) (($ $ (-639 |#2|)) 37) (($ $ |#2| (-766)) 36) (($ $ (-639 |#2|) (-639 (-766))) 35)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 125 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ $) 97 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 68 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 128 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 127 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 116) (($ $ |#1|) 115))) +(((-735 |#1| |#2|) (-139) (-1044) (-845)) (T -735)) +((-3906 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *2)) (-4 *4 (-1044)) (-4 *2 (-845)))) (-3906 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *5)) (-5 *3 (-639 (-766))) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-845)))) (-1353 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-735 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-845)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *2)) (-4 *4 (-1044)) (-4 *2 (-845)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *5)) (-5 *3 (-639 (-766))) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-845)))) (-1900 (*1 *2 *1 *3) (-12 (-4 *1 (-735 *4 *3)) (-4 *4 (-1044)) (-4 *3 (-845)) (-5 *2 (-766)))) (-1900 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-766)) (-4 *1 (-735 *4 *3)) (-4 *4 (-1044)) (-4 *3 (-845)))) (-1454 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-845)) (-5 *2 (-947 *4)))) (-1454 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-845)) (-5 *2 (-947 *4)))) (-2667 (*1 *1 *1 *2) (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-845)) (-4 *3 (-38 (-406 (-562))))))) +(-13 (-895 |t#2|) (-968 |t#1| (-530 |t#2|) |t#2|) (-513 |t#2| $) (-308 $) (-10 -8 (-15 -3906 ($ $ |t#2| (-766))) (-15 -3906 ($ $ (-639 |t#2|) (-639 (-766)))) (-15 -1353 ($ $ (-766))) (-15 -1378 ($ $ |t#2| (-766))) (-15 -1378 ($ $ (-639 |t#2|) (-639 (-766)))) (-15 -1900 ((-766) $ |t#2|)) (-15 -1900 ((-766) $ |t#2| (-766))) (-15 -1454 ((-947 |t#1|) $ (-766))) (-15 -1454 ((-947 |t#1|) $ (-766) (-766))) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $ |t#2|)) (-6 (-997)) (-6 (-1192))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-530 |#2|)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-289) |has| |#1| (-554)) ((-308 $) . T) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-513 |#2| $) . T) ((-513 $ $) . T) ((-554) |has| |#1| (-554)) ((-642 #1#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-895 |#2|) . T) ((-968 |#1| #0# |#2|) . T) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1050 #1#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562))))) +((-1635 (((-417 (-1164 |#4|)) (-1164 |#4|)) 30) (((-417 |#4|) |#4|) 26))) +(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4|)) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|)))) (-845) (-788) (-13 (-306) (-146)) (-944 |#3| |#2| |#1|)) (T -736)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4))))) +(-10 -7 (-15 -1635 ((-417 |#4|) |#4|)) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|)))) +((-2649 (((-417 |#4|) |#4| |#2|) 118)) (-2279 (((-417 |#4|) |#4|) NIL)) (-2921 (((-417 (-1164 |#4|)) (-1164 |#4|)) 109) (((-417 |#4|) |#4|) 40)) (-3077 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-639 (-2 (|:| -1635 (-1164 |#4|)) (|:| -1960 (-562)))))) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|))) 68)) (-2091 (((-1164 |#3|) (-1164 |#3|) (-562)) 136)) (-3390 (((-639 (-766)) (-1164 |#4|) (-639 |#2|) (-766)) 60)) (-1943 (((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-1164 |#3|) (-1164 |#3|) |#4| (-639 |#2|) (-639 (-766)) (-639 |#3|)) 64)) (-4034 (((-2 (|:| |upol| (-1164 |#3|)) (|:| |Lval| (-639 |#3|)) (|:| |Lfact| (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562))))) (|:| |ctpol| |#3|)) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|))) 25)) (-1348 (((-2 (|:| -4380 (-1164 |#4|)) (|:| |polval| (-1164 |#3|))) (-1164 |#4|) (-1164 |#3|) (-562)) 56)) (-3956 (((-562) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562))))) 133)) (-3610 ((|#4| (-562) (-417 |#4|)) 57)) (-2588 (((-112) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562)))) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562))))) NIL))) +(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2921 ((-417 |#4|) |#4|)) (-15 -2921 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -2279 ((-417 |#4|) |#4|)) (-15 -3956 ((-562) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562)))))) (-15 -2649 ((-417 |#4|) |#4| |#2|)) (-15 -1348 ((-2 (|:| -4380 (-1164 |#4|)) (|:| |polval| (-1164 |#3|))) (-1164 |#4|) (-1164 |#3|) (-562))) (-15 -3077 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-639 (-2 (|:| -1635 (-1164 |#4|)) (|:| -1960 (-562)))))) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|)))) (-15 -4034 ((-2 (|:| |upol| (-1164 |#3|)) (|:| |Lval| (-639 |#3|)) (|:| |Lfact| (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562))))) (|:| |ctpol| |#3|)) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|)))) (-15 -3610 (|#4| (-562) (-417 |#4|))) (-15 -2588 ((-112) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562)))) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562)))))) (-15 -1943 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-1164 |#3|) (-1164 |#3|) |#4| (-639 |#2|) (-639 (-766)) (-639 |#3|))) (-15 -3390 ((-639 (-766)) (-1164 |#4|) (-639 |#2|) (-766))) (-15 -2091 ((-1164 |#3|) (-1164 |#3|) (-562)))) (-788) (-845) (-306) (-944 |#3| |#1| |#2|)) (T -737)) +((-2091 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *6)) (-5 *3 (-562)) (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-4 *7 (-845)) (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) (-4 *8 (-306)) (-5 *2 (-639 (-766))) (-5 *1 (-737 *6 *7 *8 *9)) (-5 *5 (-766)))) (-1943 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1164 *11)) (-5 *6 (-639 *10)) (-5 *7 (-639 (-766))) (-5 *8 (-639 *11)) (-4 *10 (-845)) (-4 *11 (-306)) (-4 *9 (-788)) (-4 *5 (-944 *11 *9 *10)) (-5 *2 (-639 (-1164 *5))) (-5 *1 (-737 *9 *10 *11 *5)) (-5 *3 (-1164 *5)))) (-2588 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-2 (|:| -1635 (-1164 *6)) (|:| -1960 (-562))))) (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-562)) (-5 *4 (-417 *2)) (-4 *2 (-944 *7 *5 *6)) (-5 *1 (-737 *5 *6 *7 *2)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-306)))) (-4034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-5 *5 (-639 (-639 *8))) (-4 *7 (-845)) (-4 *8 (-306)) (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) (-5 *2 (-2 (|:| |upol| (-1164 *8)) (|:| |Lval| (-639 *8)) (|:| |Lfact| (-639 (-2 (|:| -1635 (-1164 *8)) (|:| -1960 (-562))))) (|:| |ctpol| *8))) (-5 *1 (-737 *6 *7 *8 *9)))) (-3077 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-639 *7)) (-5 *5 (-639 (-639 *8))) (-4 *7 (-845)) (-4 *8 (-306)) (-4 *6 (-788)) (-4 *9 (-944 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-639 (-2 (|:| -1635 (-1164 *9)) (|:| -1960 (-562))))))) (-5 *1 (-737 *6 *7 *8 *9)) (-5 *3 (-1164 *9)))) (-1348 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-562)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-306)) (-4 *9 (-944 *8 *6 *7)) (-5 *2 (-2 (|:| -4380 (-1164 *9)) (|:| |polval| (-1164 *8)))) (-5 *1 (-737 *6 *7 *8 *9)) (-5 *3 (-1164 *9)) (-5 *4 (-1164 *8)))) (-2649 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-737 *5 *4 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1635 (-1164 *6)) (|:| -1960 (-562))))) (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-562)) (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-2279 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-944 *6 *4 *5)))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-944 *6 *4 *5))))) +(-10 -7 (-15 -2921 ((-417 |#4|) |#4|)) (-15 -2921 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -2279 ((-417 |#4|) |#4|)) (-15 -3956 ((-562) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562)))))) (-15 -2649 ((-417 |#4|) |#4| |#2|)) (-15 -1348 ((-2 (|:| -4380 (-1164 |#4|)) (|:| |polval| (-1164 |#3|))) (-1164 |#4|) (-1164 |#3|) (-562))) (-15 -3077 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-639 (-2 (|:| -1635 (-1164 |#4|)) (|:| -1960 (-562)))))) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|)))) (-15 -4034 ((-2 (|:| |upol| (-1164 |#3|)) (|:| |Lval| (-639 |#3|)) (|:| |Lfact| (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562))))) (|:| |ctpol| |#3|)) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|)))) (-15 -3610 (|#4| (-562) (-417 |#4|))) (-15 -2588 ((-112) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562)))) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1960 (-562)))))) (-15 -1943 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-1164 |#3|) (-1164 |#3|) |#4| (-639 |#2|) (-639 (-766)) (-639 |#3|))) (-15 -3390 ((-639 (-766)) (-1164 |#4|) (-639 |#2|) (-766))) (-15 -2091 ((-1164 |#3|) (-1164 |#3|) (-562)))) +((-3650 (($ $ (-916)) 12))) +(((-738 |#1| |#2|) (-10 -8 (-15 -3650 (|#1| |#1| (-916)))) (-739 |#2|) (-171)) (T -738)) +NIL +(-10 -8 (-15 -3650 (|#1| |#1| (-916)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-1379 (($ $ (-916)) 28)) (-3650 (($ $ (-916)) 33)) (-2991 (($ $ (-916)) 29)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1911 (($ $ $) 25)) (-4054 (((-857) $) 11)) (-2436 (($ $ $ $) 26)) (-3626 (($ $ $) 24)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-739 |#1|) (-139) (-171)) (T -739)) +((-3650 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-739 *3)) (-4 *3 (-171))))) +(-13 (-756) (-712 |t#1|) (-10 -8 (-15 -3650 ($ $ (-916))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-715) . T) ((-756) . T) ((-1050 |#1|) . T) ((-1092) . T)) +((-2596 (((-1030) (-683 (-224)) (-562) (-112) (-562)) 25)) (-3308 (((-1030) (-683 (-224)) (-562) (-112) (-562)) 24))) +(((-740) (-10 -7 (-15 -3308 ((-1030) (-683 (-224)) (-562) (-112) (-562))) (-15 -2596 ((-1030) (-683 (-224)) (-562) (-112) (-562))))) (T -740)) +((-2596 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-112)) (-5 *2 (-1030)) (-5 *1 (-740)))) (-3308 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-112)) (-5 *2 (-1030)) (-5 *1 (-740))))) +(-10 -7 (-15 -3308 ((-1030) (-683 (-224)) (-562) (-112) (-562))) (-15 -2596 ((-1030) (-683 (-224)) (-562) (-112) (-562)))) +((-2621 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) 43)) (-4053 (((-1030) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) 39)) (-4255 (((-1030) (-224) (-224) (-224) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) 32))) +(((-741) (-10 -7 (-15 -4255 ((-1030) (-224) (-224) (-224) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -4053 ((-1030) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2621 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))) (T -741)) +((-2621 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1030)) (-5 *1 (-741)))) (-4053 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1030)) (-5 *1 (-741)))) (-4255 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) (-5 *2 (-1030)) (-5 *1 (-741))))) +(-10 -7 (-15 -4255 ((-1030) (-224) (-224) (-224) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -4053 ((-1030) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -2621 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))))) +((-3572 (((-1030) (-562) (-562) (-683 (-224)) (-562)) 34)) (-2000 (((-1030) (-562) (-562) (-683 (-224)) (-562)) 33)) (-2066 (((-1030) (-562) (-683 (-224)) (-562)) 32)) (-1869 (((-1030) (-562) (-683 (-224)) (-562)) 31)) (-1790 (((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 30)) (-2099 (((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 29)) (-3503 (((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562)) 28)) (-1792 (((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562)) 27)) (-2886 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 24)) (-2051 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562)) 23)) (-3881 (((-1030) (-562) (-683 (-224)) (-562)) 22)) (-2384 (((-1030) (-562) (-683 (-224)) (-562)) 21))) +(((-742) (-10 -7 (-15 -2384 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -3881 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2051 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2886 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1792 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3503 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2099 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1790 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1869 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2066 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2000 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -3572 ((-1030) (-562) (-562) (-683 (-224)) (-562))))) (T -742)) +((-3572 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2000 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2066 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-1869 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-1790 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2099 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-3503 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-1792 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2886 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2051 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-3881 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2384 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742))))) +(-10 -7 (-15 -2384 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -3881 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2051 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2886 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1792 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3503 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2099 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1790 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1869 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2066 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2000 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -3572 ((-1030) (-562) (-562) (-683 (-224)) (-562)))) +((-1758 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3298 (((-1030) (-683 (-224)) (-683 (-224)) (-562) (-562)) 51)) (-3618 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2222 (((-1030) (-224) (-224) (-562) (-562) (-562) (-562)) 46)) (-3443 (((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 45)) (-3656 (((-1030) (-224) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 44)) (-2893 (((-1030) (-224) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 43)) (-3119 (((-1030) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 42)) (-1550 (((-1030) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) 38)) (-2813 (((-1030) (-224) (-224) (-562) (-683 (-224)) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) 37)) (-4122 (((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) 33)) (-4256 (((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) 32))) +(((-743) (-10 -7 (-15 -4256 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -4122 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -2813 ((-1030) (-224) (-224) (-562) (-683 (-224)) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -1550 ((-1030) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -3119 ((-1030) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2893 ((-1030) (-224) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3656 ((-1030) (-224) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3443 ((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2222 ((-1030) (-224) (-224) (-562) (-562) (-562) (-562))) (-15 -3618 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -3298 ((-1030) (-683 (-224)) (-683 (-224)) (-562) (-562))) (-15 -1758 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))) (T -743)) +((-1758 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-3298 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-743)))) (-3618 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-2222 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-743)))) (-3443 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-3656 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-2893 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-3119 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-1550 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-2813 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-743)))) (-4122 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-4256 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) (-5 *2 (-1030)) (-5 *1 (-743))))) +(-10 -7 (-15 -4256 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -4122 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -2813 ((-1030) (-224) (-224) (-562) (-683 (-224)) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -1550 ((-1030) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197))))) (-15 -3119 ((-1030) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2893 ((-1030) (-224) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3656 ((-1030) (-224) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3443 ((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2222 ((-1030) (-224) (-224) (-562) (-562) (-562) (-562))) (-15 -3618 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -3298 ((-1030) (-683 (-224)) (-683 (-224)) (-562) (-562))) (-15 -1758 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))))) +((-3568 (((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1921 (((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387)) 69) (((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3538 (((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) 57)) (-3929 (((-1030) (-683 (-224)) (-683 (-224)) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 50)) (-2763 (((-1030) (-224) (-562) (-562) (-1150) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3059 (((-1030) (-224) (-562) (-562) (-224) (-1150) (-224) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1542 (((-1030) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 42)) (-2085 (((-1030) (-224) (-562) (-562) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-744) (-10 -7 (-15 -2085 ((-1030) (-224) (-562) (-562) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1542 ((-1030) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3059 ((-1030) (-224) (-562) (-562) (-224) (-1150) (-224) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -2763 ((-1030) (-224) (-562) (-562) (-1150) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3929 ((-1030) (-683 (-224)) (-683 (-224)) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3538 ((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -1921 ((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -1921 ((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -3568 ((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -744)) +((-3568 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-1921 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-387)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-1921 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1030)) (-5 *1 (-744)))) (-3538 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-3929 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1030)) (-5 *1 (-744)))) (-2763 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-683 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-3059 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-683 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-1542 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-2085 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) +(-10 -7 (-15 -2085 ((-1030) (-224) (-562) (-562) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1542 ((-1030) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3059 ((-1030) (-224) (-562) (-562) (-224) (-1150) (-224) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -2763 ((-1030) (-224) (-562) (-562) (-1150) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -3929 ((-1030) (-683 (-224)) (-683 (-224)) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3538 ((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -1921 ((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -1921 ((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -3568 ((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-1414 (((-1030) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-669 (-224)) (-562)) 45)) (-2854 (((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-1150) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) 41)) (-3227 (((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 23))) +(((-745) (-10 -7 (-15 -3227 ((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2854 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-1150) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -1414 ((-1030) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-669 (-224)) (-562))))) (T -745)) +((-1414 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-669 (-224))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-745)))) (-2854 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1030)) (-5 *1 (-745)))) (-3227 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-745))))) +(-10 -7 (-15 -3227 ((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2854 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-1150) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -1414 ((-1030) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-669 (-224)) (-562)))) +((-3029 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-683 (-224)) (-224) (-224) (-562)) 35)) (-1702 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-224) (-224) (-562)) 34)) (-3834 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-683 (-224)) (-224) (-224) (-562)) 33)) (-2274 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 29)) (-2439 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 28)) (-3816 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562)) 27)) (-2270 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562)) 24)) (-2597 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562)) 23)) (-2663 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562)) 22)) (-3000 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562)) 21))) +(((-746) (-10 -7 (-15 -3000 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))) (-15 -2663 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2597 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -2270 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -3816 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562))) (-15 -2439 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2274 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3834 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-683 (-224)) (-224) (-224) (-562))) (-15 -1702 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-224) (-224) (-562))) (-15 -3029 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-683 (-224)) (-224) (-224) (-562))))) (T -746)) +((-3029 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-746)))) (-1702 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-746)))) (-3834 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *6 (-224)) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-746)))) (-2274 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-2439 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-3816 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-746)))) (-2270 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-2597 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-2663 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-3000 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746))))) +(-10 -7 (-15 -3000 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))) (-15 -2663 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2597 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -2270 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -3816 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562))) (-15 -2439 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2274 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3834 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-683 (-224)) (-224) (-224) (-562))) (-15 -1702 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-224) (-224) (-562))) (-15 -3029 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-683 (-224)) (-224) (-224) (-562)))) +((-2405 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562)) 45)) (-2818 (((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-562)) 44)) (-1323 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562)) 43)) (-2855 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 42)) (-3090 (((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562)) 41)) (-4311 (((-1030) (-1150) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562)) 40)) (-2366 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562) (-562) (-562) (-224) (-683 (-224)) (-562)) 39)) (-3682 (((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562))) 38)) (-1919 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562)) 35)) (-3175 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562)) 34)) (-3602 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562)) 33)) (-2125 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 32)) (-2423 (((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562)) 31)) (-3960 (((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-562)) 30)) (-3640 (((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-562) (-562) (-562)) 29)) (-2160 (((-1030) (-562) (-562) (-562) (-224) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-562)) (-562) (-562) (-562)) 28)) (-2417 (((-1030) (-562) (-683 (-224)) (-224) (-562)) 24)) (-3896 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 21))) +(((-747) (-10 -7 (-15 -3896 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2417 ((-1030) (-562) (-683 (-224)) (-224) (-562))) (-15 -2160 ((-1030) (-562) (-562) (-562) (-224) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-562)) (-562) (-562) (-562))) (-15 -3640 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-562) (-562) (-562))) (-15 -3960 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-562))) (-15 -2423 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562))) (-15 -2125 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3602 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562))) (-15 -3175 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562))) (-15 -1919 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3682 ((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)))) (-15 -2366 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562) (-562) (-562) (-224) (-683 (-224)) (-562))) (-15 -4311 ((-1030) (-1150) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562))) (-15 -3090 ((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2855 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1323 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))) (-15 -2818 ((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2405 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))))) (T -747)) +((-2405 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2818 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-1323 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2855 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-3090 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-4311 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) (-5 *7 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2366 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *6 (-224)) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-3682 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) (-5 *7 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-1919 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-3175 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-3602 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2125 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2423 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-3960 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-3640 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2160 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) (-5 *3 (-562)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2417 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-3896 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747))))) +(-10 -7 (-15 -3896 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2417 ((-1030) (-562) (-683 (-224)) (-224) (-562))) (-15 -2160 ((-1030) (-562) (-562) (-562) (-224) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-562)) (-562) (-562) (-562))) (-15 -3640 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-562) (-562) (-562))) (-15 -3960 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-562))) (-15 -2423 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562))) (-15 -2125 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3602 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562))) (-15 -3175 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562))) (-15 -1919 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3682 ((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)))) (-15 -2366 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562) (-562) (-562) (-224) (-683 (-224)) (-562))) (-15 -4311 ((-1030) (-1150) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562))) (-15 -3090 ((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2855 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1323 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))) (-15 -2818 ((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2405 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562)))) +((-2693 (((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-562) (-683 (-224)) (-562)) 63)) (-3005 (((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-112) (-224) (-562) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-562) (-562) (-562) (-562) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1373 (((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-112) (-112) (-562) (-562) (-683 (-224)) (-683 (-562)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) 58)) (-2825 (((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-562) (-562) (-683 (-224)) (-562)) 51)) (-2198 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2396 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2087 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3888 (((-1030) (-562) (-224) (-224) (-562) (-224) (-112) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-748) (-10 -7 (-15 -3888 ((-1030) (-562) (-224) (-224) (-562) (-224) (-112) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -2087 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -2396 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -2198 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2825 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-562) (-562) (-683 (-224)) (-562))) (-15 -1373 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-112) (-112) (-562) (-562) (-683 (-224)) (-683 (-562)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3005 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-112) (-224) (-562) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-562) (-562) (-562) (-562) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -2693 ((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-562) (-683 (-224)) (-562))))) (T -748)) +((-2693 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748)))) (-3005 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-683 (-562))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-748)))) (-1373 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-683 (-224))) (-5 *6 (-112)) (-5 *7 (-683 (-562))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-562)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748)))) (-2825 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-112)) (-5 *2 (-1030)) (-5 *1 (-748)))) (-2198 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1030)) (-5 *1 (-748)))) (-2396 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1030)) (-5 *1 (-748)))) (-2087 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1030)) (-5 *1 (-748)))) (-3888 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-562)) (-5 *5 (-112)) (-5 *6 (-683 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748))))) +(-10 -7 (-15 -3888 ((-1030) (-562) (-224) (-224) (-562) (-224) (-112) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -2087 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -2396 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -2198 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2825 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-562) (-562) (-683 (-224)) (-562))) (-15 -1373 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-112) (-112) (-562) (-562) (-683 (-224)) (-683 (-562)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3005 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-112) (-224) (-562) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-562) (-562) (-562) (-562) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -2693 ((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-562) (-683 (-224)) (-562)))) +((-2642 (((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562)) 47)) (-2403 (((-1030) (-1150) (-1150) (-562) (-562) (-683 (-168 (-224))) (-562) (-683 (-168 (-224))) (-562) (-562) (-683 (-168 (-224))) (-562)) 46)) (-3903 (((-1030) (-562) (-562) (-562) (-683 (-168 (-224))) (-562)) 45)) (-4223 (((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 40)) (-2846 (((-1030) (-1150) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-683 (-224)) (-562)) 39)) (-3132 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-562)) 36)) (-3471 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562)) 35)) (-3905 (((-1030) (-562) (-562) (-562) (-562) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-224) (-224) (-562)) 34)) (-3013 (((-1030) (-562) (-562) (-562) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-112) (-224) (-112) (-683 (-562)) (-683 (-224)) (-562)) 33)) (-1380 (((-1030) (-562) (-562) (-562) (-562) (-224) (-112) (-112) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-562)) 32))) +(((-749) (-10 -7 (-15 -1380 ((-1030) (-562) (-562) (-562) (-562) (-224) (-112) (-112) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-562))) (-15 -3013 ((-1030) (-562) (-562) (-562) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-112) (-224) (-112) (-683 (-562)) (-683 (-224)) (-562))) (-15 -3905 ((-1030) (-562) (-562) (-562) (-562) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-224) (-224) (-562))) (-15 -3471 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562))) (-15 -3132 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-562))) (-15 -2846 ((-1030) (-1150) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-683 (-224)) (-562))) (-15 -4223 ((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3903 ((-1030) (-562) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -2403 ((-1030) (-1150) (-1150) (-562) (-562) (-683 (-168 (-224))) (-562) (-683 (-168 (-224))) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -2642 ((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562))))) (T -749)) +((-2642 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-2403 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-3903 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-4223 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-2846 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-3132 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-3471 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-749)))) (-3905 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-639 (-112))) (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) (-5 *7 (-224)) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-749)))) (-3013 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-683 (-562))) (-5 *5 (-112)) (-5 *7 (-683 (-224))) (-5 *3 (-562)) (-5 *6 (-224)) (-5 *2 (-1030)) (-5 *1 (-749)))) (-1380 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-639 (-112))) (-5 *7 (-683 (-224))) (-5 *8 (-683 (-562))) (-5 *3 (-562)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1030)) (-5 *1 (-749))))) +(-10 -7 (-15 -1380 ((-1030) (-562) (-562) (-562) (-562) (-224) (-112) (-112) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-562))) (-15 -3013 ((-1030) (-562) (-562) (-562) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-112) (-224) (-112) (-683 (-562)) (-683 (-224)) (-562))) (-15 -3905 ((-1030) (-562) (-562) (-562) (-562) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-224) (-224) (-562))) (-15 -3471 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562))) (-15 -3132 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-562))) (-15 -2846 ((-1030) (-1150) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-683 (-224)) (-562))) (-15 -4223 ((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3903 ((-1030) (-562) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -2403 ((-1030) (-1150) (-1150) (-562) (-562) (-683 (-168 (-224))) (-562) (-683 (-168 (-224))) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -2642 ((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562)))) +((-2528 (((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562)) 66)) (-3767 (((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562)) 61)) (-1969 (((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387)) 56) (((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) 55)) (-3074 (((-1030) (-562) (-562) (-562) (-224) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562)) 37)) (-1299 (((-1030) (-562) (-562) (-224) (-224) (-562) (-562) (-683 (-224)) (-562)) 33)) (-2912 (((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562) (-562)) 30)) (-3230 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 29)) (-1648 (((-1030) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 28)) (-2063 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 27)) (-2474 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562)) 26)) (-3356 (((-1030) (-562) (-562) (-683 (-224)) (-562)) 25)) (-3693 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 24)) (-3325 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 23)) (-3657 (((-1030) (-683 (-224)) (-562) (-562) (-562) (-562)) 22)) (-2164 (((-1030) (-562) (-562) (-683 (-224)) (-562)) 21))) +(((-750) (-10 -7 (-15 -2164 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -3657 ((-1030) (-683 (-224)) (-562) (-562) (-562) (-562))) (-15 -3325 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3693 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3356 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -2474 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562))) (-15 -2063 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1648 ((-1030) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3230 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2912 ((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562) (-562))) (-15 -1299 ((-1030) (-562) (-562) (-224) (-224) (-562) (-562) (-683 (-224)) (-562))) (-15 -3074 ((-1030) (-562) (-562) (-562) (-224) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1969 ((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -1969 ((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -3767 ((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2528 ((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562))))) (T -750)) +((-2528 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-112)) (-5 *5 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3767 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-112)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1969 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1969 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3074 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-562)) (-5 *5 (-112)) (-5 *6 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1299 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-2912 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3230 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1648 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-2063 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-2474 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3356 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3693 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3325 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3657 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-2164 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750))))) +(-10 -7 (-15 -2164 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -3657 ((-1030) (-683 (-224)) (-562) (-562) (-562) (-562))) (-15 -3325 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3693 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3356 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -2474 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562))) (-15 -2063 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1648 ((-1030) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3230 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2912 ((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562) (-562))) (-15 -1299 ((-1030) (-562) (-562) (-224) (-224) (-562) (-562) (-683 (-224)) (-562))) (-15 -3074 ((-1030) (-562) (-562) (-562) (-224) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1969 ((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -1969 ((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -3767 ((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2528 ((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562)))) +((-2552 (((-1030) (-562) (-562) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) 61)) (-3968 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562)) 57)) (-4198 (((-1030) (-562) (-683 (-224)) (-112) (-224) (-562) (-562) (-562) (-562) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) 56)) (-3615 (((-1030) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562)) 37)) (-2158 (((-1030) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-562)) 36)) (-2361 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 33)) (-1925 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224))) 32)) (-3637 (((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562)) 28)) (-2197 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562)) 27)) (-3820 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562)) 26)) (-4189 (((-1030) (-562) (-683 (-168 (-224))) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-562)) 22))) +(((-751) (-10 -7 (-15 -4189 ((-1030) (-562) (-683 (-168 (-224))) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -3820 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -2197 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -3637 ((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562))) (-15 -1925 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)))) (-15 -2361 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2158 ((-1030) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3615 ((-1030) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562))) (-15 -4198 ((-1030) (-562) (-683 (-224)) (-112) (-224) (-562) (-562) (-562) (-562) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -3968 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562))) (-15 -2552 ((-1030) (-562) (-562) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))) (T -751)) +((-2552 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-3968 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-4198 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1030)) (-5 *1 (-751)))) (-3615 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-2158 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-2361 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-751)))) (-1925 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-3637 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-2197 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-751)))) (-3820 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-751)))) (-4189 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-751))))) +(-10 -7 (-15 -4189 ((-1030) (-562) (-683 (-168 (-224))) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -3820 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -2197 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -3637 ((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562))) (-15 -1925 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)))) (-15 -2361 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2158 ((-1030) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3615 ((-1030) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562))) (-15 -4198 ((-1030) (-562) (-683 (-224)) (-112) (-224) (-562) (-562) (-562) (-562) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -3968 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562))) (-15 -2552 ((-1030) (-562) (-562) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))))) +((-3235 (((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-562) (-683 (-224))) 29)) (-3558 (((-1030) (-1150) (-562) (-562) (-683 (-224))) 28)) (-3973 (((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-224))) 27)) (-4243 (((-1030) (-562) (-562) (-562) (-683 (-224))) 21))) +(((-752) (-10 -7 (-15 -4243 ((-1030) (-562) (-562) (-562) (-683 (-224)))) (-15 -3973 ((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-224)))) (-15 -3558 ((-1030) (-1150) (-562) (-562) (-683 (-224)))) (-15 -3235 ((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-562) (-683 (-224)))))) (T -752)) +((-3235 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-752)))) (-3558 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-752)))) (-3973 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-752)))) (-4243 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-752))))) +(-10 -7 (-15 -4243 ((-1030) (-562) (-562) (-562) (-683 (-224)))) (-15 -3973 ((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-224)))) (-15 -3558 ((-1030) (-1150) (-562) (-562) (-683 (-224)))) (-15 -3235 ((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-562) (-683 (-224))))) +((-2881 (((-1030) (-224) (-224) (-224) (-224) (-562)) 62)) (-2162 (((-1030) (-224) (-224) (-224) (-562)) 61)) (-3415 (((-1030) (-224) (-224) (-224) (-562)) 60)) (-1627 (((-1030) (-224) (-224) (-562)) 59)) (-2808 (((-1030) (-224) (-562)) 58)) (-4106 (((-1030) (-224) (-562)) 57)) (-3773 (((-1030) (-224) (-562)) 56)) (-2102 (((-1030) (-224) (-562)) 55)) (-3313 (((-1030) (-224) (-562)) 54)) (-2905 (((-1030) (-224) (-562)) 53)) (-3239 (((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562)) 52)) (-3570 (((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562)) 51)) (-2326 (((-1030) (-224) (-562)) 50)) (-3692 (((-1030) (-224) (-562)) 49)) (-4135 (((-1030) (-224) (-562)) 48)) (-2678 (((-1030) (-224) (-562)) 47)) (-1970 (((-1030) (-562) (-224) (-168 (-224)) (-562) (-1150) (-562)) 46)) (-1997 (((-1030) (-1150) (-168 (-224)) (-1150) (-562)) 45)) (-3923 (((-1030) (-1150) (-168 (-224)) (-1150) (-562)) 44)) (-1331 (((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562)) 43)) (-3127 (((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562)) 42)) (-3574 (((-1030) (-224) (-562)) 39)) (-2223 (((-1030) (-224) (-562)) 38)) (-2599 (((-1030) (-224) (-562)) 37)) (-3965 (((-1030) (-224) (-562)) 36)) (-4110 (((-1030) (-224) (-562)) 35)) (-3406 (((-1030) (-224) (-562)) 34)) (-1457 (((-1030) (-224) (-562)) 33)) (-1942 (((-1030) (-224) (-562)) 32)) (-3391 (((-1030) (-224) (-562)) 31)) (-3722 (((-1030) (-224) (-562)) 30)) (-2250 (((-1030) (-224) (-224) (-224) (-562)) 29)) (-2515 (((-1030) (-224) (-562)) 28)) (-3408 (((-1030) (-224) (-562)) 27)) (-3751 (((-1030) (-224) (-562)) 26)) (-2263 (((-1030) (-224) (-562)) 25)) (-2530 (((-1030) (-224) (-562)) 24)) (-4039 (((-1030) (-168 (-224)) (-562)) 21))) +(((-753) (-10 -7 (-15 -4039 ((-1030) (-168 (-224)) (-562))) (-15 -2530 ((-1030) (-224) (-562))) (-15 -2263 ((-1030) (-224) (-562))) (-15 -3751 ((-1030) (-224) (-562))) (-15 -3408 ((-1030) (-224) (-562))) (-15 -2515 ((-1030) (-224) (-562))) (-15 -2250 ((-1030) (-224) (-224) (-224) (-562))) (-15 -3722 ((-1030) (-224) (-562))) (-15 -3391 ((-1030) (-224) (-562))) (-15 -1942 ((-1030) (-224) (-562))) (-15 -1457 ((-1030) (-224) (-562))) (-15 -3406 ((-1030) (-224) (-562))) (-15 -4110 ((-1030) (-224) (-562))) (-15 -3965 ((-1030) (-224) (-562))) (-15 -2599 ((-1030) (-224) (-562))) (-15 -2223 ((-1030) (-224) (-562))) (-15 -3574 ((-1030) (-224) (-562))) (-15 -3127 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -1331 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -3923 ((-1030) (-1150) (-168 (-224)) (-1150) (-562))) (-15 -1997 ((-1030) (-1150) (-168 (-224)) (-1150) (-562))) (-15 -1970 ((-1030) (-562) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -2678 ((-1030) (-224) (-562))) (-15 -4135 ((-1030) (-224) (-562))) (-15 -3692 ((-1030) (-224) (-562))) (-15 -2326 ((-1030) (-224) (-562))) (-15 -3570 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -3239 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -2905 ((-1030) (-224) (-562))) (-15 -3313 ((-1030) (-224) (-562))) (-15 -2102 ((-1030) (-224) (-562))) (-15 -3773 ((-1030) (-224) (-562))) (-15 -4106 ((-1030) (-224) (-562))) (-15 -2808 ((-1030) (-224) (-562))) (-15 -1627 ((-1030) (-224) (-224) (-562))) (-15 -3415 ((-1030) (-224) (-224) (-224) (-562))) (-15 -2162 ((-1030) (-224) (-224) (-224) (-562))) (-15 -2881 ((-1030) (-224) (-224) (-224) (-224) (-562))))) (T -753)) +((-2881 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2162 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3415 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1627 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4106 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2102 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3239 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3570 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4135 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1970 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-562)) (-5 *5 (-168 (-224))) (-5 *6 (-1150)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1997 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1150)) (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3923 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1150)) (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1331 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3127 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1457 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3391 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2250 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2515 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3751 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-168 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(-10 -7 (-15 -4039 ((-1030) (-168 (-224)) (-562))) (-15 -2530 ((-1030) (-224) (-562))) (-15 -2263 ((-1030) (-224) (-562))) (-15 -3751 ((-1030) (-224) (-562))) (-15 -3408 ((-1030) (-224) (-562))) (-15 -2515 ((-1030) (-224) (-562))) (-15 -2250 ((-1030) (-224) (-224) (-224) (-562))) (-15 -3722 ((-1030) (-224) (-562))) (-15 -3391 ((-1030) (-224) (-562))) (-15 -1942 ((-1030) (-224) (-562))) (-15 -1457 ((-1030) (-224) (-562))) (-15 -3406 ((-1030) (-224) (-562))) (-15 -4110 ((-1030) (-224) (-562))) (-15 -3965 ((-1030) (-224) (-562))) (-15 -2599 ((-1030) (-224) (-562))) (-15 -2223 ((-1030) (-224) (-562))) (-15 -3574 ((-1030) (-224) (-562))) (-15 -3127 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -1331 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -3923 ((-1030) (-1150) (-168 (-224)) (-1150) (-562))) (-15 -1997 ((-1030) (-1150) (-168 (-224)) (-1150) (-562))) (-15 -1970 ((-1030) (-562) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -2678 ((-1030) (-224) (-562))) (-15 -4135 ((-1030) (-224) (-562))) (-15 -3692 ((-1030) (-224) (-562))) (-15 -2326 ((-1030) (-224) (-562))) (-15 -3570 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -3239 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -2905 ((-1030) (-224) (-562))) (-15 -3313 ((-1030) (-224) (-562))) (-15 -2102 ((-1030) (-224) (-562))) (-15 -3773 ((-1030) (-224) (-562))) (-15 -4106 ((-1030) (-224) (-562))) (-15 -2808 ((-1030) (-224) (-562))) (-15 -1627 ((-1030) (-224) (-224) (-562))) (-15 -3415 ((-1030) (-224) (-224) (-224) (-562))) (-15 -2162 ((-1030) (-224) (-224) (-224) (-562))) (-15 -2881 ((-1030) (-224) (-224) (-224) (-224) (-562)))) +((-2020 (((-1261)) 18)) (-3871 (((-1150)) 22)) (-1945 (((-1150)) 21)) (-1598 (((-1096) (-1168) (-683 (-562))) 37) (((-1096) (-1168) (-683 (-224))) 32)) (-2725 (((-112)) 16)) (-2811 (((-1150) (-1150)) 25))) +(((-754) (-10 -7 (-15 -1945 ((-1150))) (-15 -3871 ((-1150))) (-15 -2811 ((-1150) (-1150))) (-15 -1598 ((-1096) (-1168) (-683 (-224)))) (-15 -1598 ((-1096) (-1168) (-683 (-562)))) (-15 -2725 ((-112))) (-15 -2020 ((-1261))))) (T -754)) +((-2020 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-754)))) (-2725 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-754)))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-683 (-562))) (-5 *2 (-1096)) (-5 *1 (-754)))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-683 (-224))) (-5 *2 (-1096)) (-5 *1 (-754)))) (-2811 (*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754)))) (-3871 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754)))) (-1945 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754))))) +(-10 -7 (-15 -1945 ((-1150))) (-15 -3871 ((-1150))) (-15 -2811 ((-1150) (-1150))) (-15 -1598 ((-1096) (-1168) (-683 (-224)))) (-15 -1598 ((-1096) (-1168) (-683 (-562)))) (-15 -2725 ((-112))) (-15 -2020 ((-1261)))) +((-1911 (($ $ $) 10)) (-2436 (($ $ $ $) 9)) (-3626 (($ $ $) 12))) +(((-755 |#1|) (-10 -8 (-15 -3626 (|#1| |#1| |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1| |#1|))) (-756)) (T -755)) +NIL +(-10 -8 (-15 -3626 (|#1| |#1| |#1|)) (-15 -1911 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-1379 (($ $ (-916)) 28)) (-2991 (($ $ (-916)) 29)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1911 (($ $ $) 25)) (-4054 (((-857) $) 11)) (-2436 (($ $ $ $) 26)) (-3626 (($ $ $) 24)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27))) +(((-756) (-139)) (T -756)) +((-2436 (*1 *1 *1 *1 *1) (-4 *1 (-756))) (-1911 (*1 *1 *1 *1) (-4 *1 (-756))) (-3626 (*1 *1 *1 *1) (-4 *1 (-756)))) +(-13 (-21) (-715) (-10 -8 (-15 -2436 ($ $ $ $)) (-15 -1911 ($ $ $)) (-15 -3626 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-715) . T) ((-1092) . T)) +((-4054 (((-857) $) NIL) (($ (-562)) 10))) +(((-757 |#1|) (-10 -8 (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) (-758)) (T -757)) +NIL +(-10 -8 (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2545 (((-3 $ "failed") $) 40)) (-1379 (($ $ (-916)) 28) (($ $ (-766)) 35)) (-3668 (((-3 $ "failed") $) 38)) (-1957 (((-112) $) 34)) (-4238 (((-3 $ "failed") $) 39)) (-2991 (($ $ (-916)) 29) (($ $ (-766)) 36)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1911 (($ $ $) 25)) (-4054 (((-857) $) 11) (($ (-562)) 31)) (-2579 (((-766)) 32)) (-2436 (($ $ $ $) 26)) (-3626 (($ $ $) 24)) (-2286 (($) 18 T CONST)) (-2294 (($) 33 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 30) (($ $ (-766)) 37)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27))) +(((-758) (-139)) (T -758)) +((-2579 (*1 *2) (-12 (-4 *1 (-758)) (-5 *2 (-766)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-758))))) +(-13 (-756) (-717) (-10 -8 (-15 -2579 ((-766))) (-15 -4054 ($ (-562))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-715) . T) ((-717) . T) ((-756) . T) ((-1092) . T)) +((-2086 (((-639 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 (-168 |#1|)))))) (-683 (-168 (-406 (-562)))) |#1|) 33)) (-4239 (((-639 (-168 |#1|)) (-683 (-168 (-406 (-562)))) |#1|) 23)) (-3376 (((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))) (-1168)) 20) (((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562))))) 19))) +(((-759 |#1|) (-10 -7 (-15 -3376 ((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))))) (-15 -3376 ((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))) (-1168))) (-15 -4239 ((-639 (-168 |#1|)) (-683 (-168 (-406 (-562)))) |#1|)) (-15 -2086 ((-639 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 (-168 |#1|)))))) (-683 (-168 (-406 (-562)))) |#1|))) (-13 (-362) (-843))) (T -759)) +((-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *2 (-639 (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 (-168 *4))))))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843))))) (-4239 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *2 (-639 (-168 *4))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843))))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *4 (-1168)) (-5 *2 (-947 (-168 (-406 (-562))))) (-5 *1 (-759 *5)) (-4 *5 (-13 (-362) (-843))))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *2 (-947 (-168 (-406 (-562))))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843)))))) +(-10 -7 (-15 -3376 ((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))))) (-15 -3376 ((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))) (-1168))) (-15 -4239 ((-639 (-168 |#1|)) (-683 (-168 (-406 (-562)))) |#1|)) (-15 -2086 ((-639 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 (-168 |#1|)))))) (-683 (-168 (-406 (-562)))) |#1|))) +((-1977 (((-173 (-562)) |#1|) 25))) +(((-760 |#1|) (-10 -7 (-15 -1977 ((-173 (-562)) |#1|))) (-403)) (T -760)) +((-1977 (*1 *2 *3) (-12 (-5 *2 (-173 (-562))) (-5 *1 (-760 *3)) (-4 *3 (-403))))) +(-10 -7 (-15 -1977 ((-173 (-562)) |#1|))) +((-1639 ((|#1| |#1| |#1|) 24)) (-2492 ((|#1| |#1| |#1|) 23)) (-4132 ((|#1| |#1| |#1|) 32)) (-3671 ((|#1| |#1| |#1|) 28)) (-2075 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1535 (((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|) 22))) +(((-761 |#1| |#2|) (-10 -7 (-15 -1535 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -2075 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|))) (-703 |#2|) (-362)) (T -761)) +((-4132 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-3671 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-2075 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-1639 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-2492 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-1535 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-761 *3 *4)) (-4 *3 (-703 *4))))) +(-10 -7 (-15 -1535 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -2075 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|))) +((-2475 (((-685 (-1214)) $ (-1214)) 26)) (-3202 (((-685 (-547)) $ (-547)) 25)) (-3787 (((-766) $ (-128)) 27)) (-3966 (((-685 (-129)) $ (-129)) 24)) (-3691 (((-685 (-1214)) $) 12)) (-3192 (((-685 (-1213)) $) 8)) (-3661 (((-685 (-1212)) $) 10)) (-1735 (((-685 (-547)) $) 13)) (-1890 (((-685 (-546)) $) 9)) (-2242 (((-685 (-545)) $) 11)) (-1477 (((-766) $ (-128)) 7)) (-1850 (((-685 (-129)) $) 14)) (-3828 (((-112) $) 31)) (-2640 (((-685 $) |#1| (-949)) 32)) (-3948 (($ $) 6))) +(((-762 |#1|) (-139) (-1092)) (T -762)) +((-2640 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *3 (-1092)) (-5 *2 (-685 *1)) (-4 *1 (-762 *3)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) +(-13 (-574) (-10 -8 (-15 -2640 ((-685 $) |t#1| (-949))) (-15 -3828 ((-112) $)))) +(((-172) . T) ((-526) . T) ((-574) . T) ((-855) . T)) +((-2438 (((-2 (|:| -3928 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))) (-562)) 59)) (-3826 (((-2 (|:| -3928 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562))))) 57)) (-2455 (((-562)) 70))) +(((-763 |#1| |#2|) (-10 -7 (-15 -2455 ((-562))) (-15 -3826 ((-2 (|:| -3928 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))))) (-15 -2438 ((-2 (|:| -3928 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))) (-562)))) (-1232 (-562)) (-408 (-562) |#1|)) (T -763)) +((-2438 (*1 *2 *3) (-12 (-5 *3 (-562)) (-4 *4 (-1232 *3)) (-5 *2 (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-763 *4 *5)) (-4 *5 (-408 *3 *4)))) (-3826 (*1 *2) (-12 (-4 *3 (-1232 (-562))) (-5 *2 (-2 (|:| -3928 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562))))) (-5 *1 (-763 *3 *4)) (-4 *4 (-408 (-562) *3)))) (-2455 (*1 *2) (-12 (-4 *3 (-1232 *2)) (-5 *2 (-562)) (-5 *1 (-763 *3 *4)) (-4 *4 (-408 *2 *3))))) +(-10 -7 (-15 -2455 ((-562))) (-15 -3826 ((-2 (|:| -3928 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))))) (-15 -2438 ((-2 (|:| -3928 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))) (-562)))) +((-4041 (((-112) $ $) NIL)) (-3961 (((-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $) 21)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 20) (($ (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) 18)) (-1731 (((-112) $ $) NIL))) +(((-764) (-13 (-1092) (-10 -8 (-15 -4054 ($ (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4054 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4054 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3961 ((-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))) (T -764)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-764)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-764)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-764)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-764))))) +(-13 (-1092) (-10 -8 (-15 -4054 ($ (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4054 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4054 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3961 ((-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $)))) +((-1567 (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|))) 18) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168))) 17)) (-4351 (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|))) 20) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168))) 19))) +(((-765 |#1|) (-10 -7 (-15 -1567 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -1567 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|))))) (-554)) (T -765)) +((-4351 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-765 *4)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-765 *5)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-765 *4)))) (-1567 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-765 *5))))) +(-10 -7 (-15 -1567 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -1567 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3659 (($ $ $) 6)) (-3214 (((-3 $ "failed") $ $) 9)) (-3358 (($ $ (-562)) 7)) (-1800 (($) NIL T CONST)) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($ $) NIL)) (-1787 (($ $ $) NIL)) (-1957 (((-112) $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1606 (($ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4054 (((-857) $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ $ $) NIL))) +(((-766) (-13 (-788) (-721) (-10 -8 (-15 -1787 ($ $ $)) (-15 -1811 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -2080 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -1762 ((-3 $ "failed") $ $)) (-15 -3358 ($ $ (-562))) (-15 -1448 ($ $)) (-6 (-4404 "*"))))) (T -766)) +((-1787 (*1 *1 *1 *1) (-5 *1 (-766))) (-1811 (*1 *1 *1 *1) (-5 *1 (-766))) (-1606 (*1 *1 *1 *1) (-5 *1 (-766))) (-2080 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2097 (-766)) (|:| -2264 (-766)))) (-5 *1 (-766)))) (-1762 (*1 *1 *1 *1) (|partial| -5 *1 (-766))) (-3358 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-766)))) (-1448 (*1 *1 *1) (-5 *1 (-766)))) +(-13 (-788) (-721) (-10 -8 (-15 -1787 ($ $ $)) (-15 -1811 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -2080 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -1762 ((-3 $ "failed") $ $)) (-15 -3358 ($ $ (-562))) (-15 -1448 ($ $)) (-6 (-4404 "*")))) +((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-4351 (((-3 |#2| "failed") |#2| |#2| (-114) (-1168)) 35))) +(((-767 |#1| |#2|) (-10 -7 (-15 -4351 ((-3 |#2| "failed") |#2| |#2| (-114) (-1168)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954))) (T -767)) +((-4351 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1168)) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-767 *5 *2)) (-4 *2 (-13 (-29 *5) (-1192) (-954)))))) +(-10 -7 (-15 -4351 ((-3 |#2| "failed") |#2| |#2| (-114) (-1168)))) +((-4054 (((-769) |#1|) 8))) +(((-768 |#1|) (-10 -7 (-15 -4054 ((-769) |#1|))) (-1207)) (T -768)) +((-4054 (*1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-768 *3)) (-4 *3 (-1207))))) +(-10 -7 (-15 -4054 ((-769) |#1|))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 7)) (-1731 (((-112) $ $) 9))) +(((-769) (-1092)) (T -769)) +NIL +(-1092) +((-2247 ((|#2| |#4|) 35))) +(((-770 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2247 (|#2| |#4|))) (-451) (-1232 |#1|) (-719 |#1| |#2|) (-1232 |#3|)) (T -770)) +((-2247 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-719 *4 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-770 *4 *2 *5 *3)) (-4 *3 (-1232 *5))))) +(-10 -7 (-15 -2247 (|#2| |#4|))) +((-3668 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3040 (((-1261) (-1150) (-1150) |#4| |#5|) 33)) (-1429 ((|#4| |#4| |#5|) 72)) (-3270 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|) 76)) (-3999 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 16))) +(((-771 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3668 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1429 (|#4| |#4| |#5|)) (-15 -3270 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -3040 ((-1261) (-1150) (-1150) |#4| |#5|)) (-15 -3999 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -771)) +((-3999 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3040 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1150)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *4 (-1058 *6 *7 *8)) (-5 *2 (-1261)) (-5 *1 (-771 *6 *7 *8 *4 *5)) (-4 *5 (-1064 *6 *7 *8 *4)))) (-3270 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-1429 (*1 *2 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *2 (-1058 *4 *5 *6)) (-5 *1 (-771 *4 *5 *6 *2 *3)) (-4 *3 (-1064 *4 *5 *6 *2)))) (-3668 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(-10 -7 (-15 -3668 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1429 (|#4| |#4| |#5|)) (-15 -3270 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -3040 ((-1261) (-1150) (-1150) |#4| |#5|)) (-15 -3999 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|))) +((-4048 (((-3 (-1164 (-1164 |#1|)) "failed") |#4|) 43)) (-2701 (((-639 |#4|) |#4|) 15)) (-4374 ((|#4| |#4|) 11))) +(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2701 ((-639 |#4|) |#4|)) (-15 -4048 ((-3 (-1164 (-1164 |#1|)) "failed") |#4|)) (-15 -4374 (|#4| |#4|))) (-348) (-328 |#1|) (-1232 |#2|) (-1232 |#3|) (-916)) (T -772)) +((-4374 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1232 *4)) (-5 *1 (-772 *3 *4 *5 *2 *6)) (-4 *2 (-1232 *5)) (-14 *6 (-916)))) (-4048 (*1 *2 *3) (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1232 *5)) (-5 *2 (-1164 (-1164 *4))) (-5 *1 (-772 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6)) (-14 *7 (-916)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1232 *5)) (-5 *2 (-639 *3)) (-5 *1 (-772 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6)) (-14 *7 (-916))))) +(-10 -7 (-15 -2701 ((-639 |#4|) |#4|)) (-15 -4048 ((-3 (-1164 (-1164 |#1|)) "failed") |#4|)) (-15 -4374 (|#4| |#4|))) +((-1334 (((-2 (|:| |deter| (-639 (-1164 |#5|))) (|:| |dterm| (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-639 |#1|)) (|:| |nlead| (-639 |#5|))) (-1164 |#5|) (-639 |#1|) (-639 |#5|)) 53)) (-3128 (((-639 (-766)) |#1|) 13))) +(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1334 ((-2 (|:| |deter| (-639 (-1164 |#5|))) (|:| |dterm| (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-639 |#1|)) (|:| |nlead| (-639 |#5|))) (-1164 |#5|) (-639 |#1|) (-639 |#5|))) (-15 -3128 ((-639 (-766)) |#1|))) (-1232 |#4|) (-788) (-845) (-306) (-944 |#4| |#2| |#3|)) (T -773)) +((-3128 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-639 (-766))) (-5 *1 (-773 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *6)) (-4 *7 (-944 *6 *4 *5)))) (-1334 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1232 *9)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-306)) (-4 *10 (-944 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-639 (-1164 *10))) (|:| |dterm| (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| *10))))) (|:| |nfacts| (-639 *6)) (|:| |nlead| (-639 *10)))) (-5 *1 (-773 *6 *7 *8 *9 *10)) (-5 *3 (-1164 *10)) (-5 *4 (-639 *6)) (-5 *5 (-639 *10))))) +(-10 -7 (-15 -1334 ((-2 (|:| |deter| (-639 (-1164 |#5|))) (|:| |dterm| (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-639 |#1|)) (|:| |nlead| (-639 |#5|))) (-1164 |#5|) (-639 |#1|) (-639 |#5|))) (-15 -3128 ((-639 (-766)) |#1|))) +((-1683 (((-639 (-2 (|:| |outval| |#1|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#1|))))) (-683 (-406 (-562))) |#1|) 31)) (-1897 (((-639 |#1|) (-683 (-406 (-562))) |#1|) 21)) (-3376 (((-947 (-406 (-562))) (-683 (-406 (-562))) (-1168)) 18) (((-947 (-406 (-562))) (-683 (-406 (-562)))) 17))) +(((-774 |#1|) (-10 -7 (-15 -3376 ((-947 (-406 (-562))) (-683 (-406 (-562))))) (-15 -3376 ((-947 (-406 (-562))) (-683 (-406 (-562))) (-1168))) (-15 -1897 ((-639 |#1|) (-683 (-406 (-562))) |#1|)) (-15 -1683 ((-639 (-2 (|:| |outval| |#1|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#1|))))) (-683 (-406 (-562))) |#1|))) (-13 (-362) (-843))) (T -774)) +((-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-639 (-2 (|:| |outval| *4) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 *4)))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843))))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-639 *4)) (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843))))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *4 (-1168)) (-5 *2 (-947 (-406 (-562)))) (-5 *1 (-774 *5)) (-4 *5 (-13 (-362) (-843))))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-947 (-406 (-562)))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843)))))) +(-10 -7 (-15 -3376 ((-947 (-406 (-562))) (-683 (-406 (-562))))) (-15 -3376 ((-947 (-406 (-562))) (-683 (-406 (-562))) (-1168))) (-15 -1897 ((-639 |#1|) (-683 (-406 (-562))) |#1|)) (-15 -1683 ((-639 (-2 (|:| |outval| |#1|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#1|))))) (-683 (-406 (-562))) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 34)) (-1402 (((-639 |#2|) $) NIL)) (-1599 (((-1164 $) $ |#2|) NIL) (((-1164 |#1|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 |#2|)) NIL)) (-3121 (($ $) 28)) (-3784 (((-112) $ $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3258 (($ $ $) 92 (|has| |#1| (-554)))) (-4052 (((-639 $) $ $) 105 (|has| |#1| (-554)))) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2798 (($ $) NIL (|has| |#1| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-947 (-406 (-562)))) NIL (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))))) (((-3 $ "failed") (-947 (-562))) NIL (-4037 (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2236 (|has| |#1| (-38 (-406 (-562)))))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168)))))) (((-3 $ "failed") (-947 |#1|)) NIL (-4037 (-12 (|has| |#2| (-610 (-1168))) (-2236 (|has| |#1| (-38 (-406 (-562))))) (-2236 (|has| |#1| (-38 (-562))))) (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2236 (|has| |#1| (-38 (-406 (-562))))) (-2236 (|has| |#1| (-544)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))) (-2236 (|has| |#1| (-987 (-562))))))) (((-3 (-1117 |#1| |#2|) "failed") $) 18)) (-3961 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) ((|#2| $) NIL) (($ (-947 (-406 (-562)))) NIL (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))))) (($ (-947 (-562))) NIL (-4037 (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2236 (|has| |#1| (-38 (-406 (-562)))))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168)))))) (($ (-947 |#1|)) NIL (-4037 (-12 (|has| |#2| (-610 (-1168))) (-2236 (|has| |#1| (-38 (-406 (-562))))) (-2236 (|has| |#1| (-38 (-562))))) (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2236 (|has| |#1| (-38 (-406 (-562))))) (-2236 (|has| |#1| (-544)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))) (-2236 (|has| |#1| (-987 (-562))))))) (((-1117 |#1| |#2|) $) NIL)) (-2835 (($ $ $ |#2|) NIL (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-554)))) (-1601 (($ $) NIL) (($ $ |#2|) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-4091 (((-112) $ $) NIL) (((-112) $ (-639 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-2708 (((-112) $) NIL)) (-2622 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 69)) (-1410 (($ $) 118 (|has| |#1| (-451)))) (-1498 (($ $) NIL (|has| |#1| (-451))) (($ $ |#2|) NIL (|has| |#1| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#1| (-904)))) (-3221 (($ $) NIL (|has| |#1| (-554)))) (-1994 (($ $) NIL (|has| |#1| (-554)))) (-4093 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-2410 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-3122 (($ $ |#1| (-530 |#2|) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| |#1| (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-2573 (((-112) $ $) NIL) (((-112) $ (-639 $)) NIL)) (-3524 (($ $ $ $ $) 89 (|has| |#1| (-554)))) (-4339 ((|#2| $) 19)) (-1390 (($ (-1164 |#1|) |#2|) NIL) (($ (-1164 $) |#2|) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-530 |#2|)) NIL) (($ $ |#2| (-766)) 36) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-1415 (($ $ $) 60)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ |#2|) NIL)) (-2311 (((-112) $) NIL)) (-2076 (((-530 |#2|) $) NIL) (((-766) $ |#2|) NIL) (((-639 (-766)) $ (-639 |#2|)) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2643 (((-766) $) 20)) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2836 (($ (-1 (-530 |#2|) (-530 |#2|)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3372 (((-3 |#2| "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-451)))) (-2698 (($ $) NIL (|has| |#1| (-451)))) (-4196 (((-639 $) $) NIL)) (-4343 (($ $) 37)) (-2889 (($ $) NIL (|has| |#1| (-451)))) (-2954 (((-639 $) $) 41)) (-2847 (($ $) 39)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3666 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3761 (-766))) $ $) 81)) (-2924 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $) 66) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $ |#2|) NIL)) (-2586 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2264 $)) $ $) NIL) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2264 $)) $ $ |#2|) NIL)) (-3793 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-2310 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-2913 (((-1150) $) NIL)) (-1851 (($ $ $) 107 (|has| |#1| (-554)))) (-2077 (((-639 $) $) 30)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| |#2|) (|:| -1960 (-766))) "failed") $) NIL)) (-2890 (((-112) $ $) NIL) (((-112) $ (-639 $)) NIL)) (-1849 (($ $ $) NIL)) (-3729 (($ $) 21)) (-1408 (((-112) $ $) NIL)) (-2766 (((-112) $ $) NIL) (((-112) $ (-639 $)) NIL)) (-1532 (($ $ $) NIL)) (-3063 (($ $) 23)) (-1709 (((-1112) $) NIL)) (-2235 (((-2 (|:| -1606 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-554)))) (-2062 (((-2 (|:| -1606 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-554)))) (-1534 (((-112) $) 52)) (-1547 ((|#1| $) 55)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 ((|#1| |#1| $) 115 (|has| |#1| (-451))) (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-2196 (((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-554)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-554)))) (-2285 (($ $ |#1|) 111 (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-2094 (($ $ |#1|) 110 (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-639 |#2|) (-639 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-639 |#2|) (-639 $)) NIL)) (-2455 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-4029 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-3598 (((-530 |#2|) $) NIL) (((-766) $ |#2|) 43) (((-639 (-766)) $ (-639 |#2|)) NIL)) (-2389 (($ $) NIL)) (-3771 (($ $) 33)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| |#1| (-610 (-535))) (|has| |#2| (-610 (-535))))) (($ (-947 (-406 (-562)))) NIL (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))))) (($ (-947 (-562))) NIL (-4037 (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2236 (|has| |#1| (-38 (-406 (-562)))))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168)))))) (($ (-947 |#1|)) NIL (|has| |#2| (-610 (-1168)))) (((-1150) $) NIL (-12 (|has| |#1| (-1033 (-562))) (|has| |#2| (-610 (-1168))))) (((-947 |#1|) $) NIL (|has| |#2| (-610 (-1168))))) (-3900 ((|#1| $) 114 (|has| |#1| (-451))) (($ $ |#2|) NIL (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-947 |#1|) $) NIL (|has| |#2| (-610 (-1168)))) (((-1117 |#1| |#2|) $) 15) (($ (-1117 |#1| |#2|)) 16) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-530 |#2|)) NIL) (($ $ |#2| (-766)) 44) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) 13 T CONST)) (-2442 (((-3 (-112) "failed") $ $) NIL)) (-2294 (($) 35 T CONST)) (-3330 (($ $ $ $ (-766)) 87 (|has| |#1| (-554)))) (-2249 (($ $ $ (-766)) 86 (|has| |#1| (-554)))) (-3114 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) 54)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) 63)) (-1835 (($ $ $) 73)) (** (($ $ (-916)) NIL) (($ $ (-766)) 61)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 59) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-775 |#1| |#2|) (-13 (-1058 |#1| (-530 |#2|) |#2|) (-609 (-1117 |#1| |#2|)) (-1033 (-1117 |#1| |#2|))) (-1044) (-845)) (T -775)) +NIL +(-13 (-1058 |#1| (-530 |#2|) |#2|) (-609 (-1117 |#1| |#2|)) (-1033 (-1117 |#1| |#2|))) +((-4152 (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)) 13))) +(((-776 |#1| |#2|) (-10 -7 (-15 -4152 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)))) (-1044) (-1044)) (T -776)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6))))) +(-10 -7 (-15 -4152 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 12)) (-2844 (((-1256 |#1|) $ (-766)) NIL)) (-1402 (((-639 (-1074)) $) NIL)) (-2427 (($ (-1164 |#1|)) NIL)) (-1599 (((-1164 $) $ (-1074)) NIL) (((-1164 |#1|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-1074))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3137 (((-639 $) $ $) 39 (|has| |#1| (-554)))) (-3258 (($ $ $) 35 (|has| |#1| (-554)))) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2798 (($ $) NIL (|has| |#1| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2897 (($ $ (-766)) NIL)) (-3028 (($ $ (-766)) NIL)) (-4157 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-451)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1074) "failed") $) NIL) (((-3 (-1164 |#1|) "failed") $) 10)) (-3961 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1074) $) NIL) (((-1164 |#1|) $) NIL)) (-2835 (($ $ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $ $) 43 (|has| |#1| (-171)))) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-4267 (($ $ $) NIL)) (-2375 (($ $ $) 71 (|has| |#1| (-554)))) (-2622 (((-2 (|:| -4221 |#1|) (|:| -2097 $) (|:| -2264 $)) $ $) 70 (|has| |#1| (-554)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-1498 (($ $) NIL (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#1| (-904)))) (-3122 (($ $ |#1| (-766) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1900 (((-766) $ $) NIL (|has| |#1| (-554)))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)))) (-1390 (($ (-1164 |#1|) (-1074)) NIL) (($ (-1164 $) (-1074)) NIL)) (-3374 (($ $ (-766)) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-766)) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-1415 (($ $ $) 20)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-1074)) NIL) (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-2076 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2836 (($ (-1 (-766) (-766)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4298 (((-1164 |#1|) $) NIL)) (-3372 (((-3 (-1074) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3666 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3761 (-766))) $ $) 26)) (-1616 (($ $ $) 29)) (-1884 (($ $ $) 32)) (-2924 (((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $) 31)) (-2913 (((-1150) $) NIL)) (-1851 (($ $ $) 41 (|has| |#1| (-554)))) (-3594 (((-2 (|:| -2097 $) (|:| -2264 $)) $ (-766)) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-1074)) (|:| -1960 (-766))) "failed") $) NIL)) (-2667 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3729 (($) NIL (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2235 (((-2 (|:| -1606 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-554)))) (-2062 (((-2 (|:| -1606 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-554)))) (-3273 (((-2 (|:| -2835 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-554)))) (-1794 (((-2 (|:| -2835 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-554)))) (-1534 (((-112) $) 13)) (-1547 ((|#1| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3348 (($ $ (-766) |#1| $) 19)) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-2196 (((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-554)))) (-1337 (((-2 (|:| -2835 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-554)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#1|) NIL) (($ $ (-639 (-1074)) (-639 |#1|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-639 (-1074)) (-639 $)) NIL)) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-1530 (((-3 $ "failed") $ (-766)) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-2455 (($ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3598 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-3900 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-3586 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-554)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-1074)) NIL) (((-1164 |#1|) $) 7) (($ (-1164 |#1|)) 8) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-766)) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) 21 T CONST)) (-2294 (($) 24 T CONST)) (-3114 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) 28) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-777 |#1|) (-13 (-1232 |#1|) (-609 (-1164 |#1|)) (-1033 (-1164 |#1|)) (-10 -8 (-15 -3348 ($ $ (-766) |#1| $)) (-15 -1415 ($ $ $)) (-15 -3666 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3761 (-766))) $ $)) (-15 -1616 ($ $ $)) (-15 -2924 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -1884 ($ $ $)) (IF (|has| |#1| (-554)) (PROGN (-15 -3137 ((-639 $) $ $)) (-15 -1851 ($ $ $)) (-15 -2196 ((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2062 ((-2 (|:| -1606 $) (|:| |coef1| $)) $ $)) (-15 -2235 ((-2 (|:| -1606 $) (|:| |coef2| $)) $ $)) (-15 -1337 ((-2 (|:| -2835 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1794 ((-2 (|:| -2835 |#1|) (|:| |coef1| $)) $ $)) (-15 -3273 ((-2 (|:| -2835 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1044)) (T -777)) +((-3348 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-766)) (-5 *1 (-777 *3)) (-4 *3 (-1044)))) (-1415 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044)))) (-3666 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-777 *3)) (|:| |polden| *3) (|:| -3761 (-766)))) (-5 *1 (-777 *3)) (-4 *3 (-1044)))) (-1616 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044)))) (-2924 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4221 *3) (|:| |gap| (-766)) (|:| -2097 (-777 *3)) (|:| -2264 (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-1044)))) (-1884 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044)))) (-3137 (*1 *2 *1 *1) (-12 (-5 *2 (-639 (-777 *3))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-1851 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-554)) (-4 *2 (-1044)))) (-2196 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-2062 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-2235 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-1337 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2835 *3) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-1794 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2835 *3) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-3273 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2835 *3) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) +(-13 (-1232 |#1|) (-609 (-1164 |#1|)) (-1033 (-1164 |#1|)) (-10 -8 (-15 -3348 ($ $ (-766) |#1| $)) (-15 -1415 ($ $ $)) (-15 -3666 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3761 (-766))) $ $)) (-15 -1616 ($ $ $)) (-15 -2924 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -1884 ($ $ $)) (IF (|has| |#1| (-554)) (PROGN (-15 -3137 ((-639 $) $ $)) (-15 -1851 ($ $ $)) (-15 -2196 ((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2062 ((-2 (|:| -1606 $) (|:| |coef1| $)) $ $)) (-15 -2235 ((-2 (|:| -1606 $) (|:| |coef2| $)) $ $)) (-15 -1337 ((-2 (|:| -2835 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1794 ((-2 (|:| -2835 |#1|) (|:| |coef1| $)) $ $)) (-15 -3273 ((-2 (|:| -2835 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-2092 ((|#1| (-766) |#1|) 32 (|has| |#1| (-38 (-406 (-562)))))) (-2601 ((|#1| (-766) |#1|) 22)) (-3444 ((|#1| (-766) |#1|) 34 (|has| |#1| (-38 (-406 (-562))))))) +(((-778 |#1|) (-10 -7 (-15 -2601 (|#1| (-766) |#1|)) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3444 (|#1| (-766) |#1|)) (-15 -2092 (|#1| (-766) |#1|))) |%noBranch|)) (-171)) (T -778)) +((-2092 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-171)))) (-3444 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-171)))) (-2601 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-171))))) +(-10 -7 (-15 -2601 (|#1| (-766) |#1|)) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3444 (|#1| (-766) |#1|)) (-15 -2092 (|#1| (-766) |#1|))) |%noBranch|)) +((-4041 (((-112) $ $) 7)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |#4|)))) (-639 |#4|)) 85)) (-2304 (((-639 $) (-639 |#4|)) 86) (((-639 $) (-639 |#4|) (-112)) 111)) (-1402 (((-639 |#3|) $) 33)) (-4170 (((-112) $) 26)) (-4274 (((-112) $) 17 (|has| |#1| (-554)))) (-4377 (((-112) |#4| $) 101) (((-112) $) 97)) (-3049 ((|#4| |#4| $) 92)) (-2798 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 126)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) 27)) (-4336 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4402))) (((-3 |#4| "failed") $ |#3|) 79)) (-1800 (($) 45 T CONST)) (-2207 (((-112) $) 22 (|has| |#1| (-554)))) (-1920 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3852 (((-112) $ $) 23 (|has| |#1| (-554)))) (-2539 (((-112) $) 25 (|has| |#1| (-554)))) (-2839 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3884 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3961 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-2387 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4091 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3595 ((|#4| |#4| $) 87)) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4402))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2267 (((-2 (|:| -1450 (-639 |#4|)) (|:| -3316 (-639 |#4|))) $) 105)) (-4079 (((-112) |#4| $) 136)) (-3513 (((-112) |#4| $) 133)) (-2764 (((-112) |#4| $) 137) (((-112) $) 134)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4402)))) (-2573 (((-112) |#4| $) 104) (((-112) $) 103)) (-4339 ((|#3| $) 34)) (-3292 (((-112) $ (-766)) 43)) (-1912 (((-639 |#4|) $) 53 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3754 (((-639 |#3|) $) 32)) (-2071 (((-112) |#3| $) 31)) (-3289 (((-112) $ (-766)) 42)) (-2913 (((-1150) $) 9)) (-1609 (((-3 |#4| (-639 $)) |#4| |#4| $) 128)) (-1851 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 127)) (-1504 (((-3 |#4| "failed") $) 83)) (-1814 (((-639 $) |#4| $) 129)) (-1950 (((-3 (-112) (-639 $)) |#4| $) 132)) (-2021 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4376 (((-639 $) |#4| $) 125) (((-639 $) (-639 |#4|) $) 124) (((-639 $) (-639 |#4|) (-639 $)) 123) (((-639 $) |#4| (-639 $)) 122)) (-1430 (($ |#4| $) 117) (($ (-639 |#4|) $) 116)) (-3576 (((-639 |#4|) $) 107)) (-2890 (((-112) |#4| $) 99) (((-112) $) 95)) (-1849 ((|#4| |#4| $) 90)) (-1408 (((-112) $ $) 110)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2766 (((-112) |#4| $) 100) (((-112) $) 96)) (-1532 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3310 (((-3 $ "failed") $ |#4|) 78)) (-1353 (($ $ |#4|) 77) (((-639 $) |#4| $) 115) (((-639 $) |#4| (-639 $)) 114) (((-639 $) (-639 |#4|) $) 113) (((-639 $) (-639 |#4|) (-639 $)) 112)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) 38)) (-2974 (((-112) $) 41)) (-4307 (($) 40)) (-3598 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4402)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) 60)) (-1812 (($ $ |#3|) 28)) (-3274 (($ $ |#3|) 30)) (-3277 (($ $) 88)) (-1568 (($ $ |#3|) 29)) (-4054 (((-857) $) 11) (((-639 |#4|) $) 37)) (-3730 (((-766) $) 76 (|has| |#3| (-367)))) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4252 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-1612 (((-639 $) |#4| $) 121) (((-639 $) |#4| (-639 $)) 120) (((-639 $) (-639 |#4|) $) 119) (((-639 $) (-639 |#4|) (-639 $)) 118)) (-1744 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4402)))) (-4089 (((-639 |#3|) $) 81)) (-4211 (((-112) |#4| $) 135)) (-3694 (((-112) |#3| $) 80)) (-1731 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4402))))) +(((-779 |#1| |#2| |#3| |#4|) (-139) (-451) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -779)) +NIL +(-13 (-1064 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1064 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1200 |#1| |#2| |#3| |#4|) . T) ((-1207) . T)) +((-2635 (((-3 (-378) "failed") (-315 |#1|) (-916)) 62 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-378) "failed") (-315 |#1|)) 54 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-378) "failed") (-406 (-947 |#1|)) (-916)) 41 (|has| |#1| (-554))) (((-3 (-378) "failed") (-406 (-947 |#1|))) 40 (|has| |#1| (-554))) (((-3 (-378) "failed") (-947 |#1|) (-916)) 31 (|has| |#1| (-1044))) (((-3 (-378) "failed") (-947 |#1|)) 30 (|has| |#1| (-1044)))) (-1655 (((-378) (-315 |#1|) (-916)) 99 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-378) (-315 |#1|)) 94 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-378) (-406 (-947 |#1|)) (-916)) 91 (|has| |#1| (-554))) (((-378) (-406 (-947 |#1|))) 90 (|has| |#1| (-554))) (((-378) (-947 |#1|) (-916)) 86 (|has| |#1| (-1044))) (((-378) (-947 |#1|)) 85 (|has| |#1| (-1044))) (((-378) |#1| (-916)) 76) (((-378) |#1|) 22)) (-2321 (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-916)) 71 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|))) 70 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-168 (-378)) "failed") (-315 |#1|) (-916)) 63 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-168 (-378)) "failed") (-315 |#1|)) 61 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))) (-916)) 46 (|has| |#1| (-554))) (((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|)))) 45 (|has| |#1| (-554))) (((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)) (-916)) 39 (|has| |#1| (-554))) (((-3 (-168 (-378)) "failed") (-406 (-947 |#1|))) 38 (|has| |#1| (-554))) (((-3 (-168 (-378)) "failed") (-947 |#1|) (-916)) 28 (|has| |#1| (-1044))) (((-3 (-168 (-378)) "failed") (-947 |#1|)) 26 (|has| |#1| (-1044))) (((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)) (-916)) 18 (|has| |#1| (-171))) (((-3 (-168 (-378)) "failed") (-947 (-168 |#1|))) 15 (|has| |#1| (-171)))) (-1562 (((-168 (-378)) (-315 (-168 |#1|)) (-916)) 102 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-168 (-378)) (-315 (-168 |#1|))) 101 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-168 (-378)) (-315 |#1|) (-916)) 100 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-168 (-378)) (-315 |#1|)) 98 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-168 (-378)) (-406 (-947 (-168 |#1|))) (-916)) 93 (|has| |#1| (-554))) (((-168 (-378)) (-406 (-947 (-168 |#1|)))) 92 (|has| |#1| (-554))) (((-168 (-378)) (-406 (-947 |#1|)) (-916)) 89 (|has| |#1| (-554))) (((-168 (-378)) (-406 (-947 |#1|))) 88 (|has| |#1| (-554))) (((-168 (-378)) (-947 |#1|) (-916)) 84 (|has| |#1| (-1044))) (((-168 (-378)) (-947 |#1|)) 83 (|has| |#1| (-1044))) (((-168 (-378)) (-947 (-168 |#1|)) (-916)) 78 (|has| |#1| (-171))) (((-168 (-378)) (-947 (-168 |#1|))) 77 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|) (-916)) 80 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|)) 79 (|has| |#1| (-171))) (((-168 (-378)) |#1| (-916)) 27) (((-168 (-378)) |#1|) 25))) +(((-780 |#1|) (-10 -7 (-15 -1655 ((-378) |#1|)) (-15 -1655 ((-378) |#1| (-916))) (-15 -1562 ((-168 (-378)) |#1|)) (-15 -1562 ((-168 (-378)) |#1| (-916))) (IF (|has| |#1| (-171)) (PROGN (-15 -1562 ((-168 (-378)) (-168 |#1|))) (-15 -1562 ((-168 (-378)) (-168 |#1|) (-916))) (-15 -1562 ((-168 (-378)) (-947 (-168 |#1|)))) (-15 -1562 ((-168 (-378)) (-947 (-168 |#1|)) (-916)))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-15 -1655 ((-378) (-947 |#1|))) (-15 -1655 ((-378) (-947 |#1|) (-916))) (-15 -1562 ((-168 (-378)) (-947 |#1|))) (-15 -1562 ((-168 (-378)) (-947 |#1|) (-916)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -1655 ((-378) (-406 (-947 |#1|)))) (-15 -1655 ((-378) (-406 (-947 |#1|)) (-916))) (-15 -1562 ((-168 (-378)) (-406 (-947 |#1|)))) (-15 -1562 ((-168 (-378)) (-406 (-947 |#1|)) (-916))) (-15 -1562 ((-168 (-378)) (-406 (-947 (-168 |#1|))))) (-15 -1562 ((-168 (-378)) (-406 (-947 (-168 |#1|))) (-916))) (IF (|has| |#1| (-845)) (PROGN (-15 -1655 ((-378) (-315 |#1|))) (-15 -1655 ((-378) (-315 |#1|) (-916))) (-15 -1562 ((-168 (-378)) (-315 |#1|))) (-15 -1562 ((-168 (-378)) (-315 |#1|) (-916))) (-15 -1562 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -1562 ((-168 (-378)) (-315 (-168 |#1|)) (-916)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -2321 ((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)) (-916)))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-15 -2635 ((-3 (-378) "failed") (-947 |#1|))) (-15 -2635 ((-3 (-378) "failed") (-947 |#1|) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-947 |#1|))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-947 |#1|) (-916)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2635 ((-3 (-378) "failed") (-406 (-947 |#1|)))) (-15 -2635 ((-3 (-378) "failed") (-406 (-947 |#1|)) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))) (-916))) (IF (|has| |#1| (-845)) (PROGN (-15 -2635 ((-3 (-378) "failed") (-315 |#1|))) (-15 -2635 ((-3 (-378) "failed") (-315 |#1|) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-916)))) |%noBranch|)) |%noBranch|)) (-610 (-378))) (T -780)) +((-2321 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-2321 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-2321 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-2321 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-2635 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-2635 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-2321 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-947 (-168 *5)))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-2321 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 (-168 *4)))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-2321 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-2321 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-2635 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-2635 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-2321 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-2321 (*1 *2 *3) (|partial| -12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-2635 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-2635 (*1 *2 *3) (|partial| -12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-2321 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-947 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-171)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-2321 (*1 *2 *3) (|partial| -12 (-5 *3 (-947 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-168 *5)))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 (-168 *4)))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-947 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-171)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-947 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-168 *5)) (-5 *4 (-916)) (-4 *5 (-171)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-5 *2 (-168 (-378))) (-5 *1 (-780 *3)) (-4 *3 (-610 (-378))))) (-1562 (*1 *2 *3) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-780 *3)) (-4 *3 (-610 (-378))))) (-1655 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-5 *2 (-378)) (-5 *1 (-780 *3)) (-4 *3 (-610 *2)))) (-1655 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-780 *3)) (-4 *3 (-610 *2))))) +(-10 -7 (-15 -1655 ((-378) |#1|)) (-15 -1655 ((-378) |#1| (-916))) (-15 -1562 ((-168 (-378)) |#1|)) (-15 -1562 ((-168 (-378)) |#1| (-916))) (IF (|has| |#1| (-171)) (PROGN (-15 -1562 ((-168 (-378)) (-168 |#1|))) (-15 -1562 ((-168 (-378)) (-168 |#1|) (-916))) (-15 -1562 ((-168 (-378)) (-947 (-168 |#1|)))) (-15 -1562 ((-168 (-378)) (-947 (-168 |#1|)) (-916)))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-15 -1655 ((-378) (-947 |#1|))) (-15 -1655 ((-378) (-947 |#1|) (-916))) (-15 -1562 ((-168 (-378)) (-947 |#1|))) (-15 -1562 ((-168 (-378)) (-947 |#1|) (-916)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -1655 ((-378) (-406 (-947 |#1|)))) (-15 -1655 ((-378) (-406 (-947 |#1|)) (-916))) (-15 -1562 ((-168 (-378)) (-406 (-947 |#1|)))) (-15 -1562 ((-168 (-378)) (-406 (-947 |#1|)) (-916))) (-15 -1562 ((-168 (-378)) (-406 (-947 (-168 |#1|))))) (-15 -1562 ((-168 (-378)) (-406 (-947 (-168 |#1|))) (-916))) (IF (|has| |#1| (-845)) (PROGN (-15 -1655 ((-378) (-315 |#1|))) (-15 -1655 ((-378) (-315 |#1|) (-916))) (-15 -1562 ((-168 (-378)) (-315 |#1|))) (-15 -1562 ((-168 (-378)) (-315 |#1|) (-916))) (-15 -1562 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -1562 ((-168 (-378)) (-315 (-168 |#1|)) (-916)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -2321 ((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)) (-916)))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-15 -2635 ((-3 (-378) "failed") (-947 |#1|))) (-15 -2635 ((-3 (-378) "failed") (-947 |#1|) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-947 |#1|))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-947 |#1|) (-916)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2635 ((-3 (-378) "failed") (-406 (-947 |#1|)))) (-15 -2635 ((-3 (-378) "failed") (-406 (-947 |#1|)) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))) (-916))) (IF (|has| |#1| (-845)) (PROGN (-15 -2635 ((-3 (-378) "failed") (-315 |#1|))) (-15 -2635 ((-3 (-378) "failed") (-315 |#1|) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-916))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -2321 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-916)))) |%noBranch|)) |%noBranch|)) +((-1767 (((-916) (-1150)) 64)) (-1959 (((-3 (-378) "failed") (-1150)) 32)) (-1389 (((-378) (-1150)) 30)) (-1858 (((-916) (-1150)) 53)) (-1961 (((-1150) (-916)) 54)) (-3783 (((-1150) (-916)) 52))) +(((-781) (-10 -7 (-15 -3783 ((-1150) (-916))) (-15 -1858 ((-916) (-1150))) (-15 -1961 ((-1150) (-916))) (-15 -1767 ((-916) (-1150))) (-15 -1389 ((-378) (-1150))) (-15 -1959 ((-3 (-378) "failed") (-1150))))) (T -781)) +((-1959 (*1 *2 *3) (|partial| -12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-781)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-781)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-916)) (-5 *1 (-781)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1150)) (-5 *1 (-781)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-916)) (-5 *1 (-781)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1150)) (-5 *1 (-781))))) +(-10 -7 (-15 -3783 ((-1150) (-916))) (-15 -1858 ((-916) (-1150))) (-15 -1961 ((-1150) (-916))) (-15 -1767 ((-916) (-1150))) (-15 -1389 ((-378) (-1150))) (-15 -1959 ((-3 (-378) "failed") (-1150)))) +((-4041 (((-112) $ $) 7)) (-3561 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 15) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 13)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6))) +(((-782) (-139)) (T -782)) +((-2172 (*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030)))))) (-3561 (*1 *2 *3 *2) (-12 (-4 *1 (-782)) (-5 *2 (-1030)) (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-2172 (*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030)))))) (-3561 (*1 *2 *3 *2) (-12 (-4 *1 (-782)) (-5 *2 (-1030)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) +(-13 (-1092) (-10 -7 (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3561 ((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3561 ((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030))))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-1501 (((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378))) 44) (((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))) 43)) (-3129 (((-1261) (-1256 (-378)) (-562) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))) 50)) (-2879 (((-1261) (-1256 (-378)) (-562) (-378) (-378) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))) 41)) (-3326 (((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378))) 52) (((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))) 51))) +(((-783) (-10 -7 (-15 -3326 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -3326 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -2879 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -1501 ((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -1501 ((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -3129 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))))) (T -783)) +((-3129 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-1501 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-562)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378)))) (-5 *7 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-1501 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-562)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378)))) (-5 *7 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-2879 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-3326 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-3326 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783))))) +(-10 -7 (-15 -3326 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -3326 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -2879 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -1501 ((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -1501 ((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -3129 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))))) +((-3343 (((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 53)) (-2837 (((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 31)) (-3738 (((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 52)) (-3162 (((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 29)) (-4320 (((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 51)) (-2648 (((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 19)) (-2944 (((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562)) 32)) (-3399 (((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562)) 30)) (-3974 (((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562)) 28))) +(((-784) (-10 -7 (-15 -3974 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -3399 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -2944 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -2648 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -3162 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -2837 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -4320 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -3738 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -3343 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))))) (T -784)) +((-3343 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-3738 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-4320 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-2837 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-3162 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-2648 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-2944 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-3399 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-3974 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562))))) +(-10 -7 (-15 -3974 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -3399 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -2944 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -2648 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -3162 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -2837 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -4320 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -3738 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -3343 ((-2 (|:| -2534 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)))) +((-3867 (((-1202 |#1|) |#1| (-224) (-562)) 46))) +(((-785 |#1|) (-10 -7 (-15 -3867 ((-1202 |#1|) |#1| (-224) (-562)))) (-969)) (T -785)) +((-3867 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-224)) (-5 *5 (-562)) (-5 *2 (-1202 *3)) (-5 *1 (-785 *3)) (-4 *3 (-969))))) +(-10 -7 (-15 -3867 ((-1202 |#1|) |#1| (-224) (-562)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 24)) (-3214 (((-3 $ "failed") $ $) 26)) (-1800 (($) 23 T CONST)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (-1848 (($ $ $) 28) (($ $) 27)) (-1835 (($ $ $) 20)) (* (($ (-916) $) 21) (($ (-766) $) 25) (($ (-562) $) 29))) (((-786) (-139)) (T -786)) NIL -(-13 (-788) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-788) . T) ((-844) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-2778 (($ $ $) 27)) (-1391 (((-3 $ "failed") $ $) 26)) (-4131 (($) 23 T CONST)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21) (($ (-765) $) 25))) +(-13 (-790) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-845) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 24)) (-1800 (($) 23 T CONST)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (-1835 (($ $ $) 20)) (* (($ (-916) $) 21) (($ (-766) $) 25))) (((-787) (-139)) (T -787)) -((-2778 (*1 *1 *1 *1) (-4 *1 (-787)))) -(-13 (-791) (-10 -8 (-15 -2778 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-844) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 7)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21))) -(((-788) (-139)) (T -788)) NIL -(-13 (-844) (-25)) -(((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-844) . T) ((-1091) . T)) -((-3589 (((-112) $) 41)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#2| $) 42)) (-3407 (((-3 (-406 (-544)) "failed") $) 78)) (-3406 (((-112) $) 72)) (-3405 (((-406 (-544)) $) 76)) (-3517 ((|#2| $) 26)) (-4365 (($ (-1 |#2| |#2|) $) 23)) (-2779 (($ $) 61)) (-4377 (((-533) $) 67)) (-3392 (($ $) 21)) (-4353 (((-857) $) 56) (($ (-544)) 39) (($ |#2|) 37) (($ (-406 (-544))) NIL)) (-3511 (((-765)) 10)) (-3787 ((|#2| $) 71)) (-3437 (((-112) $ $) 29)) (-3067 (((-112) $ $) 69)) (-4244 (($ $) 31) (($ $ $) NIL)) (-4246 (($ $ $) 30)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-789 |#1| |#2|) (-10 -8 (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3787 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-790 |#2|) (-171)) (T -789)) -((-3511 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-789 *3 *4)) (-4 *3 (-790 *4))))) -(-10 -8 (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3787 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-3521 (((-765)) 52 (|has| |#1| (-367)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 94 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 91 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 88)) (-3557 (((-544) $) 93 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 90 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 89)) (-3866 (((-3 $ "failed") $) 33)) (-4050 ((|#1| $) 78)) (-3407 (((-3 (-406 (-544)) "failed") $) 65 (|has| |#1| (-543)))) (-3406 (((-112) $) 67 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 66 (|has| |#1| (-543)))) (-3377 (($) 55 (|has| |#1| (-367)))) (-2545 (((-112) $) 31)) (-2784 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3517 ((|#1| $) 70)) (-2913 (($ $ $) 61 (|has| |#1| (-844)))) (-3242 (($ $ $) 60 (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) 80)) (-2160 (((-912) $) 54 (|has| |#1| (-367)))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 64 (|has| |#1| (-362)))) (-2535 (($ (-912)) 53 (|has| |#1| (-367)))) (-2781 ((|#1| $) 75)) (-2782 ((|#1| $) 76)) (-2783 ((|#1| $) 77)) (-3389 ((|#1| $) 71)) (-3390 ((|#1| $) 72)) (-3391 ((|#1| $) 73)) (-2780 ((|#1| $) 74)) (-3644 (((-1110) $) 10)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 86 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 84 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 83 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 82 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 81 (|has| |#1| (-512 (-1166) |#1|)))) (-4206 (($ $ |#1|) 87 (|has| |#1| (-285 |#1| |#1|)))) (-4377 (((-533) $) 62 (|has| |#1| (-609 (-533))))) (-3392 (($ $) 79)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38) (($ (-406 (-544))) 92 (|has| |#1| (-1031 (-406 (-544)))))) (-3084 (((-3 $ "failed") $) 63 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-3787 ((|#1| $) 68 (|has| |#1| (-1051)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 58 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 57 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 59 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 56 (|has| |#1| (-844)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-790 |#1|) (-139) (-171)) (T -790)) -((-3392 (*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2781 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-2784 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) (-3407 (*1 *2 *1) (|partial| -12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)) (-4 *2 (-362))))) -(-13 (-38 |t#1|) (-411 |t#1|) (-337 |t#1|) (-10 -8 (-15 -3392 ($ $)) (-15 -4050 (|t#1| $)) (-15 -2783 (|t#1| $)) (-15 -2782 (|t#1| $)) (-15 -2781 (|t#1| $)) (-15 -2780 (|t#1| $)) (-15 -3391 (|t#1| $)) (-15 -3390 (|t#1| $)) (-15 -3389 (|t#1| $)) (-15 -3517 (|t#1| $)) (-15 -2784 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3787 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -2779 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1=(-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-367) |has| |#1| (-367)) ((-337 |#1|) . T) ((-411 |#1|) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-1031 #1#) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-1391 (((-3 $ "failed") $ $) 26)) (-4131 (($) 23 T CONST)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) 21) (($ (-765) $) 25))) -(((-791) (-139)) (T -791)) -NIL -(-13 (-786) (-130)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-786) . T) ((-788) . T) ((-844) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #1="failed") $) NIL) (((-3 (-989 |#1|) #1#) $) 35) (((-3 (-544) #1#) $) NIL (-3936 (|has| (-989 |#1|) (-1031 (-544))) (|has| |#1| (-1031 (-544))))) (((-3 (-406 (-544)) #1#) $) NIL (-3936 (|has| (-989 |#1|) (-1031 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-3557 ((|#1| $) NIL) (((-989 |#1|) $) 33) (((-544) $) NIL (-3936 (|has| (-989 |#1|) (-1031 (-544))) (|has| |#1| (-1031 (-544))))) (((-406 (-544)) $) NIL (-3936 (|has| (-989 |#1|) (-1031 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-3866 (((-3 $ "failed") $) NIL)) (-4050 ((|#1| $) 16)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL (|has| |#1| (-543)))) (-3406 (((-112) $) NIL (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) NIL (|has| |#1| (-543)))) (-3377 (($) NIL (|has| |#1| (-367)))) (-2545 (((-112) $) NIL)) (-2784 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-989 |#1|) (-989 |#1|)) 29)) (-3517 ((|#1| $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-2781 ((|#1| $) 22)) (-2782 ((|#1| $) 20)) (-2783 ((|#1| $) 18)) (-3389 ((|#1| $) 26)) (-3390 ((|#1| $) 25)) (-3391 ((|#1| $) 24)) (-2780 ((|#1| $) 23)) (-3644 (((-1110) $) NIL)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-4206 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3392 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-989 |#1|)) 30) (($ (-406 (-544))) NIL (-3936 (|has| (-989 |#1|) (-1031 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3787 ((|#1| $) NIL (|has| |#1| (-1051)))) (-3040 (($) 8 T CONST)) (-3046 (($) 12 T CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-792 |#1|) (-13 (-790 |#1|) (-411 (-989 |#1|)) (-10 -8 (-15 -2784 ($ (-989 |#1|) (-989 |#1|))))) (-171)) (T -792)) -((-2784 (*1 *1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-171)) (-5 *1 (-792 *3))))) -(-13 (-790 |#1|) (-411 (-989 |#1|)) (-10 -8 (-15 -2784 ($ (-989 |#1|) (-989 |#1|))))) -((-4365 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|))) (-790 |#2|) (-171) (-790 |#4|) (-171)) (T -793)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-790 *6)) (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-790 *5))))) -(-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|))) -((-2947 (((-112) $ $) 7)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2785 (((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13)) (-3437 (((-112) $ $) 6))) -(((-794) (-139)) (T -794)) -((-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-794)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) (-2785 (*1 *2 *3) (-12 (-4 *1 (-794)) (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1028))))) -(-13 (-1091) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2785 ((-1028) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2786 (((-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#3| |#2| (-1166)) 19))) -(((-795 |#1| |#2| |#3|) (-10 -7 (-15 -2786 ((-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#3| |#2| (-1166)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953)) (-651 |#2|)) (T -795)) -((-2786 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-4 *4 (-13 (-29 *6) (-1190) (-953))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2162 (-635 *4)))) (-5 *1 (-795 *6 *4 *3)) (-4 *3 (-651 *4))))) -(-10 -7 (-15 -2786 ((-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#3| |#2| (-1166)))) -((-3980 (((-3 |#2| #1="failed") |#2| (-113) (-292 |#2|) (-635 |#2|)) 28) (((-3 |#2| #1#) (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #2="failed") |#2| (-113) (-1166)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #2#) (-292 |#2|) (-113) (-1166)) 18) (((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 |#2|) (-635 (-113)) (-1166)) 24) (((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 (-292 |#2|)) (-635 (-113)) (-1166)) 26) (((-3 (-635 (-1253 |#2|)) "failed") (-682 |#2|) (-1166)) 37) (((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-682 |#2|) (-1253 |#2|) (-1166)) 35))) -(((-796 |#1| |#2|) (-10 -7 (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-682 |#2|) (-1253 |#2|) (-1166))) (-15 -3980 ((-3 (-635 (-1253 |#2|)) "failed") (-682 |#2|) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 (-292 |#2|)) (-635 (-113)) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 |#2|) (-635 (-113)) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #1="failed") (-292 |#2|) (-113) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #1#) |#2| (-113) (-1166))) (-15 -3980 ((-3 |#2| #2="failed") (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|))) (-15 -3980 ((-3 |#2| #2#) |#2| (-113) (-292 |#2|) (-635 |#2|)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953))) (T -796)) -((-3980 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-292 *2)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-796 *6 *2)))) (-3980 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-292 *2)) (-5 *4 (-113)) (-5 *5 (-635 *2)) (-4 *2 (-13 (-29 *6) (-1190) (-953))) (-5 *1 (-796 *6 *2)) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))))) (-3980 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1166)) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2162 (-635 *3))) *3 #1="failed")) (-5 *1 (-796 *6 *3)) (-4 *3 (-13 (-29 *6) (-1190) (-953))))) (-3980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-292 *7)) (-5 *4 (-113)) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2162 (-635 *7))) *7 #1#)) (-5 *1 (-796 *6 *7)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-113))) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7))))) (-5 *1 (-796 *6 *7)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-635 (-292 *7))) (-5 *4 (-635 (-113))) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7))))) (-5 *1 (-796 *6 *7)))) (-3980 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-682 *6)) (-5 *4 (-1166)) (-4 *6 (-13 (-29 *5) (-1190) (-953))) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-1253 *6))) (-5 *1 (-796 *5 *6)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-682 *7)) (-5 *5 (-1166)) (-4 *7 (-13 (-29 *6) (-1190) (-953))) (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7))))) (-5 *1 (-796 *6 *7)) (-5 *4 (-1253 *7))))) -(-10 -7 (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-682 |#2|) (-1253 |#2|) (-1166))) (-15 -3980 ((-3 (-635 (-1253 |#2|)) "failed") (-682 |#2|) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 (-292 |#2|)) (-635 (-113)) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#2|)) (|:| -2162 (-635 (-1253 |#2|)))) "failed") (-635 |#2|) (-635 (-113)) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #1="failed") (-292 |#2|) (-113) (-1166))) (-15 -3980 ((-3 (-2 (|:| |particular| |#2|) (|:| -2162 (-635 |#2|))) |#2| #1#) |#2| (-113) (-1166))) (-15 -3980 ((-3 |#2| #2="failed") (-292 |#2|) (-113) (-292 |#2|) (-635 |#2|))) (-15 -3980 ((-3 |#2| #2#) |#2| (-113) (-292 |#2|) (-635 |#2|)))) -((-2787 (($) 9)) (-2791 (((-3 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 31)) (-2789 (((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 28)) (-4014 (($ (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))))) 25)) (-2790 (($ (-635 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))))) 23)) (-2788 (((-1259)) 12))) -(((-797) (-10 -8 (-15 -2787 ($)) (-15 -2788 ((-1259))) (-15 -2789 ((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2790 ($ (-635 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))))))) (-15 -4014 ($ (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))))) (-15 -2791 ((-3 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -797)) -((-2791 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))) (-5 *1 (-797)))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))))) (-5 *1 (-797)))) (-2790 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))))) (-5 *1 (-797)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-797)))) (-2788 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-797)))) (-2787 (*1 *1) (-5 *1 (-797)))) -(-10 -8 (-15 -2787 ($)) (-15 -2788 ((-1259))) (-15 -2789 ((-635 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2790 ($ (-635 (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377)))))))) (-15 -4014 ($ (-2 (|:| -4267 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2226 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))))))) (-15 -2791 ((-3 (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) (|:| |expense| (-377)) (|:| |accuracy| (-377)) (|:| |intermediateResults| (-377))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) -((-3869 ((|#2| |#2| (-1166)) 16)) (-2792 ((|#2| |#2| (-1166)) 51)) (-2793 (((-1 |#2| |#2|) (-1166)) 11))) -(((-798 |#1| |#2|) (-10 -7 (-15 -3869 (|#2| |#2| (-1166))) (-15 -2792 (|#2| |#2| (-1166))) (-15 -2793 ((-1 |#2| |#2|) (-1166)))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146)) (-13 (-29 |#1|) (-1190) (-953))) (T -798)) -((-2793 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-1 *5 *5)) (-5 *1 (-798 *4 *5)) (-4 *5 (-13 (-29 *4) (-1190) (-953))))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-953))))) (-3869 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-953)))))) -(-10 -7 (-15 -3869 (|#2| |#2| (-1166))) (-15 -2792 (|#2| |#2| (-1166))) (-15 -2793 ((-1 |#2| |#2|) (-1166)))) -((-3980 (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377) (-377)) 116) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377)) 117) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-635 (-377)) (-377)) 119) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-377)) 120) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-377)) 121) (((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377))) 122) (((-1028) (-802) (-1054)) 108) (((-1028) (-802)) 109)) (-3050 (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802) (-1054)) 75) (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802)) 77))) -(((-799) (-10 -7 (-15 -3980 ((-1028) (-802))) (-15 -3980 ((-1028) (-802) (-1054))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377) (-377))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802) (-1054))))) (T -799)) -((-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-799)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377))) (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377))) (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377))) (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-799)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1028)) (-5 *1 (-799))))) -(-10 -7 (-15 -3980 ((-1028) (-802))) (-15 -3980 ((-1028) (-802) (-1054))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377))) (-15 -3980 ((-1028) (-1253 (-313 (-377))) (-377) (-377) (-635 (-377)) (-313 (-377)) (-635 (-377)) (-377) (-377))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-802) (-1054)))) -((-2794 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2162 (-635 |#4|))) (-648 |#4|) |#4|) 35))) -(((-800 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2794 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2162 (-635 |#4|))) (-648 |#4|) |#4|))) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -800)) -((-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *4)) (-4 *4 (-341 *5 *6 *7)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-800 *5 *6 *7 *4))))) -(-10 -7 (-15 -2794 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2162 (-635 |#4|))) (-648 |#4|) |#4|))) -((-4148 (((-2 (|:| -3667 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|))) 52)) (-2796 (((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4| |#2|) 60) (((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4|) 59) (((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3| |#2|) 20) (((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3|) 21)) (-2797 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2795 ((|#2| |#3| (-635 (-406 |#2|))) 94) (((-3 |#2| "failed") |#3| (-406 |#2|)) 91))) -(((-801 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2795 (|#2| |#3| (-635 (-406 |#2|)))) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3| |#2|)) (-15 -2797 (|#2| |#3| |#1|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4| |#2|)) (-15 -2797 (|#2| |#4| |#1|)) (-15 -4148 ((-2 (|:| -3667 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-406 (-544)))) (-1229 |#1|) (-651 |#2|) (-651 (-406 |#2|))) (T -801)) -((-4148 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-2 (|:| -3667 *7) (|:| |rh| (-635 (-406 *6))))) (-5 *1 (-801 *5 *6 *7 *3)) (-5 *4 (-635 (-406 *6))) (-4 *7 (-651 *6)) (-4 *3 (-651 (-406 *6))))) (-2797 (*1 *2 *3 *4) (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *5 *3)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-651 *2)) (-4 *3 (-651 (-406 *2))))) (-2796 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *4 (-1229 *5)) (-5 *2 (-635 (-2 (|:| -4179 *4) (|:| -3627 *4)))) (-5 *1 (-801 *5 *4 *6 *3)) (-4 *6 (-651 *4)) (-4 *3 (-651 (-406 *4))))) (-2796 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-2 (|:| -4179 *5) (|:| -3627 *5)))) (-5 *1 (-801 *4 *5 *6 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 (-406 *5))))) (-2797 (*1 *2 *3 *4) (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-406 *2))))) (-2796 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *4 (-1229 *5)) (-5 *2 (-635 (-2 (|:| -4179 *4) (|:| -3627 *4)))) (-5 *1 (-801 *5 *4 *3 *6)) (-4 *3 (-651 *4)) (-4 *6 (-651 (-406 *4))))) (-2796 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-2 (|:| -4179 *5) (|:| -3627 *5)))) (-5 *1 (-801 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-406 *5))))) (-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-406 *2))) (-4 *2 (-1229 *5)) (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) (-4 *6 (-651 (-406 *2))))) (-2795 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) (-4 *6 (-651 *4))))) -(-10 -7 (-15 -2795 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2795 (|#2| |#3| (-635 (-406 |#2|)))) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#3| |#2|)) (-15 -2797 (|#2| |#3| |#1|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4|)) (-15 -2796 ((-635 (-2 (|:| -4179 |#2|) (|:| -3627 |#2|))) |#4| |#2|)) (-15 -2797 (|#2| |#4| |#1|)) (-15 -4148 ((-2 (|:| -3667 |#3|) (|:| |rh| (-635 (-406 |#2|)))) |#4| (-635 (-406 |#2|))))) -((-2947 (((-112) $ $) NIL)) (-3557 (((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 15) (($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 12)) (-3437 (((-112) $ $) NIL))) -(((-802) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3557 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))) (T -802)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-802)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-802))))) -(-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3557 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $)))) -((-2805 (((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1160 |#2|)) (-1 (-404 |#2|) |#2|)) 117)) (-2806 (((-635 (-2 (|:| |poly| |#2|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|)) 46)) (-2799 (((-635 (-2 (|:| |deg| (-765)) (|:| -3667 |#2|))) |#3|) 94)) (-2798 ((|#2| |#3|) 37)) (-2800 (((-635 (-2 (|:| -4359 |#1|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|)) 81)) (-2801 ((|#3| |#3| (-406 |#2|)) 62) ((|#3| |#3| |#2|) 78))) -(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2798 (|#2| |#3|)) (-15 -2799 ((-635 (-2 (|:| |deg| (-765)) (|:| -3667 |#2|))) |#3|)) (-15 -2800 ((-635 (-2 (|:| -4359 |#1|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2806 ((-635 (-2 (|:| |poly| |#2|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2805 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1160 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2801 (|#3| |#3| |#2|)) (-15 -2801 (|#3| |#3| (-406 |#2|)))) (-13 (-362) (-146) (-1031 (-406 (-544)))) (-1229 |#1|) (-651 |#2|) (-651 (-406 |#2|))) (T -803)) -((-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *2 (-651 *5)) (-4 *6 (-651 *3)))) (-2801 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-1229 *4)) (-5 *1 (-803 *4 *3 *2 *5)) (-4 *2 (-651 *3)) (-4 *5 (-651 (-406 *3))))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-635 *7) *7 (-1160 *7))) (-5 *5 (-1 (-404 *7) *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-5 *2 (-635 (-2 (|:| |frac| (-406 *7)) (|:| -3667 *3)))) (-5 *1 (-803 *6 *7 *3 *8)) (-4 *3 (-651 *7)) (-4 *8 (-651 (-406 *7))))) (-2806 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3667 *3)))) (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-406 *6))))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-2 (|:| -4359 *5) (|:| -3667 *3)))) (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-406 *6))))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-2 (|:| |deg| (-765)) (|:| -3667 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-406 *5))))) (-2798 (*1 *2 *3) (-12 (-4 *2 (-1229 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-406 *2)))))) -(-10 -7 (-15 -2798 (|#2| |#3|)) (-15 -2799 ((-635 (-2 (|:| |deg| (-765)) (|:| -3667 |#2|))) |#3|)) (-15 -2800 ((-635 (-2 (|:| -4359 |#1|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2806 ((-635 (-2 (|:| |poly| |#2|) (|:| -3667 |#3|))) |#3| (-1 (-635 |#1|) |#2|))) (-15 -2805 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 |#3|))) |#3| (-1 (-635 |#2|) |#2| (-1160 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2801 (|#3| |#3| |#2|)) (-15 -2801 (|#3| |#3| (-406 |#2|)))) -((-2802 (((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-649 |#2| (-406 |#2|)) (-635 (-406 |#2|))) 122) (((-2 (|:| |particular| (-3 (-406 |#2|) #1="failed")) (|:| -2162 (-635 (-406 |#2|)))) (-649 |#2| (-406 |#2|)) (-406 |#2|)) 121) (((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-648 (-406 |#2|)) (-635 (-406 |#2|))) 116) (((-2 (|:| |particular| (-3 (-406 |#2|) #1#)) (|:| -2162 (-635 (-406 |#2|)))) (-648 (-406 |#2|)) (-406 |#2|)) 114)) (-2803 ((|#2| (-649 |#2| (-406 |#2|))) 80) ((|#2| (-648 (-406 |#2|))) 83))) -(((-804 |#1| |#2|) (-10 -7 (-15 -2802 ((-2 (|:| |particular| (-3 (-406 |#2|) #1="failed")) (|:| -2162 (-635 (-406 |#2|)))) (-648 (-406 |#2|)) (-406 |#2|))) (-15 -2802 ((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-648 (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -2802 ((-2 (|:| |particular| (-3 (-406 |#2|) #1#)) (|:| -2162 (-635 (-406 |#2|)))) (-649 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -2802 ((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-649 |#2| (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -2803 (|#2| (-648 (-406 |#2|)))) (-15 -2803 (|#2| (-649 |#2| (-406 |#2|))))) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -804)) -((-2803 (*1 *2 *3) (-12 (-5 *3 (-649 *2 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-648 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-406 *6))) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-2 (|:| -2162 (-635 (-406 *6))) (|:| -1728 (-682 *5)))) (-5 *1 (-804 *5 *6)) (-5 *4 (-635 (-406 *6))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-804 *5 *6)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-406 *6))) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-2 (|:| -2162 (-635 (-406 *6))) (|:| -1728 (-682 *5)))) (-5 *1 (-804 *5 *6)) (-5 *4 (-635 (-406 *6))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4)))) (-5 *1 (-804 *5 *6))))) -(-10 -7 (-15 -2802 ((-2 (|:| |particular| (-3 (-406 |#2|) #1="failed")) (|:| -2162 (-635 (-406 |#2|)))) (-648 (-406 |#2|)) (-406 |#2|))) (-15 -2802 ((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-648 (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -2802 ((-2 (|:| |particular| (-3 (-406 |#2|) #1#)) (|:| -2162 (-635 (-406 |#2|)))) (-649 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -2802 ((-2 (|:| -2162 (-635 (-406 |#2|))) (|:| -1728 (-682 |#1|))) (-649 |#2| (-406 |#2|)) (-635 (-406 |#2|)))) (-15 -2803 (|#2| (-648 (-406 |#2|)))) (-15 -2803 (|#2| (-649 |#2| (-406 |#2|))))) -((-2804 (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) |#5| |#4|) 48))) -(((-805 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2804 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) |#5| |#4|))) (-362) (-651 |#1|) (-1229 |#1|) (-718 |#1| |#3|) (-651 |#4|)) (T -805)) -((-2804 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *7 (-1229 *5)) (-4 *4 (-718 *5 *7)) (-5 *2 (-2 (|:| -1728 (-682 *6)) (|:| |vec| (-1253 *5)))) (-5 *1 (-805 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4))))) -(-10 -7 (-15 -2804 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) |#5| |#4|))) -((-2805 (((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|)) 47)) (-2807 (((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|))) 137 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-404 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-648 (-406 |#2|))) 139 (|has| |#1| (-27))) (((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|)) 38) (((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 39) (((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|)) 36) (((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 37)) (-2806 (((-635 (-2 (|:| |poly| |#2|) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|)) 83))) -(((-806 |#1| |#2|) (-10 -7 (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|))) (-15 -2805 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2806 ((-635 (-2 (|:| |poly| |#2|) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)))) (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|)))) |%noBranch|)) (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))) (-1229 |#1|)) (T -806)) -((-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-649 *5 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-406 *5))) (-5 *1 (-806 *4 *5)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-648 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-406 *5))) (-5 *1 (-806 *4 *5)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3667 (-649 *6 (-406 *6)))))) (-5 *1 (-806 *5 *6)) (-5 *3 (-649 *6 (-406 *6))))) (-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-5 *2 (-635 (-2 (|:| |frac| (-406 *6)) (|:| -3667 (-649 *6 (-406 *6)))))) (-5 *1 (-806 *5 *6)) (-5 *3 (-649 *6 (-406 *6))))) (-2807 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *7 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) (-5 *5 (-1 (-404 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *7 (-1229 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-806 *6 *7)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))) (-2807 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-648 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) (-5 *5 (-1 (-404 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *7 (-1229 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-806 *6 *7)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6))))) -(-10 -7 (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|) (-1 (-404 |#2|) |#2|))) (-15 -2805 ((-635 (-2 (|:| |frac| (-406 |#2|)) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2806 ((-635 (-2 (|:| |poly| |#2|) (|:| -3667 (-649 |#2| (-406 |#2|))))) (-649 |#2| (-406 |#2|)) (-1 (-635 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)))) (-15 -2807 ((-635 (-406 |#2|)) (-648 (-406 |#2|)) (-1 (-404 |#2|) |#2|))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)))) (-15 -2807 ((-635 (-406 |#2|)) (-649 |#2| (-406 |#2|)) (-1 (-404 |#2|) |#2|)))) |%noBranch|)) -((-2808 (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) (-682 |#2|) (-1253 |#1|)) 85) (((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)) (|:| -3667 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1253 |#1|)) 15)) (-2809 (((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#2|) (-1253 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2162 (-635 |#1|))) |#2| |#1|)) 92)) (-3980 (((-3 (-2 (|:| |particular| (-1253 |#1|)) (|:| -2162 (-682 |#1|))) "failed") (-682 |#1|) (-1253 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) "failed") |#2| |#1|)) 43))) -(((-807 |#1| |#2|) (-10 -7 (-15 -2808 ((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)) (|:| -3667 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1253 |#1|))) (-15 -2808 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) (-682 |#2|) (-1253 |#1|))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#1|)) (|:| -2162 (-682 |#1|))) "failed") (-682 |#1|) (-1253 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) "failed") |#2| |#1|))) (-15 -2809 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#2|) (-1253 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2162 (-635 |#1|))) |#2| |#1|)))) (-362) (-651 |#1|)) (T -807)) -((-2809 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2162 (-635 *6))) *7 *6)) (-4 *6 (-362)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1253 *6) "failed")) (|:| -2162 (-635 (-1253 *6))))) (-5 *1 (-807 *6 *7)) (-5 *4 (-1253 *6)))) (-3980 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2162 (-635 *6))) "failed") *7 *6)) (-4 *6 (-362)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-1253 *6)) (|:| -2162 (-682 *6)))) (-5 *1 (-807 *6 *7)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *6)))) (-2808 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-651 *5)) (-5 *2 (-2 (|:| -1728 (-682 *6)) (|:| |vec| (-1253 *5)))) (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *5)))) (-2808 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| A (-682 *5)) (|:| |eqs| (-635 (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5)) (|:| -3667 *6) (|:| |rh| *5)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *6 (-651 *5))))) -(-10 -7 (-15 -2808 ((-2 (|:| A (-682 |#1|)) (|:| |eqs| (-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)) (|:| -3667 |#2|) (|:| |rh| |#1|))))) (-682 |#1|) (-1253 |#1|))) (-15 -2808 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#1|))) (-682 |#2|) (-1253 |#1|))) (-15 -3980 ((-3 (-2 (|:| |particular| (-1253 |#1|)) (|:| -2162 (-682 |#1|))) "failed") (-682 |#1|) (-1253 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2162 (-635 |#1|))) "failed") |#2| |#1|))) (-15 -2809 ((-2 (|:| |particular| (-3 (-1253 |#1|) "failed")) (|:| -2162 (-635 (-1253 |#1|)))) (-682 |#2|) (-1253 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2162 (-635 |#1|))) |#2| |#1|)))) -((-2810 (((-682 |#1|) (-635 |#1|) (-765)) 13) (((-682 |#1|) (-635 |#1|)) 14)) (-2811 (((-3 (-1253 |#1|) "failed") |#2| |#1| (-635 |#1|)) 34)) (-3744 (((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|)) 42))) -(((-808 |#1| |#2|) (-10 -7 (-15 -2810 ((-682 |#1|) (-635 |#1|))) (-15 -2810 ((-682 |#1|) (-635 |#1|) (-765))) (-15 -2811 ((-3 (-1253 |#1|) "failed") |#2| |#1| (-635 |#1|))) (-15 -3744 ((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|)))) (-362) (-651 |#1|)) (T -808)) -((-3744 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-635 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) (-5 *1 (-808 *2 *3)) (-4 *3 (-651 *2)))) (-2811 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-1253 *4)) (-5 *1 (-808 *4 *3)) (-4 *3 (-651 *4)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-682 *5)) (-5 *1 (-808 *5 *6)) (-4 *6 (-651 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)) (-5 *1 (-808 *4 *5)) (-4 *5 (-651 *4))))) -(-10 -7 (-15 -2810 ((-682 |#1|) (-635 |#1|))) (-15 -2810 ((-682 |#1|) (-635 |#1|) (-765))) (-15 -2811 ((-3 (-1253 |#1|) "failed") |#2| |#1| (-635 |#1|))) (-15 -3744 ((-3 |#1| "failed") |#2| |#1| (-635 |#1|) (-1 |#1| |#1|)))) -((-2947 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3589 (((-112) $) NIL (|has| |#2| (-130)))) (-4114 (($ (-912)) NIL (|has| |#2| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#2| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#2| (-367)))) (-4030 (((-544) $) NIL (|has| |#2| (-842)))) (-4194 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1091)))) (-3557 (((-544) $) NIL (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) ((|#2| $) NIL (|has| |#2| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#2| (-634 (-544))) (|has| |#2| (-1042)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#2| (-1042))) (((-682 |#2|) (-682 $)) NIL (|has| |#2| (-1042)))) (-3866 (((-3 $ "failed") $) NIL (|has| |#2| (-720)))) (-3377 (($) NIL (|has| |#2| (-367)))) (-1665 ((|#2| $ (-544) |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ (-544)) NIL)) (-3587 (((-112) $) NIL (|has| |#2| (-842)))) (-2096 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (|has| |#2| (-720)))) (-3588 (((-112) $) NIL (|has| |#2| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#2| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#2| (-1091)))) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#2| (-367)))) (-3644 (((-1110) $) NIL (|has| |#2| (-1091)))) (-4207 ((|#2| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) |#2|) NIL) ((|#2| $ (-544)) NIL)) (-4243 ((|#2| $ $) NIL (|has| |#2| (-1042)))) (-1552 (($ (-1253 |#2|)) NIL)) (-4318 (((-133)) NIL (|has| |#2| (-362)))) (-4217 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#2|) $) NIL) (($ (-544)) NIL (-3936 (-12 (|has| |#2| (-1031 (-544))) (|has| |#2| (-1091))) (|has| |#2| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#2| (-1031 (-406 (-544)))) (|has| |#2| (-1091)))) (($ |#2|) NIL (|has| |#2| (-1091))) (((-857) $) NIL (|has| |#2| (-608 (-857))))) (-3511 (((-765)) NIL (|has| |#2| (-1042)))) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#2| (-842)))) (-3040 (($) NIL (|has| |#2| (-130)) CONST)) (-3046 (($) NIL (|has| |#2| (-720)) CONST)) (-3051 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#2| (-893 (-1166))) (|has| |#2| (-1042)))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#2| (-1042))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1042)))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3437 (((-112) $ $) NIL (|has| |#2| (-1091)))) (-3066 (((-112) $ $) NIL (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-3067 (((-112) $ $) 11 (-3936 (|has| |#2| (-787)) (|has| |#2| (-842))))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $ $) NIL (|has| |#2| (-1042))) (($ $) NIL (|has| |#2| (-1042)))) (-4246 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-765)) NIL (|has| |#2| (-720))) (($ $ (-912)) NIL (|has| |#2| (-720)))) (* (($ (-544) $) NIL (|has| |#2| (-1042))) (($ $ $) NIL (|has| |#2| (-720))) (($ $ |#2|) NIL (|has| |#2| (-720))) (($ |#2| $) NIL (|has| |#2| (-720))) (($ (-765) $) NIL (|has| |#2| (-130))) (($ (-912) $) NIL (|has| |#2| (-25)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-809 |#1| |#2| |#3|) (-237 |#1| |#2|) (-765) (-787) (-1 (-112) (-1253 |#2|) (-1253 |#2|))) (T -809)) +(-13 (-789) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-789) . T) ((-845) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 24)) (-3659 (($ $ $) 27)) (-3214 (((-3 $ "failed") $ $) 26)) (-1800 (($) 23 T CONST)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (-1835 (($ $ $) 20)) (* (($ (-916) $) 21) (($ (-766) $) 25))) +(((-788) (-139)) (T -788)) +((-3659 (*1 *1 *1 *1) (-4 *1 (-788)))) +(-13 (-790) (-10 -8 (-15 -3659 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-845) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 7)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (-1835 (($ $ $) 20)) (* (($ (-916) $) 21))) +(((-789) (-139)) (T -789)) +NIL +(-13 (-845) (-25)) +(((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-845) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 24)) (-3214 (((-3 $ "failed") $ $) 26)) (-1800 (($) 23 T CONST)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (-1835 (($ $ $) 20)) (* (($ (-916) $) 21) (($ (-766) $) 25))) +(((-790) (-139)) (T -790)) +NIL +(-13 (-787) (-130)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-787) . T) ((-789) . T) ((-845) . T) ((-1092) . T)) +((-1952 (((-112) $) 41)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3961 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#2| $) 42)) (-1726 (((-3 (-406 (-562)) "failed") $) 78)) (-3035 (((-112) $) 72)) (-1291 (((-406 (-562)) $) 76)) (-2247 ((|#2| $) 26)) (-4152 (($ (-1 |#2| |#2|) $) 23)) (-1525 (($ $) 61)) (-4208 (((-535) $) 67)) (-3665 (($ $) 21)) (-4054 (((-857) $) 56) (($ (-562)) 39) (($ |#2|) 37) (($ (-406 (-562))) NIL)) (-2579 (((-766)) 10)) (-3526 ((|#2| $) 71)) (-1731 (((-112) $ $) 29)) (-1759 (((-112) $ $) 69)) (-1848 (($ $) 31) (($ $ $) NIL)) (-1835 (($ $ $) 30)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-791 |#1| |#2|) (-10 -8 (-15 -1759 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -3526 (|#2| |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -3665 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 -1952 ((-112) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) (-792 |#2|) (-171)) (T -791)) +((-2579 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-791 *3 *4)) (-4 *3 (-792 *4))))) +(-10 -8 (-15 -1759 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -3526 (|#2| |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -3665 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 -1952 ((-112) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1382 (((-766)) 52 (|has| |#1| (-367)))) (-1800 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 94 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 91 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 88)) (-3961 (((-562) $) 93 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 90 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 89)) (-3668 (((-3 $ "failed") $) 33)) (-1657 ((|#1| $) 78)) (-1726 (((-3 (-406 (-562)) "failed") $) 65 (|has| |#1| (-544)))) (-3035 (((-112) $) 67 (|has| |#1| (-544)))) (-1291 (((-406 (-562)) $) 66 (|has| |#1| (-544)))) (-1448 (($) 55 (|has| |#1| (-367)))) (-1957 (((-112) $) 31)) (-3116 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-2247 ((|#1| $) 70)) (-1551 (($ $ $) 61 (|has| |#1| (-845)))) (-2993 (($ $ $) 60 (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) 80)) (-1999 (((-916) $) 54 (|has| |#1| (-367)))) (-2913 (((-1150) $) 9)) (-1525 (($ $) 64 (|has| |#1| (-362)))) (-2466 (($ (-916)) 53 (|has| |#1| (-367)))) (-1926 ((|#1| $) 75)) (-1738 ((|#1| $) 76)) (-1365 ((|#1| $) 77)) (-1536 ((|#1| $) 71)) (-3085 ((|#1| $) 72)) (-3332 ((|#1| $) 73)) (-1826 ((|#1| $) 74)) (-1709 (((-1112) $) 10)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 86 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 84 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 83 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 82 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) 81 (|has| |#1| (-513 (-1168) |#1|)))) (-2343 (($ $ |#1|) 87 (|has| |#1| (-285 |#1| |#1|)))) (-4208 (((-535) $) 62 (|has| |#1| (-610 (-535))))) (-3665 (($ $) 79)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38) (($ (-406 (-562))) 92 (|has| |#1| (-1033 (-406 (-562)))))) (-2805 (((-3 $ "failed") $) 63 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-3526 ((|#1| $) 68 (|has| |#1| (-1053)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 58 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 57 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 59 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 56 (|has| |#1| (-845)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-792 |#1|) (-139) (-171)) (T -792)) +((-3665 (*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-3116 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) (-1291 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562))))) (-1726 (*1 *2 *1) (|partial| -12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562))))) (-1525 (*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)) (-4 *2 (-362))))) +(-13 (-38 |t#1|) (-410 |t#1|) (-337 |t#1|) (-10 -8 (-15 -3665 ($ $)) (-15 -1657 (|t#1| $)) (-15 -1365 (|t#1| $)) (-15 -1738 (|t#1| $)) (-15 -1926 (|t#1| $)) (-15 -1826 (|t#1| $)) (-15 -3332 (|t#1| $)) (-15 -3085 (|t#1| $)) (-15 -1536 (|t#1| $)) (-15 -2247 (|t#1| $)) (-15 -3116 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1053)) (-15 -3526 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1525 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0=(-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-367) |has| |#1| (-367)) ((-337 |#1|) . T) ((-410 |#1|) . T) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) . T) ((-721) . T) ((-845) |has| |#1| (-845)) ((-1033 #0#) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4152 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) (-792 |#2|) (-171) (-792 |#4|) (-171)) (T -793)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-792 *6)) (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-792 *5))))) +(-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-994 |#1|) "failed") $) 35) (((-3 (-562) "failed") $) NIL (-4037 (|has| (-994 |#1|) (-1033 (-562))) (|has| |#1| (-1033 (-562))))) (((-3 (-406 (-562)) "failed") $) NIL (-4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-3961 ((|#1| $) NIL) (((-994 |#1|) $) 33) (((-562) $) NIL (-4037 (|has| (-994 |#1|) (-1033 (-562))) (|has| |#1| (-1033 (-562))))) (((-406 (-562)) $) NIL (-4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-3668 (((-3 $ "failed") $) NIL)) (-1657 ((|#1| $) 16)) (-1726 (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-544)))) (-3035 (((-112) $) NIL (|has| |#1| (-544)))) (-1291 (((-406 (-562)) $) NIL (|has| |#1| (-544)))) (-1448 (($) NIL (|has| |#1| (-367)))) (-1957 (((-112) $) NIL)) (-3116 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-994 |#1|) (-994 |#1|)) 29)) (-2247 ((|#1| $) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1999 (((-916) $) NIL (|has| |#1| (-367)))) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-2466 (($ (-916)) NIL (|has| |#1| (-367)))) (-1926 ((|#1| $) 22)) (-1738 ((|#1| $) 20)) (-1365 ((|#1| $) 18)) (-1536 ((|#1| $) 26)) (-3085 ((|#1| $) 25)) (-3332 ((|#1| $) 24)) (-1826 ((|#1| $) 23)) (-1709 (((-1112) $) NIL)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|)))) (-2343 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-3665 (($ $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-994 |#1|)) 30) (($ (-406 (-562))) NIL (-4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-3526 ((|#1| $) NIL (|has| |#1| (-1053)))) (-2286 (($) 8 T CONST)) (-2294 (($) 12 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-794 |#1|) (-13 (-792 |#1|) (-410 (-994 |#1|)) (-10 -8 (-15 -3116 ($ (-994 |#1|) (-994 |#1|))))) (-171)) (T -794)) +((-3116 (*1 *1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-171)) (-5 *1 (-794 *3))))) +(-13 (-792 |#1|) (-410 (-994 |#1|)) (-10 -8 (-15 -3116 ($ (-994 |#1|) (-994 |#1|))))) +((-4041 (((-112) $ $) 7)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-3747 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13)) (-1731 (((-112) $ $) 6))) +(((-795) (-139)) (T -795)) +((-2172 (*1 *2 *3 *4) (-12 (-4 *1 (-795)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)))))) (-3747 (*1 *2 *3) (-12 (-4 *1 (-795)) (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1030))))) +(-13 (-1092) (-10 -7 (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3747 ((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-3500 (((-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) |#3| |#2| (-1168)) 19))) +(((-796 |#1| |#2| |#3|) (-10 -7 (-15 -3500 ((-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) |#3| |#2| (-1168)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954)) (-650 |#2|)) (T -796)) +((-3500 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1168)) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-4 *4 (-13 (-29 *6) (-1192) (-954))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3928 (-639 *4)))) (-5 *1 (-796 *6 *4 *3)) (-4 *3 (-650 *4))))) +(-10 -7 (-15 -3500 ((-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) |#3| |#2| (-1168)))) +((-4351 (((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-639 |#2|)) 28) (((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) |#2| "failed") |#2| (-114) (-1168)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1168)) 18) (((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -3928 (-639 (-1256 |#2|)))) "failed") (-639 |#2|) (-639 (-114)) (-1168)) 24) (((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -3928 (-639 (-1256 |#2|)))) "failed") (-639 (-293 |#2|)) (-639 (-114)) (-1168)) 26) (((-3 (-639 (-1256 |#2|)) "failed") (-683 |#2|) (-1168)) 37) (((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -3928 (-639 (-1256 |#2|)))) "failed") (-683 |#2|) (-1256 |#2|) (-1168)) 35))) +(((-797 |#1| |#2|) (-10 -7 (-15 -4351 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -3928 (-639 (-1256 |#2|)))) "failed") (-683 |#2|) (-1256 |#2|) (-1168))) (-15 -4351 ((-3 (-639 (-1256 |#2|)) "failed") (-683 |#2|) (-1168))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -3928 (-639 (-1256 |#2|)))) "failed") (-639 (-293 |#2|)) (-639 (-114)) (-1168))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -3928 (-639 (-1256 |#2|)))) "failed") (-639 |#2|) (-639 (-114)) (-1168))) (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1168))) (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) |#2| "failed") |#2| (-114) (-1168))) (-15 -4351 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|))) (-15 -4351 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-639 |#2|)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954))) (T -797)) +((-4351 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-639 *2)) (-4 *2 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-797 *6 *2)))) (-4351 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-639 *2)) (-4 *2 (-13 (-29 *6) (-1192) (-954))) (-5 *1 (-797 *6 *2)) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))))) (-4351 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1168)) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3928 (-639 *3))) *3 "failed")) (-5 *1 (-797 *6 *3)) (-4 *3 (-13 (-29 *6) (-1192) (-954))))) (-4351 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3928 (-639 *7))) *7 "failed")) (-5 *1 (-797 *6 *7)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-639 *7)) (-5 *4 (-639 (-114))) (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -3928 (-639 (-1256 *7))))) (-5 *1 (-797 *6 *7)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-639 (-293 *7))) (-5 *4 (-639 (-114))) (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -3928 (-639 (-1256 *7))))) (-5 *1 (-797 *6 *7)))) (-4351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-683 *6)) (-5 *4 (-1168)) (-4 *6 (-13 (-29 *5) (-1192) (-954))) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-1256 *6))) (-5 *1 (-797 *5 *6)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-683 *7)) (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -3928 (-639 (-1256 *7))))) (-5 *1 (-797 *6 *7)) (-5 *4 (-1256 *7))))) +(-10 -7 (-15 -4351 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -3928 (-639 (-1256 |#2|)))) "failed") (-683 |#2|) (-1256 |#2|) (-1168))) (-15 -4351 ((-3 (-639 (-1256 |#2|)) "failed") (-683 |#2|) (-1168))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -3928 (-639 (-1256 |#2|)))) "failed") (-639 (-293 |#2|)) (-639 (-114)) (-1168))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -3928 (-639 (-1256 |#2|)))) "failed") (-639 |#2|) (-639 (-114)) (-1168))) (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1168))) (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3928 (-639 |#2|))) |#2| "failed") |#2| (-114) (-1168))) (-15 -4351 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|))) (-15 -4351 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-639 |#2|)))) +((-2202 (($) 9)) (-2514 (((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 31)) (-1520 (((-639 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 28)) (-4300 (($ (-2 (|:| -2320 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) 25)) (-3488 (($ (-639 (-2 (|:| -2320 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) 23)) (-3765 (((-1261)) 12))) +(((-798) (-10 -8 (-15 -2202 ($)) (-15 -3765 ((-1261))) (-15 -1520 ((-639 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -3488 ($ (-639 (-2 (|:| -2320 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -4300 ($ (-2 (|:| -2320 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2514 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -798)) +((-2514 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *1 (-798)))) (-4300 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2320 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) (-5 *1 (-798)))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2320 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-5 *1 (-798)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-798)))) (-3765 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-798)))) (-2202 (*1 *1) (-5 *1 (-798)))) +(-10 -8 (-15 -2202 ($)) (-15 -3765 ((-1261))) (-15 -1520 ((-639 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -3488 ($ (-639 (-2 (|:| -2320 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -4300 ($ (-2 (|:| -2320 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2694 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2514 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) +((-1645 ((|#2| |#2| (-1168)) 16)) (-2820 ((|#2| |#2| (-1168)) 51)) (-4330 (((-1 |#2| |#2|) (-1168)) 11))) +(((-799 |#1| |#2|) (-10 -7 (-15 -1645 (|#2| |#2| (-1168))) (-15 -2820 (|#2| |#2| (-1168))) (-15 -4330 ((-1 |#2| |#2|) (-1168)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954))) (T -799)) +((-4330 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-1 *5 *5)) (-5 *1 (-799 *4 *5)) (-4 *5 (-13 (-29 *4) (-1192) (-954))))) (-2820 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1192) (-954))))) (-1645 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1192) (-954)))))) +(-10 -7 (-15 -1645 (|#2| |#2| (-1168))) (-15 -2820 (|#2| |#2| (-1168))) (-15 -4330 ((-1 |#2| |#2|) (-1168)))) +((-4351 (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378) (-378)) 116) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378)) 117) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-639 (-378)) (-378)) 119) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-378)) 120) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-378)) 121) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378))) 122) (((-1030) (-803) (-1056)) 108) (((-1030) (-803)) 109)) (-2172 (((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803) (-1056)) 75) (((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803)) 77))) +(((-800) (-10 -7 (-15 -4351 ((-1030) (-803))) (-15 -4351 ((-1030) (-803) (-1056))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-378))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-378))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-639 (-378)) (-378))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378) (-378))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803) (-1056))))) (T -800)) +((-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-1056)) (-5 *2 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-800)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1030)) (-5 *1 (-800))))) +(-10 -7 (-15 -4351 ((-1030) (-803))) (-15 -4351 ((-1030) (-803) (-1056))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-378))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-378))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-639 (-378)) (-378))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378))) (-15 -4351 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378) (-378))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803) (-1056)))) +((-2898 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3928 (-639 |#4|))) (-647 |#4|) |#4|) 35))) +(((-801 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2898 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3928 (-639 |#4|))) (-647 |#4|) |#4|))) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -801)) +((-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *4)) (-4 *4 (-341 *5 *6 *7)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) (-5 *1 (-801 *5 *6 *7 *4))))) +(-10 -7 (-15 -2898 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3928 (-639 |#4|))) (-647 |#4|) |#4|))) +((-4096 (((-2 (|:| -3342 |#3|) (|:| |rh| (-639 (-406 |#2|)))) |#4| (-639 (-406 |#2|))) 52)) (-1578 (((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4| |#2|) 60) (((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4|) 59) (((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3| |#2|) 20) (((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3|) 21)) (-3413 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2776 ((|#2| |#3| (-639 (-406 |#2|))) 94) (((-3 |#2| "failed") |#3| (-406 |#2|)) 91))) +(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2776 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2776 (|#2| |#3| (-639 (-406 |#2|)))) (-15 -1578 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3|)) (-15 -1578 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3| |#2|)) (-15 -3413 (|#2| |#3| |#1|)) (-15 -1578 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4|)) (-15 -1578 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4| |#2|)) (-15 -3413 (|#2| |#4| |#1|)) (-15 -4096 ((-2 (|:| -3342 |#3|) (|:| |rh| (-639 (-406 |#2|)))) |#4| (-639 (-406 |#2|))))) (-13 (-362) (-146) (-1033 (-406 (-562)))) (-1232 |#1|) (-650 |#2|) (-650 (-406 |#2|))) (T -802)) +((-4096 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-2 (|:| -3342 *7) (|:| |rh| (-639 (-406 *6))))) (-5 *1 (-802 *5 *6 *7 *3)) (-5 *4 (-639 (-406 *6))) (-4 *7 (-650 *6)) (-4 *3 (-650 (-406 *6))))) (-3413 (*1 *2 *3 *4) (-12 (-4 *2 (-1232 *4)) (-5 *1 (-802 *4 *2 *5 *3)) (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-650 *2)) (-4 *3 (-650 (-406 *2))))) (-1578 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *4 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -2328 *4) (|:| -3680 *4)))) (-5 *1 (-802 *5 *4 *6 *3)) (-4 *6 (-650 *4)) (-4 *3 (-650 (-406 *4))))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| -2328 *5) (|:| -3680 *5)))) (-5 *1 (-802 *4 *5 *6 *3)) (-4 *6 (-650 *5)) (-4 *3 (-650 (-406 *5))))) (-3413 (*1 *2 *3 *4) (-12 (-4 *2 (-1232 *4)) (-5 *1 (-802 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) (-4 *5 (-650 (-406 *2))))) (-1578 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *4 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -2328 *4) (|:| -3680 *4)))) (-5 *1 (-802 *5 *4 *3 *6)) (-4 *3 (-650 *4)) (-4 *6 (-650 (-406 *4))))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| -2328 *5) (|:| -3680 *5)))) (-5 *1 (-802 *4 *5 *3 *6)) (-4 *3 (-650 *5)) (-4 *6 (-650 (-406 *5))))) (-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-406 *2))) (-4 *2 (-1232 *5)) (-5 *1 (-802 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) (-4 *6 (-650 (-406 *2))))) (-2776 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-802 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) (-4 *6 (-650 *4))))) +(-10 -7 (-15 -2776 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2776 (|#2| |#3| (-639 (-406 |#2|)))) (-15 -1578 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3|)) (-15 -1578 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3| |#2|)) (-15 -3413 (|#2| |#3| |#1|)) (-15 -1578 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4|)) (-15 -1578 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4| |#2|)) (-15 -3413 (|#2| |#4| |#1|)) (-15 -4096 ((-2 (|:| -3342 |#3|) (|:| |rh| (-639 (-406 |#2|)))) |#4| (-639 (-406 |#2|))))) +((-4041 (((-112) $ $) NIL)) (-3961 (((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $) 13)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 15) (($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 12)) (-1731 (((-112) $ $) NIL))) +(((-803) (-13 (-1092) (-10 -8 (-15 -4054 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3961 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))) (T -803)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-803)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-803))))) +(-13 (-1092) (-10 -8 (-15 -4054 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3961 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $)))) +((-2936 (((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3342 |#3|))) |#3| (-1 (-639 |#2|) |#2| (-1164 |#2|)) (-1 (-417 |#2|) |#2|)) 117)) (-3651 (((-639 (-2 (|:| |poly| |#2|) (|:| -3342 |#3|))) |#3| (-1 (-639 |#1|) |#2|)) 46)) (-2168 (((-639 (-2 (|:| |deg| (-766)) (|:| -3342 |#2|))) |#3|) 94)) (-2710 ((|#2| |#3|) 37)) (-4095 (((-639 (-2 (|:| -1497 |#1|) (|:| -3342 |#3|))) |#3| (-1 (-639 |#1|) |#2|)) 81)) (-3587 ((|#3| |#3| (-406 |#2|)) 62) ((|#3| |#3| |#2|) 78))) +(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2710 (|#2| |#3|)) (-15 -2168 ((-639 (-2 (|:| |deg| (-766)) (|:| -3342 |#2|))) |#3|)) (-15 -4095 ((-639 (-2 (|:| -1497 |#1|) (|:| -3342 |#3|))) |#3| (-1 (-639 |#1|) |#2|))) (-15 -3651 ((-639 (-2 (|:| |poly| |#2|) (|:| -3342 |#3|))) |#3| (-1 (-639 |#1|) |#2|))) (-15 -2936 ((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3342 |#3|))) |#3| (-1 (-639 |#2|) |#2| (-1164 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3587 (|#3| |#3| |#2|)) (-15 -3587 (|#3| |#3| (-406 |#2|)))) (-13 (-362) (-146) (-1033 (-406 (-562)))) (-1232 |#1|) (-650 |#2|) (-650 (-406 |#2|))) (T -804)) +((-3587 (*1 *2 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *1 (-804 *4 *5 *2 *6)) (-4 *2 (-650 *5)) (-4 *6 (-650 *3)))) (-3587 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-1232 *4)) (-5 *1 (-804 *4 *3 *2 *5)) (-4 *2 (-650 *3)) (-4 *5 (-650 (-406 *3))))) (-2936 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-639 *7) *7 (-1164 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-5 *2 (-639 (-2 (|:| |frac| (-406 *7)) (|:| -3342 *3)))) (-5 *1 (-804 *6 *7 *3 *8)) (-4 *3 (-650 *7)) (-4 *8 (-650 (-406 *7))))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-2 (|:| |poly| *6) (|:| -3342 *3)))) (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-650 *6)) (-4 *7 (-650 (-406 *6))))) (-4095 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -1497 *5) (|:| -3342 *3)))) (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-650 *6)) (-4 *7 (-650 (-406 *6))))) (-2168 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| |deg| (-766)) (|:| -3342 *5)))) (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-650 *5)) (-4 *6 (-650 (-406 *5))))) (-2710 (*1 *2 *3) (-12 (-4 *2 (-1232 *4)) (-5 *1 (-804 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) (-4 *5 (-650 (-406 *2)))))) +(-10 -7 (-15 -2710 (|#2| |#3|)) (-15 -2168 ((-639 (-2 (|:| |deg| (-766)) (|:| -3342 |#2|))) |#3|)) (-15 -4095 ((-639 (-2 (|:| -1497 |#1|) (|:| -3342 |#3|))) |#3| (-1 (-639 |#1|) |#2|))) (-15 -3651 ((-639 (-2 (|:| |poly| |#2|) (|:| -3342 |#3|))) |#3| (-1 (-639 |#1|) |#2|))) (-15 -2936 ((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3342 |#3|))) |#3| (-1 (-639 |#2|) |#2| (-1164 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3587 (|#3| |#3| |#2|)) (-15 -3587 (|#3| |#3| (-406 |#2|)))) +((-3982 (((-2 (|:| -3928 (-639 (-406 |#2|))) (|:| -1545 (-683 |#1|))) (-648 |#2| (-406 |#2|)) (-639 (-406 |#2|))) 122) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3928 (-639 (-406 |#2|)))) (-648 |#2| (-406 |#2|)) (-406 |#2|)) 121) (((-2 (|:| -3928 (-639 (-406 |#2|))) (|:| -1545 (-683 |#1|))) (-647 (-406 |#2|)) (-639 (-406 |#2|))) 116) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3928 (-639 (-406 |#2|)))) (-647 (-406 |#2|)) (-406 |#2|)) 114)) (-2662 ((|#2| (-648 |#2| (-406 |#2|))) 80) ((|#2| (-647 (-406 |#2|))) 83))) +(((-805 |#1| |#2|) (-10 -7 (-15 -3982 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3928 (-639 (-406 |#2|)))) (-647 (-406 |#2|)) (-406 |#2|))) (-15 -3982 ((-2 (|:| -3928 (-639 (-406 |#2|))) (|:| -1545 (-683 |#1|))) (-647 (-406 |#2|)) (-639 (-406 |#2|)))) (-15 -3982 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3928 (-639 (-406 |#2|)))) (-648 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -3982 ((-2 (|:| -3928 (-639 (-406 |#2|))) (|:| -1545 (-683 |#1|))) (-648 |#2| (-406 |#2|)) (-639 (-406 |#2|)))) (-15 -2662 (|#2| (-647 (-406 |#2|)))) (-15 -2662 (|#2| (-648 |#2| (-406 |#2|))))) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -805)) +((-2662 (*1 *2 *3) (-12 (-5 *3 (-648 *2 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-805 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-647 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-805 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *6 (-406 *6))) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-2 (|:| -3928 (-639 (-406 *6))) (|:| -1545 (-683 *5)))) (-5 *1 (-805 *5 *6)) (-5 *4 (-639 (-406 *6))))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) (-5 *1 (-805 *5 *6)))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-406 *6))) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-2 (|:| -3928 (-639 (-406 *6))) (|:| -1545 (-683 *5)))) (-5 *1 (-805 *5 *6)) (-5 *4 (-639 (-406 *6))))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) (-5 *1 (-805 *5 *6))))) +(-10 -7 (-15 -3982 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3928 (-639 (-406 |#2|)))) (-647 (-406 |#2|)) (-406 |#2|))) (-15 -3982 ((-2 (|:| -3928 (-639 (-406 |#2|))) (|:| -1545 (-683 |#1|))) (-647 (-406 |#2|)) (-639 (-406 |#2|)))) (-15 -3982 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -3928 (-639 (-406 |#2|)))) (-648 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -3982 ((-2 (|:| -3928 (-639 (-406 |#2|))) (|:| -1545 (-683 |#1|))) (-648 |#2| (-406 |#2|)) (-639 (-406 |#2|)))) (-15 -2662 (|#2| (-647 (-406 |#2|)))) (-15 -2662 (|#2| (-648 |#2| (-406 |#2|))))) +((-1309 (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) |#5| |#4|) 48))) +(((-806 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1309 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) |#5| |#4|))) (-362) (-650 |#1|) (-1232 |#1|) (-719 |#1| |#3|) (-650 |#4|)) (T -806)) +((-1309 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *7 (-1232 *5)) (-4 *4 (-719 *5 *7)) (-5 *2 (-2 (|:| -1545 (-683 *6)) (|:| |vec| (-1256 *5)))) (-5 *1 (-806 *5 *6 *7 *4 *3)) (-4 *6 (-650 *5)) (-4 *3 (-650 *4))))) +(-10 -7 (-15 -1309 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) |#5| |#4|))) +((-2936 (((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3342 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 47)) (-3357 (((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|))) 137 (|has| |#1| (-27))) (((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-639 (-406 |#2|)) (-647 (-406 |#2|))) 139 (|has| |#1| (-27))) (((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38) (((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|)) 39) (((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36) (((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|)) 37)) (-3651 (((-639 (-2 (|:| |poly| |#2|) (|:| -3342 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|)) 83))) +(((-807 |#1| |#2|) (-10 -7 (-15 -3357 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (-15 -3357 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3357 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (-15 -3357 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2936 ((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3342 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3651 ((-639 (-2 (|:| |poly| |#2|) (|:| -3342 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3357 ((-639 (-406 |#2|)) (-647 (-406 |#2|)))) (-15 -3357 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3357 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)))) (-15 -3357 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -807)) +((-3357 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-648 *5 (-406 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-406 *5))) (-5 *1 (-807 *4 *5)))) (-3357 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-647 (-406 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-406 *5))) (-5 *1 (-807 *4 *5)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-2 (|:| |poly| *6) (|:| -3342 (-648 *6 (-406 *6)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-648 *6 (-406 *6))))) (-2936 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-2 (|:| |frac| (-406 *6)) (|:| -3342 (-648 *6 (-406 *6)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-648 *6 (-406 *6))))) (-3357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-648 *7 (-406 *7))) (-5 *4 (-1 (-639 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *7 (-1232 *6)) (-5 *2 (-639 (-406 *7))) (-5 *1 (-807 *6 *7)))) (-3357 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) (-3357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 (-406 *7))) (-5 *4 (-1 (-639 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *7 (-1232 *6)) (-5 *2 (-639 (-406 *7))) (-5 *1 (-807 *6 *7)))) (-3357 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6))))) +(-10 -7 (-15 -3357 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (-15 -3357 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3357 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (-15 -3357 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2936 ((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3342 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3651 ((-639 (-2 (|:| |poly| |#2|) (|:| -3342 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3357 ((-639 (-406 |#2|)) (-647 (-406 |#2|)))) (-15 -3357 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3357 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)))) (-15 -3357 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) +((-1872 (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) (-683 |#2|) (-1256 |#1|)) 85) (((-2 (|:| A (-683 |#1|)) (|:| |eqs| (-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)) (|:| -3342 |#2|) (|:| |rh| |#1|))))) (-683 |#1|) (-1256 |#1|)) 15)) (-1567 (((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|)))) (-683 |#2|) (-1256 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3928 (-639 |#1|))) |#2| |#1|)) 92)) (-4351 (((-3 (-2 (|:| |particular| (-1256 |#1|)) (|:| -3928 (-683 |#1|))) "failed") (-683 |#1|) (-1256 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3928 (-639 |#1|))) "failed") |#2| |#1|)) 43))) +(((-808 |#1| |#2|) (-10 -7 (-15 -1872 ((-2 (|:| A (-683 |#1|)) (|:| |eqs| (-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)) (|:| -3342 |#2|) (|:| |rh| |#1|))))) (-683 |#1|) (-1256 |#1|))) (-15 -1872 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) (-683 |#2|) (-1256 |#1|))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1256 |#1|)) (|:| -3928 (-683 |#1|))) "failed") (-683 |#1|) (-1256 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3928 (-639 |#1|))) "failed") |#2| |#1|))) (-15 -1567 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|)))) (-683 |#2|) (-1256 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3928 (-639 |#1|))) |#2| |#1|)))) (-362) (-650 |#1|)) (T -808)) +((-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3928 (-639 *6))) *7 *6)) (-4 *6 (-362)) (-4 *7 (-650 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 *6) "failed")) (|:| -3928 (-639 (-1256 *6))))) (-5 *1 (-808 *6 *7)) (-5 *4 (-1256 *6)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3928 (-639 *6))) "failed") *7 *6)) (-4 *6 (-362)) (-4 *7 (-650 *6)) (-5 *2 (-2 (|:| |particular| (-1256 *6)) (|:| -3928 (-683 *6)))) (-5 *1 (-808 *6 *7)) (-5 *3 (-683 *6)) (-5 *4 (-1256 *6)))) (-1872 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-650 *5)) (-5 *2 (-2 (|:| -1545 (-683 *6)) (|:| |vec| (-1256 *5)))) (-5 *1 (-808 *5 *6)) (-5 *3 (-683 *6)) (-5 *4 (-1256 *5)))) (-1872 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| A (-683 *5)) (|:| |eqs| (-639 (-2 (|:| C (-683 *5)) (|:| |g| (-1256 *5)) (|:| -3342 *6) (|:| |rh| *5)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *6 (-650 *5))))) +(-10 -7 (-15 -1872 ((-2 (|:| A (-683 |#1|)) (|:| |eqs| (-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)) (|:| -3342 |#2|) (|:| |rh| |#1|))))) (-683 |#1|) (-1256 |#1|))) (-15 -1872 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) (-683 |#2|) (-1256 |#1|))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1256 |#1|)) (|:| -3928 (-683 |#1|))) "failed") (-683 |#1|) (-1256 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3928 (-639 |#1|))) "failed") |#2| |#1|))) (-15 -1567 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -3928 (-639 (-1256 |#1|)))) (-683 |#2|) (-1256 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3928 (-639 |#1|))) |#2| |#1|)))) +((-3081 (((-683 |#1|) (-639 |#1|) (-766)) 13) (((-683 |#1|) (-639 |#1|)) 14)) (-2856 (((-3 (-1256 |#1|) "failed") |#2| |#1| (-639 |#1|)) 34)) (-2106 (((-3 |#1| "failed") |#2| |#1| (-639 |#1|) (-1 |#1| |#1|)) 42))) +(((-809 |#1| |#2|) (-10 -7 (-15 -3081 ((-683 |#1|) (-639 |#1|))) (-15 -3081 ((-683 |#1|) (-639 |#1|) (-766))) (-15 -2856 ((-3 (-1256 |#1|) "failed") |#2| |#1| (-639 |#1|))) (-15 -2106 ((-3 |#1| "failed") |#2| |#1| (-639 |#1|) (-1 |#1| |#1|)))) (-362) (-650 |#1|)) (T -809)) +((-2106 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-639 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) (-5 *1 (-809 *2 *3)) (-4 *3 (-650 *2)))) (-2856 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-639 *4)) (-4 *4 (-362)) (-5 *2 (-1256 *4)) (-5 *1 (-809 *4 *3)) (-4 *3 (-650 *4)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-766)) (-4 *5 (-362)) (-5 *2 (-683 *5)) (-5 *1 (-809 *5 *6)) (-4 *6 (-650 *5)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-362)) (-5 *2 (-683 *4)) (-5 *1 (-809 *4 *5)) (-4 *5 (-650 *4))))) +(-10 -7 (-15 -3081 ((-683 |#1|) (-639 |#1|))) (-15 -3081 ((-683 |#1|) (-639 |#1|) (-766))) (-15 -2856 ((-3 (-1256 |#1|) "failed") |#2| |#1| (-639 |#1|))) (-15 -2106 ((-3 |#1| "failed") |#2| |#1| (-639 |#1|) (-1 |#1| |#1|)))) +((-4041 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-1952 (((-112) $) NIL (|has| |#2| (-130)))) (-3901 (($ (-916)) NIL (|has| |#2| (-1044)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-3659 (($ $ $) NIL (|has| |#2| (-788)))) (-3214 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-4336 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#2| (-367)))) (-2277 (((-562) $) NIL (|has| |#2| (-843)))) (-4200 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1092)))) (-3961 (((-562) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) ((|#2| $) NIL (|has| |#2| (-1092)))) (-2406 (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL (|has| |#2| (-1044))) (((-683 |#2|) (-683 $)) NIL (|has| |#2| (-1044)))) (-3668 (((-3 $ "failed") $) NIL (|has| |#2| (-721)))) (-1448 (($) NIL (|has| |#2| (-367)))) (-1505 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ (-562)) NIL)) (-3519 (((-112) $) NIL (|has| |#2| (-843)))) (-1720 (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1957 (((-112) $) NIL (|has| |#2| (-721)))) (-3392 (((-112) $) NIL (|has| |#2| (-843)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1912 (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1490 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-1999 (((-916) $) NIL (|has| |#2| (-367)))) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#2| (-1092)))) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-2466 (($ (-916)) NIL (|has| |#2| (-367)))) (-1709 (((-1112) $) NIL (|has| |#2| (-1092)))) (-1421 ((|#2| $) NIL (|has| (-562) (-845)))) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-562)) NIL)) (-4177 ((|#2| $ $) NIL (|has| |#2| (-1044)))) (-1679 (($ (-1256 |#2|)) NIL)) (-3627 (((-133)) NIL (|has| |#2| (-362)))) (-4029 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-1256 |#2|) $) NIL) (($ (-562)) NIL (-4037 (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (($ |#2|) NIL (|has| |#2| (-1092))) (((-857) $) NIL (|has| |#2| (-609 (-857))))) (-2579 (((-766)) NIL (|has| |#2| (-1044)))) (-1744 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-3526 (($ $) NIL (|has| |#2| (-843)))) (-2286 (($) NIL (|has| |#2| (-130)) CONST)) (-2294 (($) NIL (|has| |#2| (-721)) CONST)) (-3114 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1772 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1731 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-1785 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1759 (((-112) $ $) 11 (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $ $) NIL (|has| |#2| (-1044))) (($ $) NIL (|has| |#2| (-1044)))) (-1835 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-766)) NIL (|has| |#2| (-721))) (($ $ (-916)) NIL (|has| |#2| (-721)))) (* (($ (-562) $) NIL (|has| |#2| (-1044))) (($ $ $) NIL (|has| |#2| (-721))) (($ $ |#2|) NIL (|has| |#2| (-721))) (($ |#2| $) NIL (|has| |#2| (-721))) (($ (-766) $) NIL (|has| |#2| (-130))) (($ (-916) $) NIL (|has| |#2| (-25)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-810 |#1| |#2| |#3|) (-237 |#1| |#2|) (-766) (-788) (-1 (-112) (-1256 |#2|) (-1256 |#2|))) (T -810)) NIL (-237 |#1| |#2|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1571 (((-635 (-765)) $) NIL) (((-635 (-765)) $ (-1166)) NIL)) (-1605 (((-765) $) NIL) (((-765) $ (-1166)) NIL)) (-3467 (((-635 (-812 (-1166))) $) NIL)) (-3469 (((-1160 $) $ (-812 (-1166))) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-812 (-1166)))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1567 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-812 (-1166)) #2#) $) NIL) (((-3 (-1166) #2#) $) NIL) (((-3 (-1115 |#1| (-1166)) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-812 (-1166)) $) NIL) (((-1166) $) NIL) (((-1115 |#1| (-1166)) $) NIL)) (-4163 (($ $ $ (-812 (-1166))) NIL (|has| |#1| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-812 (-1166))) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 (-812 (-1166))) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-812 (-1166)) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-812 (-1166)) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ (-1166)) NIL) (((-765) $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#1|) (-812 (-1166))) NIL) (($ (-1160 $) (-812 (-1166))) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-635 (-812 (-1166))) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-812 (-1166))) NIL)) (-3202 (((-529 (-812 (-1166))) $) NIL) (((-765) $ (-812 (-1166))) NIL) (((-635 (-765)) $ (-635 (-812 (-1166)))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 (-812 (-1166))) (-529 (-812 (-1166)))) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1606 (((-1 $ (-765)) (-1166)) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-3468 (((-3 (-812 (-1166)) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-1569 (((-812 (-1166)) $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-1570 (((-112) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-812 (-1166))) (|:| -2536 (-765))) #3#) $) NIL)) (-1568 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-812 (-1166)) |#1|) NIL) (($ $ (-635 (-812 (-1166))) (-635 |#1|)) NIL) (($ $ (-812 (-1166)) $) NIL) (($ $ (-635 (-812 (-1166))) (-635 $)) NIL) (($ $ (-1166) $) NIL (|has| |#1| (-232))) (($ $ (-635 (-1166)) (-635 $)) NIL (|has| |#1| (-232))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-4164 (($ $ (-812 (-1166))) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-812 (-1166))) NIL) (($ $ (-635 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-635 (-812 (-1166))) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1572 (((-635 (-1166)) $) NIL)) (-4355 (((-529 (-812 (-1166))) $) NIL) (((-765) $ (-812 (-1166))) NIL) (((-635 (-765)) $ (-635 (-812 (-1166)))) NIL) (((-765) $ (-1166)) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-812 (-1166)) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-812 (-1166))) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-812 (-1166))) NIL) (($ (-1166)) NIL) (($ (-1115 |#1| (-1166))) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-635 (-812 (-1166))) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-812 (-1166))) NIL) (($ $ (-635 (-812 (-1166)))) NIL) (($ $ (-812 (-1166)) (-765)) NIL) (($ $ (-635 (-812 (-1166))) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-810 |#1|) (-13 (-252 |#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) (-1031 (-1115 |#1| (-1166)))) (-1042)) (T -810)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1880 (((-639 (-766)) $) NIL) (((-639 (-766)) $ (-1168)) NIL)) (-1929 (((-766) $) NIL) (((-766) $ (-1168)) NIL)) (-1402 (((-639 (-813 (-1168))) $) NIL)) (-1599 (((-1164 $) $ (-813 (-1168))) NIL) (((-1164 |#1|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-813 (-1168)))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2798 (($ $) NIL (|has| |#1| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3677 (($ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-813 (-1168)) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL) (((-3 (-1117 |#1| (-1168)) "failed") $) NIL)) (-3961 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-813 (-1168)) $) NIL) (((-1168) $) NIL) (((-1117 |#1| (-1168)) $) NIL)) (-2835 (($ $ $ (-813 (-1168))) NIL (|has| |#1| (-171)))) (-1601 (($ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-451))) (($ $ (-813 (-1168))) NIL (|has| |#1| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#1| (-904)))) (-3122 (($ $ |#1| (-530 (-813 (-1168))) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-813 (-1168)) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-813 (-1168)) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1900 (((-766) $ (-1168)) NIL) (((-766) $) NIL)) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1390 (($ (-1164 |#1|) (-813 (-1168))) NIL) (($ (-1164 $) (-813 (-1168))) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-530 (-813 (-1168)))) NIL) (($ $ (-813 (-1168)) (-766)) NIL) (($ $ (-639 (-813 (-1168))) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-813 (-1168))) NIL)) (-2076 (((-530 (-813 (-1168))) $) NIL) (((-766) $ (-813 (-1168))) NIL) (((-639 (-766)) $ (-639 (-813 (-1168)))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2836 (($ (-1 (-530 (-813 (-1168))) (-530 (-813 (-1168)))) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3603 (((-1 $ (-766)) (-1168)) NIL) (((-1 $ (-766)) $) NIL (|has| |#1| (-232)))) (-3372 (((-3 (-813 (-1168)) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3736 (((-813 (-1168)) $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-2913 (((-1150) $) NIL)) (-3349 (((-112) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-813 (-1168))) (|:| -1960 (-766))) "failed") $) NIL)) (-3592 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-813 (-1168)) |#1|) NIL) (($ $ (-639 (-813 (-1168))) (-639 |#1|)) NIL) (($ $ (-813 (-1168)) $) NIL) (($ $ (-639 (-813 (-1168))) (-639 $)) NIL) (($ $ (-1168) $) NIL (|has| |#1| (-232))) (($ $ (-639 (-1168)) (-639 $)) NIL (|has| |#1| (-232))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-232))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-232)))) (-2455 (($ $ (-813 (-1168))) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-813 (-1168))) NIL) (($ $ (-639 (-813 (-1168)))) NIL) (($ $ (-813 (-1168)) (-766)) NIL) (($ $ (-639 (-813 (-1168))) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4333 (((-639 (-1168)) $) NIL)) (-3598 (((-530 (-813 (-1168))) $) NIL) (((-766) $ (-813 (-1168))) NIL) (((-639 (-766)) $ (-639 (-813 (-1168)))) NIL) (((-766) $ (-1168)) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-813 (-1168)) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-813 (-1168)) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-813 (-1168)) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-3900 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-813 (-1168))) NIL (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-813 (-1168))) NIL) (($ (-1168)) NIL) (($ (-1117 |#1| (-1168))) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-530 (-813 (-1168)))) NIL) (($ $ (-813 (-1168)) (-766)) NIL) (($ $ (-639 (-813 (-1168))) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-813 (-1168))) NIL) (($ $ (-639 (-813 (-1168)))) NIL) (($ $ (-813 (-1168)) (-766)) NIL) (($ $ (-639 (-813 (-1168))) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-811 |#1|) (-13 (-252 |#1| (-1168) (-813 (-1168)) (-530 (-813 (-1168)))) (-1033 (-1117 |#1| (-1168)))) (-1044)) (T -811)) NIL -(-13 (-252 |#1| (-1166) (-812 (-1166)) (-529 (-812 (-1166)))) (-1031 (-1115 |#1| (-1166)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-362)))) (-2213 (($ $) NIL (|has| |#2| (-362)))) (-2211 (((-112) $) NIL (|has| |#2| (-362)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#2| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-362)))) (-1733 (((-112) $ $) NIL (|has| |#2| (-362)))) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL (|has| |#2| (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#2| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#2| (-362)))) (-4130 (((-112) $) NIL (|has| |#2| (-362)))) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-2041 (($ (-635 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 20 (|has| |#2| (-362)))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#2| (-362)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-1732 (((-765) $) NIL (|has| |#2| (-362)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-362)))) (-4217 (($ $ (-765)) NIL) (($ $) 13)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-406 (-544))) NIL (|has| |#2| (-362))) (($ $) NIL (|has| |#2| (-362)))) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL (|has| |#2| (-362)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) 15 (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL) (($ $ (-544)) 18 (|has| |#2| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-406 (-544)) $) NIL (|has| |#2| (-362))) (($ $ (-406 (-544))) NIL (|has| |#2| (-362))))) -(((-811 |#1| |#2| |#3|) (-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) (-1091) (-893 |#1|) |#1|) (T -811)) +(-13 (-252 |#1| (-1168) (-813 (-1168)) (-530 (-813 (-1168)))) (-1033 (-1117 |#1| (-1168)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#2| (-362)))) (-2796 (($ $) NIL (|has| |#2| (-362)))) (-4370 (((-112) $) NIL (|has| |#2| (-362)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| |#2| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#2| (-362)))) (-2569 (((-112) $ $) NIL (|has| |#2| (-362)))) (-1800 (($) NIL T CONST)) (-1811 (($ $ $) NIL (|has| |#2| (-362)))) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#2| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#2| (-362)))) (-2717 (((-112) $) NIL (|has| |#2| (-362)))) (-1957 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#2| (-362)))) (-1564 (($ (-639 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 20 (|has| |#2| (-362)))) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#2| (-362)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#2| (-362)))) (-1577 (((-766) $) NIL (|has| |#2| (-362)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#2| (-362)))) (-4029 (($ $ (-766)) NIL) (($ $) 13)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-406 (-562))) NIL (|has| |#2| (-362))) (($ $) NIL (|has| |#2| (-362)))) (-2579 (((-766)) NIL)) (-2922 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) 15 (|has| |#2| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL) (($ $ (-562)) 18 (|has| |#2| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-406 (-562)) $) NIL (|has| |#2| (-362))) (($ $ (-406 (-562))) NIL (|has| |#2| (-362))))) +(((-812 |#1| |#2| |#3|) (-13 (-111 $ $) (-232) (-489 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) (-1092) (-895 |#1|) |#1|) (T -812)) NIL -(-13 (-111 $ $) (-232) (-488 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-1605 (((-765) $) NIL)) (-4238 ((|#1| $) 10)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-4178 (((-765) $) 11)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-1606 (($ |#1| (-765)) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4217 (($ $) NIL) (($ $ (-765)) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL))) -(((-812 |#1|) (-265 |#1|) (-844)) (T -812)) +(-13 (-111 $ $) (-232) (-489 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-1929 (((-766) $) NIL)) (-2444 ((|#1| $) 10)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-1900 (((-766) $) 11)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3603 (($ |#1| (-766)) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4029 (($ $) NIL) (($ $ (-766)) NIL)) (-4054 (((-857) $) NIL) (($ |#1|) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL))) +(((-813 |#1|) (-265 |#1|) (-845)) (T -813)) NIL (-265 |#1|) -((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) 29)) (-3521 (((-765) $) NIL)) (-4131 (($) NIL T CONST)) (-4346 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-4205 (($ $) 31)) (-3866 (((-3 $ "failed") $) NIL)) (-2815 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2545 (((-112) $) NIL)) (-2813 ((|#1| $ (-544)) NIL)) (-2814 (((-765) $ (-544)) NIL)) (-4343 (($ $) 35)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4347 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2818 (((-112) $ $) 33)) (-4240 (((-765) $) 25)) (-3643 (((-1148) $) NIL)) (-2816 (($ $ $) NIL)) (-2817 (($ $ $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 ((|#1| $) 30)) (-2812 (((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $) NIL)) (-2944 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-3046 (($) 15 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 34)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ |#1| (-765)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-813 |#1|) (-13 (-840) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -4207 (|#1| $)) (-15 -4205 ($ $)) (-15 -4343 ($ $)) (-15 -2818 ((-112) $ $)) (-15 -2817 ($ $ $)) (-15 -2816 ($ $ $)) (-15 -4347 ((-3 $ "failed") $ $)) (-15 -4346 ((-3 $ "failed") $ $)) (-15 -4347 ((-3 $ "failed") $ |#1|)) (-15 -4346 ((-3 $ "failed") $ |#1|)) (-15 -2944 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2815 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3521 ((-765) $)) (-15 -2814 ((-765) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $)) (-15 -4240 ((-765) $)) (-15 -4341 ((-635 |#1|) $)))) (-844)) (T -813)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4207 (*1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4205 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2818 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-2817 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2816 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4347 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4346 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4347 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-4346 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2944 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |rm| (-813 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-2815 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |mm| (-813 *3)) (|:| |rm| (-813 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-2814 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-765)) (-5 *1 (-813 *4)) (-4 *4 (-844)))) (-2813 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-813 *2)) (-4 *2 (-844)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-765))))) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-813 *3)) (-4 *3 (-844))))) -(-13 (-840) (-1031 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-765))) (-15 -4207 (|#1| $)) (-15 -4205 ($ $)) (-15 -4343 ($ $)) (-15 -2818 ((-112) $ $)) (-15 -2817 ($ $ $)) (-15 -2816 ($ $ $)) (-15 -4347 ((-3 $ "failed") $ $)) (-15 -4346 ((-3 $ "failed") $ $)) (-15 -4347 ((-3 $ "failed") $ |#1|)) (-15 -4346 ((-3 $ "failed") $ |#1|)) (-15 -2944 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2815 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3521 ((-765) $)) (-15 -2814 ((-765) $ (-544))) (-15 -2813 (|#1| $ (-544))) (-15 -2812 ((-635 (-2 (|:| |gen| |#1|) (|:| -4350 (-765)))) $)) (-15 -4240 ((-765) $)) (-15 -4341 ((-635 |#1|) $)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4030 (((-544) $) 54)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-3587 (((-112) $) 52)) (-2545 (((-112) $) 31)) (-3588 (((-112) $) 53)) (-2913 (($ $ $) 51)) (-3242 (($ $ $) 50)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3787 (($ $) 55)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 48)) (-2946 (((-112) $ $) 47)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 49)) (-3067 (((-112) $ $) 46)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-814) (-139)) (T -814)) -NIL -(-13 (-554) (-842)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-842) . T) ((-844) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2879 (((-1259) (-817) $ (-112)) 9) (((-1259) (-817) $) 8) (((-1148) $ (-112)) 7) (((-1148) $) 6))) +((-4041 (((-112) $ $) NIL)) (-2852 (((-639 |#1|) $) 29)) (-1382 (((-766) $) NIL)) (-1800 (($) NIL T CONST)) (-2415 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-1434 (($ $) 31)) (-3668 (((-3 $ "failed") $) NIL)) (-1605 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1957 (((-112) $) NIL)) (-3126 ((|#1| $ (-562)) NIL)) (-1870 (((-766) $ (-562)) NIL)) (-3818 (($ $) 35)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2221 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3496 (((-112) $ $) 33)) (-3641 (((-766) $) 25)) (-2913 (((-1150) $) NIL)) (-3423 (($ $ $) NIL)) (-1989 (($ $ $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 ((|#1| $) 30)) (-1510 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $) NIL)) (-1773 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4054 (((-857) $) NIL) (($ |#1|) NIL)) (-2294 (($) 15 T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 34)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ |#1| (-766)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-814 |#1|) (-13 (-841) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-766))) (-15 -1421 (|#1| $)) (-15 -1434 ($ $)) (-15 -3818 ($ $)) (-15 -3496 ((-112) $ $)) (-15 -1989 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -2221 ((-3 $ "failed") $ $)) (-15 -2415 ((-3 $ "failed") $ $)) (-15 -2221 ((-3 $ "failed") $ |#1|)) (-15 -2415 ((-3 $ "failed") $ |#1|)) (-15 -1773 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1605 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1382 ((-766) $)) (-15 -1870 ((-766) $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -1510 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $)) (-15 -3641 ((-766) $)) (-15 -2852 ((-639 |#1|) $)))) (-845)) (T -814)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-1421 (*1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-1434 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-3496 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-1989 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-3423 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2221 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2415 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2221 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2415 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-1773 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-814 *3)) (|:| |rm| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-1605 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-814 *3)) (|:| |mm| (-814 *3)) (|:| |rm| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-1870 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-766)) (-5 *1 (-814 *4)) (-4 *4 (-845)))) (-3126 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-766))))) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-814 *3)) (-4 *3 (-845))))) +(-13 (-841) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-766))) (-15 -1421 (|#1| $)) (-15 -1434 ($ $)) (-15 -3818 ($ $)) (-15 -3496 ((-112) $ $)) (-15 -1989 ($ $ $)) (-15 -3423 ($ $ $)) (-15 -2221 ((-3 $ "failed") $ $)) (-15 -2415 ((-3 $ "failed") $ $)) (-15 -2221 ((-3 $ "failed") $ |#1|)) (-15 -2415 ((-3 $ "failed") $ |#1|)) (-15 -1773 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1605 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1382 ((-766) $)) (-15 -1870 ((-766) $ (-562))) (-15 -3126 (|#1| $ (-562))) (-15 -1510 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $)) (-15 -3641 ((-766) $)) (-15 -2852 ((-639 |#1|) $)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-2277 (((-562) $) 54)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-3519 (((-112) $) 52)) (-1957 (((-112) $) 31)) (-3392 (((-112) $) 53)) (-1551 (($ $ $) 51)) (-2993 (($ $ $) 50)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 43)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-3526 (($ $) 55)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 48)) (-1772 (((-112) $ $) 47)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 49)) (-1759 (((-112) $ $) 46)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-815) (-139)) (T -815)) -((-2879 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-815)) (-5 *3 (-817)) (-5 *4 (-112)) (-5 *2 (-1259)))) (-2879 (*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-817)) (-5 *2 (-1259)))) (-2879 (*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-112)) (-5 *2 (-1148)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1148))))) -(-13 (-10 -8 (-15 -2879 ((-1148) $)) (-15 -2879 ((-1148) $ (-112))) (-15 -2879 ((-1259) (-817) $)) (-15 -2879 ((-1259) (-817) $ (-112))))) -((-2819 (($ (-1110)) 7)) (-2823 (((-112) $ (-1148) (-1110)) 15)) (-2822 (((-817) $) 12)) (-2821 (((-817) $) 11)) (-2820 (((-1259) $) 9)) (-2824 (((-112) $ (-1110)) 16))) -(((-816) (-10 -8 (-15 -2819 ($ (-1110))) (-15 -2820 ((-1259) $)) (-15 -2821 ((-817) $)) (-15 -2822 ((-817) $)) (-15 -2823 ((-112) $ (-1148) (-1110))) (-15 -2824 ((-112) $ (-1110))))) (T -816)) -((-2824 (*1 *2 *1 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-112)) (-5 *1 (-816)))) (-2823 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-1110)) (-5 *2 (-112)) (-5 *1 (-816)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-816))))) -(-10 -8 (-15 -2819 ($ (-1110))) (-15 -2820 ((-1259) $)) (-15 -2821 ((-817) $)) (-15 -2822 ((-817) $)) (-15 -2823 ((-112) $ (-1148) (-1110))) (-15 -2824 ((-112) $ (-1110)))) -((-2828 (((-1259) $ (-818)) 12)) (-2845 (((-1259) $ (-1166)) 32)) (-2847 (((-1259) $ (-1148) (-1148)) 34)) (-2846 (((-1259) $ (-1148)) 33)) (-2835 (((-1259) $) 19)) (-2843 (((-1259) $ (-544)) 28)) (-2844 (((-1259) $ (-224)) 30)) (-2834 (((-1259) $) 18)) (-2842 (((-1259) $) 26)) (-2841 (((-1259) $) 25)) (-2839 (((-1259) $) 23)) (-2840 (((-1259) $) 24)) (-2838 (((-1259) $) 22)) (-2837 (((-1259) $) 21)) (-2836 (((-1259) $) 20)) (-2832 (((-1259) $) 16)) (-2833 (((-1259) $) 17)) (-2831 (((-1259) $) 15)) (-2830 (((-1259) $) 14)) (-2829 (((-1259) $) 13)) (-2826 (($ (-1148) (-818)) 9)) (-2825 (($ (-1148) (-1148) (-818)) 8)) (-2864 (((-1166) $) 51)) (-2867 (((-1166) $) 55)) (-2866 (((-2 (|:| |cd| (-1148)) (|:| -3949 (-1148))) $) 54)) (-2865 (((-1148) $) 52)) (-2854 (((-1259) $) 41)) (-2862 (((-544) $) 49)) (-2863 (((-224) $) 50)) (-2853 (((-1259) $) 40)) (-2861 (((-1259) $) 48)) (-2860 (((-1259) $) 47)) (-2858 (((-1259) $) 45)) (-2859 (((-1259) $) 46)) (-2857 (((-1259) $) 44)) (-2856 (((-1259) $) 43)) (-2855 (((-1259) $) 42)) (-2851 (((-1259) $) 38)) (-2852 (((-1259) $) 39)) (-2850 (((-1259) $) 37)) (-2849 (((-1259) $) 36)) (-2848 (((-1259) $) 35)) (-2827 (((-1259) $) 11))) -(((-817) (-10 -8 (-15 -2825 ($ (-1148) (-1148) (-818))) (-15 -2826 ($ (-1148) (-818))) (-15 -2827 ((-1259) $)) (-15 -2828 ((-1259) $ (-818))) (-15 -2829 ((-1259) $)) (-15 -2830 ((-1259) $)) (-15 -2831 ((-1259) $)) (-15 -2832 ((-1259) $)) (-15 -2833 ((-1259) $)) (-15 -2834 ((-1259) $)) (-15 -2835 ((-1259) $)) (-15 -2836 ((-1259) $)) (-15 -2837 ((-1259) $)) (-15 -2838 ((-1259) $)) (-15 -2839 ((-1259) $)) (-15 -2840 ((-1259) $)) (-15 -2841 ((-1259) $)) (-15 -2842 ((-1259) $)) (-15 -2843 ((-1259) $ (-544))) (-15 -2844 ((-1259) $ (-224))) (-15 -2845 ((-1259) $ (-1166))) (-15 -2846 ((-1259) $ (-1148))) (-15 -2847 ((-1259) $ (-1148) (-1148))) (-15 -2848 ((-1259) $)) (-15 -2849 ((-1259) $)) (-15 -2850 ((-1259) $)) (-15 -2851 ((-1259) $)) (-15 -2852 ((-1259) $)) (-15 -2853 ((-1259) $)) (-15 -2854 ((-1259) $)) (-15 -2855 ((-1259) $)) (-15 -2856 ((-1259) $)) (-15 -2857 ((-1259) $)) (-15 -2858 ((-1259) $)) (-15 -2859 ((-1259) $)) (-15 -2860 ((-1259) $)) (-15 -2861 ((-1259) $)) (-15 -2862 ((-544) $)) (-15 -2863 ((-224) $)) (-15 -2864 ((-1166) $)) (-15 -2865 ((-1148) $)) (-15 -2866 ((-2 (|:| |cd| (-1148)) (|:| -3949 (-1148))) $)) (-15 -2867 ((-1166) $)))) (T -817)) -((-2867 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-817)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1148)) (|:| -3949 (-1148)))) (-5 *1 (-817)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-817)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-817)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-817)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-817)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2847 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2846 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2845 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2837 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2828 (*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1259)) (-5 *1 (-817)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817)))) (-2826 (*1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-818)) (-5 *1 (-817)))) (-2825 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-818)) (-5 *1 (-817))))) -(-10 -8 (-15 -2825 ($ (-1148) (-1148) (-818))) (-15 -2826 ($ (-1148) (-818))) (-15 -2827 ((-1259) $)) (-15 -2828 ((-1259) $ (-818))) (-15 -2829 ((-1259) $)) (-15 -2830 ((-1259) $)) (-15 -2831 ((-1259) $)) (-15 -2832 ((-1259) $)) (-15 -2833 ((-1259) $)) (-15 -2834 ((-1259) $)) (-15 -2835 ((-1259) $)) (-15 -2836 ((-1259) $)) (-15 -2837 ((-1259) $)) (-15 -2838 ((-1259) $)) (-15 -2839 ((-1259) $)) (-15 -2840 ((-1259) $)) (-15 -2841 ((-1259) $)) (-15 -2842 ((-1259) $)) (-15 -2843 ((-1259) $ (-544))) (-15 -2844 ((-1259) $ (-224))) (-15 -2845 ((-1259) $ (-1166))) (-15 -2846 ((-1259) $ (-1148))) (-15 -2847 ((-1259) $ (-1148) (-1148))) (-15 -2848 ((-1259) $)) (-15 -2849 ((-1259) $)) (-15 -2850 ((-1259) $)) (-15 -2851 ((-1259) $)) (-15 -2852 ((-1259) $)) (-15 -2853 ((-1259) $)) (-15 -2854 ((-1259) $)) (-15 -2855 ((-1259) $)) (-15 -2856 ((-1259) $)) (-15 -2857 ((-1259) $)) (-15 -2858 ((-1259) $)) (-15 -2859 ((-1259) $)) (-15 -2860 ((-1259) $)) (-15 -2861 ((-1259) $)) (-15 -2862 ((-544) $)) (-15 -2863 ((-224) $)) (-15 -2864 ((-1166) $)) (-15 -2865 ((-1148) $)) (-15 -2866 ((-2 (|:| |cd| (-1148)) (|:| -3949 (-1148))) $)) (-15 -2867 ((-1166) $))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 10)) (-2870 (($) 13)) (-2871 (($) 11)) (-2869 (($) 14)) (-2868 (($) 12)) (-3437 (((-112) $ $) 8))) -(((-818) (-13 (-1091) (-10 -8 (-15 -2871 ($)) (-15 -2870 ($)) (-15 -2869 ($)) (-15 -2868 ($))))) (T -818)) -((-2871 (*1 *1) (-5 *1 (-818))) (-2870 (*1 *1) (-5 *1 (-818))) (-2869 (*1 *1) (-5 *1 (-818))) (-2868 (*1 *1) (-5 *1 (-818)))) -(-13 (-1091) (-10 -8 (-15 -2871 ($)) (-15 -2870 ($)) (-15 -2869 ($)) (-15 -2868 ($)))) -((-2947 (((-112) $ $) NIL)) (-2872 (($ (-820) (-635 (-1166))) 24)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2874 (((-820) $) 25)) (-2873 (((-635 (-1166)) $) 26)) (-4353 (((-857) $) 23)) (-3437 (((-112) $ $) NIL))) -(((-819) (-13 (-1091) (-10 -8 (-15 -2874 ((-820) $)) (-15 -2873 ((-635 (-1166)) $)) (-15 -2872 ($ (-820) (-635 (-1166))))))) (T -819)) -((-2874 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-819)))) (-2872 (*1 *1 *2 *3) (-12 (-5 *2 (-820)) (-5 *3 (-635 (-1166))) (-5 *1 (-819))))) -(-13 (-1091) (-10 -8 (-15 -2874 ((-820) $)) (-15 -2873 ((-635 (-1166)) $)) (-15 -2872 ($ (-820) (-635 (-1166)))))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-1166)) 17)) (-2876 (((-112) $) 10)) (-2877 (((-112) $) 9)) (-2875 (((-112) $) 11)) (-2878 (((-112) $) 8)) (-3437 (((-112) $ $) 19))) -(((-820) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-1166))) (-15 -2878 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -2876 ((-112) $)) (-15 -2875 ((-112) $))))) (T -820)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-820)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) -(-13 (-1091) (-10 -8 (-15 -4353 ($ (-1166))) (-15 -2878 ((-112) $)) (-15 -2877 ((-112) $)) (-15 -2876 ((-112) $)) (-15 -2875 ((-112) $)))) -((-2879 (((-1259) (-817) (-313 |#1|) (-112)) 23) (((-1259) (-817) (-313 |#1|)) 79) (((-1148) (-313 |#1|) (-112)) 78) (((-1148) (-313 |#1|)) 77))) -(((-821 |#1|) (-10 -7 (-15 -2879 ((-1148) (-313 |#1|))) (-15 -2879 ((-1148) (-313 |#1|) (-112))) (-15 -2879 ((-1259) (-817) (-313 |#1|))) (-15 -2879 ((-1259) (-817) (-313 |#1|) (-112)))) (-13 (-815) (-844) (-1042))) (T -821)) -((-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-817)) (-5 *4 (-313 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-815) (-844) (-1042))) (-5 *2 (-1259)) (-5 *1 (-821 *6)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-313 *5)) (-4 *5 (-13 (-815) (-844) (-1042))) (-5 *2 (-1259)) (-5 *1 (-821 *5)))) (-2879 (*1 *2 *3 *4) (-12 (-5 *3 (-313 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-815) (-844) (-1042))) (-5 *2 (-1148)) (-5 *1 (-821 *5)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-313 *4)) (-4 *4 (-13 (-815) (-844) (-1042))) (-5 *2 (-1148)) (-5 *1 (-821 *4))))) -(-10 -7 (-15 -2879 ((-1148) (-313 |#1|))) (-15 -2879 ((-1148) (-313 |#1|) (-112))) (-15 -2879 ((-1259) (-817) (-313 |#1|))) (-15 -2879 ((-1259) (-817) (-313 |#1|) (-112)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2880 ((|#1| $) 10)) (-2881 (($ |#1|) 9)) (-2545 (((-112) $) NIL)) (-3276 (($ |#2| (-765)) NIL)) (-3202 (((-765) $) NIL)) (-3575 ((|#2| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4217 (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-4355 (((-765) $) NIL)) (-4353 (((-857) $) 17) (($ (-544)) NIL) (($ |#2|) NIL (|has| |#2| (-171)))) (-4084 ((|#2| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-822 |#1| |#2|) (-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2881 ($ |#1|)) (-15 -2880 (|#1| $)))) (-702 |#2|) (-1042)) (T -822)) -((-2881 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-822 *2 *3)) (-4 *2 (-702 *3)))) (-2880 (*1 *2 *1) (-12 (-4 *2 (-702 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1042))))) -(-13 (-702 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2881 ($ |#1|)) (-15 -2880 (|#1| $)))) -((-2889 (((-310) (-1148) (-1148)) 12)) (-2888 (((-112) (-1148) (-1148)) 33)) (-2887 (((-112) (-1148)) 32)) (-2884 (((-51) (-1148)) 25)) (-2883 (((-51) (-1148)) 23)) (-2882 (((-51) (-817)) 17)) (-2886 (((-635 (-1148)) (-1148)) 28)) (-2885 (((-635 (-1148))) 27))) -(((-823) (-10 -7 (-15 -2882 ((-51) (-817))) (-15 -2883 ((-51) (-1148))) (-15 -2884 ((-51) (-1148))) (-15 -2885 ((-635 (-1148)))) (-15 -2886 ((-635 (-1148)) (-1148))) (-15 -2887 ((-112) (-1148))) (-15 -2888 ((-112) (-1148) (-1148))) (-15 -2889 ((-310) (-1148) (-1148))))) (T -823)) -((-2889 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-823)))) (-2888 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823)))) (-2886 (*1 *2 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-823)) (-5 *3 (-1148)))) (-2885 (*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-823)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-823)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-823)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-51)) (-5 *1 (-823))))) -(-10 -7 (-15 -2882 ((-51) (-817))) (-15 -2883 ((-51) (-1148))) (-15 -2884 ((-51) (-1148))) (-15 -2885 ((-635 (-1148)))) (-15 -2886 ((-635 (-1148)) (-1148))) (-15 -2887 ((-112) (-1148))) (-15 -2888 ((-112) (-1148) (-1148))) (-15 -2889 ((-310) (-1148) (-1148)))) -((-2947 (((-112) $ $) 19)) (-3635 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3637 (($ $ $) 72)) (-3636 (((-112) $ $) 73)) (-1293 (((-112) $ (-765)) 8)) (-3640 (($ (-635 |#1|)) 68) (($) 67)) (-1659 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2498 (($ $) 62)) (-1424 (($ $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ |#1| $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 64)) (-4126 (((-112) $ (-765)) 9)) (-2913 ((|#1| $) 78)) (-3241 (($ $ $) 81)) (-3917 (($ $ $) 80)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3242 ((|#1| $) 79)) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22)) (-3639 (($ $ $) 69)) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40) (($ |#1| $ (-765)) 63)) (-3644 (((-1110) $) 21)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2497 (((-635 (-2 (|:| -2226 |#1|) (|:| -2097 (-765)))) $) 61)) (-3638 (($ $ |#1|) 71) (($ $ $) 70)) (-1550 (($) 49) (($ (-635 |#1|)) 48)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 50)) (-4353 (((-857) $) 18)) (-3641 (($ (-635 |#1|)) 66) (($) 65)) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20)) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-824 |#1|) (-139) (-844)) (T -824)) -((-2913 (*1 *2 *1) (-12 (-4 *1 (-824 *2)) (-4 *2 (-844))))) -(-13 (-731 |t#1|) (-961 |t#1|) (-10 -8 (-15 -2913 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-688 |#1|) . T) ((-731 |#1|) . T) ((-961 |#1|) . T) ((-1089 |#1|) . T) ((-1091) . T) ((-1204) . T)) -((-2892 (((-1259) (-1110) (-1110)) 47)) (-2891 (((-1259) (-816) (-51)) 44)) (-2890 (((-51) (-816)) 16))) -(((-825) (-10 -7 (-15 -2890 ((-51) (-816))) (-15 -2891 ((-1259) (-816) (-51))) (-15 -2892 ((-1259) (-1110) (-1110))))) (T -825)) -((-2892 (*1 *2 *3 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-1259)) (-5 *1 (-825)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-51)) (-5 *2 (-1259)) (-5 *1 (-825)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-51)) (-5 *1 (-825))))) -(-10 -7 (-15 -2890 ((-51) (-816))) (-15 -2891 ((-1259) (-816) (-51))) (-15 -2892 ((-1259) (-1110) (-1110)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL (|has| |#1| (-21)))) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4030 (((-544) $) NIL (|has| |#1| (-842)))) (-4131 (($) NIL (|has| |#1| (-21)) CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 15)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 9)) (-3866 (((-3 $ "failed") $) 40 (|has| |#1| (-842)))) (-3407 (((-3 (-406 (-544)) "failed") $) 49 (|has| |#1| (-543)))) (-3406 (((-112) $) 43 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 46 (|has| |#1| (-543)))) (-3587 (((-112) $) NIL (|has| |#1| (-842)))) (-2545 (((-112) $) NIL (|has| |#1| (-842)))) (-3588 (((-112) $) NIL (|has| |#1| (-842)))) (-2913 (($ $ $) NIL (|has| |#1| (-842)))) (-3242 (($ $ $) NIL (|has| |#1| (-842)))) (-3643 (((-1148) $) NIL)) (-2893 (($) 13)) (-2906 (((-112) $) 12)) (-3644 (((-1110) $) NIL)) (-2907 (((-112) $) 11)) (-4353 (((-857) $) 18) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 8) (($ (-544)) NIL (-3936 (|has| |#1| (-842)) (|has| |#1| (-1031 (-544)))))) (-3511 (((-765)) 34 (|has| |#1| (-842)))) (-3787 (($ $) NIL (|has| |#1| (-842)))) (-3040 (($) 22 (|has| |#1| (-21)) CONST)) (-3046 (($) 31 (|has| |#1| (-842)) CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-842)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3437 (((-112) $ $) 20)) (-3066 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3067 (((-112) $ $) 42 (|has| |#1| (-842)))) (-4244 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4246 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-912)) NIL (|has| |#1| (-842))) (($ $ (-765)) NIL (|has| |#1| (-842)))) (* (($ $ $) 37 (|has| |#1| (-842))) (($ (-544) $) 25 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-912) $) NIL (|has| |#1| (-21))))) -(((-826 |#1|) (-13 (-1091) (-411 |#1|) (-10 -8 (-15 -2893 ($)) (-15 -2907 ((-112) $)) (-15 -2906 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|))) (-1091)) (T -826)) -((-2893 (*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1091)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-1091)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-1091)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) (-3407 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091))))) -(-13 (-1091) (-411 |#1|) (-10 -8 (-15 -2893 ($)) (-15 -2907 ((-112) $)) (-15 -2906 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|))) -((-4365 (((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|) (-826 |#2|)) 12) (((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|)) 13))) -(((-827 |#1| |#2|) (-10 -7 (-15 -4365 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|))) (-15 -4365 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|) (-826 |#2|)))) (-1091) (-1091)) (T -827)) -((-4365 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-826 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *1 (-827 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-826 *6)) (-5 *1 (-827 *5 *6))))) -(-10 -7 (-15 -4365 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|))) (-15 -4365 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|) (-826 |#2|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3557 ((|#1| $) NIL) (((-113) $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2895 ((|#1| (-113) |#1|) NIL)) (-2545 (((-112) $) NIL)) (-2894 (($ |#1| (-360 (-113))) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-2896 (($ $ (-1 |#1| |#1|)) NIL)) (-2897 (($ $ (-1 |#1| |#1|)) NIL)) (-4206 ((|#1| $ |#1|) NIL)) (-2898 ((|#1| |#1|) NIL (|has| |#1| (-171)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-2899 (($ $) NIL (|has| |#1| (-171))) (($ $ $) NIL (|has| |#1| (-171)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ (-113) (-544)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) -(((-828 |#1|) (-13 (-1042) (-1031 |#1|) (-1031 (-113)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2899 ($ $)) (-15 -2899 ($ $ $)) (-15 -2898 (|#1| |#1|))) |%noBranch|) (-15 -2897 ($ $ (-1 |#1| |#1|))) (-15 -2896 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-544))) (-15 ** ($ $ (-544))) (-15 -2895 (|#1| (-113) |#1|)) (-15 -2894 ($ |#1| (-360 (-113)))))) (-1042)) (T -828)) -((-2899 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-2899 (*1 *1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-2898 (*1 *2 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-828 *3)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-828 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-544)) (-5 *1 (-828 *4)) (-4 *4 (-1042)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-828 *3)) (-4 *3 (-1042)))) (-2895 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-828 *2)) (-4 *2 (-1042)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-113))) (-5 *1 (-828 *2)) (-4 *2 (-1042))))) -(-13 (-1042) (-1031 |#1|) (-1031 (-113)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -2899 ($ $)) (-15 -2899 ($ $ $)) (-15 -2898 (|#1| |#1|))) |%noBranch|) (-15 -2897 ($ $ (-1 |#1| |#1|))) (-15 -2896 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-544))) (-15 ** ($ $ (-544))) (-15 -2895 (|#1| (-113) |#1|)) (-15 -2894 ($ |#1| (-360 (-113)))))) -((-4353 (((-857) $) 11))) -(((-829 |#1| |#2|) (-10 -8 (-15 -4353 ((-857) |#1|))) (-830 |#2|) (-1091)) (T -829)) -NIL -(-10 -8 (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3949 ((|#1| $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2900 (((-55) $) 13)) (-3437 (((-112) $ $) 6))) -(((-830 |#1|) (-139) (-1091)) (T -830)) -((-3949 (*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1091)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1091)) (-5 *2 (-55))))) -(-13 (-1091) (-10 -8 (-15 -3949 (|t#1| $)) (-15 -2900 ((-55) $)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2901 (((-213 (-500)) (-1148)) 9))) -(((-831) (-10 -7 (-15 -2901 ((-213 (-500)) (-1148))))) (T -831)) -((-2901 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-213 (-500))) (-5 *1 (-831))))) -(-10 -7 (-15 -2901 ((-213 (-500)) (-1148)))) -((-2947 (((-112) $ $) NIL)) (-3720 (((-1105) $) 10)) (-3949 (((-504) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3929 (($ (-504) (-1105)) 8)) (-4353 (((-857) $) 26)) (-2900 (((-55) $) 19)) (-3437 (((-112) $ $) 12))) -(((-832) (-13 (-830 (-504)) (-10 -8 (-15 -3720 ((-1105) $)) (-15 -3929 ($ (-504) (-1105)))))) (T -832)) -((-3720 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-832)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-832))))) -(-13 (-830 (-504)) (-10 -8 (-15 -3720 ((-1105) $)) (-15 -3929 ($ (-504) (-1105))))) -((-2947 (((-112) $ $) 7)) (-2902 (((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 14) (((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 13)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 16) (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 15)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6))) -(((-833) (-139)) (T -833)) -((-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-833)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) (-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-833)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) (-2902 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *2 (-1028)))) (-2902 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *3 (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (-5 *2 (-1028))))) -(-13 (-1091) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -2902 ((-1028) (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -2902 ((-1028) (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2903 (((-1028) (-635 (-313 (-377))) (-635 (-377))) 147) (((-1028) (-313 (-377)) (-635 (-377))) 145) (((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-836 (-377)))) 144) (((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-313 (-377))) (-635 (-836 (-377)))) 143) (((-1028) (-835)) 117) (((-1028) (-835) (-1054)) 116)) (-3050 (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835) (-1054)) 82) (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835)) 84)) (-2904 (((-1028) (-635 (-313 (-377))) (-635 (-377))) 148) (((-1028) (-835)) 133))) -(((-834) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835) (-1054))) (-15 -2903 ((-1028) (-835) (-1054))) (-15 -2903 ((-1028) (-835))) (-15 -2904 ((-1028) (-835))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-313 (-377))) (-635 (-836 (-377))))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-836 (-377))))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)))) (-15 -2903 ((-1028) (-635 (-313 (-377))) (-635 (-377)))) (-15 -2904 ((-1028) (-635 (-313 (-377))) (-635 (-377)))))) (T -834)) -((-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-313 (-377)))) (-5 *4 (-635 (-377))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-313 (-377)))) (-5 *4 (-635 (-377))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-377))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-377))) (-5 *5 (-635 (-836 (-377)))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-635 (-377))) (-5 *5 (-635 (-836 (-377)))) (-5 *6 (-635 (-313 (-377)))) (-5 *3 (-313 (-377))) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-834)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-834)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-834))))) -(-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-835) (-1054))) (-15 -2903 ((-1028) (-835) (-1054))) (-15 -2903 ((-1028) (-835))) (-15 -2904 ((-1028) (-835))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-313 (-377))) (-635 (-836 (-377))))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)) (-635 (-836 (-377))) (-635 (-836 (-377))))) (-15 -2903 ((-1028) (-313 (-377)) (-635 (-377)))) (-15 -2903 ((-1028) (-635 (-313 (-377))) (-635 (-377)))) (-15 -2904 ((-1028) (-635 (-313 (-377))) (-635 (-377))))) -((-2947 (((-112) $ $) NIL)) (-3557 (((-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) $) 21)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) 14) (($ (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) 18)) (-3437 (((-112) $ $) NIL))) -(((-835) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -4353 ($ (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -4353 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))) (-15 -3557 ((-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) $))))) (T -835)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (-5 *1 (-835)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) (-5 *1 (-835)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) (-5 *1 (-835)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) (-5 *1 (-835))))) -(-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224))))))) (-15 -4353 ($ (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) (-15 -4353 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))))) (-15 -3557 ((-3 (|:| |noa| (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) (|:| |ub| (-635 (-836 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224)))))) $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL (|has| |#1| (-21)))) (-2905 (((-1110) $) 24)) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4030 (((-544) $) NIL (|has| |#1| (-842)))) (-4131 (($) NIL (|has| |#1| (-21)) CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 16)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 9)) (-3866 (((-3 $ "failed") $) 47 (|has| |#1| (-842)))) (-3407 (((-3 (-406 (-544)) "failed") $) 54 (|has| |#1| (-543)))) (-3406 (((-112) $) 49 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 52 (|has| |#1| (-543)))) (-3587 (((-112) $) NIL (|has| |#1| (-842)))) (-2909 (($) 13)) (-2545 (((-112) $) NIL (|has| |#1| (-842)))) (-3588 (((-112) $) NIL (|has| |#1| (-842)))) (-2908 (($) 14)) (-2913 (($ $ $) NIL (|has| |#1| (-842)))) (-3242 (($ $ $) NIL (|has| |#1| (-842)))) (-3643 (((-1148) $) NIL)) (-2906 (((-112) $) 12)) (-3644 (((-1110) $) NIL)) (-2907 (((-112) $) 11)) (-4353 (((-857) $) 22) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 8) (($ (-544)) NIL (-3936 (|has| |#1| (-842)) (|has| |#1| (-1031 (-544)))))) (-3511 (((-765)) 41 (|has| |#1| (-842)))) (-3787 (($ $) NIL (|has| |#1| (-842)))) (-3040 (($) 29 (|has| |#1| (-21)) CONST)) (-3046 (($) 38 (|has| |#1| (-842)) CONST)) (-2945 (((-112) $ $) NIL (|has| |#1| (-842)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3437 (((-112) $ $) 27)) (-3066 (((-112) $ $) NIL (|has| |#1| (-842)))) (-3067 (((-112) $ $) 48 (|has| |#1| (-842)))) (-4244 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4246 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-912)) NIL (|has| |#1| (-842))) (($ $ (-765)) NIL (|has| |#1| (-842)))) (* (($ $ $) 44 (|has| |#1| (-842))) (($ (-544) $) 32 (|has| |#1| (-21))) (($ (-765) $) NIL (|has| |#1| (-21))) (($ (-912) $) NIL (|has| |#1| (-21))))) -(((-836 |#1|) (-13 (-1091) (-411 |#1|) (-10 -8 (-15 -2909 ($)) (-15 -2908 ($)) (-15 -2907 ((-112) $)) (-15 -2906 ((-112) $)) (-15 -2905 ((-1110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|))) (-1091)) (T -836)) -((-2909 (*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1091)))) (-2908 (*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1091)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-1091)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-1091)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-836 *3)) (-4 *3 (-1091)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) (-3407 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091))))) -(-13 (-1091) (-411 |#1|) (-10 -8 (-15 -2909 ($)) (-15 -2908 ($)) (-15 -2907 ((-112) $)) (-15 -2906 ((-112) $)) (-15 -2905 ((-1110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|))) -((-4365 (((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|) (-836 |#2|) (-836 |#2|)) 13) (((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|)) 14))) -(((-837 |#1| |#2|) (-10 -7 (-15 -4365 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|))) (-15 -4365 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|) (-836 |#2|) (-836 |#2|)))) (-1091) (-1091)) (T -837)) -((-4365 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-836 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *1 (-837 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-836 *6)) (-5 *1 (-837 *5 *6))))) -(-10 -7 (-15 -4365 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|))) (-15 -4365 ((-836 |#2|) (-1 |#2| |#1|) (-836 |#1|) (-836 |#2|) (-836 |#2|)))) -((-2947 (((-112) $ $) 7)) (-3521 (((-765)) 22)) (-3377 (($) 25)) (-2913 (($ $ $) 13) (($) 21 T CONST)) (-3242 (($ $ $) 14) (($) 20 T CONST)) (-2160 (((-912) $) 24)) (-3643 (((-1148) $) 9)) (-2535 (($ (-912)) 23)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18))) -(((-838) (-139)) (T -838)) -((-2913 (*1 *1) (-4 *1 (-838))) (-3242 (*1 *1) (-4 *1 (-838)))) -(-13 (-844) (-367) (-10 -8 (-15 -2913 ($) -4359) (-15 -3242 ($) -4359))) -(((-102) . T) ((-608 (-857)) . T) ((-367) . T) ((-844) . T) ((-1091) . T)) -((-2911 (((-112) (-1253 |#2|) (-1253 |#2|)) 17)) (-2912 (((-112) (-1253 |#2|) (-1253 |#2|)) 18)) (-2910 (((-112) (-1253 |#2|) (-1253 |#2|)) 14))) -(((-839 |#1| |#2|) (-10 -7 (-15 -2910 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2911 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2912 ((-112) (-1253 |#2|) (-1253 |#2|)))) (-765) (-786)) (T -839)) -((-2912 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))) (-2911 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765)))) (-2910 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) (-14 *4 (-765))))) -(-10 -7 (-15 -2910 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2911 ((-112) (-1253 |#2|) (-1253 |#2|))) (-15 -2912 ((-112) (-1253 |#2|) (-1253 |#2|)))) -((-2947 (((-112) $ $) 7)) (-4131 (($) 23 T CONST)) (-3866 (((-3 $ "failed") $) 26)) (-2545 (((-112) $) 24)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3046 (($) 22 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (** (($ $ (-912)) 21) (($ $ (-765)) 25)) (* (($ $ $) 20))) -(((-840) (-139)) (T -840)) -NIL -(-13 (-851) (-720)) -(((-102) . T) ((-608 (-857)) . T) ((-720) . T) ((-851) . T) ((-844) . T) ((-1102) . T) ((-1091) . T)) -((-4030 (((-544) $) 17)) (-3587 (((-112) $) 10)) (-3588 (((-112) $) 11)) (-3787 (($ $) 19))) -(((-841 |#1|) (-10 -8 (-15 -3787 (|#1| |#1|)) (-15 -4030 ((-544) |#1|)) (-15 -3588 ((-112) |#1|)) (-15 -3587 ((-112) |#1|))) (-842)) (T -841)) -NIL -(-10 -8 (-15 -3787 (|#1| |#1|)) (-15 -4030 ((-544) |#1|)) (-15 -3588 ((-112) |#1|)) (-15 -3587 ((-112) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 24)) (-1391 (((-3 $ "failed") $ $) 26)) (-4030 (((-544) $) 34)) (-4131 (($) 23 T CONST)) (-3866 (((-3 $ "failed") $) 39)) (-3587 (((-112) $) 36)) (-2545 (((-112) $) 41)) (-3588 (((-112) $) 35)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 43)) (-3511 (((-765)) 44)) (-3787 (($ $) 33)) (-3040 (($) 22 T CONST)) (-3046 (($) 42 T CONST)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (-4244 (($ $ $) 28) (($ $) 27)) (-4246 (($ $ $) 20)) (** (($ $ (-765)) 40) (($ $ (-912)) 37)) (* (($ (-912) $) 21) (($ (-765) $) 25) (($ (-544) $) 29) (($ $ $) 38))) -(((-842) (-139)) (T -842)) -((-3587 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-544)))) (-3787 (*1 *1 *1) (-4 *1 (-842)))) -(-13 (-785) (-1042) (-720) (-10 -8 (-15 -3587 ((-112) $)) (-15 -3588 ((-112) $)) (-15 -4030 ((-544) $)) (-15 -3787 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-844) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2913 (($ $ $) 10)) (-3242 (($ $ $) 9)) (-2945 (((-112) $ $) 12)) (-2946 (((-112) $ $) 11)) (-3066 (((-112) $ $) 13))) -(((-843 |#1|) (-10 -8 (-15 -2913 (|#1| |#1| |#1|)) (-15 -3242 (|#1| |#1| |#1|)) (-15 -3066 ((-112) |#1| |#1|)) (-15 -2945 ((-112) |#1| |#1|)) (-15 -2946 ((-112) |#1| |#1|))) (-844)) (T -843)) -NIL -(-10 -8 (-15 -2913 (|#1| |#1| |#1|)) (-15 -3242 (|#1| |#1| |#1|)) (-15 -3066 ((-112) |#1| |#1|)) (-15 -2945 ((-112) |#1| |#1|)) (-15 -2946 ((-112) |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18))) -(((-844) (-139)) (T -844)) -((-3067 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-2946 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-2945 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3066 (*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-3242 (*1 *1 *1 *1) (-4 *1 (-844))) (-2913 (*1 *1 *1 *1) (-4 *1 (-844)))) -(-13 (-1091) (-10 -8 (-15 -3067 ((-112) $ $)) (-15 -2946 ((-112) $ $)) (-15 -2945 ((-112) $ $)) (-15 -3066 ((-112) $ $)) (-15 -3242 ($ $ $)) (-15 -2913 ($ $ $)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2918 (($ $ $) 45)) (-2919 (($ $ $) 44)) (-2920 (($ $ $) 42)) (-2916 (($ $ $) 51)) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 46)) (-2917 (((-3 $ "failed") $ $) 49)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3902 (($ $) 35)) (-2924 (($ $ $) 39)) (-2925 (($ $ $) 38)) (-2914 (($ $ $) 47)) (-2922 (($ $ $) 53)) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 41)) (-2923 (((-3 $ "failed") $ $) 48)) (-3865 (((-3 $ "failed") $ |#2|) 28)) (-3199 ((|#2| $) 32)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ |#2|) 12)) (-4224 (((-635 |#2|) $) 18)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-845 |#1| |#2|) (-10 -8 (-15 -2914 (|#1| |#1| |#1|)) (-15 -2915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2917 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2918 (|#1| |#1| |#1|)) (-15 -2919 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|)) (-15 -2921 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4224 ((-635 |#2|) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4353 ((-857) |#1|))) (-846 |#2|) (-1042)) (T -845)) -NIL -(-10 -8 (-15 -2914 (|#1| |#1| |#1|)) (-15 -2915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2917 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2918 (|#1| |#1| |#1|)) (-15 -2919 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|)) (-15 -2921 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2544 |#1|)) |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1|)) (-15 -2923 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3865 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4224 ((-635 |#2|) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-2918 (($ $ $) 44 (|has| |#1| (-362)))) (-2919 (($ $ $) 45 (|has| |#1| (-362)))) (-2920 (($ $ $) 47 (|has| |#1| (-362)))) (-2916 (($ $ $) 42 (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 41 (|has| |#1| (-362)))) (-2917 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 46 (|has| |#1| (-362)))) (-3558 (((-3 (-544) #1="failed") $) 74 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 71 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 68)) (-3557 (((-544) $) 73 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 70 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 69)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 54 (|has| |#1| (-450)))) (-2545 (((-112) $) 31)) (-3276 (($ |#1| (-765)) 61)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 56 (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 57 (|has| |#1| (-554)))) (-3202 (((-765) $) 65)) (-2924 (($ $ $) 51 (|has| |#1| (-362)))) (-2925 (($ $ $) 52 (|has| |#1| (-362)))) (-2914 (($ $ $) 40 (|has| |#1| (-362)))) (-2922 (($ $ $) 49 (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 48 (|has| |#1| (-362)))) (-2923 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 53 (|has| |#1| (-362)))) (-3575 ((|#1| $) 64)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-554)))) (-4355 (((-765) $) 66)) (-3199 ((|#1| $) 55 (|has| |#1| (-450)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 72 (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) 67)) (-4224 (((-635 |#1|) $) 60)) (-4084 ((|#1| $ (-765)) 62)) (-3511 (((-765)) 28)) (-2927 ((|#1| $ |#1| |#1|) 59)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-846 |#1|) (-139) (-1042)) (T -846)) -((-4355 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-635 *3)))) (-2927 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))) (-2928 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) (-2929 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-3902 (*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) (-2930 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) (-2925 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2924 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2923 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2922 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2921 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1))) (-4 *1 (-846 *3)))) (-2920 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2931 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) (-2919 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2918 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2917 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2916 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-2915 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1))) (-4 *1 (-846 *3)))) (-2914 (*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(-13 (-1042) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -4355 ((-765) $)) (-15 -3202 ((-765) $)) (-15 -3575 (|t#1| $)) (-15 -4366 ($ $)) (-15 -4084 (|t#1| $ (-765))) (-15 -3276 ($ |t#1| (-765))) (-15 -4224 ((-635 |t#1|) $)) (-15 -2927 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -3865 ((-3 $ "failed") $ |t#1|)) (-15 -2928 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2929 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3199 (|t#1| $)) (-15 -3902 ($ $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -2930 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2925 ($ $ $)) (-15 -2924 ($ $ $)) (-15 -2923 ((-3 $ "failed") $ $)) (-15 -2922 ($ $ $)) (-15 -2921 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $)) (-15 -2920 ($ $ $)) (-15 -2931 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -2919 ($ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ((-3 $ "failed") $ $)) (-15 -2916 ($ $ $)) (-15 -2915 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $)) (-15 -2914 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 #1=(-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-411 |#1|) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1031 #1#) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2926 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2931 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-362)))) (-2929 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-554)))) (-2930 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-362)))) (-2927 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31))) -(((-847 |#1| |#2|) (-10 -7 (-15 -2926 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2927 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-554)) (PROGN (-15 -2928 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2929 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2930 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2931 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1042) (-846 |#1|)) (T -847)) -((-2931 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2930 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2929 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2928 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1042)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) (-4 *3 (-846 *5)))) (-2927 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1042)) (-5 *1 (-847 *2 *3)) (-4 *3 (-846 *2)))) (-2926 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1042)) (-5 *1 (-847 *5 *2)) (-4 *2 (-846 *5))))) -(-10 -7 (-15 -2926 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2927 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-554)) (PROGN (-15 -2928 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2929 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2930 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2931 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#1| (-362)))) (-2919 (($ $ $) NIL (|has| |#1| (-362)))) (-2920 (($ $ $) NIL (|has| |#1| (-362)))) (-2916 (($ $ $) NIL (|has| |#1| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 32 (|has| |#1| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-3932 (((-857) $ (-857)) NIL)) (-2545 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) NIL)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 28 (|has| |#1| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 26 (|has| |#1| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#1| (-362)))) (-2925 (($ $ $) NIL (|has| |#1| (-362)))) (-2914 (($ $ $) NIL (|has| |#1| (-362)))) (-2922 (($ $ $) NIL (|has| |#1| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#1| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 30 (|has| |#1| (-362)))) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-554)))) (-4355 (((-765) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-1031 (-406 (-544))))) (($ |#1|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#1| $ |#1| |#1|) 15)) (-3040 (($) NIL T CONST)) (-3046 (($) 20 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) 19) (($ $ (-765)) 22)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-848 |#1| |#2| |#3|) (-13 (-846 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-857))))) (-1042) (-99 |#1|) (-1 |#1| |#1|)) (T -848)) -((-3932 (*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-848 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-846 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-857))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-2918 (($ $ $) NIL (|has| |#2| (-362)))) (-2919 (($ $ $) NIL (|has| |#2| (-362)))) (-2920 (($ $ $) NIL (|has| |#2| (-362)))) (-2916 (($ $ $) NIL (|has| |#2| (-362)))) (-2915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#2| (-362)))) (-2917 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-362)))) (-2931 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-362)))) (-3558 (((-3 (-544) #2="failed") $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 |#2| #2#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) ((|#2| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#2| (-450)))) (-2545 (((-112) $) NIL)) (-3276 (($ |#2| (-765)) 16)) (-2929 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-554)))) (-2928 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-554)))) (-3202 (((-765) $) NIL)) (-2924 (($ $ $) NIL (|has| |#2| (-362)))) (-2925 (($ $ $) NIL (|has| |#2| (-362)))) (-2914 (($ $ $) NIL (|has| |#2| (-362)))) (-2922 (($ $ $) NIL (|has| |#2| (-362)))) (-2921 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#2| (-362)))) (-2923 (((-3 $ #1#) $ $) NIL (|has| |#2| (-362)))) (-2930 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-362)))) (-3575 ((|#2| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-554)))) (-4355 (((-765) $) NIL)) (-3199 ((|#2| $) NIL (|has| |#2| (-450)))) (-4353 (((-857) $) 23) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#2| (-1031 (-406 (-544))))) (($ |#2|) NIL) (($ (-1250 |#1|)) 18)) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-765)) NIL)) (-3511 (((-765)) NIL)) (-2927 ((|#2| $ |#2| |#2|) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) 13 T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-849 |#1| |#2| |#3| |#4|) (-13 (-846 |#2|) (-611 (-1250 |#1|))) (-1166) (-1042) (-99 |#2|) (-1 |#2| |#2|)) (T -849)) -NIL -(-13 (-846 |#2|) (-611 (-1250 |#1|))) -((-2934 ((|#1| (-765) |#1|) 35 (|has| |#1| (-38 (-406 (-544)))))) (-2933 ((|#1| (-765) (-765) |#1|) 27) ((|#1| (-765) |#1|) 20)) (-2932 ((|#1| (-765) |#1|) 31)) (-3182 ((|#1| (-765) |#1|) 29)) (-3181 ((|#1| (-765) |#1|) 28))) -(((-850 |#1|) (-10 -7 (-15 -3181 (|#1| (-765) |#1|)) (-15 -3182 (|#1| (-765) |#1|)) (-15 -2932 (|#1| (-765) |#1|)) (-15 -2933 (|#1| (-765) |#1|)) (-15 -2933 (|#1| (-765) (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -2934 (|#1| (-765) |#1|)) |%noBranch|)) (-171)) (T -850)) -((-2934 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-171)))) (-2933 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-2933 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-2932 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-3182 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) (-3181 (*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))) -(-10 -7 (-15 -3181 (|#1| (-765) |#1|)) (-15 -3182 (|#1| (-765) |#1|)) (-15 -2932 (|#1| (-765) |#1|)) (-15 -2933 (|#1| (-765) |#1|)) (-15 -2933 (|#1| (-765) (-765) |#1|)) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -2934 (|#1| (-765) |#1|)) |%noBranch|)) -((-2947 (((-112) $ $) 7)) (-2913 (($ $ $) 13)) (-3242 (($ $ $) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-2945 (((-112) $ $) 16)) (-2946 (((-112) $ $) 17)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 15)) (-3067 (((-112) $ $) 18)) (** (($ $ (-912)) 21)) (* (($ $ $) 20))) -(((-851) (-139)) (T -851)) -NIL -(-13 (-844) (-1102)) -(((-102) . T) ((-608 (-857)) . T) ((-844) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3806 (((-544) $) 12)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 18) (($ (-544)) 11)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 8)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 9))) -(((-852) (-13 (-844) (-10 -8 (-15 -4353 ($ (-544))) (-15 -3806 ((-544) $))))) (T -852)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-852)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-852))))) -(-13 (-844) (-10 -8 (-15 -4353 ($ (-544))) (-15 -3806 ((-544) $)))) -((-2935 (((-1259) (-635 (-51))) 24)) (-3859 (((-1259) (-1148) (-857)) 14) (((-1259) (-857)) 9) (((-1259) (-1148)) 11))) -(((-853) (-10 -7 (-15 -3859 ((-1259) (-1148))) (-15 -3859 ((-1259) (-857))) (-15 -3859 ((-1259) (-1148) (-857))) (-15 -2935 ((-1259) (-635 (-51)))))) (T -853)) -((-2935 (*1 *2 *3) (-12 (-5 *3 (-635 (-51))) (-5 *2 (-1259)) (-5 *1 (-853)))) (-3859 (*1 *2 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-857)) (-5 *2 (-1259)) (-5 *1 (-853)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-853)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-853))))) -(-10 -7 (-15 -3859 ((-1259) (-1148))) (-15 -3859 ((-1259) (-857))) (-15 -3859 ((-1259) (-1148) (-857))) (-15 -2935 ((-1259) (-635 (-51))))) -((-2937 (((-684 (-1212)) $ (-1212)) 15)) (-2938 (((-684 (-547)) $ (-547)) 12)) (-2936 (((-765) $ (-129)) 24))) -(((-854 |#1|) (-10 -8 (-15 -2936 ((-765) |#1| (-129))) (-15 -2937 ((-684 (-1212)) |#1| (-1212))) (-15 -2938 ((-684 (-547)) |#1| (-547)))) (-855)) (T -854)) -NIL -(-10 -8 (-15 -2936 ((-765) |#1| (-129))) (-15 -2937 ((-684 (-1212)) |#1| (-1212))) (-15 -2938 ((-684 (-547)) |#1| (-547)))) -((-2937 (((-684 (-1212)) $ (-1212)) 8)) (-2938 (((-684 (-547)) $ (-547)) 9)) (-2936 (((-765) $ (-129)) 7)) (-2939 (((-684 (-128)) $ (-128)) 10)) (-1844 (($ $) 6))) +NIL +(-13 (-554) (-843)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-843) . T) ((-845) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-1887 (($ (-1112)) 7)) (-2760 (((-112) $ (-1150) (-1112)) 15)) (-3248 (((-817) $) 12)) (-4188 (((-817) $) 11)) (-1398 (((-1261) $) 9)) (-3331 (((-112) $ (-1112)) 16))) +(((-816) (-10 -8 (-15 -1887 ($ (-1112))) (-15 -1398 ((-1261) $)) (-15 -4188 ((-817) $)) (-15 -3248 ((-817) $)) (-15 -2760 ((-112) $ (-1150) (-1112))) (-15 -3331 ((-112) $ (-1112))))) (T -816)) +((-3331 (*1 *2 *1 *3) (-12 (-5 *3 (-1112)) (-5 *2 (-112)) (-5 *1 (-816)))) (-2760 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-816)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-816)))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-816))))) +(-10 -8 (-15 -1887 ($ (-1112))) (-15 -1398 ((-1261) $)) (-15 -4188 ((-817) $)) (-15 -3248 ((-817) $)) (-15 -2760 ((-112) $ (-1150) (-1112))) (-15 -3331 ((-112) $ (-1112)))) +((-2334 (((-1261) $ (-818)) 12)) (-2517 (((-1261) $ (-1168)) 32)) (-3004 (((-1261) $ (-1150) (-1150)) 34)) (-3345 (((-1261) $ (-1150)) 33)) (-2281 (((-1261) $) 19)) (-2191 (((-1261) $ (-562)) 28)) (-3858 (((-1261) $ (-224)) 30)) (-3832 (((-1261) $) 18)) (-3393 (((-1261) $) 26)) (-1684 (((-1261) $) 25)) (-4259 (((-1261) $) 23)) (-1910 (((-1261) $) 24)) (-2627 (((-1261) $) 22)) (-2518 (((-1261) $) 21)) (-3957 (((-1261) $) 20)) (-2629 (((-1261) $) 16)) (-4204 (((-1261) $) 17)) (-4025 (((-1261) $) 15)) (-3962 (((-1261) $) 14)) (-4126 (((-1261) $) 13)) (-3647 (($ (-1150) (-818)) 9)) (-1947 (($ (-1150) (-1150) (-818)) 8)) (-4058 (((-1168) $) 51)) (-2053 (((-1168) $) 55)) (-1313 (((-2 (|:| |cd| (-1150)) (|:| -3254 (-1150))) $) 54)) (-2781 (((-1150) $) 52)) (-3403 (((-1261) $) 41)) (-1343 (((-562) $) 49)) (-1871 (((-224) $) 50)) (-3624 (((-1261) $) 40)) (-2958 (((-1261) $) 48)) (-4371 (((-1261) $) 47)) (-3599 (((-1261) $) 45)) (-2611 (((-1261) $) 46)) (-2715 (((-1261) $) 44)) (-1729 (((-1261) $) 43)) (-2048 (((-1261) $) 42)) (-3397 (((-1261) $) 38)) (-2041 (((-1261) $) 39)) (-3042 (((-1261) $) 37)) (-1355 (((-1261) $) 36)) (-2812 (((-1261) $) 35)) (-2479 (((-1261) $) 11))) +(((-817) (-10 -8 (-15 -1947 ($ (-1150) (-1150) (-818))) (-15 -3647 ($ (-1150) (-818))) (-15 -2479 ((-1261) $)) (-15 -2334 ((-1261) $ (-818))) (-15 -4126 ((-1261) $)) (-15 -3962 ((-1261) $)) (-15 -4025 ((-1261) $)) (-15 -2629 ((-1261) $)) (-15 -4204 ((-1261) $)) (-15 -3832 ((-1261) $)) (-15 -2281 ((-1261) $)) (-15 -3957 ((-1261) $)) (-15 -2518 ((-1261) $)) (-15 -2627 ((-1261) $)) (-15 -4259 ((-1261) $)) (-15 -1910 ((-1261) $)) (-15 -1684 ((-1261) $)) (-15 -3393 ((-1261) $)) (-15 -2191 ((-1261) $ (-562))) (-15 -3858 ((-1261) $ (-224))) (-15 -2517 ((-1261) $ (-1168))) (-15 -3345 ((-1261) $ (-1150))) (-15 -3004 ((-1261) $ (-1150) (-1150))) (-15 -2812 ((-1261) $)) (-15 -1355 ((-1261) $)) (-15 -3042 ((-1261) $)) (-15 -3397 ((-1261) $)) (-15 -2041 ((-1261) $)) (-15 -3624 ((-1261) $)) (-15 -3403 ((-1261) $)) (-15 -2048 ((-1261) $)) (-15 -1729 ((-1261) $)) (-15 -2715 ((-1261) $)) (-15 -3599 ((-1261) $)) (-15 -2611 ((-1261) $)) (-15 -4371 ((-1261) $)) (-15 -2958 ((-1261) $)) (-15 -1343 ((-562) $)) (-15 -1871 ((-224) $)) (-15 -4058 ((-1168) $)) (-15 -2781 ((-1150) $)) (-15 -1313 ((-2 (|:| |cd| (-1150)) (|:| -3254 (-1150))) $)) (-15 -2053 ((-1168) $)))) (T -817)) +((-2053 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-817)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1150)) (|:| -3254 (-1150)))) (-5 *1 (-817)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-817)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-817)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-817)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-817)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3004 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-3345 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-2517 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-2191 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-4259 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2334 (*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3647 (*1 *1 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-818)) (-5 *1 (-817)))) (-1947 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-818)) (-5 *1 (-817))))) +(-10 -8 (-15 -1947 ($ (-1150) (-1150) (-818))) (-15 -3647 ($ (-1150) (-818))) (-15 -2479 ((-1261) $)) (-15 -2334 ((-1261) $ (-818))) (-15 -4126 ((-1261) $)) (-15 -3962 ((-1261) $)) (-15 -4025 ((-1261) $)) (-15 -2629 ((-1261) $)) (-15 -4204 ((-1261) $)) (-15 -3832 ((-1261) $)) (-15 -2281 ((-1261) $)) (-15 -3957 ((-1261) $)) (-15 -2518 ((-1261) $)) (-15 -2627 ((-1261) $)) (-15 -4259 ((-1261) $)) (-15 -1910 ((-1261) $)) (-15 -1684 ((-1261) $)) (-15 -3393 ((-1261) $)) (-15 -2191 ((-1261) $ (-562))) (-15 -3858 ((-1261) $ (-224))) (-15 -2517 ((-1261) $ (-1168))) (-15 -3345 ((-1261) $ (-1150))) (-15 -3004 ((-1261) $ (-1150) (-1150))) (-15 -2812 ((-1261) $)) (-15 -1355 ((-1261) $)) (-15 -3042 ((-1261) $)) (-15 -3397 ((-1261) $)) (-15 -2041 ((-1261) $)) (-15 -3624 ((-1261) $)) (-15 -3403 ((-1261) $)) (-15 -2048 ((-1261) $)) (-15 -1729 ((-1261) $)) (-15 -2715 ((-1261) $)) (-15 -3599 ((-1261) $)) (-15 -2611 ((-1261) $)) (-15 -4371 ((-1261) $)) (-15 -2958 ((-1261) $)) (-15 -1343 ((-562) $)) (-15 -1871 ((-224) $)) (-15 -4058 ((-1168) $)) (-15 -2781 ((-1150) $)) (-15 -1313 ((-2 (|:| |cd| (-1150)) (|:| -3254 (-1150))) $)) (-15 -2053 ((-1168) $))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 10)) (-2365 (($) 13)) (-4046 (($) 11)) (-2419 (($) 14)) (-3678 (($) 12)) (-1731 (((-112) $ $) 8))) +(((-818) (-13 (-1092) (-10 -8 (-15 -4046 ($)) (-15 -2365 ($)) (-15 -2419 ($)) (-15 -3678 ($))))) (T -818)) +((-4046 (*1 *1) (-5 *1 (-818))) (-2365 (*1 *1) (-5 *1 (-818))) (-2419 (*1 *1) (-5 *1 (-818))) (-3678 (*1 *1) (-5 *1 (-818)))) +(-13 (-1092) (-10 -8 (-15 -4046 ($)) (-15 -2365 ($)) (-15 -2419 ($)) (-15 -3678 ($)))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 21) (($ (-1168)) 17)) (-1428 (((-112) $) 10)) (-2916 (((-112) $) 9)) (-2862 (((-112) $) 11)) (-2576 (((-112) $) 8)) (-1731 (((-112) $ $) 19))) +(((-819) (-13 (-1092) (-10 -8 (-15 -4054 ($ (-1168))) (-15 -2576 ((-112) $)) (-15 -2916 ((-112) $)) (-15 -1428 ((-112) $)) (-15 -2862 ((-112) $))))) (T -819)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-819)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) +(-13 (-1092) (-10 -8 (-15 -4054 ($ (-1168))) (-15 -2576 ((-112) $)) (-15 -2916 ((-112) $)) (-15 -1428 ((-112) $)) (-15 -2862 ((-112) $)))) +((-4041 (((-112) $ $) NIL)) (-2655 (($ (-819) (-639 (-1168))) 24)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3056 (((-819) $) 25)) (-3497 (((-639 (-1168)) $) 26)) (-4054 (((-857) $) 23)) (-1731 (((-112) $ $) NIL))) +(((-820) (-13 (-1092) (-10 -8 (-15 -3056 ((-819) $)) (-15 -3497 ((-639 (-1168)) $)) (-15 -2655 ($ (-819) (-639 (-1168))))))) (T -820)) +((-3056 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-820)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-820)))) (-2655 (*1 *1 *2 *3) (-12 (-5 *2 (-819)) (-5 *3 (-639 (-1168))) (-5 *1 (-820))))) +(-13 (-1092) (-10 -8 (-15 -3056 ((-819) $)) (-15 -3497 ((-639 (-1168)) $)) (-15 -2655 ($ (-819) (-639 (-1168)))))) +((-2833 (((-1261) (-817) (-315 |#1|) (-112)) 23) (((-1261) (-817) (-315 |#1|)) 79) (((-1150) (-315 |#1|) (-112)) 78) (((-1150) (-315 |#1|)) 77))) +(((-821 |#1|) (-10 -7 (-15 -2833 ((-1150) (-315 |#1|))) (-15 -2833 ((-1150) (-315 |#1|) (-112))) (-15 -2833 ((-1261) (-817) (-315 |#1|))) (-15 -2833 ((-1261) (-817) (-315 |#1|) (-112)))) (-13 (-823) (-845) (-1044))) (T -821)) +((-2833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-817)) (-5 *4 (-315 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-823) (-845) (-1044))) (-5 *2 (-1261)) (-5 *1 (-821 *6)))) (-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-823) (-845) (-1044))) (-5 *2 (-1261)) (-5 *1 (-821 *5)))) (-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-845) (-1044))) (-5 *2 (-1150)) (-5 *1 (-821 *5)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-823) (-845) (-1044))) (-5 *2 (-1150)) (-5 *1 (-821 *4))))) +(-10 -7 (-15 -2833 ((-1150) (-315 |#1|))) (-15 -2833 ((-1150) (-315 |#1|) (-112))) (-15 -2833 ((-1261) (-817) (-315 |#1|))) (-15 -2833 ((-1261) (-817) (-315 |#1|) (-112)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-4294 ((|#1| $) 10)) (-2431 (($ |#1|) 9)) (-1957 (((-112) $) NIL)) (-1378 (($ |#2| (-766)) NIL)) (-2076 (((-766) $) NIL)) (-1573 ((|#2| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4029 (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-3598 (((-766) $) NIL)) (-4054 (((-857) $) 17) (($ (-562)) NIL) (($ |#2|) NIL (|has| |#2| (-171)))) (-3906 ((|#2| $ (-766)) NIL)) (-2579 (((-766)) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-822 |#1| |#2|) (-13 (-703 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2431 ($ |#1|)) (-15 -4294 (|#1| $)))) (-703 |#2|) (-1044)) (T -822)) +((-2431 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-822 *2 *3)) (-4 *2 (-703 *3)))) (-4294 (*1 *2 *1) (-12 (-4 *2 (-703 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1044))))) +(-13 (-703 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2431 ($ |#1|)) (-15 -4294 (|#1| $)))) +((-2833 (((-1261) (-817) $ (-112)) 9) (((-1261) (-817) $) 8) (((-1150) $ (-112)) 7) (((-1150) $) 6))) +(((-823) (-139)) (T -823)) +((-2833 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *4 (-112)) (-5 *2 (-1261)))) (-2833 (*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *2 (-1261)))) (-2833 (*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-112)) (-5 *2 (-1150)))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1150))))) +(-13 (-10 -8 (-15 -2833 ((-1150) $)) (-15 -2833 ((-1150) $ (-112))) (-15 -2833 ((-1261) (-817) $)) (-15 -2833 ((-1261) (-817) $ (-112))))) +((-2478 (((-311) (-1150) (-1150)) 12)) (-3975 (((-112) (-1150) (-1150)) 33)) (-2115 (((-112) (-1150)) 32)) (-2192 (((-52) (-1150)) 25)) (-2491 (((-52) (-1150)) 23)) (-3991 (((-52) (-817)) 17)) (-4094 (((-639 (-1150)) (-1150)) 28)) (-1513 (((-639 (-1150))) 27))) +(((-824) (-10 -7 (-15 -3991 ((-52) (-817))) (-15 -2491 ((-52) (-1150))) (-15 -2192 ((-52) (-1150))) (-15 -1513 ((-639 (-1150)))) (-15 -4094 ((-639 (-1150)) (-1150))) (-15 -2115 ((-112) (-1150))) (-15 -3975 ((-112) (-1150) (-1150))) (-15 -2478 ((-311) (-1150) (-1150))))) (T -824)) +((-2478 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-824)))) (-3975 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-824)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-824)))) (-4094 (*1 *2 *3) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-824)) (-5 *3 (-1150)))) (-1513 (*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-824)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-824)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-824)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-824))))) +(-10 -7 (-15 -3991 ((-52) (-817))) (-15 -2491 ((-52) (-1150))) (-15 -2192 ((-52) (-1150))) (-15 -1513 ((-639 (-1150)))) (-15 -4094 ((-639 (-1150)) (-1150))) (-15 -2115 ((-112) (-1150))) (-15 -3975 ((-112) (-1150) (-1150))) (-15 -2478 ((-311) (-1150) (-1150)))) +((-4041 (((-112) $ $) 19)) (-2494 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2129 (($ $ $) 72)) (-2330 (((-112) $ $) 73)) (-4336 (((-112) $ (-766)) 8)) (-1608 (($ (-639 |#1|)) 68) (($) 67)) (-3111 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-4354 (($ $) 62)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ |#1| $) 47 (|has| $ (-6 -4402))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4402)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4402)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3027 (((-112) $ $) 64)) (-3292 (((-112) $ (-766)) 9)) (-1551 ((|#1| $) 78)) (-2673 (($ $ $) 81)) (-1610 (($ $ $) 80)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-2993 ((|#1| $) 79)) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22)) (-4376 (($ $ $) 69)) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40) (($ |#1| $ (-766)) 63)) (-1709 (((-1112) $) 21)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2671 (((-639 (-2 (|:| -2694 |#1|) (|:| -1723 (-766)))) $) 61)) (-3703 (($ $ |#1|) 71) (($ $ $) 70)) (-3564 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 50)) (-4054 (((-857) $) 18)) (-1703 (($ (-639 |#1|)) 66) (($) 65)) (-1932 (($ (-639 |#1|)) 42)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20)) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-825 |#1|) (-139) (-845)) (T -825)) +((-1551 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-845))))) +(-13 (-731 |t#1|) (-963 |t#1|) (-10 -8 (-15 -1551 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-689 |#1|) . T) ((-731 |#1|) . T) ((-963 |#1|) . T) ((-1090 |#1|) . T) ((-1092) . T) ((-1207) . T)) +((-3368 (((-1261) (-1112) (-1112)) 47)) (-3705 (((-1261) (-816) (-52)) 44)) (-2234 (((-52) (-816)) 16))) +(((-826) (-10 -7 (-15 -2234 ((-52) (-816))) (-15 -3705 ((-1261) (-816) (-52))) (-15 -3368 ((-1261) (-1112) (-1112))))) (T -826)) +((-3368 (*1 *2 *3 *3) (-12 (-5 *3 (-1112)) (-5 *2 (-1261)) (-5 *1 (-826)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-52)) (-5 *2 (-1261)) (-5 *1 (-826)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-52)) (-5 *1 (-826))))) +(-10 -7 (-15 -2234 ((-52) (-816))) (-15 -3705 ((-1261) (-816) (-52))) (-15 -3368 ((-1261) (-1112) (-1112)))) +((-4152 (((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)) 12) (((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|)) 13))) +(((-827 |#1| |#2|) (-10 -7 (-15 -4152 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|))) (-15 -4152 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)))) (-1092) (-1092)) (T -827)) +((-4152 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *1 (-827 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-828 *6)) (-5 *1 (-827 *5 *6))))) +(-10 -7 (-15 -4152 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|))) (-15 -4152 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL (|has| |#1| (-21)))) (-3214 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2277 (((-562) $) NIL (|has| |#1| (-843)))) (-1800 (($) NIL (|has| |#1| (-21)) CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 15)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 9)) (-3668 (((-3 $ "failed") $) 40 (|has| |#1| (-843)))) (-1726 (((-3 (-406 (-562)) "failed") $) 49 (|has| |#1| (-544)))) (-3035 (((-112) $) 43 (|has| |#1| (-544)))) (-1291 (((-406 (-562)) $) 46 (|has| |#1| (-544)))) (-3519 (((-112) $) NIL (|has| |#1| (-843)))) (-1957 (((-112) $) NIL (|has| |#1| (-843)))) (-3392 (((-112) $) NIL (|has| |#1| (-843)))) (-1551 (($ $ $) NIL (|has| |#1| (-843)))) (-2993 (($ $ $) NIL (|has| |#1| (-843)))) (-2913 (((-1150) $) NIL)) (-4113 (($) 13)) (-1345 (((-112) $) 12)) (-1709 (((-1112) $) NIL)) (-2939 (((-112) $) 11)) (-4054 (((-857) $) 18) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 8) (($ (-562)) NIL (-4037 (|has| |#1| (-843)) (|has| |#1| (-1033 (-562)))))) (-2579 (((-766)) 34 (|has| |#1| (-843)))) (-3526 (($ $) NIL (|has| |#1| (-843)))) (-2286 (($) 22 (|has| |#1| (-21)) CONST)) (-2294 (($) 31 (|has| |#1| (-843)) CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1731 (((-112) $ $) 20)) (-1785 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1759 (((-112) $ $) 42 (|has| |#1| (-843)))) (-1848 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1835 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-916)) NIL (|has| |#1| (-843))) (($ $ (-766)) NIL (|has| |#1| (-843)))) (* (($ $ $) 37 (|has| |#1| (-843))) (($ (-562) $) 25 (|has| |#1| (-21))) (($ (-766) $) NIL (|has| |#1| (-21))) (($ (-916) $) NIL (|has| |#1| (-21))))) +(((-828 |#1|) (-13 (-1092) (-410 |#1|) (-10 -8 (-15 -4113 ($)) (-15 -2939 ((-112) $)) (-15 -1345 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) (-1092)) (T -828)) +((-4113 (*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1092)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1092)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1092)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-828 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) (-1726 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-828 *3)) (-4 *3 (-544)) (-4 *3 (-1092))))) +(-13 (-1092) (-410 |#1|) (-10 -8 (-15 -4113 ($)) (-15 -2939 ((-112) $)) (-15 -1345 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) +((-4054 (((-857) $) 11))) +(((-829 |#1| |#2|) (-10 -8 (-15 -4054 ((-857) |#1|))) (-830 |#2|) (-1092)) (T -829)) +NIL +(-10 -8 (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-3254 ((|#1| $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-3087 (((-55) $) 13)) (-1731 (((-112) $ $) 6))) +(((-830 |#1|) (-139) (-1092)) (T -830)) +((-3254 (*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1092)))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1092)) (-5 *2 (-55))))) +(-13 (-1092) (-10 -8 (-15 -3254 (|t#1| $)) (-15 -3087 ((-55) $)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3961 ((|#1| $) NIL) (((-114) $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1786 ((|#1| (-114) |#1|) NIL)) (-1957 (((-112) $) NIL)) (-1860 (($ |#1| (-360 (-114))) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1422 (($ $ (-1 |#1| |#1|)) NIL)) (-3048 (($ $ (-1 |#1| |#1|)) NIL)) (-2343 ((|#1| $ |#1|) NIL)) (-2838 ((|#1| |#1|) NIL (|has| |#1| (-171)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-1563 (($ $) NIL (|has| |#1| (-171))) (($ $ $) NIL (|has| |#1| (-171)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ (-114) (-562)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) +(((-831 |#1|) (-13 (-1044) (-1033 |#1|) (-1033 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1563 ($ $)) (-15 -1563 ($ $ $)) (-15 -2838 (|#1| |#1|))) |%noBranch|) (-15 -3048 ($ $ (-1 |#1| |#1|))) (-15 -1422 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-562))) (-15 ** ($ $ (-562))) (-15 -1786 (|#1| (-114) |#1|)) (-15 -1860 ($ |#1| (-360 (-114)))))) (-1044)) (T -831)) +((-1563 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044)))) (-1563 (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044)))) (-2838 (*1 *2 *2) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-831 *3)))) (-1422 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-831 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-562)) (-5 *1 (-831 *4)) (-4 *4 (-1044)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-831 *3)) (-4 *3 (-1044)))) (-1786 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-831 *2)) (-4 *2 (-1044)))) (-1860 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-5 *1 (-831 *2)) (-4 *2 (-1044))))) +(-13 (-1044) (-1033 |#1|) (-1033 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1563 ($ $)) (-15 -1563 ($ $ $)) (-15 -2838 (|#1| |#1|))) |%noBranch|) (-15 -3048 ($ $ (-1 |#1| |#1|))) (-15 -1422 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-562))) (-15 ** ($ $ (-562))) (-15 -1786 (|#1| (-114) |#1|)) (-15 -1860 ($ |#1| (-360 (-114)))))) +((-4022 (((-213 (-501)) (-1150)) 9))) +(((-832) (-10 -7 (-15 -4022 ((-213 (-501)) (-1150))))) (T -832)) +((-4022 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-213 (-501))) (-5 *1 (-832))))) +(-10 -7 (-15 -4022 ((-213 (-501)) (-1150)))) +((-4041 (((-112) $ $) NIL)) (-2845 (((-1110) $) 10)) (-3254 (((-505) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4066 (($ (-505) (-1110)) 8)) (-4054 (((-857) $) 26)) (-3087 (((-55) $) 19)) (-1731 (((-112) $ $) 12))) +(((-833) (-13 (-830 (-505)) (-10 -8 (-15 -2845 ((-1110) $)) (-15 -4066 ($ (-505) (-1110)))))) (T -833)) +((-2845 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-833)))) (-4066 (*1 *1 *2 *3) (-12 (-5 *2 (-505)) (-5 *3 (-1110)) (-5 *1 (-833))))) +(-13 (-830 (-505)) (-10 -8 (-15 -2845 ((-1110) $)) (-15 -4066 ($ (-505) (-1110))))) +((-4041 (((-112) $ $) 7)) (-3508 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) 14) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 13)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 16) (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) 15)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6))) +(((-834) (-139)) (T -834)) +((-2172 (*1 *2 *3 *4) (-12 (-4 *1 (-834)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)))))) (-2172 (*1 *2 *3 *4) (-12 (-4 *1 (-834)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)))))) (-3508 (*1 *2 *3) (-12 (-4 *1 (-834)) (-5 *3 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) (-5 *2 (-1030)))) (-3508 (*1 *2 *3) (-12 (-4 *1 (-834)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (-5 *2 (-1030))))) +(-13 (-1092) (-10 -7 (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) (-15 -3508 ((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) (-15 -3508 ((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-2907 (((-1030) (-639 (-315 (-378))) (-639 (-378))) 147) (((-1030) (-315 (-378)) (-639 (-378))) 145) (((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-838 (-378)))) 144) (((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-315 (-378))) (-639 (-838 (-378)))) 143) (((-1030) (-836)) 117) (((-1030) (-836) (-1056)) 116)) (-2172 (((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836) (-1056)) 82) (((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836)) 84)) (-3173 (((-1030) (-639 (-315 (-378))) (-639 (-378))) 148) (((-1030) (-836)) 133))) +(((-835) (-10 -7 (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836) (-1056))) (-15 -2907 ((-1030) (-836) (-1056))) (-15 -2907 ((-1030) (-836))) (-15 -3173 ((-1030) (-836))) (-15 -2907 ((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-315 (-378))) (-639 (-838 (-378))))) (-15 -2907 ((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-838 (-378))))) (-15 -2907 ((-1030) (-315 (-378)) (-639 (-378)))) (-15 -2907 ((-1030) (-639 (-315 (-378))) (-639 (-378)))) (-15 -3173 ((-1030) (-639 (-315 (-378))) (-639 (-378)))))) (T -835)) +((-3173 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-315 (-378)))) (-5 *4 (-639 (-378))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-315 (-378)))) (-5 *4 (-639 (-378))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-378))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2907 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-378))) (-5 *5 (-639 (-838 (-378)))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2907 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-639 (-378))) (-5 *5 (-639 (-838 (-378)))) (-5 *6 (-639 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-836)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-836)) (-5 *4 (-1056)) (-5 *2 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-835)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-835))))) +(-10 -7 (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836) (-1056))) (-15 -2907 ((-1030) (-836) (-1056))) (-15 -2907 ((-1030) (-836))) (-15 -3173 ((-1030) (-836))) (-15 -2907 ((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-315 (-378))) (-639 (-838 (-378))))) (-15 -2907 ((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-838 (-378))))) (-15 -2907 ((-1030) (-315 (-378)) (-639 (-378)))) (-15 -2907 ((-1030) (-639 (-315 (-378))) (-639 (-378)))) (-15 -3173 ((-1030) (-639 (-315 (-378))) (-639 (-378))))) +((-4041 (((-112) $ $) NIL)) (-3961 (((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) $) 21)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 20) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 14) (($ (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))))) 18)) (-1731 (((-112) $ $) NIL))) +(((-836) (-13 (-1092) (-10 -8 (-15 -4054 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -4054 ($ (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) (-15 -4054 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))))) (-15 -3961 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) $))))) (T -836)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (-5 *1 (-836)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) (-5 *1 (-836)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))))) (-5 *1 (-836)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))))) (-5 *1 (-836))))) +(-13 (-1092) (-10 -8 (-15 -4054 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -4054 ($ (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) (-15 -4054 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))))) (-15 -3961 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224)))))) $)))) +((-4152 (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|) (-838 |#2|)) 13) (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)) 14))) +(((-837 |#1| |#2|) (-10 -7 (-15 -4152 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -4152 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|) (-838 |#2|)))) (-1092) (-1092)) (T -837)) +((-4152 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *1 (-837 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6))))) +(-10 -7 (-15 -4152 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -4152 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|) (-838 |#2|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL (|has| |#1| (-21)))) (-2782 (((-1112) $) 24)) (-3214 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2277 (((-562) $) NIL (|has| |#1| (-843)))) (-1800 (($) NIL (|has| |#1| (-21)) CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 16)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 9)) (-3668 (((-3 $ "failed") $) 47 (|has| |#1| (-843)))) (-1726 (((-3 (-406 (-562)) "failed") $) 54 (|has| |#1| (-544)))) (-3035 (((-112) $) 49 (|has| |#1| (-544)))) (-1291 (((-406 (-562)) $) 52 (|has| |#1| (-544)))) (-3519 (((-112) $) NIL (|has| |#1| (-843)))) (-3604 (($) 13)) (-1957 (((-112) $) NIL (|has| |#1| (-843)))) (-3392 (((-112) $) NIL (|has| |#1| (-843)))) (-3616 (($) 14)) (-1551 (($ $ $) NIL (|has| |#1| (-843)))) (-2993 (($ $ $) NIL (|has| |#1| (-843)))) (-2913 (((-1150) $) NIL)) (-1345 (((-112) $) 12)) (-1709 (((-1112) $) NIL)) (-2939 (((-112) $) 11)) (-4054 (((-857) $) 22) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 8) (($ (-562)) NIL (-4037 (|has| |#1| (-843)) (|has| |#1| (-1033 (-562)))))) (-2579 (((-766)) 41 (|has| |#1| (-843)))) (-3526 (($ $) NIL (|has| |#1| (-843)))) (-2286 (($) 29 (|has| |#1| (-21)) CONST)) (-2294 (($) 38 (|has| |#1| (-843)) CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1731 (((-112) $ $) 27)) (-1785 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1759 (((-112) $ $) 48 (|has| |#1| (-843)))) (-1848 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1835 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-916)) NIL (|has| |#1| (-843))) (($ $ (-766)) NIL (|has| |#1| (-843)))) (* (($ $ $) 44 (|has| |#1| (-843))) (($ (-562) $) 32 (|has| |#1| (-21))) (($ (-766) $) NIL (|has| |#1| (-21))) (($ (-916) $) NIL (|has| |#1| (-21))))) +(((-838 |#1|) (-13 (-1092) (-410 |#1|) (-10 -8 (-15 -3604 ($)) (-15 -3616 ($)) (-15 -2939 ((-112) $)) (-15 -1345 ((-112) $)) (-15 -2782 ((-1112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) (-1092)) (T -838)) +((-3604 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1092)))) (-3616 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1092)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1092)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1092)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-838 *3)) (-4 *3 (-1092)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-838 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) (-1726 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-838 *3)) (-4 *3 (-544)) (-4 *3 (-1092))))) +(-13 (-1092) (-410 |#1|) (-10 -8 (-15 -3604 ($)) (-15 -3616 ($)) (-15 -2939 ((-112) $)) (-15 -1345 ((-112) $)) (-15 -2782 ((-1112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) +((-4041 (((-112) $ $) 7)) (-1382 (((-766)) 22)) (-1448 (($) 25)) (-1551 (($ $ $) 13) (($) 21 T CONST)) (-2993 (($ $ $) 14) (($) 20 T CONST)) (-1999 (((-916) $) 24)) (-2913 (((-1150) $) 9)) (-2466 (($ (-916)) 23)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18))) +(((-839) (-139)) (T -839)) +((-1551 (*1 *1) (-4 *1 (-839))) (-2993 (*1 *1) (-4 *1 (-839)))) +(-13 (-845) (-367) (-10 -8 (-15 -1551 ($) -1497) (-15 -2993 ($) -1497))) +(((-102) . T) ((-609 (-857)) . T) ((-367) . T) ((-845) . T) ((-1092) . T)) +((-2860 (((-112) (-1256 |#2|) (-1256 |#2|)) 17)) (-1330 (((-112) (-1256 |#2|) (-1256 |#2|)) 18)) (-3107 (((-112) (-1256 |#2|) (-1256 |#2|)) 14))) +(((-840 |#1| |#2|) (-10 -7 (-15 -3107 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -2860 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -1330 ((-112) (-1256 |#2|) (-1256 |#2|)))) (-766) (-787)) (T -840)) +((-1330 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-840 *4 *5)) (-14 *4 (-766)))) (-2860 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-840 *4 *5)) (-14 *4 (-766)))) (-3107 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-840 *4 *5)) (-14 *4 (-766))))) +(-10 -7 (-15 -3107 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -2860 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -1330 ((-112) (-1256 |#2|) (-1256 |#2|)))) +((-4041 (((-112) $ $) 7)) (-1800 (($) 23 T CONST)) (-3668 (((-3 $ "failed") $) 26)) (-1957 (((-112) $) 24)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2294 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (** (($ $ (-916)) 21) (($ $ (-766)) 25)) (* (($ $ $) 20))) +(((-841) (-139)) (T -841)) +NIL +(-13 (-852) (-721)) +(((-102) . T) ((-609 (-857)) . T) ((-721) . T) ((-852) . T) ((-845) . T) ((-1104) . T) ((-1092) . T)) +((-2277 (((-562) $) 17)) (-3519 (((-112) $) 10)) (-3392 (((-112) $) 11)) (-3526 (($ $) 19))) +(((-842 |#1|) (-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -2277 ((-562) |#1|)) (-15 -3392 ((-112) |#1|)) (-15 -3519 ((-112) |#1|))) (-843)) (T -842)) +NIL +(-10 -8 (-15 -3526 (|#1| |#1|)) (-15 -2277 ((-562) |#1|)) (-15 -3392 ((-112) |#1|)) (-15 -3519 ((-112) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 24)) (-3214 (((-3 $ "failed") $ $) 26)) (-2277 (((-562) $) 34)) (-1800 (($) 23 T CONST)) (-3668 (((-3 $ "failed") $) 39)) (-3519 (((-112) $) 36)) (-1957 (((-112) $) 41)) (-3392 (((-112) $) 35)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 43)) (-2579 (((-766)) 44)) (-3526 (($ $) 33)) (-2286 (($) 22 T CONST)) (-2294 (($) 42 T CONST)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (-1848 (($ $ $) 28) (($ $) 27)) (-1835 (($ $ $) 20)) (** (($ $ (-766)) 40) (($ $ (-916)) 37)) (* (($ (-916) $) 21) (($ (-766) $) 25) (($ (-562) $) 29) (($ $ $) 38))) +(((-843) (-139)) (T -843)) +((-3519 (*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-112)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-112)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-562)))) (-3526 (*1 *1 *1) (-4 *1 (-843)))) +(-13 (-786) (-1044) (-721) (-10 -8 (-15 -3519 ((-112) $)) (-15 -3392 ((-112) $)) (-15 -2277 ((-562) $)) (-15 -3526 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-845) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-1551 (($ $ $) 10)) (-2993 (($ $ $) 9)) (-1798 (((-112) $ $) 12)) (-1772 (((-112) $ $) 11)) (-1785 (((-112) $ $) 13))) +(((-844 |#1|) (-10 -8 (-15 -1551 (|#1| |#1| |#1|)) (-15 -2993 (|#1| |#1| |#1|)) (-15 -1785 ((-112) |#1| |#1|)) (-15 -1798 ((-112) |#1| |#1|)) (-15 -1772 ((-112) |#1| |#1|))) (-845)) (T -844)) +NIL +(-10 -8 (-15 -1551 (|#1| |#1| |#1|)) (-15 -2993 (|#1| |#1| |#1|)) (-15 -1785 ((-112) |#1| |#1|)) (-15 -1798 ((-112) |#1| |#1|)) (-15 -1772 ((-112) |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18))) +(((-845) (-139)) (T -845)) +((-1759 (*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-1772 (*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-1798 (*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-1785 (*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-2993 (*1 *1 *1 *1) (-4 *1 (-845))) (-1551 (*1 *1 *1 *1) (-4 *1 (-845)))) +(-13 (-1092) (-10 -8 (-15 -1759 ((-112) $ $)) (-15 -1772 ((-112) $ $)) (-15 -1798 ((-112) $ $)) (-15 -1785 ((-112) $ $)) (-15 -2993 ($ $ $)) (-15 -1551 ($ $ $)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-1896 (($ $ $) 45)) (-3688 (($ $ $) 44)) (-2488 (($ $ $) 42)) (-4282 (($ $ $) 51)) (-2703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 46)) (-3041 (((-3 $ "failed") $ $) 49)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1498 (($ $) 35)) (-1639 (($ $ $) 39)) (-2492 (($ $ $) 38)) (-4132 (($ $ $) 47)) (-3671 (($ $ $) 53)) (-2189 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 41)) (-2075 (((-3 $ "failed") $ $) 48)) (-1762 (((-3 $ "failed") $ |#2|) 28)) (-3900 ((|#2| $) 32)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ |#2|) 12)) (-4358 (((-639 |#2|) $) 18)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-846 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| |#1| |#1|)) (-15 -2703 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3148 |#1|)) |#1| |#1|)) (-15 -4282 (|#1| |#1| |#1|)) (-15 -3041 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1896 (|#1| |#1| |#1|)) (-15 -3688 (|#1| |#1| |#1|)) (-15 -2488 (|#1| |#1| |#1|)) (-15 -2189 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3148 |#1|)) |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -2075 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -1498 (|#1| |#1|)) (-15 -3900 (|#2| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4358 ((-639 |#2|) |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4054 (|#1| (-562))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -4054 ((-857) |#1|))) (-847 |#2|) (-1044)) (T -846)) +NIL +(-10 -8 (-15 -4132 (|#1| |#1| |#1|)) (-15 -2703 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3148 |#1|)) |#1| |#1|)) (-15 -4282 (|#1| |#1| |#1|)) (-15 -3041 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1896 (|#1| |#1| |#1|)) (-15 -3688 (|#1| |#1| |#1|)) (-15 -2488 (|#1| |#1| |#1|)) (-15 -2189 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3148 |#1|)) |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -2075 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -1498 (|#1| |#1|)) (-15 -3900 (|#2| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4358 ((-639 |#2|) |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4054 (|#1| (-562))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-1896 (($ $ $) 44 (|has| |#1| (-362)))) (-3688 (($ $ $) 45 (|has| |#1| (-362)))) (-2488 (($ $ $) 47 (|has| |#1| (-362)))) (-4282 (($ $ $) 42 (|has| |#1| (-362)))) (-2703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 41 (|has| |#1| (-362)))) (-3041 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-2227 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 46 (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) 74 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 71 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 68)) (-3961 (((-562) $) 73 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 70 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 69)) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-1498 (($ $) 54 (|has| |#1| (-451)))) (-1957 (((-112) $) 31)) (-1378 (($ |#1| (-766)) 61)) (-1664 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 56 (|has| |#1| (-554)))) (-1736 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 57 (|has| |#1| (-554)))) (-2076 (((-766) $) 65)) (-1639 (($ $ $) 51 (|has| |#1| (-362)))) (-2492 (($ $ $) 52 (|has| |#1| (-362)))) (-4132 (($ $ $) 40 (|has| |#1| (-362)))) (-3671 (($ $ $) 49 (|has| |#1| (-362)))) (-2189 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 48 (|has| |#1| (-362)))) (-2075 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-1535 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 53 (|has| |#1| (-362)))) (-1573 ((|#1| $) 64)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-554)))) (-3598 (((-766) $) 66)) (-3900 ((|#1| $) 55 (|has| |#1| (-451)))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 72 (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 67)) (-4358 (((-639 |#1|) $) 60)) (-3906 ((|#1| $ (-766)) 62)) (-2579 (((-766)) 28)) (-1360 ((|#1| $ |#1| |#1|) 59)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-847 |#1|) (-139) (-1044)) (T -847)) +((-3598 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-1601 (*1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-3906 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-1378 (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-639 *3)))) (-1360 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) (-1736 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-847 *3)))) (-1664 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-847 *3)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-451)))) (-1498 (*1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-451)))) (-1535 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-847 *3)))) (-2492 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-1639 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-2075 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-3671 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-2189 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3148 *1))) (-4 *1 (-847 *3)))) (-2488 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-2227 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-847 *3)))) (-3688 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-1896 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-3041 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-4282 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-2703 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3148 *1))) (-4 *1 (-847 *3)))) (-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(-13 (-1044) (-111 |t#1| |t#1|) (-410 |t#1|) (-10 -8 (-15 -3598 ((-766) $)) (-15 -2076 ((-766) $)) (-15 -1573 (|t#1| $)) (-15 -1601 ($ $)) (-15 -3906 (|t#1| $ (-766))) (-15 -1378 ($ |t#1| (-766))) (-15 -4358 ((-639 |t#1|) $)) (-15 -1360 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -1762 ((-3 $ "failed") $ |t#1|)) (-15 -1736 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -1664 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-451)) (PROGN (-15 -3900 (|t#1| $)) (-15 -1498 ($ $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -1535 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -2492 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -2075 ((-3 $ "failed") $ $)) (-15 -3671 ($ $ $)) (-15 -2189 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $)) (-15 -2488 ($ $ $)) (-15 -2227 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -3688 ($ $ $)) (-15 -1896 ($ $ $)) (-15 -3041 ((-3 $ "failed") $ $)) (-15 -4282 ($ $ $)) (-15 -2703 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $)) (-15 -4132 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 #0=(-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-410 |#1|) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) |has| |#1| (-171)) ((-721) . T) ((-1033 #0#) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-3002 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2227 (((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-362)))) (-1664 (((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-554)))) (-1736 (((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-554)))) (-1535 (((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-362)))) (-1360 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31))) +(((-848 |#1| |#2|) (-10 -7 (-15 -3002 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1360 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-554)) (PROGN (-15 -1736 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1664 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1535 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2227 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1044) (-847 |#1|)) (T -848)) +((-2227 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-848 *5 *3)) (-4 *3 (-847 *5)))) (-1535 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-848 *5 *3)) (-4 *3 (-847 *5)))) (-1664 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-848 *5 *3)) (-4 *3 (-847 *5)))) (-1736 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-848 *5 *3)) (-4 *3 (-847 *5)))) (-1360 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1044)) (-5 *1 (-848 *2 *3)) (-4 *3 (-847 *2)))) (-3002 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1044)) (-5 *1 (-848 *5 *2)) (-4 *2 (-847 *5))))) +(-10 -7 (-15 -3002 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1360 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-554)) (PROGN (-15 -1736 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1664 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1535 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2227 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1896 (($ $ $) NIL (|has| |#1| (-362)))) (-3688 (($ $ $) NIL (|has| |#1| (-362)))) (-2488 (($ $ $) NIL (|has| |#1| (-362)))) (-4282 (($ $ $) NIL (|has| |#1| (-362)))) (-2703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-3041 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-2227 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 32 (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-451)))) (-1995 (((-857) $ (-857)) NIL)) (-1957 (((-112) $) NIL)) (-1378 (($ |#1| (-766)) NIL)) (-1664 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 28 (|has| |#1| (-554)))) (-1736 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 26 (|has| |#1| (-554)))) (-2076 (((-766) $) NIL)) (-1639 (($ $ $) NIL (|has| |#1| (-362)))) (-2492 (($ $ $) NIL (|has| |#1| (-362)))) (-4132 (($ $ $) NIL (|has| |#1| (-362)))) (-3671 (($ $ $) NIL (|has| |#1| (-362)))) (-2189 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-2075 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1535 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 30 (|has| |#1| (-362)))) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-3598 (((-766) $) NIL)) (-3900 ((|#1| $) NIL (|has| |#1| (-451)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) NIL)) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-766)) NIL)) (-2579 (((-766)) NIL)) (-1360 ((|#1| $ |#1| |#1|) 15)) (-2286 (($) NIL T CONST)) (-2294 (($) 20 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) 19) (($ $ (-766)) 22)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-849 |#1| |#2| |#3|) (-13 (-847 |#1|) (-10 -8 (-15 -1995 ((-857) $ (-857))))) (-1044) (-99 |#1|) (-1 |#1| |#1|)) (T -849)) +((-1995 (*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-849 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-847 |#1|) (-10 -8 (-15 -1995 ((-857) $ (-857))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1896 (($ $ $) NIL (|has| |#2| (-362)))) (-3688 (($ $ $) NIL (|has| |#2| (-362)))) (-2488 (($ $ $) NIL (|has| |#2| (-362)))) (-4282 (($ $ $) NIL (|has| |#2| (-362)))) (-2703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#2| (-362)))) (-3041 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-2227 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#2| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 |#2| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) ((|#2| $) NIL)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#2| (-451)))) (-1957 (((-112) $) NIL)) (-1378 (($ |#2| (-766)) 16)) (-1664 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#2| (-554)))) (-1736 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#2| (-554)))) (-2076 (((-766) $) NIL)) (-1639 (($ $ $) NIL (|has| |#2| (-362)))) (-2492 (($ $ $) NIL (|has| |#2| (-362)))) (-4132 (($ $ $) NIL (|has| |#2| (-362)))) (-3671 (($ $ $) NIL (|has| |#2| (-362)))) (-2189 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#2| (-362)))) (-2075 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-1535 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#2| (-362)))) (-1573 ((|#2| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-3598 (((-766) $) NIL)) (-3900 ((|#2| $) NIL (|has| |#2| (-451)))) (-4054 (((-857) $) 23) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#2| (-1033 (-406 (-562))))) (($ |#2|) NIL) (($ (-1252 |#1|)) 18)) (-4358 (((-639 |#2|) $) NIL)) (-3906 ((|#2| $ (-766)) NIL)) (-2579 (((-766)) NIL)) (-1360 ((|#2| $ |#2| |#2|) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) 13 T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-850 |#1| |#2| |#3| |#4|) (-13 (-847 |#2|) (-612 (-1252 |#1|))) (-1168) (-1044) (-99 |#2|) (-1 |#2| |#2|)) (T -850)) +NIL +(-13 (-847 |#2|) (-612 (-1252 |#1|))) +((-2237 ((|#1| (-766) |#1|) 35 (|has| |#1| (-38 (-406 (-562)))))) (-2399 ((|#1| (-766) (-766) |#1|) 27) ((|#1| (-766) |#1|) 20)) (-3782 ((|#1| (-766) |#1|) 31)) (-3908 ((|#1| (-766) |#1|) 29)) (-4206 ((|#1| (-766) |#1|) 28))) +(((-851 |#1|) (-10 -7 (-15 -4206 (|#1| (-766) |#1|)) (-15 -3908 (|#1| (-766) |#1|)) (-15 -3782 (|#1| (-766) |#1|)) (-15 -2399 (|#1| (-766) |#1|)) (-15 -2399 (|#1| (-766) (-766) |#1|)) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2237 (|#1| (-766) |#1|)) |%noBranch|)) (-171)) (T -851)) +((-2237 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-171)))) (-2399 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) (-2399 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) (-3782 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) (-3908 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) (-4206 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171))))) +(-10 -7 (-15 -4206 (|#1| (-766) |#1|)) (-15 -3908 (|#1| (-766) |#1|)) (-15 -3782 (|#1| (-766) |#1|)) (-15 -2399 (|#1| (-766) |#1|)) (-15 -2399 (|#1| (-766) (-766) |#1|)) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2237 (|#1| (-766) |#1|)) |%noBranch|)) +((-4041 (((-112) $ $) 7)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1772 (((-112) $ $) 17)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1759 (((-112) $ $) 18)) (** (($ $ (-916)) 21)) (* (($ $ $) 20))) +(((-852) (-139)) (T -852)) +NIL +(-13 (-845) (-1104)) +(((-102) . T) ((-609 (-857)) . T) ((-845) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-2534 (((-562) $) 12)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 18) (($ (-562)) 11)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 8)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 9))) +(((-853) (-13 (-845) (-10 -8 (-15 -4054 ($ (-562))) (-15 -2534 ((-562) $))))) (T -853)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-853)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-853))))) +(-13 (-845) (-10 -8 (-15 -4054 ($ (-562))) (-15 -2534 ((-562) $)))) +((-2475 (((-685 (-1214)) $ (-1214)) 15)) (-3202 (((-685 (-547)) $ (-547)) 12)) (-3787 (((-766) $ (-128)) 24))) +(((-854 |#1|) (-10 -8 (-15 -3787 ((-766) |#1| (-128))) (-15 -2475 ((-685 (-1214)) |#1| (-1214))) (-15 -3202 ((-685 (-547)) |#1| (-547)))) (-855)) (T -854)) +NIL +(-10 -8 (-15 -3787 ((-766) |#1| (-128))) (-15 -2475 ((-685 (-1214)) |#1| (-1214))) (-15 -3202 ((-685 (-547)) |#1| (-547)))) +((-2475 (((-685 (-1214)) $ (-1214)) 8)) (-3202 (((-685 (-547)) $ (-547)) 9)) (-3787 (((-766) $ (-128)) 7)) (-3966 (((-685 (-129)) $ (-129)) 10)) (-3948 (($ $) 6))) (((-855) (-139)) (T -855)) -((-2939 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-128))) (-5 *3 (-128)))) (-2938 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-547))) (-5 *3 (-547)))) (-2937 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-1212))) (-5 *3 (-1212)))) (-2936 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *3 (-129)) (-5 *2 (-765))))) -(-13 (-172) (-10 -8 (-15 -2939 ((-684 (-128)) $ (-128))) (-15 -2938 ((-684 (-547)) $ (-547))) (-15 -2937 ((-684 (-1212)) $ (-1212))) (-15 -2936 ((-765) $ (-129))))) +((-3966 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-685 (-129))) (-5 *3 (-129)))) (-3202 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-685 (-547))) (-5 *3 (-547)))) (-2475 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-685 (-1214))) (-5 *3 (-1214)))) (-3787 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *3 (-128)) (-5 *2 (-766))))) +(-13 (-172) (-10 -8 (-15 -3966 ((-685 (-129)) $ (-129))) (-15 -3202 ((-685 (-547)) $ (-547))) (-15 -2475 ((-685 (-1214)) $ (-1214))) (-15 -3787 ((-766) $ (-128))))) (((-172) . T)) -((-2937 (((-684 (-1212)) $ (-1212)) NIL)) (-2938 (((-684 (-547)) $ (-547)) NIL)) (-2936 (((-765) $ (-129)) NIL)) (-2939 (((-684 (-128)) $ (-128)) 21)) (-2941 (($ (-387)) 12) (($ (-1148)) 14)) (-2940 (((-112) $) 18)) (-4353 (((-857) $) 25)) (-1844 (($ $) 22))) -(((-856) (-13 (-855) (-608 (-857)) (-10 -8 (-15 -2941 ($ (-387))) (-15 -2941 ($ (-1148))) (-15 -2940 ((-112) $))))) (T -856)) -((-2941 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-856)))) (-2941 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856))))) -(-13 (-855) (-608 (-857)) (-10 -8 (-15 -2941 ($ (-387))) (-15 -2941 ($ (-1148))) (-15 -2940 ((-112) $)))) -((-2947 (((-112) $ $) NIL) (($ $ $) 77)) (-2968 (($ $ $) 114)) (-2983 (((-544) $) 31) (((-544)) 36)) (-2978 (($ (-544)) 45)) (-2975 (($ $ $) 46) (($ (-635 $)) 76)) (-2959 (($ $ (-635 $)) 74)) (-2980 (((-544) $) 34)) (-2962 (($ $ $) 65)) (-3931 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2981 (((-544) $) 33)) (-2963 (($ $ $) 64)) (-3942 (($ $) 104)) (-2966 (($ $ $) 118)) (-2949 (($ (-635 $)) 53)) (-3947 (($ $ (-635 $)) 71)) (-2977 (($ (-544) (-544)) 47)) (-2989 (($ $) 115) (($ $ $) 116)) (-3522 (($ $ (-544)) 41) (($ $) 44)) (-2943 (($ $ $) 89)) (-2964 (($ $ $) 121)) (-2958 (($ $) 105)) (-2942 (($ $ $) 90)) (-2954 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3219 (((-1259) $) 10)) (-2957 (($ $) 108) (($ $ (-765)) 111)) (-2960 (($ $ $) 67)) (-2961 (($ $ $) 66)) (-2974 (($ $ (-635 $)) 100)) (-2972 (($ $ $) 103)) (-2951 (($ (-635 $)) 51)) (-2952 (($ $) 62) (($ (-635 $)) 63)) (-2955 (($ $ $) 112)) (-2956 (($ $) 106)) (-2967 (($ $ $) 117)) (-3932 (($ (-544)) 21) (($ (-1166)) 23) (($ (-1148)) 30) (($ (-224)) 25)) (-3239 (($ $ $) 93)) (-3726 (($ $) 94)) (-2985 (((-1259) (-1148)) 15)) (-2986 (($ (-1148)) 14)) (-3509 (($ (-635 (-635 $))) 50)) (-3523 (($ $ (-544)) 40) (($ $) 43)) (-3643 (((-1148) $) NIL)) (-2970 (($ $ $) 120)) (-3869 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2971 (((-112) $) 98)) (-2973 (($ $ (-635 $)) 101) (($ $ $ $) 102)) (-2979 (($ (-544)) 37)) (-2982 (((-544) $) 32) (((-544)) 35)) (-2976 (($ $ $) 38) (($ (-635 $)) 75)) (-3644 (((-1110) $) NIL)) (-3865 (($ $ $) 91)) (-3972 (($) 13)) (-4206 (($ $ (-635 $)) 99)) (-2984 (((-1148) (-1148)) 8)) (-4243 (($ $) 107) (($ $ (-765)) 110)) (-2944 (($ $ $) 88)) (-4217 (($ $ (-765)) 126)) (-2950 (($ (-635 $)) 52)) (-4353 (((-857) $) 19)) (-4179 (($ $ (-544)) 39) (($ $) 42)) (-2953 (($ $) 60) (($ (-635 $)) 61)) (-3641 (($ $) 58) (($ (-635 $)) 59)) (-2969 (($ $) 113)) (-2948 (($ (-635 $)) 57)) (-3487 (($ $ $) 97)) (-2965 (($ $ $) 119)) (-3240 (($ $ $) 92)) (-4144 (($ $ $) 95) (($ $) 96)) (-2945 (($ $ $) 81)) (-2946 (($ $ $) 79)) (-3437 (((-112) $ $) 16) (($ $ $) 17)) (-3066 (($ $ $) 80)) (-3067 (($ $ $) 78)) (-4356 (($ $ $) 86)) (-4244 (($ $ $) 83) (($ $) 84)) (-4246 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-857) (-13 (-1091) (-10 -8 (-15 -3219 ((-1259) $)) (-15 -2986 ($ (-1148))) (-15 -2985 ((-1259) (-1148))) (-15 -3932 ($ (-544))) (-15 -3932 ($ (-1166))) (-15 -3932 ($ (-1148))) (-15 -3932 ($ (-224))) (-15 -3972 ($)) (-15 -2984 ((-1148) (-1148))) (-15 -2983 ((-544) $)) (-15 -2982 ((-544) $)) (-15 -2983 ((-544))) (-15 -2982 ((-544))) (-15 -2981 ((-544) $)) (-15 -2980 ((-544) $)) (-15 -2979 ($ (-544))) (-15 -2978 ($ (-544))) (-15 -2977 ($ (-544) (-544))) (-15 -3523 ($ $ (-544))) (-15 -3522 ($ $ (-544))) (-15 -4179 ($ $ (-544))) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -4179 ($ $)) (-15 -2976 ($ $ $)) (-15 -2975 ($ $ $)) (-15 -2976 ($ (-635 $))) (-15 -2975 ($ (-635 $))) (-15 -2974 ($ $ (-635 $))) (-15 -2973 ($ $ (-635 $))) (-15 -2973 ($ $ $ $)) (-15 -2972 ($ $ $)) (-15 -2971 ((-112) $)) (-15 -4206 ($ $ (-635 $))) (-15 -3942 ($ $)) (-15 -2970 ($ $ $)) (-15 -2969 ($ $)) (-15 -3509 ($ (-635 (-635 $)))) (-15 -2968 ($ $ $)) (-15 -2989 ($ $)) (-15 -2989 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -4217 ($ $ (-765))) (-15 -3487 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2961 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -3947 ($ $ (-635 $))) (-15 -2959 ($ $ (-635 $))) (-15 -2958 ($ $)) (-15 -4243 ($ $)) (-15 -4243 ($ $ (-765))) (-15 -2957 ($ $)) (-15 -2957 ($ $ (-765))) (-15 -2956 ($ $)) (-15 -2955 ($ $ $)) (-15 -3931 ($ $)) (-15 -3931 ($ $ $)) (-15 -3931 ($ $ $ $)) (-15 -2954 ($ $)) (-15 -2954 ($ $ $)) (-15 -2954 ($ $ $ $)) (-15 -3869 ($ $)) (-15 -3869 ($ $ $)) (-15 -3869 ($ $ $ $)) (-15 -3641 ($ $)) (-15 -3641 ($ (-635 $))) (-15 -2953 ($ $)) (-15 -2953 ($ (-635 $))) (-15 -2952 ($ $)) (-15 -2952 ($ (-635 $))) (-15 -2951 ($ (-635 $))) (-15 -2950 ($ (-635 $))) (-15 -2949 ($ (-635 $))) (-15 -2948 ($ (-635 $))) (-15 -3437 ($ $ $)) (-15 -2947 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -2945 ($ $ $)) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4244 ($ $)) (-15 * ($ $ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -2942 ($ $ $)) (-15 -3865 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3726 ($ $)) (-15 -4144 ($ $ $)) (-15 -4144 ($ $))))) (T -857)) -((-3219 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-857)))) (-2986 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-857)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-857)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-857)))) (-3972 (*1 *1) (-5 *1 (-857))) (-2984 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2983 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2982 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2979 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2978 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-2977 (*1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-4179 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) (-3523 (*1 *1 *1) (-5 *1 (-857))) (-3522 (*1 *1 *1) (-5 *1 (-857))) (-4179 (*1 *1 *1) (-5 *1 (-857))) (-2976 (*1 *1 *1 *1) (-5 *1 (-857))) (-2975 (*1 *1 *1 *1) (-5 *1 (-857))) (-2976 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2973 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-2972 (*1 *1 *1 *1) (-5 *1 (-857))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-3942 (*1 *1 *1) (-5 *1 (-857))) (-2970 (*1 *1 *1 *1) (-5 *1 (-857))) (-2969 (*1 *1 *1) (-5 *1 (-857))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-857)))) (-5 *1 (-857)))) (-2968 (*1 *1 *1 *1) (-5 *1 (-857))) (-2989 (*1 *1 *1) (-5 *1 (-857))) (-2989 (*1 *1 *1 *1) (-5 *1 (-857))) (-2967 (*1 *1 *1 *1) (-5 *1 (-857))) (-2966 (*1 *1 *1 *1) (-5 *1 (-857))) (-2965 (*1 *1 *1 *1) (-5 *1 (-857))) (-2964 (*1 *1 *1 *1) (-5 *1 (-857))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857)))) (-3487 (*1 *1 *1 *1) (-5 *1 (-857))) (-2963 (*1 *1 *1 *1) (-5 *1 (-857))) (-2962 (*1 *1 *1 *1) (-5 *1 (-857))) (-2961 (*1 *1 *1 *1) (-5 *1 (-857))) (-2960 (*1 *1 *1 *1) (-5 *1 (-857))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2959 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2958 (*1 *1 *1) (-5 *1 (-857))) (-4243 (*1 *1 *1) (-5 *1 (-857))) (-4243 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857)))) (-2957 (*1 *1 *1) (-5 *1 (-857))) (-2957 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857)))) (-2956 (*1 *1 *1) (-5 *1 (-857))) (-2955 (*1 *1 *1 *1) (-5 *1 (-857))) (-3931 (*1 *1 *1) (-5 *1 (-857))) (-3931 (*1 *1 *1 *1) (-5 *1 (-857))) (-3931 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-2954 (*1 *1 *1) (-5 *1 (-857))) (-2954 (*1 *1 *1 *1) (-5 *1 (-857))) (-2954 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-3869 (*1 *1 *1) (-5 *1 (-857))) (-3869 (*1 *1 *1 *1) (-5 *1 (-857))) (-3869 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-3641 (*1 *1 *1) (-5 *1 (-857))) (-3641 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2953 (*1 *1 *1) (-5 *1 (-857))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2952 (*1 *1 *1) (-5 *1 (-857))) (-2952 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2949 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-2948 (*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) (-3437 (*1 *1 *1 *1) (-5 *1 (-857))) (-2947 (*1 *1 *1 *1) (-5 *1 (-857))) (-3067 (*1 *1 *1 *1) (-5 *1 (-857))) (-2946 (*1 *1 *1 *1) (-5 *1 (-857))) (-3066 (*1 *1 *1 *1) (-5 *1 (-857))) (-2945 (*1 *1 *1 *1) (-5 *1 (-857))) (-4246 (*1 *1 *1 *1) (-5 *1 (-857))) (-4244 (*1 *1 *1 *1) (-5 *1 (-857))) (-4244 (*1 *1 *1) (-5 *1 (-857))) (* (*1 *1 *1 *1) (-5 *1 (-857))) (-4356 (*1 *1 *1 *1) (-5 *1 (-857))) (** (*1 *1 *1 *1) (-5 *1 (-857))) (-2944 (*1 *1 *1 *1) (-5 *1 (-857))) (-2943 (*1 *1 *1 *1) (-5 *1 (-857))) (-2942 (*1 *1 *1 *1) (-5 *1 (-857))) (-3865 (*1 *1 *1 *1) (-5 *1 (-857))) (-3240 (*1 *1 *1 *1) (-5 *1 (-857))) (-3239 (*1 *1 *1 *1) (-5 *1 (-857))) (-3726 (*1 *1 *1) (-5 *1 (-857))) (-4144 (*1 *1 *1 *1) (-5 *1 (-857))) (-4144 (*1 *1 *1) (-5 *1 (-857)))) -(-13 (-1091) (-10 -8 (-15 -3219 ((-1259) $)) (-15 -2986 ($ (-1148))) (-15 -2985 ((-1259) (-1148))) (-15 -3932 ($ (-544))) (-15 -3932 ($ (-1166))) (-15 -3932 ($ (-1148))) (-15 -3932 ($ (-224))) (-15 -3972 ($)) (-15 -2984 ((-1148) (-1148))) (-15 -2983 ((-544) $)) (-15 -2982 ((-544) $)) (-15 -2983 ((-544))) (-15 -2982 ((-544))) (-15 -2981 ((-544) $)) (-15 -2980 ((-544) $)) (-15 -2979 ($ (-544))) (-15 -2978 ($ (-544))) (-15 -2977 ($ (-544) (-544))) (-15 -3523 ($ $ (-544))) (-15 -3522 ($ $ (-544))) (-15 -4179 ($ $ (-544))) (-15 -3523 ($ $)) (-15 -3522 ($ $)) (-15 -4179 ($ $)) (-15 -2976 ($ $ $)) (-15 -2975 ($ $ $)) (-15 -2976 ($ (-635 $))) (-15 -2975 ($ (-635 $))) (-15 -2974 ($ $ (-635 $))) (-15 -2973 ($ $ (-635 $))) (-15 -2973 ($ $ $ $)) (-15 -2972 ($ $ $)) (-15 -2971 ((-112) $)) (-15 -4206 ($ $ (-635 $))) (-15 -3942 ($ $)) (-15 -2970 ($ $ $)) (-15 -2969 ($ $)) (-15 -3509 ($ (-635 (-635 $)))) (-15 -2968 ($ $ $)) (-15 -2989 ($ $)) (-15 -2989 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -4217 ($ $ (-765))) (-15 -3487 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2961 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -3947 ($ $ (-635 $))) (-15 -2959 ($ $ (-635 $))) (-15 -2958 ($ $)) (-15 -4243 ($ $)) (-15 -4243 ($ $ (-765))) (-15 -2957 ($ $)) (-15 -2957 ($ $ (-765))) (-15 -2956 ($ $)) (-15 -2955 ($ $ $)) (-15 -3931 ($ $)) (-15 -3931 ($ $ $)) (-15 -3931 ($ $ $ $)) (-15 -2954 ($ $)) (-15 -2954 ($ $ $)) (-15 -2954 ($ $ $ $)) (-15 -3869 ($ $)) (-15 -3869 ($ $ $)) (-15 -3869 ($ $ $ $)) (-15 -3641 ($ $)) (-15 -3641 ($ (-635 $))) (-15 -2953 ($ $)) (-15 -2953 ($ (-635 $))) (-15 -2952 ($ $)) (-15 -2952 ($ (-635 $))) (-15 -2951 ($ (-635 $))) (-15 -2950 ($ (-635 $))) (-15 -2949 ($ (-635 $))) (-15 -2948 ($ (-635 $))) (-15 -3437 ($ $ $)) (-15 -2947 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -2945 ($ $ $)) (-15 -4246 ($ $ $)) (-15 -4244 ($ $ $)) (-15 -4244 ($ $)) (-15 * ($ $ $)) (-15 -4356 ($ $ $)) (-15 ** ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2943 ($ $ $)) (-15 -2942 ($ $ $)) (-15 -3865 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3726 ($ $)) (-15 -4144 ($ $ $)) (-15 -4144 ($ $)))) -((-2947 (((-112) $ $) NIL)) (-4238 (((-3 $ "failed") (-1166)) 33)) (-3521 (((-765)) 31)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) 29)) (-3643 (((-1148) $) 39)) (-2535 (($ (-912)) 28)) (-3644 (((-1110) $) NIL)) (-4377 (((-1166) $) 13) (((-533) $) 19) (((-883 (-377)) $) 26) (((-883 (-544)) $) 22)) (-4353 (((-857) $) 16)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 36)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 35))) -(((-858 |#1|) (-13 (-838) (-609 (-1166)) (-609 (-533)) (-609 (-883 (-377))) (-609 (-883 (-544))) (-10 -8 (-15 -4238 ((-3 $ "failed") (-1166))))) (-635 (-1166))) (T -858)) -((-4238 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-858 *3)) (-14 *3 (-635 *2))))) -(-13 (-838) (-609 (-1166)) (-609 (-533)) (-609 (-883 (-377))) (-609 (-883 (-544))) (-10 -8 (-15 -4238 ((-3 $ "failed") (-1166))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-939 |#1|)) NIL) (((-939 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-171)))) (-3511 (((-765)) NIL)) (-4330 (((-1259) (-765)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) -(((-859 |#1| |#2| |#3| |#4|) (-13 (-1042) (-488 (-939 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4356 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4330 ((-1259) (-765))))) (-1042) (-635 (-1166)) (-635 (-765)) (-765)) (T -859)) -((-4356 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-859 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-765))) (-14 *5 (-765)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *4 (-1042)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 *3)) (-14 *7 *3)))) -(-13 (-1042) (-488 (-939 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4356 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4330 ((-1259) (-765))))) -((-2987 (((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|) 31)) (-2988 (((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|) 24))) -(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -2988 ((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|)) (-15 -2987 ((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|))) (-362) (-1246 |#1|) (-1229 |#1|)) (T -860)) -((-2987 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-173 *6)) (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1246 *5)) (-4 *6 (-1229 *5)))) (-2988 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-406 *6)) (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1246 *5)) (-4 *6 (-1229 *5))))) -(-10 -7 (-15 -2988 ((-3 (-406 |#3|) "failed") (-765) (-765) |#2| |#2|)) (-15 -2987 ((-3 (-173 |#3|) "failed") (-765) (-765) |#2| |#2|))) -((-2988 (((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|)) 28) (((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) 26))) -(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -2988 ((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) (-15 -2988 ((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|)))) (-362) (-1166) |#1|) (T -861)) -((-2988 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1243 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1222 *6 *5))) (-5 *1 (-861 *5 *6 *7)))) (-2988 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1243 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1222 *6 *5))) (-5 *1 (-861 *5 *6 *7))))) -(-10 -7 (-15 -2988 ((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) (-15 -2988 ((-3 (-406 (-1222 |#2| |#1|)) "failed") (-765) (-765) (-1243 |#1| |#2| |#3|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $ (-544)) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2989 (($ (-1160 (-544)) (-544)) NIL)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2990 (($ $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4178 (((-765) $) NIL)) (-2545 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2992 (((-544)) NIL)) (-2991 (((-544) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4175 (($ $ (-544)) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-2993 (((-1143 (-544)) $) NIL)) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-4176 (((-544) $ (-544)) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL))) -(((-862 |#1|) (-863 |#1|) (-544)) (T -862)) -NIL -(-863 |#1|) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-3420 (($ $ (-544)) 63)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-2989 (($ (-1160 (-544)) (-544)) 62)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2990 (($ $) 65)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4178 (((-765) $) 70)) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2992 (((-544)) 67)) (-2991 (((-544) $) 66)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-4175 (($ $ (-544)) 69)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-2993 (((-1143 (-544)) $) 71)) (-3274 (($ $) 68)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-4176 (((-544) $ (-544)) 64)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-863 |#1|) (-139) (-544)) (T -863)) -((-2993 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-1143 (-544))))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-765)))) (-4175 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-3274 (*1 *1 *1) (-4 *1 (-863 *2))) (-2992 (*1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-2990 (*1 *1 *1) (-4 *1 (-863 *2))) (-4176 (*1 *2 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-3420 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) (-2989 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *3 (-544)) (-4 *1 (-863 *4))))) -(-13 (-306) (-146) (-10 -8 (-15 -2993 ((-1143 (-544)) $)) (-15 -4178 ((-765) $)) (-15 -4175 ($ $ (-544))) (-15 -3274 ($ $)) (-15 -2992 ((-544))) (-15 -2991 ((-544) $)) (-15 -2990 ($ $)) (-15 -4176 ((-544) $ (-544))) (-15 -3420 ($ $ (-544))) (-15 -2989 ($ (-1160 (-544)) (-544))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-306) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-862 |#1|) $) NIL (|has| (-862 |#1|) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-862 |#1|) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-862 |#1|) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-862 |#1|) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-862 |#1|) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| (-862 |#1|) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| (-862 |#1|) (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| (-862 |#1|) (-1031 (-544))))) (-3557 (((-862 |#1|) $) NIL) (((-1166) $) NIL (|has| (-862 |#1|) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-862 |#1|) (-1031 (-544)))) (((-544) $) NIL (|has| (-862 |#1|) (-1031 (-544))))) (-4137 (($ $) NIL) (($ (-544) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-862 |#1|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-862 |#1|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-862 |#1|))) (|:| |vec| (-1253 (-862 |#1|)))) (-682 $) (-1253 $)) NIL) (((-682 (-862 |#1|)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-862 |#1|) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| (-862 |#1|) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-862 |#1|) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-862 |#1|) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-862 |#1|) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| (-862 |#1|) (-1141)))) (-3588 (((-112) $) NIL (|has| (-862 |#1|) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-862 |#1|) (-844)))) (-3242 (($ $ $) NIL (|has| (-862 |#1|) (-844)))) (-4365 (($ (-1 (-862 |#1|) (-862 |#1|)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-862 |#1|) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-862 |#1|) (-306)))) (-3515 (((-862 |#1|) $) NIL (|has| (-862 |#1|) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-862 |#1|) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-862 |#1|) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-862 |#1|)) (-635 (-862 |#1|))) NIL (|has| (-862 |#1|) (-308 (-862 |#1|)))) (($ $ (-862 |#1|) (-862 |#1|)) NIL (|has| (-862 |#1|) (-308 (-862 |#1|)))) (($ $ (-292 (-862 |#1|))) NIL (|has| (-862 |#1|) (-308 (-862 |#1|)))) (($ $ (-635 (-292 (-862 |#1|)))) NIL (|has| (-862 |#1|) (-308 (-862 |#1|)))) (($ $ (-635 (-1166)) (-635 (-862 |#1|))) NIL (|has| (-862 |#1|) (-512 (-1166) (-862 |#1|)))) (($ $ (-1166) (-862 |#1|)) NIL (|has| (-862 |#1|) (-512 (-1166) (-862 |#1|))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-862 |#1|)) NIL (|has| (-862 |#1|) (-285 (-862 |#1|) (-862 |#1|))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| (-862 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-862 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-1 (-862 |#1|) (-862 |#1|)) (-765)) NIL) (($ $ (-1 (-862 |#1|) (-862 |#1|))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-862 |#1|) $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| (-862 |#1|) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-862 |#1|) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-862 |#1|) (-609 (-533)))) (((-377) $) NIL (|has| (-862 |#1|) (-1013))) (((-224) $) NIL (|has| (-862 |#1|) (-1013)))) (-2994 (((-173 (-406 (-544))) $) NIL)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-862 |#1|) (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL) (($ (-862 |#1|)) NIL) (($ (-1166)) NIL (|has| (-862 |#1|) (-1031 (-1166))))) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-862 |#1|) (-903))) (|has| (-862 |#1|) (-144))))) (-3511 (((-765)) NIL)) (-3516 (((-862 |#1|) $) NIL (|has| (-862 |#1|) (-543)))) (-2212 (((-112) $ $) NIL)) (-4176 (((-406 (-544)) $ (-544)) NIL)) (-3787 (($ $) NIL (|has| (-862 |#1|) (-814)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $) NIL (|has| (-862 |#1|) (-232))) (($ $ (-765)) NIL (|has| (-862 |#1|) (-232))) (($ $ (-1166)) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-862 |#1|) (-893 (-1166)))) (($ $ (-1 (-862 |#1|) (-862 |#1|)) (-765)) NIL) (($ $ (-1 (-862 |#1|) (-862 |#1|))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-862 |#1|) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-862 |#1|) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-862 |#1|) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-862 |#1|) (-844)))) (-4356 (($ $ $) NIL) (($ (-862 |#1|) (-862 |#1|)) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-862 |#1|) $) NIL) (($ $ (-862 |#1|)) NIL))) -(((-864 |#1|) (-13 (-984 (-862 |#1|)) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)))) (-544)) (T -864)) -((-4176 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-864 *4)) (-14 *4 *3) (-5 *3 (-544)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-864 *3)) (-14 *3 (-544)))) (-4137 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-14 *2 (-544)))) (-4137 (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-864 *3)) (-14 *3 *2)))) -(-13 (-984 (-862 |#1|)) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 ((|#2| $) NIL (|has| |#2| (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| |#2| (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (|has| |#2| (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544))))) (-3557 ((|#2| $) NIL) (((-1166) $) NIL (|has| |#2| (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-544)))) (((-544) $) NIL (|has| |#2| (-1031 (-544))))) (-4137 (($ $) 31) (($ (-544) $) 32)) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) 53)) (-3377 (($) NIL (|has| |#2| (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) NIL (|has| |#2| (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| |#2| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| |#2| (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 ((|#2| $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#2| (-1141)))) (-3588 (((-112) $) NIL (|has| |#2| (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 49)) (-3849 (($) NIL (|has| |#2| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| |#2| (-306)))) (-3515 ((|#2| $) NIL (|has| |#2| (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 |#2|) (-635 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-308 |#2|))) (($ $ (-292 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ (-635 (-292 |#2|))) NIL (|has| |#2| (-308 |#2|))) (($ $ (-635 (-1166)) (-635 |#2|)) NIL (|has| |#2| (-512 (-1166) |#2|))) (($ $ (-1166) |#2|) NIL (|has| |#2| (-512 (-1166) |#2|)))) (-1732 (((-765) $) NIL)) (-4206 (($ $ |#2|) NIL (|has| |#2| (-285 |#2| |#2|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) NIL (|has| |#2| (-232))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3378 (($ $) NIL)) (-3380 ((|#2| $) NIL)) (-4377 (((-883 (-544)) $) NIL (|has| |#2| (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| |#2| (-609 (-883 (-377))))) (((-533) $) NIL (|has| |#2| (-609 (-533)))) (((-377) $) NIL (|has| |#2| (-1013))) (((-224) $) NIL (|has| |#2| (-1013)))) (-2994 (((-173 (-406 (-544))) $) 68)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4353 (((-857) $) 86) (($ (-544)) 19) (($ $) NIL) (($ (-406 (-544))) 24) (($ |#2|) 18) (($ (-1166)) NIL (|has| |#2| (-1031 (-1166))))) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-3516 ((|#2| $) NIL (|has| |#2| (-543)))) (-2212 (((-112) $ $) NIL)) (-4176 (((-406 (-544)) $ (-544)) 60)) (-3787 (($ $) NIL (|has| |#2| (-814)))) (-3040 (($) 14 T CONST)) (-3046 (($) 16 T CONST)) (-3051 (($ $) NIL (|has| |#2| (-232))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) 35)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4244 (($ $) 39) (($ $ $) 41)) (-4246 (($ $ $) 37)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) 50)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 42) (($ $ $) 44) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-865 |#1| |#2|) (-13 (-984 |#2|) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)))) (-544) (-863 |#1|)) (T -865)) -((-4176 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-406 (-544))) (-5 *1 (-865 *4 *5)) (-5 *3 (-544)) (-4 *5 (-863 *4)))) (-2994 (*1 *2 *1) (-12 (-14 *3 (-544)) (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-865 *3 *4)) (-4 *4 (-863 *3)))) (-4137 (*1 *1 *1) (-12 (-14 *2 (-544)) (-5 *1 (-865 *2 *3)) (-4 *3 (-863 *2)))) (-4137 (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-14 *3 *2) (-5 *1 (-865 *3 *4)) (-4 *4 (-863 *3))))) -(-13 (-984 |#2|) (-10 -8 (-15 -4176 ((-406 (-544)) $ (-544))) (-15 -2994 ((-173 (-406 (-544))) $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)))) -((-2947 (((-112) $ $) NIL (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))))) (-4202 ((|#2| $) 12)) (-2995 (($ |#1| |#2|) 9)) (-3643 (((-1148) $) NIL (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))))) (-3644 (((-1110) $) NIL (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#1| $) 11)) (-3929 (($ |#1| |#2|) 10)) (-4353 (((-857) $) 18 (-3936 (-12 (|has| |#1| (-608 (-857))) (|has| |#2| (-608 (-857)))) (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091)))))) (-3437 (((-112) $ $) 22 (-12 (|has| |#1| (-1091)) (|has| |#2| (-1091)))))) -(((-866 |#1| |#2|) (-13 (-1204) (-10 -8 (IF (|has| |#1| (-608 (-857))) (IF (|has| |#2| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1091)) (IF (|has| |#2| (-1091)) (-6 (-1091)) |%noBranch|) |%noBranch|) (-15 -2995 ($ |#1| |#2|)) (-15 -3929 ($ |#1| |#2|)) (-15 -4207 (|#1| $)) (-15 -4202 (|#2| $)))) (-1204) (-1204)) (T -866)) -((-2995 (*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1204)) (-4 *3 (-1204)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1204)) (-4 *3 (-1204)))) (-4207 (*1 *2 *1) (-12 (-4 *2 (-1204)) (-5 *1 (-866 *2 *3)) (-4 *3 (-1204)))) (-4202 (*1 *2 *1) (-12 (-4 *2 (-1204)) (-5 *1 (-866 *3 *2)) (-4 *3 (-1204))))) -(-13 (-1204) (-10 -8 (IF (|has| |#1| (-608 (-857))) (IF (|has| |#2| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1091)) (IF (|has| |#2| (-1091)) (-6 (-1091)) |%noBranch|) |%noBranch|) (-15 -2995 ($ |#1| |#2|)) (-15 -3929 ($ |#1| |#2|)) (-15 -4207 (|#1| $)) (-15 -4202 (|#2| $)))) -((-2947 (((-112) $ $) NIL)) (-3340 (((-544) $) 15)) (-2997 (($ (-156)) 11)) (-2996 (($ (-156)) 12)) (-3643 (((-1148) $) NIL)) (-3339 (((-156) $) 13)) (-3644 (((-1110) $) NIL)) (-2999 (($ (-156)) 9)) (-3000 (($ (-156)) 8)) (-4353 (((-857) $) 23) (($ (-156)) 16)) (-2998 (($ (-156)) 10)) (-3437 (((-112) $ $) NIL))) -(((-867) (-13 (-1091) (-10 -8 (-15 -3000 ($ (-156))) (-15 -2999 ($ (-156))) (-15 -2998 ($ (-156))) (-15 -2997 ($ (-156))) (-15 -2996 ($ (-156))) (-15 -3339 ((-156) $)) (-15 -3340 ((-544) $)) (-15 -4353 ($ (-156)))))) (T -867)) -((-3000 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-867)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867))))) -(-13 (-1091) (-10 -8 (-15 -3000 ($ (-156))) (-15 -2999 ($ (-156))) (-15 -2998 ($ (-156))) (-15 -2997 ($ (-156))) (-15 -2996 ($ (-156))) (-15 -3339 ((-156) $)) (-15 -3340 ((-544) $)) (-15 -4353 ($ (-156))))) -((-4353 (((-313 (-544)) (-406 (-939 (-48)))) 23) (((-313 (-544)) (-939 (-48))) 18))) -(((-868) (-10 -7 (-15 -4353 ((-313 (-544)) (-939 (-48)))) (-15 -4353 ((-313 (-544)) (-406 (-939 (-48))))))) (T -868)) -((-4353 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 (-48)))) (-5 *2 (-313 (-544))) (-5 *1 (-868)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-939 (-48))) (-5 *2 (-313 (-544))) (-5 *1 (-868))))) -(-10 -7 (-15 -4353 ((-313 (-544)) (-939 (-48)))) (-15 -4353 ((-313 (-544)) (-406 (-939 (-48)))))) -((-4365 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 14))) -(((-869 |#1| |#2|) (-10 -7 (-15 -4365 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1204) (-1204)) (T -869)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-870 *6)) (-5 *1 (-869 *5 *6))))) -(-10 -7 (-15 -4365 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) -((-3775 (($ |#1| |#1|) 8)) (-3003 ((|#1| $ (-765)) 10))) -(((-870 |#1|) (-10 -8 (-15 -3775 ($ |#1| |#1|)) (-15 -3003 (|#1| $ (-765)))) (-1204)) (T -870)) -((-3003 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-870 *2)) (-4 *2 (-1204)))) (-3775 (*1 *1 *2 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1204))))) -(-10 -8 (-15 -3775 ($ |#1| |#1|)) (-15 -3003 (|#1| $ (-765)))) -((-4365 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 14))) -(((-871 |#1| |#2|) (-10 -7 (-15 -4365 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-1204) (-1204)) (T -871)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6))))) -(-10 -7 (-15 -4365 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) -((-3775 (($ |#1| |#1| |#1|) 8)) (-3003 ((|#1| $ (-765)) 10))) -(((-872 |#1|) (-10 -8 (-15 -3775 ($ |#1| |#1| |#1|)) (-15 -3003 (|#1| $ (-765)))) (-1204)) (T -872)) -((-3003 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-872 *2)) (-4 *2 (-1204)))) (-3775 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1204))))) -(-10 -8 (-15 -3775 ($ |#1| |#1| |#1|)) (-15 -3003 (|#1| $ (-765)))) -((-3001 (((-635 (-1171)) (-1148)) 9))) -(((-873) (-10 -7 (-15 -3001 ((-635 (-1171)) (-1148))))) (T -873)) -((-3001 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-635 (-1171))) (-5 *1 (-873))))) -(-10 -7 (-15 -3001 ((-635 (-1171)) (-1148)))) -((-4365 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 14))) -(((-874 |#1| |#2|) (-10 -7 (-15 -4365 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1204) (-1204)) (T -874)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))) -(-10 -7 (-15 -4365 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) -((-3002 (($ |#1| |#1| |#1|) 8)) (-3003 ((|#1| $ (-765)) 10))) -(((-875 |#1|) (-10 -8 (-15 -3002 ($ |#1| |#1| |#1|)) (-15 -3003 (|#1| $ (-765)))) (-1204)) (T -875)) -((-3003 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-875 *2)) (-4 *2 (-1204)))) (-3002 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1204))))) -(-10 -8 (-15 -3002 ($ |#1| |#1| |#1|)) (-15 -3003 (|#1| $ (-765)))) -((-3007 (((-1143 (-635 (-544))) (-635 (-544)) (-1143 (-635 (-544)))) 30)) (-3006 (((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544))) 26)) (-3008 (((-1143 (-635 (-544))) (-635 (-544))) 39) (((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544))) 38)) (-3009 (((-1143 (-635 (-544))) (-544)) 40)) (-3004 (((-1143 (-635 (-544))) (-544) (-544)) 22) (((-1143 (-635 (-544))) (-544)) 16) (((-1143 (-635 (-544))) (-544) (-544) (-544)) 12)) (-3005 (((-1143 (-635 (-544))) (-1143 (-635 (-544)))) 24)) (-3392 (((-635 (-544)) (-635 (-544))) 23))) -(((-876) (-10 -7 (-15 -3004 ((-1143 (-635 (-544))) (-544) (-544) (-544))) (-15 -3004 ((-1143 (-635 (-544))) (-544))) (-15 -3004 ((-1143 (-635 (-544))) (-544) (-544))) (-15 -3392 ((-635 (-544)) (-635 (-544)))) (-15 -3005 ((-1143 (-635 (-544))) (-1143 (-635 (-544))))) (-15 -3006 ((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544)))) (-15 -3007 ((-1143 (-635 (-544))) (-635 (-544)) (-1143 (-635 (-544))))) (-15 -3008 ((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544)))) (-15 -3008 ((-1143 (-635 (-544))) (-635 (-544)))) (-15 -3009 ((-1143 (-635 (-544))) (-544))))) (T -876)) -((-3009 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))) (-3008 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544))))) (-3008 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544))))) (-3007 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *3 (-635 (-544))) (-5 *1 (-876)))) (-3006 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544))))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-876)))) (-3004 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))) (-3004 (*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))) (-3004 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544))))) -(-10 -7 (-15 -3004 ((-1143 (-635 (-544))) (-544) (-544) (-544))) (-15 -3004 ((-1143 (-635 (-544))) (-544))) (-15 -3004 ((-1143 (-635 (-544))) (-544) (-544))) (-15 -3392 ((-635 (-544)) (-635 (-544)))) (-15 -3005 ((-1143 (-635 (-544))) (-1143 (-635 (-544))))) (-15 -3006 ((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544)))) (-15 -3007 ((-1143 (-635 (-544))) (-635 (-544)) (-1143 (-635 (-544))))) (-15 -3008 ((-1143 (-635 (-544))) (-635 (-544)) (-635 (-544)))) (-15 -3008 ((-1143 (-635 (-544))) (-635 (-544)))) (-15 -3009 ((-1143 (-635 (-544))) (-544)))) -((-4377 (((-883 (-377)) $) 9 (|has| |#1| (-609 (-883 (-377))))) (((-883 (-544)) $) 8 (|has| |#1| (-609 (-883 (-544))))))) -(((-877 |#1|) (-139) (-1204)) (T -877)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-609 (-883 (-544)))) (-6 (-609 (-883 (-544)))) |%noBranch|) (IF (|has| |t#1| (-609 (-883 (-377)))) (-6 (-609 (-883 (-377)))) |%noBranch|))) -(((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544))))) -((-2947 (((-112) $ $) NIL)) (-4021 (($) 14)) (-3012 (($ (-881 |#1| |#2|) (-881 |#1| |#3|)) 27)) (-3010 (((-881 |#1| |#3|) $) 16)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3020 (((-112) $) 22)) (-3019 (($) 19)) (-4353 (((-857) $) 30)) (-3011 (((-881 |#1| |#2|) $) 15)) (-3437 (((-112) $ $) 25))) -(((-878 |#1| |#2| |#3|) (-13 (-1091) (-10 -8 (-15 -3020 ((-112) $)) (-15 -3019 ($)) (-15 -4021 ($)) (-15 -3012 ($ (-881 |#1| |#2|) (-881 |#1| |#3|))) (-15 -3011 ((-881 |#1| |#2|) $)) (-15 -3010 ((-881 |#1| |#3|) $)))) (-1091) (-1091) (-659 |#2|)) (T -878)) -((-3020 (*1 *2 *1) (-12 (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1091)) (-4 *5 (-659 *4)))) (-3019 (*1 *1) (-12 (-4 *3 (-1091)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1091)) (-4 *4 (-659 *3)))) (-4021 (*1 *1) (-12 (-4 *3 (-1091)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1091)) (-4 *4 (-659 *3)))) (-3012 (*1 *1 *2 *3) (-12 (-5 *2 (-881 *4 *5)) (-5 *3 (-881 *4 *6)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-659 *5)) (-5 *1 (-878 *4 *5 *6)))) (-3011 (*1 *2 *1) (-12 (-4 *4 (-1091)) (-5 *2 (-881 *3 *4)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1091)) (-4 *5 (-659 *4)))) (-3010 (*1 *2 *1) (-12 (-4 *4 (-1091)) (-5 *2 (-881 *3 *5)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1091)) (-4 *5 (-659 *4))))) -(-13 (-1091) (-10 -8 (-15 -3020 ((-112) $)) (-15 -3019 ($)) (-15 -4021 ($)) (-15 -3012 ($ (-881 |#1| |#2|) (-881 |#1| |#3|))) (-15 -3011 ((-881 |#1| |#2|) $)) (-15 -3010 ((-881 |#1| |#3|) $)))) -((-2947 (((-112) $ $) 7)) (-3178 (((-881 |#1| $) $ (-883 |#1|) (-881 |#1| $)) 13)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6))) -(((-879 |#1|) (-139) (-1091)) (T -879)) -((-3178 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-881 *4 *1)) (-5 *3 (-883 *4)) (-4 *1 (-879 *4)) (-4 *4 (-1091))))) -(-13 (-1091) (-10 -8 (-15 -3178 ((-881 |t#1| $) $ (-883 |t#1|) (-881 |t#1| $))))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-3013 (((-112) (-635 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-3014 (((-881 |#1| |#2|) |#2| |#3|) 42 (-12 (-3726 (|has| |#2| (-1031 (-1166)))) (-3726 (|has| |#2| (-1042))))) (((-635 (-292 (-939 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1042)) (-3726 (|has| |#2| (-1031 (-1166)))))) (((-635 (-292 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1031 (-1166)))) (((-878 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|) 20))) -(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -3013 ((-112) |#2| |#3|)) (-15 -3013 ((-112) (-635 |#2|) |#3|)) (-15 -3014 ((-878 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|)) (IF (|has| |#2| (-1031 (-1166))) (-15 -3014 ((-635 (-292 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1042)) (-15 -3014 ((-635 (-292 (-939 |#2|))) |#2| |#3|)) (-15 -3014 ((-881 |#1| |#2|) |#2| |#3|))))) (-1091) (-879 |#1|) (-609 (-883 |#1|))) (T -880)) -((-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-5 *2 (-881 *5 *3)) (-5 *1 (-880 *5 *3 *4)) (-3726 (-4 *3 (-1031 (-1166)))) (-3726 (-4 *3 (-1042))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5))))) (-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-5 *2 (-635 (-292 (-939 *3)))) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1042)) (-3726 (-4 *3 (-1031 (-1166)))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5))))) (-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-5 *2 (-635 (-292 *3))) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-1031 (-1166))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5))))) (-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-4 *6 (-879 *5)) (-5 *2 (-878 *5 *6 (-635 *6))) (-5 *1 (-880 *5 *6 *4)) (-5 *3 (-635 *6)) (-4 *4 (-609 (-883 *5))))) (-3013 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-4 *6 (-879 *5)) (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-880 *5 *6 *4)) (-4 *4 (-609 (-883 *5))))) (-3013 (*1 *2 *3 *4) (-12 (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5)))))) -(-10 -7 (-15 -3013 ((-112) |#2| |#3|)) (-15 -3013 ((-112) (-635 |#2|) |#3|)) (-15 -3014 ((-878 |#1| |#2| (-635 |#2|)) (-635 |#2|) |#3|)) (IF (|has| |#2| (-1031 (-1166))) (-15 -3014 ((-635 (-292 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1042)) (-15 -3014 ((-635 (-292 (-939 |#2|))) |#2| |#3|)) (-15 -3014 ((-881 |#1| |#2|) |#2| |#3|))))) -((-2947 (((-112) $ $) NIL)) (-3635 (($ $ $) 39)) (-3041 (((-3 (-112) "failed") $ (-883 |#1|)) 36)) (-4021 (($) 12)) (-3643 (((-1148) $) NIL)) (-3016 (($ (-883 |#1|) |#2| $) 20)) (-3644 (((-1110) $) NIL)) (-3018 (((-3 |#2| "failed") (-883 |#1|) $) 50)) (-3020 (((-112) $) 15)) (-3019 (($) 13)) (-3658 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))) $) 25)) (-3929 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|)))) 23)) (-4353 (((-857) $) 44)) (-3015 (($ (-883 |#1|) |#2| $ |#2|) 48)) (-3017 (($ (-883 |#1|) |#2| $) 47)) (-3437 (((-112) $ $) 41))) -(((-881 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -3020 ((-112) $)) (-15 -3019 ($)) (-15 -4021 ($)) (-15 -3635 ($ $ $)) (-15 -3018 ((-3 |#2| "failed") (-883 |#1|) $)) (-15 -3017 ($ (-883 |#1|) |#2| $)) (-15 -3016 ($ (-883 |#1|) |#2| $)) (-15 -3015 ($ (-883 |#1|) |#2| $ |#2|)) (-15 -3658 ((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))) $)) (-15 -3929 ($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))))) (-15 -3041 ((-3 (-112) "failed") $ (-883 |#1|))))) (-1091) (-1091)) (T -881)) -((-3020 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-3019 (*1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-4021 (*1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3635 (*1 *1 *1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3018 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-4 *2 (-1091)) (-5 *1 (-881 *4 *2)))) (-3017 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091)))) (-3016 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091)))) (-3015 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 *4)))) (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 *4)))) (-4 *4 (-1091)) (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)))) (-3041 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-881 *4 *5)) (-4 *5 (-1091))))) -(-13 (-1091) (-10 -8 (-15 -3020 ((-112) $)) (-15 -3019 ($)) (-15 -4021 ($)) (-15 -3635 ($ $ $)) (-15 -3018 ((-3 |#2| "failed") (-883 |#1|) $)) (-15 -3017 ($ (-883 |#1|) |#2| $)) (-15 -3016 ($ (-883 |#1|) |#2| $)) (-15 -3015 ($ (-883 |#1|) |#2| $ |#2|)) (-15 -3658 ((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))) $)) (-15 -3929 ($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 |#2|))))) (-15 -3041 ((-3 (-112) "failed") $ (-883 |#1|))))) -((-4365 (((-881 |#1| |#3|) (-1 |#3| |#2|) (-881 |#1| |#2|)) 22))) -(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-881 |#1| |#3|) (-1 |#3| |#2|) (-881 |#1| |#2|)))) (-1091) (-1091) (-1091)) (T -882)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-881 *5 *6)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-881 *5 *7)) (-5 *1 (-882 *5 *6 *7))))) -(-10 -7 (-15 -4365 ((-881 |#1| |#3|) (-1 |#3| |#2|) (-881 |#1| |#2|)))) -((-2947 (((-112) $ $) NIL)) (-3028 (($ $ (-635 (-51))) 62)) (-3467 (((-635 $) $) 116)) (-3025 (((-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51))) $) 23)) (-3661 (((-112) $) 29)) (-3026 (($ $ (-635 (-1166)) (-51)) 24)) (-3029 (($ $ (-635 (-51))) 61)) (-3558 (((-3 |#1| #1="failed") $) 59) (((-3 (-1166) #1#) $) 138)) (-3557 ((|#1| $) 56) (((-1166) $) NIL)) (-3023 (($ $) 106)) (-3035 (((-112) $) 44)) (-3030 (((-635 (-51)) $) 42)) (-3027 (($ (-1166) (-112) (-112) (-112)) 63)) (-3021 (((-3 (-635 $) "failed") (-635 $)) 70)) (-3032 (((-112) $) 47)) (-3033 (((-112) $) 46)) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) "failed") $) 33)) (-3038 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-3207 (((-3 (-2 (|:| |val| $) (|:| -2536 $)) "failed") $) 81)) (-3204 (((-3 (-635 $) "failed") $) 32)) (-3039 (((-3 (-635 $) "failed") $ (-113)) 105) (((-3 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 $))) "failed") $) 93)) (-3037 (((-3 (-635 $) "failed") $) 34)) (-3206 (((-3 (-2 (|:| |val| $) (|:| -2536 (-765))) "failed") $) 37)) (-3036 (((-112) $) 28)) (-3644 (((-1110) $) NIL)) (-3024 (((-112) $) 20)) (-3031 (((-112) $) 43)) (-3022 (((-635 (-51)) $) 109)) (-3034 (((-112) $) 45)) (-4206 (($ (-113) (-635 $)) 90)) (-3727 (((-765) $) 27)) (-3804 (($ $) 60)) (-4377 (($ (-635 $)) 57)) (-4360 (((-112) $) 25)) (-4353 (((-857) $) 51) (($ |#1|) 18) (($ (-1166)) 64)) (-3042 (($ $ (-51)) 108)) (-3040 (($) 89 T CONST)) (-3046 (($) 71 T CONST)) (-3437 (((-112) $ $) 77)) (-4356 (($ $ $) 98)) (-4246 (($ $ $) 102)) (** (($ $ (-765)) 97) (($ $ $) 52)) (* (($ $ $) 103))) -(((-883 |#1|) (-13 (-1091) (-1031 |#1|) (-1031 (-1166)) (-10 -8 (-15 0 ($) -4359) (-15 1 ($) -4359) (-15 -3204 ((-3 (-635 $) "failed") $)) (-15 -3205 ((-3 (-635 $) "failed") $)) (-15 -3039 ((-3 (-635 $) "failed") $ (-113))) (-15 -3039 ((-3 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 $))) "failed") $)) (-15 -3206 ((-3 (-2 (|:| |val| $) (|:| -2536 (-765))) "failed") $)) (-15 -3038 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3037 ((-3 (-635 $) "failed") $)) (-15 -3207 ((-3 (-2 (|:| |val| $) (|:| -2536 $)) "failed") $)) (-15 -4206 ($ (-113) (-635 $))) (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ $)) (-15 -4356 ($ $ $)) (-15 -3727 ((-765) $)) (-15 -4377 ($ (-635 $))) (-15 -3804 ($ $)) (-15 -3036 ((-112) $)) (-15 -3035 ((-112) $)) (-15 -3661 ((-112) $)) (-15 -4360 ((-112) $)) (-15 -3034 ((-112) $)) (-15 -3033 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3031 ((-112) $)) (-15 -3030 ((-635 (-51)) $)) (-15 -3029 ($ $ (-635 (-51)))) (-15 -3028 ($ $ (-635 (-51)))) (-15 -3027 ($ (-1166) (-112) (-112) (-112))) (-15 -3026 ($ $ (-635 (-1166)) (-51))) (-15 -3025 ((-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51))) $)) (-15 -3024 ((-112) $)) (-15 -3023 ($ $)) (-15 -3042 ($ $ (-51))) (-15 -3022 ((-635 (-51)) $)) (-15 -3467 ((-635 $) $)) (-15 -3021 ((-3 (-635 $) "failed") (-635 $))))) (-1091)) (T -883)) -((-3040 (*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3046 (*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3204 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3205 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3039 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-635 (-883 *4))) (-5 *1 (-883 *4)) (-4 *4 (-1091)))) (-3039 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 (-883 *3))))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3206 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-883 *3)) (|:| -2536 (-765)))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3038 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-883 *3)) (|:| |den| (-883 *3)))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3037 (*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3207 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-883 *3)) (|:| -2536 (-883 *3)))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 (-883 *4))) (-5 *1 (-883 *4)) (-4 *4 (-1091)))) (-4246 (*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-4356 (*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3027 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-112)) (-5 *1 (-883 *4)) (-4 *4 (-1091)))) (-3026 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-51)) (-5 *1 (-883 *4)) (-4 *4 (-1091)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51)))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) (-3021 (*1 *2 *2) (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(-13 (-1091) (-1031 |#1|) (-1031 (-1166)) (-10 -8 (-15 (-3040) ($) -4359) (-15 (-3046) ($) -4359) (-15 -3204 ((-3 (-635 $) "failed") $)) (-15 -3205 ((-3 (-635 $) "failed") $)) (-15 -3039 ((-3 (-635 $) "failed") $ (-113))) (-15 -3039 ((-3 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 $))) "failed") $)) (-15 -3206 ((-3 (-2 (|:| |val| $) (|:| -2536 (-765))) "failed") $)) (-15 -3038 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3037 ((-3 (-635 $) "failed") $)) (-15 -3207 ((-3 (-2 (|:| |val| $) (|:| -2536 $)) "failed") $)) (-15 -4206 ($ (-113) (-635 $))) (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765))) (-15 ** ($ $ $)) (-15 -4356 ($ $ $)) (-15 -3727 ((-765) $)) (-15 -4377 ($ (-635 $))) (-15 -3804 ($ $)) (-15 -3036 ((-112) $)) (-15 -3035 ((-112) $)) (-15 -3661 ((-112) $)) (-15 -4360 ((-112) $)) (-15 -3034 ((-112) $)) (-15 -3033 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3031 ((-112) $)) (-15 -3030 ((-635 (-51)) $)) (-15 -3029 ($ $ (-635 (-51)))) (-15 -3028 ($ $ (-635 (-51)))) (-15 -3027 ($ (-1166) (-112) (-112) (-112))) (-15 -3026 ($ $ (-635 (-1166)) (-51))) (-15 -3025 ((-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51))) $)) (-15 -3024 ((-112) $)) (-15 -3023 ($ $)) (-15 -3042 ($ $ (-51))) (-15 -3022 ((-635 (-51)) $)) (-15 -3467 ((-635 $) $)) (-15 -3021 ((-3 (-635 $) "failed") (-635 $))))) -((-3610 (((-883 |#1|) (-883 |#1|) (-635 (-1166)) (-1 (-112) (-635 |#2|))) 32) (((-883 |#1|) (-883 |#1|) (-635 (-1 (-112) |#2|))) 43) (((-883 |#1|) (-883 |#1|) (-1 (-112) |#2|)) 35)) (-3041 (((-112) (-635 |#2|) (-883 |#1|)) 40) (((-112) |#2| (-883 |#1|)) 36)) (-3930 (((-1 (-112) |#2|) (-883 |#1|)) 16)) (-3043 (((-635 |#2|) (-883 |#1|)) 24)) (-3042 (((-883 |#1|) (-883 |#1|) |#2|) 20))) -(((-884 |#1| |#2|) (-10 -7 (-15 -3610 ((-883 |#1|) (-883 |#1|) (-1 (-112) |#2|))) (-15 -3610 ((-883 |#1|) (-883 |#1|) (-635 (-1 (-112) |#2|)))) (-15 -3610 ((-883 |#1|) (-883 |#1|) (-635 (-1166)) (-1 (-112) (-635 |#2|)))) (-15 -3930 ((-1 (-112) |#2|) (-883 |#1|))) (-15 -3041 ((-112) |#2| (-883 |#1|))) (-15 -3041 ((-112) (-635 |#2|) (-883 |#1|))) (-15 -3042 ((-883 |#1|) (-883 |#1|) |#2|)) (-15 -3043 ((-635 |#2|) (-883 |#1|)))) (-1091) (-1204)) (T -884)) -((-3043 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-635 *5)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1204)))) (-3042 (*1 *2 *2 *3) (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1204)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *2 (-112)) (-5 *1 (-884 *5 *6)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3)) (-4 *3 (-1204)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1204)))) (-3610 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-883 *5)) (-5 *3 (-635 (-1166))) (-5 *4 (-1 (-112) (-635 *6))) (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *1 (-884 *5 *6)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *2 (-883 *4)) (-5 *3 (-635 (-1 (-112) *5))) (-4 *4 (-1091)) (-4 *5 (-1204)) (-5 *1 (-884 *4 *5)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *2 (-883 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1091)) (-4 *5 (-1204)) (-5 *1 (-884 *4 *5))))) -(-10 -7 (-15 -3610 ((-883 |#1|) (-883 |#1|) (-1 (-112) |#2|))) (-15 -3610 ((-883 |#1|) (-883 |#1|) (-635 (-1 (-112) |#2|)))) (-15 -3610 ((-883 |#1|) (-883 |#1|) (-635 (-1166)) (-1 (-112) (-635 |#2|)))) (-15 -3930 ((-1 (-112) |#2|) (-883 |#1|))) (-15 -3041 ((-112) |#2| (-883 |#1|))) (-15 -3041 ((-112) (-635 |#2|) (-883 |#1|))) (-15 -3042 ((-883 |#1|) (-883 |#1|) |#2|)) (-15 -3043 ((-635 |#2|) (-883 |#1|)))) -((-4365 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 19))) -(((-885 |#1| |#2|) (-10 -7 (-15 -4365 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1091) (-1091)) (T -885)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-883 *6)) (-5 *1 (-885 *5 *6))))) -(-10 -7 (-15 -4365 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) -((-2947 (((-112) $ $) NIL)) (-4341 (((-635 |#1|) $) 16)) (-3044 (((-112) $) 38)) (-3558 (((-3 (-665 |#1|) "failed") $) 43)) (-3557 (((-665 |#1|) $) 41)) (-4205 (($ $) 18)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-4240 (((-765) $) 46)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-665 |#1|) $) 17)) (-4353 (((-857) $) 37) (($ (-665 |#1|)) 21) (((-813 |#1|) $) 27) (($ |#1|) 20)) (-3046 (($) 8 T CONST)) (-3045 (((-635 (-665 |#1|)) $) 23)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 11)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 49))) -(((-886 |#1|) (-13 (-844) (-1031 (-665 |#1|)) (-10 -8 (-15 1 ($) -4359) (-15 -4353 ((-813 |#1|) $)) (-15 -4353 ($ |#1|)) (-15 -4207 ((-665 |#1|) $)) (-15 -4240 ((-765) $)) (-15 -3045 ((-635 (-665 |#1|)) $)) (-15 -4205 ($ $)) (-15 -3044 ((-112) $)) (-15 -4341 ((-635 |#1|) $)))) (-844)) (T -886)) -((-3046 (*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4353 (*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-635 (-665 *3))) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4205 (*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844))))) -(-13 (-844) (-1031 (-665 |#1|)) (-10 -8 (-15 (-3046) ($) -4359) (-15 -4353 ((-813 |#1|) $)) (-15 -4353 ($ |#1|)) (-15 -4207 ((-665 |#1|) $)) (-15 -4240 ((-765) $)) (-15 -3045 ((-635 (-665 |#1|)) $)) (-15 -4205 ($ $)) (-15 -3044 ((-112) $)) (-15 -4341 ((-635 |#1|) $)))) -((-3873 ((|#1| |#1| |#1|) 19))) -(((-887 |#1| |#2|) (-10 -7 (-15 -3873 (|#1| |#1| |#1|))) (-1229 |#2|) (-1042)) (T -887)) -((-3873 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-887 *2 *3)) (-4 *2 (-1229 *3))))) -(-10 -7 (-15 -3873 (|#1| |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3050 (((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 14)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3047 (((-1028) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 13)) (-3437 (((-112) $ $) 6))) -(((-888) (-139)) (T -888)) -((-3050 (*1 *2 *3 *4) (-12 (-4 *1 (-888)) (-5 *3 (-1054)) (-5 *4 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) (-3047 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *3 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *2 (-1028))))) -(-13 (-1091) (-10 -7 (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| |explanations| (-1148))) (-1054) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3047 ((-1028) (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-3049 ((|#1| |#1| (-765)) 24)) (-3048 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3839 (((-3 (-2 (|:| -3523 |#1|) (|:| -3522 |#1|)) "failed") |#1| (-765) (-765)) 27) (((-635 |#1|) |#1|) 29))) -(((-889 |#1| |#2|) (-10 -7 (-15 -3839 ((-635 |#1|) |#1|)) (-15 -3839 ((-3 (-2 (|:| -3523 |#1|) (|:| -3522 |#1|)) "failed") |#1| (-765) (-765))) (-15 -3048 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3049 (|#1| |#1| (-765)))) (-1229 |#2|) (-362)) (T -889)) -((-3049 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-5 *1 (-889 *2 *4)) (-4 *2 (-1229 *4)))) (-3048 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1229 *3)))) (-3839 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -3523 *3) (|:| -3522 *3))) (-5 *1 (-889 *3 *5)) (-4 *3 (-1229 *5)))) (-3839 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -3839 ((-635 |#1|) |#1|)) (-15 -3839 ((-3 (-2 (|:| -3523 |#1|) (|:| -3522 |#1|)) "failed") |#1| (-765) (-765))) (-15 -3048 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3049 (|#1| |#1| (-765)))) -((-3980 (((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148)) 96) (((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148) (-224)) 91) (((-1028) (-891) (-1054)) 83) (((-1028) (-891)) 84)) (-3050 (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891) (-1054)) 59) (((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891)) 61))) -(((-890) (-10 -7 (-15 -3980 ((-1028) (-891))) (-15 -3980 ((-1028) (-891) (-1054))) (-15 -3980 ((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148) (-224))) (-15 -3980 ((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891) (-1054))))) (T -890)) -((-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-890)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148))))) (-5 *1 (-890)))) (-3980 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-765)) (-5 *6 (-635 (-635 (-313 *3)))) (-5 *7 (-1148)) (-5 *5 (-635 (-313 (-377)))) (-5 *3 (-377)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-3980 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-765)) (-5 *6 (-635 (-635 (-313 *3)))) (-5 *7 (-1148)) (-5 *8 (-224)) (-5 *5 (-635 (-313 (-377)))) (-5 *3 (-377)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-890)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-1028)) (-5 *1 (-890))))) -(-10 -7 (-15 -3980 ((-1028) (-891))) (-15 -3980 ((-1028) (-891) (-1054))) (-15 -3980 ((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148) (-224))) (-15 -3980 ((-1028) (-377) (-377) (-377) (-377) (-765) (-765) (-635 (-313 (-377))) (-635 (-635 (-313 (-377)))) (-1148))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891))) (-15 -3050 ((-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) (|:| |explanations| (-635 (-1148)))) (-891) (-1054)))) -((-2947 (((-112) $ $) NIL)) (-3557 (((-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $) 19)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 21) (($ (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) 18)) (-3437 (((-112) $ $) NIL))) -(((-891) (-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3557 ((-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $))))) (T -891)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *1 (-891)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224)))) (-5 *1 (-891))))) -(-13 (-1091) (-10 -8 (-15 -4353 ($ (-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))))) (-15 -3557 ((-2 (|:| |pde| (-635 (-313 (-224)))) (|:| |constraints| (-635 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) (|:| |dFinish| (-682 (-224)))))) (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) (|:| |tol| (-224))) $)))) -((-4217 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) 10) (($ $ |#2| (-765)) 12) (($ $ (-635 |#2|) (-635 (-765))) 15)) (-3051 (($ $ |#2|) 16) (($ $ (-635 |#2|)) 18) (($ $ |#2| (-765)) 19) (($ $ (-635 |#2|) (-635 (-765))) 21))) -(((-892 |#1| |#2|) (-10 -8 (-15 -3051 (|#1| |#1| (-635 |#2|) (-635 (-765)))) (-15 -3051 (|#1| |#1| |#2| (-765))) (-15 -3051 (|#1| |#1| (-635 |#2|))) (-15 -3051 (|#1| |#1| |#2|)) (-15 -4217 (|#1| |#1| (-635 |#2|) (-635 (-765)))) (-15 -4217 (|#1| |#1| |#2| (-765))) (-15 -4217 (|#1| |#1| (-635 |#2|))) (-15 -4217 (|#1| |#1| |#2|))) (-893 |#2|) (-1091)) (T -892)) -NIL -(-10 -8 (-15 -3051 (|#1| |#1| (-635 |#2|) (-635 (-765)))) (-15 -3051 (|#1| |#1| |#2| (-765))) (-15 -3051 (|#1| |#1| (-635 |#2|))) (-15 -3051 (|#1| |#1| |#2|)) (-15 -4217 (|#1| |#1| (-635 |#2|) (-635 (-765)))) (-15 -4217 (|#1| |#1| |#2| (-765))) (-15 -4217 (|#1| |#1| (-635 |#2|))) (-15 -4217 (|#1| |#1| |#2|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4217 (($ $ |#1|) 42) (($ $ (-635 |#1|)) 41) (($ $ |#1| (-765)) 40) (($ $ (-635 |#1|) (-635 (-765))) 39)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ |#1|) 38) (($ $ (-635 |#1|)) 37) (($ $ |#1| (-765)) 36) (($ $ (-635 |#1|) (-635 (-765))) 35)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-893 |#1|) (-139) (-1091)) (T -893)) -((-4217 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1091)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1091)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1091)))) (-4217 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-765))) (-4 *1 (-893 *4)) (-4 *4 (-1091)))) (-3051 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1091)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1091)))) (-3051 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1091)))) (-3051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-765))) (-4 *1 (-893 *4)) (-4 *4 (-1091))))) -(-13 (-1042) (-10 -8 (-15 -4217 ($ $ |t#1|)) (-15 -4217 ($ $ (-635 |t#1|))) (-15 -4217 ($ $ |t#1| (-765))) (-15 -4217 ($ $ (-635 |t#1|) (-635 (-765)))) (-15 -3051 ($ $ |t#1|)) (-15 -3051 ($ $ (-635 |t#1|))) (-15 -3051 ($ $ |t#1| (-765))) (-15 -3051 ($ $ (-635 |t#1|) (-635 (-765)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 26)) (-1293 (((-112) $ (-765)) NIL)) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-1375 (($ $ $) NIL (|has| $ (-6 -4401)))) (-1376 (($ $ $) NIL (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) (($ $ #2="left" $) NIL (|has| $ (-6 -4401))) (($ $ #3="right" $) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3522 (($ $) 25)) (-3052 (($ |#1|) 12) (($ $ $) 17)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3523 (($ $) 23)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) 20)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1191 |#1|) $) 9) (((-857) $) 29 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 21 (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-894 |#1|) (-13 (-119 |#1|) (-608 (-1191 |#1|)) (-10 -8 (-15 -3052 ($ |#1|)) (-15 -3052 ($ $ $)))) (-1091)) (T -894)) -((-3052 (*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1091)))) (-3052 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1091))))) -(-13 (-119 |#1|) (-608 (-1191 |#1|)) (-10 -8 (-15 -3052 ($ |#1|)) (-15 -3052 ($ $ $)))) -((-2947 (((-112) $ $) NIL)) (-3292 (((-635 $) (-635 $)) 77)) (-4030 (((-544) $) 60)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-4178 (((-765) $) 58)) (-3072 (((-1087 |#1|) $ |#1|) 49)) (-2545 (((-112) $) NIL)) (-3055 (((-112) $) 63)) (-3057 (((-765) $) 61)) (-3068 (((-1087 |#1|) $) 42)) (-2913 (($ $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3242 (($ $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3061 (((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $) 37)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 93)) (-3644 (((-1110) $) NIL)) (-3054 (((-1087 |#1|) $) 100 (|has| |#1| (-367)))) (-3056 (((-112) $) 59)) (-4174 ((|#1| $ |#1|) 47)) (-4206 ((|#1| $ |#1|) 94)) (-4355 (((-765) $) 44)) (-3063 (($ (-635 (-635 |#1|))) 85)) (-3058 (((-964) $) 53)) (-3064 (($ (-635 |#1|)) 22)) (-3392 (($ $ $) NIL)) (-2729 (($ $ $) NIL)) (-3060 (($ (-635 (-635 |#1|))) 39)) (-3059 (($ (-635 (-635 |#1|))) 88)) (-3053 (($ (-635 |#1|)) 96)) (-4353 (((-857) $) 84) (($ (-635 (-635 |#1|))) 66) (($ (-635 |#1|)) 67)) (-3046 (($) 17 T CONST)) (-2945 (((-112) $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3437 (((-112) $ $) 45)) (-3066 (((-112) $ $) NIL (-3936 (|has| |#1| (-367)) (|has| |#1| (-844))))) (-3067 (((-112) $ $) 65)) (-4356 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ $ $) 23))) -(((-895 |#1|) (-13 (-897 |#1|) (-10 -8 (-15 -3061 ((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $)) (-15 -3060 ($ (-635 (-635 |#1|)))) (-15 -4353 ($ (-635 (-635 |#1|)))) (-15 -4353 ($ (-635 |#1|))) (-15 -3059 ($ (-635 (-635 |#1|)))) (-15 -4355 ((-765) $)) (-15 -3068 ((-1087 |#1|) $)) (-15 -3058 ((-964) $)) (-15 -4178 ((-765) $)) (-15 -3057 ((-765) $)) (-15 -4030 ((-544) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3292 ((-635 $) (-635 $))) (IF (|has| |#1| (-367)) (-15 -3054 ((-1087 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -3053 ($ (-635 |#1|))) (IF (|has| |#1| (-367)) (-15 -3053 ($ (-635 |#1|))) |%noBranch|)))) (-1091)) (T -895)) -((-3061 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-635 *3)) (|:| |image| (-635 *3)))) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) (-3059 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3292 (*1 *2 *2) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-895 *3)) (-4 *3 (-367)) (-4 *3 (-1091)))) (-3053 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-895 *3))))) -(-13 (-897 |#1|) (-10 -8 (-15 -3061 ((-2 (|:| |preimage| (-635 |#1|)) (|:| |image| (-635 |#1|))) $)) (-15 -3060 ($ (-635 (-635 |#1|)))) (-15 -4353 ($ (-635 (-635 |#1|)))) (-15 -4353 ($ (-635 |#1|))) (-15 -3059 ($ (-635 (-635 |#1|)))) (-15 -4355 ((-765) $)) (-15 -3068 ((-1087 |#1|) $)) (-15 -3058 ((-964) $)) (-15 -4178 ((-765) $)) (-15 -3057 ((-765) $)) (-15 -4030 ((-544) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3292 ((-635 $) (-635 $))) (IF (|has| |#1| (-367)) (-15 -3054 ((-1087 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -3053 ($ (-635 |#1|))) (IF (|has| |#1| (-367)) (-15 -3053 ($ (-635 |#1|))) |%noBranch|)))) -((-3062 ((|#2| (-1132 |#1| |#2|)) 41))) -(((-896 |#1| |#2|) (-10 -7 (-15 -3062 (|#2| (-1132 |#1| |#2|)))) (-912) (-13 (-1042) (-10 -7 (-6 (-4402 "*"))))) (T -896)) -((-3062 (*1 *2 *3) (-12 (-5 *3 (-1132 *4 *2)) (-14 *4 (-912)) (-4 *2 (-13 (-1042) (-10 -7 (-6 (-4402 "*"))))) (-5 *1 (-896 *4 *2))))) -(-10 -7 (-15 -3062 (|#2| (-1132 |#1| |#2|)))) -((-2947 (((-112) $ $) 7)) (-4131 (($) 18 T CONST)) (-3866 (((-3 $ "failed") $) 15)) (-3072 (((-1087 |#1|) $ |#1|) 32)) (-2545 (((-112) $) 17)) (-2913 (($ $ $) 30 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-3242 (($ $ $) 29 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 24)) (-3644 (((-1110) $) 10)) (-4174 ((|#1| $ |#1|) 34)) (-4206 ((|#1| $ |#1|) 33)) (-3063 (($ (-635 (-635 |#1|))) 35)) (-3064 (($ (-635 |#1|)) 36)) (-3392 (($ $ $) 21)) (-2729 (($ $ $) 20)) (-4353 (((-857) $) 11)) (-3046 (($) 19 T CONST)) (-2945 (((-112) $ $) 27 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-2946 (((-112) $ $) 26 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 28 (-3936 (|has| |#1| (-844)) (|has| |#1| (-367))))) (-3067 (((-112) $ $) 31)) (-4356 (($ $ $) 23)) (** (($ $ (-912)) 13) (($ $ (-765)) 16) (($ $ (-544)) 22)) (* (($ $ $) 14))) -(((-897 |#1|) (-139) (-1091)) (T -897)) -((-3064 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-897 *3)))) (-3063 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-4 *1 (-897 *3)))) (-4174 (*1 *2 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1091)))) (-4206 (*1 *2 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1091)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *1 (-897 *3)) (-4 *3 (-1091)) (-5 *2 (-1087 *3)))) (-3067 (*1 *2 *1 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-1091)) (-5 *2 (-112))))) -(-13 (-471) (-10 -8 (-15 -3064 ($ (-635 |t#1|))) (-15 -3063 ($ (-635 (-635 |t#1|)))) (-15 -4174 (|t#1| $ |t#1|)) (-15 -4206 (|t#1| $ |t#1|)) (-15 -3072 ((-1087 |t#1|) $ |t#1|)) (-15 -3067 ((-112) $ $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-844)) |%noBranch|))) -(((-102) . T) ((-608 (-857)) . T) ((-471) . T) ((-720) . T) ((-844) -3936 (|has| |#1| (-844)) (|has| |#1| (-367))) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3074 (((-635 (-635 (-765))) $) 107)) (-3070 (((-635 (-765)) (-895 |#1|) $) 129)) (-3069 (((-635 (-765)) (-895 |#1|) $) 130)) (-3075 (((-635 (-895 |#1|)) $) 97)) (-3377 (((-895 |#1|) $ (-544)) 102) (((-895 |#1|) $) 103)) (-3073 (($ (-635 (-895 |#1|))) 109)) (-4178 (((-765) $) 104)) (-3071 (((-1087 (-1087 |#1|)) $) 127)) (-3072 (((-1087 |#1|) $ |#1|) 120) (((-1087 (-1087 |#1|)) $ (-1087 |#1|)) 138) (((-1087 (-635 |#1|)) $ (-635 |#1|)) 141)) (-3068 (((-1087 |#1|) $) 100)) (-3646 (((-112) (-895 |#1|) $) 91)) (-3643 (((-1148) $) NIL)) (-3065 (((-1259) $) 94) (((-1259) $ (-544) (-544)) 142)) (-3644 (((-1110) $) NIL)) (-3077 (((-635 (-895 |#1|)) $) 95)) (-4206 (((-895 |#1|) $ (-765)) 98)) (-4355 (((-765) $) 105)) (-4353 (((-857) $) 118) (((-635 (-895 |#1|)) $) 23) (($ (-635 (-895 |#1|))) 108)) (-3076 (((-635 |#1|) $) 106)) (-3437 (((-112) $ $) 135)) (-3066 (((-112) $ $) 133)) (-3067 (((-112) $ $) 132))) -(((-898 |#1|) (-13 (-1091) (-10 -8 (-15 -4353 ((-635 (-895 |#1|)) $)) (-15 -3077 ((-635 (-895 |#1|)) $)) (-15 -4206 ((-895 |#1|) $ (-765))) (-15 -3377 ((-895 |#1|) $ (-544))) (-15 -3377 ((-895 |#1|) $)) (-15 -4178 ((-765) $)) (-15 -4355 ((-765) $)) (-15 -3076 ((-635 |#1|) $)) (-15 -3075 ((-635 (-895 |#1|)) $)) (-15 -3074 ((-635 (-635 (-765))) $)) (-15 -4353 ($ (-635 (-895 |#1|)))) (-15 -3073 ($ (-635 (-895 |#1|)))) (-15 -3072 ((-1087 |#1|) $ |#1|)) (-15 -3071 ((-1087 (-1087 |#1|)) $)) (-15 -3072 ((-1087 (-1087 |#1|)) $ (-1087 |#1|))) (-15 -3072 ((-1087 (-635 |#1|)) $ (-635 |#1|))) (-15 -3646 ((-112) (-895 |#1|) $)) (-15 -3070 ((-635 (-765)) (-895 |#1|) $)) (-15 -3069 ((-635 (-765)) (-895 |#1|) $)) (-15 -3068 ((-1087 |#1|) $)) (-15 -3067 ((-112) $ $)) (-15 -3066 ((-112) $ $)) (-15 -3065 ((-1259) $)) (-15 -3065 ((-1259) $ (-544) (-544))))) (-1091)) (T -898)) -((-4353 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-895 *4)) (-5 *1 (-898 *4)) (-4 *4 (-1091)))) (-3377 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-895 *4)) (-5 *1 (-898 *4)) (-4 *4 (-1091)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-765)))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1091)) (-5 *1 (-898 *3)))) (-3073 (*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1091)) (-5 *1 (-898 *3)))) (-3072 (*1 *2 *1 *3) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1087 (-1087 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *4 (-1091)) (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-898 *4)) (-5 *3 (-1087 *4)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *4 (-1091)) (-5 *2 (-1087 (-635 *4))) (-5 *1 (-898 *4)) (-5 *3 (-635 *4)))) (-3646 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-898 *4)))) (-3070 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-635 (-765))) (-5 *1 (-898 *4)))) (-3069 (*1 *2 *3 *1) (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-635 (-765))) (-5 *1 (-898 *4)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3067 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3066 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) (-3065 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-898 *4)) (-4 *4 (-1091))))) -(-13 (-1091) (-10 -8 (-15 -4353 ((-635 (-895 |#1|)) $)) (-15 -3077 ((-635 (-895 |#1|)) $)) (-15 -4206 ((-895 |#1|) $ (-765))) (-15 -3377 ((-895 |#1|) $ (-544))) (-15 -3377 ((-895 |#1|) $)) (-15 -4178 ((-765) $)) (-15 -4355 ((-765) $)) (-15 -3076 ((-635 |#1|) $)) (-15 -3075 ((-635 (-895 |#1|)) $)) (-15 -3074 ((-635 (-635 (-765))) $)) (-15 -4353 ($ (-635 (-895 |#1|)))) (-15 -3073 ($ (-635 (-895 |#1|)))) (-15 -3072 ((-1087 |#1|) $ |#1|)) (-15 -3071 ((-1087 (-1087 |#1|)) $)) (-15 -3072 ((-1087 (-1087 |#1|)) $ (-1087 |#1|))) (-15 -3072 ((-1087 (-635 |#1|)) $ (-635 |#1|))) (-15 -3646 ((-112) (-895 |#1|) $)) (-15 -3070 ((-635 (-765)) (-895 |#1|) $)) (-15 -3069 ((-635 (-765)) (-895 |#1|) $)) (-15 -3068 ((-1087 |#1|) $)) (-15 -3067 ((-112) $ $)) (-15 -3066 ((-112) $ $)) (-15 -3065 ((-1259) $)) (-15 -3065 ((-1259) $ (-544) (-544))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-4339 (((-112) $) NIL)) (-4336 (((-765)) NIL)) (-3734 (($ $ (-912)) NIL (|has| $ (-367))) (($ $) NIL)) (-1819 (((-1177 (-912) (-765)) (-544)) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 $ "failed") $) NIL)) (-3557 (($ $) NIL)) (-1939 (($ (-1253 $)) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-3215 (($) NIL)) (-1824 (((-112) $) NIL)) (-1914 (($ $) NIL) (($ $ (-765)) NIL)) (-4130 (((-112) $) NIL)) (-4178 (((-826 (-912)) $) NIL) (((-912) $) NIL)) (-2545 (((-112) $) NIL)) (-2163 (($) NIL (|has| $ (-367)))) (-2161 (((-112) $) NIL (|has| $ (-367)))) (-3517 (($ $ (-912)) NIL (|has| $ (-367))) (($ $) NIL)) (-3848 (((-3 $ "failed") $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2164 (((-1160 $) $ (-912)) NIL (|has| $ (-367))) (((-1160 $) $) NIL)) (-2160 (((-912) $) NIL)) (-1752 (((-1160 $) $) NIL (|has| $ (-367)))) (-1751 (((-3 (-1160 $) "failed") $ $) NIL (|has| $ (-367))) (((-1160 $) $) NIL (|has| $ (-367)))) (-1753 (($ $ (-1160 $)) NIL (|has| $ (-367)))) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL T CONST)) (-2535 (($ (-912)) NIL)) (-4338 (((-112) $) NIL)) (-3644 (((-1110) $) NIL)) (-2544 (($) NIL (|has| $ (-367)))) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL)) (-4139 (((-404 $) $) NIL)) (-4337 (((-912)) NIL) (((-826 (-912))) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-1915 (((-3 (-765) "failed") $ $) NIL) (((-765) $) NIL)) (-4318 (((-133)) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-4355 (((-912) $) NIL) (((-826 (-912)) $) NIL)) (-3586 (((-1160 $)) NIL)) (-1818 (($) NIL)) (-1754 (($) NIL (|has| $ (-367)))) (-3625 (((-682 $) (-1253 $)) NIL) (((-1253 $) $) NIL)) (-4377 (((-544) $) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3511 (((-765)) NIL)) (-2162 (((-1253 $) (-912)) NIL) (((-1253 $)) NIL)) (-2212 (((-112) $ $) NIL)) (-4340 (((-112) $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-4335 (($ $ (-765)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL))) -(((-899 |#1|) (-13 (-349) (-328 $) (-609 (-544))) (-912)) (T -899)) -NIL -(-13 (-349) (-328 $) (-609 (-544))) -((-3079 (((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|)) 127)) (-3082 ((|#1|) 76)) (-3081 (((-404 (-1160 |#4|)) (-1160 |#4|)) 136)) (-3083 (((-404 (-1160 |#4|)) (-635 |#3|) (-1160 |#4|)) 68)) (-3080 (((-404 (-1160 |#4|)) (-1160 |#4|)) 146)) (-3078 (((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|) |#3|) 91))) -(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3079 ((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|))) (-15 -3080 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -3081 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -3082 (|#1|)) (-15 -3078 ((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|) |#3|)) (-15 -3083 ((-404 (-1160 |#4|)) (-635 |#3|) (-1160 |#4|)))) (-903) (-787) (-844) (-943 |#1| |#2| |#3|)) (T -900)) -((-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *7)) (-4 *7 (-844)) (-4 *5 (-903)) (-4 *6 (-787)) (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-404 (-1160 *8))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-1160 *8)))) (-3078 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-635 (-1160 *7))) (-5 *3 (-1160 *7)) (-4 *7 (-943 *5 *6 *4)) (-4 *5 (-903)) (-4 *6 (-787)) (-4 *4 (-844)) (-5 *1 (-900 *5 *6 *4 *7)))) (-3082 (*1 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-903)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-943 *2 *3 *4)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) (-3079 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *7))) (-5 *3 (-1160 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-900 *4 *5 *6 *7))))) -(-10 -7 (-15 -3079 ((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|))) (-15 -3080 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -3081 ((-404 (-1160 |#4|)) (-1160 |#4|))) (-15 -3082 (|#1|)) (-15 -3078 ((-3 (-635 (-1160 |#4|)) "failed") (-635 (-1160 |#4|)) (-1160 |#4|) |#3|)) (-15 -3083 ((-404 (-1160 |#4|)) (-635 |#3|) (-1160 |#4|)))) -((-3079 (((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|)) 36)) (-3082 ((|#1|) 53)) (-3081 (((-404 (-1160 |#2|)) (-1160 |#2|)) 101)) (-3083 (((-404 (-1160 |#2|)) (-1160 |#2|)) 89)) (-3080 (((-404 (-1160 |#2|)) (-1160 |#2|)) 112))) -(((-901 |#1| |#2|) (-10 -7 (-15 -3079 ((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|))) (-15 -3080 ((-404 (-1160 |#2|)) (-1160 |#2|))) (-15 -3081 ((-404 (-1160 |#2|)) (-1160 |#2|))) (-15 -3082 (|#1|)) (-15 -3083 ((-404 (-1160 |#2|)) (-1160 |#2|)))) (-903) (-1229 |#1|)) (T -901)) -((-3083 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5))) (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5)))) (-3082 (*1 *2) (-12 (-4 *2 (-903)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1229 *2)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5))) (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5))) (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5)))) (-3079 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *5))) (-5 *3 (-1160 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-903)) (-5 *1 (-901 *4 *5))))) -(-10 -7 (-15 -3079 ((-3 (-635 (-1160 |#2|)) "failed") (-635 (-1160 |#2|)) (-1160 |#2|))) (-15 -3080 ((-404 (-1160 |#2|)) (-1160 |#2|))) (-15 -3081 ((-404 (-1160 |#2|)) (-1160 |#2|))) (-15 -3082 (|#1|)) (-15 -3083 ((-404 (-1160 |#2|)) (-1160 |#2|)))) -((-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 41)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 18)) (-3084 (((-3 $ "failed") $) 35))) -(((-902 |#1|) (-10 -8 (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)))) (-903)) (T -902)) -NIL -(-10 -8 (-15 -3084 ((-3 |#1| "failed") |#1|)) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 61)) (-4181 (($ $) 52)) (-4376 (((-404 $) $) 53)) (-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 58)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-4130 (((-112) $) 54)) (-2545 (((-112) $) 31)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3087 (((-404 (-1160 $)) (-1160 $)) 59)) (-3088 (((-404 (-1160 $)) (-1160 $)) 60)) (-4139 (((-404 $) $) 51)) (-3865 (((-3 $ "failed") $ $) 43)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) 57 (|has| $ (-144)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3084 (((-3 $ "failed") $) 56 (|has| $ (-144)))) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-903) (-139)) (T -903)) -((-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-903)))) (-3089 (*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1)))) (-3088 (*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1)))) (-3087 (*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1)))) (-3086 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 (-1160 *1))) (-5 *3 (-1160 *1)) (-4 *1 (-903)))) (-3085 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-144)) (-4 *1 (-903)) (-5 *2 (-1253 *1)))) (-3084 (*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-903))))) -(-13 (-1209) (-10 -8 (-15 -3089 ((-404 (-1160 $)) (-1160 $))) (-15 -3088 ((-404 (-1160 $)) (-1160 $))) (-15 -3087 ((-404 (-1160 $)) (-1160 $))) (-15 -3090 ((-1160 $) (-1160 $) (-1160 $))) (-15 -3086 ((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $))) (IF (|has| $ (-144)) (PROGN (-15 -3085 ((-3 (-1253 $) "failed") (-682 $))) (-15 -3084 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T)) -((-3092 (((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#5|)) "failed") (-332 |#2| |#3| |#4| |#5|)) 79)) (-3091 (((-112) (-332 |#2| |#3| |#4| |#5|)) 17)) (-4178 (((-3 (-765) "failed") (-332 |#2| |#3| |#4| |#5|)) 15))) -(((-904 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4178 ((-3 (-765) "failed") (-332 |#2| |#3| |#4| |#5|))) (-15 -3091 ((-112) (-332 |#2| |#3| |#4| |#5|))) (-15 -3092 ((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#5|)) "failed") (-332 |#2| |#3| |#4| |#5|)))) (-13 (-844) (-554) (-1031 (-544))) (-420 |#1|) (-1229 |#2|) (-1229 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -904)) -((-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-2 (|:| -4178 (-765)) (|:| -2518 *8))) (-5 *1 (-904 *4 *5 *6 *7 *8)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-112)) (-5 *1 (-904 *4 *5 *6 *7 *8)))) (-4178 (*1 *2 *3) (|partial| -12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-765)) (-5 *1 (-904 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -4178 ((-3 (-765) "failed") (-332 |#2| |#3| |#4| |#5|))) (-15 -3091 ((-112) (-332 |#2| |#3| |#4| |#5|))) (-15 -3092 ((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#5|)) "failed") (-332 |#2| |#3| |#4| |#5|)))) -((-3092 (((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#3|)) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|)) 56)) (-3091 (((-112) (-332 (-406 (-544)) |#1| |#2| |#3|)) 16)) (-4178 (((-3 (-765) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|)) 14))) -(((-905 |#1| |#2| |#3|) (-10 -7 (-15 -4178 ((-3 (-765) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|))) (-15 -3091 ((-112) (-332 (-406 (-544)) |#1| |#2| |#3|))) (-15 -3092 ((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#3|)) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|)))) (-1229 (-406 (-544))) (-1229 (-406 |#1|)) (-341 (-406 (-544)) |#1| |#2|)) (T -905)) -((-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-2 (|:| -4178 (-765)) (|:| -2518 *6))) (-5 *1 (-905 *4 *5 *6)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-905 *4 *5 *6)))) (-4178 (*1 *2 *3) (|partial| -12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-765)) (-5 *1 (-905 *4 *5 *6))))) -(-10 -7 (-15 -4178 ((-3 (-765) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|))) (-15 -3091 ((-112) (-332 (-406 (-544)) |#1| |#2| |#3|))) (-15 -3092 ((-3 (-2 (|:| -4178 (-765)) (|:| -2518 |#3|)) "failed") (-332 (-406 (-544)) |#1| |#2| |#3|)))) -((-3097 ((|#2| |#2|) 26)) (-3095 (((-544) (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))))) 15)) (-3093 (((-912) (-544)) 35)) (-3096 (((-544) |#2|) 42)) (-3094 (((-544) |#2|) 21) (((-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))) |#1|) 20))) -(((-906 |#1| |#2|) (-10 -7 (-15 -3093 ((-912) (-544))) (-15 -3094 ((-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))) |#1|)) (-15 -3094 ((-544) |#2|)) (-15 -3095 ((-544) (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544)))))) (-15 -3096 ((-544) |#2|)) (-15 -3097 (|#2| |#2|))) (-1229 (-406 (-544))) (-1229 (-406 |#1|))) (T -906)) -((-3097 (*1 *2 *2) (-12 (-4 *3 (-1229 (-406 (-544)))) (-5 *1 (-906 *3 *2)) (-4 *2 (-1229 (-406 *3))))) (-3096 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1229 (-406 *4))))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))))) (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1229 (-406 *4))))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1229 (-406 *4))))) (-3094 (*1 *2 *3) (-12 (-4 *3 (-1229 (-406 (-544)))) (-5 *2 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544)))) (-5 *1 (-906 *3 *4)) (-4 *4 (-1229 (-406 *3))))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-544)) (-4 *4 (-1229 (-406 *3))) (-5 *2 (-912)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1229 (-406 *4)))))) -(-10 -7 (-15 -3093 ((-912) (-544))) (-15 -3094 ((-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))) |#1|)) (-15 -3094 ((-544) |#2|)) (-15 -3095 ((-544) (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544)))))) (-15 -3096 ((-544) |#2|)) (-15 -3097 (|#2| |#2|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 ((|#1| $) 81)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-2943 (($ $ $) NIL)) (-3866 (((-3 $ "failed") $) 75)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3105 (($ |#1| (-404 |#1|)) 73)) (-3099 (((-1160 |#1|) |#1| |#1|) 41)) (-3098 (($ $) 49)) (-2545 (((-112) $) NIL)) (-3100 (((-544) $) 78)) (-3101 (($ $ (-544)) 80)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3102 ((|#1| $) 77)) (-3103 (((-404 |#1|) $) 76)) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) 74)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-3104 (($ $) 39)) (-4353 (((-857) $) 99) (($ (-544)) 54) (($ $) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 31) (((-406 |#1|) $) 59) (($ (-406 (-404 |#1|))) 67)) (-3511 (((-765)) 52)) (-2212 (((-112) $ $) NIL)) (-3040 (($) 23 T CONST)) (-3046 (($) 12 T CONST)) (-3437 (((-112) $ $) 68)) (-4356 (($ $ $) NIL)) (-4244 (($ $) 88) (($ $ $) NIL)) (-4246 (($ $ $) 38)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 90) (($ $ $) 37) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-907 |#1|) (-13 (-362) (-38 |#1|) (-10 -8 (-15 -4353 ((-406 |#1|) $)) (-15 -4353 ($ (-406 (-404 |#1|)))) (-15 -3104 ($ $)) (-15 -3103 ((-404 |#1|) $)) (-15 -3102 (|#1| $)) (-15 -3101 ($ $ (-544))) (-15 -3100 ((-544) $)) (-15 -3099 ((-1160 |#1|) |#1| |#1|)) (-15 -3098 ($ $)) (-15 -3105 ($ |#1| (-404 |#1|))) (-15 -3514 (|#1| $)))) (-306)) (T -907)) -((-4353 (*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-406 (-404 *3))) (-4 *3 (-306)) (-5 *1 (-907 *3)))) (-3104 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-404 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3102 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-3101 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3099 (*1 *2 *3 *3) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) (-3098 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) (-3105 (*1 *1 *2 *3) (-12 (-5 *3 (-404 *2)) (-4 *2 (-306)) (-5 *1 (-907 *2)))) (-3514 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306))))) -(-13 (-362) (-38 |#1|) (-10 -8 (-15 -4353 ((-406 |#1|) $)) (-15 -4353 ($ (-406 (-404 |#1|)))) (-15 -3104 ($ $)) (-15 -3103 ((-404 |#1|) $)) (-15 -3102 (|#1| $)) (-15 -3101 ($ $ (-544))) (-15 -3100 ((-544) $)) (-15 -3099 ((-1160 |#1|) |#1| |#1|)) (-15 -3098 ($ $)) (-15 -3105 ($ |#1| (-404 |#1|))) (-15 -3514 (|#1| $)))) -((-3105 (((-51) (-939 |#1|) (-404 (-939 |#1|)) (-1166)) 17) (((-51) (-406 (-939 |#1|)) (-1166)) 18))) -(((-908 |#1|) (-10 -7 (-15 -3105 ((-51) (-406 (-939 |#1|)) (-1166))) (-15 -3105 ((-51) (-939 |#1|) (-404 (-939 |#1|)) (-1166)))) (-13 (-306) (-146))) (T -908)) -((-3105 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-404 (-939 *6))) (-5 *5 (-1166)) (-5 *3 (-939 *6)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-51)) (-5 *1 (-908 *6)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-51)) (-5 *1 (-908 *5))))) -(-10 -7 (-15 -3105 ((-51) (-406 (-939 |#1|)) (-1166))) (-15 -3105 ((-51) (-939 |#1|) (-404 (-939 |#1|)) (-1166)))) -((-3106 ((|#4| (-635 |#4|)) 121) (((-1160 |#4|) (-1160 |#4|) (-1160 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-3545 (((-1160 |#4|) (-635 (-1160 |#4|))) 114) (((-1160 |#4|) (-1160 |#4|) (-1160 |#4|)) 49) ((|#4| (-635 |#4|)) 54) ((|#4| |#4| |#4|) 84))) -(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3545 (|#4| |#4| |#4|)) (-15 -3545 (|#4| (-635 |#4|))) (-15 -3545 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3545 ((-1160 |#4|) (-635 (-1160 |#4|)))) (-15 -3106 (|#4| |#4| |#4|)) (-15 -3106 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3106 (|#4| (-635 |#4|)))) (-787) (-844) (-306) (-943 |#3| |#1| |#2|)) (T -909)) -((-3106 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))) (-3106 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3106 (*1 *2 *2 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-943 *5 *3 *4)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-635 (-1160 *7))) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-1160 *7)) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) (-3545 (*1 *2 *2 *2) (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))) (-3545 (*1 *2 *2 *2) (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) (-4 *2 (-943 *5 *3 *4))))) -(-10 -7 (-15 -3545 (|#4| |#4| |#4|)) (-15 -3545 (|#4| (-635 |#4|))) (-15 -3545 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3545 ((-1160 |#4|) (-635 (-1160 |#4|)))) (-15 -3106 (|#4| |#4| |#4|)) (-15 -3106 ((-1160 |#4|) (-1160 |#4|) (-1160 |#4|))) (-15 -3106 (|#4| (-635 |#4|)))) -((-3119 (((-898 (-544)) (-964)) 23) (((-898 (-544)) (-635 (-544))) 20)) (-3107 (((-898 (-544)) (-635 (-544))) 48) (((-898 (-544)) (-912)) 49)) (-3118 (((-898 (-544))) 24)) (-3116 (((-898 (-544))) 38) (((-898 (-544)) (-635 (-544))) 37)) (-3115 (((-898 (-544))) 36) (((-898 (-544)) (-635 (-544))) 35)) (-3114 (((-898 (-544))) 34) (((-898 (-544)) (-635 (-544))) 33)) (-3113 (((-898 (-544))) 32) (((-898 (-544)) (-635 (-544))) 31)) (-3112 (((-898 (-544))) 30) (((-898 (-544)) (-635 (-544))) 29)) (-3117 (((-898 (-544))) 40) (((-898 (-544)) (-635 (-544))) 39)) (-3111 (((-898 (-544)) (-635 (-544))) 52) (((-898 (-544)) (-912)) 53)) (-3110 (((-898 (-544)) (-635 (-544))) 50) (((-898 (-544)) (-912)) 51)) (-3108 (((-898 (-544)) (-635 (-544))) 46) (((-898 (-544)) (-912)) 47)) (-3109 (((-898 (-544)) (-635 (-912))) 43))) -(((-910) (-10 -7 (-15 -3107 ((-898 (-544)) (-912))) (-15 -3107 ((-898 (-544)) (-635 (-544)))) (-15 -3108 ((-898 (-544)) (-912))) (-15 -3108 ((-898 (-544)) (-635 (-544)))) (-15 -3109 ((-898 (-544)) (-635 (-912)))) (-15 -3110 ((-898 (-544)) (-912))) (-15 -3110 ((-898 (-544)) (-635 (-544)))) (-15 -3111 ((-898 (-544)) (-912))) (-15 -3111 ((-898 (-544)) (-635 (-544)))) (-15 -3112 ((-898 (-544)) (-635 (-544)))) (-15 -3112 ((-898 (-544)))) (-15 -3113 ((-898 (-544)) (-635 (-544)))) (-15 -3113 ((-898 (-544)))) (-15 -3114 ((-898 (-544)) (-635 (-544)))) (-15 -3114 ((-898 (-544)))) (-15 -3115 ((-898 (-544)) (-635 (-544)))) (-15 -3115 ((-898 (-544)))) (-15 -3116 ((-898 (-544)) (-635 (-544)))) (-15 -3116 ((-898 (-544)))) (-15 -3117 ((-898 (-544)) (-635 (-544)))) (-15 -3117 ((-898 (-544)))) (-15 -3118 ((-898 (-544)))) (-15 -3119 ((-898 (-544)) (-635 (-544)))) (-15 -3119 ((-898 (-544)) (-964))))) (T -910)) -((-3119 (*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3118 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3117 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3116 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3115 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3114 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3113 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3112 (*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-635 (-912))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(-10 -7 (-15 -3107 ((-898 (-544)) (-912))) (-15 -3107 ((-898 (-544)) (-635 (-544)))) (-15 -3108 ((-898 (-544)) (-912))) (-15 -3108 ((-898 (-544)) (-635 (-544)))) (-15 -3109 ((-898 (-544)) (-635 (-912)))) (-15 -3110 ((-898 (-544)) (-912))) (-15 -3110 ((-898 (-544)) (-635 (-544)))) (-15 -3111 ((-898 (-544)) (-912))) (-15 -3111 ((-898 (-544)) (-635 (-544)))) (-15 -3112 ((-898 (-544)) (-635 (-544)))) (-15 -3112 ((-898 (-544)))) (-15 -3113 ((-898 (-544)) (-635 (-544)))) (-15 -3113 ((-898 (-544)))) (-15 -3114 ((-898 (-544)) (-635 (-544)))) (-15 -3114 ((-898 (-544)))) (-15 -3115 ((-898 (-544)) (-635 (-544)))) (-15 -3115 ((-898 (-544)))) (-15 -3116 ((-898 (-544)) (-635 (-544)))) (-15 -3116 ((-898 (-544)))) (-15 -3117 ((-898 (-544)) (-635 (-544)))) (-15 -3117 ((-898 (-544)))) (-15 -3118 ((-898 (-544)))) (-15 -3119 ((-898 (-544)) (-635 (-544)))) (-15 -3119 ((-898 (-544)) (-964)))) -((-3121 (((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166))) 12)) (-3120 (((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166))) 11))) -(((-911 |#1|) (-10 -7 (-15 -3120 ((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3121 ((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166))))) (-450)) (T -911)) -((-3121 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-939 *4))) (-5 *3 (-635 (-1166))) (-4 *4 (-450)) (-5 *1 (-911 *4)))) (-3120 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-939 *4))) (-5 *3 (-635 (-1166))) (-4 *4 (-450)) (-5 *1 (-911 *4))))) -(-10 -7 (-15 -3120 ((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3121 ((-635 (-939 |#1|)) (-635 (-939 |#1|)) (-635 (-1166))))) -((-2947 (((-112) $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3545 (($ $ $) NIL)) (-4353 (((-857) $) NIL)) (-3046 (($) NIL T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ $ $) NIL))) -(((-912) (-13 (-788) (-720) (-10 -8 (-15 -3545 ($ $ $)) (-6 (-4402 "*"))))) (T -912)) -((-3545 (*1 *1 *1 *1) (-5 *1 (-912)))) -(-13 (-788) (-720) (-10 -8 (-15 -3545 ($ $ $)) (-6 (-4402 "*")))) +((-2475 (((-685 (-1214)) $ (-1214)) NIL)) (-3202 (((-685 (-547)) $ (-547)) NIL)) (-3787 (((-766) $ (-128)) NIL)) (-3966 (((-685 (-129)) $ (-129)) 21)) (-2210 (($ (-387)) 12) (($ (-1150)) 14)) (-2468 (((-112) $) 18)) (-4054 (((-857) $) 25)) (-3948 (($ $) 22))) +(((-856) (-13 (-855) (-609 (-857)) (-10 -8 (-15 -2210 ($ (-387))) (-15 -2210 ($ (-1150))) (-15 -2468 ((-112) $))))) (T -856)) +((-2210 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-856)))) (-2210 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-856)))) (-2468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856))))) +(-13 (-855) (-609 (-857)) (-10 -8 (-15 -2210 ($ (-387))) (-15 -2210 ($ (-1150))) (-15 -2468 ((-112) $)))) +((-4041 (((-112) $ $) NIL) (($ $ $) 77)) (-1822 (($ $ $) 114)) (-3697 (((-562) $) 31) (((-562)) 36)) (-1363 (($ (-562)) 45)) (-1713 (($ $ $) 46) (($ (-639 $)) 76)) (-3439 (($ $ (-639 $)) 74)) (-1801 (((-562) $) 34)) (-1600 (($ $ $) 65)) (-1625 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-1725 (((-562) $) 33)) (-3562 (($ $ $) 64)) (-3596 (($ $) 104)) (-1307 (($ $ $) 118)) (-3180 (($ (-639 $)) 53)) (-3652 (($ $ (-639 $)) 71)) (-4127 (($ (-562) (-562)) 47)) (-4334 (($ $) 115) (($ $ $) 116)) (-1602 (($ $ (-562)) 41) (($ $) 44)) (-1811 (($ $ $) 89)) (-3240 (($ $ $) 121)) (-3786 (($ $) 105)) (-1787 (($ $ $) 90)) (-2754 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3207 (((-1261) $) 10)) (-2641 (($ $) 108) (($ $ (-766)) 111)) (-2546 (($ $ $) 67)) (-2074 (($ $ $) 66)) (-2178 (($ $ (-639 $)) 100)) (-1394 (($ $ $) 103)) (-2900 (($ (-639 $)) 51)) (-1383 (($ $) 62) (($ (-639 $)) 63)) (-2344 (($ $ $) 112)) (-3970 (($ $) 106)) (-3084 (($ $ $) 117)) (-1995 (($ (-562)) 21) (($ (-1168)) 23) (($ (-1150)) 30) (($ (-224)) 25)) (-2255 (($ $ $) 93)) (-2236 (($ $) 94)) (-2195 (((-1261) (-1150)) 15)) (-3883 (($ (-1150)) 14)) (-2885 (($ (-639 (-639 $))) 50)) (-1588 (($ $ (-562)) 40) (($ $) 43)) (-2913 (((-1150) $) NIL)) (-1799 (($ $ $) 120)) (-1645 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-3918 (((-112) $) 98)) (-3142 (($ $ (-639 $)) 101) (($ $ $ $) 102)) (-2224 (($ (-562)) 37)) (-3060 (((-562) $) 32) (((-562)) 35)) (-1391 (($ $ $) 38) (($ (-639 $)) 75)) (-1709 (((-1112) $) NIL)) (-1762 (($ $ $) 91)) (-4307 (($) 13)) (-2343 (($ $ (-639 $)) 99)) (-1484 (((-1150) (-1150)) 8)) (-4177 (($ $) 107) (($ $ (-766)) 110)) (-1773 (($ $ $) 88)) (-4029 (($ $ (-766)) 126)) (-3428 (($ (-639 $)) 52)) (-4054 (((-857) $) 19)) (-2328 (($ $ (-562)) 39) (($ $) 42)) (-2956 (($ $) 60) (($ (-639 $)) 61)) (-1703 (($ $) 58) (($ (-639 $)) 59)) (-2746 (($ $) 113)) (-3504 (($ (-639 $)) 57)) (-3261 (($ $ $) 97)) (-1855 (($ $ $) 119)) (-2246 (($ $ $) 92)) (-3864 (($ $ $) 95) (($ $) 96)) (-1798 (($ $ $) 81)) (-1772 (($ $ $) 79)) (-1731 (((-112) $ $) 16) (($ $ $) 17)) (-1785 (($ $ $) 80)) (-1759 (($ $ $) 78)) (-1859 (($ $ $) 86)) (-1848 (($ $ $) 83) (($ $) 84)) (-1835 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-857) (-13 (-1092) (-10 -8 (-15 -3207 ((-1261) $)) (-15 -3883 ($ (-1150))) (-15 -2195 ((-1261) (-1150))) (-15 -1995 ($ (-562))) (-15 -1995 ($ (-1168))) (-15 -1995 ($ (-1150))) (-15 -1995 ($ (-224))) (-15 -4307 ($)) (-15 -1484 ((-1150) (-1150))) (-15 -3697 ((-562) $)) (-15 -3060 ((-562) $)) (-15 -3697 ((-562))) (-15 -3060 ((-562))) (-15 -1725 ((-562) $)) (-15 -1801 ((-562) $)) (-15 -2224 ($ (-562))) (-15 -1363 ($ (-562))) (-15 -4127 ($ (-562) (-562))) (-15 -1588 ($ $ (-562))) (-15 -1602 ($ $ (-562))) (-15 -2328 ($ $ (-562))) (-15 -1588 ($ $)) (-15 -1602 ($ $)) (-15 -2328 ($ $)) (-15 -1391 ($ $ $)) (-15 -1713 ($ $ $)) (-15 -1391 ($ (-639 $))) (-15 -1713 ($ (-639 $))) (-15 -2178 ($ $ (-639 $))) (-15 -3142 ($ $ (-639 $))) (-15 -3142 ($ $ $ $)) (-15 -1394 ($ $ $)) (-15 -3918 ((-112) $)) (-15 -2343 ($ $ (-639 $))) (-15 -3596 ($ $)) (-15 -1799 ($ $ $)) (-15 -2746 ($ $)) (-15 -2885 ($ (-639 (-639 $)))) (-15 -1822 ($ $ $)) (-15 -4334 ($ $)) (-15 -4334 ($ $ $)) (-15 -3084 ($ $ $)) (-15 -1307 ($ $ $)) (-15 -1855 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -4029 ($ $ (-766))) (-15 -3261 ($ $ $)) (-15 -3562 ($ $ $)) (-15 -1600 ($ $ $)) (-15 -2074 ($ $ $)) (-15 -2546 ($ $ $)) (-15 -3652 ($ $ (-639 $))) (-15 -3439 ($ $ (-639 $))) (-15 -3786 ($ $)) (-15 -4177 ($ $)) (-15 -4177 ($ $ (-766))) (-15 -2641 ($ $)) (-15 -2641 ($ $ (-766))) (-15 -3970 ($ $)) (-15 -2344 ($ $ $)) (-15 -1625 ($ $)) (-15 -1625 ($ $ $)) (-15 -1625 ($ $ $ $)) (-15 -2754 ($ $)) (-15 -2754 ($ $ $)) (-15 -2754 ($ $ $ $)) (-15 -1645 ($ $)) (-15 -1645 ($ $ $)) (-15 -1645 ($ $ $ $)) (-15 -1703 ($ $)) (-15 -1703 ($ (-639 $))) (-15 -2956 ($ $)) (-15 -2956 ($ (-639 $))) (-15 -1383 ($ $)) (-15 -1383 ($ (-639 $))) (-15 -2900 ($ (-639 $))) (-15 -3428 ($ (-639 $))) (-15 -3180 ($ (-639 $))) (-15 -3504 ($ (-639 $))) (-15 -1731 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1772 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -1835 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -1848 ($ $)) (-15 * ($ $ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1811 ($ $ $)) (-15 -1787 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -2246 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -2236 ($ $)) (-15 -3864 ($ $ $)) (-15 -3864 ($ $))))) (T -857)) +((-3207 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-857)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857)))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-857)))) (-1995 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1995 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-857)))) (-1995 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857)))) (-1995 (*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-857)))) (-4307 (*1 *1) (-5 *1 (-857))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3697 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3060 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1363 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-4127 (*1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1588 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-2328 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1588 (*1 *1 *1) (-5 *1 (-857))) (-1602 (*1 *1 *1) (-5 *1 (-857))) (-2328 (*1 *1 *1) (-5 *1 (-857))) (-1391 (*1 *1 *1 *1) (-5 *1 (-857))) (-1713 (*1 *1 *1 *1) (-5 *1 (-857))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-1713 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-2178 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3142 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3142 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-1394 (*1 *1 *1 *1) (-5 *1 (-857))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3596 (*1 *1 *1) (-5 *1 (-857))) (-1799 (*1 *1 *1 *1) (-5 *1 (-857))) (-2746 (*1 *1 *1) (-5 *1 (-857))) (-2885 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-857)))) (-5 *1 (-857)))) (-1822 (*1 *1 *1 *1) (-5 *1 (-857))) (-4334 (*1 *1 *1) (-5 *1 (-857))) (-4334 (*1 *1 *1 *1) (-5 *1 (-857))) (-3084 (*1 *1 *1 *1) (-5 *1 (-857))) (-1307 (*1 *1 *1 *1) (-5 *1 (-857))) (-1855 (*1 *1 *1 *1) (-5 *1 (-857))) (-3240 (*1 *1 *1 *1) (-5 *1 (-857))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) (-3261 (*1 *1 *1 *1) (-5 *1 (-857))) (-3562 (*1 *1 *1 *1) (-5 *1 (-857))) (-1600 (*1 *1 *1 *1) (-5 *1 (-857))) (-2074 (*1 *1 *1 *1) (-5 *1 (-857))) (-2546 (*1 *1 *1 *1) (-5 *1 (-857))) (-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3439 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3786 (*1 *1 *1) (-5 *1 (-857))) (-4177 (*1 *1 *1) (-5 *1 (-857))) (-4177 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) (-2641 (*1 *1 *1) (-5 *1 (-857))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) (-3970 (*1 *1 *1) (-5 *1 (-857))) (-2344 (*1 *1 *1 *1) (-5 *1 (-857))) (-1625 (*1 *1 *1) (-5 *1 (-857))) (-1625 (*1 *1 *1 *1) (-5 *1 (-857))) (-1625 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-2754 (*1 *1 *1) (-5 *1 (-857))) (-2754 (*1 *1 *1 *1) (-5 *1 (-857))) (-2754 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-1645 (*1 *1 *1) (-5 *1 (-857))) (-1645 (*1 *1 *1 *1) (-5 *1 (-857))) (-1645 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-1703 (*1 *1 *1) (-5 *1 (-857))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-2956 (*1 *1 *1) (-5 *1 (-857))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-1383 (*1 *1 *1) (-5 *1 (-857))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-2900 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3180 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3504 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-1731 (*1 *1 *1 *1) (-5 *1 (-857))) (-4041 (*1 *1 *1 *1) (-5 *1 (-857))) (-1759 (*1 *1 *1 *1) (-5 *1 (-857))) (-1772 (*1 *1 *1 *1) (-5 *1 (-857))) (-1785 (*1 *1 *1 *1) (-5 *1 (-857))) (-1798 (*1 *1 *1 *1) (-5 *1 (-857))) (-1835 (*1 *1 *1 *1) (-5 *1 (-857))) (-1848 (*1 *1 *1 *1) (-5 *1 (-857))) (-1848 (*1 *1 *1) (-5 *1 (-857))) (* (*1 *1 *1 *1) (-5 *1 (-857))) (-1859 (*1 *1 *1 *1) (-5 *1 (-857))) (** (*1 *1 *1 *1) (-5 *1 (-857))) (-1773 (*1 *1 *1 *1) (-5 *1 (-857))) (-1811 (*1 *1 *1 *1) (-5 *1 (-857))) (-1787 (*1 *1 *1 *1) (-5 *1 (-857))) (-1762 (*1 *1 *1 *1) (-5 *1 (-857))) (-2246 (*1 *1 *1 *1) (-5 *1 (-857))) (-2255 (*1 *1 *1 *1) (-5 *1 (-857))) (-2236 (*1 *1 *1) (-5 *1 (-857))) (-3864 (*1 *1 *1 *1) (-5 *1 (-857))) (-3864 (*1 *1 *1) (-5 *1 (-857)))) +(-13 (-1092) (-10 -8 (-15 -3207 ((-1261) $)) (-15 -3883 ($ (-1150))) (-15 -2195 ((-1261) (-1150))) (-15 -1995 ($ (-562))) (-15 -1995 ($ (-1168))) (-15 -1995 ($ (-1150))) (-15 -1995 ($ (-224))) (-15 -4307 ($)) (-15 -1484 ((-1150) (-1150))) (-15 -3697 ((-562) $)) (-15 -3060 ((-562) $)) (-15 -3697 ((-562))) (-15 -3060 ((-562))) (-15 -1725 ((-562) $)) (-15 -1801 ((-562) $)) (-15 -2224 ($ (-562))) (-15 -1363 ($ (-562))) (-15 -4127 ($ (-562) (-562))) (-15 -1588 ($ $ (-562))) (-15 -1602 ($ $ (-562))) (-15 -2328 ($ $ (-562))) (-15 -1588 ($ $)) (-15 -1602 ($ $)) (-15 -2328 ($ $)) (-15 -1391 ($ $ $)) (-15 -1713 ($ $ $)) (-15 -1391 ($ (-639 $))) (-15 -1713 ($ (-639 $))) (-15 -2178 ($ $ (-639 $))) (-15 -3142 ($ $ (-639 $))) (-15 -3142 ($ $ $ $)) (-15 -1394 ($ $ $)) (-15 -3918 ((-112) $)) (-15 -2343 ($ $ (-639 $))) (-15 -3596 ($ $)) (-15 -1799 ($ $ $)) (-15 -2746 ($ $)) (-15 -2885 ($ (-639 (-639 $)))) (-15 -1822 ($ $ $)) (-15 -4334 ($ $)) (-15 -4334 ($ $ $)) (-15 -3084 ($ $ $)) (-15 -1307 ($ $ $)) (-15 -1855 ($ $ $)) (-15 -3240 ($ $ $)) (-15 -4029 ($ $ (-766))) (-15 -3261 ($ $ $)) (-15 -3562 ($ $ $)) (-15 -1600 ($ $ $)) (-15 -2074 ($ $ $)) (-15 -2546 ($ $ $)) (-15 -3652 ($ $ (-639 $))) (-15 -3439 ($ $ (-639 $))) (-15 -3786 ($ $)) (-15 -4177 ($ $)) (-15 -4177 ($ $ (-766))) (-15 -2641 ($ $)) (-15 -2641 ($ $ (-766))) (-15 -3970 ($ $)) (-15 -2344 ($ $ $)) (-15 -1625 ($ $)) (-15 -1625 ($ $ $)) (-15 -1625 ($ $ $ $)) (-15 -2754 ($ $)) (-15 -2754 ($ $ $)) (-15 -2754 ($ $ $ $)) (-15 -1645 ($ $)) (-15 -1645 ($ $ $)) (-15 -1645 ($ $ $ $)) (-15 -1703 ($ $)) (-15 -1703 ($ (-639 $))) (-15 -2956 ($ $)) (-15 -2956 ($ (-639 $))) (-15 -1383 ($ $)) (-15 -1383 ($ (-639 $))) (-15 -2900 ($ (-639 $))) (-15 -3428 ($ (-639 $))) (-15 -3180 ($ (-639 $))) (-15 -3504 ($ (-639 $))) (-15 -1731 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1772 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -1835 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -1848 ($ $)) (-15 * ($ $ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1811 ($ $ $)) (-15 -1787 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -2246 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -2236 ($ $)) (-15 -3864 ($ $ $)) (-15 -3864 ($ $)))) +((-1967 (((-1261) (-639 (-52))) 24)) (-3463 (((-1261) (-1150) (-857)) 14) (((-1261) (-857)) 9) (((-1261) (-1150)) 11))) +(((-858) (-10 -7 (-15 -3463 ((-1261) (-1150))) (-15 -3463 ((-1261) (-857))) (-15 -3463 ((-1261) (-1150) (-857))) (-15 -1967 ((-1261) (-639 (-52)))))) (T -858)) +((-1967 (*1 *2 *3) (-12 (-5 *3 (-639 (-52))) (-5 *2 (-1261)) (-5 *1 (-858)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-857)) (-5 *2 (-1261)) (-5 *1 (-858)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-858)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-858))))) +(-10 -7 (-15 -3463 ((-1261) (-1150))) (-15 -3463 ((-1261) (-857))) (-15 -3463 ((-1261) (-1150) (-857))) (-15 -1967 ((-1261) (-639 (-52))))) +((-4041 (((-112) $ $) NIL)) (-2444 (((-3 $ "failed") (-1168)) 33)) (-1382 (((-766)) 31)) (-1448 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-1999 (((-916) $) 29)) (-2913 (((-1150) $) 39)) (-2466 (($ (-916)) 28)) (-1709 (((-1112) $) NIL)) (-4208 (((-1168) $) 13) (((-535) $) 19) (((-887 (-378)) $) 26) (((-887 (-562)) $) 22)) (-4054 (((-857) $) 16)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 36)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 35))) +(((-859 |#1|) (-13 (-839) (-610 (-1168)) (-610 (-535)) (-610 (-887 (-378))) (-610 (-887 (-562))) (-10 -8 (-15 -2444 ((-3 $ "failed") (-1168))))) (-639 (-1168))) (T -859)) +((-2444 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-859 *3)) (-14 *3 (-639 *2))))) +(-13 (-839) (-610 (-1168)) (-610 (-535)) (-610 (-887 (-378))) (-610 (-887 (-562))) (-10 -8 (-15 -2444 ((-3 $ "failed") (-1168))))) +((-4041 (((-112) $ $) NIL)) (-3254 (((-505) $) 9)) (-1912 (((-639 (-438)) $) 13)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 21)) (-1731 (((-112) $ $) 16))) +(((-860) (-13 (-1092) (-10 -8 (-15 -3254 ((-505) $)) (-15 -1912 ((-639 (-438)) $))))) (T -860)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-860)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-639 (-438))) (-5 *1 (-860))))) +(-13 (-1092) (-10 -8 (-15 -3254 ((-505) $)) (-15 -1912 ((-639 (-438)) $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-947 |#1|)) NIL) (((-947 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-171)))) (-2579 (((-766)) NIL)) (-2464 (((-1261) (-766)) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1859 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) +(((-861 |#1| |#2| |#3| |#4|) (-13 (-1044) (-489 (-947 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1859 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2464 ((-1261) (-766))))) (-1044) (-639 (-1168)) (-639 (-766)) (-766)) (T -861)) +((-1859 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-861 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-766))) (-14 *5 (-766)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-861 *4 *5 *6 *7)) (-4 *4 (-1044)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 *3)) (-14 *7 *3)))) +(-13 (-1044) (-489 (-947 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1859 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2464 ((-1261) (-766))))) +((-3839 (((-3 (-173 |#3|) "failed") (-766) (-766) |#2| |#2|) 31)) (-2562 (((-3 (-406 |#3|) "failed") (-766) (-766) |#2| |#2|) 24))) +(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -2562 ((-3 (-406 |#3|) "failed") (-766) (-766) |#2| |#2|)) (-15 -3839 ((-3 (-173 |#3|) "failed") (-766) (-766) |#2| |#2|))) (-362) (-1247 |#1|) (-1232 |#1|)) (T -862)) +((-3839 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-766)) (-4 *5 (-362)) (-5 *2 (-173 *6)) (-5 *1 (-862 *5 *4 *6)) (-4 *4 (-1247 *5)) (-4 *6 (-1232 *5)))) (-2562 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-766)) (-4 *5 (-362)) (-5 *2 (-406 *6)) (-5 *1 (-862 *5 *4 *6)) (-4 *4 (-1247 *5)) (-4 *6 (-1232 *5))))) +(-10 -7 (-15 -2562 ((-3 (-406 |#3|) "failed") (-766) (-766) |#2| |#2|)) (-15 -3839 ((-3 (-173 |#3|) "failed") (-766) (-766) |#2| |#2|))) +((-2562 (((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|)) 28) (((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) 26))) +(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2562 ((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) (-15 -2562 ((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|)))) (-362) (-1168) |#1|) (T -863)) +((-2562 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-766)) (-5 *4 (-1248 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1168)) (-14 *7 *5) (-5 *2 (-406 (-1229 *6 *5))) (-5 *1 (-863 *5 *6 *7)))) (-2562 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-766)) (-5 *4 (-1248 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1168)) (-14 *7 *5) (-5 *2 (-406 (-1229 *6 *5))) (-5 *1 (-863 *5 *6 *7))))) +(-10 -7 (-15 -2562 ((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) (-15 -2562 ((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-1643 (($ $ (-562)) 63)) (-2569 (((-112) $ $) 60)) (-1800 (($) 17 T CONST)) (-4334 (($ (-1164 (-562)) (-562)) 62)) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-2977 (($ $) 65)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-1900 (((-766) $) 70)) (-1957 (((-112) $) 31)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-3518 (((-562)) 67)) (-2779 (((-562) $) 66)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1353 (($ $ (-562)) 69)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-3280 (((-1148 (-562)) $) 71)) (-2256 (($ $) 68)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-1406 (((-562) $ (-562)) 64)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-864 |#1|) (-139) (-562)) (T -864)) +((-3280 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-1148 (-562))))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-766)))) (-1353 (*1 *1 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-2256 (*1 *1 *1) (-4 *1 (-864 *2))) (-3518 (*1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-2779 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-2977 (*1 *1 *1) (-4 *1 (-864 *2))) (-1406 (*1 *2 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-1643 (*1 *1 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *3 (-562)) (-4 *1 (-864 *4))))) +(-13 (-306) (-146) (-10 -8 (-15 -3280 ((-1148 (-562)) $)) (-15 -1900 ((-766) $)) (-15 -1353 ($ $ (-562))) (-15 -2256 ($ $)) (-15 -3518 ((-562))) (-15 -2779 ((-562) $)) (-15 -2977 ($ $)) (-15 -1406 ((-562) $ (-562))) (-15 -1643 ($ $ (-562))) (-15 -4334 ($ (-1164 (-562)) (-562))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-306) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $ (-562)) NIL)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-4334 (($ (-1164 (-562)) (-562)) NIL)) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-2977 (($ $) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-1900 (((-766) $) NIL)) (-1957 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3518 (((-562)) NIL)) (-2779 (((-562) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1353 (($ $ (-562)) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3280 (((-1148 (-562)) $) NIL)) (-2256 (($ $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL)) (-2579 (((-766)) NIL)) (-2922 (((-112) $ $) NIL)) (-1406 (((-562) $ (-562)) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL))) +(((-865 |#1|) (-864 |#1|) (-562)) (T -865)) +NIL +(-864 |#1|) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 (((-865 |#1|) $) NIL (|has| (-865 |#1|) (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-865 |#1|) (-904)))) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-865 |#1|) (-904)))) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL (|has| (-865 |#1|) (-815)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-865 |#1|) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-865 |#1|) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-865 |#1|) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-865 |#1|) (-1033 (-562))))) (-3961 (((-865 |#1|) $) NIL) (((-1168) $) NIL (|has| (-865 |#1|) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-865 |#1|) (-1033 (-562)))) (((-562) $) NIL (|has| (-865 |#1|) (-1033 (-562))))) (-2724 (($ $) NIL) (($ (-562) $) NIL)) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| (-865 |#1|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-865 |#1|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-865 |#1|))) (|:| |vec| (-1256 (-865 |#1|)))) (-683 $) (-1256 $)) NIL) (((-683 (-865 |#1|)) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-865 |#1|) (-544)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3519 (((-112) $) NIL (|has| (-865 |#1|) (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-865 |#1|) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-865 |#1|) (-881 (-378))))) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL)) (-4065 (((-865 |#1|) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| (-865 |#1|) (-1143)))) (-3392 (((-112) $) NIL (|has| (-865 |#1|) (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-865 |#1|) (-845)))) (-2993 (($ $ $) NIL (|has| (-865 |#1|) (-845)))) (-4152 (($ (-1 (-865 |#1|) (-865 |#1|)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-865 |#1|) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL (|has| (-865 |#1|) (-306)))) (-4014 (((-865 |#1|) $) NIL (|has| (-865 |#1|) (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-865 |#1|) (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-865 |#1|) (-904)))) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-865 |#1|)) (-639 (-865 |#1|))) NIL (|has| (-865 |#1|) (-308 (-865 |#1|)))) (($ $ (-865 |#1|) (-865 |#1|)) NIL (|has| (-865 |#1|) (-308 (-865 |#1|)))) (($ $ (-293 (-865 |#1|))) NIL (|has| (-865 |#1|) (-308 (-865 |#1|)))) (($ $ (-639 (-293 (-865 |#1|)))) NIL (|has| (-865 |#1|) (-308 (-865 |#1|)))) (($ $ (-639 (-1168)) (-639 (-865 |#1|))) NIL (|has| (-865 |#1|) (-513 (-1168) (-865 |#1|)))) (($ $ (-1168) (-865 |#1|)) NIL (|has| (-865 |#1|) (-513 (-1168) (-865 |#1|))))) (-1577 (((-766) $) NIL)) (-2343 (($ $ (-865 |#1|)) NIL (|has| (-865 |#1|) (-285 (-865 |#1|) (-865 |#1|))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-865 |#1|) (-232))) (($ $ (-766)) NIL (|has| (-865 |#1|) (-232))) (($ $ (-1168)) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-1 (-865 |#1|) (-865 |#1|)) (-766)) NIL) (($ $ (-1 (-865 |#1|) (-865 |#1|))) NIL)) (-3658 (($ $) NIL)) (-4076 (((-865 |#1|) $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| (-865 |#1|) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-865 |#1|) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-865 |#1|) (-610 (-535)))) (((-378) $) NIL (|has| (-865 |#1|) (-1017))) (((-224) $) NIL (|has| (-865 |#1|) (-1017)))) (-1977 (((-173 (-406 (-562))) $) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-865 |#1|) (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-865 |#1|)) NIL) (($ (-1168)) NIL (|has| (-865 |#1|) (-1033 (-1168))))) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-865 |#1|) (-904))) (|has| (-865 |#1|) (-144))))) (-2579 (((-766)) NIL)) (-2604 (((-865 |#1|) $) NIL (|has| (-865 |#1|) (-544)))) (-2922 (((-112) $ $) NIL)) (-1406 (((-406 (-562)) $ (-562)) NIL)) (-3526 (($ $) NIL (|has| (-865 |#1|) (-815)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $) NIL (|has| (-865 |#1|) (-232))) (($ $ (-766)) NIL (|has| (-865 |#1|) (-232))) (($ $ (-1168)) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-1 (-865 |#1|) (-865 |#1|)) (-766)) NIL) (($ $ (-1 (-865 |#1|) (-865 |#1|))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-865 |#1|) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-865 |#1|) (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-865 |#1|) (-845)))) (-1759 (((-112) $ $) NIL (|has| (-865 |#1|) (-845)))) (-1859 (($ $ $) NIL) (($ (-865 |#1|) (-865 |#1|)) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-865 |#1|) $) NIL) (($ $ (-865 |#1|)) NIL))) +(((-866 |#1|) (-13 (-987 (-865 |#1|)) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1977 ((-173 (-406 (-562))) $)) (-15 -2724 ($ $)) (-15 -2724 ($ (-562) $)))) (-562)) (T -866)) +((-1406 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-866 *4)) (-14 *4 *3) (-5 *3 (-562)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-866 *3)) (-14 *3 (-562)))) (-2724 (*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-14 *2 (-562)))) (-2724 (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-866 *3)) (-14 *3 *2)))) +(-13 (-987 (-865 |#1|)) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1977 ((-173 (-406 (-562))) $)) (-15 -2724 ($ $)) (-15 -2724 ($ (-562) $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 ((|#2| $) NIL (|has| |#2| (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL (|has| |#2| (-815)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| |#2| (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562))))) (-3961 ((|#2| $) NIL) (((-1168) $) NIL (|has| |#2| (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-562)))) (((-562) $) NIL (|has| |#2| (-1033 (-562))))) (-2724 (($ $) 31) (($ (-562) $) 32)) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) 53)) (-1448 (($) NIL (|has| |#2| (-544)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3519 (((-112) $) NIL (|has| |#2| (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| |#2| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| |#2| (-881 (-378))))) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL)) (-4065 ((|#2| $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| |#2| (-1143)))) (-3392 (((-112) $) NIL (|has| |#2| (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 49)) (-3729 (($) NIL (|has| |#2| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL (|has| |#2| (-306)))) (-4014 ((|#2| $) NIL (|has| |#2| (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 |#2|) (-639 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-308 |#2|))) (($ $ (-293 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ (-639 (-293 |#2|))) NIL (|has| |#2| (-308 |#2|))) (($ $ (-639 (-1168)) (-639 |#2|)) NIL (|has| |#2| (-513 (-1168) |#2|))) (($ $ (-1168) |#2|) NIL (|has| |#2| (-513 (-1168) |#2|)))) (-1577 (((-766) $) NIL)) (-2343 (($ $ |#2|) NIL (|has| |#2| (-285 |#2| |#2|)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| |#2| (-232))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3658 (($ $) NIL)) (-4076 ((|#2| $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| |#2| (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| |#2| (-610 (-887 (-378))))) (((-535) $) NIL (|has| |#2| (-610 (-535)))) (((-378) $) NIL (|has| |#2| (-1017))) (((-224) $) NIL (|has| |#2| (-1017)))) (-1977 (((-173 (-406 (-562))) $) 68)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4054 (((-857) $) 86) (($ (-562)) 19) (($ $) NIL) (($ (-406 (-562))) 24) (($ |#2|) 18) (($ (-1168)) NIL (|has| |#2| (-1033 (-1168))))) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-2579 (((-766)) NIL)) (-2604 ((|#2| $) NIL (|has| |#2| (-544)))) (-2922 (((-112) $ $) NIL)) (-1406 (((-406 (-562)) $ (-562)) 60)) (-3526 (($ $) NIL (|has| |#2| (-815)))) (-2286 (($) 14 T CONST)) (-2294 (($) 16 T CONST)) (-3114 (($ $) NIL (|has| |#2| (-232))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1731 (((-112) $ $) 35)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1848 (($ $) 39) (($ $ $) 41)) (-1835 (($ $ $) 37)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 50)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 42) (($ $ $) 44) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-867 |#1| |#2|) (-13 (-987 |#2|) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1977 ((-173 (-406 (-562))) $)) (-15 -2724 ($ $)) (-15 -2724 ($ (-562) $)))) (-562) (-864 |#1|)) (T -867)) +((-1406 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-406 (-562))) (-5 *1 (-867 *4 *5)) (-5 *3 (-562)) (-4 *5 (-864 *4)))) (-1977 (*1 *2 *1) (-12 (-14 *3 (-562)) (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-867 *3 *4)) (-4 *4 (-864 *3)))) (-2724 (*1 *1 *1) (-12 (-14 *2 (-562)) (-5 *1 (-867 *2 *3)) (-4 *3 (-864 *2)))) (-2724 (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-14 *3 *2) (-5 *1 (-867 *3 *4)) (-4 *4 (-864 *3))))) +(-13 (-987 |#2|) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1977 ((-173 (-406 (-562))) $)) (-15 -2724 ($ $)) (-15 -2724 ($ (-562) $)))) +((-4041 (((-112) $ $) NIL (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))))) (-2350 ((|#2| $) 12)) (-2497 (($ |#1| |#2|) 9)) (-2913 (((-1150) $) NIL (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))))) (-1709 (((-1112) $) NIL (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#1| $) 11)) (-4066 (($ |#1| |#2|) 10)) (-4054 (((-857) $) 18 (-4037 (-12 (|has| |#1| (-609 (-857))) (|has| |#2| (-609 (-857)))) (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092)))))) (-1731 (((-112) $ $) 22 (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092)))))) +(((-868 |#1| |#2|) (-13 (-1207) (-10 -8 (IF (|has| |#1| (-609 (-857))) (IF (|has| |#2| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1092)) (IF (|has| |#2| (-1092)) (-6 (-1092)) |%noBranch|) |%noBranch|) (-15 -2497 ($ |#1| |#2|)) (-15 -4066 ($ |#1| |#2|)) (-15 -1421 (|#1| $)) (-15 -2350 (|#2| $)))) (-1207) (-1207)) (T -868)) +((-2497 (*1 *1 *2 *3) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207)))) (-4066 (*1 *1 *2 *3) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207)))) (-1421 (*1 *2 *1) (-12 (-4 *2 (-1207)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1207)))) (-2350 (*1 *2 *1) (-12 (-4 *2 (-1207)) (-5 *1 (-868 *3 *2)) (-4 *3 (-1207))))) +(-13 (-1207) (-10 -8 (IF (|has| |#1| (-609 (-857))) (IF (|has| |#2| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1092)) (IF (|has| |#2| (-1092)) (-6 (-1092)) |%noBranch|) |%noBranch|) (-15 -2497 ($ |#1| |#2|)) (-15 -4066 ($ |#1| |#2|)) (-15 -1421 (|#1| $)) (-15 -2350 (|#2| $)))) +((-4041 (((-112) $ $) NIL)) (-2887 (((-562) $) 15)) (-3418 (($ (-156)) 11)) (-3555 (($ (-156)) 12)) (-2913 (((-1150) $) NIL)) (-3410 (((-156) $) 13)) (-1709 (((-1112) $) NIL)) (-2241 (($ (-156)) 9)) (-2526 (($ (-156)) 8)) (-4054 (((-857) $) 23) (($ (-156)) 16)) (-3983 (($ (-156)) 10)) (-1731 (((-112) $ $) NIL))) +(((-869) (-13 (-1092) (-10 -8 (-15 -2526 ($ (-156))) (-15 -2241 ($ (-156))) (-15 -3983 ($ (-156))) (-15 -3418 ($ (-156))) (-15 -3555 ($ (-156))) (-15 -3410 ((-156) $)) (-15 -2887 ((-562) $)) (-15 -4054 ($ (-156)))))) (T -869)) +((-2526 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-2241 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-3983 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-3418 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-3555 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-869)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) +(-13 (-1092) (-10 -8 (-15 -2526 ($ (-156))) (-15 -2241 ($ (-156))) (-15 -3983 ($ (-156))) (-15 -3418 ($ (-156))) (-15 -3555 ($ (-156))) (-15 -3410 ((-156) $)) (-15 -2887 ((-562) $)) (-15 -4054 ($ (-156))))) +((-4054 (((-315 (-562)) (-406 (-947 (-48)))) 23) (((-315 (-562)) (-947 (-48))) 18))) +(((-870) (-10 -7 (-15 -4054 ((-315 (-562)) (-947 (-48)))) (-15 -4054 ((-315 (-562)) (-406 (-947 (-48))))))) (T -870)) +((-4054 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 (-48)))) (-5 *2 (-315 (-562))) (-5 *1 (-870)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-947 (-48))) (-5 *2 (-315 (-562))) (-5 *1 (-870))))) +(-10 -7 (-15 -4054 ((-315 (-562)) (-947 (-48)))) (-15 -4054 ((-315 (-562)) (-406 (-947 (-48)))))) +((-4152 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 14))) +(((-871 |#1| |#2|) (-10 -7 (-15 -4152 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-1207) (-1207)) (T -871)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6))))) +(-10 -7 (-15 -4152 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) +((-1539 (($ |#1| |#1|) 8)) (-2542 ((|#1| $ (-766)) 10))) +(((-872 |#1|) (-10 -8 (-15 -1539 ($ |#1| |#1|)) (-15 -2542 (|#1| $ (-766)))) (-1207)) (T -872)) +((-2542 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-872 *2)) (-4 *2 (-1207)))) (-1539 (*1 *1 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1207))))) +(-10 -8 (-15 -1539 ($ |#1| |#1|)) (-15 -2542 (|#1| $ (-766)))) +((-4152 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 14))) +(((-873 |#1| |#2|) (-10 -7 (-15 -4152 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-1207) (-1207)) (T -873)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6))))) +(-10 -7 (-15 -4152 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) +((-1539 (($ |#1| |#1| |#1|) 8)) (-2542 ((|#1| $ (-766)) 10))) +(((-874 |#1|) (-10 -8 (-15 -1539 ($ |#1| |#1| |#1|)) (-15 -2542 (|#1| $ (-766)))) (-1207)) (T -874)) +((-2542 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-874 *2)) (-4 *2 (-1207)))) (-1539 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1207))))) +(-10 -8 (-15 -1539 ($ |#1| |#1| |#1|)) (-15 -2542 (|#1| $ (-766)))) +((-2327 (((-639 (-1173)) (-1150)) 9))) +(((-875) (-10 -7 (-15 -2327 ((-639 (-1173)) (-1150))))) (T -875)) +((-2327 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-639 (-1173))) (-5 *1 (-875))))) +(-10 -7 (-15 -2327 ((-639 (-1173)) (-1150)))) +((-4152 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 14))) +(((-876 |#1| |#2|) (-10 -7 (-15 -4152 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1207) (-1207)) (T -876)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))) +(-10 -7 (-15 -4152 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) +((-3943 (($ |#1| |#1| |#1|) 8)) (-2542 ((|#1| $ (-766)) 10))) +(((-877 |#1|) (-10 -8 (-15 -3943 ($ |#1| |#1| |#1|)) (-15 -2542 (|#1| $ (-766)))) (-1207)) (T -877)) +((-2542 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-877 *2)) (-4 *2 (-1207)))) (-3943 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1207))))) +(-10 -8 (-15 -3943 ($ |#1| |#1| |#1|)) (-15 -2542 (|#1| $ (-766)))) +((-3976 (((-1148 (-639 (-562))) (-639 (-562)) (-1148 (-639 (-562)))) 30)) (-1922 (((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562))) 26)) (-1689 (((-1148 (-639 (-562))) (-639 (-562))) 39) (((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562))) 38)) (-1587 (((-1148 (-639 (-562))) (-562)) 40)) (-2305 (((-1148 (-639 (-562))) (-562) (-562)) 22) (((-1148 (-639 (-562))) (-562)) 16) (((-1148 (-639 (-562))) (-562) (-562) (-562)) 12)) (-3788 (((-1148 (-639 (-562))) (-1148 (-639 (-562)))) 24)) (-3665 (((-639 (-562)) (-639 (-562))) 23))) +(((-878) (-10 -7 (-15 -2305 ((-1148 (-639 (-562))) (-562) (-562) (-562))) (-15 -2305 ((-1148 (-639 (-562))) (-562))) (-15 -2305 ((-1148 (-639 (-562))) (-562) (-562))) (-15 -3665 ((-639 (-562)) (-639 (-562)))) (-15 -3788 ((-1148 (-639 (-562))) (-1148 (-639 (-562))))) (-15 -1922 ((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562)))) (-15 -3976 ((-1148 (-639 (-562))) (-639 (-562)) (-1148 (-639 (-562))))) (-15 -1689 ((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562)))) (-15 -1689 ((-1148 (-639 (-562))) (-639 (-562)))) (-15 -1587 ((-1148 (-639 (-562))) (-562))))) (T -878)) +((-1587 (*1 *2 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) (-1689 (*1 *2 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-639 (-562))))) (-1689 (*1 *2 *3 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-639 (-562))))) (-3976 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *3 (-639 (-562))) (-5 *1 (-878)))) (-1922 (*1 *2 *3 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-639 (-562))))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-878)))) (-2305 (*1 *2 *3 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) (-2305 (*1 *2 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) (-2305 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562))))) +(-10 -7 (-15 -2305 ((-1148 (-639 (-562))) (-562) (-562) (-562))) (-15 -2305 ((-1148 (-639 (-562))) (-562))) (-15 -2305 ((-1148 (-639 (-562))) (-562) (-562))) (-15 -3665 ((-639 (-562)) (-639 (-562)))) (-15 -3788 ((-1148 (-639 (-562))) (-1148 (-639 (-562))))) (-15 -1922 ((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562)))) (-15 -3976 ((-1148 (-639 (-562))) (-639 (-562)) (-1148 (-639 (-562))))) (-15 -1689 ((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562)))) (-15 -1689 ((-1148 (-639 (-562))) (-639 (-562)))) (-15 -1587 ((-1148 (-639 (-562))) (-562)))) +((-4208 (((-887 (-378)) $) 9 (|has| |#1| (-610 (-887 (-378))))) (((-887 (-562)) $) 8 (|has| |#1| (-610 (-887 (-562))))))) +(((-879 |#1|) (-139) (-1207)) (T -879)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-610 (-887 (-562)))) (-6 (-610 (-887 (-562)))) |%noBranch|) (IF (|has| |t#1| (-610 (-887 (-378)))) (-6 (-610 (-887 (-378)))) |%noBranch|))) +(((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562))))) +((-4041 (((-112) $ $) NIL)) (-1458 (($) 14)) (-1662 (($ (-884 |#1| |#2|) (-884 |#1| |#3|)) 27)) (-2823 (((-884 |#1| |#3|) $) 16)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2723 (((-112) $) 22)) (-4253 (($) 19)) (-4054 (((-857) $) 30)) (-3210 (((-884 |#1| |#2|) $) 15)) (-1731 (((-112) $ $) 25))) +(((-880 |#1| |#2| |#3|) (-13 (-1092) (-10 -8 (-15 -2723 ((-112) $)) (-15 -4253 ($)) (-15 -1458 ($)) (-15 -1662 ($ (-884 |#1| |#2|) (-884 |#1| |#3|))) (-15 -3210 ((-884 |#1| |#2|) $)) (-15 -2823 ((-884 |#1| |#3|) $)))) (-1092) (-1092) (-660 |#2|)) (T -880)) +((-2723 (*1 *2 *1) (-12 (-4 *4 (-1092)) (-5 *2 (-112)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1092)) (-4 *5 (-660 *4)))) (-4253 (*1 *1) (-12 (-4 *3 (-1092)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1092)) (-4 *4 (-660 *3)))) (-1458 (*1 *1) (-12 (-4 *3 (-1092)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1092)) (-4 *4 (-660 *3)))) (-1662 (*1 *1 *2 *3) (-12 (-5 *2 (-884 *4 *5)) (-5 *3 (-884 *4 *6)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-660 *5)) (-5 *1 (-880 *4 *5 *6)))) (-3210 (*1 *2 *1) (-12 (-4 *4 (-1092)) (-5 *2 (-884 *3 *4)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1092)) (-4 *5 (-660 *4)))) (-2823 (*1 *2 *1) (-12 (-4 *4 (-1092)) (-5 *2 (-884 *3 *5)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1092)) (-4 *5 (-660 *4))))) +(-13 (-1092) (-10 -8 (-15 -2723 ((-112) $)) (-15 -4253 ($)) (-15 -1458 ($)) (-15 -1662 ($ (-884 |#1| |#2|) (-884 |#1| |#3|))) (-15 -3210 ((-884 |#1| |#2|) $)) (-15 -2823 ((-884 |#1| |#3|) $)))) +((-4041 (((-112) $ $) 7)) (-2533 (((-884 |#1| $) $ (-887 |#1|) (-884 |#1| $)) 13)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6))) +(((-881 |#1|) (-139) (-1092)) (T -881)) +((-2533 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-884 *4 *1)) (-5 *3 (-887 *4)) (-4 *1 (-881 *4)) (-4 *4 (-1092))))) +(-13 (-1092) (-10 -8 (-15 -2533 ((-884 |t#1| $) $ (-887 |t#1|) (-884 |t#1| $))))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-1776 (((-112) (-639 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-1985 (((-884 |#1| |#2|) |#2| |#3|) 42 (-12 (-2236 (|has| |#2| (-1033 (-1168)))) (-2236 (|has| |#2| (-1044))))) (((-639 (-293 (-947 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1044)) (-2236 (|has| |#2| (-1033 (-1168)))))) (((-639 (-293 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1033 (-1168)))) (((-880 |#1| |#2| (-639 |#2|)) (-639 |#2|) |#3|) 20))) +(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-112) |#2| |#3|)) (-15 -1776 ((-112) (-639 |#2|) |#3|)) (-15 -1985 ((-880 |#1| |#2| (-639 |#2|)) (-639 |#2|) |#3|)) (IF (|has| |#2| (-1033 (-1168))) (-15 -1985 ((-639 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1044)) (-15 -1985 ((-639 (-293 (-947 |#2|))) |#2| |#3|)) (-15 -1985 ((-884 |#1| |#2|) |#2| |#3|))))) (-1092) (-881 |#1|) (-610 (-887 |#1|))) (T -882)) +((-1985 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-5 *2 (-884 *5 *3)) (-5 *1 (-882 *5 *3 *4)) (-2236 (-4 *3 (-1033 (-1168)))) (-2236 (-4 *3 (-1044))) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) (-1985 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-5 *2 (-639 (-293 (-947 *3)))) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1044)) (-2236 (-4 *3 (-1033 (-1168)))) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) (-1985 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-5 *2 (-639 (-293 *3))) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1033 (-1168))) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) (-1985 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *6 (-881 *5)) (-5 *2 (-880 *5 *6 (-639 *6))) (-5 *1 (-882 *5 *6 *4)) (-5 *3 (-639 *6)) (-4 *4 (-610 (-887 *5))))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-4 *6 (-881 *5)) (-4 *5 (-1092)) (-5 *2 (-112)) (-5 *1 (-882 *5 *6 *4)) (-4 *4 (-610 (-887 *5))))) (-1776 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-5 *2 (-112)) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5)))))) +(-10 -7 (-15 -1776 ((-112) |#2| |#3|)) (-15 -1776 ((-112) (-639 |#2|) |#3|)) (-15 -1985 ((-880 |#1| |#2| (-639 |#2|)) (-639 |#2|) |#3|)) (IF (|has| |#2| (-1033 (-1168))) (-15 -1985 ((-639 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1044)) (-15 -1985 ((-639 (-293 (-947 |#2|))) |#2| |#3|)) (-15 -1985 ((-884 |#1| |#2|) |#2| |#3|))))) +((-4152 (((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)) 22))) +(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)))) (-1092) (-1092) (-1092)) (T -883)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-884 *5 *6)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-884 *5 *7)) (-5 *1 (-883 *5 *6 *7))))) +(-10 -7 (-15 -4152 ((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)))) +((-4041 (((-112) $ $) NIL)) (-2494 (($ $ $) 39)) (-1779 (((-3 (-112) "failed") $ (-887 |#1|)) 36)) (-1458 (($) 12)) (-2913 (((-1150) $) NIL)) (-3485 (($ (-887 |#1|) |#2| $) 20)) (-1709 (((-1112) $) NIL)) (-4026 (((-3 |#2| "failed") (-887 |#1|) $) 50)) (-2723 (((-112) $) 15)) (-4253 (($) 13)) (-1716 (((-639 (-2 (|:| -2320 (-1168)) (|:| -2694 |#2|))) $) 25)) (-4066 (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 |#2|)))) 23)) (-4054 (((-857) $) 44)) (-1901 (($ (-887 |#1|) |#2| $ |#2|) 48)) (-2337 (($ (-887 |#1|) |#2| $) 47)) (-1731 (((-112) $ $) 41))) +(((-884 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -2723 ((-112) $)) (-15 -4253 ($)) (-15 -1458 ($)) (-15 -2494 ($ $ $)) (-15 -4026 ((-3 |#2| "failed") (-887 |#1|) $)) (-15 -2337 ($ (-887 |#1|) |#2| $)) (-15 -3485 ($ (-887 |#1|) |#2| $)) (-15 -1901 ($ (-887 |#1|) |#2| $ |#2|)) (-15 -1716 ((-639 (-2 (|:| -2320 (-1168)) (|:| -2694 |#2|))) $)) (-15 -4066 ($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 |#2|))))) (-15 -1779 ((-3 (-112) "failed") $ (-887 |#1|))))) (-1092) (-1092)) (T -884)) +((-2723 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-4253 (*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-1458 (*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-2494 (*1 *1 *1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-4026 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-4 *2 (-1092)) (-5 *1 (-884 *4 *2)))) (-2337 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1092)))) (-3485 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1092)))) (-1901 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1092)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 *4)))) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-4066 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 *4)))) (-4 *4 (-1092)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)))) (-1779 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-112)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1092))))) +(-13 (-1092) (-10 -8 (-15 -2723 ((-112) $)) (-15 -4253 ($)) (-15 -1458 ($)) (-15 -2494 ($ $ $)) (-15 -4026 ((-3 |#2| "failed") (-887 |#1|) $)) (-15 -2337 ($ (-887 |#1|) |#2| $)) (-15 -3485 ($ (-887 |#1|) |#2| $)) (-15 -1901 ($ (-887 |#1|) |#2| $ |#2|)) (-15 -1716 ((-639 (-2 (|:| -2320 (-1168)) (|:| -2694 |#2|))) $)) (-15 -4066 ($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 |#2|))))) (-15 -1779 ((-3 (-112) "failed") $ (-887 |#1|))))) +((-3171 (((-887 |#1|) (-887 |#1|) (-639 (-1168)) (-1 (-112) (-639 |#2|))) 32) (((-887 |#1|) (-887 |#1|) (-639 (-1 (-112) |#2|))) 43) (((-887 |#1|) (-887 |#1|) (-1 (-112) |#2|)) 35)) (-1779 (((-112) (-639 |#2|) (-887 |#1|)) 40) (((-112) |#2| (-887 |#1|)) 36)) (-1820 (((-1 (-112) |#2|) (-887 |#1|)) 16)) (-2923 (((-639 |#2|) (-887 |#1|)) 24)) (-1324 (((-887 |#1|) (-887 |#1|) |#2|) 20))) +(((-885 |#1| |#2|) (-10 -7 (-15 -3171 ((-887 |#1|) (-887 |#1|) (-1 (-112) |#2|))) (-15 -3171 ((-887 |#1|) (-887 |#1|) (-639 (-1 (-112) |#2|)))) (-15 -3171 ((-887 |#1|) (-887 |#1|) (-639 (-1168)) (-1 (-112) (-639 |#2|)))) (-15 -1820 ((-1 (-112) |#2|) (-887 |#1|))) (-15 -1779 ((-112) |#2| (-887 |#1|))) (-15 -1779 ((-112) (-639 |#2|) (-887 |#1|))) (-15 -1324 ((-887 |#1|) (-887 |#1|) |#2|)) (-15 -2923 ((-639 |#2|) (-887 |#1|)))) (-1092) (-1207)) (T -885)) +((-2923 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-639 *5)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1207)))) (-1324 (*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1207)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *2 (-112)) (-5 *1 (-885 *5 *6)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-5 *2 (-112)) (-5 *1 (-885 *5 *3)) (-4 *3 (-1207)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1207)))) (-3171 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-887 *5)) (-5 *3 (-639 (-1168))) (-5 *4 (-1 (-112) (-639 *6))) (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *1 (-885 *5 *6)))) (-3171 (*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-5 *3 (-639 (-1 (-112) *5))) (-4 *4 (-1092)) (-4 *5 (-1207)) (-5 *1 (-885 *4 *5)))) (-3171 (*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1092)) (-4 *5 (-1207)) (-5 *1 (-885 *4 *5))))) +(-10 -7 (-15 -3171 ((-887 |#1|) (-887 |#1|) (-1 (-112) |#2|))) (-15 -3171 ((-887 |#1|) (-887 |#1|) (-639 (-1 (-112) |#2|)))) (-15 -3171 ((-887 |#1|) (-887 |#1|) (-639 (-1168)) (-1 (-112) (-639 |#2|)))) (-15 -1820 ((-1 (-112) |#2|) (-887 |#1|))) (-15 -1779 ((-112) |#2| (-887 |#1|))) (-15 -1779 ((-112) (-639 |#2|) (-887 |#1|))) (-15 -1324 ((-887 |#1|) (-887 |#1|) |#2|)) (-15 -2923 ((-639 |#2|) (-887 |#1|)))) +((-4152 (((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)) 19))) +(((-886 |#1| |#2|) (-10 -7 (-15 -4152 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) (-1092) (-1092)) (T -886)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6))))) +(-10 -7 (-15 -4152 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) +((-4041 (((-112) $ $) NIL)) (-3582 (($ $ (-639 (-52))) 62)) (-1402 (((-639 $) $) 116)) (-2397 (((-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52))) $) 23)) (-1873 (((-112) $) 29)) (-2141 (($ $ (-639 (-1168)) (-52)) 24)) (-2251 (($ $ (-639 (-52))) 61)) (-4048 (((-3 |#1| "failed") $) 59) (((-3 (-1168) "failed") $) 138)) (-3961 ((|#1| $) 56) (((-1168) $) NIL)) (-2961 (($ $) 106)) (-3442 (((-112) $) 44)) (-1649 (((-639 (-52)) $) 42)) (-2208 (($ (-1168) (-112) (-112) (-112)) 63)) (-1417 (((-3 (-639 $) "failed") (-639 $)) 70)) (-2822 (((-112) $) 47)) (-1308 (((-112) $) 46)) (-2913 (((-1150) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) 33)) (-3007 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-3218 (((-3 (-2 (|:| |val| $) (|:| -1960 $)) "failed") $) 81)) (-1546 (((-3 (-639 $) "failed") $) 32)) (-3143 (((-3 (-639 $) "failed") $ (-114)) 105) (((-3 (-2 (|:| -2431 (-114)) (|:| |arg| (-639 $))) "failed") $) 93)) (-3481 (((-3 (-639 $) "failed") $) 34)) (-1628 (((-3 (-2 (|:| |val| $) (|:| -1960 (-766))) "failed") $) 37)) (-1825 (((-112) $) 28)) (-1709 (((-1112) $) NIL)) (-3780 (((-112) $) 20)) (-3125 (((-112) $) 43)) (-3236 (((-639 (-52)) $) 109)) (-3823 (((-112) $) 45)) (-2343 (($ (-114) (-639 $)) 90)) (-2193 (((-766) $) 27)) (-4220 (($ $) 60)) (-4208 (($ (-639 $)) 57)) (-3989 (((-112) $) 25)) (-4054 (((-857) $) 51) (($ |#1|) 18) (($ (-1168)) 64)) (-1324 (($ $ (-52)) 108)) (-2286 (($) 89 T CONST)) (-2294 (($) 71 T CONST)) (-1731 (((-112) $ $) 77)) (-1859 (($ $ $) 98)) (-1835 (($ $ $) 102)) (** (($ $ (-766)) 97) (($ $ $) 52)) (* (($ $ $) 103))) +(((-887 |#1|) (-13 (-1092) (-1033 |#1|) (-1033 (-1168)) (-10 -8 (-15 0 ($) -1497) (-15 1 ($) -1497) (-15 -1546 ((-3 (-639 $) "failed") $)) (-15 -2042 ((-3 (-639 $) "failed") $)) (-15 -3143 ((-3 (-639 $) "failed") $ (-114))) (-15 -3143 ((-3 (-2 (|:| -2431 (-114)) (|:| |arg| (-639 $))) "failed") $)) (-15 -1628 ((-3 (-2 (|:| |val| $) (|:| -1960 (-766))) "failed") $)) (-15 -3007 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3481 ((-3 (-639 $) "failed") $)) (-15 -3218 ((-3 (-2 (|:| |val| $) (|:| -1960 $)) "failed") $)) (-15 -2343 ($ (-114) (-639 $))) (-15 -1835 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766))) (-15 ** ($ $ $)) (-15 -1859 ($ $ $)) (-15 -2193 ((-766) $)) (-15 -4208 ($ (-639 $))) (-15 -4220 ($ $)) (-15 -1825 ((-112) $)) (-15 -3442 ((-112) $)) (-15 -1873 ((-112) $)) (-15 -3989 ((-112) $)) (-15 -3823 ((-112) $)) (-15 -1308 ((-112) $)) (-15 -2822 ((-112) $)) (-15 -3125 ((-112) $)) (-15 -1649 ((-639 (-52)) $)) (-15 -2251 ($ $ (-639 (-52)))) (-15 -3582 ($ $ (-639 (-52)))) (-15 -2208 ($ (-1168) (-112) (-112) (-112))) (-15 -2141 ($ $ (-639 (-1168)) (-52))) (-15 -2397 ((-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52))) $)) (-15 -3780 ((-112) $)) (-15 -2961 ($ $)) (-15 -1324 ($ $ (-52))) (-15 -3236 ((-639 (-52)) $)) (-15 -1402 ((-639 $) $)) (-15 -1417 ((-3 (-639 $) "failed") (-639 $))))) (-1092)) (T -887)) +((-2286 (*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-2294 (*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-1546 (*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2042 (*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3143 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-639 (-887 *4))) (-5 *1 (-887 *4)) (-4 *4 (-1092)))) (-3143 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2431 (-114)) (|:| |arg| (-639 (-887 *3))))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1628 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -1960 (-766)))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3007 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-887 *3)) (|:| |den| (-887 *3)))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3481 (*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3218 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -1960 (-887 *3)))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2343 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 (-887 *4))) (-5 *1 (-887 *4)) (-4 *4 (-1092)))) (-1835 (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-1859 (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-4220 (*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2251 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3582 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2208 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-112)) (-5 *1 (-887 *4)) (-4 *4 (-1092)))) (-2141 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-52)) (-5 *1 (-887 *4)) (-4 *4 (-1092)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52)))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2961 (*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-1324 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1417 (*1 *2 *2) (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(-13 (-1092) (-1033 |#1|) (-1033 (-1168)) (-10 -8 (-15 (-2286) ($) -1497) (-15 (-2294) ($) -1497) (-15 -1546 ((-3 (-639 $) "failed") $)) (-15 -2042 ((-3 (-639 $) "failed") $)) (-15 -3143 ((-3 (-639 $) "failed") $ (-114))) (-15 -3143 ((-3 (-2 (|:| -2431 (-114)) (|:| |arg| (-639 $))) "failed") $)) (-15 -1628 ((-3 (-2 (|:| |val| $) (|:| -1960 (-766))) "failed") $)) (-15 -3007 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3481 ((-3 (-639 $) "failed") $)) (-15 -3218 ((-3 (-2 (|:| |val| $) (|:| -1960 $)) "failed") $)) (-15 -2343 ($ (-114) (-639 $))) (-15 -1835 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766))) (-15 ** ($ $ $)) (-15 -1859 ($ $ $)) (-15 -2193 ((-766) $)) (-15 -4208 ($ (-639 $))) (-15 -4220 ($ $)) (-15 -1825 ((-112) $)) (-15 -3442 ((-112) $)) (-15 -1873 ((-112) $)) (-15 -3989 ((-112) $)) (-15 -3823 ((-112) $)) (-15 -1308 ((-112) $)) (-15 -2822 ((-112) $)) (-15 -3125 ((-112) $)) (-15 -1649 ((-639 (-52)) $)) (-15 -2251 ($ $ (-639 (-52)))) (-15 -3582 ($ $ (-639 (-52)))) (-15 -2208 ($ (-1168) (-112) (-112) (-112))) (-15 -2141 ($ $ (-639 (-1168)) (-52))) (-15 -2397 ((-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52))) $)) (-15 -3780 ((-112) $)) (-15 -2961 ($ $)) (-15 -1324 ($ $ (-52))) (-15 -3236 ((-639 (-52)) $)) (-15 -1402 ((-639 $) $)) (-15 -1417 ((-3 (-639 $) "failed") (-639 $))))) +((-4041 (((-112) $ $) NIL)) (-2852 (((-639 |#1|) $) 16)) (-2585 (((-112) $) 38)) (-4048 (((-3 (-666 |#1|) "failed") $) 43)) (-3961 (((-666 |#1|) $) 41)) (-1434 (($ $) 18)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3641 (((-766) $) 46)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-666 |#1|) $) 17)) (-4054 (((-857) $) 37) (($ (-666 |#1|)) 21) (((-814 |#1|) $) 27) (($ |#1|) 20)) (-2294 (($) 8 T CONST)) (-2516 (((-639 (-666 |#1|)) $) 23)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 11)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 49))) +(((-888 |#1|) (-13 (-845) (-1033 (-666 |#1|)) (-10 -8 (-15 1 ($) -1497) (-15 -4054 ((-814 |#1|) $)) (-15 -4054 ($ |#1|)) (-15 -1421 ((-666 |#1|) $)) (-15 -3641 ((-766) $)) (-15 -2516 ((-639 (-666 |#1|)) $)) (-15 -1434 ($ $)) (-15 -2585 ((-112) $)) (-15 -2852 ((-639 |#1|) $)))) (-845)) (T -888)) +((-2294 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-4054 (*1 *1 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-639 (-666 *3))) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-1434 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845))))) +(-13 (-845) (-1033 (-666 |#1|)) (-10 -8 (-15 (-2294) ($) -1497) (-15 -4054 ((-814 |#1|) $)) (-15 -4054 ($ |#1|)) (-15 -1421 ((-666 |#1|) $)) (-15 -3641 ((-766) $)) (-15 -2516 ((-639 (-666 |#1|)) $)) (-15 -1434 ($ $)) (-15 -2585 ((-112) $)) (-15 -2852 ((-639 |#1|) $)))) +((-3036 ((|#1| |#1| |#1|) 19))) +(((-889 |#1| |#2|) (-10 -7 (-15 -3036 (|#1| |#1| |#1|))) (-1232 |#2|) (-1044)) (T -889)) +((-3036 (*1 *2 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1232 *3))))) +(-10 -7 (-15 -3036 (|#1| |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-2172 (((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 14)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2165 (((-1030) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 13)) (-1731 (((-112) $ $) 6))) +(((-890) (-139)) (T -890)) +((-2172 (*1 *2 *3 *4) (-12 (-4 *1 (-890)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)))))) (-2165 (*1 *2 *3) (-12 (-4 *1 (-890)) (-5 *3 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *2 (-1030))))) +(-13 (-1092) (-10 -7 (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))) (-15 -2165 ((-1030) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-3483 ((|#1| |#1| (-766)) 24)) (-3701 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2018 (((-3 (-2 (|:| -1588 |#1|) (|:| -1602 |#1|)) "failed") |#1| (-766) (-766)) 27) (((-639 |#1|) |#1|) 29))) +(((-891 |#1| |#2|) (-10 -7 (-15 -2018 ((-639 |#1|) |#1|)) (-15 -2018 ((-3 (-2 (|:| -1588 |#1|) (|:| -1602 |#1|)) "failed") |#1| (-766) (-766))) (-15 -3701 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3483 (|#1| |#1| (-766)))) (-1232 |#2|) (-362)) (T -891)) +((-3483 (*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-362)) (-5 *1 (-891 *2 *4)) (-4 *2 (-1232 *4)))) (-3701 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1232 *3)))) (-2018 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-766)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -1588 *3) (|:| -1602 *3))) (-5 *1 (-891 *3 *5)) (-4 *3 (-1232 *5)))) (-2018 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -2018 ((-639 |#1|) |#1|)) (-15 -2018 ((-3 (-2 (|:| -1588 |#1|) (|:| -1602 |#1|)) "failed") |#1| (-766) (-766))) (-15 -3701 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3483 (|#1| |#1| (-766)))) +((-4351 (((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150)) 96) (((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150) (-224)) 91) (((-1030) (-893) (-1056)) 83) (((-1030) (-893)) 84)) (-2172 (((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893) (-1056)) 59) (((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893)) 61))) +(((-892) (-10 -7 (-15 -4351 ((-1030) (-893))) (-15 -4351 ((-1030) (-893) (-1056))) (-15 -4351 ((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150) (-224))) (-15 -4351 ((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893) (-1056))))) (T -892)) +((-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1056)) (-5 *2 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-892)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-892)))) (-4351 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-766)) (-5 *6 (-639 (-639 (-315 *3)))) (-5 *7 (-1150)) (-5 *5 (-639 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1030)) (-5 *1 (-892)))) (-4351 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-766)) (-5 *6 (-639 (-639 (-315 *3)))) (-5 *7 (-1150)) (-5 *8 (-224)) (-5 *5 (-639 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1030)) (-5 *1 (-892)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-892)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1030)) (-5 *1 (-892))))) +(-10 -7 (-15 -4351 ((-1030) (-893))) (-15 -4351 ((-1030) (-893) (-1056))) (-15 -4351 ((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150) (-224))) (-15 -4351 ((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893))) (-15 -2172 ((-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893) (-1056)))) +((-4041 (((-112) $ $) NIL)) (-3961 (((-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))) $) 19)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 21) (($ (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 18)) (-1731 (((-112) $ $) NIL))) +(((-893) (-13 (-1092) (-10 -8 (-15 -4054 ($ (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))) (-15 -3961 ((-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))) $))))) (T -893)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *1 (-893)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *1 (-893))))) +(-13 (-1092) (-10 -8 (-15 -4054 ($ (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))) (-15 -3961 ((-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))) $)))) +((-4029 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) 10) (($ $ |#2| (-766)) 12) (($ $ (-639 |#2|) (-639 (-766))) 15)) (-3114 (($ $ |#2|) 16) (($ $ (-639 |#2|)) 18) (($ $ |#2| (-766)) 19) (($ $ (-639 |#2|) (-639 (-766))) 21))) +(((-894 |#1| |#2|) (-10 -8 (-15 -3114 (|#1| |#1| (-639 |#2|) (-639 (-766)))) (-15 -3114 (|#1| |#1| |#2| (-766))) (-15 -3114 (|#1| |#1| (-639 |#2|))) (-15 -3114 (|#1| |#1| |#2|)) (-15 -4029 (|#1| |#1| (-639 |#2|) (-639 (-766)))) (-15 -4029 (|#1| |#1| |#2| (-766))) (-15 -4029 (|#1| |#1| (-639 |#2|))) (-15 -4029 (|#1| |#1| |#2|))) (-895 |#2|) (-1092)) (T -894)) +NIL +(-10 -8 (-15 -3114 (|#1| |#1| (-639 |#2|) (-639 (-766)))) (-15 -3114 (|#1| |#1| |#2| (-766))) (-15 -3114 (|#1| |#1| (-639 |#2|))) (-15 -3114 (|#1| |#1| |#2|)) (-15 -4029 (|#1| |#1| (-639 |#2|) (-639 (-766)))) (-15 -4029 (|#1| |#1| |#2| (-766))) (-15 -4029 (|#1| |#1| (-639 |#2|))) (-15 -4029 (|#1| |#1| |#2|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4029 (($ $ |#1|) 42) (($ $ (-639 |#1|)) 41) (($ $ |#1| (-766)) 40) (($ $ (-639 |#1|) (-639 (-766))) 39)) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ |#1|) 38) (($ $ (-639 |#1|)) 37) (($ $ |#1| (-766)) 36) (($ $ (-639 |#1|) (-639 (-766))) 35)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-895 |#1|) (-139) (-1092)) (T -895)) +((-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1092)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1092)))) (-4029 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-895 *2)) (-4 *2 (-1092)))) (-4029 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 (-766))) (-4 *1 (-895 *4)) (-4 *4 (-1092)))) (-3114 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1092)))) (-3114 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1092)))) (-3114 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-895 *2)) (-4 *2 (-1092)))) (-3114 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 (-766))) (-4 *1 (-895 *4)) (-4 *4 (-1092))))) +(-13 (-1044) (-10 -8 (-15 -4029 ($ $ |t#1|)) (-15 -4029 ($ $ (-639 |t#1|))) (-15 -4029 ($ $ |t#1| (-766))) (-15 -4029 ($ $ (-639 |t#1|) (-639 (-766)))) (-15 -3114 ($ $ |t#1|)) (-15 -3114 ($ $ (-639 |t#1|))) (-15 -3114 ($ $ |t#1| (-766))) (-15 -3114 ($ $ (-639 |t#1|) (-639 (-766)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) 26)) (-4336 (((-112) $ (-766)) NIL)) (-1512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-1718 (($ $ $) NIL (|has| $ (-6 -4403)))) (-3225 (($ $ $) NIL (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403))) (($ $ "left" $) NIL (|has| $ (-6 -4403))) (($ $ "right" $) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-1602 (($ $) 25)) (-1672 (($ |#1|) 12) (($ $ $) 17)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-1588 (($ $) 23)) (-4007 (((-639 |#1|) $) NIL)) (-3449 (((-112) $) 20)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2568 (((-562) $ $) NIL)) (-2424 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-1193 |#1|) $) 9) (((-857) $) 29 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 21 (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-896 |#1|) (-13 (-119 |#1|) (-609 (-1193 |#1|)) (-10 -8 (-15 -1672 ($ |#1|)) (-15 -1672 ($ $ $)))) (-1092)) (T -896)) +((-1672 (*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1092)))) (-1672 (*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1092))))) +(-13 (-119 |#1|) (-609 (-1193 |#1|)) (-10 -8 (-15 -1672 ($ |#1|)) (-15 -1672 ($ $ $)))) +((-2007 ((|#2| (-1134 |#1| |#2|)) 41))) +(((-897 |#1| |#2|) (-10 -7 (-15 -2007 (|#2| (-1134 |#1| |#2|)))) (-916) (-13 (-1044) (-10 -7 (-6 (-4404 "*"))))) (T -897)) +((-2007 (*1 *2 *3) (-12 (-5 *3 (-1134 *4 *2)) (-14 *4 (-916)) (-4 *2 (-13 (-1044) (-10 -7 (-6 (-4404 "*"))))) (-5 *1 (-897 *4 *2))))) +(-10 -7 (-15 -2007 (|#2| (-1134 |#1| |#2|)))) +((-4041 (((-112) $ $) 7)) (-1800 (($) 18 T CONST)) (-3668 (((-3 $ "failed") $) 15)) (-2772 (((-1094 |#1|) $ |#1|) 32)) (-1957 (((-112) $) 17)) (-1551 (($ $ $) 30 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-2993 (($ $ $) 29 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-2913 (((-1150) $) 9)) (-1525 (($ $) 24)) (-1709 (((-1112) $) 10)) (-1433 ((|#1| $ |#1|) 34)) (-2343 ((|#1| $ |#1|) 33)) (-1695 (($ (-639 (-639 |#1|))) 35)) (-3282 (($ (-639 |#1|)) 36)) (-3665 (($ $ $) 21)) (-1911 (($ $ $) 20)) (-4054 (((-857) $) 11)) (-2294 (($) 19 T CONST)) (-1798 (((-112) $ $) 27 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-1772 (((-112) $ $) 26 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 28 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-1759 (((-112) $ $) 31)) (-1859 (($ $ $) 23)) (** (($ $ (-916)) 13) (($ $ (-766)) 16) (($ $ (-562)) 22)) (* (($ $ $) 14))) +(((-898 |#1|) (-139) (-1092)) (T -898)) +((-3282 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-898 *3)))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-4 *1 (-898 *3)))) (-1433 (*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1092)))) (-2343 (*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1092)))) (-2772 (*1 *2 *1 *3) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1092)) (-5 *2 (-1094 *3)))) (-1759 (*1 *2 *1 *1) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) +(-13 (-472) (-10 -8 (-15 -3282 ($ (-639 |t#1|))) (-15 -1695 ($ (-639 (-639 |t#1|)))) (-15 -1433 (|t#1| $ |t#1|)) (-15 -2343 (|t#1| $ |t#1|)) (-15 -2772 ((-1094 |t#1|) $ |t#1|)) (-15 -1759 ((-112) $ $)) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-845)) |%noBranch|))) +(((-102) . T) ((-609 (-857)) . T) ((-472) . T) ((-721) . T) ((-845) -4037 (|has| |#1| (-845)) (|has| |#1| (-367))) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-2719 (((-639 (-639 (-766))) $) 107)) (-4209 (((-639 (-766)) (-900 |#1|) $) 129)) (-3385 (((-639 (-766)) (-900 |#1|) $) 130)) (-2329 (((-639 (-900 |#1|)) $) 97)) (-1448 (((-900 |#1|) $ (-562)) 102) (((-900 |#1|) $) 103)) (-4362 (($ (-639 (-900 |#1|))) 109)) (-1900 (((-766) $) 104)) (-2962 (((-1094 (-1094 |#1|)) $) 127)) (-2772 (((-1094 |#1|) $ |#1|) 120) (((-1094 (-1094 |#1|)) $ (-1094 |#1|)) 138) (((-1094 (-639 |#1|)) $ (-639 |#1|)) 141)) (-3565 (((-1094 |#1|) $) 100)) (-1669 (((-112) (-900 |#1|) $) 91)) (-2913 (((-1150) $) NIL)) (-1808 (((-1261) $) 94) (((-1261) $ (-562) (-562)) 142)) (-1709 (((-1112) $) NIL)) (-3795 (((-639 (-900 |#1|)) $) 95)) (-2343 (((-900 |#1|) $ (-766)) 98)) (-3598 (((-766) $) 105)) (-4054 (((-857) $) 118) (((-639 (-900 |#1|)) $) 23) (($ (-639 (-900 |#1|))) 108)) (-3241 (((-639 |#1|) $) 106)) (-1731 (((-112) $ $) 135)) (-1785 (((-112) $ $) 133)) (-1759 (((-112) $ $) 132))) +(((-899 |#1|) (-13 (-1092) (-10 -8 (-15 -4054 ((-639 (-900 |#1|)) $)) (-15 -3795 ((-639 (-900 |#1|)) $)) (-15 -2343 ((-900 |#1|) $ (-766))) (-15 -1448 ((-900 |#1|) $ (-562))) (-15 -1448 ((-900 |#1|) $)) (-15 -1900 ((-766) $)) (-15 -3598 ((-766) $)) (-15 -3241 ((-639 |#1|) $)) (-15 -2329 ((-639 (-900 |#1|)) $)) (-15 -2719 ((-639 (-639 (-766))) $)) (-15 -4054 ($ (-639 (-900 |#1|)))) (-15 -4362 ($ (-639 (-900 |#1|)))) (-15 -2772 ((-1094 |#1|) $ |#1|)) (-15 -2962 ((-1094 (-1094 |#1|)) $)) (-15 -2772 ((-1094 (-1094 |#1|)) $ (-1094 |#1|))) (-15 -2772 ((-1094 (-639 |#1|)) $ (-639 |#1|))) (-15 -1669 ((-112) (-900 |#1|) $)) (-15 -4209 ((-639 (-766)) (-900 |#1|) $)) (-15 -3385 ((-639 (-766)) (-900 |#1|) $)) (-15 -3565 ((-1094 |#1|) $)) (-15 -1759 ((-112) $ $)) (-15 -1785 ((-112) $ $)) (-15 -1808 ((-1261) $)) (-15 -1808 ((-1261) $ (-562) (-562))))) (-1092)) (T -899)) +((-4054 (*1 *2 *1) (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) (-4 *4 (-1092)))) (-1448 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) (-4 *4 (-1092)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-900 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-2329 (*1 *2 *1) (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-766)))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-900 *3))) (-4 *3 (-1092)) (-5 *1 (-899 *3)))) (-4362 (*1 *1 *2) (-12 (-5 *2 (-639 (-900 *3))) (-4 *3 (-1092)) (-5 *1 (-899 *3)))) (-2772 (*1 *2 *1 *3) (-12 (-5 *2 (-1094 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-1094 (-1094 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-2772 (*1 *2 *1 *3) (-12 (-4 *4 (-1092)) (-5 *2 (-1094 (-1094 *4))) (-5 *1 (-899 *4)) (-5 *3 (-1094 *4)))) (-2772 (*1 *2 *1 *3) (-12 (-4 *4 (-1092)) (-5 *2 (-1094 (-639 *4))) (-5 *1 (-899 *4)) (-5 *3 (-639 *4)))) (-1669 (*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-112)) (-5 *1 (-899 *4)))) (-4209 (*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-639 (-766))) (-5 *1 (-899 *4)))) (-3385 (*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-639 (-766))) (-5 *1 (-899 *4)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-1094 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-1759 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-1785 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-1808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-899 *4)) (-4 *4 (-1092))))) +(-13 (-1092) (-10 -8 (-15 -4054 ((-639 (-900 |#1|)) $)) (-15 -3795 ((-639 (-900 |#1|)) $)) (-15 -2343 ((-900 |#1|) $ (-766))) (-15 -1448 ((-900 |#1|) $ (-562))) (-15 -1448 ((-900 |#1|) $)) (-15 -1900 ((-766) $)) (-15 -3598 ((-766) $)) (-15 -3241 ((-639 |#1|) $)) (-15 -2329 ((-639 (-900 |#1|)) $)) (-15 -2719 ((-639 (-639 (-766))) $)) (-15 -4054 ($ (-639 (-900 |#1|)))) (-15 -4362 ($ (-639 (-900 |#1|)))) (-15 -2772 ((-1094 |#1|) $ |#1|)) (-15 -2962 ((-1094 (-1094 |#1|)) $)) (-15 -2772 ((-1094 (-1094 |#1|)) $ (-1094 |#1|))) (-15 -2772 ((-1094 (-639 |#1|)) $ (-639 |#1|))) (-15 -1669 ((-112) (-900 |#1|) $)) (-15 -4209 ((-639 (-766)) (-900 |#1|) $)) (-15 -3385 ((-639 (-766)) (-900 |#1|) $)) (-15 -3565 ((-1094 |#1|) $)) (-15 -1759 ((-112) $ $)) (-15 -1785 ((-112) $ $)) (-15 -1808 ((-1261) $)) (-15 -1808 ((-1261) $ (-562) (-562))))) +((-4041 (((-112) $ $) NIL)) (-1395 (((-639 $) (-639 $)) 77)) (-2277 (((-562) $) 60)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-1900 (((-766) $) 58)) (-2772 (((-1094 |#1|) $ |#1|) 49)) (-1957 (((-112) $) NIL)) (-3130 (((-112) $) 63)) (-3453 (((-766) $) 61)) (-3565 (((-1094 |#1|) $) 42)) (-1551 (($ $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-2993 (($ $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-3457 (((-2 (|:| |preimage| (-639 |#1|)) (|:| |image| (-639 |#1|))) $) 37)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 93)) (-1709 (((-1112) $) NIL)) (-3608 (((-1094 |#1|) $) 100 (|has| |#1| (-367)))) (-3803 (((-112) $) 59)) (-1433 ((|#1| $ |#1|) 47)) (-2343 ((|#1| $ |#1|) 94)) (-3598 (((-766) $) 44)) (-1695 (($ (-639 (-639 |#1|))) 85)) (-2058 (((-966) $) 53)) (-3282 (($ (-639 |#1|)) 22)) (-3665 (($ $ $) NIL)) (-1911 (($ $ $) NIL)) (-3211 (($ (-639 (-639 |#1|))) 39)) (-3534 (($ (-639 (-639 |#1|))) 88)) (-3727 (($ (-639 |#1|)) 96)) (-4054 (((-857) $) 84) (($ (-639 (-639 |#1|))) 66) (($ (-639 |#1|)) 67)) (-2294 (($) 17 T CONST)) (-1798 (((-112) $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-1772 (((-112) $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-1731 (((-112) $ $) 45)) (-1785 (((-112) $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-1759 (((-112) $ $) 65)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ $ $) 23))) +(((-900 |#1|) (-13 (-898 |#1|) (-10 -8 (-15 -3457 ((-2 (|:| |preimage| (-639 |#1|)) (|:| |image| (-639 |#1|))) $)) (-15 -3211 ($ (-639 (-639 |#1|)))) (-15 -4054 ($ (-639 (-639 |#1|)))) (-15 -4054 ($ (-639 |#1|))) (-15 -3534 ($ (-639 (-639 |#1|)))) (-15 -3598 ((-766) $)) (-15 -3565 ((-1094 |#1|) $)) (-15 -2058 ((-966) $)) (-15 -1900 ((-766) $)) (-15 -3453 ((-766) $)) (-15 -2277 ((-562) $)) (-15 -3803 ((-112) $)) (-15 -3130 ((-112) $)) (-15 -1395 ((-639 $) (-639 $))) (IF (|has| |#1| (-367)) (-15 -3608 ((-1094 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3727 ($ (-639 |#1|))) (IF (|has| |#1| (-367)) (-15 -3727 ($ (-639 |#1|))) |%noBranch|)))) (-1092)) (T -900)) +((-3457 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-639 *3)) (|:| |image| (-639 *3)))) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-3211 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-1094 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-966)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-2277 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-3130 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-1094 *3)) (-5 *1 (-900 *3)) (-4 *3 (-367)) (-4 *3 (-1092)))) (-3727 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-900 *3))))) +(-13 (-898 |#1|) (-10 -8 (-15 -3457 ((-2 (|:| |preimage| (-639 |#1|)) (|:| |image| (-639 |#1|))) $)) (-15 -3211 ($ (-639 (-639 |#1|)))) (-15 -4054 ($ (-639 (-639 |#1|)))) (-15 -4054 ($ (-639 |#1|))) (-15 -3534 ($ (-639 (-639 |#1|)))) (-15 -3598 ((-766) $)) (-15 -3565 ((-1094 |#1|) $)) (-15 -2058 ((-966) $)) (-15 -1900 ((-766) $)) (-15 -3453 ((-766) $)) (-15 -2277 ((-562) $)) (-15 -3803 ((-112) $)) (-15 -3130 ((-112) $)) (-15 -1395 ((-639 $) (-639 $))) (IF (|has| |#1| (-367)) (-15 -3608 ((-1094 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3727 ($ (-639 |#1|))) (IF (|has| |#1| (-367)) (-15 -3727 ($ (-639 |#1|))) |%noBranch|)))) +((-2312 (((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|)) 127)) (-4348 ((|#1|) 76)) (-2727 (((-417 (-1164 |#4|)) (-1164 |#4|)) 136)) (-4133 (((-417 (-1164 |#4|)) (-639 |#3|) (-1164 |#4|)) 68)) (-2119 (((-417 (-1164 |#4|)) (-1164 |#4|)) 146)) (-1974 (((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|) |#3|) 91))) +(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2312 ((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|))) (-15 -2119 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -2727 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -4348 (|#1|)) (-15 -1974 ((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|) |#3|)) (-15 -4133 ((-417 (-1164 |#4|)) (-639 |#3|) (-1164 |#4|)))) (-904) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -901)) +((-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *7)) (-4 *7 (-845)) (-4 *5 (-904)) (-4 *6 (-788)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-417 (-1164 *8))) (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-1164 *8)))) (-1974 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-639 (-1164 *7))) (-5 *3 (-1164 *7)) (-4 *7 (-944 *5 *6 *4)) (-4 *5 (-904)) (-4 *6 (-788)) (-4 *4 (-845)) (-5 *1 (-901 *5 *6 *4 *7)))) (-4348 (*1 *2) (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-904)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-2727 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-2119 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-2312 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *7))) (-5 *3 (-1164 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-901 *4 *5 *6 *7))))) +(-10 -7 (-15 -2312 ((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|))) (-15 -2119 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -2727 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -4348 (|#1|)) (-15 -1974 ((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|) |#3|)) (-15 -4133 ((-417 (-1164 |#4|)) (-639 |#3|) (-1164 |#4|)))) +((-2312 (((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|)) 36)) (-4348 ((|#1|) 53)) (-2727 (((-417 (-1164 |#2|)) (-1164 |#2|)) 101)) (-4133 (((-417 (-1164 |#2|)) (-1164 |#2|)) 89)) (-2119 (((-417 (-1164 |#2|)) (-1164 |#2|)) 112))) +(((-902 |#1| |#2|) (-10 -7 (-15 -2312 ((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|))) (-15 -2119 ((-417 (-1164 |#2|)) (-1164 |#2|))) (-15 -2727 ((-417 (-1164 |#2|)) (-1164 |#2|))) (-15 -4348 (|#1|)) (-15 -4133 ((-417 (-1164 |#2|)) (-1164 |#2|)))) (-904) (-1232 |#1|)) (T -902)) +((-4133 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5)))) (-4348 (*1 *2) (-12 (-4 *2 (-904)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1232 *2)))) (-2727 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5)))) (-2119 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5)))) (-2312 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *5))) (-5 *3 (-1164 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-904)) (-5 *1 (-902 *4 *5))))) +(-10 -7 (-15 -2312 ((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|))) (-15 -2119 ((-417 (-1164 |#2|)) (-1164 |#2|))) (-15 -2727 ((-417 (-1164 |#2|)) (-1164 |#2|))) (-15 -4348 (|#1|)) (-15 -4133 ((-417 (-1164 |#2|)) (-1164 |#2|)))) +((-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 41)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 18)) (-2805 (((-3 $ "failed") $) 35))) +(((-903 |#1|) (-10 -8 (-15 -2805 ((-3 |#1| "failed") |#1|)) (-15 -4150 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)))) (-904)) (T -903)) +NIL +(-10 -8 (-15 -2805 ((-3 |#1| "failed") |#1|)) (-15 -4150 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-3026 (((-417 (-1164 $)) (-1164 $)) 61)) (-2798 (($ $) 52)) (-2921 (((-417 $) $) 53)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 58)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-2717 (((-112) $) 54)) (-1957 (((-112) $) 31)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-3986 (((-417 (-1164 $)) (-1164 $)) 59)) (-3480 (((-417 (-1164 $)) (-1164 $)) 60)) (-1635 (((-417 $) $) 51)) (-1762 (((-3 $ "failed") $ $) 43)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 57 (|has| $ (-144)))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-2805 (((-3 $ "failed") $) 56 (|has| $ (-144)))) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-904) (-139)) (T -904)) +((-2741 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-904)))) (-3026 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1)))) (-3480 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1)))) (-3986 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1)))) (-4150 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *1))) (-5 *3 (-1164 *1)) (-4 *1 (-904)))) (-1289 (*1 *2 *3) (|partial| -12 (-5 *3 (-683 *1)) (-4 *1 (-144)) (-4 *1 (-904)) (-5 *2 (-1256 *1)))) (-2805 (*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-904))))) +(-13 (-1211) (-10 -8 (-15 -3026 ((-417 (-1164 $)) (-1164 $))) (-15 -3480 ((-417 (-1164 $)) (-1164 $))) (-15 -3986 ((-417 (-1164 $)) (-1164 $))) (-15 -2741 ((-1164 $) (-1164 $) (-1164 $))) (-15 -4150 ((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $))) (IF (|has| $ (-144)) (PROGN (-15 -1289 ((-3 (-1256 $) "failed") (-683 $))) (-15 -2805 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-2024 (((-112) $) NIL)) (-3285 (((-766)) NIL)) (-1748 (($ $ (-916)) NIL (|has| $ (-367))) (($ $) NIL)) (-3984 (((-1180 (-916) (-766)) (-562)) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 $ "failed") $) NIL)) (-3961 (($ $) NIL)) (-4018 (($ (-1256 $)) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-3529 (($) NIL)) (-1322 (((-112) $) NIL)) (-3589 (($ $) NIL) (($ $ (-766)) NIL)) (-2717 (((-112) $) NIL)) (-1900 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-1957 (((-112) $) NIL)) (-1846 (($) NIL (|has| $ (-367)))) (-1316 (((-112) $) NIL (|has| $ (-367)))) (-2247 (($ $ (-916)) NIL (|has| $ (-367))) (($ $) NIL)) (-3699 (((-3 $ "failed") $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1565 (((-1164 $) $ (-916)) NIL (|has| $ (-367))) (((-1164 $) $) NIL)) (-1999 (((-916) $) NIL)) (-3892 (((-1164 $) $) NIL (|has| $ (-367)))) (-4203 (((-3 (-1164 $) "failed") $ $) NIL (|has| $ (-367))) (((-1164 $) $) NIL (|has| $ (-367)))) (-2393 (($ $ (-1164 $)) NIL (|has| $ (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL T CONST)) (-2466 (($ (-916)) NIL)) (-3113 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3148 (($) NIL (|has| $ (-367)))) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL)) (-1635 (((-417 $) $) NIL)) (-4121 (((-916)) NIL) (((-828 (-916))) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-3362 (((-3 (-766) "failed") $ $) NIL) (((-766) $) NIL)) (-3627 (((-133)) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-3598 (((-916) $) NIL) (((-828 (-916)) $) NIL)) (-2096 (((-1164 $)) NIL)) (-2283 (($) NIL)) (-2624 (($) NIL (|has| $ (-367)))) (-3593 (((-683 $) (-1256 $)) NIL) (((-1256 $) $) NIL)) (-4208 (((-562) $) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL)) (-2805 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2579 (((-766)) NIL)) (-3928 (((-1256 $) (-916)) NIL) (((-1256 $)) NIL)) (-2922 (((-112) $ $) NIL)) (-3694 (((-112) $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4374 (($ $ (-766)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) +(((-905 |#1|) (-13 (-348) (-328 $) (-610 (-562))) (-916)) (T -905)) +NIL +(-13 (-348) (-328 $) (-610 (-562))) +((-3020 (((-3 (-2 (|:| -1900 (-766)) (|:| -1407 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)) 79)) (-1392 (((-112) (-335 |#2| |#3| |#4| |#5|)) 17)) (-1900 (((-3 (-766) "failed") (-335 |#2| |#3| |#4| |#5|)) 15))) +(((-906 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1900 ((-3 (-766) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -1392 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3020 ((-3 (-2 (|:| -1900 (-766)) (|:| -1407 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) (-13 (-845) (-554) (-1033 (-562))) (-429 |#1|) (-1232 |#2|) (-1232 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -906)) +((-3020 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-2 (|:| -1900 (-766)) (|:| -1407 *8))) (-5 *1 (-906 *4 *5 *6 *7 *8)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-112)) (-5 *1 (-906 *4 *5 *6 *7 *8)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-766)) (-5 *1 (-906 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -1900 ((-3 (-766) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -1392 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3020 ((-3 (-2 (|:| -1900 (-766)) (|:| -1407 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) +((-3020 (((-3 (-2 (|:| -1900 (-766)) (|:| -1407 |#3|)) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|)) 56)) (-1392 (((-112) (-335 (-406 (-562)) |#1| |#2| |#3|)) 16)) (-1900 (((-3 (-766) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|)) 14))) +(((-907 |#1| |#2| |#3|) (-10 -7 (-15 -1900 ((-3 (-766) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|))) (-15 -1392 ((-112) (-335 (-406 (-562)) |#1| |#2| |#3|))) (-15 -3020 ((-3 (-2 (|:| -1900 (-766)) (|:| -1407 |#3|)) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|)))) (-1232 (-406 (-562))) (-1232 (-406 |#1|)) (-341 (-406 (-562)) |#1| |#2|)) (T -907)) +((-3020 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-2 (|:| -1900 (-766)) (|:| -1407 *6))) (-5 *1 (-907 *4 *5 *6)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-907 *4 *5 *6)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-766)) (-5 *1 (-907 *4 *5 *6))))) +(-10 -7 (-15 -1900 ((-3 (-766) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|))) (-15 -1392 ((-112) (-335 (-406 (-562)) |#1| |#2| |#3|))) (-15 -3020 ((-3 (-2 (|:| -1900 (-766)) (|:| -1407 |#3|)) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|)))) +((-2293 ((|#2| |#2|) 26)) (-4077 (((-562) (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))))) 15)) (-3916 (((-916) (-562)) 35)) (-2550 (((-562) |#2|) 42)) (-3300 (((-562) |#2|) 21) (((-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))) |#1|) 20))) +(((-908 |#1| |#2|) (-10 -7 (-15 -3916 ((-916) (-562))) (-15 -3300 ((-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))) |#1|)) (-15 -3300 ((-562) |#2|)) (-15 -4077 ((-562) (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562)))))) (-15 -2550 ((-562) |#2|)) (-15 -2293 (|#2| |#2|))) (-1232 (-406 (-562))) (-1232 (-406 |#1|))) (T -908)) +((-2293 (*1 *2 *2) (-12 (-4 *3 (-1232 (-406 (-562)))) (-5 *1 (-908 *3 *2)) (-4 *2 (-1232 (-406 *3))))) (-2550 (*1 *2 *3) (-12 (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1232 (-406 *4))))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))))) (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *5)) (-4 *5 (-1232 (-406 *4))))) (-3300 (*1 *2 *3) (-12 (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1232 (-406 *4))))) (-3300 (*1 *2 *3) (-12 (-4 *3 (-1232 (-406 (-562)))) (-5 *2 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562)))) (-5 *1 (-908 *3 *4)) (-4 *4 (-1232 (-406 *3))))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-562)) (-4 *4 (-1232 (-406 *3))) (-5 *2 (-916)) (-5 *1 (-908 *4 *5)) (-4 *5 (-1232 (-406 *4)))))) +(-10 -7 (-15 -3916 ((-916) (-562))) (-15 -3300 ((-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))) |#1|)) (-15 -3300 ((-562) |#2|)) (-15 -4077 ((-562) (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562)))))) (-15 -2550 ((-562) |#2|)) (-15 -2293 (|#2| |#2|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 ((|#1| $) 81)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-1811 (($ $ $) NIL)) (-3668 (((-3 $ "failed") $) 75)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-4322 (($ |#1| (-417 |#1|)) 73)) (-3268 (((-1164 |#1|) |#1| |#1|) 41)) (-3583 (($ $) 49)) (-1957 (((-112) $) NIL)) (-2377 (((-562) $) 78)) (-1971 (($ $ (-562)) 80)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3571 ((|#1| $) 77)) (-3144 (((-417 |#1|) $) 76)) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) 74)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-2831 (($ $) 39)) (-4054 (((-857) $) 99) (($ (-562)) 54) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 31) (((-406 |#1|) $) 59) (($ (-406 (-417 |#1|))) 67)) (-2579 (((-766)) 52)) (-2922 (((-112) $ $) NIL)) (-2286 (($) 23 T CONST)) (-2294 (($) 12 T CONST)) (-1731 (((-112) $ $) 68)) (-1859 (($ $ $) NIL)) (-1848 (($ $) 88) (($ $ $) NIL)) (-1835 (($ $ $) 38)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 90) (($ $ $) 37) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-909 |#1|) (-13 (-362) (-38 |#1|) (-10 -8 (-15 -4054 ((-406 |#1|) $)) (-15 -4054 ($ (-406 (-417 |#1|)))) (-15 -2831 ($ $)) (-15 -3144 ((-417 |#1|) $)) (-15 -3571 (|#1| $)) (-15 -1971 ($ $ (-562))) (-15 -2377 ((-562) $)) (-15 -3268 ((-1164 |#1|) |#1| |#1|)) (-15 -3583 ($ $)) (-15 -4322 ($ |#1| (-417 |#1|))) (-15 -4246 (|#1| $)))) (-306)) (T -909)) +((-4054 (*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-909 *3)))) (-2831 (*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-3571 (*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306)))) (-1971 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-3268 (*1 *2 *3 *3) (-12 (-5 *2 (-1164 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-3583 (*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306)))) (-4322 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-909 *2)))) (-4246 (*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306))))) +(-13 (-362) (-38 |#1|) (-10 -8 (-15 -4054 ((-406 |#1|) $)) (-15 -4054 ($ (-406 (-417 |#1|)))) (-15 -2831 ($ $)) (-15 -3144 ((-417 |#1|) $)) (-15 -3571 (|#1| $)) (-15 -1971 ($ $ (-562))) (-15 -2377 ((-562) $)) (-15 -3268 ((-1164 |#1|) |#1| |#1|)) (-15 -3583 ($ $)) (-15 -4322 ($ |#1| (-417 |#1|))) (-15 -4246 (|#1| $)))) +((-4322 (((-52) (-947 |#1|) (-417 (-947 |#1|)) (-1168)) 17) (((-52) (-406 (-947 |#1|)) (-1168)) 18))) +(((-910 |#1|) (-10 -7 (-15 -4322 ((-52) (-406 (-947 |#1|)) (-1168))) (-15 -4322 ((-52) (-947 |#1|) (-417 (-947 |#1|)) (-1168)))) (-13 (-306) (-146))) (T -910)) +((-4322 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-947 *6))) (-5 *5 (-1168)) (-5 *3 (-947 *6)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-910 *6)))) (-4322 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-910 *5))))) +(-10 -7 (-15 -4322 ((-52) (-406 (-947 |#1|)) (-1168))) (-15 -4322 ((-52) (-947 |#1|) (-417 (-947 |#1|)) (-1168)))) +((-2984 ((|#4| (-639 |#4|)) 121) (((-1164 |#4|) (-1164 |#4|) (-1164 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-1606 (((-1164 |#4|) (-639 (-1164 |#4|))) 114) (((-1164 |#4|) (-1164 |#4|) (-1164 |#4|)) 49) ((|#4| (-639 |#4|)) 54) ((|#4| |#4| |#4|) 84))) +(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1606 (|#4| |#4| |#4|)) (-15 -1606 (|#4| (-639 |#4|))) (-15 -1606 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -1606 ((-1164 |#4|) (-639 (-1164 |#4|)))) (-15 -2984 (|#4| |#4| |#4|)) (-15 -2984 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -2984 (|#4| (-639 |#4|)))) (-788) (-845) (-306) (-944 |#3| |#1| |#2|)) (T -911)) +((-2984 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *6 *4 *5)) (-5 *1 (-911 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)))) (-2984 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *6)))) (-2984 (*1 *2 *2 *2) (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *2)) (-4 *2 (-944 *5 *3 *4)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-639 (-1164 *7))) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-1164 *7)) (-5 *1 (-911 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-1606 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *6)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *6 *4 *5)) (-5 *1 (-911 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)))) (-1606 (*1 *2 *2 *2) (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *2)) (-4 *2 (-944 *5 *3 *4))))) +(-10 -7 (-15 -1606 (|#4| |#4| |#4|)) (-15 -1606 (|#4| (-639 |#4|))) (-15 -1606 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -1606 ((-1164 |#4|) (-639 (-1164 |#4|)))) (-15 -2984 (|#4| |#4| |#4|)) (-15 -2984 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -2984 (|#4| (-639 |#4|)))) +((-3851 (((-899 (-562)) (-966)) 23) (((-899 (-562)) (-639 (-562))) 20)) (-1834 (((-899 (-562)) (-639 (-562))) 48) (((-899 (-562)) (-916)) 49)) (-2288 (((-899 (-562))) 24)) (-2056 (((-899 (-562))) 38) (((-899 (-562)) (-639 (-562))) 37)) (-2262 (((-899 (-562))) 36) (((-899 (-562)) (-639 (-562))) 35)) (-1802 (((-899 (-562))) 34) (((-899 (-562)) (-639 (-562))) 33)) (-1710 (((-899 (-562))) 32) (((-899 (-562)) (-639 (-562))) 31)) (-2127 (((-899 (-562))) 30) (((-899 (-562)) (-639 (-562))) 29)) (-3502 (((-899 (-562))) 40) (((-899 (-562)) (-639 (-562))) 39)) (-3714 (((-899 (-562)) (-639 (-562))) 52) (((-899 (-562)) (-916)) 53)) (-2253 (((-899 (-562)) (-639 (-562))) 50) (((-899 (-562)) (-916)) 51)) (-3645 (((-899 (-562)) (-639 (-562))) 46) (((-899 (-562)) (-916)) 47)) (-2448 (((-899 (-562)) (-639 (-916))) 43))) +(((-912) (-10 -7 (-15 -1834 ((-899 (-562)) (-916))) (-15 -1834 ((-899 (-562)) (-639 (-562)))) (-15 -3645 ((-899 (-562)) (-916))) (-15 -3645 ((-899 (-562)) (-639 (-562)))) (-15 -2448 ((-899 (-562)) (-639 (-916)))) (-15 -2253 ((-899 (-562)) (-916))) (-15 -2253 ((-899 (-562)) (-639 (-562)))) (-15 -3714 ((-899 (-562)) (-916))) (-15 -3714 ((-899 (-562)) (-639 (-562)))) (-15 -2127 ((-899 (-562)) (-639 (-562)))) (-15 -2127 ((-899 (-562)))) (-15 -1710 ((-899 (-562)) (-639 (-562)))) (-15 -1710 ((-899 (-562)))) (-15 -1802 ((-899 (-562)) (-639 (-562)))) (-15 -1802 ((-899 (-562)))) (-15 -2262 ((-899 (-562)) (-639 (-562)))) (-15 -2262 ((-899 (-562)))) (-15 -2056 ((-899 (-562)) (-639 (-562)))) (-15 -2056 ((-899 (-562)))) (-15 -3502 ((-899 (-562)) (-639 (-562)))) (-15 -3502 ((-899 (-562)))) (-15 -2288 ((-899 (-562)))) (-15 -3851 ((-899 (-562)) (-639 (-562)))) (-15 -3851 ((-899 (-562)) (-966))))) (T -912)) +((-3851 (*1 *2 *3) (-12 (-5 *3 (-966)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2288 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3502 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2056 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2262 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1802 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1710 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2127 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-639 (-916))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(-10 -7 (-15 -1834 ((-899 (-562)) (-916))) (-15 -1834 ((-899 (-562)) (-639 (-562)))) (-15 -3645 ((-899 (-562)) (-916))) (-15 -3645 ((-899 (-562)) (-639 (-562)))) (-15 -2448 ((-899 (-562)) (-639 (-916)))) (-15 -2253 ((-899 (-562)) (-916))) (-15 -2253 ((-899 (-562)) (-639 (-562)))) (-15 -3714 ((-899 (-562)) (-916))) (-15 -3714 ((-899 (-562)) (-639 (-562)))) (-15 -2127 ((-899 (-562)) (-639 (-562)))) (-15 -2127 ((-899 (-562)))) (-15 -1710 ((-899 (-562)) (-639 (-562)))) (-15 -1710 ((-899 (-562)))) (-15 -1802 ((-899 (-562)) (-639 (-562)))) (-15 -1802 ((-899 (-562)))) (-15 -2262 ((-899 (-562)) (-639 (-562)))) (-15 -2262 ((-899 (-562)))) (-15 -2056 ((-899 (-562)) (-639 (-562)))) (-15 -2056 ((-899 (-562)))) (-15 -3502 ((-899 (-562)) (-639 (-562)))) (-15 -3502 ((-899 (-562)))) (-15 -2288 ((-899 (-562)))) (-15 -3851 ((-899 (-562)) (-639 (-562)))) (-15 -3851 ((-899 (-562)) (-966)))) +((-2295 (((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168))) 12)) (-2461 (((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168))) 11))) +(((-913 |#1|) (-10 -7 (-15 -2461 ((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -2295 ((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168))))) (-451)) (T -913)) +((-2295 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-947 *4))) (-5 *3 (-639 (-1168))) (-4 *4 (-451)) (-5 *1 (-913 *4)))) (-2461 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-947 *4))) (-5 *3 (-639 (-1168))) (-4 *4 (-451)) (-5 *1 (-913 *4))))) +(-10 -7 (-15 -2461 ((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -2295 ((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168))))) +((-4054 (((-315 |#1|) (-476)) 16))) +(((-914 |#1|) (-10 -7 (-15 -4054 ((-315 |#1|) (-476)))) (-13 (-845) (-554))) (T -914)) +((-4054 (*1 *2 *3) (-12 (-5 *3 (-476)) (-5 *2 (-315 *4)) (-5 *1 (-914 *4)) (-4 *4 (-13 (-845) (-554)))))) +(-10 -7 (-15 -4054 ((-315 |#1|) (-476)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-1957 (((-112) $) 31)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-915) (-139)) (T -915)) +((-2527 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-2 (|:| -4221 (-639 *1)) (|:| -3148 *1))) (-5 *3 (-639 *1)))) (-3870 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-639 *1)) (-4 *1 (-915))))) +(-13 (-451) (-10 -8 (-15 -2527 ((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $))) (-15 -3870 ((-3 (-639 $) "failed") (-639 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1606 (($ $ $) NIL)) (-4054 (((-857) $) NIL)) (-2294 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ $ $) NIL))) +(((-916) (-13 (-789) (-721) (-10 -8 (-15 -1606 ($ $ $)) (-6 (-4404 "*"))))) (T -916)) +((-1606 (*1 *1 *1 *1) (-5 *1 (-916)))) +(-13 (-789) (-721) (-10 -8 (-15 -1606 ($ $ $)) (-6 (-4404 "*")))) ((|NonNegativeInteger|) (< 0 |#1|)) -((-4353 (((-313 |#1|) (-475)) 16))) -(((-913 |#1|) (-10 -7 (-15 -4353 ((-313 |#1|) (-475)))) (-13 (-844) (-554))) (T -913)) -((-4353 (*1 *2 *3) (-12 (-5 *3 (-475)) (-5 *2 (-313 *4)) (-5 *1 (-913 *4)) (-4 *4 (-13 (-844) (-554)))))) -(-10 -7 (-15 -4353 ((-313 |#1|) (-475)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-2545 (((-112) $) 31)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-914) (-139)) (T -914)) -((-3123 (*1 *2 *3) (-12 (-4 *1 (-914)) (-5 *2 (-2 (|:| -4361 (-635 *1)) (|:| -2544 *1))) (-5 *3 (-635 *1)))) (-3122 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-914))))) -(-13 (-450) (-10 -8 (-15 -3123 ((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $))) (-15 -3122 ((-3 (-635 $) "failed") (-635 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-3491 (((-1160 |#2|) (-635 |#2|) (-635 |#2|)) 17) (((-1222 |#1| |#2|) (-1222 |#1| |#2|) (-635 |#2|) (-635 |#2|)) 13))) -(((-915 |#1| |#2|) (-10 -7 (-15 -3491 ((-1222 |#1| |#2|) (-1222 |#1| |#2|) (-635 |#2|) (-635 |#2|))) (-15 -3491 ((-1160 |#2|) (-635 |#2|) (-635 |#2|)))) (-1166) (-362)) (T -915)) -((-3491 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *5)) (-4 *5 (-362)) (-5 *2 (-1160 *5)) (-5 *1 (-915 *4 *5)) (-14 *4 (-1166)))) (-3491 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1222 *4 *5)) (-5 *3 (-635 *5)) (-14 *4 (-1166)) (-4 *5 (-362)) (-5 *1 (-915 *4 *5))))) -(-10 -7 (-15 -3491 ((-1222 |#1| |#2|) (-1222 |#1| |#2|) (-635 |#2|) (-635 |#2|))) (-15 -3491 ((-1160 |#2|) (-635 |#2|) (-635 |#2|)))) -((-3124 ((|#2| (-635 |#1|) (-635 |#1|)) 24))) -(((-916 |#1| |#2|) (-10 -7 (-15 -3124 (|#2| (-635 |#1|) (-635 |#1|)))) (-362) (-1229 |#1|)) (T -916)) -((-3124 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-4 *2 (-1229 *4)) (-5 *1 (-916 *4 *2))))) -(-10 -7 (-15 -3124 (|#2| (-635 |#1|) (-635 |#1|)))) -((-3126 (((-544) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148)) 139)) (-3145 ((|#4| |#4|) 155)) (-3130 (((-635 (-406 (-939 |#1|))) (-635 (-1166))) 119)) (-3144 (((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-635 (-635 |#4|)) (-765) (-765) (-544)) 75)) (-3134 (((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-635 |#4|)) 59)) (-3143 (((-682 |#4|) (-682 |#4|) (-635 |#4|)) 55)) (-3127 (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148)) 151)) (-3125 (((-544) (-682 |#4|) (-912) (-1148)) 133) (((-544) (-682 |#4|) (-635 (-1166)) (-912) (-1148)) 132) (((-544) (-682 |#4|) (-635 |#4|) (-912) (-1148)) 131) (((-544) (-682 |#4|) (-1148)) 128) (((-544) (-682 |#4|) (-635 (-1166)) (-1148)) 127) (((-544) (-682 |#4|) (-635 |#4|) (-1148)) 126) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-912)) 125) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)) (-912)) 124) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|) (-912)) 123) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|)) 121) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166))) 120) (((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|)) 116)) (-3131 ((|#4| (-939 |#1|)) 68)) (-3141 (((-112) (-635 |#4|) (-635 (-635 |#4|))) 152)) (-3140 (((-635 (-635 (-544))) (-544) (-544)) 130)) (-3139 (((-635 (-635 |#4|)) (-635 (-635 |#4|))) 88)) (-3138 (((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|))))) 86)) (-3137 (((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|))))) 85)) (-3146 (((-112) (-635 (-939 |#1|))) 17) (((-112) (-635 |#4|)) 13)) (-3132 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|)) 71)) (-3136 (((-635 |#4|) |#4|) 49)) (-3129 (((-635 (-406 (-939 |#1|))) (-635 |#4|)) 115) (((-682 (-406 (-939 |#1|))) (-682 |#4|)) 56) (((-406 (-939 |#1|)) |#4|) 112)) (-3128 (((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))))) (|:| |rgsz| (-544))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-765) (-1148) (-544)) 93)) (-3133 (((-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))) (-682 |#4|) (-765)) 84)) (-3142 (((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-682 |#4|) (-765)) 102)) (-3135 (((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| -1728 (-682 (-406 (-939 |#1|)))) (|:| |vec| (-635 (-406 (-939 |#1|)))) (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) 48))) -(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|) (-912))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)) (-912))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-912))) (-15 -3125 ((-544) (-682 |#4|) (-635 |#4|) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 (-1166)) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 |#4|) (-912) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 (-1166)) (-912) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-912) (-1148))) (-15 -3126 ((-544) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148))) (-15 -3127 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148))) (-15 -3128 ((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))))) (|:| |rgsz| (-544))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-765) (-1148) (-544))) (-15 -3129 ((-406 (-939 |#1|)) |#4|)) (-15 -3129 ((-682 (-406 (-939 |#1|))) (-682 |#4|))) (-15 -3129 ((-635 (-406 (-939 |#1|))) (-635 |#4|))) (-15 -3130 ((-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3131 (|#4| (-939 |#1|))) (-15 -3132 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|))) (-15 -3133 ((-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))) (-682 |#4|) (-765))) (-15 -3134 ((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-635 |#4|))) (-15 -3135 ((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| -1728 (-682 (-406 (-939 |#1|)))) (|:| |vec| (-635 (-406 (-939 |#1|)))) (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (-15 -3136 ((-635 |#4|) |#4|)) (-15 -3137 ((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3138 ((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3139 ((-635 (-635 |#4|)) (-635 (-635 |#4|)))) (-15 -3140 ((-635 (-635 (-544))) (-544) (-544))) (-15 -3141 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3142 ((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-682 |#4|) (-765))) (-15 -3143 ((-682 |#4|) (-682 |#4|) (-635 |#4|))) (-15 -3144 ((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-635 (-635 |#4|)) (-765) (-765) (-544))) (-15 -3145 (|#4| |#4|)) (-15 -3146 ((-112) (-635 |#4|))) (-15 -3146 ((-112) (-635 (-939 |#1|))))) (-13 (-306) (-146)) (-13 (-844) (-609 (-1166))) (-787) (-943 |#1| |#3| |#2|)) (T -917)) -((-3146 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-943 *3 *5 *4)))) (-3144 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-5 *4 (-682 *12)) (-5 *5 (-635 (-406 (-939 *9)))) (-5 *6 (-635 (-635 *12))) (-5 *7 (-765)) (-5 *8 (-544)) (-4 *9 (-13 (-306) (-146))) (-4 *12 (-943 *9 *11 *10)) (-4 *10 (-13 (-844) (-609 (-1166)))) (-4 *11 (-787)) (-5 *2 (-2 (|:| |eqzro| (-635 *12)) (|:| |neqzro| (-635 *12)) (|:| |wcond| (-635 (-939 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *9)))) (|:| -2162 (-635 (-1253 (-406 (-939 *9))))))))) (-5 *1 (-917 *9 *10 *11 *12)))) (-3143 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *7)) (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-765)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| |det| *8) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-635 (-544)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-544)) (-4 *7 (-943 *4 *6 *5)))) (-3139 (*1 *2 *2) (-12 (-5 *2 (-635 (-635 *6))) (-4 *6 (-943 *3 *5 *4)) (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| *7) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 *7))))) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| *7) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 *7))))) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3136 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-943 *4 *6 *5)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1728 (-682 (-406 (-939 *4)))) (|:| |vec| (-635 (-406 (-939 *4)))) (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) (|:| -2162 (-635 (-1253 (-406 (-939 *4))))))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) (|:| -2162 (-635 (-1253 (-406 (-939 *4))))))) (-5 *3 (-635 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-943 *4 *6 *5)) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| *8) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 *8))))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-765)))) (-3132 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-4 *7 (-943 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-635 *7)) (|:| |n0| (-635 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-939 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-943 *4 *6 *5)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-682 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-682 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))) (-3129 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-406 (-939 *4))) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-943 *4 *6 *5)))) (-3128 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-682 *11)) (-5 *4 (-635 (-406 (-939 *8)))) (-5 *5 (-765)) (-5 *6 (-1148)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-943 *8 *10 *9)) (-4 *9 (-13 (-844) (-609 (-1166)))) (-4 *10 (-787)) (-5 *2 (-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 *11)) (|:| |neqzro| (-635 *11)) (|:| |wcond| (-635 (-939 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *8)))) (|:| -2162 (-635 (-1253 (-406 (-939 *8)))))))))) (|:| |rgsz| (-544)))) (-5 *1 (-917 *8 *9 *10 *11)) (-5 *7 (-544)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) (|:| |wcond| (-635 (-939 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) (|:| -2162 (-635 (-1253 (-406 (-939 *4)))))))))) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-939 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) (-5 *4 (-1148)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-943 *5 *7 *6)) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-912)) (-5 *5 (-1148)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3125 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-682 *10)) (-5 *4 (-635 (-1166))) (-5 *5 (-912)) (-5 *6 (-1148)) (-4 *10 (-943 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *7 *8 *9 *10)))) (-3125 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-682 *10)) (-5 *4 (-635 *10)) (-5 *5 (-912)) (-5 *6 (-1148)) (-4 *10 (-943 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *7 *8 *9 *10)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-1148)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *5 *6 *7 *8)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 (-1166))) (-5 *5 (-1148)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 *9)) (-5 *5 (-1148)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *6 *7 *8 *9)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-912)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-939 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 (-1166))) (-5 *5 (-912)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) (|:| |wcond| (-635 (-939 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *6)))) (|:| -2162 (-635 (-1253 (-406 (-939 *6)))))))))) (-5 *1 (-917 *6 *7 *8 *9)))) (-3125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-682 *9)) (-5 *5 (-912)) (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) (|:| |wcond| (-635 (-939 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *6)))) (|:| -2162 (-635 (-1253 (-406 (-939 *6)))))))))) (-5 *1 (-917 *6 *7 *8 *9)) (-5 *4 (-635 *9)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-682 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) (|:| |wcond| (-635 (-939 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) (|:| -2162 (-635 (-1253 (-406 (-939 *4)))))))))) (-5 *1 (-917 *4 *5 *6 *7)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-5 *4 (-635 (-1166))) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-939 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-682 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-635 (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) (|:| |wcond| (-635 (-939 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-635 *8))))) -(-10 -7 (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 |#4|) (-912))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-635 (-1166)) (-912))) (-15 -3125 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-682 |#4|) (-912))) (-15 -3125 ((-544) (-682 |#4|) (-635 |#4|) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 (-1166)) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 |#4|) (-912) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-635 (-1166)) (-912) (-1148))) (-15 -3125 ((-544) (-682 |#4|) (-912) (-1148))) (-15 -3126 ((-544) (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148))) (-15 -3127 ((-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|))))))))) (-1148))) (-15 -3128 ((-2 (|:| |rgl| (-635 (-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))))) (|:| |rgsz| (-544))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-765) (-1148) (-544))) (-15 -3129 ((-406 (-939 |#1|)) |#4|)) (-15 -3129 ((-682 (-406 (-939 |#1|))) (-682 |#4|))) (-15 -3129 ((-635 (-406 (-939 |#1|))) (-635 |#4|))) (-15 -3130 ((-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3131 (|#4| (-939 |#1|))) (-15 -3132 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-635 |#4|)) (|:| |n0| (-635 |#4|))) (-635 |#4|) (-635 |#4|))) (-15 -3133 ((-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))) (-682 |#4|) (-765))) (-15 -3134 ((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-635 |#4|))) (-15 -3135 ((-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))) (-2 (|:| -1728 (-682 (-406 (-939 |#1|)))) (|:| |vec| (-635 (-406 (-939 |#1|)))) (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (-15 -3136 ((-635 |#4|) |#4|)) (-15 -3137 ((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3138 ((-765) (-635 (-2 (|:| -3494 (-765)) (|:| |eqns| (-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))))) (|:| |fgb| (-635 |#4|)))))) (-15 -3139 ((-635 (-635 |#4|)) (-635 (-635 |#4|)))) (-15 -3140 ((-635 (-635 (-544))) (-544) (-544))) (-15 -3141 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3142 ((-635 (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) (-682 |#4|) (-765))) (-15 -3143 ((-682 |#4|) (-682 |#4|) (-635 |#4|))) (-15 -3144 ((-2 (|:| |eqzro| (-635 |#4|)) (|:| |neqzro| (-635 |#4|)) (|:| |wcond| (-635 (-939 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1253 (-406 (-939 |#1|)))) (|:| -2162 (-635 (-1253 (-406 (-939 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544)))) (-682 |#4|) (-635 (-406 (-939 |#1|))) (-635 (-635 |#4|)) (-765) (-765) (-544))) (-15 -3145 (|#4| |#4|)) (-15 -3146 ((-112) (-635 |#4|))) (-15 -3146 ((-112) (-635 (-939 |#1|))))) -((-4281 (($ $ (-1079 (-224))) 69) (($ $ (-1079 (-224)) (-1079 (-224))) 70)) (-3279 (((-1079 (-224)) $) 44)) (-3280 (((-1079 (-224)) $) 43)) (-3170 (((-1079 (-224)) $) 45)) (-3151 (((-544) (-544)) 37)) (-3155 (((-544) (-544)) 33)) (-3153 (((-544) (-544)) 35)) (-3149 (((-112) (-112)) 39)) (-3152 (((-544)) 36)) (-3519 (($ $ (-1079 (-224))) 73) (($ $) 74)) (-3172 (($ (-1 (-936 (-224)) (-224)) (-1079 (-224))) 83) (($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 84)) (-3158 (($ (-1 (-224) (-224)) (-1079 (-224))) 91) (($ (-1 (-224) (-224))) 94)) (-3171 (($ (-1 (-224) (-224)) (-1079 (-224))) 78) (($ (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224))) 79) (($ (-635 (-1 (-224) (-224))) (-1079 (-224))) 86) (($ (-635 (-1 (-224) (-224))) (-1079 (-224)) (-1079 (-224))) 87) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 81) (($ $ (-1079 (-224))) 75)) (-3157 (((-112) $) 40)) (-3148 (((-544)) 41)) (-3156 (((-544)) 32)) (-3154 (((-544)) 34)) (-3281 (((-635 (-635 (-936 (-224)))) $) 23)) (-3147 (((-112) (-112)) 42)) (-4353 (((-857) $) 105)) (-3150 (((-112)) 38))) -(((-918) (-13 (-948) (-10 -8 (-15 -3171 ($ (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-635 (-1 (-224) (-224))) (-1079 (-224)))) (-15 -3171 ($ (-635 (-1 (-224) (-224))) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3158 ($ (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3158 ($ (-1 (-224) (-224)))) (-15 -3171 ($ $ (-1079 (-224)))) (-15 -3157 ((-112) $)) (-15 -4281 ($ $ (-1079 (-224)))) (-15 -4281 ($ $ (-1079 (-224)) (-1079 (-224)))) (-15 -3519 ($ $ (-1079 (-224)))) (-15 -3519 ($ $)) (-15 -3170 ((-1079 (-224)) $)) (-15 -3156 ((-544))) (-15 -3155 ((-544) (-544))) (-15 -3154 ((-544))) (-15 -3153 ((-544) (-544))) (-15 -3152 ((-544))) (-15 -3151 ((-544) (-544))) (-15 -3150 ((-112))) (-15 -3149 ((-112) (-112))) (-15 -3148 ((-544))) (-15 -3147 ((-112) (-112)))))) (T -918)) -((-3171 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3172 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3172 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3158 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-918)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-4281 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-3519 (*1 *1 *1) (-5 *1 (-918))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) (-3156 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3154 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3152 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3151 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3150 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918)))) (-3149 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918)))) (-3148 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918)))) (-3147 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918))))) -(-13 (-948) (-10 -8 (-15 -3171 ($ (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-635 (-1 (-224) (-224))) (-1079 (-224)))) (-15 -3171 ($ (-635 (-1 (-224) (-224))) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3158 ($ (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3158 ($ (-1 (-224) (-224)))) (-15 -3171 ($ $ (-1079 (-224)))) (-15 -3157 ((-112) $)) (-15 -4281 ($ $ (-1079 (-224)))) (-15 -4281 ($ $ (-1079 (-224)) (-1079 (-224)))) (-15 -3519 ($ $ (-1079 (-224)))) (-15 -3519 ($ $)) (-15 -3170 ((-1079 (-224)) $)) (-15 -3156 ((-544))) (-15 -3155 ((-544) (-544))) (-15 -3154 ((-544))) (-15 -3153 ((-544) (-544))) (-15 -3152 ((-544))) (-15 -3151 ((-544) (-544))) (-15 -3150 ((-112))) (-15 -3149 ((-112) (-112))) (-15 -3148 ((-544))) (-15 -3147 ((-112) (-112))))) -((-3158 (((-918) |#1| (-1166)) 17) (((-918) |#1| (-1166) (-1079 (-224))) 21)) (-3171 (((-918) |#1| |#1| (-1166) (-1079 (-224))) 19) (((-918) |#1| (-1166) (-1079 (-224))) 15))) -(((-919 |#1|) (-10 -7 (-15 -3171 ((-918) |#1| (-1166) (-1079 (-224)))) (-15 -3171 ((-918) |#1| |#1| (-1166) (-1079 (-224)))) (-15 -3158 ((-918) |#1| (-1166) (-1079 (-224)))) (-15 -3158 ((-918) |#1| (-1166)))) (-609 (-533))) (T -919)) -((-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533))))) (-3158 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533))))) (-3171 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533))))) (-3171 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533)))))) -(-10 -7 (-15 -3171 ((-918) |#1| (-1166) (-1079 (-224)))) (-15 -3171 ((-918) |#1| |#1| (-1166) (-1079 (-224)))) (-15 -3158 ((-918) |#1| (-1166) (-1079 (-224)))) (-15 -3158 ((-918) |#1| (-1166)))) -((-4281 (($ $ (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 69)) (-3278 (((-1079 (-224)) $) 40)) (-3279 (((-1079 (-224)) $) 39)) (-3280 (((-1079 (-224)) $) 38)) (-3169 (((-635 (-635 (-224))) $) 43)) (-3170 (((-1079 (-224)) $) 41)) (-3163 (((-544) (-544)) 32)) (-3167 (((-544) (-544)) 28)) (-3165 (((-544) (-544)) 30)) (-3161 (((-112) (-112)) 35)) (-3164 (((-544)) 31)) (-3519 (($ $ (-1079 (-224))) 72) (($ $) 73)) (-3172 (($ (-1 (-936 (-224)) (-224)) (-1079 (-224))) 77) (($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 78)) (-3171 (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224))) 81) (($ $ (-1079 (-224))) 75)) (-3160 (((-544)) 36)) (-3168 (((-544)) 27)) (-3166 (((-544)) 29)) (-3281 (((-635 (-635 (-936 (-224)))) $) 93)) (-3159 (((-112) (-112)) 37)) (-4353 (((-857) $) 92)) (-3162 (((-112)) 34))) -(((-920) (-13 (-967) (-10 -8 (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ $ (-1079 (-224)))) (-15 -4281 ($ $ (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3519 ($ $ (-1079 (-224)))) (-15 -3519 ($ $)) (-15 -3170 ((-1079 (-224)) $)) (-15 -3169 ((-635 (-635 (-224))) $)) (-15 -3168 ((-544))) (-15 -3167 ((-544) (-544))) (-15 -3166 ((-544))) (-15 -3165 ((-544) (-544))) (-15 -3164 ((-544))) (-15 -3163 ((-544) (-544))) (-15 -3162 ((-112))) (-15 -3161 ((-112) (-112))) (-15 -3160 ((-544))) (-15 -3159 ((-112) (-112)))))) (T -920)) -((-3172 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))) (-3172 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))) (-3171 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))) (-3171 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) (-4281 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) (-3519 (*1 *1 *1) (-5 *1 (-920))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-920)))) (-3168 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3167 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3166 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3164 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3162 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920)))) (-3160 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920)))) (-3159 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920))))) -(-13 (-967) (-10 -8 (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)))) (-15 -3172 ($ (-1 (-936 (-224)) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)))) (-15 -3171 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3171 ($ $ (-1079 (-224)))) (-15 -4281 ($ $ (-1079 (-224)) (-1079 (-224)) (-1079 (-224)))) (-15 -3519 ($ $ (-1079 (-224)))) (-15 -3519 ($ $)) (-15 -3170 ((-1079 (-224)) $)) (-15 -3169 ((-635 (-635 (-224))) $)) (-15 -3168 ((-544))) (-15 -3167 ((-544) (-544))) (-15 -3166 ((-544))) (-15 -3165 ((-544) (-544))) (-15 -3164 ((-544))) (-15 -3163 ((-544) (-544))) (-15 -3162 ((-112))) (-15 -3161 ((-112) (-112))) (-15 -3160 ((-544))) (-15 -3159 ((-112) (-112))))) -((-3173 (((-635 (-1079 (-224))) (-635 (-635 (-936 (-224))))) 24))) -(((-921) (-10 -7 (-15 -3173 ((-635 (-1079 (-224))) (-635 (-635 (-936 (-224)))))))) (T -921)) -((-3173 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-635 (-1079 (-224)))) (-5 *1 (-921))))) -(-10 -7 (-15 -3173 ((-635 (-1079 (-224))) (-635 (-635 (-936 (-224))))))) -((-3175 (((-313 (-544)) (-1166)) 16)) (-3176 (((-313 (-544)) (-1166)) 14)) (-4359 (((-313 (-544)) (-1166)) 12)) (-3174 (((-313 (-544)) (-1166) (-1148)) 19))) -(((-922) (-10 -7 (-15 -3174 ((-313 (-544)) (-1166) (-1148))) (-15 -4359 ((-313 (-544)) (-1166))) (-15 -3175 ((-313 (-544)) (-1166))) (-15 -3176 ((-313 (-544)) (-1166))))) (T -922)) -((-3176 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) (-3174 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1148)) (-5 *2 (-313 (-544))) (-5 *1 (-922))))) -(-10 -7 (-15 -3174 ((-313 (-544)) (-1166) (-1148))) (-15 -4359 ((-313 (-544)) (-1166))) (-15 -3175 ((-313 (-544)) (-1166))) (-15 -3176 ((-313 (-544)) (-1166)))) -((-3175 ((|#2| |#2|) 26)) (-3176 ((|#2| |#2|) 27)) (-4359 ((|#2| |#2|) 25)) (-3174 ((|#2| |#2| (-1148)) 24))) -(((-923 |#1| |#2|) (-10 -7 (-15 -3174 (|#2| |#2| (-1148))) (-15 -4359 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -3176 (|#2| |#2|))) (-844) (-420 |#1|)) (T -923)) -((-3176 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3)))) (-3175 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3)))) (-4359 (*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3)))) (-3174 (*1 *2 *2 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-844)) (-5 *1 (-923 *4 *2)) (-4 *2 (-420 *4))))) -(-10 -7 (-15 -3174 (|#2| |#2| (-1148))) (-15 -4359 (|#2| |#2|)) (-15 -3175 (|#2| |#2|)) (-15 -3176 (|#2| |#2|))) -((-3178 (((-881 |#1| |#3|) |#2| (-883 |#1|) (-881 |#1| |#3|)) 25)) (-3177 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-924 |#1| |#2| |#3|) (-10 -7 (-15 -3177 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3178 ((-881 |#1| |#3|) |#2| (-883 |#1|) (-881 |#1| |#3|)))) (-1091) (-879 |#1|) (-13 (-1091) (-1031 |#2|))) (T -924)) -((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-13 (-1091) (-1031 *3))) (-4 *3 (-879 *5)) (-5 *1 (-924 *5 *3 *6)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1091) (-1031 *5))) (-4 *5 (-879 *4)) (-4 *4 (-1091)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-924 *4 *5 *6))))) -(-10 -7 (-15 -3177 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3178 ((-881 |#1| |#3|) |#2| (-883 |#1|) (-881 |#1| |#3|)))) -((-3178 (((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)) 30))) -(((-925 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) (-1091) (-13 (-554) (-844) (-879 |#1|)) (-13 (-420 |#2|) (-609 (-883 |#1|)) (-879 |#1|) (-1031 (-606 $)))) (T -925)) -((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) (-4 *3 (-13 (-420 *6) (-609 *4) (-879 *5) (-1031 (-606 $)))) (-5 *4 (-883 *5)) (-4 *6 (-13 (-554) (-844) (-879 *5))) (-5 *1 (-925 *5 *6 *3))))) -(-10 -7 (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) -((-3178 (((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|)) 13))) -(((-926 |#1|) (-10 -7 (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|)))) (-543)) (T -926)) -((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 (-544) *3)) (-5 *4 (-883 (-544))) (-4 *3 (-543)) (-5 *1 (-926 *3))))) -(-10 -7 (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|)))) -((-3178 (((-881 |#1| |#2|) (-606 |#2|) (-883 |#1|) (-881 |#1| |#2|)) 54))) -(((-927 |#1| |#2|) (-10 -7 (-15 -3178 ((-881 |#1| |#2|) (-606 |#2|) (-883 |#1|) (-881 |#1| |#2|)))) (-1091) (-13 (-844) (-1031 (-606 $)) (-609 (-883 |#1|)) (-879 |#1|))) (T -927)) -((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6)) (-5 *3 (-606 *6)) (-4 *5 (-1091)) (-4 *6 (-13 (-844) (-1031 (-606 $)) (-609 *4) (-879 *5))) (-5 *4 (-883 *5)) (-5 *1 (-927 *5 *6))))) -(-10 -7 (-15 -3178 ((-881 |#1| |#2|) (-606 |#2|) (-883 |#1|) (-881 |#1| |#2|)))) -((-3178 (((-878 |#1| |#2| |#3|) |#3| (-883 |#1|) (-878 |#1| |#2| |#3|)) 15))) -(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-878 |#1| |#2| |#3|) |#3| (-883 |#1|) (-878 |#1| |#2| |#3|)))) (-1091) (-879 |#1|) (-659 |#2|)) (T -928)) -((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-878 *5 *6 *3)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-879 *5)) (-4 *3 (-659 *6)) (-5 *1 (-928 *5 *6 *3))))) -(-10 -7 (-15 -3178 ((-878 |#1| |#2| |#3|) |#3| (-883 |#1|) (-878 |#1| |#2| |#3|)))) -((-3178 (((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|)) 17 (|has| |#3| (-879 |#1|))) (((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|) (-1 (-881 |#1| |#5|) |#3| (-883 |#1|) (-881 |#1| |#5|))) 16))) -(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3178 ((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|) (-1 (-881 |#1| |#5|) |#3| (-883 |#1|) (-881 |#1| |#5|)))) (IF (|has| |#3| (-879 |#1|)) (-15 -3178 ((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|))) |%noBranch|)) (-1091) (-787) (-844) (-13 (-1042) (-844) (-879 |#1|)) (-13 (-943 |#4| |#2| |#3|) (-609 (-883 |#1|)))) (T -929)) -((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) (-4 *3 (-13 (-943 *8 *6 *7) (-609 *4))) (-5 *4 (-883 *5)) (-4 *7 (-879 *5)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-13 (-1042) (-844) (-879 *5))) (-5 *1 (-929 *5 *6 *7 *8 *3)))) (-3178 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-881 *6 *3) *8 (-883 *6) (-881 *6 *3))) (-4 *8 (-844)) (-5 *2 (-881 *6 *3)) (-5 *4 (-883 *6)) (-4 *6 (-1091)) (-4 *3 (-13 (-943 *9 *7 *8) (-609 *4))) (-4 *7 (-787)) (-4 *9 (-13 (-1042) (-844) (-879 *6))) (-5 *1 (-929 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3178 ((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|) (-1 (-881 |#1| |#5|) |#3| (-883 |#1|) (-881 |#1| |#5|)))) (IF (|has| |#3| (-879 |#1|)) (-15 -3178 ((-881 |#1| |#5|) |#5| (-883 |#1|) (-881 |#1| |#5|))) |%noBranch|)) -((-3610 (((-313 (-544)) (-1166) (-635 (-1 (-112) |#1|))) 18) (((-313 (-544)) (-1166) (-1 (-112) |#1|)) 15))) -(((-930 |#1|) (-10 -7 (-15 -3610 ((-313 (-544)) (-1166) (-1 (-112) |#1|))) (-15 -3610 ((-313 (-544)) (-1166) (-635 (-1 (-112) |#1|))))) (-1204)) (T -930)) -((-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-635 (-1 (-112) *5))) (-4 *5 (-1204)) (-5 *2 (-313 (-544))) (-5 *1 (-930 *5)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1204)) (-5 *2 (-313 (-544))) (-5 *1 (-930 *5))))) -(-10 -7 (-15 -3610 ((-313 (-544)) (-1166) (-1 (-112) |#1|))) (-15 -3610 ((-313 (-544)) (-1166) (-635 (-1 (-112) |#1|))))) -((-3610 ((|#2| |#2| (-635 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3610 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3610 (|#2| |#2| (-635 (-1 (-112) |#3|))))) (-844) (-420 |#1|) (-1204)) (T -931)) -((-3610 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-1 (-112) *5))) (-4 *5 (-1204)) (-4 *4 (-844)) (-5 *1 (-931 *4 *2 *5)) (-4 *2 (-420 *4)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1204)) (-4 *4 (-844)) (-5 *1 (-931 *4 *2 *5)) (-4 *2 (-420 *4))))) -(-10 -7 (-15 -3610 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3610 (|#2| |#2| (-635 (-1 (-112) |#3|))))) -((-3178 (((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)) 25))) -(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) (-1091) (-13 (-554) (-879 |#1|) (-609 (-883 |#1|))) (-984 |#2|)) (T -932)) -((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) (-4 *3 (-984 *6)) (-4 *6 (-13 (-554) (-879 *5) (-609 *4))) (-5 *4 (-883 *5)) (-5 *1 (-932 *5 *6 *3))))) -(-10 -7 (-15 -3178 ((-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) -((-3178 (((-881 |#1| (-1166)) (-1166) (-883 |#1|) (-881 |#1| (-1166))) 17))) -(((-933 |#1|) (-10 -7 (-15 -3178 ((-881 |#1| (-1166)) (-1166) (-883 |#1|) (-881 |#1| (-1166))))) (-1091)) (T -933)) -((-3178 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 (-1166))) (-5 *3 (-1166)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-5 *1 (-933 *5))))) -(-10 -7 (-15 -3178 ((-881 |#1| (-1166)) (-1166) (-883 |#1|) (-881 |#1| (-1166))))) -((-3179 (((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))) 33)) (-3178 (((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-1 |#3| (-635 |#3|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))) 32))) -(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-1 |#3| (-635 |#3|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) (-15 -3179 ((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))))) (-1091) (-13 (-1042) (-844)) (-13 (-1042) (-609 (-883 |#1|)) (-1031 |#2|))) (T -934)) -((-3179 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-883 *6))) (-5 *5 (-1 (-881 *6 *8) *8 (-883 *6) (-881 *6 *8))) (-4 *6 (-1091)) (-4 *8 (-13 (-1042) (-609 (-883 *6)) (-1031 *7))) (-5 *2 (-881 *6 *8)) (-4 *7 (-13 (-1042) (-844))) (-5 *1 (-934 *6 *7 *8)))) (-3178 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-635 (-883 *7))) (-5 *5 (-1 *9 (-635 *9))) (-5 *6 (-1 (-881 *7 *9) *9 (-883 *7) (-881 *7 *9))) (-4 *7 (-1091)) (-4 *9 (-13 (-1042) (-609 (-883 *7)) (-1031 *8))) (-5 *2 (-881 *7 *9)) (-5 *3 (-635 *9)) (-4 *8 (-13 (-1042) (-844))) (-5 *1 (-934 *7 *8 *9))))) -(-10 -7 (-15 -3178 ((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-1 |#3| (-635 |#3|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|)))) (-15 -3179 ((-881 |#1| |#3|) (-635 |#3|) (-635 (-883 |#1|)) (-881 |#1| |#3|) (-1 (-881 |#1| |#3|) |#3| (-883 |#1|) (-881 |#1| |#3|))))) -((-3187 (((-1160 (-406 (-544))) (-544)) 62)) (-3186 (((-1160 (-544)) (-544)) 65)) (-3738 (((-1160 (-544)) (-544)) 59)) (-3185 (((-544) (-1160 (-544))) 54)) (-3184 (((-1160 (-406 (-544))) (-544)) 48)) (-3183 (((-1160 (-544)) (-544)) 37)) (-3182 (((-1160 (-544)) (-544)) 67)) (-3181 (((-1160 (-544)) (-544)) 66)) (-3180 (((-1160 (-406 (-544))) (-544)) 50))) -(((-935) (-10 -7 (-15 -3180 ((-1160 (-406 (-544))) (-544))) (-15 -3181 ((-1160 (-544)) (-544))) (-15 -3182 ((-1160 (-544)) (-544))) (-15 -3183 ((-1160 (-544)) (-544))) (-15 -3184 ((-1160 (-406 (-544))) (-544))) (-15 -3185 ((-544) (-1160 (-544)))) (-15 -3738 ((-1160 (-544)) (-544))) (-15 -3186 ((-1160 (-544)) (-544))) (-15 -3187 ((-1160 (-406 (-544))) (-544))))) (T -935)) -((-3187 (*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3186 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1160 (-544))) (-5 *2 (-544)) (-5 *1 (-935)))) (-3184 (*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3183 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3182 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3181 (*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) (-3180 (*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544))))) -(-10 -7 (-15 -3180 ((-1160 (-406 (-544))) (-544))) (-15 -3181 ((-1160 (-544)) (-544))) (-15 -3182 ((-1160 (-544)) (-544))) (-15 -3183 ((-1160 (-544)) (-544))) (-15 -3184 ((-1160 (-406 (-544))) (-544))) (-15 -3185 ((-544) (-1160 (-544)))) (-15 -3738 ((-1160 (-544)) (-544))) (-15 -3186 ((-1160 (-544)) (-544))) (-15 -3187 ((-1160 (-406 (-544))) (-544)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765)) NIL (|has| |#1| (-23)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) 11 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-4113 (($ (-635 |#1|)) 13)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) 8)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 10 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4239 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-4123 (((-112) $ (-765)) NIL)) (-4240 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-4175 (($ $ (-635 |#1|)) 26)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) 20) (($ $ (-1220 (-544))) NIL)) (-4243 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-4318 (((-912) $) 16)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4241 (($ $ $) 24)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533)))) (($ (-635 |#1|)) 17)) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4246 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-544) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-4364 (((-765) $) 14 (|has| $ (-6 -4400))))) -(((-936 |#1|) (-973 |#1|) (-1042)) (T -936)) -NIL -(-973 |#1|) -((-3190 (((-479 |#1| |#2|) (-939 |#2|)) 20)) (-3193 (((-246 |#1| |#2|) (-939 |#2|)) 33)) (-3191 (((-939 |#2|) (-479 |#1| |#2|)) 25)) (-3189 (((-246 |#1| |#2|) (-479 |#1| |#2|)) 55)) (-3192 (((-939 |#2|) (-246 |#1| |#2|)) 30)) (-3188 (((-479 |#1| |#2|) (-246 |#1| |#2|)) 46))) -(((-937 |#1| |#2|) (-10 -7 (-15 -3188 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -3189 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3190 ((-479 |#1| |#2|) (-939 |#2|))) (-15 -3191 ((-939 |#2|) (-479 |#1| |#2|))) (-15 -3192 ((-939 |#2|) (-246 |#1| |#2|))) (-15 -3193 ((-246 |#1| |#2|) (-939 |#2|)))) (-635 (-1166)) (-1042)) (T -937)) -((-3193 (*1 *2 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-635 (-1166))))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) (-5 *2 (-939 *5)) (-5 *1 (-937 *4 *5)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) (-5 *2 (-939 *5)) (-5 *1 (-937 *4 *5)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-635 (-1166))))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5))))) -(-10 -7 (-15 -3188 ((-479 |#1| |#2|) (-246 |#1| |#2|))) (-15 -3189 ((-246 |#1| |#2|) (-479 |#1| |#2|))) (-15 -3190 ((-479 |#1| |#2|) (-939 |#2|))) (-15 -3191 ((-939 |#2|) (-479 |#1| |#2|))) (-15 -3192 ((-939 |#2|) (-246 |#1| |#2|))) (-15 -3193 ((-246 |#1| |#2|) (-939 |#2|)))) -((-3194 (((-635 |#2|) |#2| |#2|) 10)) (-3197 (((-765) (-635 |#1|)) 37 (|has| |#1| (-842)))) (-3195 (((-635 |#2|) |#2|) 11)) (-3198 (((-765) (-635 |#1|) (-544) (-544)) 39 (|has| |#1| (-842)))) (-3196 ((|#1| |#2|) 32 (|has| |#1| (-842))))) -(((-938 |#1| |#2|) (-10 -7 (-15 -3194 ((-635 |#2|) |#2| |#2|)) (-15 -3195 ((-635 |#2|) |#2|)) (IF (|has| |#1| (-842)) (PROGN (-15 -3196 (|#1| |#2|)) (-15 -3197 ((-765) (-635 |#1|))) (-15 -3198 ((-765) (-635 |#1|) (-544) (-544)))) |%noBranch|)) (-362) (-1229 |#1|)) (T -938)) -((-3198 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-544)) (-4 *5 (-842)) (-4 *5 (-362)) (-5 *2 (-765)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1229 *5)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-842)) (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-938 *4 *5)) (-4 *5 (-1229 *4)))) (-3196 (*1 *2 *3) (-12 (-4 *2 (-362)) (-4 *2 (-842)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1229 *2)))) (-3195 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1229 *4)))) (-3194 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -3194 ((-635 |#2|) |#2| |#2|)) (-15 -3195 ((-635 |#2|) |#2|)) (IF (|has| |#1| (-842)) (PROGN (-15 -3196 (|#1| |#2|)) (-15 -3197 ((-765) (-635 |#1|))) (-15 -3198 ((-765) (-635 |#1|) (-544) (-544)))) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1166)) $) 16)) (-3469 (((-1160 $) $ (-1166)) 21) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1166))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) 8) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1166) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1166) $) NIL)) (-4163 (($ $ $ (-1166)) NIL (|has| |#1| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1166)) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 (-1166)) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1166) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1166) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#1|) (-1166)) NIL) (($ (-1160 $) (-1166)) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1166)) NIL)) (-3202 (((-529 (-1166)) $) NIL) (((-765) $ (-1166)) NIL) (((-635 (-765)) $ (-635 (-1166))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 (-1166)) (-529 (-1166))) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3468 (((-3 (-1166) #3="failed") $) 19)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1166)) (|:| -2536 (-765))) #3#) $) NIL)) (-4219 (($ $ (-1166)) 29 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1166) |#1|) NIL) (($ $ (-635 (-1166)) (-635 |#1|)) NIL) (($ $ (-1166) $) NIL) (($ $ (-635 (-1166)) (-635 $)) NIL)) (-4164 (($ $ (-1166)) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-4355 (((-529 (-1166)) $) NIL) (((-765) $ (-1166)) NIL) (((-635 (-765)) $ (-635 (-1166))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1166) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1166) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1166) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1166)) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 25) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-1166)) 27) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-939 |#1|) (-13 (-943 |#1| (-529 (-1166)) (-1166)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1166))) |%noBranch|))) (-1042)) (T -939)) -((-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-939 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042))))) -(-13 (-943 |#1| (-529 (-1166)) (-1166)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1166))) |%noBranch|))) -((-4365 (((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)) 19))) -(((-940 |#1| |#2|) (-10 -7 (-15 -4365 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) (-1042) (-1042)) (T -940)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-939 *6)) (-5 *1 (-940 *5 *6))))) -(-10 -7 (-15 -4365 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) -((-3469 (((-1222 |#1| (-939 |#2|)) (-939 |#2|) (-1250 |#1|)) 18))) -(((-941 |#1| |#2|) (-10 -7 (-15 -3469 ((-1222 |#1| (-939 |#2|)) (-939 |#2|) (-1250 |#1|)))) (-1166) (-1042)) (T -941)) -((-3469 (*1 *2 *3 *4) (-12 (-5 *4 (-1250 *5)) (-14 *5 (-1166)) (-4 *6 (-1042)) (-5 *2 (-1222 *5 (-939 *6))) (-5 *1 (-941 *5 *6)) (-5 *3 (-939 *6))))) -(-10 -7 (-15 -3469 ((-1222 |#1| (-939 |#2|)) (-939 |#2|) (-1250 |#1|)))) -((-3201 (((-765) $) 71) (((-765) $ (-635 |#4|)) 74)) (-4181 (($ $) 172)) (-4376 (((-404 $) $) 164)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 115)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL) (((-3 (-544) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL) (((-544) $) NIL) ((|#4| $) 59)) (-4163 (($ $ $ |#4|) 76)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 105) (((-682 |#2|) (-682 $)) 98)) (-3902 (($ $) 179) (($ $ |#4|) 182)) (-3200 (((-635 $) $) 63)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 198) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 191)) (-3203 (((-635 $) $) 28)) (-3276 (($ |#2| |#3|) NIL) (($ $ |#4| (-765)) NIL) (($ $ (-635 |#4|) (-635 (-765))) 57)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#4|) 161)) (-3205 (((-3 (-635 $) "failed") $) 42)) (-3204 (((-3 (-635 $) "failed") $) 31)) (-3206 (((-3 (-2 (|:| |var| |#4|) (|:| -2536 (-765))) "failed") $) 47)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 108)) (-3087 (((-404 (-1160 $)) (-1160 $)) 121)) (-3088 (((-404 (-1160 $)) (-1160 $)) 119)) (-4139 (((-404 $) $) 139)) (-4174 (($ $ (-635 (-292 $))) 21) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-635 |#4|) (-635 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-635 |#4|) (-635 $)) NIL)) (-4164 (($ $ |#4|) 78)) (-4377 (((-883 (-377)) $) 212) (((-883 (-544)) $) 205) (((-533) $) 220)) (-3199 ((|#2| $) NIL) (($ $ |#4|) 174)) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 153)) (-4084 ((|#2| $ |#3|) NIL) (($ $ |#4| (-765)) 52) (($ $ (-635 |#4|) (-635 (-765))) 55)) (-3084 (((-3 $ #1#) $) 155)) (-3067 (((-112) $ $) 185))) -(((-942 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -3084 ((-3 |#1| #1="failed") |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) #1#) (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3085 ((-3 (-1253 |#1|) #1#) (-682 |#1|))) (-15 -3902 (|#1| |#1| |#4|)) (-15 -3199 (|#1| |#1| |#4|)) (-15 -4164 (|#1| |#1| |#4|)) (-15 -4163 (|#1| |#1| |#1| |#4|)) (-15 -3200 ((-635 |#1|) |#1|)) (-15 -3201 ((-765) |#1| (-635 |#4|))) (-15 -3201 ((-765) |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| |#4|) (|:| -2536 (-765))) "failed") |#1|)) (-15 -3205 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3204 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3276 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -3276 (|#1| |#1| |#4| (-765))) (-15 -4169 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3203 ((-635 |#1|) |#1|)) (-15 -4084 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -4084 (|#1| |#1| |#4| (-765))) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -3558 ((-3 |#4| #2="failed") |#1|)) (-15 -3557 (|#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#4| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -3276 (|#1| |#2| |#3|)) (-15 -4084 (|#2| |#1| |#3|)) (-15 -3558 ((-3 (-544) #2#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #2#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #2#) |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3902 (|#1| |#1|))) (-943 |#2| |#3| |#4|) (-1042) (-787) (-844)) (T -942)) -NIL -(-10 -8 (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -3084 ((-3 |#1| #1="failed") |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) #1#) (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3085 ((-3 (-1253 |#1|) #1#) (-682 |#1|))) (-15 -3902 (|#1| |#1| |#4|)) (-15 -3199 (|#1| |#1| |#4|)) (-15 -4164 (|#1| |#1| |#4|)) (-15 -4163 (|#1| |#1| |#1| |#4|)) (-15 -3200 ((-635 |#1|) |#1|)) (-15 -3201 ((-765) |#1| (-635 |#4|))) (-15 -3201 ((-765) |#1|)) (-15 -3206 ((-3 (-2 (|:| |var| |#4|) (|:| -2536 (-765))) "failed") |#1|)) (-15 -3205 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3204 ((-3 (-635 |#1|) "failed") |#1|)) (-15 -3276 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -3276 (|#1| |#1| |#4| (-765))) (-15 -4169 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3203 ((-635 |#1|) |#1|)) (-15 -4084 (|#1| |#1| (-635 |#4|) (-635 (-765)))) (-15 -4084 (|#1| |#1| |#4| (-765))) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -3558 ((-3 |#4| #2="failed") |#1|)) (-15 -3557 (|#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#4| |#1|)) (-15 -4174 (|#1| |#1| (-635 |#4|) (-635 |#2|))) (-15 -4174 (|#1| |#1| |#4| |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -3276 (|#1| |#2| |#3|)) (-15 -4084 (|#2| |#1| |#3|)) (-15 -3558 ((-3 (-544) #2#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #2#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #2#) |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -3902 (|#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 |#3|) $) 110)) (-3469 (((-1160 $) $ |#3|) 125) (((-1160 |#1|) $) 124)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2213 (($ $) 88 (|has| |#1| (-554)))) (-2211 (((-112) $) 90 (|has| |#1| (-554)))) (-3201 (((-765) $) 112) (((-765) $ (-635 |#3|)) 111)) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 100 (|has| |#1| (-903)))) (-4181 (($ $) 98 (|has| |#1| (-450)))) (-4376 (((-404 $) $) 97 (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 103 (|has| |#1| (-903)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 164) (((-3 (-406 (-544)) #2#) $) 161 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) 159 (|has| |#1| (-1031 (-544)))) (((-3 |#3| #2#) $) 136)) (-3557 ((|#1| $) 163) (((-406 (-544)) $) 162 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 160 (|has| |#1| (-1031 (-544)))) ((|#3| $) 137)) (-4163 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-4366 (($ $) 154)) (-2401 (((-682 (-544)) (-682 $)) 134 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3866 (((-3 $ "failed") $) 33)) (-3902 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-3200 (((-635 $) $) 109)) (-4130 (((-112) $) 96 (|has| |#1| (-903)))) (-1749 (($ $ |#1| |#2| $) 172)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84 (-12 (|has| |#3| (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 83 (-12 (|has| |#3| (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 169)) (-3470 (($ (-1160 |#1|) |#3|) 117) (($ (-1160 $) |#3|) 116)) (-3203 (((-635 $) $) 126)) (-4344 (((-112) $) 152)) (-3276 (($ |#1| |#2|) 153) (($ $ |#3| (-765)) 119) (($ $ (-635 |#3|) (-635 (-765))) 118)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) 120)) (-3202 ((|#2| $) 170) (((-765) $ |#3|) 122) (((-635 (-765)) $ (-635 |#3|)) 121)) (-2913 (($ $ $) 79 (|has| |#1| (-844)))) (-3242 (($ $ $) 78 (|has| |#1| (-844)))) (-1750 (($ (-1 |#2| |#2|) $) 171)) (-4365 (($ (-1 |#1| |#1|) $) 151)) (-3468 (((-3 |#3| "failed") $) 123)) (-3277 (($ $) 149)) (-3575 ((|#1| $) 148)) (-2041 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3643 (((-1148) $) 9)) (-3205 (((-3 (-635 $) "failed") $) 114)) (-3204 (((-3 (-635 $) "failed") $) 115)) (-3206 (((-3 (-2 (|:| |var| |#3|) (|:| -2536 (-765))) "failed") $) 113)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 166)) (-1943 ((|#1| $) 167)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 95 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 102 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 101 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 99 (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) 145) (($ $ (-292 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138)) (-4164 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4217 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-635 |#3|) (-635 (-765))) 39)) (-4355 ((|#2| $) 150) (((-765) $ |#3|) 130) (((-635 (-765)) $ (-635 |#3|)) 129)) (-4377 (((-883 (-377)) $) 82 (-12 (|has| |#3| (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) 81 (-12 (|has| |#3| (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) 80 (-12 (|has| |#3| (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 104 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-554))) (($ (-406 (-544))) 72 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))))) (-4224 (((-635 |#1|) $) 168)) (-4084 ((|#1| $ |#2|) 155) (($ $ |#3| (-765)) 128) (($ $ (-635 |#3|) (-635 (-765))) 127)) (-3084 (((-3 $ "failed") $) 73 (-3936 (-3240 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 89 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-635 |#3|) (-635 (-765))) 35)) (-2945 (((-112) $ $) 76 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 75 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 77 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 74 (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 157 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-943 |#1| |#2| |#3|) (-139) (-1042) (-787) (-844)) (T -943)) -((-3902 (*1 *1 *1) (-12 (-4 *1 (-943 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-4355 (*1 *2 *1 *3) (-12 (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-765)))) (-4355 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 (-765))))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-943 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *2 (-844)))) (-4084 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-765))) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) (-3469 (*1 *2 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-1160 *1)) (-4 *1 (-943 *4 *5 *3)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-1160 *3)))) (-3468 (*1 *2 *1) (|partial| -12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3202 (*1 *2 *1 *3) (-12 (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-765)))) (-3202 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 (-765))))) (-4169 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-943 *4 *5 *3)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-943 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *2 (-844)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-765))) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) (-3470 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 *4)) (-4 *4 (-1042)) (-4 *1 (-943 *4 *5 *3)) (-4 *5 (-787)) (-4 *3 (-844)))) (-3470 (*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)))) (-3204 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) (-3205 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) (-3206 (*1 *2 *1) (|partial| -12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| |var| *5) (|:| -2536 (-765)))))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-765)))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *5)))) (-3200 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) (-4163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-171)))) (-4164 (*1 *1 *1 *2) (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-171)))) (-3199 (*1 *1 *1 *2) (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-450)))) (-3902 (*1 *1 *1 *2) (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *3 (-450)))) (-4181 (*1 *1 *1) (-12 (-4 *1 (-943 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-4376 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-404 *1)) (-4 *1 (-943 *3 *4 *5))))) -(-13 (-893 |t#3|) (-325 |t#1| |t#2|) (-308 $) (-512 |t#3| |t#1|) (-512 |t#3| $) (-1031 |t#3|) (-376 |t#1|) (-10 -8 (-15 -4355 ((-765) $ |t#3|)) (-15 -4355 ((-635 (-765)) $ (-635 |t#3|))) (-15 -4084 ($ $ |t#3| (-765))) (-15 -4084 ($ $ (-635 |t#3|) (-635 (-765)))) (-15 -3203 ((-635 $) $)) (-15 -3469 ((-1160 $) $ |t#3|)) (-15 -3469 ((-1160 |t#1|) $)) (-15 -3468 ((-3 |t#3| "failed") $)) (-15 -3202 ((-765) $ |t#3|)) (-15 -3202 ((-635 (-765)) $ (-635 |t#3|))) (-15 -4169 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |t#3|)) (-15 -3276 ($ $ |t#3| (-765))) (-15 -3276 ($ $ (-635 |t#3|) (-635 (-765)))) (-15 -3470 ($ (-1160 |t#1|) |t#3|)) (-15 -3470 ($ (-1160 $) |t#3|)) (-15 -3204 ((-3 (-635 $) "failed") $)) (-15 -3205 ((-3 (-635 $) "failed") $)) (-15 -3206 ((-3 (-2 (|:| |var| |t#3|) (|:| -2536 (-765))) "failed") $)) (-15 -3201 ((-765) $)) (-15 -3201 ((-765) $ (-635 |t#3|))) (-15 -3467 ((-635 |t#3|) $)) (-15 -3200 ((-635 $) $)) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (IF (|has| |t#3| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-609 (-883 (-544)))) (IF (|has| |t#3| (-609 (-883 (-544)))) (-6 (-609 (-883 (-544)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-609 (-883 (-377)))) (IF (|has| |t#3| (-609 (-883 (-377)))) (-6 (-609 (-883 (-377)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-879 (-544))) (IF (|has| |t#3| (-879 (-544))) (-6 (-879 (-544))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-879 (-377))) (IF (|has| |t#3| (-879 (-377))) (-6 (-879 (-377))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -4163 ($ $ $ |t#3|)) (-15 -4164 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-6 (-450)) (-15 -3199 ($ $ |t#3|)) (-15 -3902 ($ $)) (-15 -3902 ($ $ |t#3|)) (-15 -4376 ((-404 $) $)) (-15 -4181 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4398)) (-6 -4398) |%noBranch|) (IF (|has| |t#1| (-903)) (-6 (-903)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 |#3|) . T) ((-611 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544))))) ((-289) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-903)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-554) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 |#3|) . T) ((-879 (-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))) ((-903) |has| |#1| (-903)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1031 |#3|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) |has| |#1| (-903))) -((-3467 (((-635 |#2|) |#5|) 36)) (-3469 (((-1160 |#5|) |#5| |#2| (-1160 |#5|)) 23) (((-406 (-1160 |#5|)) |#5| |#2|) 16)) (-3470 ((|#5| (-406 (-1160 |#5|)) |#2|) 30)) (-3468 (((-3 |#2| "failed") |#5|) 65)) (-3205 (((-3 (-635 |#5|) "failed") |#5|) 59)) (-3207 (((-3 (-2 (|:| |val| |#5|) (|:| -2536 (-544))) "failed") |#5|) 47)) (-3204 (((-3 (-635 |#5|) "failed") |#5|) 61)) (-3206 (((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-544))) "failed") |#5|) 51))) -(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3467 ((-635 |#2|) |#5|)) (-15 -3468 ((-3 |#2| "failed") |#5|)) (-15 -3469 ((-406 (-1160 |#5|)) |#5| |#2|)) (-15 -3470 (|#5| (-406 (-1160 |#5|)) |#2|)) (-15 -3469 ((-1160 |#5|) |#5| |#2| (-1160 |#5|))) (-15 -3204 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3205 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3206 ((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-544))) "failed") |#5|)) (-15 -3207 ((-3 (-2 (|:| |val| |#5|) (|:| -2536 (-544))) "failed") |#5|))) (-787) (-844) (-1042) (-943 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4353 ($ |#4|)) (-15 -3381 (|#4| $)) (-15 -3380 (|#4| $))))) (T -944)) -((-3207 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2536 (-544)))) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3206 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2536 (-544)))) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3205 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3204 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3469 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))) (-4 *7 (-943 *6 *5 *4)) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-5 *1 (-944 *5 *4 *6 *7 *3)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1160 *2))) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *2 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))) (-5 *1 (-944 *5 *4 *6 *7 *2)) (-4 *7 (-943 *6 *5 *4)))) (-3469 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *5 *4)) (-5 *2 (-406 (-1160 *3))) (-5 *1 (-944 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) (-3468 (*1 *2 *3) (|partial| -12 (-4 *4 (-787)) (-4 *5 (-1042)) (-4 *6 (-943 *5 *4 *2)) (-4 *2 (-844)) (-5 *1 (-944 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *6)) (-15 -3381 (*6 $)) (-15 -3380 (*6 $))))))) (-3467 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *5)) (-5 *1 (-944 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))) -(-10 -7 (-15 -3467 ((-635 |#2|) |#5|)) (-15 -3468 ((-3 |#2| "failed") |#5|)) (-15 -3469 ((-406 (-1160 |#5|)) |#5| |#2|)) (-15 -3470 (|#5| (-406 (-1160 |#5|)) |#2|)) (-15 -3469 ((-1160 |#5|) |#5| |#2| (-1160 |#5|))) (-15 -3204 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3205 ((-3 (-635 |#5|) "failed") |#5|)) (-15 -3206 ((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-544))) "failed") |#5|)) (-15 -3207 ((-3 (-2 (|:| |val| |#5|) (|:| -2536 (-544))) "failed") |#5|))) -((-4365 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) -(((-945 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4365 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-787) (-844) (-1042) (-943 |#3| |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765)))))) (T -945)) -((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-844)) (-4 *8 (-1042)) (-4 *6 (-787)) (-4 *2 (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765)))))) (-5 *1 (-945 *6 *7 *8 *5 *2)) (-4 *5 (-943 *8 *6 *7))))) -(-10 -7 (-15 -4365 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3208 (((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#3| (-765)) 38)) (-3209 (((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) (-406 (-544)) (-765)) 34)) (-3211 (((-2 (|:| -2536 (-765)) (|:| -4361 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-765)) 54)) (-3210 (((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#5| (-765)) 64 (|has| |#3| (-450))))) -(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3208 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#3| (-765))) (-15 -3209 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) (-406 (-544)) (-765))) (IF (|has| |#3| (-450)) (-15 -3210 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#5| (-765))) |%noBranch|) (-15 -3211 ((-2 (|:| -2536 (-765)) (|:| -4361 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-765)))) (-787) (-844) (-554) (-943 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4353 ($ |#4|)) (-15 -3381 (|#4| $)) (-15 -3380 (|#4| $))))) (T -946)) -((-3211 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) (-4 *3 (-943 *7 *5 *6)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| (-635 *3)))) (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-765)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4353 ($ *3)) (-15 -3381 (*3 $)) (-15 -3380 (*3 $))))))) (-3210 (*1 *2 *3 *4) (-12 (-4 *7 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) (-4 *8 (-943 *7 *5 *6)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| *3))) (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-765)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4353 ($ *8)) (-15 -3381 (*8 $)) (-15 -3380 (*8 $))))))) (-3209 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-544))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) (-4 *8 (-943 *7 *5 *6)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *9) (|:| |radicand| *9))) (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-765)) (-4 *9 (-13 (-362) (-10 -8 (-15 -4353 ($ *8)) (-15 -3381 (*8 $)) (-15 -3380 (*8 $))))))) (-3208 (*1 *2 *3 *4) (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-554)) (-4 *7 (-943 *3 *5 *6)) (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *8) (|:| |radicand| *8))) (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-765)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))) -(-10 -7 (-15 -3208 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#3| (-765))) (-15 -3209 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) (-406 (-544)) (-765))) (IF (|has| |#3| (-450)) (-15 -3210 ((-2 (|:| -2536 (-765)) (|:| -4361 |#5|) (|:| |radicand| |#5|)) |#5| (-765))) |%noBranch|) (-15 -3211 ((-2 (|:| -2536 (-765)) (|:| -4361 |#4|) (|:| |radicand| (-635 |#4|))) |#4| (-765)))) -((-2947 (((-112) $ $) NIL)) (-3212 (($ (-1110)) 8)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 14) (((-1110) $) 11)) (-3437 (((-112) $ $) 10))) -(((-947) (-13 (-1091) (-608 (-1110)) (-10 -8 (-15 -3212 ($ (-1110)))))) (T -947)) -((-3212 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-947))))) -(-13 (-1091) (-608 (-1110)) (-10 -8 (-15 -3212 ($ (-1110))))) -((-3279 (((-1079 (-224)) $) 8)) (-3280 (((-1079 (-224)) $) 9)) (-3281 (((-635 (-635 (-936 (-224)))) $) 10)) (-4353 (((-857) $) 6))) -(((-948) (-139)) (T -948)) -((-3281 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-635 (-635 (-936 (-224))))))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1079 (-224))))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1079 (-224)))))) -(-13 (-608 (-857)) (-10 -8 (-15 -3281 ((-635 (-635 (-936 (-224)))) $)) (-15 -3280 ((-1079 (-224)) $)) (-15 -3279 ((-1079 (-224)) $)))) -(((-608 (-857)) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 60 (|has| |#1| (-554)))) (-2213 (($ $) 61 (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 28)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) 24)) (-3866 (((-3 $ "failed") $) 35)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-1749 (($ $ |#1| |#2| $) 47)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) 16)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| |#2|) NIL)) (-3202 ((|#2| $) 19)) (-1750 (($ (-1 |#2| |#2|) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (($ $) 23)) (-3575 ((|#1| $) 21)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 40)) (-1943 ((|#1| $) NIL)) (-4145 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-130)) (|has| |#1| (-554))))) (-3865 (((-3 $ "failed") $ $) 73 (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-554)))) (-4355 ((|#2| $) 17)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) 39) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 34) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ |#2|) 31)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 15)) (-1748 (($ $ $ (-765)) 56 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 66 (|has| |#1| (-554)))) (-3040 (($) 22 T CONST)) (-3046 (($) 12 T CONST)) (-3437 (((-112) $ $) 65)) (-4356 (($ $ |#1|) 74 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) 53) (($ $ (-765)) 51)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-949 |#1| |#2|) (-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| |#2| (-130)) (-15 -4145 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|))) (-1042) (-786)) (T -949)) -((-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-949 *3 *2)) (-4 *2 (-130)) (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *2 (-786))))) -(-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| |#2| (-130)) (-15 -4145 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|))) -((-3213 (((-3 (-682 |#1|) "failed") |#2| (-912)) 15))) -(((-950 |#1| |#2|) (-10 -7 (-15 -3213 ((-3 (-682 |#1|) "failed") |#2| (-912)))) (-554) (-651 |#1|)) (T -950)) -((-3213 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-912)) (-4 *5 (-554)) (-5 *2 (-682 *5)) (-5 *1 (-950 *5 *3)) (-4 *3 (-651 *5))))) -(-10 -7 (-15 -3213 ((-3 (-682 |#1|) "failed") |#2| (-912)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) 16 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 15 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 13)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) |#1|) 12)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) 10 (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) 17 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) 11)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) 14) (($ $ (-1220 (-544))) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) NIL)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4364 (((-765) $) 8 (|has| $ (-6 -4400))))) -(((-951 |#1|) (-19 |#1|) (-1204)) (T -951)) +((-3159 ((|#2| (-639 |#1|) (-639 |#1|)) 24))) +(((-917 |#1| |#2|) (-10 -7 (-15 -3159 (|#2| (-639 |#1|) (-639 |#1|)))) (-362) (-1232 |#1|)) (T -917)) +((-3159 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-362)) (-4 *2 (-1232 *4)) (-5 *1 (-917 *4 *2))))) +(-10 -7 (-15 -3159 (|#2| (-639 |#1|) (-639 |#1|)))) +((-2607 (((-1164 |#2|) (-639 |#2|) (-639 |#2|)) 17) (((-1229 |#1| |#2|) (-1229 |#1| |#2|) (-639 |#2|) (-639 |#2|)) 13))) +(((-918 |#1| |#2|) (-10 -7 (-15 -2607 ((-1229 |#1| |#2|) (-1229 |#1| |#2|) (-639 |#2|) (-639 |#2|))) (-15 -2607 ((-1164 |#2|) (-639 |#2|) (-639 |#2|)))) (-1168) (-362)) (T -918)) +((-2607 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-362)) (-5 *2 (-1164 *5)) (-5 *1 (-918 *4 *5)) (-14 *4 (-1168)))) (-2607 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1229 *4 *5)) (-5 *3 (-639 *5)) (-14 *4 (-1168)) (-4 *5 (-362)) (-5 *1 (-918 *4 *5))))) +(-10 -7 (-15 -2607 ((-1229 |#1| |#2|) (-1229 |#1| |#2|) (-639 |#2|) (-639 |#2|))) (-15 -2607 ((-1164 |#2|) (-639 |#2|) (-639 |#2|)))) +((-2426 (((-562) (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150)) 139)) (-1888 ((|#4| |#4|) 155)) (-2443 (((-639 (-406 (-947 |#1|))) (-639 (-1168))) 119)) (-3807 (((-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-639 (-639 |#4|)) (-766) (-766) (-562)) 75)) (-1830 (((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))) (-639 |#4|)) 59)) (-4340 (((-683 |#4|) (-683 |#4|) (-639 |#4|)) 55)) (-2170 (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150)) 151)) (-3932 (((-562) (-683 |#4|) (-916) (-1150)) 133) (((-562) (-683 |#4|) (-639 (-1168)) (-916) (-1150)) 132) (((-562) (-683 |#4|) (-639 |#4|) (-916) (-1150)) 131) (((-562) (-683 |#4|) (-1150)) 128) (((-562) (-683 |#4|) (-639 (-1168)) (-1150)) 127) (((-562) (-683 |#4|) (-639 |#4|) (-1150)) 126) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-916)) 125) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)) (-916)) 124) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|) (-916)) 123) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|)) 121) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168))) 120) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|)) 116)) (-2135 ((|#4| (-947 |#1|)) 68)) (-3514 (((-112) (-639 |#4|) (-639 (-639 |#4|))) 152)) (-2120 (((-639 (-639 (-562))) (-562) (-562)) 130)) (-2501 (((-639 (-639 |#4|)) (-639 (-639 |#4|))) 88)) (-3848 (((-766) (-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|))))) 86)) (-2163 (((-766) (-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|))))) 85)) (-1875 (((-112) (-639 (-947 |#1|))) 17) (((-112) (-639 |#4|)) 13)) (-3635 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-639 |#4|)) (|:| |n0| (-639 |#4|))) (-639 |#4|) (-639 |#4|)) 71)) (-3275 (((-639 |#4|) |#4|) 49)) (-3320 (((-639 (-406 (-947 |#1|))) (-639 |#4|)) 115) (((-683 (-406 (-947 |#1|))) (-683 |#4|)) 56) (((-406 (-947 |#1|)) |#4|) 112)) (-3662 (((-2 (|:| |rgl| (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))))))) (|:| |rgsz| (-562))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-766) (-1150) (-562)) 93)) (-3294 (((-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))) (-683 |#4|) (-766)) 84)) (-3021 (((-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-683 |#4|) (-766)) 102)) (-1357 (((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| -1545 (-683 (-406 (-947 |#1|)))) (|:| |vec| (-639 (-406 (-947 |#1|)))) (|:| -2173 (-766)) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) 48))) +(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|) (-916))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)) (-916))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-916))) (-15 -3932 ((-562) (-683 |#4|) (-639 |#4|) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-639 (-1168)) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-639 |#4|) (-916) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-639 (-1168)) (-916) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-916) (-1150))) (-15 -2426 ((-562) (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150))) (-15 -2170 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150))) (-15 -3662 ((-2 (|:| |rgl| (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))))))) (|:| |rgsz| (-562))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-766) (-1150) (-562))) (-15 -3320 ((-406 (-947 |#1|)) |#4|)) (-15 -3320 ((-683 (-406 (-947 |#1|))) (-683 |#4|))) (-15 -3320 ((-639 (-406 (-947 |#1|))) (-639 |#4|))) (-15 -2443 ((-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -2135 (|#4| (-947 |#1|))) (-15 -3635 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-639 |#4|)) (|:| |n0| (-639 |#4|))) (-639 |#4|) (-639 |#4|))) (-15 -3294 ((-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))) (-683 |#4|) (-766))) (-15 -1830 ((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))) (-639 |#4|))) (-15 -1357 ((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| -1545 (-683 (-406 (-947 |#1|)))) (|:| |vec| (-639 (-406 (-947 |#1|)))) (|:| -2173 (-766)) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (-15 -3275 ((-639 |#4|) |#4|)) (-15 -2163 ((-766) (-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))))) (-15 -3848 ((-766) (-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))))) (-15 -2501 ((-639 (-639 |#4|)) (-639 (-639 |#4|)))) (-15 -2120 ((-639 (-639 (-562))) (-562) (-562))) (-15 -3514 ((-112) (-639 |#4|) (-639 (-639 |#4|)))) (-15 -3021 ((-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-683 |#4|) (-766))) (-15 -4340 ((-683 |#4|) (-683 |#4|) (-639 |#4|))) (-15 -3807 ((-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-639 (-639 |#4|)) (-766) (-766) (-562))) (-15 -1888 (|#4| |#4|)) (-15 -1875 ((-112) (-639 |#4|))) (-15 -1875 ((-112) (-639 (-947 |#1|))))) (-13 (-306) (-146)) (-13 (-845) (-610 (-1168))) (-788) (-944 |#1| |#3| |#2|)) (T -919)) +((-1875 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-112)) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-112)) (-5 *1 (-919 *4 *5 *6 *7)))) (-1888 (*1 *2 *2) (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-845) (-610 (-1168)))) (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *2 (-944 *3 *5 *4)))) (-3807 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-5 *4 (-683 *12)) (-5 *5 (-639 (-406 (-947 *9)))) (-5 *6 (-639 (-639 *12))) (-5 *7 (-766)) (-5 *8 (-562)) (-4 *9 (-13 (-306) (-146))) (-4 *12 (-944 *9 *11 *10)) (-4 *10 (-13 (-845) (-610 (-1168)))) (-4 *11 (-788)) (-5 *2 (-2 (|:| |eqzro| (-639 *12)) (|:| |neqzro| (-639 *12)) (|:| |wcond| (-639 (-947 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *9)))) (|:| -3928 (-639 (-1256 (-406 (-947 *9))))))))) (-5 *1 (-919 *9 *10 *11 *12)))) (-4340 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *7)) (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *1 (-919 *4 *5 *6 *7)))) (-3021 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-5 *4 (-766)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| |det| *8) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (-5 *1 (-919 *5 *6 *7 *8)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-639 *8))) (-5 *3 (-639 *8)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-112)) (-5 *1 (-919 *5 *6 *7 *8)))) (-2120 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-639 (-562)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-562)) (-4 *7 (-944 *4 *6 *5)))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-639 (-639 *6))) (-4 *6 (-944 *3 *5 *4)) (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-845) (-610 (-1168)))) (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| *7) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 *7))))) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-766)) (-5 *1 (-919 *4 *5 *6 *7)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| *7) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 *7))))) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-766)) (-5 *1 (-919 *4 *5 *6 *7)))) (-3275 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-944 *4 *6 *5)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1545 (-683 (-406 (-947 *4)))) (|:| |vec| (-639 (-406 (-947 *4)))) (|:| -2173 (-766)) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) (|:| -3928 (-639 (-1256 (-406 (-947 *4))))))) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5)))) (-1830 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) (|:| -3928 (-639 (-1256 (-406 (-947 *4))))))) (-5 *3 (-639 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-944 *4 *6 *5)) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *1 (-919 *4 *5 *6 *7)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| *8) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 *8))))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-766)))) (-3635 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-4 *7 (-944 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-639 *7)) (|:| |n0| (-639 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-947 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-944 *4 *6 *5)) (-5 *1 (-919 *4 *5 *6 *2)) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-406 (-947 *4)))) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-406 (-947 *4)))) (-5 *1 (-919 *4 *5 *6 *7)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-683 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-683 (-406 (-947 *4)))) (-5 *1 (-919 *4 *5 *6 *7)))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-406 (-947 *4))) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-944 *4 *6 *5)))) (-3662 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-683 *11)) (-5 *4 (-639 (-406 (-947 *8)))) (-5 *5 (-766)) (-5 *6 (-1150)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-944 *8 *10 *9)) (-4 *9 (-13 (-845) (-610 (-1168)))) (-4 *10 (-788)) (-5 *2 (-2 (|:| |rgl| (-639 (-2 (|:| |eqzro| (-639 *11)) (|:| |neqzro| (-639 *11)) (|:| |wcond| (-639 (-947 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *8)))) (|:| -3928 (-639 (-1256 (-406 (-947 *8)))))))))) (|:| |rgsz| (-562)))) (-5 *1 (-919 *8 *9 *10 *11)) (-5 *7 (-562)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *7)) (|:| |neqzro| (-639 *7)) (|:| |wcond| (-639 (-947 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) (|:| -3928 (-639 (-1256 (-406 (-947 *4)))))))))) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) (|:| |wcond| (-639 (-947 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) (|:| -3928 (-639 (-1256 (-406 (-947 *5)))))))))) (-5 *4 (-1150)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-944 *5 *7 *6)) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *5 *6 *7 *8)))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *4 (-916)) (-5 *5 (-1150)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *6 *7 *8 *9)))) (-3932 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-683 *10)) (-5 *4 (-639 (-1168))) (-5 *5 (-916)) (-5 *6 (-1150)) (-4 *10 (-944 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-845) (-610 (-1168)))) (-4 *9 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *7 *8 *9 *10)))) (-3932 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-683 *10)) (-5 *4 (-639 *10)) (-5 *5 (-916)) (-5 *6 (-1150)) (-4 *10 (-944 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-845) (-610 (-1168)))) (-4 *9 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *7 *8 *9 *10)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-5 *4 (-1150)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *5 *6 *7 *8)))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 (-1168))) (-5 *5 (-1150)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *6 *7 *8 *9)))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 *9)) (-5 *5 (-1150)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *6 *7 *8 *9)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-5 *4 (-916)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) (|:| |wcond| (-639 (-947 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) (|:| -3928 (-639 (-1256 (-406 (-947 *5)))))))))) (-5 *1 (-919 *5 *6 *7 *8)))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 (-1168))) (-5 *5 (-916)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *9)) (|:| |neqzro| (-639 *9)) (|:| |wcond| (-639 (-947 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *6)))) (|:| -3928 (-639 (-1256 (-406 (-947 *6)))))))))) (-5 *1 (-919 *6 *7 *8 *9)))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *5 (-916)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *9)) (|:| |neqzro| (-639 *9)) (|:| |wcond| (-639 (-947 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *6)))) (|:| -3928 (-639 (-1256 (-406 (-947 *6)))))))))) (-5 *1 (-919 *6 *7 *8 *9)) (-5 *4 (-639 *9)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-683 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *7)) (|:| |neqzro| (-639 *7)) (|:| |wcond| (-639 (-947 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) (|:| -3928 (-639 (-1256 (-406 (-947 *4)))))))))) (-5 *1 (-919 *4 *5 *6 *7)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-5 *4 (-639 (-1168))) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) (|:| |wcond| (-639 (-947 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) (|:| -3928 (-639 (-1256 (-406 (-947 *5)))))))))) (-5 *1 (-919 *5 *6 *7 *8)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) (|:| |wcond| (-639 (-947 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) (|:| -3928 (-639 (-1256 (-406 (-947 *5)))))))))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-639 *8))))) +(-10 -7 (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|) (-916))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)) (-916))) (-15 -3932 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-916))) (-15 -3932 ((-562) (-683 |#4|) (-639 |#4|) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-639 (-1168)) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-639 |#4|) (-916) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-639 (-1168)) (-916) (-1150))) (-15 -3932 ((-562) (-683 |#4|) (-916) (-1150))) (-15 -2426 ((-562) (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150))) (-15 -2170 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150))) (-15 -3662 ((-2 (|:| |rgl| (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))))))) (|:| |rgsz| (-562))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-766) (-1150) (-562))) (-15 -3320 ((-406 (-947 |#1|)) |#4|)) (-15 -3320 ((-683 (-406 (-947 |#1|))) (-683 |#4|))) (-15 -3320 ((-639 (-406 (-947 |#1|))) (-639 |#4|))) (-15 -2443 ((-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -2135 (|#4| (-947 |#1|))) (-15 -3635 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-639 |#4|)) (|:| |n0| (-639 |#4|))) (-639 |#4|) (-639 |#4|))) (-15 -3294 ((-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))) (-683 |#4|) (-766))) (-15 -1830 ((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))) (-639 |#4|))) (-15 -1357 ((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| -1545 (-683 (-406 (-947 |#1|)))) (|:| |vec| (-639 (-406 (-947 |#1|)))) (|:| -2173 (-766)) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (-15 -3275 ((-639 |#4|) |#4|)) (-15 -2163 ((-766) (-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))))) (-15 -3848 ((-766) (-639 (-2 (|:| -2173 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))))) (-15 -2501 ((-639 (-639 |#4|)) (-639 (-639 |#4|)))) (-15 -2120 ((-639 (-639 (-562))) (-562) (-562))) (-15 -3514 ((-112) (-639 |#4|) (-639 (-639 |#4|)))) (-15 -3021 ((-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-683 |#4|) (-766))) (-15 -4340 ((-683 |#4|) (-683 |#4|) (-639 |#4|))) (-15 -3807 ((-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -3928 (-639 (-1256 (-406 (-947 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-639 (-639 |#4|)) (-766) (-766) (-562))) (-15 -1888 (|#4| |#4|)) (-15 -1875 ((-112) (-639 |#4|))) (-15 -1875 ((-112) (-639 (-947 |#1|))))) +((-2967 (((-922) |#1| (-1168)) 17) (((-922) |#1| (-1168) (-1086 (-224))) 21)) (-2352 (((-922) |#1| |#1| (-1168) (-1086 (-224))) 19) (((-922) |#1| (-1168) (-1086 (-224))) 15))) +(((-920 |#1|) (-10 -7 (-15 -2352 ((-922) |#1| (-1168) (-1086 (-224)))) (-15 -2352 ((-922) |#1| |#1| (-1168) (-1086 (-224)))) (-15 -2967 ((-922) |#1| (-1168) (-1086 (-224)))) (-15 -2967 ((-922) |#1| (-1168)))) (-610 (-535))) (T -920)) +((-2967 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-922)) (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) (-2967 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) (-2352 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) (-2352 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) (-5 *1 (-920 *3)) (-4 *3 (-610 (-535)))))) +(-10 -7 (-15 -2352 ((-922) |#1| (-1168) (-1086 (-224)))) (-15 -2352 ((-922) |#1| |#1| (-1168) (-1086 (-224)))) (-15 -2967 ((-922) |#1| (-1168) (-1086 (-224)))) (-15 -2967 ((-922) |#1| (-1168)))) +((-1537 (($ $ (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 69)) (-1478 (((-1086 (-224)) $) 40)) (-1462 (((-1086 (-224)) $) 39)) (-1449 (((-1086 (-224)) $) 38)) (-1697 (((-639 (-639 (-224))) $) 43)) (-2031 (((-1086 (-224)) $) 41)) (-3959 (((-562) (-562)) 32)) (-1486 (((-562) (-562)) 28)) (-3745 (((-562) (-562)) 30)) (-3315 (((-112) (-112)) 35)) (-1810 (((-562)) 31)) (-3528 (($ $ (-1086 (-224))) 72) (($ $) 73)) (-4145 (($ (-1 (-938 (-224)) (-224)) (-1086 (-224))) 77) (($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 78)) (-2352 (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 81) (($ $ (-1086 (-224))) 75)) (-1507 (((-562)) 36)) (-1948 (((-562)) 27)) (-2722 (((-562)) 29)) (-2524 (((-639 (-639 (-938 (-224)))) $) 93)) (-2728 (((-112) (-112)) 37)) (-4054 (((-857) $) 92)) (-2070 (((-112)) 34))) +(((-921) (-13 (-969) (-10 -8 (-15 -4145 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)))) (-15 -4145 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2352 ($ $ (-1086 (-224)))) (-15 -1537 ($ $ (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -3528 ($ $ (-1086 (-224)))) (-15 -3528 ($ $)) (-15 -2031 ((-1086 (-224)) $)) (-15 -1697 ((-639 (-639 (-224))) $)) (-15 -1948 ((-562))) (-15 -1486 ((-562) (-562))) (-15 -2722 ((-562))) (-15 -3745 ((-562) (-562))) (-15 -1810 ((-562))) (-15 -3959 ((-562) (-562))) (-15 -2070 ((-112))) (-15 -3315 ((-112) (-112))) (-15 -1507 ((-562))) (-15 -2728 ((-112) (-112)))))) (T -921)) +((-4145 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-921)))) (-4145 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-921)))) (-2352 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-921)))) (-2352 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-921)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) (-1537 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) (-3528 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) (-3528 (*1 *1 *1) (-5 *1 (-921))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) (-1697 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-224)))) (-5 *1 (-921)))) (-1948 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-1486 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-2722 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-1810 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-2070 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))) (-1507 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-2728 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921))))) +(-13 (-969) (-10 -8 (-15 -4145 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)))) (-15 -4145 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2352 ($ $ (-1086 (-224)))) (-15 -1537 ($ $ (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -3528 ($ $ (-1086 (-224)))) (-15 -3528 ($ $)) (-15 -2031 ((-1086 (-224)) $)) (-15 -1697 ((-639 (-639 (-224))) $)) (-15 -1948 ((-562))) (-15 -1486 ((-562) (-562))) (-15 -2722 ((-562))) (-15 -3745 ((-562) (-562))) (-15 -1810 ((-562))) (-15 -3959 ((-562) (-562))) (-15 -2070 ((-112))) (-15 -3315 ((-112) (-112))) (-15 -1507 ((-562))) (-15 -2728 ((-112) (-112))))) +((-1537 (($ $ (-1086 (-224))) 69) (($ $ (-1086 (-224)) (-1086 (-224))) 70)) (-1462 (((-1086 (-224)) $) 44)) (-1449 (((-1086 (-224)) $) 43)) (-2031 (((-1086 (-224)) $) 45)) (-2225 (((-562) (-562)) 37)) (-3216 (((-562) (-562)) 33)) (-3895 (((-562) (-562)) 35)) (-3541 (((-112) (-112)) 39)) (-4010 (((-562)) 36)) (-3528 (($ $ (-1086 (-224))) 73) (($ $) 74)) (-4145 (($ (-1 (-938 (-224)) (-224)) (-1086 (-224))) 83) (($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 84)) (-2967 (($ (-1 (-224) (-224)) (-1086 (-224))) 91) (($ (-1 (-224) (-224))) 94)) (-2352 (($ (-1 (-224) (-224)) (-1086 (-224))) 78) (($ (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224))) 79) (($ (-639 (-1 (-224) (-224))) (-1086 (-224))) 86) (($ (-639 (-1 (-224) (-224))) (-1086 (-224)) (-1086 (-224))) 87) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 81) (($ $ (-1086 (-224))) 75)) (-3672 (((-112) $) 40)) (-1836 (((-562)) 41)) (-1990 (((-562)) 32)) (-3559 (((-562)) 34)) (-2524 (((-639 (-639 (-938 (-224)))) $) 23)) (-3103 (((-112) (-112)) 42)) (-4054 (((-857) $) 105)) (-3511 (((-112)) 38))) +(((-922) (-13 (-950) (-10 -8 (-15 -2352 ($ (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2352 ($ (-639 (-1 (-224) (-224))) (-1086 (-224)))) (-15 -2352 ($ (-639 (-1 (-224) (-224))) (-1086 (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -4145 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)))) (-15 -4145 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2967 ($ (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2967 ($ (-1 (-224) (-224)))) (-15 -2352 ($ $ (-1086 (-224)))) (-15 -3672 ((-112) $)) (-15 -1537 ($ $ (-1086 (-224)))) (-15 -1537 ($ $ (-1086 (-224)) (-1086 (-224)))) (-15 -3528 ($ $ (-1086 (-224)))) (-15 -3528 ($ $)) (-15 -2031 ((-1086 (-224)) $)) (-15 -1990 ((-562))) (-15 -3216 ((-562) (-562))) (-15 -3559 ((-562))) (-15 -3895 ((-562) (-562))) (-15 -4010 ((-562))) (-15 -2225 ((-562) (-562))) (-15 -3511 ((-112))) (-15 -3541 ((-112) (-112))) (-15 -1836 ((-562))) (-15 -3103 ((-112) (-112)))))) (T -922)) +((-2352 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2352 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2352 (*1 *1 *2 *3) (-12 (-5 *2 (-639 (-1 (-224) (-224)))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2352 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-639 (-1 (-224) (-224)))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2352 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2352 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-4145 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2967 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2967 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-922)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-3672 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-1537 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-1537 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-3528 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-3528 (*1 *1 *1) (-5 *1 (-922))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-1990 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-3216 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-3559 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-4010 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-3511 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-3541 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-1836 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-3103 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(-13 (-950) (-10 -8 (-15 -2352 ($ (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2352 ($ (-639 (-1 (-224) (-224))) (-1086 (-224)))) (-15 -2352 ($ (-639 (-1 (-224) (-224))) (-1086 (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2352 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -4145 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)))) (-15 -4145 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2967 ($ (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2967 ($ (-1 (-224) (-224)))) (-15 -2352 ($ $ (-1086 (-224)))) (-15 -3672 ((-112) $)) (-15 -1537 ($ $ (-1086 (-224)))) (-15 -1537 ($ $ (-1086 (-224)) (-1086 (-224)))) (-15 -3528 ($ $ (-1086 (-224)))) (-15 -3528 ($ $)) (-15 -2031 ((-1086 (-224)) $)) (-15 -1990 ((-562))) (-15 -3216 ((-562) (-562))) (-15 -3559 ((-562))) (-15 -3895 ((-562) (-562))) (-15 -4010 ((-562))) (-15 -2225 ((-562) (-562))) (-15 -3511 ((-112))) (-15 -3541 ((-112) (-112))) (-15 -1836 ((-562))) (-15 -3103 ((-112) (-112))))) +((-1972 (((-639 (-1086 (-224))) (-639 (-639 (-938 (-224))))) 24))) +(((-923) (-10 -7 (-15 -1972 ((-639 (-1086 (-224))) (-639 (-639 (-938 (-224)))))))) (T -923)) +((-1972 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-639 (-1086 (-224)))) (-5 *1 (-923))))) +(-10 -7 (-15 -1972 ((-639 (-1086 (-224))) (-639 (-639 (-938 (-224))))))) +((-3778 ((|#2| |#2|) 26)) (-3096 ((|#2| |#2|) 27)) (-1497 ((|#2| |#2|) 25)) (-3977 ((|#2| |#2| (-1150)) 24))) +(((-924 |#1| |#2|) (-10 -7 (-15 -3977 (|#2| |#2| (-1150))) (-15 -1497 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3096 (|#2| |#2|))) (-845) (-429 |#1|)) (T -924)) +((-3096 (*1 *2 *2) (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) (-1497 (*1 *2 *2) (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) (-3977 (*1 *2 *2 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-845)) (-5 *1 (-924 *4 *2)) (-4 *2 (-429 *4))))) +(-10 -7 (-15 -3977 (|#2| |#2| (-1150))) (-15 -1497 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3096 (|#2| |#2|))) +((-3778 (((-315 (-562)) (-1168)) 16)) (-3096 (((-315 (-562)) (-1168)) 14)) (-1497 (((-315 (-562)) (-1168)) 12)) (-3977 (((-315 (-562)) (-1168) (-1150)) 19))) +(((-925) (-10 -7 (-15 -3977 ((-315 (-562)) (-1168) (-1150))) (-15 -1497 ((-315 (-562)) (-1168))) (-15 -3778 ((-315 (-562)) (-1168))) (-15 -3096 ((-315 (-562)) (-1168))))) (T -925)) +((-3096 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925)))) (-3977 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-1150)) (-5 *2 (-315 (-562))) (-5 *1 (-925))))) +(-10 -7 (-15 -3977 ((-315 (-562)) (-1168) (-1150))) (-15 -1497 ((-315 (-562)) (-1168))) (-15 -3778 ((-315 (-562)) (-1168))) (-15 -3096 ((-315 (-562)) (-1168)))) +((-2533 (((-884 |#1| |#3|) |#2| (-887 |#1|) (-884 |#1| |#3|)) 25)) (-3710 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-926 |#1| |#2| |#3|) (-10 -7 (-15 -3710 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2533 ((-884 |#1| |#3|) |#2| (-887 |#1|) (-884 |#1| |#3|)))) (-1092) (-881 |#1|) (-13 (-1092) (-1033 |#2|))) (T -926)) +((-2533 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *6 (-13 (-1092) (-1033 *3))) (-4 *3 (-881 *5)) (-5 *1 (-926 *5 *3 *6)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1092) (-1033 *5))) (-4 *5 (-881 *4)) (-4 *4 (-1092)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-926 *4 *5 *6))))) +(-10 -7 (-15 -3710 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2533 ((-884 |#1| |#3|) |#2| (-887 |#1|) (-884 |#1| |#3|)))) +((-2533 (((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)) 30))) +(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -2533 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-1092) (-13 (-554) (-845) (-881 |#1|)) (-13 (-429 |#2|) (-610 (-887 |#1|)) (-881 |#1|) (-1033 (-608 $)))) (T -927)) +((-2533 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) (-4 *3 (-13 (-429 *6) (-610 *4) (-881 *5) (-1033 (-608 $)))) (-5 *4 (-887 *5)) (-4 *6 (-13 (-554) (-845) (-881 *5))) (-5 *1 (-927 *5 *6 *3))))) +(-10 -7 (-15 -2533 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) +((-2533 (((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|)) 13))) +(((-928 |#1|) (-10 -7 (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|)))) (-544)) (T -928)) +((-2533 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 (-562) *3)) (-5 *4 (-887 (-562))) (-4 *3 (-544)) (-5 *1 (-928 *3))))) +(-10 -7 (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|)))) +((-2533 (((-884 |#1| |#2|) (-608 |#2|) (-887 |#1|) (-884 |#1| |#2|)) 54))) +(((-929 |#1| |#2|) (-10 -7 (-15 -2533 ((-884 |#1| |#2|) (-608 |#2|) (-887 |#1|) (-884 |#1| |#2|)))) (-1092) (-13 (-845) (-1033 (-608 $)) (-610 (-887 |#1|)) (-881 |#1|))) (T -929)) +((-2533 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *3 (-608 *6)) (-4 *5 (-1092)) (-4 *6 (-13 (-845) (-1033 (-608 $)) (-610 *4) (-881 *5))) (-5 *4 (-887 *5)) (-5 *1 (-929 *5 *6))))) +(-10 -7 (-15 -2533 ((-884 |#1| |#2|) (-608 |#2|) (-887 |#1|) (-884 |#1| |#2|)))) +((-2533 (((-880 |#1| |#2| |#3|) |#3| (-887 |#1|) (-880 |#1| |#2| |#3|)) 15))) +(((-930 |#1| |#2| |#3|) (-10 -7 (-15 -2533 ((-880 |#1| |#2| |#3|) |#3| (-887 |#1|) (-880 |#1| |#2| |#3|)))) (-1092) (-881 |#1|) (-660 |#2|)) (T -930)) +((-2533 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-880 *5 *6 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *6 (-881 *5)) (-4 *3 (-660 *6)) (-5 *1 (-930 *5 *6 *3))))) +(-10 -7 (-15 -2533 ((-880 |#1| |#2| |#3|) |#3| (-887 |#1|) (-880 |#1| |#2| |#3|)))) +((-2533 (((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|)) 17 (|has| |#3| (-881 |#1|))) (((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-887 |#1|) (-884 |#1| |#5|))) 16))) +(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2533 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-887 |#1|) (-884 |#1| |#5|)))) (IF (|has| |#3| (-881 |#1|)) (-15 -2533 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|))) |%noBranch|)) (-1092) (-788) (-845) (-13 (-1044) (-845) (-881 |#1|)) (-13 (-944 |#4| |#2| |#3|) (-610 (-887 |#1|)))) (T -931)) +((-2533 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) (-4 *3 (-13 (-944 *8 *6 *7) (-610 *4))) (-5 *4 (-887 *5)) (-4 *7 (-881 *5)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-13 (-1044) (-845) (-881 *5))) (-5 *1 (-931 *5 *6 *7 *8 *3)))) (-2533 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-884 *6 *3) *8 (-887 *6) (-884 *6 *3))) (-4 *8 (-845)) (-5 *2 (-884 *6 *3)) (-5 *4 (-887 *6)) (-4 *6 (-1092)) (-4 *3 (-13 (-944 *9 *7 *8) (-610 *4))) (-4 *7 (-788)) (-4 *9 (-13 (-1044) (-845) (-881 *6))) (-5 *1 (-931 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -2533 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-887 |#1|) (-884 |#1| |#5|)))) (IF (|has| |#3| (-881 |#1|)) (-15 -2533 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|))) |%noBranch|)) +((-3171 ((|#2| |#2| (-639 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -3171 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3171 (|#2| |#2| (-639 (-1 (-112) |#3|))))) (-845) (-429 |#1|) (-1207)) (T -932)) +((-3171 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-1 (-112) *5))) (-4 *5 (-1207)) (-4 *4 (-845)) (-5 *1 (-932 *4 *2 *5)) (-4 *2 (-429 *4)))) (-3171 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1207)) (-4 *4 (-845)) (-5 *1 (-932 *4 *2 *5)) (-4 *2 (-429 *4))))) +(-10 -7 (-15 -3171 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3171 (|#2| |#2| (-639 (-1 (-112) |#3|))))) +((-3171 (((-315 (-562)) (-1168) (-639 (-1 (-112) |#1|))) 18) (((-315 (-562)) (-1168) (-1 (-112) |#1|)) 15))) +(((-933 |#1|) (-10 -7 (-15 -3171 ((-315 (-562)) (-1168) (-1 (-112) |#1|))) (-15 -3171 ((-315 (-562)) (-1168) (-639 (-1 (-112) |#1|))))) (-1207)) (T -933)) +((-3171 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-639 (-1 (-112) *5))) (-4 *5 (-1207)) (-5 *2 (-315 (-562))) (-5 *1 (-933 *5)))) (-3171 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1207)) (-5 *2 (-315 (-562))) (-5 *1 (-933 *5))))) +(-10 -7 (-15 -3171 ((-315 (-562)) (-1168) (-1 (-112) |#1|))) (-15 -3171 ((-315 (-562)) (-1168) (-639 (-1 (-112) |#1|))))) +((-2533 (((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)) 25))) +(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -2533 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-1092) (-13 (-554) (-881 |#1|) (-610 (-887 |#1|))) (-987 |#2|)) (T -934)) +((-2533 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) (-4 *3 (-987 *6)) (-4 *6 (-13 (-554) (-881 *5) (-610 *4))) (-5 *4 (-887 *5)) (-5 *1 (-934 *5 *6 *3))))) +(-10 -7 (-15 -2533 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) +((-2533 (((-884 |#1| (-1168)) (-1168) (-887 |#1|) (-884 |#1| (-1168))) 17))) +(((-935 |#1|) (-10 -7 (-15 -2533 ((-884 |#1| (-1168)) (-1168) (-887 |#1|) (-884 |#1| (-1168))))) (-1092)) (T -935)) +((-2533 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 (-1168))) (-5 *3 (-1168)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-5 *1 (-935 *5))))) +(-10 -7 (-15 -2533 ((-884 |#1| (-1168)) (-1168) (-887 |#1|) (-884 |#1| (-1168))))) +((-1326 (((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) 33)) (-2533 (((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-1 |#3| (-639 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) 32))) +(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -2533 ((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-1 |#3| (-639 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-15 -1326 ((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))))) (-1092) (-13 (-1044) (-845)) (-13 (-1044) (-610 (-887 |#1|)) (-1033 |#2|))) (T -936)) +((-1326 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-887 *6))) (-5 *5 (-1 (-884 *6 *8) *8 (-887 *6) (-884 *6 *8))) (-4 *6 (-1092)) (-4 *8 (-13 (-1044) (-610 (-887 *6)) (-1033 *7))) (-5 *2 (-884 *6 *8)) (-4 *7 (-13 (-1044) (-845))) (-5 *1 (-936 *6 *7 *8)))) (-2533 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-639 (-887 *7))) (-5 *5 (-1 *9 (-639 *9))) (-5 *6 (-1 (-884 *7 *9) *9 (-887 *7) (-884 *7 *9))) (-4 *7 (-1092)) (-4 *9 (-13 (-1044) (-610 (-887 *7)) (-1033 *8))) (-5 *2 (-884 *7 *9)) (-5 *3 (-639 *9)) (-4 *8 (-13 (-1044) (-845))) (-5 *1 (-936 *7 *8 *9))))) +(-10 -7 (-15 -2533 ((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-1 |#3| (-639 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-15 -1326 ((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))))) +((-1761 (((-1164 (-406 (-562))) (-562)) 62)) (-3287 (((-1164 (-562)) (-562)) 65)) (-2175 (((-1164 (-562)) (-562)) 59)) (-3022 (((-562) (-1164 (-562))) 54)) (-4342 (((-1164 (-406 (-562))) (-562)) 48)) (-2601 (((-1164 (-562)) (-562)) 37)) (-3908 (((-1164 (-562)) (-562)) 67)) (-4206 (((-1164 (-562)) (-562)) 66)) (-3160 (((-1164 (-406 (-562))) (-562)) 50))) +(((-937) (-10 -7 (-15 -3160 ((-1164 (-406 (-562))) (-562))) (-15 -4206 ((-1164 (-562)) (-562))) (-15 -3908 ((-1164 (-562)) (-562))) (-15 -2601 ((-1164 (-562)) (-562))) (-15 -4342 ((-1164 (-406 (-562))) (-562))) (-15 -3022 ((-562) (-1164 (-562)))) (-15 -2175 ((-1164 (-562)) (-562))) (-15 -3287 ((-1164 (-562)) (-562))) (-15 -1761 ((-1164 (-406 (-562))) (-562))))) (T -937)) +((-1761 (*1 *2 *3) (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562)))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-2175 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-1164 (-562))) (-5 *2 (-562)) (-5 *1 (-937)))) (-4342 (*1 *2 *3) (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562)))) (-2601 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-3908 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-4206 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-3160 (*1 *2 *3) (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562))))) +(-10 -7 (-15 -3160 ((-1164 (-406 (-562))) (-562))) (-15 -4206 ((-1164 (-562)) (-562))) (-15 -3908 ((-1164 (-562)) (-562))) (-15 -2601 ((-1164 (-562)) (-562))) (-15 -4342 ((-1164 (-406 (-562))) (-562))) (-15 -3022 ((-562) (-1164 (-562)))) (-15 -2175 ((-1164 (-562)) (-562))) (-15 -3287 ((-1164 (-562)) (-562))) (-15 -1761 ((-1164 (-406 (-562))) (-562)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2911 (($ (-766)) NIL (|has| |#1| (-23)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) 11 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-4264 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1460 (($ (-639 |#1|)) 13)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-2841 (((-683 |#1|) $ $) NIL (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) 8)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) 10 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3076 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-3289 (((-112) $ (-766)) NIL)) (-3641 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-1353 (($ $ (-639 |#1|)) 26)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) 20) (($ $ (-1223 (-562))) NIL)) (-4177 ((|#1| $ $) NIL (|has| |#1| (-1044)))) (-3627 (((-916) $) 16)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1386 (($ $ $) 24)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535)))) (($ (-639 |#1|)) 17)) (-4066 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-639 $)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1848 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1835 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-562) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-721))) (($ $ |#1|) NIL (|has| |#1| (-721)))) (-3492 (((-766) $) 14 (|has| $ (-6 -4402))))) +(((-938 |#1|) (-975 |#1|) (-1044)) (T -938)) +NIL +(-975 |#1|) +((-2873 (((-480 |#1| |#2|) (-947 |#2|)) 20)) (-1745 (((-246 |#1| |#2|) (-947 |#2|)) 33)) (-4344 (((-947 |#2|) (-480 |#1| |#2|)) 25)) (-3186 (((-246 |#1| |#2|) (-480 |#1| |#2|)) 55)) (-3051 (((-947 |#2|) (-246 |#1| |#2|)) 30)) (-1594 (((-480 |#1| |#2|) (-246 |#1| |#2|)) 46))) +(((-939 |#1| |#2|) (-10 -7 (-15 -1594 ((-480 |#1| |#2|) (-246 |#1| |#2|))) (-15 -3186 ((-246 |#1| |#2|) (-480 |#1| |#2|))) (-15 -2873 ((-480 |#1| |#2|) (-947 |#2|))) (-15 -4344 ((-947 |#2|) (-480 |#1| |#2|))) (-15 -3051 ((-947 |#2|) (-246 |#1| |#2|))) (-15 -1745 ((-246 |#1| |#2|) (-947 |#2|)))) (-639 (-1168)) (-1044)) (T -939)) +((-1745 (*1 *2 *3) (-12 (-5 *3 (-947 *5)) (-4 *5 (-1044)) (-5 *2 (-246 *4 *5)) (-5 *1 (-939 *4 *5)) (-14 *4 (-639 (-1168))))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) (-5 *2 (-947 *5)) (-5 *1 (-939 *4 *5)))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-480 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) (-5 *2 (-947 *5)) (-5 *1 (-939 *4 *5)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-947 *5)) (-4 *5 (-1044)) (-5 *2 (-480 *4 *5)) (-5 *1 (-939 *4 *5)) (-14 *4 (-639 (-1168))))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-480 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) (-5 *2 (-246 *4 *5)) (-5 *1 (-939 *4 *5)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) (-5 *2 (-480 *4 *5)) (-5 *1 (-939 *4 *5))))) +(-10 -7 (-15 -1594 ((-480 |#1| |#2|) (-246 |#1| |#2|))) (-15 -3186 ((-246 |#1| |#2|) (-480 |#1| |#2|))) (-15 -2873 ((-480 |#1| |#2|) (-947 |#2|))) (-15 -4344 ((-947 |#2|) (-480 |#1| |#2|))) (-15 -3051 ((-947 |#2|) (-246 |#1| |#2|))) (-15 -1745 ((-246 |#1| |#2|) (-947 |#2|)))) +((-3569 (((-639 |#2|) |#2| |#2|) 10)) (-3763 (((-766) (-639 |#1|)) 37 (|has| |#1| (-843)))) (-3323 (((-639 |#2|) |#2|) 11)) (-2414 (((-766) (-639 |#1|) (-562) (-562)) 39 (|has| |#1| (-843)))) (-2012 ((|#1| |#2|) 32 (|has| |#1| (-843))))) +(((-940 |#1| |#2|) (-10 -7 (-15 -3569 ((-639 |#2|) |#2| |#2|)) (-15 -3323 ((-639 |#2|) |#2|)) (IF (|has| |#1| (-843)) (PROGN (-15 -2012 (|#1| |#2|)) (-15 -3763 ((-766) (-639 |#1|))) (-15 -2414 ((-766) (-639 |#1|) (-562) (-562)))) |%noBranch|)) (-362) (-1232 |#1|)) (T -940)) +((-2414 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-562)) (-4 *5 (-843)) (-4 *5 (-362)) (-5 *2 (-766)) (-5 *1 (-940 *5 *6)) (-4 *6 (-1232 *5)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-843)) (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-940 *4 *5)) (-4 *5 (-1232 *4)))) (-2012 (*1 *2 *3) (-12 (-4 *2 (-362)) (-4 *2 (-843)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1232 *2)))) (-3323 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-940 *4 *3)) (-4 *3 (-1232 *4)))) (-3569 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-940 *4 *3)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -3569 ((-639 |#2|) |#2| |#2|)) (-15 -3323 ((-639 |#2|) |#2|)) (IF (|has| |#1| (-843)) (PROGN (-15 -2012 (|#1| |#2|)) (-15 -3763 ((-766) (-639 |#1|))) (-15 -2414 ((-766) (-639 |#1|) (-562) (-562)))) |%noBranch|)) +((-4152 (((-947 |#2|) (-1 |#2| |#1|) (-947 |#1|)) 19))) +(((-941 |#1| |#2|) (-10 -7 (-15 -4152 ((-947 |#2|) (-1 |#2| |#1|) (-947 |#1|)))) (-1044) (-1044)) (T -941)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-947 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-947 *6)) (-5 *1 (-941 *5 *6))))) +(-10 -7 (-15 -4152 ((-947 |#2|) (-1 |#2| |#1|) (-947 |#1|)))) +((-1599 (((-1229 |#1| (-947 |#2|)) (-947 |#2|) (-1252 |#1|)) 18))) +(((-942 |#1| |#2|) (-10 -7 (-15 -1599 ((-1229 |#1| (-947 |#2|)) (-947 |#2|) (-1252 |#1|)))) (-1168) (-1044)) (T -942)) +((-1599 (*1 *2 *3 *4) (-12 (-5 *4 (-1252 *5)) (-14 *5 (-1168)) (-4 *6 (-1044)) (-5 *2 (-1229 *5 (-947 *6))) (-5 *1 (-942 *5 *6)) (-5 *3 (-947 *6))))) +(-10 -7 (-15 -1599 ((-1229 |#1| (-947 |#2|)) (-947 |#2|) (-1252 |#1|)))) +((-1986 (((-766) $) 71) (((-766) $ (-639 |#4|)) 74)) (-2798 (($ $) 172)) (-2921 (((-417 $) $) 164)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 115)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-3961 ((|#2| $) NIL) (((-406 (-562)) $) NIL) (((-562) $) NIL) ((|#4| $) 59)) (-2835 (($ $ $ |#4|) 76)) (-2406 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 105) (((-683 |#2|) (-683 $)) 98)) (-1498 (($ $) 179) (($ $ |#4|) 182)) (-1586 (((-639 $) $) 63)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 198) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 191)) (-1889 (((-639 $) $) 28)) (-1378 (($ |#2| |#3|) NIL) (($ $ |#4| (-766)) NIL) (($ $ (-639 |#4|) (-639 (-766))) 57)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ |#4|) 161)) (-2042 (((-3 (-639 $) "failed") $) 42)) (-1546 (((-3 (-639 $) "failed") $) 31)) (-1628 (((-3 (-2 (|:| |var| |#4|) (|:| -1960 (-766))) "failed") $) 47)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 108)) (-3986 (((-417 (-1164 $)) (-1164 $)) 121)) (-3480 (((-417 (-1164 $)) (-1164 $)) 119)) (-1635 (((-417 $) $) 139)) (-1433 (($ $ (-639 (-293 $))) 21) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-639 |#4|) (-639 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-639 |#4|) (-639 $)) NIL)) (-2455 (($ $ |#4|) 78)) (-4208 (((-887 (-378)) $) 212) (((-887 (-562)) $) 205) (((-535) $) 220)) (-3900 ((|#2| $) NIL) (($ $ |#4|) 174)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 153)) (-3906 ((|#2| $ |#3|) NIL) (($ $ |#4| (-766)) 52) (($ $ (-639 |#4|) (-639 (-766))) 55)) (-2805 (((-3 $ "failed") $) 155)) (-1759 (((-112) $ $) 185))) +(((-943 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2805 ((-3 |#1| "failed") |#1|)) (-15 -1759 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -2533 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3480 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3986 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -4150 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -1289 ((-3 (-1256 |#1|) "failed") (-683 |#1|))) (-15 -1498 (|#1| |#1| |#4|)) (-15 -3900 (|#1| |#1| |#4|)) (-15 -2455 (|#1| |#1| |#4|)) (-15 -2835 (|#1| |#1| |#1| |#4|)) (-15 -1586 ((-639 |#1|) |#1|)) (-15 -1986 ((-766) |#1| (-639 |#4|))) (-15 -1986 ((-766) |#1|)) (-15 -1628 ((-3 (-2 (|:| |var| |#4|) (|:| -1960 (-766))) "failed") |#1|)) (-15 -2042 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1546 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1378 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -1378 (|#1| |#1| |#4| (-766))) (-15 -2623 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1| |#4|)) (-15 -1889 ((-639 |#1|) |#1|)) (-15 -3906 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -3906 (|#1| |#1| |#4| (-766))) (-15 -2406 ((-683 |#2|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -3961 (|#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#4| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1378 (|#1| |#2| |#3|)) (-15 -3906 (|#2| |#1| |#3|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3900 (|#2| |#1|)) (-15 -1498 (|#1| |#1|))) (-944 |#2| |#3| |#4|) (-1044) (-788) (-845)) (T -943)) +NIL +(-10 -8 (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -2805 ((-3 |#1| "failed") |#1|)) (-15 -1759 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -2533 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3480 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3986 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -4150 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -1289 ((-3 (-1256 |#1|) "failed") (-683 |#1|))) (-15 -1498 (|#1| |#1| |#4|)) (-15 -3900 (|#1| |#1| |#4|)) (-15 -2455 (|#1| |#1| |#4|)) (-15 -2835 (|#1| |#1| |#1| |#4|)) (-15 -1586 ((-639 |#1|) |#1|)) (-15 -1986 ((-766) |#1| (-639 |#4|))) (-15 -1986 ((-766) |#1|)) (-15 -1628 ((-3 (-2 (|:| |var| |#4|) (|:| -1960 (-766))) "failed") |#1|)) (-15 -2042 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1546 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1378 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -1378 (|#1| |#1| |#4| (-766))) (-15 -2623 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1| |#4|)) (-15 -1889 ((-639 |#1|) |#1|)) (-15 -3906 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -3906 (|#1| |#1| |#4| (-766))) (-15 -2406 ((-683 |#2|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -3961 (|#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#4| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1378 (|#1| |#2| |#3|)) (-15 -3906 (|#2| |#1| |#3|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3900 (|#2| |#1|)) (-15 -1498 (|#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1402 (((-639 |#3|) $) 110)) (-1599 (((-1164 $) $ |#3|) 125) (((-1164 |#1|) $) 124)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2796 (($ $) 88 (|has| |#1| (-554)))) (-4370 (((-112) $) 90 (|has| |#1| (-554)))) (-1986 (((-766) $) 112) (((-766) $ (-639 |#3|)) 111)) (-3214 (((-3 $ "failed") $ $) 19)) (-3026 (((-417 (-1164 $)) (-1164 $)) 100 (|has| |#1| (-904)))) (-2798 (($ $) 98 (|has| |#1| (-451)))) (-2921 (((-417 $) $) 97 (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 103 (|has| |#1| (-904)))) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-562)) "failed") $) 161 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 159 (|has| |#1| (-1033 (-562)))) (((-3 |#3| "failed") $) 136)) (-3961 ((|#1| $) 163) (((-406 (-562)) $) 162 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 160 (|has| |#1| (-1033 (-562)))) ((|#3| $) 137)) (-2835 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-1601 (($ $) 154)) (-2406 (((-683 (-562)) (-683 $)) 134 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 133 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 132) (((-683 |#1|) (-683 $)) 131)) (-3668 (((-3 $ "failed") $) 33)) (-1498 (($ $) 176 (|has| |#1| (-451))) (($ $ |#3|) 105 (|has| |#1| (-451)))) (-1586 (((-639 $) $) 109)) (-2717 (((-112) $) 96 (|has| |#1| (-904)))) (-3122 (($ $ |#1| |#2| $) 172)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84 (-12 (|has| |#3| (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 83 (-12 (|has| |#3| (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1957 (((-112) $) 31)) (-1694 (((-766) $) 169)) (-1390 (($ (-1164 |#1|) |#3|) 117) (($ (-1164 $) |#3|) 116)) (-1889 (((-639 $) $) 126)) (-3536 (((-112) $) 152)) (-1378 (($ |#1| |#2|) 153) (($ $ |#3| (-766)) 119) (($ $ (-639 |#3|) (-639 (-766))) 118)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ |#3|) 120)) (-2076 ((|#2| $) 170) (((-766) $ |#3|) 122) (((-639 (-766)) $ (-639 |#3|)) 121)) (-1551 (($ $ $) 79 (|has| |#1| (-845)))) (-2993 (($ $ $) 78 (|has| |#1| (-845)))) (-2836 (($ (-1 |#2| |#2|) $) 171)) (-4152 (($ (-1 |#1| |#1|) $) 151)) (-3372 (((-3 |#3| "failed") $) 123)) (-1560 (($ $) 149)) (-1573 ((|#1| $) 148)) (-1564 (($ (-639 $)) 94 (|has| |#1| (-451))) (($ $ $) 93 (|has| |#1| (-451)))) (-2913 (((-1150) $) 9)) (-2042 (((-3 (-639 $) "failed") $) 114)) (-1546 (((-3 (-639 $) "failed") $) 115)) (-1628 (((-3 (-2 (|:| |var| |#3|) (|:| -1960 (-766))) "failed") $) 113)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 166)) (-1547 ((|#1| $) 167)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 95 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) 92 (|has| |#1| (-451))) (($ $ $) 91 (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) 102 (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) 101 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 99 (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-639 $) (-639 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-639 |#3|) (-639 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-639 |#3|) (-639 $)) 138)) (-2455 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4029 (($ $ |#3|) 42) (($ $ (-639 |#3|)) 41) (($ $ |#3| (-766)) 40) (($ $ (-639 |#3|) (-639 (-766))) 39)) (-3598 ((|#2| $) 150) (((-766) $ |#3|) 130) (((-639 (-766)) $ (-639 |#3|)) 129)) (-4208 (((-887 (-378)) $) 82 (-12 (|has| |#3| (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) 81 (-12 (|has| |#3| (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) 80 (-12 (|has| |#3| (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-3900 ((|#1| $) 175 (|has| |#1| (-451))) (($ $ |#3|) 106 (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 104 (-2246 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-554))) (($ (-406 (-562))) 72 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))))) (-4358 (((-639 |#1|) $) 168)) (-3906 ((|#1| $ |#2|) 155) (($ $ |#3| (-766)) 128) (($ $ (-639 |#3|) (-639 (-766))) 127)) (-2805 (((-3 $ "failed") $) 73 (-4037 (-2246 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) 28)) (-3548 (($ $ $ (-766)) 173 (|has| |#1| (-171)))) (-2922 (((-112) $ $) 89 (|has| |#1| (-554)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ |#3|) 38) (($ $ (-639 |#3|)) 37) (($ $ |#3| (-766)) 36) (($ $ (-639 |#3|) (-639 (-766))) 35)) (-1798 (((-112) $ $) 76 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 75 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 77 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 74 (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 157 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-944 |#1| |#2| |#3|) (-139) (-1044) (-788) (-845)) (T -944)) +((-1498 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-3598 (*1 *2 *1 *3) (-12 (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-766)))) (-3598 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-766))))) (-3906 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-944 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *2 (-845)))) (-3906 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 (-766))) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)))) (-1889 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) (-1599 (*1 *2 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-1164 *1)) (-4 *1 (-944 *4 *5 *3)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-1164 *3)))) (-3372 (*1 *2 *1) (|partial| -12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-2076 (*1 *2 *1 *3) (-12 (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-766)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-766))))) (-2623 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-944 *4 *5 *3)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-944 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *2 (-845)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 (-766))) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1044)) (-4 *1 (-944 *4 *5 *3)) (-4 *5 (-788)) (-4 *3 (-845)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)))) (-1546 (*1 *2 *1) (|partial| -12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) (-2042 (*1 *2 *1) (|partial| -12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) (-1628 (*1 *2 *1) (|partial| -12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| |var| *5) (|:| -1960 (-766)))))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-766)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-766)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *5)))) (-1586 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) (-2835 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *3 (-171)))) (-2455 (*1 *1 *1 *2) (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *3 (-171)))) (-3900 (*1 *1 *1 *2) (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *3 (-451)))) (-1498 (*1 *1 *1 *2) (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *3 (-451)))) (-2798 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-2921 (*1 *2 *1) (-12 (-4 *3 (-451)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-417 *1)) (-4 *1 (-944 *3 *4 *5))))) +(-13 (-895 |t#3|) (-325 |t#1| |t#2|) (-308 $) (-513 |t#3| |t#1|) (-513 |t#3| $) (-1033 |t#3|) (-376 |t#1|) (-10 -8 (-15 -3598 ((-766) $ |t#3|)) (-15 -3598 ((-639 (-766)) $ (-639 |t#3|))) (-15 -3906 ($ $ |t#3| (-766))) (-15 -3906 ($ $ (-639 |t#3|) (-639 (-766)))) (-15 -1889 ((-639 $) $)) (-15 -1599 ((-1164 $) $ |t#3|)) (-15 -1599 ((-1164 |t#1|) $)) (-15 -3372 ((-3 |t#3| "failed") $)) (-15 -2076 ((-766) $ |t#3|)) (-15 -2076 ((-639 (-766)) $ (-639 |t#3|))) (-15 -2623 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $ |t#3|)) (-15 -1378 ($ $ |t#3| (-766))) (-15 -1378 ($ $ (-639 |t#3|) (-639 (-766)))) (-15 -1390 ($ (-1164 |t#1|) |t#3|)) (-15 -1390 ($ (-1164 $) |t#3|)) (-15 -1546 ((-3 (-639 $) "failed") $)) (-15 -2042 ((-3 (-639 $) "failed") $)) (-15 -1628 ((-3 (-2 (|:| |var| |t#3|) (|:| -1960 (-766))) "failed") $)) (-15 -1986 ((-766) $)) (-15 -1986 ((-766) $ (-639 |t#3|))) (-15 -1402 ((-639 |t#3|) $)) (-15 -1586 ((-639 $) $)) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (IF (|has| |t#3| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-610 (-887 (-562)))) (IF (|has| |t#3| (-610 (-887 (-562)))) (-6 (-610 (-887 (-562)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-610 (-887 (-378)))) (IF (|has| |t#3| (-610 (-887 (-378)))) (-6 (-610 (-887 (-378)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-881 (-562))) (IF (|has| |t#3| (-881 (-562))) (-6 (-881 (-562))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-881 (-378))) (IF (|has| |t#3| (-881 (-378))) (-6 (-881 (-378))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -2835 ($ $ $ |t#3|)) (-15 -2455 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-451)) (PROGN (-6 (-451)) (-15 -3900 ($ $ |t#3|)) (-15 -1498 ($ $)) (-15 -1498 ($ $ |t#3|)) (-15 -2921 ((-417 $) $)) (-15 -2798 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4400)) (-6 -4400) |%noBranch|) (IF (|has| |t#1| (-904)) (-6 (-904)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 |#3|) . T) ((-612 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-610 (-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562))))) ((-289) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-904)) (|has| |#1| (-451))) ((-513 |#3| |#1|) . T) ((-513 |#3| $) . T) ((-513 $ $) . T) ((-554) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 |#3|) . T) ((-881 (-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378)))) ((-881 (-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))) ((-904) |has| |#1| (-904)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1033 |#3|) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) |has| |#1| (-904))) +((-1402 (((-639 |#2|) |#5|) 36)) (-1599 (((-1164 |#5|) |#5| |#2| (-1164 |#5|)) 23) (((-406 (-1164 |#5|)) |#5| |#2|) 16)) (-1390 ((|#5| (-406 (-1164 |#5|)) |#2|) 30)) (-3372 (((-3 |#2| "failed") |#5|) 65)) (-2042 (((-3 (-639 |#5|) "failed") |#5|) 59)) (-3218 (((-3 (-2 (|:| |val| |#5|) (|:| -1960 (-562))) "failed") |#5|) 47)) (-1546 (((-3 (-639 |#5|) "failed") |#5|) 61)) (-1628 (((-3 (-2 (|:| |var| |#2|) (|:| -1960 (-562))) "failed") |#5|) 51))) +(((-945 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1402 ((-639 |#2|) |#5|)) (-15 -3372 ((-3 |#2| "failed") |#5|)) (-15 -1599 ((-406 (-1164 |#5|)) |#5| |#2|)) (-15 -1390 (|#5| (-406 (-1164 |#5|)) |#2|)) (-15 -1599 ((-1164 |#5|) |#5| |#2| (-1164 |#5|))) (-15 -1546 ((-3 (-639 |#5|) "failed") |#5|)) (-15 -2042 ((-3 (-639 |#5|) "failed") |#5|)) (-15 -1628 ((-3 (-2 (|:| |var| |#2|) (|:| -1960 (-562))) "failed") |#5|)) (-15 -3218 ((-3 (-2 (|:| |val| |#5|) (|:| -1960 (-562))) "failed") |#5|))) (-788) (-845) (-1044) (-944 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4054 ($ |#4|)) (-15 -4065 (|#4| $)) (-15 -4076 (|#4| $))))) (T -945)) +((-3218 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1960 (-562)))) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))))) (-1628 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1960 (-562)))) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))))) (-2042 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *3)) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))))) (-1546 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *3)) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))))) (-1599 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))) (-4 *7 (-944 *6 *5 *4)) (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-1044)) (-5 *1 (-945 *5 *4 *6 *7 *3)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1164 *2))) (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-1044)) (-4 *2 (-13 (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))) (-5 *1 (-945 *5 *4 *6 *7 *2)) (-4 *7 (-944 *6 *5 *4)))) (-1599 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-406 (-1164 *3))) (-5 *1 (-945 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))))) (-3372 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-1044)) (-4 *6 (-944 *5 *4 *2)) (-4 *2 (-845)) (-5 *1 (-945 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4054 ($ *6)) (-15 -4065 (*6 $)) (-15 -4076 (*6 $))))))) (-1402 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *5)) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $)))))))) +(-10 -7 (-15 -1402 ((-639 |#2|) |#5|)) (-15 -3372 ((-3 |#2| "failed") |#5|)) (-15 -1599 ((-406 (-1164 |#5|)) |#5| |#2|)) (-15 -1390 (|#5| (-406 (-1164 |#5|)) |#2|)) (-15 -1599 ((-1164 |#5|) |#5| |#2| (-1164 |#5|))) (-15 -1546 ((-3 (-639 |#5|) "failed") |#5|)) (-15 -2042 ((-3 (-639 |#5|) "failed") |#5|)) (-15 -1628 ((-3 (-2 (|:| |var| |#2|) (|:| -1960 (-562))) "failed") |#5|)) (-15 -3218 ((-3 (-2 (|:| |val| |#5|) (|:| -1960 (-562))) "failed") |#5|))) +((-4152 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) +(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4152 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-788) (-845) (-1044) (-944 |#3| |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -1835 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766)))))) (T -946)) +((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-845)) (-4 *8 (-1044)) (-4 *6 (-788)) (-4 *2 (-13 (-1092) (-10 -8 (-15 -1835 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766)))))) (-5 *1 (-946 *6 *7 *8 *5 *2)) (-4 *5 (-944 *8 *6 *7))))) +(-10 -7 (-15 -4152 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-1168)) $) 16)) (-1599 (((-1164 $) $ (-1168)) 21) (((-1164 |#1|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-1168))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2798 (($ $) NIL (|has| |#1| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 8) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1168) "failed") $) NIL)) (-3961 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1168) $) NIL)) (-2835 (($ $ $ (-1168)) NIL (|has| |#1| (-171)))) (-1601 (($ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-451))) (($ $ (-1168)) NIL (|has| |#1| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#1| (-904)))) (-3122 (($ $ |#1| (-530 (-1168)) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1168) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1168) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1390 (($ (-1164 |#1|) (-1168)) NIL) (($ (-1164 $) (-1168)) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-530 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-1168)) NIL)) (-2076 (((-530 (-1168)) $) NIL) (((-766) $ (-1168)) NIL) (((-639 (-766)) $ (-639 (-1168))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2836 (($ (-1 (-530 (-1168)) (-530 (-1168))) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3372 (((-3 (-1168) "failed") $) 19)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-2913 (((-1150) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-1168)) (|:| -1960 (-766))) "failed") $) NIL)) (-2667 (($ $ (-1168)) 29 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1168) |#1|) NIL) (($ $ (-639 (-1168)) (-639 |#1|)) NIL) (($ $ (-1168) $) NIL) (($ $ (-639 (-1168)) (-639 $)) NIL)) (-2455 (($ $ (-1168)) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-3598 (((-530 (-1168)) $) NIL) (((-766) $ (-1168)) NIL) (((-639 (-766)) $ (-639 (-1168))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1168) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1168) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1168) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-3900 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-1168)) NIL (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) 25) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-1168)) 27) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-530 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-947 |#1|) (-13 (-944 |#1| (-530 (-1168)) (-1168)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1168))) |%noBranch|))) (-1044)) (T -947)) +((-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-947 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044))))) +(-13 (-944 |#1| (-530 (-1168)) (-1168)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1168))) |%noBranch|))) +((-3887 (((-2 (|:| -1960 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#3| (-766)) 38)) (-2400 (((-2 (|:| -1960 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) (-406 (-562)) (-766)) 34)) (-1405 (((-2 (|:| -1960 (-766)) (|:| -4221 |#4|) (|:| |radicand| (-639 |#4|))) |#4| (-766)) 54)) (-2105 (((-2 (|:| -1960 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#5| (-766)) 64 (|has| |#3| (-451))))) +(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3887 ((-2 (|:| -1960 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#3| (-766))) (-15 -2400 ((-2 (|:| -1960 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) (-406 (-562)) (-766))) (IF (|has| |#3| (-451)) (-15 -2105 ((-2 (|:| -1960 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#5| (-766))) |%noBranch|) (-15 -1405 ((-2 (|:| -1960 (-766)) (|:| -4221 |#4|) (|:| |radicand| (-639 |#4|))) |#4| (-766)))) (-788) (-845) (-554) (-944 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4054 ($ |#4|)) (-15 -4065 (|#4| $)) (-15 -4076 (|#4| $))))) (T -948)) +((-1405 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) (-4 *3 (-944 *7 *5 *6)) (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *3) (|:| |radicand| (-639 *3)))) (-5 *1 (-948 *5 *6 *7 *3 *8)) (-5 *4 (-766)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4054 ($ *3)) (-15 -4065 (*3 $)) (-15 -4076 (*3 $))))))) (-2105 (*1 *2 *3 *4) (-12 (-4 *7 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) (-4 *8 (-944 *7 *5 *6)) (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *3) (|:| |radicand| *3))) (-5 *1 (-948 *5 *6 *7 *8 *3)) (-5 *4 (-766)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4054 ($ *8)) (-15 -4065 (*8 $)) (-15 -4076 (*8 $))))))) (-2400 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-562))) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) (-4 *8 (-944 *7 *5 *6)) (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *9) (|:| |radicand| *9))) (-5 *1 (-948 *5 *6 *7 *8 *9)) (-5 *4 (-766)) (-4 *9 (-13 (-362) (-10 -8 (-15 -4054 ($ *8)) (-15 -4065 (*8 $)) (-15 -4076 (*8 $))))))) (-3887 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-554)) (-4 *7 (-944 *3 *5 *6)) (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *8) (|:| |radicand| *8))) (-5 *1 (-948 *5 *6 *3 *7 *8)) (-5 *4 (-766)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $)))))))) +(-10 -7 (-15 -3887 ((-2 (|:| -1960 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#3| (-766))) (-15 -2400 ((-2 (|:| -1960 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) (-406 (-562)) (-766))) (IF (|has| |#3| (-451)) (-15 -2105 ((-2 (|:| -1960 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#5| (-766))) |%noBranch|) (-15 -1405 ((-2 (|:| -1960 (-766)) (|:| -4221 |#4|) (|:| |radicand| (-639 |#4|))) |#4| (-766)))) +((-4041 (((-112) $ $) NIL)) (-3329 (($ (-1112)) 8)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 14) (((-1112) $) 11)) (-1731 (((-112) $ $) 10))) +(((-949) (-13 (-1092) (-609 (-1112)) (-10 -8 (-15 -3329 ($ (-1112)))))) (T -949)) +((-3329 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-949))))) +(-13 (-1092) (-609 (-1112)) (-10 -8 (-15 -3329 ($ (-1112))))) +((-1462 (((-1086 (-224)) $) 8)) (-1449 (((-1086 (-224)) $) 9)) (-2524 (((-639 (-639 (-938 (-224)))) $) 10)) (-4054 (((-857) $) 6))) +(((-950) (-139)) (T -950)) +((-2524 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-639 (-639 (-938 (-224))))))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1086 (-224))))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1086 (-224)))))) +(-13 (-609 (-857)) (-10 -8 (-15 -2524 ((-639 (-639 (-938 (-224)))) $)) (-15 -1449 ((-1086 (-224)) $)) (-15 -1462 ((-1086 (-224)) $)))) +(((-609 (-857)) . T)) +((-3998 (((-3 (-683 |#1|) "failed") |#2| (-916)) 15))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3998 ((-3 (-683 |#1|) "failed") |#2| (-916)))) (-554) (-650 |#1|)) (T -951)) +((-3998 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-916)) (-4 *5 (-554)) (-5 *2 (-683 *5)) (-5 *1 (-951 *5 *3)) (-4 *3 (-650 *5))))) +(-10 -7 (-15 -3998 ((-3 (-683 |#1|) "failed") |#2| (-916)))) +((-2578 (((-953 |#2|) (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|) 16)) (-1955 ((|#2| (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|) 18)) (-4152 (((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)) 13))) +(((-952 |#1| |#2|) (-10 -7 (-15 -2578 ((-953 |#2|) (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|)) (-15 -1955 (|#2| (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|)) (-15 -4152 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) (-1207) (-1207)) (T -952)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-953 *6)) (-5 *1 (-952 *5 *6)))) (-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-953 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-952 *5 *2)))) (-2578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-953 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-953 *5)) (-5 *1 (-952 *6 *5))))) +(-10 -7 (-15 -2578 ((-953 |#2|) (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|)) (-15 -1955 (|#2| (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|)) (-15 -4152 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) 16 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) 15 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 13)) (-4264 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1458 (($ (-766) |#1|) 12)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) 10 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) 17 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) 11)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) 14) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 8 (|has| $ (-6 -4402))))) +(((-953 |#1|) (-19 |#1|) (-1207)) (T -953)) NIL (-19 |#1|) -((-4248 (((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|) 16)) (-4249 ((|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|) 18)) (-4365 (((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|)) 13))) -(((-952 |#1| |#2|) (-10 -7 (-15 -4248 ((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4365 ((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|)))) (-1204) (-1204)) (T -952)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-951 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-951 *6)) (-5 *1 (-952 *5 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-951 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-952 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-951 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-5 *2 (-951 *5)) (-5 *1 (-952 *6 *5))))) -(-10 -7 (-15 -4248 ((-951 |#2|) (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-951 |#1|) |#2|)) (-15 -4365 ((-951 |#2|) (-1 |#2| |#1|) (-951 |#1|)))) -((-3214 (($ $ (-1082 $)) 7) (($ $ (-1166)) 6))) -(((-953) (-139)) (T -953)) -((-3214 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-953)))) (-3214 (*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-1166))))) -(-13 (-10 -8 (-15 -3214 ($ $ (-1166))) (-15 -3214 ($ $ (-1082 $))))) -((-3215 (((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)) (-1166)) 25) (((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166))) 26) (((-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 |#1|))) (-939 |#1|) (-1166) (-939 |#1|) (-1166)) 43))) -(((-954 |#1|) (-10 -7 (-15 -3215 ((-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 |#1|))) (-939 |#1|) (-1166) (-939 |#1|) (-1166))) (-15 -3215 ((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3215 ((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)) (-1166)))) (-13 (-362) (-146))) (T -954)) -((-3215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-5 *5 (-1166)) (-4 *6 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 *6))) (|:| |prim| (-1160 *6)))) (-5 *1 (-954 *6)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 *5))) (|:| |prim| (-1160 *5)))) (-5 *1 (-954 *5)))) (-3215 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-939 *5)) (-5 *4 (-1166)) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 *5)))) (-5 *1 (-954 *5))))) -(-10 -7 (-15 -3215 ((-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 |#1|))) (-939 |#1|) (-1166) (-939 |#1|) (-1166))) (-15 -3215 ((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)))) (-15 -3215 ((-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 |#1|))) (|:| |prim| (-1160 |#1|))) (-635 (-939 |#1|)) (-635 (-1166)) (-1166)))) -((-3218 (((-635 |#1|) |#1| |#1|) 42)) (-4130 (((-112) |#1|) 39)) (-3217 ((|#1| |#1|) 64)) (-3216 ((|#1| |#1|) 63))) -(((-955 |#1|) (-10 -7 (-15 -4130 ((-112) |#1|)) (-15 -3216 (|#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3218 ((-635 |#1|) |#1| |#1|))) (-543)) (T -955)) -((-3218 (*1 *2 *3 *3) (-12 (-5 *2 (-635 *3)) (-5 *1 (-955 *3)) (-4 *3 (-543)))) (-3217 (*1 *2 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-543)))) (-3216 (*1 *2 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-543)))) (-4130 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-955 *3)) (-4 *3 (-543))))) -(-10 -7 (-15 -4130 ((-112) |#1|)) (-15 -3216 (|#1| |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -3218 ((-635 |#1|) |#1| |#1|))) -((-3219 (((-1259) (-857)) 9))) -(((-956) (-10 -7 (-15 -3219 ((-1259) (-857))))) (T -956)) -((-3219 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-956))))) -(-10 -7 (-15 -3219 ((-1259) (-857)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (-2778 (($ $ $) 63 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (-1391 (((-3 $ "failed") $ $) 50 (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (-3521 (((-765)) 34 (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3220 ((|#2| $) 21)) (-3221 ((|#1| $) 20)) (-4131 (($) NIL (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) CONST)) (-3866 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (-3377 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2545 (((-112) $) NIL (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (-2913 (($ $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-3242 (($ $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-3222 (($ |#1| |#2|) 19)) (-2160 (((-912) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 37 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-2535 (($ (-912)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3644 (((-1110) $) NIL)) (-3392 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-2729 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-4353 (((-857) $) 14)) (-3040 (($) 40 (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))) CONST)) (-3046 (($) 24 (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))) CONST)) (-2945 (((-112) $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-2946 (((-112) $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-3437 (((-112) $ $) 18)) (-3066 (((-112) $ $) NIL (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-3067 (((-112) $ $) 66 (-3936 (-12 (|has| |#1| (-787)) (|has| |#2| (-787))) (-12 (|has| |#1| (-844)) (|has| |#2| (-844)))))) (-4356 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-4244 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4246 (($ $ $) 43 (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787)))))) (** (($ $ (-544)) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471)))) (($ $ (-765)) 31 (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))) (($ $ (-912)) NIL (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720)))))) (* (($ (-544) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-765) $) 46 (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (($ (-912) $) NIL (-3936 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-787)) (|has| |#2| (-787))))) (($ $ $) 27 (-3936 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-720)) (|has| |#2| (-720))))))) -(((-957 |#1| |#2|) (-13 (-1091) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-720)) (IF (|has| |#2| (-720)) (-6 (-720)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-787)) (IF (|has| |#2| (-787)) (-6 (-787)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-844)) (IF (|has| |#2| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (-15 -3222 ($ |#1| |#2|)) (-15 -3221 (|#1| $)) (-15 -3220 (|#2| $)))) (-1091) (-1091)) (T -957)) -((-3222 (*1 *1 *2 *3) (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3221 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1091)))) (-3220 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1091))))) -(-13 (-1091) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-720)) (IF (|has| |#2| (-720)) (-6 (-720)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-787)) (IF (|has| |#2| (-787)) (-6 (-787)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-844)) (IF (|has| |#2| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (-15 -3222 ($ |#1| |#2|)) (-15 -3221 (|#1| $)) (-15 -3220 (|#2| $)))) -((-3806 (((-1093) $) 12)) (-3223 (($ (-1166) (-1093)) 13)) (-3949 (((-1166) $) 10)) (-4353 (((-857) $) 22))) -(((-958) (-13 (-608 (-857)) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -3806 ((-1093) $)) (-15 -3223 ($ (-1166) (-1093)))))) (T -958)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-958)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-958)))) (-3223 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1093)) (-5 *1 (-958))))) -(-13 (-608 (-857)) (-10 -8 (-15 -3949 ((-1166) $)) (-15 -3806 ((-1093) $)) (-15 -3223 ($ (-1166) (-1093))))) -((-2947 (((-112) $ $) NIL)) (-3467 (((-1087 (-1166)) $) 19)) (-3234 (((-112) $) 26)) (-4238 (((-1166) $) 27)) (-3236 (((-112) $) 24)) (-3235 ((|#1| $) 25)) (-3228 (((-866 $ $) $) 34)) (-3229 (((-112) $) 33)) (-3239 (($ $ $) 12)) (-3232 (($ $) 29)) (-3233 (((-112) $) 28)) (-3726 (($ $) 10)) (-3643 (((-1148) $) NIL)) (-3226 (((-866 $ $) $) 36)) (-3227 (((-112) $) 35)) (-3238 (($ $ $) 13)) (-3644 (((-1110) $) NIL)) (-3224 (((-866 $ $) $) 38)) (-3225 (((-112) $) 37)) (-3237 (($ $ $) 14)) (-4353 (((-857) $) 40) (($ |#1|) 7) (($ (-1166)) 9)) (-3230 (((-866 $ $) $) 32)) (-3231 (((-112) $) 30)) (-3240 (($ $ $) 11)) (-3437 (((-112) $ $) NIL))) -(((-959 |#1|) (-13 (-960) (-10 -8 (-15 -4353 ($ |#1|)) (-15 -4353 ($ (-1166))) (-15 -3467 ((-1087 (-1166)) $)) (-15 -3236 ((-112) $)) (-15 -3235 (|#1| $)) (-15 -3234 ((-112) $)) (-15 -4238 ((-1166) $)) (-15 -3233 ((-112) $)) (-15 -3232 ($ $)) (-15 -3231 ((-112) $)) (-15 -3230 ((-866 $ $) $)) (-15 -3229 ((-112) $)) (-15 -3228 ((-866 $ $) $)) (-15 -3227 ((-112) $)) (-15 -3226 ((-866 $ $) $)) (-15 -3225 ((-112) $)) (-15 -3224 ((-866 $ $) $)))) (-960)) (T -959)) -((-4353 (*1 *1 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-1087 (-1166))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3235 (*1 *2 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3232 (*1 *1 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(-13 (-960) (-10 -8 (-15 -4353 ($ |#1|)) (-15 -4353 ($ (-1166))) (-15 -3467 ((-1087 (-1166)) $)) (-15 -3236 ((-112) $)) (-15 -3235 (|#1| $)) (-15 -3234 ((-112) $)) (-15 -4238 ((-1166) $)) (-15 -3233 ((-112) $)) (-15 -3232 ($ $)) (-15 -3231 ((-112) $)) (-15 -3230 ((-866 $ $) $)) (-15 -3229 ((-112) $)) (-15 -3228 ((-866 $ $) $)) (-15 -3227 ((-112) $)) (-15 -3226 ((-866 $ $) $)) (-15 -3225 ((-112) $)) (-15 -3224 ((-866 $ $) $)))) -((-2947 (((-112) $ $) 7)) (-3239 (($ $ $) 15)) (-3726 (($ $) 17)) (-3643 (((-1148) $) 9)) (-3238 (($ $ $) 14)) (-3644 (((-1110) $) 10)) (-3237 (($ $ $) 13)) (-4353 (((-857) $) 11)) (-3240 (($ $ $) 16)) (-3437 (((-112) $ $) 6))) -(((-960) (-139)) (T -960)) -((-3726 (*1 *1 *1) (-4 *1 (-960))) (-3240 (*1 *1 *1 *1) (-4 *1 (-960))) (-3239 (*1 *1 *1 *1) (-4 *1 (-960))) (-3238 (*1 *1 *1 *1) (-4 *1 (-960))) (-3237 (*1 *1 *1 *1) (-4 *1 (-960)))) -(-13 (-1091) (-10 -8 (-15 -3726 ($ $)) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3238 ($ $ $)) (-15 -3237 ($ $ $)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-3241 (($ $ $) 43)) (-3917 (($ $ $) 44)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3242 ((|#1| $) 45)) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-961 |#1|) (-139) (-844)) (T -961)) -((-3242 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))) (-3241 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4400) (-15 -3242 (|t#1| $)) (-15 -3917 ($ $ $)) (-15 -3241 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-3254 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|) 84)) (-4162 ((|#2| |#2| |#2|) 82)) (-3255 (((-2 (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|) 86)) (-3256 (((-2 (|:| |coef1| |#2|) (|:| -3545 |#2|)) |#2| |#2|) 88)) (-3263 (((-2 (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|) 106 (|has| |#1| (-450)))) (-3270 (((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 45)) (-3244 (((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 63)) (-3245 (((-2 (|:| |coef1| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 65)) (-3253 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-3248 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 70)) (-3258 (((-2 (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|) 96)) (-3251 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 73)) (-3260 (((-635 (-765)) |#2| |#2|) 81)) (-3268 ((|#1| |#2| |#2|) 41)) (-3262 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|) 104 (|has| |#1| (-450)))) (-3261 ((|#1| |#2| |#2|) 102 (|has| |#1| (-450)))) (-3269 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 43)) (-3243 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|) 62)) (-4163 ((|#1| |#2| |#2|) 60)) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|) 34)) (-3267 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-3252 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-3591 ((|#2| |#2| |#2|) 74)) (-3247 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 68)) (-3246 ((|#2| |#2| |#2| (-765)) 66)) (-3545 ((|#2| |#2| |#2|) 110 (|has| |#1| (-450)))) (-3865 (((-1253 |#2|) (-1253 |#2|) |#1|) 21)) (-3264 (((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|) 38)) (-3257 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|) 94)) (-4164 ((|#1| |#2|) 91)) (-3250 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765)) 72)) (-3249 ((|#2| |#2| |#2| (-765)) 71)) (-3259 (((-635 |#2|) |#2| |#2|) 79)) (-3266 ((|#2| |#2| |#1| |#1| (-765)) 49)) (-3265 ((|#1| |#1| |#1| (-765)) 48)) (* (((-1253 |#2|) |#1| (-1253 |#2|)) 16))) -(((-962 |#1| |#2|) (-10 -7 (-15 -4163 (|#1| |#2| |#2|)) (-15 -3243 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3244 ((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3245 ((-2 (|:| |coef1| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3246 (|#2| |#2| |#2| (-765))) (-15 -3247 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3248 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3249 (|#2| |#2| |#2| (-765))) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3251 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3591 (|#2| |#2| |#2|)) (-15 -3252 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4162 (|#2| |#2| |#2|)) (-15 -3254 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -3256 ((-2 (|:| |coef1| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -4164 (|#1| |#2|)) (-15 -3257 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|)) (-15 -3258 ((-2 (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|)) (-15 -3259 ((-635 |#2|) |#2| |#2|)) (-15 -3260 ((-635 (-765)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -3261 (|#1| |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1253 |#2|) |#1| (-1253 |#2|))) (-15 -3865 ((-1253 |#2|) (-1253 |#2|) |#1|)) (-15 -4159 ((-2 (|:| -4361 |#1|) (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|)) (-15 -3264 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|)) (-15 -3265 (|#1| |#1| |#1| (-765))) (-15 -3266 (|#2| |#2| |#1| |#1| (-765))) (-15 -3267 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3268 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|))) (-554) (-1229 |#1|)) (T -962)) -((-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) (-3267 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3266 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3265 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *2 (-554)) (-5 *1 (-962 *2 *4)) (-4 *4 (-1229 *2)))) (-3264 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-4159 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -4361 *4) (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3865 (*1 *2 *2 *3) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-554)) (-5 *1 (-962 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-554)) (-5 *1 (-962 *3 *4)))) (-3545 (*1 *2 *2 *2) (-12 (-4 *3 (-450)) (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3263 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3261 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3262 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3261 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3261 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-4 *2 (-450)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) (-3260 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 (-765))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3259 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3258 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4164 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4164 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-4164 (*1 *2 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3545 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3255 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3545 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3254 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3545 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-4162 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3253 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3252 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3591 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) (-3251 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-3250 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-3249 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-554)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4)))) (-3248 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-3247 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5)))) (-3246 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-554)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4)))) (-3245 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3244 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-3243 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4163 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) (-4163 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2))))) -(-10 -7 (-15 -4163 (|#1| |#2| |#2|)) (-15 -3243 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3244 ((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3245 ((-2 (|:| |coef1| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3246 (|#2| |#2| |#2| (-765))) (-15 -3247 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3248 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3249 (|#2| |#2| |#2| (-765))) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3251 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-765))) (-15 -3591 (|#2| |#2| |#2|)) (-15 -3252 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4162 (|#2| |#2| |#2|)) (-15 -3254 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -3255 ((-2 (|:| |coef2| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -3256 ((-2 (|:| |coef1| |#2|) (|:| -3545 |#2|)) |#2| |#2|)) (-15 -4164 (|#1| |#2|)) (-15 -3257 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|)) (-15 -3258 ((-2 (|:| |coef2| |#2|) (|:| -4164 |#1|)) |#2|)) (-15 -3259 ((-635 |#2|) |#2| |#2|)) (-15 -3260 ((-635 (-765)) |#2| |#2|)) (IF (|has| |#1| (-450)) (PROGN (-15 -3261 (|#1| |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef2| |#2|) (|:| -3261 |#1|)) |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1253 |#2|) |#1| (-1253 |#2|))) (-15 -3865 ((-1253 |#2|) (-1253 |#2|) |#1|)) (-15 -4159 ((-2 (|:| -4361 |#1|) (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|)) (-15 -3264 ((-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) |#2| |#2|)) (-15 -3265 (|#1| |#1| |#1| (-765))) (-15 -3266 (|#2| |#2| |#1| |#1| (-765))) (-15 -3267 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3268 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef2| |#2|) (|:| -4163 |#1|)) |#2| |#2|))) -((-2947 (((-112) $ $) NIL)) (-3719 (((-1205) $) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 10)) (-4353 (((-857) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-963) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $))))) (T -963)) -((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-963)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-963))))) -(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) 26)) (-4131 (($) NIL T CONST)) (-3272 (((-635 (-635 (-544))) (-635 (-544))) 28)) (-3271 (((-544) $) 44)) (-3273 (($ (-635 (-544))) 17)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4377 (((-635 (-544)) $) 12)) (-3392 (($ $) 31)) (-4353 (((-857) $) 42) (((-635 (-544)) $) 10)) (-3040 (($) 7 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 19)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 18)) (-4246 (($ $ $) 20)) (* (($ (-912) $) NIL) (($ (-765) $) 24))) -(((-964) (-13 (-791) (-609 (-635 (-544))) (-608 (-635 (-544))) (-10 -8 (-15 -3273 ($ (-635 (-544)))) (-15 -3272 ((-635 (-635 (-544))) (-635 (-544)))) (-15 -3271 ((-544) $)) (-15 -3392 ($ $))))) (T -964)) -((-3273 (*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-964)))) (-3272 (*1 *2 *3) (-12 (-5 *2 (-635 (-635 (-544)))) (-5 *1 (-964)) (-5 *3 (-635 (-544))))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-964)))) (-3392 (*1 *1 *1) (-5 *1 (-964)))) -(-13 (-791) (-609 (-635 (-544))) (-608 (-635 (-544))) (-10 -8 (-15 -3273 ($ (-635 (-544)))) (-15 -3272 ((-635 (-635 (-544))) (-635 (-544)))) (-15 -3271 ((-544) $)) (-15 -3392 ($ $)))) -((-4356 (($ $ |#2|) 30)) (-4244 (($ $) 22) (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-406 (-544)) $) 26) (($ $ (-406 (-544))) 28))) -(((-965 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4356 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) (-966 |#2| |#3| |#4|) (-1042) (-786) (-844)) (T -965)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-406 (-544)))) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 -4356 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 * (|#1| (-912) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 |#3|) $) 77)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3275 (((-112) $) 76)) (-2545 (((-112) $) 31)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-635 |#3|) (-635 |#2|)) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-4355 ((|#2| $) 67)) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-4084 ((|#1| $ |#2|) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544))))))) -(((-966 |#1| |#2| |#3|) (-139) (-1042) (-786) (-844)) (T -966)) -((-3575 (*1 *2 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-786)) (-4 *4 (-844)) (-4 *2 (-1042)))) (-3277 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *2 (-786)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1042)) (-4 *3 (-786)) (-4 *2 (-844)))) (-3276 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 *5)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-786)) (-4 *6 (-844)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) (-5 *2 (-635 *5)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3274 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3276 ($ $ |t#3| |t#2|)) (-15 -3276 ($ $ (-635 |t#3|) (-635 |t#2|))) (-15 -3277 ($ $)) (-15 -3575 (|t#1| $)) (-15 -4355 (|t#2| $)) (-15 -3467 ((-635 |t#3|) $)) (-15 -3275 ((-112) $)) (-15 -3274 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-3278 (((-1079 (-224)) $) 8)) (-3279 (((-1079 (-224)) $) 9)) (-3280 (((-1079 (-224)) $) 10)) (-3281 (((-635 (-635 (-936 (-224)))) $) 11)) (-4353 (((-857) $) 6))) -(((-967) (-139)) (T -967)) -((-3281 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-635 (-635 (-936 (-224))))))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224))))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224))))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224)))))) -(-13 (-608 (-857)) (-10 -8 (-15 -3281 ((-635 (-635 (-936 (-224)))) $)) (-15 -3280 ((-1079 (-224)) $)) (-15 -3279 ((-1079 (-224)) $)) (-15 -3278 ((-1079 (-224)) $)))) -(((-608 (-857)) . T)) -((-3467 (((-635 |#4|) $) 23)) (-3291 (((-112) $) 47)) (-3282 (((-112) $) 46)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#4|) 35)) (-3287 (((-112) $) 48)) (-3289 (((-112) $ $) 54)) (-3288 (((-112) $ $) 57)) (-3290 (((-112) $) 52)) (-3283 (((-635 |#5|) (-635 |#5|) $) 89)) (-3284 (((-635 |#5|) (-635 |#5|) $) 86)) (-3285 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3297 (((-635 |#4|) $) 27)) (-3296 (((-112) |#4| $) 29)) (-3286 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-3293 (($ $ |#4|) 32)) (-3295 (($ $ |#4|) 31)) (-3294 (($ $ |#4|) 33)) (-3437 (((-112) $ $) 39))) -(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3282 ((-112) |#1|)) (-15 -3283 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -3284 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -3285 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3286 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3287 ((-112) |#1|)) (-15 -3288 ((-112) |#1| |#1|)) (-15 -3289 ((-112) |#1| |#1|)) (-15 -3290 ((-112) |#1|)) (-15 -3291 ((-112) |#1|)) (-15 -3292 ((-2 (|:| |under| |#1|) (|:| -3515 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3293 (|#1| |#1| |#4|)) (-15 -3294 (|#1| |#1| |#4|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3296 ((-112) |#4| |#1|)) (-15 -3297 ((-635 |#4|) |#1|)) (-15 -3467 ((-635 |#4|) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-969 |#2| |#3| |#4| |#5|) (-1042) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -968)) -NIL -(-10 -8 (-15 -3282 ((-112) |#1|)) (-15 -3283 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -3284 ((-635 |#5|) (-635 |#5|) |#1|)) (-15 -3285 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3286 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3287 ((-112) |#1|)) (-15 -3288 ((-112) |#1| |#1|)) (-15 -3289 ((-112) |#1| |#1|)) (-15 -3290 ((-112) |#1|)) (-15 -3291 ((-112) |#1|)) (-15 -3292 ((-2 (|:| |under| |#1|) (|:| -3515 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3293 (|#1| |#1| |#4|)) (-15 -3294 (|#1| |#1| |#4|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3296 ((-112) |#4| |#1|)) (-15 -3297 ((-635 |#4|) |#1|)) (-15 -3467 ((-635 |#4|) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400)))) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400)))) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-3644 (((-1110) $) 10)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400))))) -(((-969 |#1| |#2| |#3| |#4|) (-139) (-1042) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -969)) -((-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-1056 *3 *4 *2)) (-4 *2 (-844)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5)))) (-3296 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))) (-3295 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-3294 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-3293 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) (-4 *5 (-1056 *3 *4 *2)))) (-3292 (*1 *2 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3515 *1) (|:| |upper| *1))) (-4 *1 (-969 *4 *5 *3 *6)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-3290 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3289 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3288 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3286 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3285 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3284 (*1 *2 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)))) (-3283 (*1 *2 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112))))) -(-13 (-1091) (-150 |t#4|) (-608 (-635 |t#4|)) (-10 -8 (-6 -4400) (-15 -3558 ((-3 $ "failed") (-635 |t#4|))) (-15 -3557 ($ (-635 |t#4|))) (-15 -3581 (|t#3| $)) (-15 -3467 ((-635 |t#3|) $)) (-15 -3297 ((-635 |t#3|) $)) (-15 -3296 ((-112) |t#3| $)) (-15 -3295 ($ $ |t#3|)) (-15 -3294 ($ $ |t#3|)) (-15 -3293 ($ $ |t#3|)) (-15 -3292 ((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |t#3|)) (-15 -3291 ((-112) $)) (IF (|has| |t#1| (-554)) (PROGN (-15 -3290 ((-112) $)) (-15 -3289 ((-112) $ $)) (-15 -3288 ((-112) $ $)) (-15 -3287 ((-112) $)) (-15 -3286 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3285 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3284 ((-635 |t#4|) (-635 |t#4|) $)) (-15 -3283 ((-635 |t#4|) (-635 |t#4|) $)) (-15 -3282 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-1091) . T) ((-1204) . T)) -((-3299 (((-635 |#4|) |#4| |#4|) 117)) (-3322 (((-635 |#4|) (-635 |#4|) (-112)) 106 (|has| |#1| (-450))) (((-635 |#4|) (-635 |#4|)) 107 (|has| |#1| (-450)))) (-3309 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 34)) (-3308 (((-112) |#4|) 33)) (-3321 (((-635 |#4|) |#4|) 102 (|has| |#1| (-450)))) (-3304 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|)) 19)) (-3305 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|)) 21)) (-3306 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|)) 22)) (-3317 (((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|)) 72)) (-3319 (((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-3320 (((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 110)) (-3298 (((-635 |#4|) (-635 |#4|)) 109)) (-3314 (((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112)) 47) (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 49)) (-3315 ((|#4| |#4| (-635 |#4|)) 48)) (-3323 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 113 (|has| |#1| (-450)))) (-3325 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 116 (|has| |#1| (-450)))) (-3324 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 115 (|has| |#1| (-450)))) (-3300 (((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|))) 86) (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 88) (((-635 |#4|) (-635 |#4|) |#4|) 120) (((-635 |#4|) |#4| |#4|) 118) (((-635 |#4|) (-635 |#4|)) 87)) (-3328 (((-635 |#4|) (-635 |#4|) (-635 |#4|)) 99 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3307 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 40)) (-3303 (((-112) (-635 |#4|)) 61)) (-3302 (((-112) (-635 |#4|) (-635 (-635 |#4|))) 52)) (-3311 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 28)) (-3310 (((-112) |#4|) 27)) (-3327 (((-635 |#4|) (-635 |#4|)) 97 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3326 (((-635 |#4|) (-635 |#4|)) 98 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3316 (((-635 |#4|) (-635 |#4|)) 65)) (-3318 (((-635 |#4|) (-635 |#4|)) 78)) (-3301 (((-112) (-635 |#4|) (-635 |#4|)) 50)) (-3313 (((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|)) 38)) (-3312 (((-112) |#4|) 35))) -(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3300 ((-635 |#4|) (-635 |#4|))) (-15 -3300 ((-635 |#4|) |#4| |#4|)) (-15 -3298 ((-635 |#4|) (-635 |#4|))) (-15 -3299 ((-635 |#4|) |#4| |#4|)) (-15 -3300 ((-635 |#4|) (-635 |#4|) |#4|)) (-15 -3300 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3300 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|)))) (-15 -3301 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3302 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3303 ((-112) (-635 |#4|))) (-15 -3304 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|))) (-15 -3305 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3306 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3307 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3308 ((-112) |#4|)) (-15 -3309 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3310 ((-112) |#4|)) (-15 -3311 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3312 ((-112) |#4|)) (-15 -3313 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3314 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3314 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112))) (-15 -3315 (|#4| |#4| (-635 |#4|))) (-15 -3316 ((-635 |#4|) (-635 |#4|))) (-15 -3317 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|))) (-15 -3318 ((-635 |#4|) (-635 |#4|))) (-15 -3319 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3320 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3321 ((-635 |#4|) |#4|)) (-15 -3322 ((-635 |#4|) (-635 |#4|))) (-15 -3322 ((-635 |#4|) (-635 |#4|) (-112))) (-15 -3323 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3324 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3325 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3326 ((-635 |#4|) (-635 |#4|))) (-15 -3327 ((-635 |#4|) (-635 |#4|))) (-15 -3328 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) |%noBranch|)) (-554) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -970)) -((-3328 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3327 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3326 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3325 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3324 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3323 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3322 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3321 (*1 *2 *3) (-12 (-4 *4 (-450)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3320 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-970 *5 *6 *7 *8)))) (-3319 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-635 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *1 (-970 *6 *7 *8 *9)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3317 (*1 *2 *3) (|partial| -12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -3728 (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3315 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *2)))) (-3314 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3314 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3313 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3312 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3311 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3310 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3309 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3308 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3307 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-3305 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *5 *6 *7 *8)))) (-3301 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3300 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-635 *7) (-635 *7))) (-5 *2 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3300 (*1 *2 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3300 (*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *3)))) (-3299 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3298 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3300 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) (-3300 (*1 *2 *2) (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) -(-10 -7 (-15 -3300 ((-635 |#4|) (-635 |#4|))) (-15 -3300 ((-635 |#4|) |#4| |#4|)) (-15 -3298 ((-635 |#4|) (-635 |#4|))) (-15 -3299 ((-635 |#4|) |#4| |#4|)) (-15 -3300 ((-635 |#4|) (-635 |#4|) |#4|)) (-15 -3300 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3300 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-1 (-635 |#4|) (-635 |#4|)))) (-15 -3301 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3302 ((-112) (-635 |#4|) (-635 (-635 |#4|)))) (-15 -3303 ((-112) (-635 |#4|))) (-15 -3304 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-1 (-112) |#4|) (-635 |#4|))) (-15 -3305 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3306 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 (-1 (-112) |#4|)) (-635 |#4|))) (-15 -3307 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3308 ((-112) |#4|)) (-15 -3309 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3310 ((-112) |#4|)) (-15 -3311 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3312 ((-112) |#4|)) (-15 -3313 ((-2 (|:| |goodPols| (-635 |#4|)) (|:| |badPols| (-635 |#4|))) (-635 |#4|))) (-15 -3314 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3314 ((-635 |#4|) (-635 |#4|) (-635 |#4|) (-112))) (-15 -3315 (|#4| |#4| (-635 |#4|))) (-15 -3316 ((-635 |#4|) (-635 |#4|))) (-15 -3317 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|))) (-15 -3318 ((-635 |#4|) (-635 |#4|))) (-15 -3319 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3320 ((-635 |#4|) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3321 ((-635 |#4|) |#4|)) (-15 -3322 ((-635 |#4|) (-635 |#4|))) (-15 -3322 ((-635 |#4|) (-635 |#4|) (-112))) (-15 -3323 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3324 ((-635 |#4|) (-635 |#4|) (-635 |#4|))) (-15 -3325 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3326 ((-635 |#4|) (-635 |#4|))) (-15 -3327 ((-635 |#4|) (-635 |#4|))) (-15 -3328 ((-635 |#4|) (-635 |#4|) (-635 |#4|)))) |%noBranch|) |%noBranch|)) -((-3329 (((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3331 (((-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)) 35)) (-3330 (((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-971 |#1|) (-10 -7 (-15 -3329 ((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3330 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3331 ((-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)))) (-362)) (T -971)) -((-3331 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-635 (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5))))) (-5 *1 (-971 *5)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)))) (-3330 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-682 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-971 *5)))) (-3329 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) (-5 *2 (-2 (|:| R (-682 *6)) (|:| A (-682 *6)) (|:| |Ainv| (-682 *6)))) (-5 *1 (-971 *6)) (-5 *3 (-682 *6))))) -(-10 -7 (-15 -3329 ((-2 (|:| R (-682 |#1|)) (|:| A (-682 |#1|)) (|:| |Ainv| (-682 |#1|))) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3330 ((-682 |#1|) (-682 |#1|) (-682 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3331 ((-635 (-2 (|:| C (-682 |#1|)) (|:| |g| (-1253 |#1|)))) (-682 |#1|) (-1253 |#1|)))) -((-4376 (((-404 |#4|) |#4|) 48))) -(((-972 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 ((-404 |#4|) |#4|))) (-844) (-787) (-450) (-943 |#3| |#2| |#1|)) (T -972)) -((-4376 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-450)) (-5 *2 (-404 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4))))) -(-10 -7 (-15 -4376 ((-404 |#4|) |#4|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-4245 (($ (-765)) 112 (|has| |#1| (-23)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-3823 (((-544) (-1 (-112) |#1|) $) 97) (((-544) |#1| $) 96 (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) 95 (|has| |#1| (-1091)))) (-4113 (($ (-635 |#1|)) 118)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) 105 (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4239 ((|#1| $) 102 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-4123 (((-112) $ (-765)) 10)) (-4240 ((|#1| $) 103 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-4175 (($ $ (-635 |#1|)) 116)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-4243 ((|#1| $ $) 106 (|has| |#1| (-1042)))) (-4318 (((-912) $) 117)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-4241 (($ $ $) 104)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533)))) (($ (-635 |#1|)) 119)) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 83 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 85 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 82 (|has| |#1| (-844)))) (-4244 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4246 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-544) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-720))) (($ $ |#1|) 107 (|has| |#1| (-720)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-973 |#1|) (-139) (-1042)) (T -973)) -((-4113 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1042)) (-4 *1 (-973 *3)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1042)) (-5 *2 (-912)))) (-4241 (*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1042)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1042))))) -(-13 (-1252 |t#1|) (-613 (-635 |t#1|)) (-10 -8 (-15 -4113 ($ (-635 |t#1|))) (-15 -4318 ((-912) $)) (-15 -4241 ($ $ $)) (-15 -4175 ($ $ (-635 |t#1|))))) -(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-613 (-635 |#1|)) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-371 |#1|) . T) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-19 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1204) . T) ((-1252 |#1|) . T)) -((-4365 (((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)) 17))) -(((-974 |#1| |#2|) (-10 -7 (-15 -4365 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)))) (-1042) (-1042)) (T -974)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6))))) -(-10 -7 (-15 -4365 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)))) -((-3334 ((|#1| (-936 |#1|)) 13)) (-3333 ((|#1| (-936 |#1|)) 12)) (-3332 ((|#1| (-936 |#1|)) 11)) (-3336 ((|#1| (-936 |#1|)) 15)) (-3340 ((|#1| (-936 |#1|)) 21)) (-3335 ((|#1| (-936 |#1|)) 14)) (-3337 ((|#1| (-936 |#1|)) 16)) (-3339 ((|#1| (-936 |#1|)) 20)) (-3338 ((|#1| (-936 |#1|)) 19))) -(((-975 |#1|) (-10 -7 (-15 -3332 (|#1| (-936 |#1|))) (-15 -3333 (|#1| (-936 |#1|))) (-15 -3334 (|#1| (-936 |#1|))) (-15 -3335 (|#1| (-936 |#1|))) (-15 -3336 (|#1| (-936 |#1|))) (-15 -3337 (|#1| (-936 |#1|))) (-15 -3338 (|#1| (-936 |#1|))) (-15 -3339 (|#1| (-936 |#1|))) (-15 -3340 (|#1| (-936 |#1|)))) (-1042)) (T -975)) -((-3340 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(-10 -7 (-15 -3332 (|#1| (-936 |#1|))) (-15 -3333 (|#1| (-936 |#1|))) (-15 -3334 (|#1| (-936 |#1|))) (-15 -3335 (|#1| (-936 |#1|))) (-15 -3336 (|#1| (-936 |#1|))) (-15 -3337 (|#1| (-936 |#1|))) (-15 -3338 (|#1| (-936 |#1|))) (-15 -3339 (|#1| (-936 |#1|))) (-15 -3340 (|#1| (-936 |#1|)))) -((-3358 (((-3 |#1| "failed") |#1|) 18)) (-3346 (((-3 |#1| "failed") |#1|) 6)) (-3356 (((-3 |#1| "failed") |#1|) 16)) (-3344 (((-3 |#1| "failed") |#1|) 4)) (-3360 (((-3 |#1| "failed") |#1|) 20)) (-3348 (((-3 |#1| "failed") |#1|) 8)) (-3341 (((-3 |#1| "failed") |#1| (-765)) 1)) (-3343 (((-3 |#1| "failed") |#1|) 3)) (-3342 (((-3 |#1| "failed") |#1|) 2)) (-3361 (((-3 |#1| "failed") |#1|) 21)) (-3349 (((-3 |#1| "failed") |#1|) 9)) (-3359 (((-3 |#1| "failed") |#1|) 19)) (-3347 (((-3 |#1| "failed") |#1|) 7)) (-3357 (((-3 |#1| "failed") |#1|) 17)) (-3345 (((-3 |#1| "failed") |#1|) 5)) (-3364 (((-3 |#1| "failed") |#1|) 24)) (-3352 (((-3 |#1| "failed") |#1|) 12)) (-3362 (((-3 |#1| "failed") |#1|) 22)) (-3350 (((-3 |#1| "failed") |#1|) 10)) (-3366 (((-3 |#1| "failed") |#1|) 26)) (-3354 (((-3 |#1| "failed") |#1|) 14)) (-3367 (((-3 |#1| "failed") |#1|) 27)) (-3355 (((-3 |#1| "failed") |#1|) 15)) (-3365 (((-3 |#1| "failed") |#1|) 25)) (-3353 (((-3 |#1| "failed") |#1|) 13)) (-3363 (((-3 |#1| "failed") |#1|) 23)) (-3351 (((-3 |#1| "failed") |#1|) 11))) -(((-976 |#1|) (-139) (-1190)) (T -976)) -((-3367 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3365 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3361 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3360 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3359 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3358 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3357 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3356 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3355 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3354 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3353 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3352 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3351 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3350 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3349 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3348 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3347 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3346 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3345 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3344 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3343 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3342 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190)))) (-3341 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(-13 (-10 -7 (-15 -3341 ((-3 |t#1| "failed") |t#1| (-765))) (-15 -3342 ((-3 |t#1| "failed") |t#1|)) (-15 -3343 ((-3 |t#1| "failed") |t#1|)) (-15 -3344 ((-3 |t#1| "failed") |t#1|)) (-15 -3345 ((-3 |t#1| "failed") |t#1|)) (-15 -3346 ((-3 |t#1| "failed") |t#1|)) (-15 -3347 ((-3 |t#1| "failed") |t#1|)) (-15 -3348 ((-3 |t#1| "failed") |t#1|)) (-15 -3349 ((-3 |t#1| "failed") |t#1|)) (-15 -3350 ((-3 |t#1| "failed") |t#1|)) (-15 -3351 ((-3 |t#1| "failed") |t#1|)) (-15 -3352 ((-3 |t#1| "failed") |t#1|)) (-15 -3353 ((-3 |t#1| "failed") |t#1|)) (-15 -3354 ((-3 |t#1| "failed") |t#1|)) (-15 -3355 ((-3 |t#1| "failed") |t#1|)) (-15 -3356 ((-3 |t#1| "failed") |t#1|)) (-15 -3357 ((-3 |t#1| "failed") |t#1|)) (-15 -3358 ((-3 |t#1| "failed") |t#1|)) (-15 -3359 ((-3 |t#1| "failed") |t#1|)) (-15 -3360 ((-3 |t#1| "failed") |t#1|)) (-15 -3361 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3365 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -3367 ((-3 |t#1| "failed") |t#1|)))) -((-3369 ((|#4| |#4| (-635 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-3368 ((|#4| |#4| (-635 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4365 ((|#4| (-1 |#4| (-939 |#1|)) |#4|) 30))) -(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3368 (|#4| |#4| |#3|)) (-15 -3368 (|#4| |#4| (-635 |#3|))) (-15 -3369 (|#4| |#4| |#3|)) (-15 -3369 (|#4| |#4| (-635 |#3|))) (-15 -4365 (|#4| (-1 |#4| (-939 |#1|)) |#4|))) (-1042) (-787) (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166))))) (-943 (-939 |#1|) |#2| |#3|)) (T -977)) -((-4365 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-939 *4))) (-4 *4 (-1042)) (-4 *2 (-943 (-939 *4) *5 *6)) (-4 *5 (-787)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1="failed") (-1166)))))) (-5 *1 (-977 *4 *5 *6 *2)))) (-3369 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-943 (-939 *4) *5 *6)))) (-3369 (*1 *2 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-943 (-939 *4) *5 *3)))) (-3368 (*1 *2 *2 *3) (-12 (-5 *3 (-635 *6)) (-4 *6 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-943 (-939 *4) *5 *6)))) (-3368 (*1 *2 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-943 (-939 *4) *5 *3))))) -(-10 -7 (-15 -3368 (|#4| |#4| |#3|)) (-15 -3368 (|#4| |#4| (-635 |#3|))) (-15 -3369 (|#4| |#4| |#3|)) (-15 -3369 (|#4| |#4| (-635 |#3|))) (-15 -4365 (|#4| (-1 |#4| (-939 |#1|)) |#4|))) -((-3370 ((|#2| |#3|) 35)) (-4326 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|) 73)) (-4325 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) 89))) -(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)) (-15 -3370 (|#2| |#3|))) (-349) (-1229 |#1|) (-1229 |#2|) (-718 |#2| |#3|)) (T -978)) -((-3370 (*1 *2 *3) (-12 (-4 *3 (-1229 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-978 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-718 *2 *3)))) (-4326 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-718 *3 *5)))) (-4325 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -2162 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-718 *4 *5))))) -(-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|)) (-15 -3370 (|#2| |#3|))) -((-2947 (((-112) $ $) NIL)) (-3805 (((-3 (-112) #1="failed") $) 69)) (-4056 (($ $) 36 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3374 (($ $ (-3 (-112) #1#)) 70)) (-3375 (($ (-635 |#4|) |#4|) 25)) (-3643 (((-1148) $) NIL)) (-3371 (($ $) 67)) (-3644 (((-1110) $) NIL)) (-3807 (((-112) $) 68)) (-3972 (($) 30)) (-3372 ((|#4| $) 72)) (-3373 (((-635 |#4|) $) 71)) (-4353 (((-857) $) 66)) (-3437 (((-112) $ $) NIL))) -(((-979 |#1| |#2| |#3| |#4|) (-13 (-1091) (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -3375 ($ (-635 |#4|) |#4|)) (-15 -3805 ((-3 (-112) #1="failed") $)) (-15 -3374 ($ $ (-3 (-112) #1#))) (-15 -3807 ((-112) $)) (-15 -3373 ((-635 |#4|) $)) (-15 -3372 (|#4| $)) (-15 -3371 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -4056 ($ $)) |%noBranch|) |%noBranch|))) (-450) (-844) (-787) (-943 |#1| |#3| |#2|)) (T -979)) -((-3972 (*1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) (-4 *5 (-943 *2 *4 *3)))) (-3375 (*1 *1 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-943 *4 *6 *5)) (-4 *4 (-450)) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *1 (-979 *4 *5 *6 *3)))) (-3805 (*1 *2 *1) (|partial| -12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) (-3807 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) (-3373 (*1 *2 *1) (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-635 *6)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) (-3372 (*1 *2 *1) (-12 (-4 *2 (-943 *3 *5 *4)) (-5 *1 (-979 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)))) (-3371 (*1 *1 *1) (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) (-4 *5 (-943 *2 *4 *3)))) (-4056 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) (-4 *5 (-943 *2 *4 *3))))) -(-13 (-1091) (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -3375 ($ (-635 |#4|) |#4|)) (-15 -3805 ((-3 (-112) #1="failed") $)) (-15 -3374 ($ $ (-3 (-112) #1#))) (-15 -3807 ((-112) $)) (-15 -3373 ((-635 |#4|) $)) (-15 -3372 (|#4| $)) (-15 -3371 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -4056 ($ $)) |%noBranch|) |%noBranch|))) -((-3376 (((-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544)))) (-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544))))) 68))) -(((-980 |#1| |#2|) (-10 -7 (-15 -3376 ((-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544)))) (-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544))))))) (-635 (-1166)) (-765)) (T -980)) -((-3376 (*1 *2 *2) (-12 (-5 *2 (-979 (-406 (-544)) (-858 *3) (-238 *4 (-765)) (-246 *3 (-406 (-544))))) (-14 *3 (-635 (-1166))) (-14 *4 (-765)) (-5 *1 (-980 *3 *4))))) -(-10 -7 (-15 -3376 ((-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544)))) (-979 (-406 (-544)) (-858 |#1|) (-238 |#2| (-765)) (-246 |#1| (-406 (-544))))))) -((-3671 (((-112) |#5| |#5|) 37)) (-3674 (((-112) |#5| |#5|) 51)) (-3679 (((-112) |#5| (-635 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-3675 (((-112) (-635 |#4|) (-635 |#4|)) 57)) (-3681 (((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) 62)) (-3670 (((-1259)) 33)) (-3669 (((-1259) (-1148) (-1148) (-1148)) 29)) (-3680 (((-635 |#5|) (-635 |#5|)) 80)) (-3682 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) 78)) (-3683 (((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112)) 100)) (-3673 (((-112) |#5| |#5|) 46)) (-3678 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3676 (((-112) (-635 |#4|) (-635 |#4|)) 56)) (-3677 (((-112) (-635 |#4|) (-635 |#4|)) 58)) (-4106 (((-112) (-635 |#4|) (-635 |#4|)) 59)) (-3684 (((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-3672 (((-635 |#5|) (-635 |#5|)) 42))) -(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3669 ((-1259) (-1148) (-1148) (-1148))) (-15 -3670 ((-1259))) (-15 -3671 ((-112) |#5| |#5|)) (-15 -3672 ((-635 |#5|) (-635 |#5|))) (-15 -3673 ((-112) |#5| |#5|)) (-15 -3674 ((-112) |#5| |#5|)) (-15 -3675 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3676 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3677 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4106 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3678 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3679 ((-112) |#5| |#5|)) (-15 -3679 ((-112) |#5| (-635 |#5|))) (-15 -3680 ((-635 |#5|) (-635 |#5|))) (-15 -3681 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3682 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-15 -3683 ((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3684 ((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -981)) -((-3684 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *4) (|:| |ineq| (-635 *9)))) (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) (-4 *4 (-1062 *6 *7 *8 *9)))) (-3683 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *10) (|:| |ineq| (-635 *9))))) (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))) (-3682 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -1688 *7)))) (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3680 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-981 *5 *6 *7 *8 *3)))) (-3679 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3678 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-4106 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3677 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3676 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3675 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3674 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3673 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3671 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3670 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3669 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))) -(-10 -7 (-15 -3669 ((-1259) (-1148) (-1148) (-1148))) (-15 -3670 ((-1259))) (-15 -3671 ((-112) |#5| |#5|)) (-15 -3672 ((-635 |#5|) (-635 |#5|))) (-15 -3673 ((-112) |#5| |#5|)) (-15 -3674 ((-112) |#5| |#5|)) (-15 -3675 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3676 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3677 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4106 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3678 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3679 ((-112) |#5| |#5|)) (-15 -3679 ((-112) |#5| (-635 |#5|))) (-15 -3680 ((-635 |#5|) (-635 |#5|))) (-15 -3681 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3682 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-15 -3683 ((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3684 ((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-4238 (((-1166) $) 15)) (-3806 (((-1148) $) 16)) (-3627 (($ (-1166) (-1148)) 14)) (-4353 (((-857) $) 13))) -(((-982) (-13 (-608 (-857)) (-10 -8 (-15 -3627 ($ (-1166) (-1148))) (-15 -4238 ((-1166) $)) (-15 -3806 ((-1148) $))))) (T -982)) -((-3627 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-982)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-982)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-982))))) -(-13 (-608 (-857)) (-10 -8 (-15 -3627 ($ (-1166) (-1148))) (-15 -4238 ((-1166) $)) (-15 -3806 ((-1148) $)))) -((-3558 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1166) #1#) $) 65) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) 95)) (-3557 ((|#2| $) NIL) (((-1166) $) 60) (((-406 (-544)) $) NIL) (((-544) $) 92)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 112) (((-682 |#2|) (-682 $)) 28)) (-3377 (($) 98)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 75) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84)) (-3379 (($ $) 10)) (-3848 (((-3 $ "failed") $) 20)) (-4365 (($ (-1 |#2| |#2|) $) 22)) (-3849 (($) 16)) (-3513 (($ $) 54)) (-4217 (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3378 (($ $) 12)) (-4377 (((-883 (-544)) $) 70) (((-883 (-377)) $) 79) (((-533) $) 40) (((-377) $) 44) (((-224) $) 47)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 90) (($ |#2|) NIL) (($ (-1166)) 57)) (-3511 (((-765)) 31)) (-3067 (((-112) $ $) 50))) -(((-983 |#1| |#2|) (-10 -8 (-15 -3067 ((-112) |#1| |#1|)) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4353 (|#1| (-1166))) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -3377 (|#1|)) (-15 -3513 (|#1| |#1|)) (-15 -3378 (|#1| |#1|)) (-15 -3379 (|#1| |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| |#1|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-984 |#2|) (-554)) (T -983)) -((-3511 (*1 *2) (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-983 *3 *4)) (-4 *3 (-984 *4))))) -(-10 -8 (-15 -3067 ((-112) |#1| |#1|)) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4353 (|#1| (-1166))) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -3377 (|#1|)) (-15 -3513 (|#1| |#1|)) (-15 -3378 (|#1| |#1|)) (-15 -3379 (|#1| |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -3178 ((-881 (-544) |#1|) |#1| (-883 (-544)) (-881 (-544) |#1|))) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -2401 ((-682 |#2|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| |#1|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3514 ((|#1| $) 138 (|has| |#1| (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 129 (|has| |#1| (-903)))) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 132 (|has| |#1| (-903)))) (-1733 (((-112) $ $) 60)) (-4030 (((-544) $) 119 (|has| |#1| (-814)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 176) (((-3 (-1166) #2#) $) 127 (|has| |#1| (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) 110 (|has| |#1| (-1031 (-544)))) (((-3 (-544) #2#) $) 108 (|has| |#1| (-1031 (-544))))) (-3557 ((|#1| $) 177) (((-1166) $) 128 (|has| |#1| (-1031 (-1166)))) (((-406 (-544)) $) 111 (|has| |#1| (-1031 (-544)))) (((-544) $) 109 (|has| |#1| (-1031 (-544))))) (-2943 (($ $ $) 56)) (-2401 (((-682 (-544)) (-682 $)) 151 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 150 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 149) (((-682 |#1|) (-682 $)) 148)) (-3866 (((-3 $ "failed") $) 33)) (-3377 (($) 136 (|has| |#1| (-543)))) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-3587 (((-112) $) 121 (|has| |#1| (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 145 (|has| |#1| (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 144 (|has| |#1| (-879 (-377))))) (-2545 (((-112) $) 31)) (-3379 (($ $) 140)) (-3381 ((|#1| $) 142)) (-3848 (((-3 $ "failed") $) 107 (|has| |#1| (-1141)))) (-3588 (((-112) $) 120 (|has| |#1| (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) 53)) (-2913 (($ $ $) 117 (|has| |#1| (-844)))) (-3242 (($ $ $) 116 (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) 168)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3849 (($) 106 (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3513 (($ $) 137 (|has| |#1| (-306)))) (-3515 ((|#1| $) 134 (|has| |#1| (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 131 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 130 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 174 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 172 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 171 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 170 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 169 (|has| |#1| (-512 (-1166) |#1|)))) (-1732 (((-765) $) 59)) (-4206 (($ $ |#1|) 175 (|has| |#1| (-285 |#1| |#1|)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4217 (($ $) 167 (|has| |#1| (-232))) (($ $ (-765)) 165 (|has| |#1| (-232))) (($ $ (-1166)) 163 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 162 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 161 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 160 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3378 (($ $) 139)) (-3380 ((|#1| $) 141)) (-4377 (((-883 (-544)) $) 147 (|has| |#1| (-609 (-883 (-544))))) (((-883 (-377)) $) 146 (|has| |#1| (-609 (-883 (-377))))) (((-533) $) 124 (|has| |#1| (-609 (-533)))) (((-377) $) 123 (|has| |#1| (-1013))) (((-224) $) 122 (|has| |#1| (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 133 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ |#1|) 180) (($ (-1166)) 126 (|has| |#1| (-1031 (-1166))))) (-3084 (((-3 $ "failed") $) 125 (-3936 (|has| |#1| (-144)) (-3240 (|has| $ (-144)) (|has| |#1| (-903)))))) (-3511 (((-765)) 28)) (-3516 ((|#1| $) 135 (|has| |#1| (-543)))) (-2212 (((-112) $ $) 40)) (-3787 (($ $) 118 (|has| |#1| (-814)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $) 166 (|has| |#1| (-232))) (($ $ (-765)) 164 (|has| |#1| (-232))) (($ $ (-1166)) 159 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 158 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 157 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 156 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-2945 (((-112) $ $) 114 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 113 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 115 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 112 (|has| |#1| (-844)))) (-4356 (($ $ $) 66) (($ |#1| |#1|) 143)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) -(((-984 |#1|) (-139) (-554)) (T -984)) -((-4356 (*1 *1 *2 *2) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3379 (*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3378 (*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) (-3513 (*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) (-3377 (*1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-543)) (-4 *2 (-554)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-543)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-543))))) -(-13 (-362) (-38 |t#1|) (-1031 |t#1|) (-337 |t#1|) (-230 |t#1|) (-376 |t#1|) (-877 |t#1|) (-399 |t#1|) (-10 -8 (-15 -4356 ($ |t#1| |t#1|)) (-15 -3381 (|t#1| $)) (-15 -3380 (|t#1| $)) (-15 -3379 ($ $)) (-15 -3378 ($ $)) (IF (|has| |t#1| (-1141)) (-6 (-1141)) |%noBranch|) (IF (|has| |t#1| (-1031 (-544))) (PROGN (-6 (-1031 (-544))) (-6 (-1031 (-406 (-544))))) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-814)) (-6 (-814)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1031 (-1166))) (-6 (-1031 (-1166))) |%noBranch|) (IF (|has| |t#1| (-306)) (PROGN (-15 -3514 (|t#1| $)) (-15 -3513 ($ $))) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3377 ($)) (-15 -3516 (|t#1| $)) (-15 -3515 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-903)) (-6 (-903)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 #2=(-1166)) |has| |#1| (-1031 (-1166))) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-609 (-224)) |has| |#1| (-1013)) ((-609 (-377)) |has| |#1| (-1013)) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-609 (-883 (-377))) |has| |#1| (-609 (-883 (-377)))) ((-609 (-883 (-544))) |has| |#1| (-609 (-883 (-544)))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) . T) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) . T) ((-306) . T) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-450) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-554) . T) ((-641 #1#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-785) |has| |#1| (-814)) ((-786) |has| |#1| (-814)) ((-788) |has| |#1| (-814)) ((-791) |has| |#1| (-814)) ((-814) |has| |#1| (-814)) ((-842) |has| |#1| (-814)) ((-844) -3936 (|has| |#1| (-844)) (|has| |#1| (-814))) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-377)) |has| |#1| (-879 (-377))) ((-879 (-544)) |has| |#1| (-879 (-544))) ((-877 |#1|) . T) ((-903) |has| |#1| (-903)) ((-914) . T) ((-1013) |has| |#1| (-1013)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-544))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 #2#) |has| |#1| (-1031 (-1166))) ((-1031 |#1|) . T) ((-1048 #1#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-1141)) ((-1204) . T) ((-1209) . T)) -((-4365 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#2| |#1|) |#3|))) (-554) (-554) (-984 |#1|) (-984 |#2|)) (T -985)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-4 *2 (-984 *6)) (-5 *1 (-985 *5 *6 *4 *2)) (-4 *4 (-984 *5))))) -(-10 -7 (-15 -4365 (|#4| (-1 |#2| |#1|) |#3|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3382 (($ (-1132 |#1| |#2|)) 11)) (-3509 (((-1132 |#1| |#2|) $) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4206 ((|#2| $ (-238 |#1| |#2|)) 16)) (-4353 (((-857) $) NIL)) (-3040 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL))) -(((-986 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3382 ($ (-1132 |#1| |#2|))) (-15 -3509 ((-1132 |#1| |#2|) $)) (-15 -4206 (|#2| $ (-238 |#1| |#2|))))) (-912) (-362)) (T -986)) -((-3382 (*1 *1 *2) (-12 (-5 *2 (-1132 *3 *4)) (-14 *3 (-912)) (-4 *4 (-362)) (-5 *1 (-986 *3 *4)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-1132 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-912)) (-4 *4 (-362)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-238 *4 *2)) (-14 *4 (-912)) (-4 *2 (-362)) (-5 *1 (-986 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3382 ($ (-1132 |#1| |#2|))) (-15 -3509 ((-1132 |#1| |#2|) $)) (-15 -4206 (|#2| $ (-238 |#1| |#2|))))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 9)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-987) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $))))) (T -987)) -((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-987))))) -(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-3385 (($ $) 46)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-4240 (((-765) $) 45)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-3384 ((|#1| $) 44)) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3387 ((|#1| |#1| $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3386 ((|#1| $) 47)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-3383 ((|#1| $) 43)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-988 |#1|) (-139) (-1204)) (T -988)) -((-3387 (*1 *2 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))) (-3385 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4400) (-15 -3387 (|t#1| |t#1| $)) (-15 -3386 (|t#1| $)) (-15 -3385 ($ $)) (-15 -4240 ((-765) $)) (-15 -3384 (|t#1| $)) (-15 -3383 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4050 ((|#1| $) 12)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL (|has| |#1| (-543)))) (-3406 (((-112) $) NIL (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) NIL (|has| |#1| (-543)))) (-3388 (($ |#1| |#1| |#1| |#1|) 16)) (-2545 (((-112) $) NIL)) (-3517 ((|#1| $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-3389 ((|#1| $) 15)) (-3390 ((|#1| $) 14)) (-3391 ((|#1| $) 13)) (-3644 (((-1110) $) NIL)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-512 (-1166) |#1|)))) (-4206 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4217 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3392 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3787 ((|#1| $) NIL (|has| |#1| (-1051)))) (-3040 (($) 8 T CONST)) (-3046 (($) 10 T CONST)) (-3051 (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-362))) (($ (-406 (-544)) $) NIL (|has| |#1| (-362))))) -(((-989 |#1|) (-991 |#1|) (-171)) (T -989)) -NIL -(-991 |#1|) -((-3589 (((-112) $) 42)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#2| $) 43)) (-3407 (((-3 (-406 (-544)) "failed") $) 78)) (-3406 (((-112) $) 72)) (-3405 (((-406 (-544)) $) 76)) (-2545 (((-112) $) 41)) (-3517 ((|#2| $) 22)) (-4365 (($ (-1 |#2| |#2|) $) 19)) (-2779 (($ $) 61)) (-4217 (($ $) NIL) (($ $ (-765)) NIL) (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4377 (((-533) $) 67)) (-3392 (($ $) 17)) (-4353 (((-857) $) 56) (($ (-544)) 38) (($ |#2|) 36) (($ (-406 (-544))) NIL)) (-3511 (((-765)) 10)) (-3787 ((|#2| $) 71)) (-3437 (((-112) $ $) 25)) (-3067 (((-112) $ $) 69)) (-4244 (($ $) 29) (($ $ $) 28)) (-4246 (($ $ $) 26)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL))) -(((-990 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| (-406 (-544)))) (-15 -3067 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 * (|#1| |#1| (-406 (-544)))) (-15 -2779 (|#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3787 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -2545 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-991 |#2|) (-171)) (T -990)) -((-3511 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-990 *3 *4)) (-4 *3 (-991 *4))))) -(-10 -8 (-15 -4353 (|#1| (-406 (-544)))) (-15 -3067 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-544)) |#1|)) (-15 * (|#1| |#1| (-406 (-544)))) (-15 -2779 (|#1| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|)) (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3787 (|#2| |#1|)) (-15 -3517 (|#2| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -4365 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1|)) (-15 -3558 ((-3 |#2| #1="failed") |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -2545 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 * (|#1| (-765) |#1|)) (-15 -3589 ((-112) |#1|)) (-15 * (|#1| (-912) |#1|)) (-15 -4246 (|#1| |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3558 (((-3 (-544) #1="failed") $) 118 (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 116 (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) 113)) (-3557 (((-544) $) 117 (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) 115 (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) 114)) (-2401 (((-682 (-544)) (-682 $)) 88 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 87 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 86) (((-682 |#1|) (-682 $)) 85)) (-3866 (((-3 $ "failed") $) 33)) (-4050 ((|#1| $) 78)) (-3407 (((-3 (-406 (-544)) "failed") $) 74 (|has| |#1| (-543)))) (-3406 (((-112) $) 76 (|has| |#1| (-543)))) (-3405 (((-406 (-544)) $) 75 (|has| |#1| (-543)))) (-3388 (($ |#1| |#1| |#1| |#1|) 79)) (-2545 (((-112) $) 31)) (-3517 ((|#1| $) 80)) (-2913 (($ $ $) 67 (|has| |#1| (-844)))) (-3242 (($ $ $) 66 (|has| |#1| (-844)))) (-4365 (($ (-1 |#1| |#1|) $) 89)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71 (|has| |#1| (-362)))) (-3389 ((|#1| $) 81)) (-3390 ((|#1| $) 82)) (-3391 ((|#1| $) 83)) (-3644 (((-1110) $) 10)) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 95 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-308 |#1|))) (($ $ (-292 |#1|)) 93 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-292 |#1|))) 92 (|has| |#1| (-308 |#1|))) (($ $ (-635 (-1166)) (-635 |#1|)) 91 (|has| |#1| (-512 (-1166) |#1|))) (($ $ (-1166) |#1|) 90 (|has| |#1| (-512 (-1166) |#1|)))) (-4206 (($ $ |#1|) 96 (|has| |#1| (-285 |#1| |#1|)))) (-4217 (($ $) 112 (|has| |#1| (-232))) (($ $ (-765)) 110 (|has| |#1| (-232))) (($ $ (-1166)) 108 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 107 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 106 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 105 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-4377 (((-533) $) 72 (|has| |#1| (-609 (-533))))) (-3392 (($ $) 84)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 38) (($ (-406 (-544))) 61 (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (((-3 $ "failed") $) 73 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-3787 ((|#1| $) 77 (|has| |#1| (-1051)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $) 111 (|has| |#1| (-232))) (($ $ (-765)) 109 (|has| |#1| (-232))) (($ $ (-1166)) 104 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 103 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 102 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 101 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-2945 (((-112) $ $) 64 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 63 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 65 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 62 (|has| |#1| (-844)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70 (|has| |#1| (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-406 (-544))) 69 (|has| |#1| (-362))) (($ (-406 (-544)) $) 68 (|has| |#1| (-362))))) -(((-991 |#1|) (-139) (-171)) (T -991)) -((-3392 (*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3388 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) (-3407 (*1 *2 *1) (|partial| -12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544)))))) -(-13 (-38 |t#1|) (-411 |t#1|) (-230 |t#1|) (-337 |t#1|) (-376 |t#1|) (-10 -8 (-15 -3392 ($ $)) (-15 -3391 (|t#1| $)) (-15 -3390 (|t#1| $)) (-15 -3389 (|t#1| $)) (-15 -3517 (|t#1| $)) (-15 -3388 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4050 (|t#1| $)) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-15 -3787 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3406 ((-112) $)) (-15 -3405 ((-406 (-544)) $)) (-15 -3407 ((-3 (-406 (-544)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-362)) ((-38 |#1|) . T) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-362)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-362))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) |has| |#1| (-362)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -3936 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-512 (-1166) |#1|) |has| |#1| (-512 (-1166) |#1|)) ((-512 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-641 #1#) |has| |#1| (-362)) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-362)) ((-711 |#1|) . T) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1048 #1#) |has| |#1| (-362)) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-4365 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|))) (-991 |#2|) (-171) (-991 |#4|) (-171)) (T -992)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-991 *6)) (-5 *1 (-992 *4 *5 *2 *6)) (-4 *4 (-991 *5))))) -(-10 -7 (-15 -4365 (|#3| (-1 |#4| |#2|) |#1|))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3385 (($ $) 20)) (-3393 (($ (-635 |#1|)) 29)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-4240 (((-765) $) 22)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) 24)) (-4014 (($ |#1| $) 15)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-3384 ((|#1| $) 23)) (-1357 ((|#1| $) 19)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3387 ((|#1| |#1| $) 14)) (-3807 (((-112) $) 17)) (-3972 (($) NIL)) (-3386 ((|#1| $) 18)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) NIL)) (-3383 ((|#1| $) 26)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-993 |#1|) (-13 (-988 |#1|) (-10 -8 (-15 -3393 ($ (-635 |#1|))))) (-1091)) (T -993)) -((-3393 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-993 *3))))) -(-13 (-988 |#1|) (-10 -8 (-15 -3393 ($ (-635 |#1|))))) -((-3420 (($ $) 12)) (-3394 (($ $ (-544)) 13))) -(((-994 |#1|) (-10 -8 (-15 -3420 (|#1| |#1|)) (-15 -3394 (|#1| |#1| (-544)))) (-995)) (T -994)) -NIL -(-10 -8 (-15 -3420 (|#1| |#1|)) (-15 -3394 (|#1| |#1| (-544)))) -((-3420 (($ $) 6)) (-3394 (($ $ (-544)) 7)) (** (($ $ (-406 (-544))) 8))) -(((-995) (-139)) (T -995)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-406 (-544))))) (-3394 (*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-544)))) (-3420 (*1 *1 *1) (-4 *1 (-995)))) -(-13 (-10 -8 (-15 -3420 ($ $)) (-15 -3394 ($ $ (-544))) (-15 ** ($ $ (-406 (-544)))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1791 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-2213 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2211 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1929 (((-682 (-406 |#2|)) (-1253 $)) NIL) (((-682 (-406 |#2|))) NIL)) (-3734 (((-406 |#2|) $) NIL)) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| (-406 |#2|) (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4376 (((-404 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1733 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3521 (((-765)) NIL (|has| (-406 |#2|) (-367)))) (-1805 (((-112)) NIL)) (-1804 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| (-406 |#2|) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-3 (-406 |#2|) #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| (-406 |#2|) (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| (-406 |#2|) (-1031 (-406 (-544))))) (((-406 |#2|) $) NIL)) (-1939 (($ (-1253 (-406 |#2|)) (-1253 $)) NIL) (($ (-1253 (-406 |#2|))) 70) (($ (-1253 |#2|) |#2|) NIL)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-349)))) (-2943 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1928 (((-682 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-406 |#2|) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-406 |#2|))) (|:| |vec| (-1253 (-406 |#2|)))) (-682 $) (-1253 $)) NIL) (((-682 (-406 |#2|)) (-682 $)) NIL)) (-1796 (((-1253 $) (-1253 $)) NIL)) (-4249 (($ |#3|) 65) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-1783 (((-635 (-635 |#1|))) NIL (|has| |#1| (-367)))) (-1808 (((-112) |#1| |#1|) NIL)) (-3494 (((-912)) NIL)) (-3377 (($) NIL (|has| (-406 |#2|) (-367)))) (-1803 (((-112)) NIL)) (-1802 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-2942 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| (-406 |#2|) (-362)))) (-3902 (($ $) NIL)) (-3215 (($) NIL (|has| (-406 |#2|) (-349)))) (-1824 (((-112) $) NIL (|has| (-406 |#2|) (-349)))) (-1914 (($ $ (-765)) NIL (|has| (-406 |#2|) (-349))) (($ $) NIL (|has| (-406 |#2|) (-349)))) (-4130 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4178 (((-912) $) NIL (|has| (-406 |#2|) (-349))) (((-826 (-912)) $) NIL (|has| (-406 |#2|) (-349)))) (-2545 (((-112) $) NIL)) (-3781 (((-765)) NIL)) (-1797 (((-1253 $) (-1253 $)) NIL)) (-3517 (((-406 |#2|) $) NIL)) (-1784 (((-635 (-939 |#1|)) (-1166)) NIL (|has| |#1| (-362)))) (-3848 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2164 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-2160 (((-912) $) NIL (|has| (-406 |#2|) (-367)))) (-3463 ((|#3| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3643 (((-1148) $) NIL)) (-1792 (((-682 (-406 |#2|))) 52)) (-1794 (((-682 (-406 |#2|))) 51)) (-2779 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-1789 (($ (-1253 |#2|) |#2|) 71)) (-1793 (((-682 (-406 |#2|))) 50)) (-1795 (((-682 (-406 |#2|))) 49)) (-1788 (((-2 (|:| |num| (-682 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1790 (((-2 (|:| |num| (-1253 |#2|)) (|:| |den| |#2|)) $) 77)) (-1801 (((-1253 $)) 46)) (-4325 (((-1253 $)) 45)) (-1800 (((-112) $) NIL)) (-1799 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3849 (($) NIL (|has| (-406 |#2|) (-349)) CONST)) (-2535 (($ (-912)) NIL (|has| (-406 |#2|) (-367)))) (-1786 (((-3 |#2| #3="failed")) 63)) (-3644 (((-1110) $) NIL)) (-1810 (((-765)) NIL)) (-2544 (($) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| (-406 |#2|) (-362)))) (-3545 (($ (-635 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| (-406 |#2|) (-349)))) (-4139 (((-404 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1732 (((-765) $) NIL (|has| (-406 |#2|) (-362)))) (-4206 ((|#1| $ |#1| |#1|) NIL)) (-1787 (((-3 |#2| #3#)) 62)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-4164 (((-406 |#2|) (-1253 $)) NIL) (((-406 |#2|)) 42)) (-1915 (((-765) $) NIL (|has| (-406 |#2|) (-349))) (((-3 (-765) "failed") $ $) NIL (|has| (-406 |#2|) (-349)))) (-4217 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-2543 (((-682 (-406 |#2|)) (-1253 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3586 ((|#3|) 53)) (-1818 (($) NIL (|has| (-406 |#2|) (-349)))) (-3625 (((-1253 (-406 |#2|)) $ (-1253 $)) NIL) (((-682 (-406 |#2|)) (-1253 $) (-1253 $)) NIL) (((-1253 (-406 |#2|)) $) 72) (((-682 (-406 |#2|)) (-1253 $)) NIL)) (-4377 (((-1253 (-406 |#2|)) $) NIL) (($ (-1253 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| (-406 |#2|) (-349)))) (-1798 (((-1253 $) (-1253 $)) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1031 (-406 (-544)))))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3084 (($ $) NIL (|has| (-406 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-2743 ((|#3| $) NIL)) (-3511 (((-765)) NIL)) (-1807 (((-112)) 60)) (-1806 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-2162 (((-1253 $)) 125)) (-2212 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1785 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1809 (((-112)) NIL)) (-3040 (($) 94 T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-765)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-1166)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-893 (-1166))))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349)))) (($ $) NIL (-3936 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-349))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-544)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-544))) NIL (|has| (-406 |#2|) (-362))))) -(((-996 |#1| |#2| |#3| |#4| |#5|) (-341 |#1| |#2| |#3|) (-1209) (-1229 |#1|) (-1229 (-406 |#2|)) (-406 |#2|) (-765)) (T -996)) +((-1982 (($ $ (-1084 $)) 7) (($ $ (-1168)) 6))) +(((-954) (-139)) (T -954)) +((-1982 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-954)))) (-1982 (*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-1168))))) +(-13 (-10 -8 (-15 -1982 ($ $ (-1168))) (-15 -1982 ($ $ (-1084 $))))) +((-3529 (((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)) (-1168)) 25) (((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168))) 26) (((-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) (|:| |prim| (-1164 |#1|))) (-947 |#1|) (-1168) (-947 |#1|) (-1168)) 43))) +(((-955 |#1|) (-10 -7 (-15 -3529 ((-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) (|:| |prim| (-1164 |#1|))) (-947 |#1|) (-1168) (-947 |#1|) (-1168))) (-15 -3529 ((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -3529 ((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)) (-1168)))) (-13 (-362) (-146))) (T -955)) +((-3529 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-5 *5 (-1168)) (-4 *6 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 *6))) (|:| |prim| (-1164 *6)))) (-5 *1 (-955 *6)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 *5))) (|:| |prim| (-1164 *5)))) (-5 *1 (-955 *5)))) (-3529 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-947 *5)) (-5 *4 (-1168)) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) (|:| |prim| (-1164 *5)))) (-5 *1 (-955 *5))))) +(-10 -7 (-15 -3529 ((-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) (|:| |prim| (-1164 |#1|))) (-947 |#1|) (-1168) (-947 |#1|) (-1168))) (-15 -3529 ((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -3529 ((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)) (-1168)))) +((-4215 (((-639 |#1|) |#1| |#1|) 42)) (-2717 (((-112) |#1|) 39)) (-2751 ((|#1| |#1|) 64)) (-3047 ((|#1| |#1|) 63))) +(((-956 |#1|) (-10 -7 (-15 -2717 ((-112) |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -2751 (|#1| |#1|)) (-15 -4215 ((-639 |#1|) |#1| |#1|))) (-544)) (T -956)) +((-4215 (*1 *2 *3 *3) (-12 (-5 *2 (-639 *3)) (-5 *1 (-956 *3)) (-4 *3 (-544)))) (-2751 (*1 *2 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-544)))) (-3047 (*1 *2 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-544)))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-544))))) +(-10 -7 (-15 -2717 ((-112) |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -2751 (|#1| |#1|)) (-15 -4215 ((-639 |#1|) |#1| |#1|))) +((-3207 (((-1261) (-857)) 9))) +(((-957) (-10 -7 (-15 -3207 ((-1261) (-857))))) (T -957)) +((-3207 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-957))))) +(-10 -7 (-15 -3207 ((-1261) (-857)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 60 (|has| |#1| (-554)))) (-2796 (($ $) 61 (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 28)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1601 (($ $) 24)) (-3668 (((-3 $ "failed") $) 35)) (-1498 (($ $) NIL (|has| |#1| (-451)))) (-3122 (($ $ |#1| |#2| $) 47)) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) 16)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| |#2|) NIL)) (-2076 ((|#2| $) 19)) (-2836 (($ (-1 |#2| |#2|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1560 (($ $) 23)) (-1573 ((|#1| $) 21)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 40)) (-1547 ((|#1| $) NIL)) (-3348 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-130)) (|has| |#1| (-554))))) (-1762 (((-3 $ "failed") $ $) 73 (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-554)))) (-3598 ((|#2| $) 17)) (-3900 ((|#1| $) NIL (|has| |#1| (-451)))) (-4054 (((-857) $) NIL) (($ (-562)) 39) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 34) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ |#2|) 31)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) 15)) (-3548 (($ $ $ (-766)) 56 (|has| |#1| (-171)))) (-2922 (((-112) $ $) 66 (|has| |#1| (-554)))) (-2286 (($) 22 T CONST)) (-2294 (($) 12 T CONST)) (-1731 (((-112) $ $) 65)) (-1859 (($ $ |#1|) 74 (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) 53) (($ $ (-766)) 51)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-958 |#1| |#2|) (-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| |#2| (-130)) (-15 -3348 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|))) (-1044) (-787)) (T -958)) +((-3348 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-958 *3 *2)) (-4 *2 (-130)) (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *2 (-787))))) +(-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| |#2| (-130)) (-15 -3348 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-3659 (($ $ $) 63 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))))) (-3214 (((-3 $ "failed") $ $) 50 (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-1382 (((-766)) 34 (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3844 ((|#2| $) 21)) (-3440 ((|#1| $) 20)) (-1800 (($) NIL (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) CONST)) (-3668 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))))) (-1448 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1957 (((-112) $) NIL (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))))) (-1551 (($ $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-2993 (($ $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-1737 (($ |#1| |#2|) 19)) (-1999 (((-916) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 37 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))))) (-2466 (($ (-916)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1709 (((-1112) $) NIL)) (-3665 (($ $ $) NIL (-12 (|has| |#1| (-472)) (|has| |#2| (-472))))) (-1911 (($ $ $) NIL (-12 (|has| |#1| (-472)) (|has| |#2| (-472))))) (-4054 (((-857) $) 14)) (-2286 (($) 40 (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) CONST)) (-2294 (($) 24 (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) CONST)) (-1798 (((-112) $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-1772 (((-112) $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-1731 (((-112) $ $) 18)) (-1785 (((-112) $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-1759 (((-112) $ $) 66 (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-1859 (($ $ $) NIL (-12 (|has| |#1| (-472)) (|has| |#2| (-472))))) (-1848 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1835 (($ $ $) 43 (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (** (($ $ (-562)) NIL (-12 (|has| |#1| (-472)) (|has| |#2| (-472)))) (($ $ (-766)) 31 (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721))))) (($ $ (-916)) NIL (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))))) (* (($ (-562) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-766) $) 46 (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788))))) (($ (-916) $) NIL (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788))))) (($ $ $) 27 (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721))))))) +(((-959 |#1| |#2|) (-13 (-1092) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-721)) (IF (|has| |#2| (-721)) (-6 (-721)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-472)) (IF (|has| |#2| (-472)) (-6 (-472)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-788)) (IF (|has| |#2| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-845)) (IF (|has| |#2| (-845)) (-6 (-845)) |%noBranch|) |%noBranch|) (-15 -1737 ($ |#1| |#2|)) (-15 -3440 (|#1| $)) (-15 -3844 (|#2| $)))) (-1092) (-1092)) (T -959)) +((-1737 (*1 *1 *2 *3) (-12 (-5 *1 (-959 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-3440 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1092)))) (-3844 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-959 *3 *2)) (-4 *3 (-1092))))) +(-13 (-1092) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-721)) (IF (|has| |#2| (-721)) (-6 (-721)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-472)) (IF (|has| |#2| (-472)) (-6 (-472)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-788)) (IF (|has| |#2| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-845)) (IF (|has| |#2| (-845)) (-6 (-845)) |%noBranch|) |%noBranch|) (-15 -1737 ($ |#1| |#2|)) (-15 -3440 (|#1| $)) (-15 -3844 (|#2| $)))) +((-2534 (((-1096) $) 12)) (-3394 (($ (-1168) (-1096)) 13)) (-3254 (((-1168) $) 10)) (-4054 (((-857) $) 22))) +(((-960) (-13 (-609 (-857)) (-10 -8 (-15 -3254 ((-1168) $)) (-15 -2534 ((-1096) $)) (-15 -3394 ($ (-1168) (-1096)))))) (T -960)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-960)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-960)))) (-3394 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1096)) (-5 *1 (-960))))) +(-13 (-609 (-857)) (-10 -8 (-15 -3254 ((-1168) $)) (-15 -2534 ((-1096) $)) (-15 -3394 ($ (-1168) (-1096))))) +((-4041 (((-112) $ $) NIL)) (-1402 (((-1094 (-1168)) $) 19)) (-3400 (((-112) $) 26)) (-2444 (((-1168) $) 27)) (-2732 (((-112) $) 24)) (-1874 ((|#1| $) 25)) (-3019 (((-868 $ $) $) 34)) (-3636 (((-112) $) 33)) (-2255 (($ $ $) 12)) (-3653 (($ $) 29)) (-2349 (((-112) $) 28)) (-2236 (($ $) 10)) (-2913 (((-1150) $) NIL)) (-1630 (((-868 $ $) $) 36)) (-4360 (((-112) $) 35)) (-3994 (($ $ $) 13)) (-1709 (((-1112) $) NIL)) (-1708 (((-868 $ $) $) 38)) (-1813 (((-112) $) 37)) (-1935 (($ $ $) 14)) (-4054 (((-857) $) 40) (($ |#1|) 7) (($ (-1168)) 9)) (-3404 (((-868 $ $) $) 32)) (-2082 (((-112) $) 30)) (-2246 (($ $ $) 11)) (-1731 (((-112) $ $) NIL))) +(((-961 |#1|) (-13 (-962) (-10 -8 (-15 -4054 ($ |#1|)) (-15 -4054 ($ (-1168))) (-15 -1402 ((-1094 (-1168)) $)) (-15 -2732 ((-112) $)) (-15 -1874 (|#1| $)) (-15 -3400 ((-112) $)) (-15 -2444 ((-1168) $)) (-15 -2349 ((-112) $)) (-15 -3653 ($ $)) (-15 -2082 ((-112) $)) (-15 -3404 ((-868 $ $) $)) (-15 -3636 ((-112) $)) (-15 -3019 ((-868 $ $) $)) (-15 -4360 ((-112) $)) (-15 -1630 ((-868 $ $) $)) (-15 -1813 ((-112) $)) (-15 -1708 ((-868 $ $) $)))) (-962)) (T -961)) +((-4054 (*1 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1094 (-1168))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-1874 (*1 *2 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-3653 (*1 *1 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) (-4 *3 (-962))))) +(-13 (-962) (-10 -8 (-15 -4054 ($ |#1|)) (-15 -4054 ($ (-1168))) (-15 -1402 ((-1094 (-1168)) $)) (-15 -2732 ((-112) $)) (-15 -1874 (|#1| $)) (-15 -3400 ((-112) $)) (-15 -2444 ((-1168) $)) (-15 -2349 ((-112) $)) (-15 -3653 ($ $)) (-15 -2082 ((-112) $)) (-15 -3404 ((-868 $ $) $)) (-15 -3636 ((-112) $)) (-15 -3019 ((-868 $ $) $)) (-15 -4360 ((-112) $)) (-15 -1630 ((-868 $ $) $)) (-15 -1813 ((-112) $)) (-15 -1708 ((-868 $ $) $)))) +((-4041 (((-112) $ $) 7)) (-2255 (($ $ $) 15)) (-2236 (($ $) 17)) (-2913 (((-1150) $) 9)) (-3994 (($ $ $) 14)) (-1709 (((-1112) $) 10)) (-1935 (($ $ $) 13)) (-4054 (((-857) $) 11)) (-2246 (($ $ $) 16)) (-1731 (((-112) $ $) 6))) +(((-962) (-139)) (T -962)) +((-2236 (*1 *1 *1) (-4 *1 (-962))) (-2246 (*1 *1 *1 *1) (-4 *1 (-962))) (-2255 (*1 *1 *1 *1) (-4 *1 (-962))) (-3994 (*1 *1 *1 *1) (-4 *1 (-962))) (-1935 (*1 *1 *1 *1) (-4 *1 (-962)))) +(-13 (-1092) (-10 -8 (-15 -2236 ($ $)) (-15 -2246 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -1935 ($ $ $)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-1800 (($) 7 T CONST)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-2673 (($ $ $) 43)) (-1610 (($ $ $) 44)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-2993 ((|#1| $) 45)) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) 42)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-963 |#1|) (-139) (-845)) (T -963)) +((-2993 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845)))) (-1610 (*1 *1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845)))) (-2673 (*1 *1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4402) (-15 -2993 (|t#1| $)) (-15 -1610 ($ $ $)) (-15 -2673 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-3276 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|) 84)) (-3258 ((|#2| |#2| |#2|) 82)) (-1747 (((-2 (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|) 86)) (-1436 (((-2 (|:| |coef1| |#2|) (|:| -1606 |#2|)) |#2| |#2|) 88)) (-2382 (((-2 (|:| |coef2| |#2|) (|:| -1732 |#1|)) |#2| |#2|) 106 (|has| |#1| (-451)))) (-1640 (((-2 (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|) 45)) (-3291 (((-2 (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|) 63)) (-3648 (((-2 (|:| |coef1| |#2|) (|:| -2835 |#1|)) |#2| |#2|) 65)) (-3752 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-1626 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766)) 70)) (-2773 (((-2 (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|) 96)) (-4292 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766)) 73)) (-3030 (((-639 (-766)) |#2| |#2|) 81)) (-3893 ((|#1| |#2| |#2|) 41)) (-3560 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1732 |#1|)) |#2| |#2|) 104 (|has| |#1| (-451)))) (-1732 ((|#1| |#2| |#2|) 102 (|has| |#1| (-451)))) (-1721 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|) 43)) (-1419 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|) 62)) (-2835 ((|#1| |#2| |#2|) 60)) (-2622 (((-2 (|:| -4221 |#1|) (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2|) 34)) (-1521 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-3057 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-1851 ((|#2| |#2| |#2|) 74)) (-1893 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766)) 68)) (-2045 ((|#2| |#2| |#2| (-766)) 66)) (-1606 ((|#2| |#2| |#2|) 110 (|has| |#1| (-451)))) (-1762 (((-1256 |#2|) (-1256 |#2|) |#1|) 21)) (-2080 (((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2|) 38)) (-2971 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|) 94)) (-2455 ((|#1| |#2|) 91)) (-2553 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766)) 72)) (-3866 ((|#2| |#2| |#2| (-766)) 71)) (-1376 (((-639 |#2|) |#2| |#2|) 79)) (-1983 ((|#2| |#2| |#1| |#1| (-766)) 49)) (-3409 ((|#1| |#1| |#1| (-766)) 48)) (* (((-1256 |#2|) |#1| (-1256 |#2|)) 16))) +(((-964 |#1| |#2|) (-10 -7 (-15 -2835 (|#1| |#2| |#2|)) (-15 -1419 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|)) (-15 -3291 ((-2 (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|)) (-15 -3648 ((-2 (|:| |coef1| |#2|) (|:| -2835 |#1|)) |#2| |#2|)) (-15 -2045 (|#2| |#2| |#2| (-766))) (-15 -1893 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -1626 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -3866 (|#2| |#2| |#2| (-766))) (-15 -2553 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -4292 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -1851 (|#2| |#2| |#2|)) (-15 -3057 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3752 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3258 (|#2| |#2| |#2|)) (-15 -3276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -1747 ((-2 (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -1436 ((-2 (|:| |coef1| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -2455 (|#1| |#2|)) (-15 -2971 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|)) (-15 -2773 ((-2 (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|)) (-15 -1376 ((-639 |#2|) |#2| |#2|)) (-15 -3030 ((-639 (-766)) |#2| |#2|)) (IF (|has| |#1| (-451)) (PROGN (-15 -1732 (|#1| |#2| |#2|)) (-15 -3560 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1732 |#1|)) |#2| |#2|)) (-15 -2382 ((-2 (|:| |coef2| |#2|) (|:| -1732 |#1|)) |#2| |#2|)) (-15 -1606 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1256 |#2|) |#1| (-1256 |#2|))) (-15 -1762 ((-1256 |#2|) (-1256 |#2|) |#1|)) (-15 -2622 ((-2 (|:| -4221 |#1|) (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2|)) (-15 -2080 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2|)) (-15 -3409 (|#1| |#1| |#1| (-766))) (-15 -1983 (|#2| |#2| |#1| |#1| (-766))) (-15 -1521 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3893 (|#1| |#2| |#2|)) (-15 -1721 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|)) (-15 -1640 ((-2 (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|))) (-554) (-1232 |#1|)) (T -964)) +((-1640 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2835 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1721 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2835 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3893 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) (-1521 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-1983 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-3409 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *2 (-554)) (-5 *1 (-964 *2 *4)) (-4 *4 (-1232 *2)))) (-2080 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2622 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -4221 *4) (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1762 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-554)) (-5 *1 (-964 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-554)) (-5 *1 (-964 *3 *4)))) (-1606 (*1 *2 *2 *2) (-12 (-4 *3 (-451)) (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-2382 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1732 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3560 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1732 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1732 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-4 *2 (-451)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) (-3030 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 (-766))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1376 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2455 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2971 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2455 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2455 (*1 *2 *3) (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) (-1436 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1606 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1747 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1606 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1606 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3258 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-3752 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3057 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1851 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-4292 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5)))) (-2553 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5)))) (-3866 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-554)) (-5 *1 (-964 *4 *2)) (-4 *2 (-1232 *4)))) (-1626 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5)))) (-1893 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5)))) (-2045 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-554)) (-5 *1 (-964 *4 *2)) (-4 *2 (-1232 *4)))) (-3648 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2835 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3291 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2835 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1419 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2835 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2835 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2))))) +(-10 -7 (-15 -2835 (|#1| |#2| |#2|)) (-15 -1419 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|)) (-15 -3291 ((-2 (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|)) (-15 -3648 ((-2 (|:| |coef1| |#2|) (|:| -2835 |#1|)) |#2| |#2|)) (-15 -2045 (|#2| |#2| |#2| (-766))) (-15 -1893 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -1626 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -3866 (|#2| |#2| |#2| (-766))) (-15 -2553 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -4292 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -1851 (|#2| |#2| |#2|)) (-15 -3057 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3752 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3258 (|#2| |#2| |#2|)) (-15 -3276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -1747 ((-2 (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -1436 ((-2 (|:| |coef1| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -2455 (|#1| |#2|)) (-15 -2971 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|)) (-15 -2773 ((-2 (|:| |coef2| |#2|) (|:| -2455 |#1|)) |#2|)) (-15 -1376 ((-639 |#2|) |#2| |#2|)) (-15 -3030 ((-639 (-766)) |#2| |#2|)) (IF (|has| |#1| (-451)) (PROGN (-15 -1732 (|#1| |#2| |#2|)) (-15 -3560 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1732 |#1|)) |#2| |#2|)) (-15 -2382 ((-2 (|:| |coef2| |#2|) (|:| -1732 |#1|)) |#2| |#2|)) (-15 -1606 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1256 |#2|) |#1| (-1256 |#2|))) (-15 -1762 ((-1256 |#2|) (-1256 |#2|) |#1|)) (-15 -2622 ((-2 (|:| -4221 |#1|) (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2|)) (-15 -2080 ((-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) |#2| |#2|)) (-15 -3409 (|#1| |#1| |#1| (-766))) (-15 -1983 (|#2| |#2| |#1| |#1| (-766))) (-15 -1521 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3893 (|#1| |#2| |#2|)) (-15 -1721 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|)) (-15 -1640 ((-2 (|:| |coef2| |#2|) (|:| -2835 |#1|)) |#2| |#2|))) +((-4041 (((-112) $ $) NIL)) (-4084 (((-1206) $) 13)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 10)) (-4054 (((-857) $) 22) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-965) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $))))) (T -965)) +((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-965)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-965))))) +(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) 26)) (-1800 (($) NIL T CONST)) (-4078 (((-639 (-639 (-562))) (-639 (-562))) 28)) (-4368 (((-562) $) 44)) (-2660 (($ (-639 (-562))) 17)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4208 (((-639 (-562)) $) 12)) (-3665 (($ $) 31)) (-4054 (((-857) $) 42) (((-639 (-562)) $) 10)) (-2286 (($) 7 T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 19)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 18)) (-1835 (($ $ $) 20)) (* (($ (-916) $) NIL) (($ (-766) $) 24))) +(((-966) (-13 (-790) (-610 (-639 (-562))) (-609 (-639 (-562))) (-10 -8 (-15 -2660 ($ (-639 (-562)))) (-15 -4078 ((-639 (-639 (-562))) (-639 (-562)))) (-15 -4368 ((-562) $)) (-15 -3665 ($ $))))) (T -966)) +((-2660 (*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-966)))) (-4078 (*1 *2 *3) (-12 (-5 *2 (-639 (-639 (-562)))) (-5 *1 (-966)) (-5 *3 (-639 (-562))))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-966)))) (-3665 (*1 *1 *1) (-5 *1 (-966)))) +(-13 (-790) (-610 (-639 (-562))) (-609 (-639 (-562))) (-10 -8 (-15 -2660 ($ (-639 (-562)))) (-15 -4078 ((-639 (-639 (-562))) (-639 (-562)))) (-15 -4368 ((-562) $)) (-15 -3665 ($ $)))) +((-1859 (($ $ |#2|) 30)) (-1848 (($ $) 22) (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-406 (-562)) $) 26) (($ $ (-406 (-562))) 28))) +(((-967 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -1859 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-968 |#2| |#3| |#4|) (-1044) (-787) (-845)) (T -967)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -1859 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1402 (((-639 |#3|) $) 77)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2796 (($ $) 55 (|has| |#1| (-554)))) (-4370 (((-112) $) 57 (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-1756 (((-112) $) 76)) (-1957 (((-112) $) 31)) (-3536 (((-112) $) 65)) (-1378 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-639 |#3|) (-639 |#2|)) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3598 ((|#2| $) 67)) (-2256 (($ $) 75)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3906 ((|#1| $ |#2|) 62)) (-2805 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 56 (|has| |#1| (-554)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) +(((-968 |#1| |#2| |#3|) (-139) (-1044) (-787) (-845)) (T -968)) +((-1573 (*1 *2 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *3 (-787)) (-4 *4 (-845)) (-4 *2 (-1044)))) (-1560 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *4 (-845)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *2 *4)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *2 (-787)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-968 *4 *3 *2)) (-4 *4 (-1044)) (-4 *3 (-787)) (-4 *2 (-845)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 *5)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-787)) (-4 *6 (-845)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-787)) (-4 *5 (-845)) (-5 *2 (-639 *5)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-787)) (-4 *5 (-845)) (-5 *2 (-112)))) (-2256 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *4 (-845))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1378 ($ $ |t#3| |t#2|)) (-15 -1378 ($ $ (-639 |t#3|) (-639 |t#2|))) (-15 -1560 ($ $)) (-15 -1573 (|t#1| $)) (-15 -3598 (|t#2| $)) (-15 -1402 ((-639 |t#3|) $)) (-15 -1756 ((-112) $)) (-15 -2256 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-1478 (((-1086 (-224)) $) 8)) (-1462 (((-1086 (-224)) $) 9)) (-1449 (((-1086 (-224)) $) 10)) (-2524 (((-639 (-639 (-938 (-224)))) $) 11)) (-4054 (((-857) $) 6))) +(((-969) (-139)) (T -969)) +((-2524 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-639 (-639 (-938 (-224))))))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224))))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224))))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224)))))) +(-13 (-609 (-857)) (-10 -8 (-15 -2524 ((-639 (-639 (-938 (-224)))) $)) (-15 -1449 ((-1086 (-224)) $)) (-15 -1462 ((-1086 (-224)) $)) (-15 -1478 ((-1086 (-224)) $)))) +(((-609 (-857)) . T)) +((-1402 (((-639 |#4|) $) 23)) (-4170 (((-112) $) 47)) (-4274 (((-112) $) 46)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#4|) 35)) (-2207 (((-112) $) 48)) (-1920 (((-112) $ $) 54)) (-3852 (((-112) $ $) 57)) (-2539 (((-112) $) 52)) (-3884 (((-639 |#5|) (-639 |#5|) $) 89)) (-2540 (((-639 |#5|) (-639 |#5|) $) 86)) (-2264 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3754 (((-639 |#4|) $) 27)) (-2071 (((-112) |#4| $) 29)) (-3725 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-1812 (($ $ |#4|) 32)) (-3274 (($ $ |#4|) 31)) (-1568 (($ $ |#4|) 33)) (-1731 (((-112) $ $) 39))) +(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4274 ((-112) |#1|)) (-15 -3884 ((-639 |#5|) (-639 |#5|) |#1|)) (-15 -2540 ((-639 |#5|) (-639 |#5|) |#1|)) (-15 -2264 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3725 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2207 ((-112) |#1|)) (-15 -3852 ((-112) |#1| |#1|)) (-15 -1920 ((-112) |#1| |#1|)) (-15 -2539 ((-112) |#1|)) (-15 -4170 ((-112) |#1|)) (-15 -1395 ((-2 (|:| |under| |#1|) (|:| -4014 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1812 (|#1| |#1| |#4|)) (-15 -1568 (|#1| |#1| |#4|)) (-15 -3274 (|#1| |#1| |#4|)) (-15 -2071 ((-112) |#4| |#1|)) (-15 -3754 ((-639 |#4|) |#1|)) (-15 -1402 ((-639 |#4|) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) (-971 |#2| |#3| |#4| |#5|) (-1044) (-788) (-845) (-1058 |#2| |#3| |#4|)) (T -970)) +NIL +(-10 -8 (-15 -4274 ((-112) |#1|)) (-15 -3884 ((-639 |#5|) (-639 |#5|) |#1|)) (-15 -2540 ((-639 |#5|) (-639 |#5|) |#1|)) (-15 -2264 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3725 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2207 ((-112) |#1|)) (-15 -3852 ((-112) |#1| |#1|)) (-15 -1920 ((-112) |#1| |#1|)) (-15 -2539 ((-112) |#1|)) (-15 -4170 ((-112) |#1|)) (-15 -1395 ((-2 (|:| |under| |#1|) (|:| -4014 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1812 (|#1| |#1| |#4|)) (-15 -1568 (|#1| |#1| |#4|)) (-15 -3274 (|#1| |#1| |#4|)) (-15 -2071 ((-112) |#4| |#1|)) (-15 -3754 ((-639 |#4|) |#1|)) (-15 -1402 ((-639 |#4|) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1402 (((-639 |#3|) $) 33)) (-4170 (((-112) $) 26)) (-4274 (((-112) $) 17 (|has| |#1| (-554)))) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) 27)) (-4336 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4402)))) (-1800 (($) 45 T CONST)) (-2207 (((-112) $) 22 (|has| |#1| (-554)))) (-1920 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3852 (((-112) $ $) 23 (|has| |#1| (-554)))) (-2539 (((-112) $) 25 (|has| |#1| (-554)))) (-3884 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3961 (($ (-639 |#4|)) 35)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4402)))) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4402)))) (-4339 ((|#3| $) 34)) (-3292 (((-112) $ (-766)) 43)) (-1912 (((-639 |#4|) $) 53 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3754 (((-639 |#3|) $) 32)) (-2071 (((-112) |#3| $) 31)) (-3289 (((-112) $ (-766)) 42)) (-2913 (((-1150) $) 9)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-1709 (((-1112) $) 10)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) 38)) (-2974 (((-112) $) 41)) (-4307 (($) 40)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4402)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) 60)) (-1812 (($ $ |#3|) 28)) (-3274 (($ $ |#3|) 30)) (-1568 (($ $ |#3|) 29)) (-4054 (((-857) $) 11) (((-639 |#4|) $) 37)) (-1744 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4402))))) +(((-971 |#1| |#2| |#3| |#4|) (-139) (-1044) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -971)) +((-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *1 (-971 *3 *4 *5 *6)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *1 (-971 *3 *4 *5 *6)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-1058 *3 *4 *2)) (-4 *2 (-845)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5)))) (-2071 (*1 *2 *3 *1) (-12 (-4 *1 (-971 *4 *5 *3 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-112)))) (-3274 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2)))) (-1568 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2)))) (-1812 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2)))) (-1395 (*1 *2 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4014 *1) (|:| |upper| *1))) (-4 *1 (-971 *4 *5 *3 *6)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-1920 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3852 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-3725 (*1 *2 *3 *1) (-12 (-4 *1 (-971 *4 *5 *6 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2264 (*1 *2 *3 *1) (-12 (-4 *1 (-971 *4 *5 *6 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2540 (*1 *2 *2 *1) (-12 (-5 *2 (-639 *6)) (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)))) (-3884 (*1 *2 *2 *1) (-12 (-5 *2 (-639 *6)) (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112))))) +(-13 (-1092) (-150 |t#4|) (-609 (-639 |t#4|)) (-10 -8 (-6 -4402) (-15 -4048 ((-3 $ "failed") (-639 |t#4|))) (-15 -3961 ($ (-639 |t#4|))) (-15 -4339 (|t#3| $)) (-15 -1402 ((-639 |t#3|) $)) (-15 -3754 ((-639 |t#3|) $)) (-15 -2071 ((-112) |t#3| $)) (-15 -3274 ($ $ |t#3|)) (-15 -1568 ($ $ |t#3|)) (-15 -1812 ($ $ |t#3|)) (-15 -1395 ((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |t#3|)) (-15 -4170 ((-112) $)) (IF (|has| |t#1| (-554)) (PROGN (-15 -2539 ((-112) $)) (-15 -1920 ((-112) $ $)) (-15 -3852 ((-112) $ $)) (-15 -2207 ((-112) $)) (-15 -3725 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2264 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2540 ((-639 |t#4|) (-639 |t#4|) $)) (-15 -3884 ((-639 |t#4|) (-639 |t#4|) $)) (-15 -4274 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-1092) . T) ((-1207) . T)) +((-3257 (((-639 |#4|) |#4| |#4|) 117)) (-3455 (((-639 |#4|) (-639 |#4|) (-112)) 106 (|has| |#1| (-451))) (((-639 |#4|) (-639 |#4|)) 107 (|has| |#1| (-451)))) (-1634 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|)) 34)) (-1954 (((-112) |#4|) 33)) (-3579 (((-639 |#4|) |#4|) 102 (|has| |#1| (-451)))) (-2706 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-1 (-112) |#4|) (-639 |#4|)) 19)) (-1923 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|)) 21)) (-3542 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|)) 22)) (-3427 (((-3 (-2 (|:| |bas| (-475 |#1| |#2| |#3| |#4|)) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|)) 72)) (-4318 (((-639 |#4|) (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-2949 (((-639 |#4|) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 110)) (-2434 (((-639 |#4|) (-639 |#4|)) 109)) (-4085 (((-639 |#4|) (-639 |#4|) (-639 |#4|) (-112)) 47) (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 49)) (-4350 ((|#4| |#4| (-639 |#4|)) 48)) (-2257 (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 113 (|has| |#1| (-451)))) (-2567 (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 116 (|has| |#1| (-451)))) (-3939 (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 115 (|has| |#1| (-451)))) (-2910 (((-639 |#4|) (-639 |#4|) (-639 |#4|) (-1 (-639 |#4|) (-639 |#4|))) 86) (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 88) (((-639 |#4|) (-639 |#4|) |#4|) 120) (((-639 |#4|) |#4| |#4|) 118) (((-639 |#4|) (-639 |#4|)) 87)) (-1793 (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 99 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3305 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|)) 40)) (-2951 (((-112) (-639 |#4|)) 61)) (-4372 (((-112) (-639 |#4|) (-639 (-639 |#4|))) 52)) (-3472 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|)) 28)) (-2605 (((-112) |#4|) 27)) (-3152 (((-639 |#4|) (-639 |#4|)) 97 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3389 (((-639 |#4|) (-639 |#4|)) 98 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-4134 (((-639 |#4|) (-639 |#4|)) 65)) (-2689 (((-639 |#4|) (-639 |#4|)) 78)) (-2711 (((-112) (-639 |#4|) (-639 |#4|)) 50)) (-4280 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|)) 38)) (-2510 (((-112) |#4|) 35))) +(((-972 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2910 ((-639 |#4|) (-639 |#4|))) (-15 -2910 ((-639 |#4|) |#4| |#4|)) (-15 -2434 ((-639 |#4|) (-639 |#4|))) (-15 -3257 ((-639 |#4|) |#4| |#4|)) (-15 -2910 ((-639 |#4|) (-639 |#4|) |#4|)) (-15 -2910 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -2910 ((-639 |#4|) (-639 |#4|) (-639 |#4|) (-1 (-639 |#4|) (-639 |#4|)))) (-15 -2711 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -4372 ((-112) (-639 |#4|) (-639 (-639 |#4|)))) (-15 -2951 ((-112) (-639 |#4|))) (-15 -2706 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-1 (-112) |#4|) (-639 |#4|))) (-15 -1923 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|))) (-15 -3542 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|))) (-15 -3305 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -1954 ((-112) |#4|)) (-15 -1634 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -2605 ((-112) |#4|)) (-15 -3472 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -2510 ((-112) |#4|)) (-15 -4280 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -4085 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -4085 ((-639 |#4|) (-639 |#4|) (-639 |#4|) (-112))) (-15 -4350 (|#4| |#4| (-639 |#4|))) (-15 -4134 ((-639 |#4|) (-639 |#4|))) (-15 -3427 ((-3 (-2 (|:| |bas| (-475 |#1| |#2| |#3| |#4|)) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|))) (-15 -2689 ((-639 |#4|) (-639 |#4|))) (-15 -4318 ((-639 |#4|) (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2949 ((-639 |#4|) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-451)) (PROGN (-15 -3579 ((-639 |#4|) |#4|)) (-15 -3455 ((-639 |#4|) (-639 |#4|))) (-15 -3455 ((-639 |#4|) (-639 |#4|) (-112))) (-15 -2257 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -3939 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -2567 ((-639 |#4|) (-639 |#4|) (-639 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3389 ((-639 |#4|) (-639 |#4|))) (-15 -3152 ((-639 |#4|) (-639 |#4|))) (-15 -1793 ((-639 |#4|) (-639 |#4|) (-639 |#4|)))) |%noBranch|) |%noBranch|)) (-554) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -972)) +((-1793 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3152 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-2567 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3939 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-2257 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3455 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-112)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *7)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-2949 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-972 *5 *6 *7 *8)))) (-4318 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-639 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) (-4 *8 (-845)) (-5 *1 (-972 *6 *7 *8 *9)))) (-2689 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3427 (*1 *2 *3) (|partial| -12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-475 *4 *5 *6 *7)) (|:| -2775 (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-4134 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-4350 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *2)))) (-4085 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-112)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *7)))) (-4085 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-4280 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-2605 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-1634 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-3305 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-3542 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1 (-112) *8))) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1 (-112) *8))) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *7)))) (-4372 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-639 *8))) (-5 *3 (-639 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *5 *6 *7 *8)))) (-2711 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *7)))) (-2910 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-639 *7) (-639 *7))) (-5 *2 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *7)))) (-2910 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-2910 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *3)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-2910 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6))))) +(-10 -7 (-15 -2910 ((-639 |#4|) (-639 |#4|))) (-15 -2910 ((-639 |#4|) |#4| |#4|)) (-15 -2434 ((-639 |#4|) (-639 |#4|))) (-15 -3257 ((-639 |#4|) |#4| |#4|)) (-15 -2910 ((-639 |#4|) (-639 |#4|) |#4|)) (-15 -2910 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -2910 ((-639 |#4|) (-639 |#4|) (-639 |#4|) (-1 (-639 |#4|) (-639 |#4|)))) (-15 -2711 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -4372 ((-112) (-639 |#4|) (-639 (-639 |#4|)))) (-15 -2951 ((-112) (-639 |#4|))) (-15 -2706 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-1 (-112) |#4|) (-639 |#4|))) (-15 -1923 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|))) (-15 -3542 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|))) (-15 -3305 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -1954 ((-112) |#4|)) (-15 -1634 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -2605 ((-112) |#4|)) (-15 -3472 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -2510 ((-112) |#4|)) (-15 -4280 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -4085 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -4085 ((-639 |#4|) (-639 |#4|) (-639 |#4|) (-112))) (-15 -4350 (|#4| |#4| (-639 |#4|))) (-15 -4134 ((-639 |#4|) (-639 |#4|))) (-15 -3427 ((-3 (-2 (|:| |bas| (-475 |#1| |#2| |#3| |#4|)) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|))) (-15 -2689 ((-639 |#4|) (-639 |#4|))) (-15 -4318 ((-639 |#4|) (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2949 ((-639 |#4|) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-451)) (PROGN (-15 -3579 ((-639 |#4|) |#4|)) (-15 -3455 ((-639 |#4|) (-639 |#4|))) (-15 -3455 ((-639 |#4|) (-639 |#4|) (-112))) (-15 -2257 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -3939 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -2567 ((-639 |#4|) (-639 |#4|) (-639 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3389 ((-639 |#4|) (-639 |#4|))) (-15 -3152 ((-639 |#4|) (-639 |#4|))) (-15 -1793 ((-639 |#4|) (-639 |#4|) (-639 |#4|)))) |%noBranch|) |%noBranch|)) +((-1548 (((-2 (|:| R (-683 |#1|)) (|:| A (-683 |#1|)) (|:| |Ainv| (-683 |#1|))) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2675 (((-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|)) 35)) (-3011 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-973 |#1|) (-10 -7 (-15 -1548 ((-2 (|:| R (-683 |#1|)) (|:| A (-683 |#1|)) (|:| |Ainv| (-683 |#1|))) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3011 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2675 ((-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|)))) (-362)) (T -973)) +((-2675 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-639 (-2 (|:| C (-683 *5)) (|:| |g| (-1256 *5))))) (-5 *1 (-973 *5)) (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)))) (-3011 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-683 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-973 *5)))) (-1548 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) (-5 *2 (-2 (|:| R (-683 *6)) (|:| A (-683 *6)) (|:| |Ainv| (-683 *6)))) (-5 *1 (-973 *6)) (-5 *3 (-683 *6))))) +(-10 -7 (-15 -1548 ((-2 (|:| R (-683 |#1|)) (|:| A (-683 |#1|)) (|:| |Ainv| (-683 |#1|))) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3011 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2675 ((-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|)))) +((-2921 (((-417 |#4|) |#4|) 48))) +(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2921 ((-417 |#4|) |#4|))) (-845) (-788) (-451) (-944 |#3| |#2| |#1|)) (T -974)) +((-2921 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-451)) (-5 *2 (-417 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4))))) +(-10 -7 (-15 -2921 ((-417 |#4|) |#4|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2911 (($ (-766)) 112 (|has| |#1| (-23)))) (-3052 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4403))) (($ $) 88 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4403))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-2447 (($ $) 90 (|has| $ (-6 -4403)))) (-2677 (($ $) 100)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 51)) (-4264 (((-562) (-1 (-112) |#1|) $) 97) (((-562) |#1| $) 96 (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) 95 (|has| |#1| (-1092)))) (-1460 (($ (-639 |#1|)) 118)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2841 (((-683 |#1|) $ $) 105 (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) 69)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3076 ((|#1| $) 102 (-12 (|has| |#1| (-1044)) (|has| |#1| (-997))))) (-3289 (((-112) $ (-766)) 10)) (-3641 ((|#1| $) 103 (-12 (|has| |#1| (-1044)) (|has| |#1| (-997))))) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-2093 (((-639 (-562)) $) 46)) (-1570 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2716 (($ $ |#1|) 41 (|has| $ (-6 -4403)))) (-1353 (($ $ (-639 |#1|)) 116)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-4177 ((|#1| $ $) 106 (|has| |#1| (-1044)))) (-3627 (((-916) $) 117)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1386 (($ $ $) 104)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1853 (($ $ $ (-562)) 91 (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535)))) (($ (-639 |#1|)) 119)) (-4066 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) 84 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 83 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 85 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 82 (|has| |#1| (-845)))) (-1848 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1835 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-562) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-721))) (($ $ |#1|) 107 (|has| |#1| (-721)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-975 |#1|) (-139) (-1044)) (T -975)) +((-1460 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1044)) (-4 *1 (-975 *3)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-975 *3)) (-4 *3 (-1044)) (-5 *2 (-916)))) (-1386 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1044)))) (-1353 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *1 (-975 *3)) (-4 *3 (-1044))))) +(-13 (-1254 |t#1|) (-614 (-639 |t#1|)) (-10 -8 (-15 -1460 ($ (-639 |t#1|))) (-15 -3627 ((-916) $)) (-15 -1386 ($ $ $)) (-15 -1353 ($ $ (-639 |t#1|))))) +(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-614 (-639 |#1|)) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-372 |#1|) . T) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-19 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1207) . T) ((-1254 |#1|) . T)) +((-4152 (((-938 |#2|) (-1 |#2| |#1|) (-938 |#1|)) 17))) +(((-976 |#1| |#2|) (-10 -7 (-15 -4152 ((-938 |#2|) (-1 |#2| |#1|) (-938 |#1|)))) (-1044) (-1044)) (T -976)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-938 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-938 *6)) (-5 *1 (-976 *5 *6))))) +(-10 -7 (-15 -4152 ((-938 |#2|) (-1 |#2| |#1|) (-938 |#1|)))) +((-2513 ((|#1| (-938 |#1|)) 13)) (-4040 ((|#1| (-938 |#1|)) 12)) (-1733 ((|#1| (-938 |#1|)) 11)) (-1656 ((|#1| (-938 |#1|)) 15)) (-2887 ((|#1| (-938 |#1|)) 21)) (-2266 ((|#1| (-938 |#1|)) 14)) (-3151 ((|#1| (-938 |#1|)) 16)) (-3410 ((|#1| (-938 |#1|)) 20)) (-2739 ((|#1| (-938 |#1|)) 19))) +(((-977 |#1|) (-10 -7 (-15 -1733 (|#1| (-938 |#1|))) (-15 -4040 (|#1| (-938 |#1|))) (-15 -2513 (|#1| (-938 |#1|))) (-15 -2266 (|#1| (-938 |#1|))) (-15 -1656 (|#1| (-938 |#1|))) (-15 -3151 (|#1| (-938 |#1|))) (-15 -2739 (|#1| (-938 |#1|))) (-15 -3410 (|#1| (-938 |#1|))) (-15 -2887 (|#1| (-938 |#1|)))) (-1044)) (T -977)) +((-2887 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-2513 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(-10 -7 (-15 -1733 (|#1| (-938 |#1|))) (-15 -4040 (|#1| (-938 |#1|))) (-15 -2513 (|#1| (-938 |#1|))) (-15 -2266 (|#1| (-938 |#1|))) (-15 -1656 (|#1| (-938 |#1|))) (-15 -3151 (|#1| (-938 |#1|))) (-15 -2739 (|#1| (-938 |#1|))) (-15 -3410 (|#1| (-938 |#1|))) (-15 -2887 (|#1| (-938 |#1|)))) +((-3200 (((-3 |#1| "failed") |#1|) 18)) (-1898 (((-3 |#1| "failed") |#1|) 6)) (-4353 (((-3 |#1| "failed") |#1|) 16)) (-3458 (((-3 |#1| "failed") |#1|) 4)) (-4312 (((-3 |#1| "failed") |#1|) 20)) (-3145 (((-3 |#1| "failed") |#1|) 8)) (-2571 (((-3 |#1| "failed") |#1| (-766)) 1)) (-3810 (((-3 |#1| "failed") |#1|) 3)) (-2314 (((-3 |#1| "failed") |#1|) 2)) (-4027 (((-3 |#1| "failed") |#1|) 21)) (-2930 (((-3 |#1| "failed") |#1|) 9)) (-2777 (((-3 |#1| "failed") |#1|) 19)) (-1543 (((-3 |#1| "failed") |#1|) 7)) (-4059 (((-3 |#1| "failed") |#1|) 17)) (-3387 (((-3 |#1| "failed") |#1|) 5)) (-2938 (((-3 |#1| "failed") |#1|) 24)) (-3940 (((-3 |#1| "failed") |#1|) 12)) (-2603 (((-3 |#1| "failed") |#1|) 22)) (-1442 (((-3 |#1| "failed") |#1|) 10)) (-3577 (((-3 |#1| "failed") |#1|) 26)) (-3080 (((-3 |#1| "failed") |#1|) 14)) (-2390 (((-3 |#1| "failed") |#1|) 27)) (-1699 (((-3 |#1| "failed") |#1|) 15)) (-1760 (((-3 |#1| "failed") |#1|) 25)) (-3506 (((-3 |#1| "failed") |#1|) 13)) (-2374 (((-3 |#1| "failed") |#1|) 23)) (-3170 (((-3 |#1| "failed") |#1|) 11))) +(((-978 |#1|) (-139) (-1192)) (T -978)) +((-2390 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3577 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1760 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2938 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2374 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2603 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-4027 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-4312 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2777 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3200 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-4059 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-4353 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1699 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3080 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3506 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3940 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3170 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1442 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2930 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3145 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1543 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1898 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3387 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3458 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3810 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2314 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2571 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-766)) (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(-13 (-10 -7 (-15 -2571 ((-3 |t#1| "failed") |t#1| (-766))) (-15 -2314 ((-3 |t#1| "failed") |t#1|)) (-15 -3810 ((-3 |t#1| "failed") |t#1|)) (-15 -3458 ((-3 |t#1| "failed") |t#1|)) (-15 -3387 ((-3 |t#1| "failed") |t#1|)) (-15 -1898 ((-3 |t#1| "failed") |t#1|)) (-15 -1543 ((-3 |t#1| "failed") |t#1|)) (-15 -3145 ((-3 |t#1| "failed") |t#1|)) (-15 -2930 ((-3 |t#1| "failed") |t#1|)) (-15 -1442 ((-3 |t#1| "failed") |t#1|)) (-15 -3170 ((-3 |t#1| "failed") |t#1|)) (-15 -3940 ((-3 |t#1| "failed") |t#1|)) (-15 -3506 ((-3 |t#1| "failed") |t#1|)) (-15 -3080 ((-3 |t#1| "failed") |t#1|)) (-15 -1699 ((-3 |t#1| "failed") |t#1|)) (-15 -4353 ((-3 |t#1| "failed") |t#1|)) (-15 -4059 ((-3 |t#1| "failed") |t#1|)) (-15 -3200 ((-3 |t#1| "failed") |t#1|)) (-15 -2777 ((-3 |t#1| "failed") |t#1|)) (-15 -4312 ((-3 |t#1| "failed") |t#1|)) (-15 -4027 ((-3 |t#1| "failed") |t#1|)) (-15 -2603 ((-3 |t#1| "failed") |t#1|)) (-15 -2374 ((-3 |t#1| "failed") |t#1|)) (-15 -2938 ((-3 |t#1| "failed") |t#1|)) (-15 -1760 ((-3 |t#1| "failed") |t#1|)) (-15 -3577 ((-3 |t#1| "failed") |t#1|)) (-15 -2390 ((-3 |t#1| "failed") |t#1|)))) +((-3584 ((|#4| |#4| (-639 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-2103 ((|#4| |#4| (-639 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4152 ((|#4| (-1 |#4| (-947 |#1|)) |#4|) 30))) +(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2103 (|#4| |#4| |#3|)) (-15 -2103 (|#4| |#4| (-639 |#3|))) (-15 -3584 (|#4| |#4| |#3|)) (-15 -3584 (|#4| |#4| (-639 |#3|))) (-15 -4152 (|#4| (-1 |#4| (-947 |#1|)) |#4|))) (-1044) (-788) (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168))))) (-944 (-947 |#1|) |#2| |#3|)) (T -979)) +((-4152 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-947 *4))) (-4 *4 (-1044)) (-4 *2 (-944 (-947 *4) *5 *6)) (-4 *5 (-788)) (-4 *6 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168)))))) (-5 *1 (-979 *4 *5 *6 *2)))) (-3584 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168)))))) (-4 *4 (-1044)) (-4 *5 (-788)) (-5 *1 (-979 *4 *5 *6 *2)) (-4 *2 (-944 (-947 *4) *5 *6)))) (-3584 (*1 *2 *2 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168)))))) (-5 *1 (-979 *4 *5 *3 *2)) (-4 *2 (-944 (-947 *4) *5 *3)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168)))))) (-4 *4 (-1044)) (-4 *5 (-788)) (-5 *1 (-979 *4 *5 *6 *2)) (-4 *2 (-944 (-947 *4) *5 *6)))) (-2103 (*1 *2 *2 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2444 ((-3 $ "failed") (-1168)))))) (-5 *1 (-979 *4 *5 *3 *2)) (-4 *2 (-944 (-947 *4) *5 *3))))) +(-10 -7 (-15 -2103 (|#4| |#4| |#3|)) (-15 -2103 (|#4| |#4| (-639 |#3|))) (-15 -3584 (|#4| |#4| |#3|)) (-15 -3584 (|#4| |#4| (-639 |#3|))) (-15 -4152 (|#4| (-1 |#4| (-947 |#1|)) |#4|))) +((-1998 ((|#2| |#3|) 35)) (-2438 (((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|) 73)) (-3826 (((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) 89))) +(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3826 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))))) (-15 -2438 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|)) (-15 -1998 (|#2| |#3|))) (-348) (-1232 |#1|) (-1232 |#2|) (-719 |#2| |#3|)) (T -980)) +((-1998 (*1 *2 *3) (-12 (-4 *3 (-1232 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-980 *4 *2 *3 *5)) (-4 *4 (-348)) (-4 *5 (-719 *2 *3)))) (-2438 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) (-5 *2 (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-980 *4 *3 *5 *6)) (-4 *6 (-719 *3 *5)))) (-3826 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -3928 (-683 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-683 *4)))) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-719 *4 *5))))) +(-10 -7 (-15 -3826 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))))) (-15 -2438 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|)) (-15 -1998 (|#2| |#3|))) +((-2126 (((-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562)))) (-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562))))) 68))) +(((-981 |#1| |#2|) (-10 -7 (-15 -2126 ((-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562)))) (-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562))))))) (-639 (-1168)) (-766)) (T -981)) +((-2126 (*1 *2 *2) (-12 (-5 *2 (-982 (-406 (-562)) (-859 *3) (-239 *4 (-766)) (-246 *3 (-406 (-562))))) (-14 *3 (-639 (-1168))) (-14 *4 (-766)) (-5 *1 (-981 *3 *4))))) +(-10 -7 (-15 -2126 ((-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562)))) (-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562))))))) +((-4041 (((-112) $ $) NIL)) (-3981 (((-3 (-112) "failed") $) 69)) (-4120 (($ $) 36 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-2770 (($ $ (-3 (-112) "failed")) 70)) (-1413 (($ (-639 |#4|) |#4|) 25)) (-2913 (((-1150) $) NIL)) (-1533 (($ $) 67)) (-1709 (((-1112) $) NIL)) (-2974 (((-112) $) 68)) (-4307 (($) 30)) (-3209 ((|#4| $) 72)) (-1992 (((-639 |#4|) $) 71)) (-4054 (((-857) $) 66)) (-1731 (((-112) $ $) NIL))) +(((-982 |#1| |#2| |#3| |#4|) (-13 (-1092) (-609 (-857)) (-10 -8 (-15 -4307 ($)) (-15 -1413 ($ (-639 |#4|) |#4|)) (-15 -3981 ((-3 (-112) "failed") $)) (-15 -2770 ($ $ (-3 (-112) "failed"))) (-15 -2974 ((-112) $)) (-15 -1992 ((-639 |#4|) $)) (-15 -3209 (|#4| $)) (-15 -1533 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -4120 ($ $)) |%noBranch|) |%noBranch|))) (-451) (-845) (-788) (-944 |#1| |#3| |#2|)) (T -982)) +((-4307 (*1 *1) (-12 (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3)))) (-1413 (*1 *1 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-944 *4 *6 *5)) (-4 *4 (-451)) (-4 *5 (-845)) (-4 *6 (-788)) (-5 *1 (-982 *4 *5 *6 *3)))) (-3981 (*1 *2 *1) (|partial| -12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) (-2770 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) (-2974 (*1 *2 *1) (-12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) (-1992 (*1 *2 *1) (-12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-639 *6)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) (-3209 (*1 *2 *1) (-12 (-4 *2 (-944 *3 *5 *4)) (-5 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)))) (-1533 (*1 *1 *1) (-12 (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3)))) (-4120 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3))))) +(-13 (-1092) (-609 (-857)) (-10 -8 (-15 -4307 ($)) (-15 -1413 ($ (-639 |#4|) |#4|)) (-15 -3981 ((-3 (-112) "failed") $)) (-15 -2770 ($ $ (-3 (-112) "failed"))) (-15 -2974 ((-112) $)) (-15 -1992 ((-639 |#4|) $)) (-15 -3209 (|#4| $)) (-15 -1533 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -4120 ($ $)) |%noBranch|) |%noBranch|))) +((-3675 (((-112) |#5| |#5|) 37)) (-1561 (((-112) |#5| |#5|) 51)) (-3934 (((-112) |#5| (-639 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-3097 (((-112) (-639 |#4|) (-639 |#4|)) 57)) (-4225 (((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) 62)) (-3098 (((-1261)) 33)) (-2498 (((-1261) (-1150) (-1150) (-1150)) 29)) (-2543 (((-639 |#5|) (-639 |#5|)) 80)) (-3963 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) 78)) (-3674 (((-639 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112)) 100)) (-1903 (((-112) |#5| |#5|) 46)) (-4187 (((-3 (-112) "failed") |#5| |#5|) 70)) (-2768 (((-112) (-639 |#4|) (-639 |#4|)) 56)) (-2697 (((-112) (-639 |#4|) (-639 |#4|)) 58)) (-1408 (((-112) (-639 |#4|) (-639 |#4|)) 59)) (-3246 (((-3 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-3347 (((-639 |#5|) (-639 |#5|)) 42))) +(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2498 ((-1261) (-1150) (-1150) (-1150))) (-15 -3098 ((-1261))) (-15 -3675 ((-112) |#5| |#5|)) (-15 -3347 ((-639 |#5|) (-639 |#5|))) (-15 -1903 ((-112) |#5| |#5|)) (-15 -1561 ((-112) |#5| |#5|)) (-15 -3097 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2768 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2697 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -1408 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -4187 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3934 ((-112) |#5| |#5|)) (-15 -3934 ((-112) |#5| (-639 |#5|))) (-15 -2543 ((-639 |#5|) (-639 |#5|))) (-15 -4225 ((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) (-15 -3963 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-15 -3674 ((-639 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -3246 ((-3 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -983)) +((-3246 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| -3342 (-639 *9)) (|:| -1495 *4) (|:| |ineq| (-639 *9)))) (-5 *1 (-983 *6 *7 *8 *9 *4)) (-5 *3 (-639 *9)) (-4 *4 (-1064 *6 *7 *8 *9)))) (-3674 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-639 *10)) (-5 *5 (-112)) (-4 *10 (-1064 *6 *7 *8 *9)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) (-5 *2 (-639 (-2 (|:| -3342 (-639 *9)) (|:| -1495 *10) (|:| |ineq| (-639 *9))))) (-5 *1 (-983 *6 *7 *8 *9 *10)) (-5 *3 (-639 *9)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-639 (-2 (|:| |val| (-639 *6)) (|:| -1495 *7)))) (-4 *6 (-1058 *3 *4 *5)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-983 *3 *4 *5 *6 *7)))) (-4225 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1495 *8))) (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)))) (-2543 (*1 *2 *2) (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-983 *3 *4 *5 *6 *7)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-983 *5 *6 *7 *8 *3)))) (-3934 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-4187 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-1408 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2697 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2768 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-3097 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-1561 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-1903 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-983 *3 *4 *5 *6 *7)))) (-3675 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-3098 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-2498 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(-10 -7 (-15 -2498 ((-1261) (-1150) (-1150) (-1150))) (-15 -3098 ((-1261))) (-15 -3675 ((-112) |#5| |#5|)) (-15 -3347 ((-639 |#5|) (-639 |#5|))) (-15 -1903 ((-112) |#5| |#5|)) (-15 -1561 ((-112) |#5| |#5|)) (-15 -3097 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2768 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2697 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -1408 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -4187 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3934 ((-112) |#5| |#5|)) (-15 -3934 ((-112) |#5| (-639 |#5|))) (-15 -2543 ((-639 |#5|) (-639 |#5|))) (-15 -4225 ((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) (-15 -3963 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-15 -3674 ((-639 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -3246 ((-3 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2444 (((-1168) $) 15)) (-2534 (((-1150) $) 16)) (-3680 (($ (-1168) (-1150)) 14)) (-4054 (((-857) $) 13))) +(((-984) (-13 (-609 (-857)) (-10 -8 (-15 -3680 ($ (-1168) (-1150))) (-15 -2444 ((-1168) $)) (-15 -2534 ((-1150) $))))) (T -984)) +((-3680 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1150)) (-5 *1 (-984)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-984)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-984))))) +(-13 (-609 (-857)) (-10 -8 (-15 -3680 ($ (-1168) (-1150))) (-15 -2444 ((-1168) $)) (-15 -2534 ((-1150) $)))) +((-4152 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#2| |#1|) |#3|))) (-554) (-554) (-987 |#1|) (-987 |#2|)) (T -985)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-4 *2 (-987 *6)) (-5 *1 (-985 *5 *6 *4 *2)) (-4 *4 (-987 *5))))) +(-10 -7 (-15 -4152 (|#4| (-1 |#2| |#1|) |#3|))) +((-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-1168) "failed") $) 65) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) 95)) (-3961 ((|#2| $) NIL) (((-1168) $) 60) (((-406 (-562)) $) NIL) (((-562) $) 92)) (-2406 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 112) (((-683 |#2|) (-683 $)) 28)) (-1448 (($) 98)) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 75) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84)) (-3425 (($ $) 10)) (-3699 (((-3 $ "failed") $) 20)) (-4152 (($ (-1 |#2| |#2|) $) 22)) (-3729 (($) 16)) (-2736 (($ $) 54)) (-4029 (($ $) NIL) (($ $ (-766)) NIL) (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3658 (($ $) 12)) (-4208 (((-887 (-562)) $) 70) (((-887 (-378)) $) 79) (((-535) $) 40) (((-378) $) 44) (((-224) $) 47)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 90) (($ |#2|) NIL) (($ (-1168)) 57)) (-2579 (((-766)) 31)) (-1759 (((-112) $ $) 50))) +(((-986 |#1| |#2|) (-10 -8 (-15 -1759 ((-112) |#1| |#1|)) (-15 -3729 (|#1|)) (-15 -3699 ((-3 |#1| "failed") |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4054 (|#1| (-1168))) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3961 ((-1168) |#1|)) (-15 -1448 (|#1|)) (-15 -2736 (|#1| |#1|)) (-15 -3658 (|#1| |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -2533 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -2406 ((-683 |#2|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| |#1|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) (-987 |#2|) (-554)) (T -986)) +((-2579 (*1 *2) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-986 *3 *4)) (-4 *3 (-987 *4))))) +(-10 -8 (-15 -1759 ((-112) |#1| |#1|)) (-15 -3729 (|#1|)) (-15 -3699 ((-3 |#1| "failed") |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4054 (|#1| (-1168))) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3961 ((-1168) |#1|)) (-15 -1448 (|#1|)) (-15 -2736 (|#1| |#1|)) (-15 -3658 (|#1| |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -2533 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -2533 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -2406 ((-683 |#2|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| |#1|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-4246 ((|#1| $) 138 (|has| |#1| (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-3026 (((-417 (-1164 $)) (-1164 $)) 129 (|has| |#1| (-904)))) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 132 (|has| |#1| (-904)))) (-2569 (((-112) $ $) 60)) (-2277 (((-562) $) 119 (|has| |#1| (-815)))) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 176) (((-3 (-1168) "failed") $) 127 (|has| |#1| (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) 110 (|has| |#1| (-1033 (-562)))) (((-3 (-562) "failed") $) 108 (|has| |#1| (-1033 (-562))))) (-3961 ((|#1| $) 177) (((-1168) $) 128 (|has| |#1| (-1033 (-1168)))) (((-406 (-562)) $) 111 (|has| |#1| (-1033 (-562)))) (((-562) $) 109 (|has| |#1| (-1033 (-562))))) (-1811 (($ $ $) 56)) (-2406 (((-683 (-562)) (-683 $)) 151 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 150 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 149) (((-683 |#1|) (-683 $)) 148)) (-3668 (((-3 $ "failed") $) 33)) (-1448 (($) 136 (|has| |#1| (-544)))) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-2717 (((-112) $) 72)) (-3519 (((-112) $) 121 (|has| |#1| (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 145 (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 144 (|has| |#1| (-881 (-378))))) (-1957 (((-112) $) 31)) (-3425 (($ $) 140)) (-4065 ((|#1| $) 142)) (-3699 (((-3 $ "failed") $) 107 (|has| |#1| (-1143)))) (-3392 (((-112) $) 120 (|has| |#1| (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1551 (($ $ $) 117 (|has| |#1| (-845)))) (-2993 (($ $ $) 116 (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) 168)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71)) (-3729 (($) 106 (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-2736 (($ $) 137 (|has| |#1| (-306)))) (-4014 ((|#1| $) 134 (|has| |#1| (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) 131 (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) 130 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 75)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 174 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 172 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 171 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 170 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) 169 (|has| |#1| (-513 (-1168) |#1|)))) (-1577 (((-766) $) 59)) (-2343 (($ $ |#1|) 175 (|has| |#1| (-285 |#1| |#1|)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-4029 (($ $) 167 (|has| |#1| (-232))) (($ $ (-766)) 165 (|has| |#1| (-232))) (($ $ (-1168)) 163 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 162 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 161 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 160 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3658 (($ $) 139)) (-4076 ((|#1| $) 141)) (-4208 (((-887 (-562)) $) 147 (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) 146 (|has| |#1| (-610 (-887 (-378))))) (((-535) $) 124 (|has| |#1| (-610 (-535)))) (((-378) $) 123 (|has| |#1| (-1017))) (((-224) $) 122 (|has| |#1| (-1017)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 133 (-2246 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ |#1|) 180) (($ (-1168)) 126 (|has| |#1| (-1033 (-1168))))) (-2805 (((-3 $ "failed") $) 125 (-4037 (|has| |#1| (-144)) (-2246 (|has| $ (-144)) (|has| |#1| (-904)))))) (-2579 (((-766)) 28)) (-2604 ((|#1| $) 135 (|has| |#1| (-544)))) (-2922 (((-112) $ $) 40)) (-3526 (($ $) 118 (|has| |#1| (-815)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $) 166 (|has| |#1| (-232))) (($ $ (-766)) 164 (|has| |#1| (-232))) (($ $ (-1168)) 159 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 158 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 157 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 156 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1798 (((-112) $ $) 114 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 113 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 115 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 112 (|has| |#1| (-845)))) (-1859 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) +(((-987 |#1|) (-139) (-554)) (T -987)) +((-1859 (*1 *1 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-3425 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-3658 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) (-2736 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) (-1448 (*1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-544)) (-4 *2 (-554)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-544)))) (-4014 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-544))))) +(-13 (-362) (-38 |t#1|) (-1033 |t#1|) (-337 |t#1|) (-230 |t#1|) (-376 |t#1|) (-879 |t#1|) (-399 |t#1|) (-10 -8 (-15 -1859 ($ |t#1| |t#1|)) (-15 -4065 (|t#1| $)) (-15 -4076 (|t#1| $)) (-15 -3425 ($ $)) (-15 -3658 ($ $)) (IF (|has| |t#1| (-1143)) (-6 (-1143)) |%noBranch|) (IF (|has| |t#1| (-1033 (-562))) (PROGN (-6 (-1033 (-562))) (-6 (-1033 (-406 (-562))))) |%noBranch|) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-815)) (-6 (-815)) |%noBranch|) (IF (|has| |t#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1033 (-1168))) (-6 (-1033 (-1168))) |%noBranch|) (IF (|has| |t#1| (-306)) (PROGN (-15 -4246 (|t#1| $)) (-15 -2736 ($ $))) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -1448 ($)) (-15 -2604 (|t#1| $)) (-15 -4014 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-904)) (-6 (-904)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 #1=(-1168)) |has| |#1| (-1033 (-1168))) ((-612 |#1|) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-610 (-224)) |has| |#1| (-1017)) ((-610 (-378)) |has| |#1| (-1017)) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562)))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) . T) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) . T) ((-306) . T) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-451) . T) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-554) . T) ((-642 #0#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) . T) ((-712 |#1|) . T) ((-712 $) . T) ((-721) . T) ((-786) |has| |#1| (-815)) ((-787) |has| |#1| (-815)) ((-789) |has| |#1| (-815)) ((-790) |has| |#1| (-815)) ((-815) |has| |#1| (-815)) ((-843) |has| |#1| (-815)) ((-845) -4037 (|has| |#1| (-845)) (|has| |#1| (-815))) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-879 |#1|) . T) ((-904) |has| |#1| (-904)) ((-915) . T) ((-1017) |has| |#1| (-1017)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-562))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 #1#) |has| |#1| (-1033 (-1168))) ((-1033 |#1|) . T) ((-1050 #0#) . T) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-1143)) ((-1207) . T) ((-1211) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-2133 (($ (-1134 |#1| |#2|)) 11)) (-2885 (((-1134 |#1| |#2|) $) 12)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2343 ((|#2| $ (-239 |#1| |#2|)) 16)) (-4054 (((-857) $) NIL)) (-2286 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL))) +(((-988 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2133 ($ (-1134 |#1| |#2|))) (-15 -2885 ((-1134 |#1| |#2|) $)) (-15 -2343 (|#2| $ (-239 |#1| |#2|))))) (-916) (-362)) (T -988)) +((-2133 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 *4)) (-14 *3 (-916)) (-4 *4 (-362)) (-5 *1 (-988 *3 *4)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-5 *1 (-988 *3 *4)) (-14 *3 (-916)) (-4 *4 (-362)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-916)) (-4 *2 (-362)) (-5 *1 (-988 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -2133 ($ (-1134 |#1| |#2|))) (-15 -2885 ((-1134 |#1| |#2|) $)) (-15 -2343 (|#2| $ (-239 |#1| |#2|))))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 9)) (-4054 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-989) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $))))) (T -989)) +((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-989))))) +(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) 8)) (-1800 (($) 7 T CONST)) (-3109 (($ $) 46)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-3641 (((-766) $) 45)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3516 ((|#1| $) 44)) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2391 ((|#1| |#1| $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-3872 ((|#1| $) 47)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) 42)) (-3686 ((|#1| $) 43)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-990 |#1|) (-139) (-1207)) (T -990)) +((-2391 (*1 *2 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207)))) (-3109 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-990 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4402) (-15 -2391 (|t#1| |t#1| $)) (-15 -3872 (|t#1| $)) (-15 -3109 ($ $)) (-15 -3641 ((-766) $)) (-15 -3516 (|t#1| $)) (-15 -3686 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-1952 (((-112) $) 42)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3961 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#2| $) 43)) (-1726 (((-3 (-406 (-562)) "failed") $) 78)) (-3035 (((-112) $) 72)) (-1291 (((-406 (-562)) $) 76)) (-1957 (((-112) $) 41)) (-2247 ((|#2| $) 22)) (-4152 (($ (-1 |#2| |#2|) $) 19)) (-1525 (($ $) 61)) (-4029 (($ $) NIL) (($ $ (-766)) NIL) (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4208 (((-535) $) 67)) (-3665 (($ $) 17)) (-4054 (((-857) $) 56) (($ (-562)) 38) (($ |#2|) 36) (($ (-406 (-562))) NIL)) (-2579 (((-766)) 10)) (-3526 ((|#2| $) 71)) (-1731 (((-112) $ $) 25)) (-1759 (((-112) $ $) 69)) (-1848 (($ $) 29) (($ $ $) 28)) (-1835 (($ $ $) 26)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) +(((-991 |#1| |#2|) (-10 -8 (-15 -4054 (|#1| (-406 (-562)))) (-15 -1759 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 * (|#1| |#1| (-406 (-562)))) (-15 -1525 (|#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -3526 (|#2| |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -3665 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 -1957 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 -1952 ((-112) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) (-992 |#2|) (-171)) (T -991)) +((-2579 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-991 *3 *4)) (-4 *3 (-992 *4))))) +(-10 -8 (-15 -4054 (|#1| (-406 (-562)))) (-15 -1759 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 * (|#1| |#1| (-406 (-562)))) (-15 -1525 (|#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -3526 (|#2| |#1|)) (-15 -2247 (|#2| |#1|)) (-15 -3665 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 -1957 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 -1952 ((-112) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1835 (|#1| |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 118 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 116 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 113)) (-3961 (((-562) $) 117 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 115 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 114)) (-2406 (((-683 (-562)) (-683 $)) 88 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 87 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 86) (((-683 |#1|) (-683 $)) 85)) (-3668 (((-3 $ "failed") $) 33)) (-1657 ((|#1| $) 78)) (-1726 (((-3 (-406 (-562)) "failed") $) 74 (|has| |#1| (-544)))) (-3035 (((-112) $) 76 (|has| |#1| (-544)))) (-1291 (((-406 (-562)) $) 75 (|has| |#1| (-544)))) (-2121 (($ |#1| |#1| |#1| |#1|) 79)) (-1957 (((-112) $) 31)) (-2247 ((|#1| $) 80)) (-1551 (($ $ $) 67 (|has| |#1| (-845)))) (-2993 (($ $ $) 66 (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) 89)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71 (|has| |#1| (-362)))) (-1536 ((|#1| $) 81)) (-3085 ((|#1| $) 82)) (-3332 ((|#1| $) 83)) (-1709 (((-1112) $) 10)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 95 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 93 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 92 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 91 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) 90 (|has| |#1| (-513 (-1168) |#1|)))) (-2343 (($ $ |#1|) 96 (|has| |#1| (-285 |#1| |#1|)))) (-4029 (($ $) 112 (|has| |#1| (-232))) (($ $ (-766)) 110 (|has| |#1| (-232))) (($ $ (-1168)) 108 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 107 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 106 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 105 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-4208 (((-535) $) 72 (|has| |#1| (-610 (-535))))) (-3665 (($ $) 84)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38) (($ (-406 (-562))) 61 (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562))))))) (-2805 (((-3 $ "failed") $) 73 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-3526 ((|#1| $) 77 (|has| |#1| (-1053)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $) 111 (|has| |#1| (-232))) (($ $ (-766)) 109 (|has| |#1| (-232))) (($ $ (-1168)) 104 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 103 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 102 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 101 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1798 (((-112) $ $) 64 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 63 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 65 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 62 (|has| |#1| (-845)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70 (|has| |#1| (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-406 (-562))) 69 (|has| |#1| (-362))) (($ (-406 (-562)) $) 68 (|has| |#1| (-362))))) +(((-992 |#1|) (-139) (-171)) (T -992)) +((-3665 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-2121 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) (-1291 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562))))) (-1726 (*1 *2 *1) (|partial| -12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562)))))) +(-13 (-38 |t#1|) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-376 |t#1|) (-10 -8 (-15 -3665 ($ $)) (-15 -3332 (|t#1| $)) (-15 -3085 (|t#1| $)) (-15 -1536 (|t#1| $)) (-15 -2247 (|t#1| $)) (-15 -2121 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1657 (|t#1| $)) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1053)) (-15 -3526 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3035 ((-112) $)) (-15 -1291 ((-406 (-562)) $)) (-15 -1726 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-362)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-362)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-362))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) |has| |#1| (-362)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -4037 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-642 #0#) |has| |#1| (-362)) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) |has| |#1| (-362)) ((-712 |#1|) . T) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 #0#) |has| |#1| (-362)) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4152 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-993 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) (-992 |#2|) (-171) (-992 |#4|) (-171)) (T -993)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-992 *6)) (-5 *1 (-993 *4 *5 *2 *6)) (-4 *4 (-992 *5))))) +(-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1657 ((|#1| $) 12)) (-1726 (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-544)))) (-3035 (((-112) $) NIL (|has| |#1| (-544)))) (-1291 (((-406 (-562)) $) NIL (|has| |#1| (-544)))) (-2121 (($ |#1| |#1| |#1| |#1|) 16)) (-1957 (((-112) $) NIL)) (-2247 ((|#1| $) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-1536 ((|#1| $) 15)) (-3085 ((|#1| $) 14)) (-3332 ((|#1| $) 13)) (-1709 (((-1112) $) NIL)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|)))) (-2343 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4029 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-3665 (($ $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562))))))) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-3526 ((|#1| $) NIL (|has| |#1| (-1053)))) (-2286 (($) 8 T CONST)) (-2294 (($) 10 T CONST)) (-3114 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-362))) (($ (-406 (-562)) $) NIL (|has| |#1| (-362))))) +(((-994 |#1|) (-992 |#1|) (-171)) (T -994)) +NIL +(-992 |#1|) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-4336 (((-112) $ (-766)) NIL)) (-1800 (($) NIL T CONST)) (-3109 (($ $) 20)) (-3324 (($ (-639 |#1|)) 29)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-3641 (((-766) $) 22)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3262 ((|#1| $) 24)) (-4300 (($ |#1| $) 15)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3516 ((|#1| $) 23)) (-1904 ((|#1| $) 19)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2391 ((|#1| |#1| $) 14)) (-2974 (((-112) $) 17)) (-4307 (($) NIL)) (-3872 ((|#1| $) 18)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) NIL)) (-3686 ((|#1| $) 26)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-995 |#1|) (-13 (-990 |#1|) (-10 -8 (-15 -3324 ($ (-639 |#1|))))) (-1092)) (T -995)) +((-3324 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-995 *3))))) +(-13 (-990 |#1|) (-10 -8 (-15 -3324 ($ (-639 |#1|))))) +((-1643 (($ $) 12)) (-1891 (($ $ (-562)) 13))) +(((-996 |#1|) (-10 -8 (-15 -1643 (|#1| |#1|)) (-15 -1891 (|#1| |#1| (-562)))) (-997)) (T -996)) +NIL +(-10 -8 (-15 -1643 (|#1| |#1|)) (-15 -1891 (|#1| |#1| (-562)))) +((-1643 (($ $) 6)) (-1891 (($ $ (-562)) 7)) (** (($ $ (-406 (-562))) 8))) +(((-997) (-139)) (T -997)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-406 (-562))))) (-1891 (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-562)))) (-1643 (*1 *1 *1) (-4 *1 (-997)))) +(-13 (-10 -8 (-15 -1643 ($ $)) (-15 -1891 ($ $ (-562))) (-15 ** ($ $ (-406 (-562)))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3971 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-2796 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4370 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1636 (((-683 (-406 |#2|)) (-1256 $)) NIL) (((-683 (-406 |#2|))) NIL)) (-1748 (((-406 |#2|) $) NIL)) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-406 |#2|) (-348)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2921 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2569 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1382 (((-766)) NIL (|has| (-406 |#2|) (-367)))) (-2083 (((-112)) NIL)) (-3797 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| (-406 |#2|) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| (-406 |#2|) (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-406 |#2|) $) NIL)) (-4018 (($ (-1256 (-406 |#2|)) (-1256 $)) NIL) (($ (-1256 (-406 |#2|))) 70) (($ (-1256 |#2|) |#2|) NIL)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1811 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1958 (((-683 (-406 |#2|)) $ (-1256 $)) NIL) (((-683 (-406 |#2|)) $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-406 |#2|))) (|:| |vec| (-1256 (-406 |#2|)))) (-683 $) (-1256 $)) NIL) (((-683 (-406 |#2|)) (-683 $)) NIL)) (-2435 (((-1256 $) (-1256 $)) NIL)) (-1955 (($ |#3|) 65) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-3668 (((-3 $ "failed") $) NIL)) (-2753 (((-639 (-639 |#1|))) NIL (|has| |#1| (-367)))) (-1877 (((-112) |#1| |#1|) NIL)) (-2173 (((-916)) NIL)) (-1448 (($) NIL (|has| (-406 |#2|) (-367)))) (-4240 (((-112)) NIL)) (-2792 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-1787 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| (-406 |#2|) (-362)))) (-1498 (($ $) NIL)) (-3529 (($) NIL (|has| (-406 |#2|) (-348)))) (-1322 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-3589 (($ $ (-766)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-2717 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1900 (((-916) $) NIL (|has| (-406 |#2|) (-348))) (((-828 (-916)) $) NIL (|has| (-406 |#2|) (-348)))) (-1957 (((-112) $) NIL)) (-3684 (((-766)) NIL)) (-2142 (((-1256 $) (-1256 $)) NIL)) (-2247 (((-406 |#2|) $) NIL)) (-1336 (((-639 (-947 |#1|)) (-1168)) NIL (|has| |#1| (-362)))) (-3699 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1565 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-1999 (((-916) $) NIL (|has| (-406 |#2|) (-367)))) (-1943 ((|#3| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2913 (((-1150) $) NIL)) (-2452 (((-683 (-406 |#2|))) 52)) (-4245 (((-683 (-406 |#2|))) 51)) (-1525 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2679 (($ (-1256 |#2|) |#2|) 71)) (-2696 (((-683 (-406 |#2|))) 50)) (-3933 (((-683 (-406 |#2|))) 49)) (-2979 (((-2 (|:| |num| (-683 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-4270 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 77)) (-2980 (((-1256 $)) 46)) (-3826 (((-1256 $)) 45)) (-4346 (((-112) $) NIL)) (-2472 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3729 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2466 (($ (-916)) NIL (|has| (-406 |#2|) (-367)))) (-2676 (((-3 |#2| "failed")) 63)) (-1709 (((-1112) $) NIL)) (-2116 (((-766)) NIL)) (-3148 (($) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| (-406 |#2|) (-362)))) (-1606 (($ (-639 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| (-406 |#2|) (-348)))) (-1635 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1577 (((-766) $) NIL (|has| (-406 |#2|) (-362)))) (-2343 ((|#1| $ |#1| |#1|) NIL)) (-3441 (((-3 |#2| "failed")) 62)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2455 (((-406 |#2|) (-1256 $)) NIL) (((-406 |#2|)) 42)) (-3362 (((-766) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-766) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-4029 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-3187 (((-683 (-406 |#2|)) (-1256 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-2096 ((|#3|) 53)) (-2283 (($) NIL (|has| (-406 |#2|) (-348)))) (-3593 (((-1256 (-406 |#2|)) $ (-1256 $)) NIL) (((-683 (-406 |#2|)) (-1256 $) (-1256 $)) NIL) (((-1256 (-406 |#2|)) $) 72) (((-683 (-406 |#2|)) (-1256 $)) NIL)) (-4208 (((-1256 (-406 |#2|)) $) NIL) (($ (-1256 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-406 |#2|) (-348)))) (-1624 (((-1256 $) (-1256 $)) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| (-406 |#2|) (-1033 (-406 (-562)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2805 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-3376 ((|#3| $) NIL)) (-2579 (((-766)) NIL)) (-1946 (((-112)) 60)) (-1719 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-3928 (((-1256 $)) 125)) (-2922 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-4193 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2386 (((-112)) NIL)) (-2286 (($) 94 T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-562)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-562))) NIL (|has| (-406 |#2|) (-362))))) +(((-998 |#1| |#2| |#3| |#4| |#5|) (-341 |#1| |#2| |#3|) (-1211) (-1232 |#1|) (-1232 (-406 |#2|)) (-406 |#2|) (-766)) (T -998)) NIL (-341 |#1| |#2| |#3|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3400 (((-635 (-544)) $) 54)) (-3396 (($ (-635 (-544))) 62)) (-3514 (((-544) $) 40 (|has| (-544) (-306)))) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL (|has| (-544) (-814)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #2="failed") $) 49) (((-3 (-1166) #2#) $) NIL (|has| (-544) (-1031 (-1166)))) (((-3 (-406 (-544)) #2#) $) 47 (|has| (-544) (-1031 (-544)))) (((-3 (-544) #2#) $) 49 (|has| (-544) (-1031 (-544))))) (-3557 (((-544) $) NIL) (((-1166) $) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) NIL (|has| (-544) (-1031 (-544)))) (((-544) $) NIL (|has| (-544) (-1031 (-544))))) (-2943 (($ $ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| (-544) (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3377 (($) NIL (|has| (-544) (-543)))) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3398 (((-635 (-544)) $) 60)) (-3587 (((-112) $) NIL (|has| (-544) (-814)))) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (|has| (-544) (-879 (-544)))) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (|has| (-544) (-879 (-377))))) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL)) (-3381 (((-544) $) 37)) (-3848 (((-3 $ "failed") $) NIL (|has| (-544) (-1141)))) (-3588 (((-112) $) NIL (|has| (-544) (-814)))) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-544) (-844)))) (-4365 (($ (-1 (-544) (-544)) $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL)) (-3849 (($) NIL (|has| (-544) (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3513 (($ $) NIL (|has| (-544) (-306))) (((-406 (-544)) $) 42)) (-3399 (((-1143 (-544)) $) 59)) (-3395 (($ (-635 (-544)) (-635 (-544))) 63)) (-3515 (((-544) $) 53 (|has| (-544) (-543)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| (-544) (-903)))) (-4139 (((-404 $) $) NIL)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-4174 (($ $ (-635 (-544)) (-635 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-544) (-544)) NIL (|has| (-544) (-308 (-544)))) (($ $ (-292 (-544))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-292 (-544)))) NIL (|has| (-544) (-308 (-544)))) (($ $ (-635 (-1166)) (-635 (-544))) NIL (|has| (-544) (-512 (-1166) (-544)))) (($ $ (-1166) (-544)) NIL (|has| (-544) (-512 (-1166) (-544))))) (-1732 (((-765) $) NIL)) (-4206 (($ $ (-544)) NIL (|has| (-544) (-285 (-544) (-544))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $) 11 (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-3378 (($ $) NIL)) (-3380 (((-544) $) 39)) (-3397 (((-635 (-544)) $) 61)) (-4377 (((-883 (-544)) $) NIL (|has| (-544) (-609 (-883 (-544))))) (((-883 (-377)) $) NIL (|has| (-544) (-609 (-883 (-377))))) (((-533) $) NIL (|has| (-544) (-609 (-533)))) (((-377) $) NIL (|has| (-544) (-1013))) (((-224) $) NIL (|has| (-544) (-1013)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-544) (-903))))) (-4353 (((-857) $) 77) (($ (-544)) 43) (($ $) NIL) (($ (-406 (-544))) 20) (($ (-544)) 43) (($ (-1166)) NIL (|has| (-544) (-1031 (-1166)))) (((-406 (-544)) $) 18)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-544) (-903))) (|has| (-544) (-144))))) (-3511 (((-765)) 9)) (-3516 (((-544) $) 51 (|has| (-544) (-543)))) (-2212 (((-112) $ $) NIL)) (-3787 (($ $) NIL (|has| (-544) (-814)))) (-3040 (($) 10 T CONST)) (-3046 (($) 12 T CONST)) (-3051 (($ $) NIL (|has| (-544) (-232))) (($ $ (-765)) NIL (|has| (-544) (-232))) (($ $ (-1166)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| (-544) (-893 (-1166)))) (($ $ (-1 (-544) (-544)) (-765)) NIL) (($ $ (-1 (-544) (-544))) NIL)) (-2945 (((-112) $ $) NIL (|has| (-544) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3437 (((-112) $ $) 14)) (-3066 (((-112) $ $) NIL (|has| (-544) (-844)))) (-3067 (((-112) $ $) 33 (|has| (-544) (-844)))) (-4356 (($ $ $) 29) (($ (-544) (-544)) 31)) (-4244 (($ $) 15) (($ $ $) 23)) (-4246 (($ $ $) 21)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 25) (($ $ $) 27) (($ $ (-406 (-544))) NIL) (($ (-406 (-544)) $) NIL) (($ (-544) $) 25) (($ $ (-544)) NIL))) -(((-997 |#1|) (-13 (-984 (-544)) (-608 (-406 (-544))) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -3400 ((-635 (-544)) $)) (-15 -3399 ((-1143 (-544)) $)) (-15 -3398 ((-635 (-544)) $)) (-15 -3397 ((-635 (-544)) $)) (-15 -3396 ($ (-635 (-544)))) (-15 -3395 ($ (-635 (-544)) (-635 (-544)))))) (-544)) (T -997)) -((-3513 (*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) (-3395 (*1 *1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544))))) -(-13 (-984 (-544)) (-608 (-406 (-544))) (-10 -8 (-15 -3513 ((-406 (-544)) $)) (-15 -3400 ((-635 (-544)) $)) (-15 -3399 ((-1143 (-544)) $)) (-15 -3398 ((-635 (-544)) $)) (-15 -3397 ((-635 (-544)) $)) (-15 -3396 ($ (-635 (-544)))) (-15 -3395 ($ (-635 (-544)) (-635 (-544)))))) -((-3401 (((-51) (-406 (-544)) (-544)) 9))) -(((-998) (-10 -7 (-15 -3401 ((-51) (-406 (-544)) (-544))))) (T -998)) -((-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-544))) (-5 *4 (-544)) (-5 *2 (-51)) (-5 *1 (-998))))) -(-10 -7 (-15 -3401 ((-51) (-406 (-544)) (-544)))) -((-3521 (((-544)) 13)) (-3404 (((-544)) 16)) (-3403 (((-1259) (-544)) 15)) (-3402 (((-544) (-544)) 17) (((-544)) 12))) -(((-999) (-10 -7 (-15 -3402 ((-544))) (-15 -3521 ((-544))) (-15 -3402 ((-544) (-544))) (-15 -3403 ((-1259) (-544))) (-15 -3404 ((-544))))) (T -999)) -((-3404 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-999)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))) (-3521 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))) (-3402 (*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999))))) -(-10 -7 (-15 -3402 ((-544))) (-15 -3521 ((-544))) (-15 -3402 ((-544) (-544))) (-15 -3403 ((-1259) (-544))) (-15 -3404 ((-544)))) -((-4140 (((-404 |#1|) |#1|) 41)) (-4139 (((-404 |#1|) |#1|) 40))) -(((-1000 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1|))) (-1229 (-406 (-544)))) (T -1000)) -((-4140 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-544)))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-544))))))) -(-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1|))) -((-3407 (((-3 (-406 (-544)) "failed") |#1|) 15)) (-3406 (((-112) |#1|) 14)) (-3405 (((-406 (-544)) |#1|) 10))) -(((-1001 |#1|) (-10 -7 (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|))) (-1031 (-406 (-544)))) (T -1001)) -((-3407 (*1 *2 *3) (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2)))) (-3406 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1001 *3)) (-4 *3 (-1031 (-406 (-544)))))) (-3405 (*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2))))) -(-10 -7 (-15 -3405 ((-406 (-544)) |#1|)) (-15 -3406 ((-112) |#1|)) (-15 -3407 ((-3 (-406 (-544)) "failed") |#1|))) -((-4194 ((|#2| $ "value" |#2|) 12)) (-4206 ((|#2| $ "value") 10)) (-3411 (((-112) $ $) 18))) -(((-1002 |#1| |#2|) (-10 -8 (-15 -4194 (|#2| |#1| "value" |#2|)) (-15 -3411 ((-112) |#1| |#1|)) (-15 -4206 (|#2| |#1| "value"))) (-1003 |#2|) (-1204)) (T -1002)) -NIL -(-10 -8 (-15 -4194 (|#2| |#1| "value" |#2|)) (-15 -3411 ((-112) |#1| |#1|)) (-15 -4206 (|#2| |#1| "value"))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) 7 T CONST)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ "value") 47)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-1003 |#1|) (-139) (-1204)) (T -1003)) -((-3921 (*1 *2 *1) (-12 (-4 *3 (-1204)) (-5 *2 (-635 *1)) (-4 *1 (-1003 *3)))) (-3414 (*1 *2 *1) (-12 (-4 *3 (-1204)) (-5 *2 (-635 *1)) (-4 *1 (-1003 *3)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1003 *2)) (-4 *2 (-1204)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-635 *3)))) (-3412 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-544)))) (-3411 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-3410 (*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-3409 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *1)) (|has| *1 (-6 -4401)) (-4 *1 (-1003 *3)) (-4 *3 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4401)) (-4 *1 (-1003 *2)) (-4 *2 (-1204)))) (-3408 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1003 *2)) (-4 *2 (-1204))))) -(-13 (-487 |t#1|) (-10 -8 (-15 -3921 ((-635 $) $)) (-15 -3414 ((-635 $) $)) (-15 -3926 ((-112) $)) (-15 -3806 (|t#1| $)) (-15 -4206 (|t#1| $ "value")) (-15 -4040 ((-112) $)) (-15 -3413 ((-635 |t#1|) $)) (-15 -3412 ((-544) $ $)) (IF (|has| |t#1| (-1091)) (PROGN (-15 -3411 ((-112) $ $)) (-15 -3410 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4401)) (PROGN (-15 -3409 ($ $ (-635 $))) (-15 -4194 (|t#1| $ "value" |t#1|)) (-15 -3408 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-3420 (($ $) 9) (($ $ (-912)) 43) (($ (-406 (-544))) 13) (($ (-544)) 15)) (-3584 (((-3 $ "failed") (-1160 $) (-912) (-857)) 23) (((-3 $ "failed") (-1160 $) (-912)) 28)) (-3394 (($ $ (-544)) 49)) (-3511 (((-765)) 17)) (-3585 (((-635 $) (-1160 $)) NIL) (((-635 $) (-1160 (-406 (-544)))) 54) (((-635 $) (-1160 (-544))) 59) (((-635 $) (-939 $)) 63) (((-635 $) (-939 (-406 (-544)))) 67) (((-635 $) (-939 (-544))) 71)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL) (($ $ (-406 (-544))) 47))) -(((-1004 |#1|) (-10 -8 (-15 -3420 (|#1| (-544))) (-15 -3420 (|#1| (-406 (-544)))) (-15 -3420 (|#1| |#1| (-912))) (-15 -3585 ((-635 |#1|) (-939 (-544)))) (-15 -3585 ((-635 |#1|) (-939 (-406 (-544))))) (-15 -3585 ((-635 |#1|) (-939 |#1|))) (-15 -3585 ((-635 |#1|) (-1160 (-544)))) (-15 -3585 ((-635 |#1|) (-1160 (-406 (-544))))) (-15 -3585 ((-635 |#1|) (-1160 |#1|))) (-15 -3584 ((-3 |#1| "failed") (-1160 |#1|) (-912))) (-15 -3584 ((-3 |#1| "failed") (-1160 |#1|) (-912) (-857))) (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -3394 (|#1| |#1| (-544))) (-15 -3420 (|#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -3511 ((-765))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912)))) (-1005)) (T -1004)) -((-3511 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1004 *3)) (-4 *3 (-1005))))) -(-10 -8 (-15 -3420 (|#1| (-544))) (-15 -3420 (|#1| (-406 (-544)))) (-15 -3420 (|#1| |#1| (-912))) (-15 -3585 ((-635 |#1|) (-939 (-544)))) (-15 -3585 ((-635 |#1|) (-939 (-406 (-544))))) (-15 -3585 ((-635 |#1|) (-939 |#1|))) (-15 -3585 ((-635 |#1|) (-1160 (-544)))) (-15 -3585 ((-635 |#1|) (-1160 (-406 (-544))))) (-15 -3585 ((-635 |#1|) (-1160 |#1|))) (-15 -3584 ((-3 |#1| "failed") (-1160 |#1|) (-912))) (-15 -3584 ((-3 |#1| "failed") (-1160 |#1|) (-912) (-857))) (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -3394 (|#1| |#1| (-544))) (-15 -3420 (|#1| |#1|)) (-15 ** (|#1| |#1| (-544))) (-15 -3511 ((-765))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 91)) (-2213 (($ $) 92)) (-2211 (((-112) $) 94)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 111)) (-4376 (((-404 $) $) 112)) (-3420 (($ $) 75) (($ $ (-912)) 61) (($ (-406 (-544))) 60) (($ (-544)) 59)) (-1733 (((-112) $ $) 102)) (-4030 (((-544) $) 128)) (-4131 (($) 17 T CONST)) (-3584 (((-3 $ "failed") (-1160 $) (-912) (-857)) 69) (((-3 $ "failed") (-1160 $) (-912)) 68)) (-3558 (((-3 (-544) #1="failed") $) 88 (|has| (-406 (-544)) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 86 (|has| (-406 (-544)) (-1031 (-406 (-544))))) (((-3 (-406 (-544)) #1#) $) 83)) (-3557 (((-544) $) 87 (|has| (-406 (-544)) (-1031 (-544)))) (((-406 (-544)) $) 85 (|has| (-406 (-544)) (-1031 (-406 (-544))))) (((-406 (-544)) $) 84)) (-3416 (($ $ (-857)) 58)) (-3415 (($ $ (-857)) 57)) (-2943 (($ $ $) 106)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 105)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 100)) (-4130 (((-112) $) 113)) (-3587 (((-112) $) 126)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 74)) (-3588 (((-112) $) 127)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 109)) (-2913 (($ $ $) 125)) (-3242 (($ $ $) 124)) (-3417 (((-3 (-1160 $) "failed") $) 70)) (-3419 (((-3 (-857) "failed") $) 72)) (-3418 (((-3 (-1160 $) "failed") $) 71)) (-2041 (($ (-635 $)) 98) (($ $ $) 97)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 114)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 99)) (-3545 (($ (-635 $)) 96) (($ $ $) 95)) (-4139 (((-404 $) $) 110)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 107)) (-3865 (((-3 $ "failed") $ $) 90)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 101)) (-1732 (((-765) $) 103)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 104)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 118) (($ $) 89) (($ (-406 (-544))) 82) (($ (-544)) 81) (($ (-406 (-544))) 78)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 93)) (-4176 (((-406 (-544)) $ $) 56)) (-3585 (((-635 $) (-1160 $)) 67) (((-635 $) (-1160 (-406 (-544)))) 66) (((-635 $) (-1160 (-544))) 65) (((-635 $) (-939 $)) 64) (((-635 $) (-939 (-406 (-544)))) 63) (((-635 $) (-939 (-544))) 62)) (-3787 (($ $) 129)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 122)) (-2946 (((-112) $ $) 121)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 123)) (-3067 (((-112) $ $) 120)) (-4356 (($ $ $) 119)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 115) (($ $ (-406 (-544))) 73)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ (-406 (-544)) $) 117) (($ $ (-406 (-544))) 116) (($ (-544) $) 80) (($ $ (-544)) 79) (($ (-406 (-544)) $) 77) (($ $ (-406 (-544))) 76))) -(((-1005) (-139)) (T -1005)) -((-3420 (*1 *1 *1) (-4 *1 (-1005))) (-3419 (*1 *2 *1) (|partial| -12 (-4 *1 (-1005)) (-5 *2 (-857)))) (-3418 (*1 *2 *1) (|partial| -12 (-5 *2 (-1160 *1)) (-4 *1 (-1005)))) (-3417 (*1 *2 *1) (|partial| -12 (-5 *2 (-1160 *1)) (-4 *1 (-1005)))) (-3584 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1160 *1)) (-5 *3 (-912)) (-5 *4 (-857)) (-4 *1 (-1005)))) (-3584 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1160 *1)) (-5 *3 (-912)) (-4 *1 (-1005)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-1005)) (-5 *2 (-635 *1)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1160 (-406 (-544)))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1160 (-544))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-1005)) (-5 *2 (-635 *1)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-939 (-544))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) (-3420 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-912)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-1005)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1005)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-857)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-857)))) (-4176 (*1 *2 *1 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-406 (-544)))))) -(-13 (-146) (-842) (-171) (-362) (-411 (-406 (-544))) (-38 (-544)) (-38 (-406 (-544))) (-995) (-10 -8 (-15 -3419 ((-3 (-857) "failed") $)) (-15 -3418 ((-3 (-1160 $) "failed") $)) (-15 -3417 ((-3 (-1160 $) "failed") $)) (-15 -3584 ((-3 $ "failed") (-1160 $) (-912) (-857))) (-15 -3584 ((-3 $ "failed") (-1160 $) (-912))) (-15 -3585 ((-635 $) (-1160 $))) (-15 -3585 ((-635 $) (-1160 (-406 (-544))))) (-15 -3585 ((-635 $) (-1160 (-544)))) (-15 -3585 ((-635 $) (-939 $))) (-15 -3585 ((-635 $) (-939 (-406 (-544))))) (-15 -3585 ((-635 $) (-939 (-544)))) (-15 -3420 ($ $ (-912))) (-15 -3420 ($ $)) (-15 -3420 ($ (-406 (-544)))) (-15 -3420 ($ (-544))) (-15 -3416 ($ $ (-857))) (-15 -3415 ($ $ (-857))) (-15 -4176 ((-406 (-544)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 #2=(-544)) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-411 (-406 (-544))) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 #2#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 #2#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-842) . T) ((-844) . T) ((-914) . T) ((-995) . T) ((-1031 (-406 (-544))) . T) ((-1031 (-544)) |has| (-406 (-544)) (-1031 (-544))) ((-1048 #1#) . T) ((-1048 #2#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T)) -((-3421 (((-2 (|:| |ans| |#2|) (|:| -3522 |#2|) (|:| |sol?| (-112))) (-544) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65))) -(((-1006 |#1| |#2|) (-10 -7 (-15 -3421 ((-2 (|:| |ans| |#2|) (|:| -3522 |#2|) (|:| |sol?| (-112))) (-544) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-27) (-420 |#1|))) (T -1006)) -((-3421 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1166)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-635 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1190) (-27) (-420 *8))) (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-544)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3522 *4) (|:| |sol?| (-112)))) (-5 *1 (-1006 *8 *4))))) -(-10 -7 (-15 -3421 ((-2 (|:| |ans| |#2|) (|:| -3522 |#2|) (|:| |sol?| (-112))) (-544) |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3422 (((-3 (-635 |#2|) "failed") (-544) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-1007 |#1| |#2|) (-10 -7 (-15 -3422 ((-3 (-635 |#2|) "failed") (-544) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544))) (-13 (-1190) (-27) (-420 |#1|))) (T -1007)) -((-3422 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1166)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-635 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1190) (-27) (-420 *8))) (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-544)) (-5 *2 (-635 *4)) (-5 *1 (-1007 *8 *4))))) -(-10 -7 (-15 -3422 ((-3 (-635 |#2|) "failed") (-544) |#2| |#2| |#2| (-1166) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-635 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-635 |#2|)) (-1 (-3 (-2 (|:| -2290 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3425 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3667 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-544)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-544) (-1 |#2| |#2|)) 31)) (-3423 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 59)) (-3424 (((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|)) 64))) -(((-1008 |#1| |#2|) (-10 -7 (-15 -3423 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3424 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3425 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3667 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-544)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-544) (-1 |#2| |#2|)))) (-13 (-362) (-146) (-1031 (-544))) (-1229 |#1|)) (T -1008)) -((-3425 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1229 *6)) (-4 *6 (-13 (-362) (-146) (-1031 *4))) (-5 *4 (-544)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3667 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1008 *6 *3)))) (-3424 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1008 *4 *5)) (-5 *3 (-406 *5)))) (-3423 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -3479 *6))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-406 *6))))) -(-10 -7 (-15 -3423 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3424 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3425 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3667 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-544)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-544) (-1 |#2| |#2|)))) -((-3426 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 22)) (-3427 (((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 33))) -(((-1009 |#1| |#2|) (-10 -7 (-15 -3426 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3427 ((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) (-13 (-362) (-146) (-1031 (-544))) (-1229 |#1|)) (T -1009)) -((-3427 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) (-5 *2 (-635 (-406 *5))) (-5 *1 (-1009 *4 *5)) (-5 *3 (-406 *5)))) (-3426 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-13 (-362) (-146) (-1031 (-544)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3479 *6))) (-5 *1 (-1009 *5 *6)) (-5 *3 (-406 *6))))) -(-10 -7 (-15 -3426 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3479 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3427 ((-3 (-635 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) -((-3428 (((-1 |#1|) (-635 (-2 (|:| -3806 |#1|) (|:| -1605 (-544))))) 37)) (-3486 (((-1 |#1|) (-1087 |#1|)) 45)) (-3429 (((-1 |#1|) (-1253 |#1|) (-1253 (-544)) (-544)) 34))) -(((-1010 |#1|) (-10 -7 (-15 -3486 ((-1 |#1|) (-1087 |#1|))) (-15 -3428 ((-1 |#1|) (-635 (-2 (|:| -3806 |#1|) (|:| -1605 (-544)))))) (-15 -3429 ((-1 |#1|) (-1253 |#1|) (-1253 (-544)) (-544)))) (-1091)) (T -1010)) -((-3429 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1253 *6)) (-5 *4 (-1253 (-544))) (-5 *5 (-544)) (-4 *6 (-1091)) (-5 *2 (-1 *6)) (-5 *1 (-1010 *6)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3806 *4) (|:| -1605 (-544))))) (-4 *4 (-1091)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-1091)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4))))) -(-10 -7 (-15 -3486 ((-1 |#1|) (-1087 |#1|))) (-15 -3428 ((-1 |#1|) (-635 (-2 (|:| -3806 |#1|) (|:| -1605 (-544)))))) (-15 -3429 ((-1 |#1|) (-1253 |#1|) (-1253 (-544)) (-544)))) -((-4178 (((-765) (-332 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4178 ((-765) (-332 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-362) (-1229 |#1|) (-1229 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-13 (-367) (-362))) (T -1011)) -((-4178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-332 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) (-4 *7 (-1229 *6)) (-4 *4 (-1229 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) (-4 *9 (-13 (-367) (-362))) (-5 *2 (-765)) (-5 *1 (-1011 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -4178 ((-765) (-332 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2947 (((-112) $ $) NIL)) (-3430 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 11)) (-3437 (((-112) $ $) NIL))) -(((-1012) (-13 (-1073) (-10 -8 (-15 -3430 ((-1125) $)) (-15 -3634 ((-1125) $))))) (T -1012)) -((-3430 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012))))) -(-13 (-1073) (-10 -8 (-15 -3430 ((-1125) $)) (-15 -3634 ((-1125) $)))) -((-4377 (((-224) $) 6) (((-377) $) 9))) -(((-1013) (-139)) (T -1013)) -NIL -(-13 (-609 (-224)) (-609 (-377))) -(((-609 (-224)) . T) ((-609 (-377)) . T)) -((-3519 (((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 31) (((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544))) 28)) (-3433 (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544))) 33) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544))) 29) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 32) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|) 27)) (-3432 (((-635 (-406 (-544))) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) 19)) (-3431 (((-406 (-544)) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 16))) -(((-1014 |#1|) (-10 -7 (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|)) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544)))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3431 ((-406 (-544)) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3432 ((-635 (-406 (-544))) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))))) (-1229 (-544))) (T -1014)) -((-3432 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *2 (-635 (-406 (-544)))) (-5 *1 (-1014 *4)) (-4 *4 (-1229 (-544))))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *2 (-406 (-544))) (-5 *1 (-1014 *4)) (-4 *4 (-1229 (-544))))) (-3519 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))))) (-3519 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *4 (-406 (-544))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *5) (|:| -3522 *5)))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) (-5 *4 (-2 (|:| -3523 *5) (|:| -3522 *5))))) (-3433 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) (-5 *4 (-406 (-544))))) (-3433 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) (-5 *4 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-3433 (*1 *2 *3) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544)))))) -(-10 -7 (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|)) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544)))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3431 ((-406 (-544)) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3432 ((-635 (-406 (-544))) (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))))) -((-3519 (((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 35) (((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544))) 32)) (-3433 (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544))) 30) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544))) 26) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) 28) (((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|) 24))) -(((-1015 |#1|) (-10 -7 (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|)) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544)))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-1229 (-406 (-544)))) (T -1015)) -((-3519 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544)))))) (-3519 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) (-5 *4 (-406 (-544))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 *4)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *5) (|:| -3522 *5)))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 *5)) (-5 *4 (-2 (|:| -3523 *5) (|:| -3522 *5))))) (-3433 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *4) (|:| -3522 *4)))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 *4)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544)))) (-5 *4 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) (-3433 (*1 *2 *3) (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544))))))) -(-10 -7 (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1|)) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-406 (-544)))) (-15 -3433 ((-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-406 (-544)))) (-15 -3519 ((-3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) "failed") |#1| (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))) (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) -((-3980 (((-635 (-377)) (-939 (-544)) (-377)) 28) (((-635 (-377)) (-939 (-406 (-544))) (-377)) 27)) (-4374 (((-635 (-635 (-377))) (-635 (-939 (-544))) (-635 (-1166)) (-377)) 37))) -(((-1016) (-10 -7 (-15 -3980 ((-635 (-377)) (-939 (-406 (-544))) (-377))) (-15 -3980 ((-635 (-377)) (-939 (-544)) (-377))) (-15 -4374 ((-635 (-635 (-377))) (-635 (-939 (-544))) (-635 (-1166)) (-377))))) (T -1016)) -((-4374 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-635 (-1166))) (-5 *2 (-635 (-635 (-377)))) (-5 *1 (-1016)) (-5 *5 (-377)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-939 (-544))) (-5 *2 (-635 (-377))) (-5 *1 (-1016)) (-5 *4 (-377)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *2 (-635 (-377))) (-5 *1 (-1016)) (-5 *4 (-377))))) -(-10 -7 (-15 -3980 ((-635 (-377)) (-939 (-406 (-544))) (-377))) (-15 -3980 ((-635 (-377)) (-939 (-544)) (-377))) (-15 -4374 ((-635 (-635 (-377))) (-635 (-939 (-544))) (-635 (-1166)) (-377)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 70)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-3420 (($ $) NIL) (($ $ (-912)) NIL) (($ (-406 (-544))) NIL) (($ (-544)) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) 65)) (-4131 (($) NIL T CONST)) (-3584 (((-3 $ #1="failed") (-1160 $) (-912) (-857)) NIL) (((-3 $ #1#) (-1160 $) (-912)) 50)) (-3558 (((-3 (-406 (-544)) #2="failed") $) NIL (|has| (-406 (-544)) (-1031 (-406 (-544))))) (((-3 (-406 (-544)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-544) #2#) $) NIL (-3936 (|has| (-406 (-544)) (-1031 (-544))) (|has| |#1| (-1031 (-544)))))) (-3557 (((-406 (-544)) $) 15 (|has| (-406 (-544)) (-1031 (-406 (-544))))) (((-406 (-544)) $) 15) ((|#1| $) 108) (((-544) $) NIL (-3936 (|has| (-406 (-544)) (-1031 (-544))) (|has| |#1| (-1031 (-544)))))) (-3416 (($ $ (-857)) 42)) (-3415 (($ $ (-857)) 43)) (-2943 (($ $ $) NIL)) (-3583 (((-406 (-544)) $ $) 19)) (-3866 (((-3 $ "failed") $) 83)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-3587 (((-112) $) 61)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL)) (-3588 (((-112) $) 64)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3417 (((-3 (-1160 $) #1#) $) 78)) (-3419 (((-3 (-857) #1#) $) 77)) (-3418 (((-3 (-1160 $) #1#) $) 75)) (-3434 (((-3 (-1052 $ (-1160 $)) "failed") $) 73)) (-2041 (($ (-635 $)) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 84)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ (-635 $)) NIL) (($ $ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4353 (((-857) $) 82) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ $) 58) (($ (-406 (-544))) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ |#1|) 110)) (-3511 (((-765)) NIL)) (-2212 (((-112) $ $) NIL)) (-4176 (((-406 (-544)) $ $) 25)) (-3585 (((-635 $) (-1160 $)) 56) (((-635 $) (-1160 (-406 (-544)))) NIL) (((-635 $) (-1160 (-544))) NIL) (((-635 $) (-939 $)) NIL) (((-635 $) (-939 (-406 (-544)))) NIL) (((-635 $) (-939 (-544))) NIL)) (-3435 (($ (-1052 $ (-1160 $)) (-857)) 41)) (-3787 (($ $) 20)) (-3040 (($) 29 T CONST)) (-3046 (($) 35 T CONST)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 71)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 22)) (-4356 (($ $ $) 33)) (-4244 (($ $) 34) (($ $ $) 69)) (-4246 (($ $ $) 103)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL) (($ $ (-406 (-544))) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 91) (($ $ $) 96) (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ (-544) $) 91) (($ $ (-544)) NIL) (($ (-406 (-544)) $) NIL) (($ $ (-406 (-544))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-1017 |#1|) (-13 (-1005) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3435 ($ (-1052 $ (-1160 $)) (-857))) (-15 -3434 ((-3 (-1052 $ (-1160 $)) "failed") $)) (-15 -3583 ((-406 (-544)) $ $)))) (-13 (-842) (-362) (-1013))) (T -1017)) -((-3435 (*1 *1 *2 *3) (-12 (-5 *2 (-1052 (-1017 *4) (-1160 (-1017 *4)))) (-5 *3 (-857)) (-5 *1 (-1017 *4)) (-4 *4 (-13 (-842) (-362) (-1013))))) (-3434 (*1 *2 *1) (|partial| -12 (-5 *2 (-1052 (-1017 *3) (-1160 (-1017 *3)))) (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1013))))) (-3583 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1013)))))) -(-13 (-1005) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3435 ($ (-1052 $ (-1160 $)) (-857))) (-15 -3434 ((-3 (-1052 $ (-1160 $)) "failed") $)) (-15 -3583 ((-406 (-544)) $ $)))) -((-3436 (((-2 (|:| -3667 |#2|) (|:| -2881 (-635 |#1|))) |#2| (-635 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-1018 |#1| |#2|) (-10 -7 (-15 -3436 (|#2| |#2| |#1|)) (-15 -3436 ((-2 (|:| -3667 |#2|) (|:| -2881 (-635 |#1|))) |#2| (-635 |#1|)))) (-362) (-651 |#1|)) (T -1018)) -((-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3667 *3) (|:| -2881 (-635 *5)))) (-5 *1 (-1018 *5 *3)) (-5 *4 (-635 *5)) (-4 *3 (-651 *5)))) (-3436 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1018 *3 *2)) (-4 *2 (-651 *3))))) -(-10 -7 (-15 -3436 (|#2| |#2| |#1|)) (-15 -3436 ((-2 (|:| -3667 |#2|) (|:| -2881 (-635 |#1|))) |#2| (-635 |#1|)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3438 ((|#1| $ |#1|) 14)) (-4194 ((|#1| $ |#1|) 12)) (-3440 (($ |#1|) 10)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4206 ((|#1| $) 11)) (-3439 ((|#1| $) 13)) (-4353 (((-857) $) 21 (|has| |#1| (-1091)))) (-3437 (((-112) $ $) 9))) -(((-1019 |#1|) (-13 (-1204) (-10 -8 (-15 -3440 ($ |#1|)) (-15 -4206 (|#1| $)) (-15 -4194 (|#1| $ |#1|)) (-15 -3439 (|#1| $)) (-15 -3438 (|#1| $ |#1|)) (-15 -3437 ((-112) $ $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|))) (-1204)) (T -1019)) -((-3440 (*1 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-4194 (*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-3439 (*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-3438 (*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) (-3437 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1204))))) -(-13 (-1204) (-10 -8 (-15 -3440 ($ |#1|)) (-15 -4206 (|#1| $)) (-15 -4194 (|#1| $ |#1|)) (-15 -3439 (|#1| $)) (-15 -3438 (|#1| $ |#1|)) (-15 -3437 ((-112) $ $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) NIL)) (-4089 (((-635 $) (-635 |#4|)) 105) (((-635 $) (-635 |#4|) (-112)) 106) (((-635 $) (-635 |#4|) (-112) (-112)) 104) (((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3467 (((-635 |#3|) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4095 ((|#4| |#4| $) NIL)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 99)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) 27 (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3283 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3557 (($ (-635 |#4|)) NIL)) (-4205 (((-3 $ #1#) $) 40)) (-4092 ((|#4| |#4| $) 57)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) NIL)) (-3598 (((-112) |#4| $) NIL)) (-3596 (((-112) |#4| $) NIL)) (-3599 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3842 (((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)) 119)) (-2096 (((-635 |#4|) $) 17 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 18 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2100 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 22)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) NIL)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 97)) (-4204 (((-3 |#4| #1#) $) 38)) (-3593 (((-635 $) |#4| $) 80)) (-3595 (((-3 (-112) (-635 $)) |#4| $) NIL)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3639 (((-635 $) |#4| $) 102) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 103) (((-635 $) |#4| (-635 $)) NIL)) (-3843 (((-635 $) (-635 |#4|) (-112) (-112) (-112)) 114)) (-3844 (($ |#4| $) 70) (($ (-635 |#4|) $) 71) (((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4104 (((-635 |#4|) $) NIL)) (-4098 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4093 ((|#4| |#4| $) NIL)) (-4106 (((-112) $ $) NIL)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4094 ((|#4| |#4| $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 |#4| #1#) $) 36)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4086 (((-3 $ #1#) $ |#4|) 48)) (-4175 (($ $ |#4|) NIL) (((-635 $) |#4| $) 82) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 77)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 16)) (-3972 (($) 14)) (-4355 (((-765) $) NIL)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) 13)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 21)) (-3293 (($ $ |#3|) 43)) (-3295 (($ $ |#3|) 44)) (-4091 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) 32) (((-635 |#4|) $) 41)) (-4085 (((-765) $) NIL (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-3590 (((-635 $) |#4| $) 79) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) NIL)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) NIL)) (-3597 (((-112) |#4| $) NIL)) (-4340 (((-112) |#3| $) 53)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1020 |#1| |#2| |#3| |#4|) (-13 (-1062 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3844 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3843 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -3842 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1020)) -((-3844 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *3))) (-5 *1 (-1020 *5 *6 *7 *3)) (-4 *3 (-1056 *5 *6 *7)))) (-4089 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-4089 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-3843 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8))) (-5 *1 (-1020 *5 *6 *7 *8)))) (-3842 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1020 *5 *6 *7 *8))))) (-5 *1 (-1020 *5 *6 *7 *8)) (-5 *3 (-635 *8))))) -(-13 (-1062 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3844 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3843 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -3842 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) -((-3441 (((-635 (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544)) (|:| |radvect| (-635 (-682 (-313 (-544))))))) (-682 (-406 (-939 (-544))))) 59)) (-3442 (((-635 (-682 (-313 (-544)))) (-313 (-544)) (-682 (-406 (-939 (-544))))) 48)) (-3443 (((-635 (-313 (-544))) (-682 (-406 (-939 (-544))))) 41)) (-3447 (((-635 (-682 (-313 (-544)))) (-682 (-406 (-939 (-544))))) 68)) (-3445 (((-682 (-313 (-544))) (-682 (-313 (-544)))) 34)) (-3446 (((-635 (-682 (-313 (-544)))) (-635 (-682 (-313 (-544))))) 62)) (-3444 (((-3 (-682 (-313 (-544))) "failed") (-682 (-406 (-939 (-544))))) 66))) -(((-1021) (-10 -7 (-15 -3441 ((-635 (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544)) (|:| |radvect| (-635 (-682 (-313 (-544))))))) (-682 (-406 (-939 (-544)))))) (-15 -3442 ((-635 (-682 (-313 (-544)))) (-313 (-544)) (-682 (-406 (-939 (-544)))))) (-15 -3443 ((-635 (-313 (-544))) (-682 (-406 (-939 (-544)))))) (-15 -3444 ((-3 (-682 (-313 (-544))) "failed") (-682 (-406 (-939 (-544)))))) (-15 -3445 ((-682 (-313 (-544))) (-682 (-313 (-544))))) (-15 -3446 ((-635 (-682 (-313 (-544)))) (-635 (-682 (-313 (-544)))))) (-15 -3447 ((-635 (-682 (-313 (-544)))) (-682 (-406 (-939 (-544)))))))) (T -1021)) -((-3447 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-682 (-313 (-544))))) (-5 *1 (-1021)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-635 (-682 (-313 (-544))))) (-5 *1 (-1021)))) (-3445 (*1 *2 *2) (-12 (-5 *2 (-682 (-313 (-544)))) (-5 *1 (-1021)))) (-3444 (*1 *2 *3) (|partial| -12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-682 (-313 (-544)))) (-5 *1 (-1021)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-313 (-544)))) (-5 *1 (-1021)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-682 (-313 (-544))))) (-5 *1 (-1021)) (-5 *3 (-313 (-544))))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544)) (|:| |radvect| (-635 (-682 (-313 (-544)))))))) (-5 *1 (-1021))))) -(-10 -7 (-15 -3441 ((-635 (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544)) (|:| |radvect| (-635 (-682 (-313 (-544))))))) (-682 (-406 (-939 (-544)))))) (-15 -3442 ((-635 (-682 (-313 (-544)))) (-313 (-544)) (-682 (-406 (-939 (-544)))))) (-15 -3443 ((-635 (-313 (-544))) (-682 (-406 (-939 (-544)))))) (-15 -3444 ((-3 (-682 (-313 (-544))) "failed") (-682 (-406 (-939 (-544)))))) (-15 -3445 ((-682 (-313 (-544))) (-682 (-313 (-544))))) (-15 -3446 ((-635 (-682 (-313 (-544)))) (-635 (-682 (-313 (-544)))))) (-15 -3447 ((-635 (-682 (-313 (-544)))) (-682 (-406 (-939 (-544))))))) -((-3451 (((-635 (-682 |#1|)) (-635 (-682 |#1|))) 58) (((-682 |#1|) (-682 |#1|)) 57) (((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-635 (-682 |#1|))) 56) (((-682 |#1|) (-682 |#1|) (-682 |#1|)) 53)) (-3450 (((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912)) 52) (((-682 |#1|) (-682 |#1|) (-912)) 51)) (-3452 (((-635 (-682 (-544))) (-635 (-635 (-544)))) 68) (((-635 (-682 (-544))) (-635 (-895 (-544))) (-544)) 67) (((-682 (-544)) (-635 (-544))) 64) (((-682 (-544)) (-895 (-544)) (-544)) 63)) (-3449 (((-682 (-939 |#1|)) (-765)) 81)) (-3448 (((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912)) 37 (|has| |#1| (-6 (-4402 "*")))) (((-682 |#1|) (-682 |#1|) (-912)) 35 (|has| |#1| (-6 (-4402 "*")))))) -(((-1022 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4402 "*"))) (-15 -3448 ((-682 |#1|) (-682 |#1|) (-912))) |%noBranch|) (IF (|has| |#1| (-6 (-4402 "*"))) (-15 -3448 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912))) |%noBranch|) (-15 -3449 ((-682 (-939 |#1|)) (-765))) (-15 -3450 ((-682 |#1|) (-682 |#1|) (-912))) (-15 -3450 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912))) (-15 -3451 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -3451 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3451 ((-682 |#1|) (-682 |#1|))) (-15 -3451 ((-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3452 ((-682 (-544)) (-895 (-544)) (-544))) (-15 -3452 ((-682 (-544)) (-635 (-544)))) (-15 -3452 ((-635 (-682 (-544))) (-635 (-895 (-544))) (-544))) (-15 -3452 ((-635 (-682 (-544))) (-635 (-635 (-544)))))) (-1042)) (T -1022)) -((-3452 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-544)))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-1022 *4)) (-4 *4 (-1042)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-895 (-544)))) (-5 *4 (-544)) (-5 *2 (-635 (-682 *4))) (-5 *1 (-1022 *5)) (-4 *5 (-1042)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1022 *4)) (-4 *4 (-1042)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-544))) (-5 *4 (-544)) (-5 *2 (-682 *4)) (-5 *1 (-1022 *5)) (-4 *5 (-1042)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-635 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) (-3451 (*1 *2 *2 *2) (-12 (-5 *2 (-635 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) (-3451 (*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-682 *4))) (-5 *3 (-912)) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-912)) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-682 (-939 *4))) (-5 *1 (-1022 *4)) (-4 *4 (-1042)))) (-3448 (*1 *2 *2 *3) (-12 (-5 *2 (-635 (-682 *4))) (-5 *3 (-912)) (|has| *4 (-6 (-4402 "*"))) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) (-3448 (*1 *2 *2 *3) (-12 (-5 *2 (-682 *4)) (-5 *3 (-912)) (|has| *4 (-6 (-4402 "*"))) (-4 *4 (-1042)) (-5 *1 (-1022 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4402 "*"))) (-15 -3448 ((-682 |#1|) (-682 |#1|) (-912))) |%noBranch|) (IF (|has| |#1| (-6 (-4402 "*"))) (-15 -3448 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912))) |%noBranch|) (-15 -3449 ((-682 (-939 |#1|)) (-765))) (-15 -3450 ((-682 |#1|) (-682 |#1|) (-912))) (-15 -3450 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-912))) (-15 -3451 ((-682 |#1|) (-682 |#1|) (-682 |#1|))) (-15 -3451 ((-635 (-682 |#1|)) (-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3451 ((-682 |#1|) (-682 |#1|))) (-15 -3451 ((-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3452 ((-682 (-544)) (-895 (-544)) (-544))) (-15 -3452 ((-682 (-544)) (-635 (-544)))) (-15 -3452 ((-635 (-682 (-544))) (-635 (-895 (-544))) (-544))) (-15 -3452 ((-635 (-682 (-544))) (-635 (-635 (-544)))))) -((-3456 (((-682 |#1|) (-635 (-682 |#1|)) (-1253 |#1|)) 49 (|has| |#1| (-306)))) (-3822 (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 (-1253 |#1|))) 75 (|has| |#1| (-362))) (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 |#1|)) 78 (|has| |#1| (-362)))) (-3460 (((-1253 |#1|) (-635 (-1253 |#1|)) (-544)) 92 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-3459 (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-912)) 84 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112)) 82 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|))) 81 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112) (-544) (-544)) 80 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-3458 (((-112) (-635 (-682 |#1|))) 70 (|has| |#1| (-362))) (((-112) (-635 (-682 |#1|)) (-544)) 72 (|has| |#1| (-362)))) (-3455 (((-1253 (-1253 |#1|)) (-635 (-682 |#1|)) (-1253 |#1|)) 47 (|has| |#1| (-306)))) (-3454 (((-682 |#1|) (-635 (-682 |#1|)) (-682 |#1|)) 33)) (-3453 (((-682 |#1|) (-1253 (-1253 |#1|))) 30)) (-3457 (((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-544)) 64 (|has| |#1| (-362))) (((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|))) 63 (|has| |#1| (-362))) (((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-112) (-544)) 68 (|has| |#1| (-362))))) -(((-1023 |#1|) (-10 -7 (-15 -3453 ((-682 |#1|) (-1253 (-1253 |#1|)))) (-15 -3454 ((-682 |#1|) (-635 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -3455 ((-1253 (-1253 |#1|)) (-635 (-682 |#1|)) (-1253 |#1|))) (-15 -3456 ((-682 |#1|) (-635 (-682 |#1|)) (-1253 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-112) (-544))) (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-544))) (-15 -3458 ((-112) (-635 (-682 |#1|)) (-544))) (-15 -3458 ((-112) (-635 (-682 |#1|)))) (-15 -3822 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 |#1|))) (-15 -3822 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 (-1253 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112) (-544) (-544))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-912))) (-15 -3460 ((-1253 |#1|) (-635 (-1253 |#1|)) (-544)))) |%noBranch|) |%noBranch|)) (-1042)) (T -1023)) -((-3460 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1253 *5))) (-5 *4 (-544)) (-5 *2 (-1253 *5)) (-5 *1 (-1023 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) (-5 *3 (-635 (-682 *5))))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) (-5 *3 (-635 (-682 *5))))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1042)) (-5 *2 (-635 (-635 (-682 *4)))) (-5 *1 (-1023 *4)) (-5 *3 (-635 (-682 *4))))) (-3459 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-544)) (-4 *6 (-362)) (-4 *6 (-367)) (-4 *6 (-1042)) (-5 *2 (-635 (-635 (-682 *6)))) (-5 *1 (-1023 *6)) (-5 *3 (-635 (-682 *6))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 (-1253 *5))) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) (-5 *3 (-635 (-682 *5))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) (-5 *3 (-635 (-682 *5))))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-635 (-682 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-1023 *4)))) (-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-544)) (-4 *5 (-362)) (-4 *5 (-1042)) (-5 *2 (-112)) (-5 *1 (-1023 *5)))) (-3457 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-544)) (-5 *2 (-682 *5)) (-5 *1 (-1023 *5)) (-4 *5 (-362)) (-4 *5 (-1042)))) (-3457 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-682 *4))) (-5 *2 (-682 *4)) (-5 *1 (-1023 *4)) (-4 *4 (-362)) (-4 *4 (-1042)))) (-3457 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-635 (-682 *6))) (-5 *4 (-112)) (-5 *5 (-544)) (-5 *2 (-682 *6)) (-5 *1 (-1023 *6)) (-4 *6 (-362)) (-4 *6 (-1042)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-1253 *5)) (-4 *5 (-306)) (-4 *5 (-1042)) (-5 *2 (-682 *5)) (-5 *1 (-1023 *5)))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-682 *5))) (-4 *5 (-306)) (-4 *5 (-1042)) (-5 *2 (-1253 (-1253 *5))) (-5 *1 (-1023 *5)) (-5 *4 (-1253 *5)))) (-3454 (*1 *2 *3 *2) (-12 (-5 *3 (-635 (-682 *4))) (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1023 *4)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-1253 (-1253 *4))) (-4 *4 (-1042)) (-5 *2 (-682 *4)) (-5 *1 (-1023 *4))))) -(-10 -7 (-15 -3453 ((-682 |#1|) (-1253 (-1253 |#1|)))) (-15 -3454 ((-682 |#1|) (-635 (-682 |#1|)) (-682 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -3455 ((-1253 (-1253 |#1|)) (-635 (-682 |#1|)) (-1253 |#1|))) (-15 -3456 ((-682 |#1|) (-635 (-682 |#1|)) (-1253 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-112) (-544))) (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3457 ((-682 |#1|) (-635 (-682 |#1|)) (-635 (-682 |#1|)) (-544))) (-15 -3458 ((-112) (-635 (-682 |#1|)) (-544))) (-15 -3458 ((-112) (-635 (-682 |#1|)))) (-15 -3822 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 |#1|))) (-15 -3822 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-1253 (-1253 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112) (-544) (-544))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-112))) (-15 -3459 ((-635 (-635 (-682 |#1|))) (-635 (-682 |#1|)) (-912))) (-15 -3460 ((-1253 |#1|) (-635 (-1253 |#1|)) (-544)))) |%noBranch|) |%noBranch|)) -((-3461 ((|#1| (-912) |#1|) 9))) -(((-1024 |#1|) (-10 -7 (-15 -3461 (|#1| (-912) |#1|))) (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $))))) (T -1024)) -((-3461 (*1 *2 *3 *2) (-12 (-5 *3 (-912)) (-5 *1 (-1024 *2)) (-4 *2 (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $)))))))) -(-10 -7 (-15 -3461 (|#1| (-912) |#1|))) -((-3462 ((|#1| |#1| (-912)) 9))) -(((-1025 |#1|) (-10 -7 (-15 -3462 (|#1| |#1| (-912)))) (-13 (-1091) (-10 -8 (-15 * ($ $ $))))) (T -1025)) -((-3462 (*1 *2 *2 *3) (-12 (-5 *3 (-912)) (-5 *1 (-1025 *2)) (-4 *2 (-13 (-1091) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3462 (|#1| |#1| (-912)))) -((-4353 ((|#1| (-310)) 11) (((-1259) |#1|) 9))) -(((-1026 |#1|) (-10 -7 (-15 -4353 ((-1259) |#1|)) (-15 -4353 (|#1| (-310)))) (-1204)) (T -1026)) -((-4353 (*1 *2 *3) (-12 (-5 *3 (-310)) (-5 *1 (-1026 *2)) (-4 *2 (-1204)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-1259)) (-5 *1 (-1026 *3)) (-4 *3 (-1204))))) -(-10 -7 (-15 -4353 ((-1259) |#1|)) (-15 -4353 (|#1| (-310)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-4249 (($ |#4|) 25)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-3463 ((|#4| $) 27)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 46) (($ (-544)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3511 (((-765)) 43)) (-3040 (($) 21 T CONST)) (-3046 (($) 23 T CONST)) (-3437 (((-112) $ $) 40)) (-4244 (($ $) 31) (($ $ $) NIL)) (-4246 (($ $ $) 29)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1027 |#1| |#2| |#3| |#4| |#5|) (-13 (-171) (-38 |#1|) (-10 -8 (-15 -4249 ($ |#4|)) (-15 -4353 ($ |#4|)) (-15 -3463 (|#4| $)))) (-362) (-787) (-844) (-943 |#1| |#2| |#3|) (-635 |#4|)) (T -1027)) -((-4249 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-943 *3 *4 *5)) (-14 *6 (-635 *2)))) (-4353 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-943 *3 *4 *5)) (-14 *6 (-635 *2)))) (-3463 (*1 *2 *1) (-12 (-4 *2 (-943 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-14 *6 (-635 *2))))) -(-13 (-171) (-38 |#1|) (-10 -8 (-15 -4249 ($ |#4|)) (-15 -4353 ($ |#4|)) (-15 -3463 (|#4| $)))) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2344 (((-1259) $ (-1166) (-1166)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-3465 (((-112) (-112)) 39)) (-3464 (((-112) (-112)) 38)) (-4194 (((-51) $ (-1166) (-51)) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 (-51) #1="failed") (-1166) $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-3809 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-3 (-51) #1#) (-1166) $) NIL)) (-3810 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-51) $ (-1166) (-51)) NIL (|has| $ (-6 -4401)))) (-3498 (((-51) $ (-1166)) NIL)) (-2096 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2554 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2347 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-2789 (((-635 (-1166)) $) 34)) (-2354 (((-112) (-1166) $) NIL)) (-1356 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-2349 (((-635 (-1166)) $) NIL)) (-2350 (((-112) (-1166) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4207 (((-51) $) NIL (|has| (-1166) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) "failed") (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL)) (-2345 (($ $ (-51)) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-51)) (-635 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-292 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-635 (-292 (-51)))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2351 (((-635 (-51)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (((-51) $ (-1166)) 35) (((-51) $ (-1166) (-51)) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-765) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091)))) (((-765) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-4353 (((-857) $) 37 (-3936 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-608 (-857))) (|has| (-51) (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1028) (-13 (-1181 (-1166) (-51)) (-10 -7 (-15 -3465 ((-112) (-112))) (-15 -3464 ((-112) (-112))) (-6 -4400)))) (T -1028)) -((-3465 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028))))) -(-13 (-1181 (-1166) (-51)) (-10 -7 (-15 -3465 ((-112) (-112))) (-15 -3464 ((-112) (-112))) (-6 -4400))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 9)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-1029) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $))))) (T -1029)) -((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1029))))) -(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)))) -((-3557 ((|#2| $) 10))) -(((-1030 |#1| |#2|) (-10 -8 (-15 -3557 (|#2| |#1|))) (-1031 |#2|) (-1204)) (T -1030)) -NIL -(-10 -8 (-15 -3557 (|#2| |#1|))) -((-3558 (((-3 |#1| "failed") $) 9)) (-3557 ((|#1| $) 8)) (-4353 (($ |#1|) 6))) -(((-1031 |#1|) (-139) (-1204)) (T -1031)) -((-3558 (*1 *2 *1) (|partial| -12 (-4 *1 (-1031 *2)) (-4 *2 (-1204)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1204))))) -(-13 (-611 |t#1|) (-10 -8 (-15 -3558 ((-3 |t#1| "failed") $)) (-15 -3557 (|t#1| $)))) -(((-611 |#1|) . T)) -((-3466 (((-635 (-635 (-292 (-406 (-939 |#2|))))) (-635 (-939 |#2|)) (-635 (-1166))) 38))) -(((-1032 |#1| |#2|) (-10 -7 (-15 -3466 ((-635 (-635 (-292 (-406 (-939 |#2|))))) (-635 (-939 |#2|)) (-635 (-1166))))) (-554) (-13 (-554) (-1031 |#1|))) (T -1032)) -((-3466 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-4 *6 (-13 (-554) (-1031 *5))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *6)))))) (-5 *1 (-1032 *5 *6))))) -(-10 -7 (-15 -3466 ((-635 (-635 (-292 (-406 (-939 |#2|))))) (-635 (-939 |#2|)) (-635 (-1166))))) -((-3467 (((-635 (-1166)) (-406 (-939 |#1|))) 17)) (-3469 (((-406 (-1160 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166)) 24)) (-3470 (((-406 (-939 |#1|)) (-406 (-1160 (-406 (-939 |#1|)))) (-1166)) 26)) (-3468 (((-3 (-1166) "failed") (-406 (-939 |#1|))) 20)) (-4174 (((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-292 (-406 (-939 |#1|))))) 32) (((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|)))) 33) (((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-1166)) (-635 (-406 (-939 |#1|)))) 28) (((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|))) 29)) (-4353 (((-406 (-939 |#1|)) |#1|) 11))) -(((-1033 |#1|) (-10 -7 (-15 -3467 ((-635 (-1166)) (-406 (-939 |#1|)))) (-15 -3468 ((-3 (-1166) "failed") (-406 (-939 |#1|)))) (-15 -3469 ((-406 (-1160 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166))) (-15 -3470 ((-406 (-939 |#1|)) (-406 (-1160 (-406 (-939 |#1|)))) (-1166))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-1166)) (-635 (-406 (-939 |#1|))))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -4353 ((-406 (-939 |#1|)) |#1|))) (-554)) (T -1033)) -((-4353 (*1 *2 *3) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-1033 *3)) (-4 *3 (-554)))) (-4174 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-292 (-406 (-939 *4))))) (-5 *2 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *1 (-1033 *4)))) (-4174 (*1 *2 *2 *3) (-12 (-5 *3 (-292 (-406 (-939 *4)))) (-5 *2 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *1 (-1033 *4)))) (-4174 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-635 (-1166))) (-5 *4 (-635 (-406 (-939 *5)))) (-5 *2 (-406 (-939 *5))) (-4 *5 (-554)) (-5 *1 (-1033 *5)))) (-4174 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-406 (-939 *4))) (-5 *3 (-1166)) (-4 *4 (-554)) (-5 *1 (-1033 *4)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1160 (-406 (-939 *5))))) (-5 *4 (-1166)) (-5 *2 (-406 (-939 *5))) (-5 *1 (-1033 *5)) (-4 *5 (-554)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-406 (-1160 (-406 (-939 *5))))) (-5 *1 (-1033 *5)) (-5 *3 (-406 (-939 *5))))) (-3468 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-1166)) (-5 *1 (-1033 *4)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-635 (-1166))) (-5 *1 (-1033 *4))))) -(-10 -7 (-15 -3467 ((-635 (-1166)) (-406 (-939 |#1|)))) (-15 -3468 ((-3 (-1166) "failed") (-406 (-939 |#1|)))) (-15 -3469 ((-406 (-1160 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166))) (-15 -3470 ((-406 (-939 |#1|)) (-406 (-1160 (-406 (-939 |#1|)))) (-1166))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-1166)) (-635 (-406 (-939 |#1|))))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-292 (-406 (-939 |#1|))))) (-15 -4174 ((-406 (-939 |#1|)) (-406 (-939 |#1|)) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -4353 ((-406 (-939 |#1|)) |#1|))) -((-3471 (((-377)) 15)) (-3486 (((-1 (-377)) (-377) (-377)) 20)) (-3479 (((-1 (-377)) (-765)) 42)) (-3472 (((-377)) 33)) (-3475 (((-1 (-377)) (-377) (-377)) 34)) (-3473 (((-377)) 26)) (-3476 (((-1 (-377)) (-377)) 27)) (-3474 (((-377) (-765)) 37)) (-3477 (((-1 (-377)) (-765)) 38)) (-3478 (((-1 (-377)) (-765) (-765)) 41)) (-3788 (((-1 (-377)) (-765) (-765)) 39))) -(((-1034) (-10 -7 (-15 -3471 ((-377))) (-15 -3472 ((-377))) (-15 -3473 ((-377))) (-15 -3474 ((-377) (-765))) (-15 -3486 ((-1 (-377)) (-377) (-377))) (-15 -3475 ((-1 (-377)) (-377) (-377))) (-15 -3476 ((-1 (-377)) (-377))) (-15 -3477 ((-1 (-377)) (-765))) (-15 -3788 ((-1 (-377)) (-765) (-765))) (-15 -3478 ((-1 (-377)) (-765) (-765))) (-15 -3479 ((-1 (-377)) (-765))))) (T -1034)) -((-3479 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))) (-3478 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))) (-3788 (*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))) (-3476 (*1 *2 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377)))) (-3475 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377)))) (-3486 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-377)) (-5 *1 (-1034)))) (-3473 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034)))) (-3472 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034)))) (-3471 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034))))) -(-10 -7 (-15 -3471 ((-377))) (-15 -3472 ((-377))) (-15 -3473 ((-377))) (-15 -3474 ((-377) (-765))) (-15 -3486 ((-1 (-377)) (-377) (-377))) (-15 -3475 ((-1 (-377)) (-377) (-377))) (-15 -3476 ((-1 (-377)) (-377))) (-15 -3477 ((-1 (-377)) (-765))) (-15 -3788 ((-1 (-377)) (-765) (-765))) (-15 -3478 ((-1 (-377)) (-765) (-765))) (-15 -3479 ((-1 (-377)) (-765)))) -((-4139 (((-404 |#1|) |#1|) 33))) -(((-1035 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1|))) (-1229 (-406 (-939 (-544))))) (T -1035)) -((-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1035 *3)) (-4 *3 (-1229 (-406 (-939 (-544)))))))) -(-10 -7 (-15 -4139 ((-404 |#1|) |#1|))) -((-3480 (((-406 (-404 (-939 |#1|))) (-406 (-939 |#1|))) 14))) -(((-1036 |#1|) (-10 -7 (-15 -3480 ((-406 (-404 (-939 |#1|))) (-406 (-939 |#1|))))) (-306)) (T -1036)) -((-3480 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-404 (-939 *4)))) (-5 *1 (-1036 *4))))) -(-10 -7 (-15 -3480 ((-406 (-404 (-939 |#1|))) (-406 (-939 |#1|))))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4131 (($) 17 T CONST)) (-3484 ((|#1| $) 22)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3483 ((|#1| $) 21)) (-3481 ((|#1|) 19 T CONST)) (-4353 (((-857) $) 11)) (-3482 ((|#1| $) 20)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15))) -(((-1037 |#1|) (-139) (-23)) (T -1037)) -((-3484 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23)))) (-3481 (*1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3484 (|t#1| $)) (-15 -3483 (|t#1| $)) (-15 -3482 (|t#1| $)) (-15 -3481 (|t#1|) -4359))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3485 (($) 24 T CONST)) (-4131 (($) 17 T CONST)) (-3484 ((|#1| $) 22)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3483 ((|#1| $) 21)) (-3481 ((|#1|) 19 T CONST)) (-4353 (((-857) $) 11)) (-3482 ((|#1| $) 20)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15))) -(((-1038 |#1|) (-139) (-23)) (T -1038)) -((-3485 (*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-23))))) -(-13 (-1037 |t#1|) (-10 -8 (-15 -3485 ($) -4359))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-608 (-857)) . T) ((-1037 |#1|) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 (-774 |#1| (-858 |#2|)))))) (-635 (-774 |#1| (-858 |#2|)))) NIL)) (-4089 (((-635 $) (-635 (-774 |#1| (-858 |#2|)))) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-112)) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-112) (-112)) NIL)) (-3467 (((-635 (-858 |#2|)) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-4095 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4181 (((-635 (-2 (|:| |val| (-774 |#1| (-858 |#2|))) (|:| -1688 $))) (-774 |#1| (-858 |#2|)) $) NIL)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ (-858 |#2|)) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 (-774 |#1| (-858 |#2|)) #1="failed") $ (-858 |#2|)) NIL)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) NIL (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))) $ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-3283 (((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|))) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 (-774 |#1| (-858 |#2|)))) NIL)) (-3557 (($ (-635 (-774 |#1| (-858 |#2|)))) NIL)) (-4205 (((-3 $ #1#) $) NIL)) (-4092 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091))))) (-3810 (($ (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (($ (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-774 |#1| (-858 |#2|))) (|:| |den| |#1|)) (-774 |#1| (-858 |#2|)) $) NIL (|has| |#1| (-554)))) (-4101 (((-112) (-774 |#1| (-858 |#2|)) $ (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-4090 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4249 (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $ (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $ (-774 |#1| (-858 |#2|))) NIL (|has| $ (-6 -4400))) (((-774 |#1| (-858 |#2|)) (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-4103 (((-2 (|:| -4268 (-635 (-774 |#1| (-858 |#2|)))) (|:| -1846 (-635 (-774 |#1| (-858 |#2|))))) $) NIL)) (-3598 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-3596 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-3599 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-2096 (((-635 (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4102 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-3581 (((-858 |#2|) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091))))) (-2100 (($ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) $) NIL)) (-3297 (((-635 (-858 |#2|)) $) NIL)) (-3296 (((-112) (-858 |#2|) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3592 (((-3 (-774 |#1| (-858 |#2|)) (-635 $)) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-3591 (((-635 (-2 (|:| |val| (-774 |#1| (-858 |#2|))) (|:| -1688 $))) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4204 (((-3 (-774 |#1| (-858 |#2|)) #1#) $) NIL)) (-3593 (((-635 $) (-774 |#1| (-858 |#2|)) $) NIL)) (-3595 (((-3 (-112) (-635 $)) (-774 |#1| (-858 |#2|)) $) NIL)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-3639 (((-635 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) $) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-635 $)) NIL) (((-635 $) (-774 |#1| (-858 |#2|)) (-635 $)) NIL)) (-3844 (($ (-774 |#1| (-858 |#2|)) $) NIL) (($ (-635 (-774 |#1| (-858 |#2|))) $) NIL)) (-4104 (((-635 (-774 |#1| (-858 |#2|))) $) NIL)) (-4098 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-4093 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-4106 (((-112) $ $) NIL)) (-3286 (((-2 (|:| |num| (-774 |#1| (-858 |#2|))) (|:| |den| |#1|)) (-774 |#1| (-858 |#2|)) $) NIL (|has| |#1| (-554)))) (-4099 (((-112) (-774 |#1| (-858 |#2|)) $) NIL) (((-112) $) NIL)) (-4094 (((-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 (-774 |#1| (-858 |#2|)) #1#) $) NIL)) (-1425 (((-3 (-774 |#1| (-858 |#2|)) "failed") (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL)) (-4086 (((-3 $ #1#) $ (-774 |#1| (-858 |#2|))) NIL)) (-4175 (($ $ (-774 |#1| (-858 |#2|))) NIL) (((-635 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-635 $) (-774 |#1| (-858 |#2|)) (-635 $)) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) $) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-635 $)) NIL)) (-2098 (((-112) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-774 |#1| (-858 |#2|))) (-635 (-774 |#1| (-858 |#2|)))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (($ $ (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (($ $ (-292 (-774 |#1| (-858 |#2|)))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (($ $ (-635 (-292 (-774 |#1| (-858 |#2|))))) NIL (-12 (|has| (-774 |#1| (-858 |#2|)) (-308 (-774 |#1| (-858 |#2|)))) (|has| (-774 |#1| (-858 |#2|)) (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4355 (((-765) $) NIL)) (-2097 (((-765) (-774 |#1| (-858 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-774 |#1| (-858 |#2|)) (-1091)))) (((-765) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-774 |#1| (-858 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-774 |#1| (-858 |#2|)))) NIL)) (-3293 (($ $ (-858 |#2|)) NIL)) (-3295 (($ $ (-858 |#2|)) NIL)) (-4091 (($ $) NIL)) (-3294 (($ $ (-858 |#2|)) NIL)) (-4353 (((-857) $) NIL) (((-635 (-774 |#1| (-858 |#2|))) $) NIL)) (-4085 (((-765) $) NIL (|has| (-858 |#2|) (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 (-774 |#1| (-858 |#2|))))) #1#) (-635 (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 (-774 |#1| (-858 |#2|))))) #1#) (-635 (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|))) (-1 (-112) (-774 |#1| (-858 |#2|)) (-774 |#1| (-858 |#2|)))) NIL)) (-4097 (((-112) $ (-1 (-112) (-774 |#1| (-858 |#2|)) (-635 (-774 |#1| (-858 |#2|))))) NIL)) (-3590 (((-635 $) (-774 |#1| (-858 |#2|)) $) NIL) (((-635 $) (-774 |#1| (-858 |#2|)) (-635 $)) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) $) NIL) (((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-635 $)) NIL)) (-2099 (((-112) (-1 (-112) (-774 |#1| (-858 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 (-858 |#2|)) $) NIL)) (-3597 (((-112) (-774 |#1| (-858 |#2|)) $) NIL)) (-4340 (((-112) (-858 |#2|) $) NIL)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1039 |#1| |#2|) (-13 (-1062 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) (-10 -8 (-15 -4089 ((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-112) (-112))))) (-450) (-635 (-1166))) (T -1039)) -((-4089 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-1039 *5 *6))))) -(-13 (-1062 |#1| (-529 (-858 |#2|)) (-858 |#2|) (-774 |#1| (-858 |#2|))) (-10 -8 (-15 -4089 ((-635 $) (-635 (-774 |#1| (-858 |#2|))) (-112) (-112))))) -((-3486 (((-1 (-544)) (-1079 (-544))) 33)) (-3490 (((-544) (-544) (-544) (-544) (-544)) 30)) (-3488 (((-1 (-544)) |RationalNumber|) NIL)) (-3489 (((-1 (-544)) |RationalNumber|) NIL)) (-3487 (((-1 (-544)) (-544) |RationalNumber|) NIL))) -(((-1040) (-10 -7 (-15 -3486 ((-1 (-544)) (-1079 (-544)))) (-15 -3487 ((-1 (-544)) (-544) |RationalNumber|)) (-15 -3488 ((-1 (-544)) |RationalNumber|)) (-15 -3489 ((-1 (-544)) |RationalNumber|)) (-15 -3490 ((-544) (-544) (-544) (-544) (-544))))) (T -1040)) -((-3490 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1040)))) (-3489 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040)))) (-3488 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040)) (-5 *3 (-544)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-1079 (-544))) (-5 *2 (-1 (-544))) (-5 *1 (-1040))))) -(-10 -7 (-15 -3486 ((-1 (-544)) (-1079 (-544)))) (-15 -3487 ((-1 (-544)) (-544) |RationalNumber|)) (-15 -3488 ((-1 (-544)) |RationalNumber|)) (-15 -3489 ((-1 (-544)) |RationalNumber|)) (-15 -3490 ((-544) (-544) (-544) (-544) (-544)))) -((-4353 (((-857) $) NIL) (($ (-544)) 10))) -(((-1041 |#1|) (-10 -8 (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-1042)) (T -1041)) -NIL -(-10 -8 (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-1042) (-139)) (T -1042)) -((-3511 (*1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-765))))) -(-13 (-1049) (-720) (-641 $) (-611 (-544)) (-10 -7 (-15 -3511 ((-765))) (-6 -4397))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-611 (-544)) . T) ((-608 (-857)) . T) ((-641 $) . T) ((-720) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-3491 (((-406 (-939 |#2|)) (-635 |#2|) (-635 |#2|) (-765) (-765)) 46))) -(((-1043 |#1| |#2|) (-10 -7 (-15 -3491 ((-406 (-939 |#2|)) (-635 |#2|) (-635 |#2|) (-765) (-765)))) (-1166) (-362)) (T -1043)) -((-3491 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-765)) (-4 *6 (-362)) (-5 *2 (-406 (-939 *6))) (-5 *1 (-1043 *5 *6)) (-14 *5 (-1166))))) -(-10 -7 (-15 -3491 ((-406 (-939 |#2|)) (-635 |#2|) (-635 |#2|) (-765) (-765)))) -((-3506 (((-112) $) 29)) (-3508 (((-112) $) 16)) (-3500 (((-765) $) 13)) (-3499 (((-765) $) 14)) (-3507 (((-112) $) 26)) (-3505 (((-112) $) 31))) -(((-1044 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3499 ((-765) |#1|)) (-15 -3500 ((-765) |#1|)) (-15 -3505 ((-112) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -3508 ((-112) |#1|))) (-1045 |#2| |#3| |#4| |#5| |#6|) (-765) (-765) (-1042) (-237 |#3| |#4|) (-237 |#2| |#4|)) (T -1044)) -NIL -(-10 -8 (-15 -3499 ((-765) |#1|)) (-15 -3500 ((-765) |#1|)) (-15 -3505 ((-112) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -3508 ((-112) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3506 (((-112) $) 51)) (-1391 (((-3 $ "failed") $ $) 19)) (-3508 (((-112) $) 53)) (-1293 (((-112) $ (-765)) 61)) (-4131 (($) 17 T CONST)) (-3495 (($ $) 34 (|has| |#3| (-306)))) (-3497 ((|#4| $ (-544)) 39)) (-3494 (((-765) $) 33 (|has| |#3| (-554)))) (-3498 ((|#3| $ (-544) (-544)) 41)) (-2096 (((-635 |#3|) $) 68 (|has| $ (-6 -4400)))) (-3493 (((-765) $) 32 (|has| |#3| (-554)))) (-3492 (((-635 |#5|) $) 31 (|has| |#3| (-554)))) (-3500 (((-765) $) 45)) (-3499 (((-765) $) 44)) (-4126 (((-112) $ (-765)) 60)) (-3504 (((-544) $) 49)) (-3502 (((-544) $) 47)) (-2554 (((-635 |#3|) $) 69 (|has| $ (-6 -4400)))) (-3646 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1091)) (|has| $ (-6 -4400))))) (-3503 (((-544) $) 48)) (-3501 (((-544) $) 46)) (-3509 (($ (-635 (-635 |#3|))) 54)) (-2100 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-4000 (((-635 (-635 |#3|)) $) 43)) (-4123 (((-112) $ (-765)) 59)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-554)))) (-2098 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#3|) (-635 |#3|)) 75 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-292 |#3|)) 73 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-635 (-292 |#3|))) 72 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))) (-1294 (((-112) $ $) 55)) (-3807 (((-112) $) 58)) (-3972 (($) 57)) (-4206 ((|#3| $ (-544) (-544)) 42) ((|#3| $ (-544) (-544) |#3|) 40)) (-3507 (((-112) $) 52)) (-2097 (((-765) |#3| $) 70 (-12 (|has| |#3| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4400)))) (-3804 (($ $) 56)) (-3496 ((|#5| $ (-544)) 38)) (-4353 (((-857) $) 11)) (-2099 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4400)))) (-3505 (((-112) $) 50)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#3|) 35 (|has| |#3| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4364 (((-765) $) 62 (|has| $ (-6 -4400))))) -(((-1045 |#1| |#2| |#3| |#4| |#5|) (-139) (-765) (-765) (-1042) (-237 |t#2| |t#3|) (-237 |t#1| |t#3|)) (T -1045)) -((-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *5))) (-4 *5 (-1042)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-544)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-765)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-635 (-635 *5))))) (-4206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))) (-3498 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))) (-4206 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *2 (-1042)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) (-3497 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *6 *2 *7)) (-4 *6 (-1042)) (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))) (-3496 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *6 *7 *2)) (-4 *6 (-1042)) (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))) (-4365 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-3865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-554)))) (-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) (-3495 (*1 *1 *1) (-12 (-4 *1 (-1045 *2 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-765)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-765)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-635 *7))))) -(-13 (-111 |t#3| |t#3|) (-487 |t#3|) (-10 -8 (-6 -4400) (IF (|has| |t#3| (-171)) (-6 (-711 |t#3|)) |%noBranch|) (-15 -3509 ($ (-635 (-635 |t#3|)))) (-15 -3508 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -3506 ((-112) $)) (-15 -3505 ((-112) $)) (-15 -3504 ((-544) $)) (-15 -3503 ((-544) $)) (-15 -3502 ((-544) $)) (-15 -3501 ((-544) $)) (-15 -3500 ((-765) $)) (-15 -3499 ((-765) $)) (-15 -4000 ((-635 (-635 |t#3|)) $)) (-15 -4206 (|t#3| $ (-544) (-544))) (-15 -3498 (|t#3| $ (-544) (-544))) (-15 -4206 (|t#3| $ (-544) (-544) |t#3|)) (-15 -3497 (|t#4| $ (-544))) (-15 -3496 (|t#5| $ (-544))) (-15 -4365 ($ (-1 |t#3| |t#3|) $)) (-15 -4365 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-554)) (-15 -3865 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-362)) (-15 -4356 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-306)) (-15 -3495 ($ $)) |%noBranch|) (IF (|has| |t#3| (-554)) (PROGN (-15 -3494 ((-765) $)) (-15 -3493 ((-765) $)) (-15 -3492 ((-635 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-608 (-857)) . T) ((-308 |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))) ((-487 |#3|) . T) ((-512 |#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))) ((-641 |#3|) . T) ((-711 |#3|) |has| |#3| (-171)) ((-1048 |#3|) . T) ((-1091) . T) ((-1204) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3506 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3495 (($ $) 43 (|has| |#3| (-306)))) (-3497 (((-238 |#2| |#3|) $ (-544)) 32)) (-3510 (($ (-682 |#3|)) 41)) (-3494 (((-765) $) 45 (|has| |#3| (-554)))) (-3498 ((|#3| $ (-544) (-544)) NIL)) (-2096 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-3493 (((-765) $) 47 (|has| |#3| (-554)))) (-3492 (((-635 (-238 |#1| |#3|)) $) 51 (|has| |#3| (-554)))) (-3500 (((-765) $) NIL)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#3|))) 27)) (-2100 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4000 (((-635 (-635 |#3|)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-554)))) (-2098 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-292 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-635 (-292 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#3| $ (-544) (-544)) NIL) ((|#3| $ (-544) (-544) |#3|) NIL)) (-4318 (((-133)) 54 (|has| |#3| (-362)))) (-3507 (((-112) $) NIL)) (-2097 (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091)))) (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 63 (|has| |#3| (-609 (-533))))) (-3496 (((-238 |#1| |#3|) $ (-544)) 36)) (-4353 (((-857) $) 16) (((-682 |#3|) $) 38)) (-2099 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3040 (($) 13 T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1046 |#1| |#2| |#3|) (-13 (-1045 |#1| |#2| |#3| (-238 |#2| |#3|) (-238 |#1| |#3|)) (-608 (-682 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1261 |#3|)) |%noBranch|) (IF (|has| |#3| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (-15 -3510 ($ (-682 |#3|))))) (-765) (-765) (-1042)) (T -1046)) -((-3510 (*1 *1 *2) (-12 (-5 *2 (-682 *5)) (-4 *5 (-1042)) (-5 *1 (-1046 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765))))) -(-13 (-1045 |#1| |#2| |#3| (-238 |#2| |#3|) (-238 |#1| |#3|)) (-608 (-682 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1261 |#3|)) |%noBranch|) (IF (|has| |#3| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|) (-15 -3510 ($ (-682 |#3|))))) -((-4249 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4365 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1047 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4365 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4249 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-765) (-765) (-1042) (-237 |#2| |#3|) (-237 |#1| |#3|) (-1045 |#1| |#2| |#3| |#4| |#5|) (-1042) (-237 |#2| |#7|) (-237 |#1| |#7|) (-1045 |#1| |#2| |#7| |#8| |#9|)) (T -1047)) -((-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1042)) (-4 *2 (-1042)) (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *12 (-1045 *5 *6 *2 *10 *11)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1042)) (-4 *10 (-1042)) (-14 *5 (-765)) (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *2 (-1045 *5 *6 *10 *11 *12)) (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) (-4 *12 (-237 *5 *10))))) -(-10 -7 (-15 -4365 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4249 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ |#1|) 23))) -(((-1048 |#1|) (-139) (-1049)) (T -1048)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-1049))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3979 (((-639 (-562)) $) 54)) (-4128 (($ (-639 (-562))) 62)) (-4246 (((-562) $) 40 (|has| (-562) (-306)))) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL (|has| (-562) (-815)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) 49) (((-3 (-1168) "failed") $) NIL (|has| (-562) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) 47 (|has| (-562) (-1033 (-562)))) (((-3 (-562) "failed") $) 49 (|has| (-562) (-1033 (-562))))) (-3961 (((-562) $) NIL) (((-1168) $) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-562) (-1033 (-562)))) (((-562) $) NIL (|has| (-562) (-1033 (-562))))) (-1811 (($ $ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1448 (($) NIL (|has| (-562) (-544)))) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-2826 (((-639 (-562)) $) 60)) (-3519 (((-112) $) NIL (|has| (-562) (-815)))) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-562) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-562) (-881 (-378))))) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL)) (-4065 (((-562) $) 37)) (-3699 (((-3 $ "failed") $) NIL (|has| (-562) (-1143)))) (-3392 (((-112) $) NIL (|has| (-562) (-815)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-562) (-845)))) (-4152 (($ (-1 (-562) (-562)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3729 (($) NIL (|has| (-562) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2736 (($ $) NIL (|has| (-562) (-306))) (((-406 (-562)) $) 42)) (-4285 (((-1148 (-562)) $) 59)) (-1306 (($ (-639 (-562)) (-639 (-562))) 63)) (-4014 (((-562) $) 53 (|has| (-562) (-544)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1635 (((-417 $) $) NIL)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-562)) (-639 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-562) (-562)) NIL (|has| (-562) (-308 (-562)))) (($ $ (-293 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-293 (-562)))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-1168)) (-639 (-562))) NIL (|has| (-562) (-513 (-1168) (-562)))) (($ $ (-1168) (-562)) NIL (|has| (-562) (-513 (-1168) (-562))))) (-1577 (((-766) $) NIL)) (-2343 (($ $ (-562)) NIL (|has| (-562) (-285 (-562) (-562))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $) 11 (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-3658 (($ $) NIL)) (-4076 (((-562) $) 39)) (-3157 (((-639 (-562)) $) 61)) (-4208 (((-887 (-562)) $) NIL (|has| (-562) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-562) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-562) (-610 (-535)))) (((-378) $) NIL (|has| (-562) (-1017))) (((-224) $) NIL (|has| (-562) (-1017)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-562) (-904))))) (-4054 (((-857) $) 77) (($ (-562)) 43) (($ $) NIL) (($ (-406 (-562))) 20) (($ (-562)) 43) (($ (-1168)) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) 18)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-562) (-904))) (|has| (-562) (-144))))) (-2579 (((-766)) 9)) (-2604 (((-562) $) 51 (|has| (-562) (-544)))) (-2922 (((-112) $ $) NIL)) (-3526 (($ $) NIL (|has| (-562) (-815)))) (-2286 (($) 10 T CONST)) (-2294 (($) 12 T CONST)) (-3114 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1731 (((-112) $ $) 14)) (-1785 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1759 (((-112) $ $) 33 (|has| (-562) (-845)))) (-1859 (($ $ $) 29) (($ (-562) (-562)) 31)) (-1848 (($ $) 15) (($ $ $) 23)) (-1835 (($ $ $) 21)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 25) (($ $ $) 27) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-562) $) 25) (($ $ (-562)) NIL))) +(((-999 |#1|) (-13 (-987 (-562)) (-609 (-406 (-562))) (-10 -8 (-15 -2736 ((-406 (-562)) $)) (-15 -3979 ((-639 (-562)) $)) (-15 -4285 ((-1148 (-562)) $)) (-15 -2826 ((-639 (-562)) $)) (-15 -3157 ((-639 (-562)) $)) (-15 -4128 ($ (-639 (-562)))) (-15 -1306 ($ (-639 (-562)) (-639 (-562)))))) (-562)) (T -999)) +((-2736 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-1306 (*1 *1 *2 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) +(-13 (-987 (-562)) (-609 (-406 (-562))) (-10 -8 (-15 -2736 ((-406 (-562)) $)) (-15 -3979 ((-639 (-562)) $)) (-15 -4285 ((-1148 (-562)) $)) (-15 -2826 ((-639 (-562)) $)) (-15 -3157 ((-639 (-562)) $)) (-15 -4128 ($ (-639 (-562)))) (-15 -1306 ($ (-639 (-562)) (-639 (-562)))))) +((-2480 (((-52) (-406 (-562)) (-562)) 9))) +(((-1000) (-10 -7 (-15 -2480 ((-52) (-406 (-562)) (-562))))) (T -1000)) +((-2480 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-562))) (-5 *4 (-562)) (-5 *2 (-52)) (-5 *1 (-1000))))) +(-10 -7 (-15 -2480 ((-52) (-406 (-562)) (-562)))) +((-1382 (((-562)) 13)) (-2535 (((-562)) 16)) (-1668 (((-1261) (-562)) 15)) (-2183 (((-562) (-562)) 17) (((-562)) 12))) +(((-1001) (-10 -7 (-15 -2183 ((-562))) (-15 -1382 ((-562))) (-15 -2183 ((-562) (-562))) (-15 -1668 ((-1261) (-562))) (-15 -2535 ((-562))))) (T -1001)) +((-2535 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1001)))) (-2183 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) (-1382 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) (-2183 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001))))) +(-10 -7 (-15 -2183 ((-562))) (-15 -1382 ((-562))) (-15 -2183 ((-562) (-562))) (-15 -1668 ((-1261) (-562))) (-15 -2535 ((-562)))) +((-3696 (((-417 |#1|) |#1|) 41)) (-1635 (((-417 |#1|) |#1|) 40))) +(((-1002 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3696 ((-417 |#1|) |#1|))) (-1232 (-406 (-562)))) (T -1002)) +((-3696 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-1232 (-406 (-562)))))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-1232 (-406 (-562))))))) +(-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3696 ((-417 |#1|) |#1|))) +((-1726 (((-3 (-406 (-562)) "failed") |#1|) 15)) (-3035 (((-112) |#1|) 14)) (-1291 (((-406 (-562)) |#1|) 10))) +(((-1003 |#1|) (-10 -7 (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|))) (-1033 (-406 (-562)))) (T -1003)) +((-1726 (*1 *2 *3) (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-1003 *3)) (-4 *3 (-1033 *2)))) (-3035 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1003 *3)) (-4 *3 (-1033 (-406 (-562)))))) (-1291 (*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-1003 *3)) (-4 *3 (-1033 *2))))) +(-10 -7 (-15 -1291 ((-406 (-562)) |#1|)) (-15 -3035 ((-112) |#1|)) (-15 -1726 ((-3 (-406 (-562)) "failed") |#1|))) +((-4200 ((|#2| $ "value" |#2|) 12)) (-2343 ((|#2| $ "value") 10)) (-4055 (((-112) $ $) 18))) +(((-1004 |#1| |#2|) (-10 -8 (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -4055 ((-112) |#1| |#1|)) (-15 -2343 (|#2| |#1| "value"))) (-1005 |#2|) (-1207)) (T -1004)) +NIL +(-10 -8 (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -4055 ((-112) |#1| |#1|)) (-15 -2343 (|#2| |#1| "value"))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2534 ((|#1| $) 48)) (-4336 (((-112) $ (-766)) 8)) (-1512 ((|#1| $ |#1|) 39 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 41 (|has| $ (-6 -4403)))) (-1800 (($) 7 T CONST)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 50)) (-4379 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-4007 (((-639 |#1|) $) 45)) (-3449 (((-112) $) 49)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ "value") 47)) (-2568 (((-562) $ $) 44)) (-2424 (((-112) $) 46)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) 51)) (-4055 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-1005 |#1|) (-139) (-1207)) (T -1005)) +((-2906 (*1 *2 *1) (-12 (-4 *3 (-1207)) (-5 *2 (-639 *1)) (-4 *1 (-1005 *3)))) (-2720 (*1 *2 *1) (-12 (-4 *3 (-1207)) (-5 *2 (-639 *1)) (-4 *1 (-1005 *3)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-639 *3)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-562)))) (-4055 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-4379 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *1)) (|has| *1 (-6 -4403)) (-4 *1 (-1005 *3)) (-4 *3 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4403)) (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) (-1512 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1005 *2)) (-4 *2 (-1207))))) +(-13 (-488 |t#1|) (-10 -8 (-15 -2906 ((-639 $) $)) (-15 -2720 ((-639 $) $)) (-15 -3449 ((-112) $)) (-15 -2534 (|t#1| $)) (-15 -2343 (|t#1| $ "value")) (-15 -2424 ((-112) $)) (-15 -4007 ((-639 |t#1|) $)) (-15 -2568 ((-562) $ $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -4055 ((-112) $ $)) (-15 -4379 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4403)) (PROGN (-15 -2917 ($ $ (-639 $))) (-15 -4200 (|t#1| $ "value" |t#1|)) (-15 -1512 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-1643 (($ $) 9) (($ $ (-916)) 43) (($ (-406 (-562))) 13) (($ (-562)) 15)) (-1502 (((-3 $ "failed") (-1164 $) (-916) (-857)) 23) (((-3 $ "failed") (-1164 $) (-916)) 28)) (-1891 (($ $ (-562)) 49)) (-2579 (((-766)) 17)) (-3318 (((-639 $) (-1164 $)) NIL) (((-639 $) (-1164 (-406 (-562)))) 54) (((-639 $) (-1164 (-562))) 59) (((-639 $) (-947 $)) 63) (((-639 $) (-947 (-406 (-562)))) 67) (((-639 $) (-947 (-562))) 71)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL) (($ $ (-406 (-562))) 47))) +(((-1006 |#1|) (-10 -8 (-15 -1643 (|#1| (-562))) (-15 -1643 (|#1| (-406 (-562)))) (-15 -1643 (|#1| |#1| (-916))) (-15 -3318 ((-639 |#1|) (-947 (-562)))) (-15 -3318 ((-639 |#1|) (-947 (-406 (-562))))) (-15 -3318 ((-639 |#1|) (-947 |#1|))) (-15 -3318 ((-639 |#1|) (-1164 (-562)))) (-15 -3318 ((-639 |#1|) (-1164 (-406 (-562))))) (-15 -3318 ((-639 |#1|) (-1164 |#1|))) (-15 -1502 ((-3 |#1| "failed") (-1164 |#1|) (-916))) (-15 -1502 ((-3 |#1| "failed") (-1164 |#1|) (-916) (-857))) (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -1891 (|#1| |#1| (-562))) (-15 -1643 (|#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -2579 ((-766))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916)))) (-1007)) (T -1006)) +((-2579 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1006 *3)) (-4 *3 (-1007))))) +(-10 -8 (-15 -1643 (|#1| (-562))) (-15 -1643 (|#1| (-406 (-562)))) (-15 -1643 (|#1| |#1| (-916))) (-15 -3318 ((-639 |#1|) (-947 (-562)))) (-15 -3318 ((-639 |#1|) (-947 (-406 (-562))))) (-15 -3318 ((-639 |#1|) (-947 |#1|))) (-15 -3318 ((-639 |#1|) (-1164 (-562)))) (-15 -3318 ((-639 |#1|) (-1164 (-406 (-562))))) (-15 -3318 ((-639 |#1|) (-1164 |#1|))) (-15 -1502 ((-3 |#1| "failed") (-1164 |#1|) (-916))) (-15 -1502 ((-3 |#1| "failed") (-1164 |#1|) (-916) (-857))) (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -1891 (|#1| |#1| (-562))) (-15 -1643 (|#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -2579 ((-766))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 91)) (-2796 (($ $) 92)) (-4370 (((-112) $) 94)) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 111)) (-2921 (((-417 $) $) 112)) (-1643 (($ $) 75) (($ $ (-916)) 61) (($ (-406 (-562))) 60) (($ (-562)) 59)) (-2569 (((-112) $ $) 102)) (-2277 (((-562) $) 128)) (-1800 (($) 17 T CONST)) (-1502 (((-3 $ "failed") (-1164 $) (-916) (-857)) 69) (((-3 $ "failed") (-1164 $) (-916)) 68)) (-4048 (((-3 (-562) "failed") $) 88 (|has| (-406 (-562)) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 86 (|has| (-406 (-562)) (-1033 (-406 (-562))))) (((-3 (-406 (-562)) "failed") $) 83)) (-3961 (((-562) $) 87 (|has| (-406 (-562)) (-1033 (-562)))) (((-406 (-562)) $) 85 (|has| (-406 (-562)) (-1033 (-406 (-562))))) (((-406 (-562)) $) 84)) (-1924 (($ $ (-857)) 58)) (-4341 (($ $ (-857)) 57)) (-1811 (($ $ $) 106)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 105)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 100)) (-2717 (((-112) $) 113)) (-3519 (((-112) $) 126)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 74)) (-3392 (((-112) $) 127)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 109)) (-1551 (($ $ $) 125)) (-2993 (($ $ $) 124)) (-1580 (((-3 (-1164 $) "failed") $) 70)) (-1795 (((-3 (-857) "failed") $) 72)) (-3176 (((-3 (-1164 $) "failed") $) 71)) (-1564 (($ (-639 $)) 98) (($ $ $) 97)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 114)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 99)) (-1606 (($ (-639 $)) 96) (($ $ $) 95)) (-1635 (((-417 $) $) 110)) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 107)) (-1762 (((-3 $ "failed") $ $) 90)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 101)) (-1577 (((-766) $) 103)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 104)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 118) (($ $) 89) (($ (-406 (-562))) 82) (($ (-562)) 81) (($ (-406 (-562))) 78)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 93)) (-1406 (((-406 (-562)) $ $) 56)) (-3318 (((-639 $) (-1164 $)) 67) (((-639 $) (-1164 (-406 (-562)))) 66) (((-639 $) (-1164 (-562))) 65) (((-639 $) (-947 $)) 64) (((-639 $) (-947 (-406 (-562)))) 63) (((-639 $) (-947 (-562))) 62)) (-3526 (($ $) 129)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 122)) (-1772 (((-112) $ $) 121)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 123)) (-1759 (((-112) $ $) 120)) (-1859 (($ $ $) 119)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 115) (($ $ (-406 (-562))) 73)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ (-406 (-562)) $) 117) (($ $ (-406 (-562))) 116) (($ (-562) $) 80) (($ $ (-562)) 79) (($ (-406 (-562)) $) 77) (($ $ (-406 (-562))) 76))) +(((-1007) (-139)) (T -1007)) +((-1643 (*1 *1 *1) (-4 *1 (-1007))) (-1795 (*1 *2 *1) (|partial| -12 (-4 *1 (-1007)) (-5 *2 (-857)))) (-3176 (*1 *2 *1) (|partial| -12 (-5 *2 (-1164 *1)) (-4 *1 (-1007)))) (-1580 (*1 *2 *1) (|partial| -12 (-5 *2 (-1164 *1)) (-4 *1 (-1007)))) (-1502 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1164 *1)) (-5 *3 (-916)) (-5 *4 (-857)) (-4 *1 (-1007)))) (-1502 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1164 *1)) (-5 *3 (-916)) (-4 *1 (-1007)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-1007)) (-5 *2 (-639 *1)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-1164 (-406 (-562)))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-1164 (-562))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-1007)) (-5 *2 (-639 *1)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-947 (-562))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) (-1643 (*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-916)))) (-1643 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-4 *1 (-1007)))) (-1643 (*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1007)))) (-1924 (*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-857)))) (-4341 (*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-857)))) (-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-406 (-562)))))) +(-13 (-146) (-843) (-171) (-362) (-410 (-406 (-562))) (-38 (-562)) (-38 (-406 (-562))) (-997) (-10 -8 (-15 -1795 ((-3 (-857) "failed") $)) (-15 -3176 ((-3 (-1164 $) "failed") $)) (-15 -1580 ((-3 (-1164 $) "failed") $)) (-15 -1502 ((-3 $ "failed") (-1164 $) (-916) (-857))) (-15 -1502 ((-3 $ "failed") (-1164 $) (-916))) (-15 -3318 ((-639 $) (-1164 $))) (-15 -3318 ((-639 $) (-1164 (-406 (-562))))) (-15 -3318 ((-639 $) (-1164 (-562)))) (-15 -3318 ((-639 $) (-947 $))) (-15 -3318 ((-639 $) (-947 (-406 (-562))))) (-15 -3318 ((-639 $) (-947 (-562)))) (-15 -1643 ($ $ (-916))) (-15 -1643 ($ $)) (-15 -1643 ($ (-406 (-562)))) (-15 -1643 ($ (-562))) (-15 -1924 ($ $ (-857))) (-15 -4341 ($ $ (-857))) (-15 -1406 ((-406 (-562)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 #1=(-562)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-410 (-406 (-562))) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 #1#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 #1#) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-843) . T) ((-845) . T) ((-915) . T) ((-997) . T) ((-1033 (-406 (-562))) . T) ((-1033 (-562)) |has| (-406 (-562)) (-1033 (-562))) ((-1050 #0#) . T) ((-1050 #1#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) +((-1585 (((-2 (|:| |ans| |#2|) (|:| -1602 |#2|) (|:| |sol?| (-112))) (-562) |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65))) +(((-1008 |#1| |#2|) (-10 -7 (-15 -1585 ((-2 (|:| |ans| |#2|) (|:| -1602 |#2|) (|:| |sol?| (-112))) (-562) |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-27) (-429 |#1|))) (T -1008)) +((-1585 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1168)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-639 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3860 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1192) (-27) (-429 *8))) (-4 *8 (-13 (-451) (-845) (-146) (-1033 *3) (-635 *3))) (-5 *3 (-562)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1602 *4) (|:| |sol?| (-112)))) (-5 *1 (-1008 *8 *4))))) +(-10 -7 (-15 -1585 ((-2 (|:| |ans| |#2|) (|:| -1602 |#2|) (|:| |sol?| (-112))) (-562) |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3182 (((-3 (-639 |#2|) "failed") (-562) |#2| |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-1009 |#1| |#2|) (-10 -7 (-15 -3182 ((-3 (-639 |#2|) "failed") (-562) |#2| |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-27) (-429 |#1|))) (T -1009)) +((-3182 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1168)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-639 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3860 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1192) (-27) (-429 *8))) (-4 *8 (-13 (-451) (-845) (-146) (-1033 *3) (-635 *3))) (-5 *3 (-562)) (-5 *2 (-639 *4)) (-5 *1 (-1009 *8 *4))))) +(-10 -7 (-15 -3182 ((-3 (-639 |#2|) "failed") (-562) |#2| |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -3860 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3193 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3342 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-562)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-562) (-1 |#2| |#2|)) 31)) (-4047 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3355 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 59)) (-3530 (((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|)) 64))) +(((-1010 |#1| |#2|) (-10 -7 (-15 -4047 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3355 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3530 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3193 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3342 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-562)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-562) (-1 |#2| |#2|)))) (-13 (-362) (-146) (-1033 (-562))) (-1232 |#1|)) (T -1010)) +((-3193 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1232 *6)) (-4 *6 (-13 (-362) (-146) (-1033 *4))) (-5 *4 (-562)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3342 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1010 *6 *3)))) (-3530 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1010 *4 *5)) (-5 *3 (-406 *5)))) (-4047 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -3355 *6))) (-5 *1 (-1010 *5 *6)) (-5 *3 (-406 *6))))) +(-10 -7 (-15 -4047 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3355 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -3530 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -3193 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3342 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-562)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-562) (-1 |#2| |#2|)))) +((-1714 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3355 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 22)) (-1367 (((-3 (-639 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 33))) +(((-1011 |#1| |#2|) (-10 -7 (-15 -1714 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3355 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1367 ((-3 (-639 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) (-13 (-362) (-146) (-1033 (-562))) (-1232 |#1|)) (T -1011)) +((-1367 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-406 *5))) (-5 *1 (-1011 *4 *5)) (-5 *3 (-406 *5)))) (-1714 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3355 *6))) (-5 *1 (-1011 *5 *6)) (-5 *3 (-406 *6))))) +(-10 -7 (-15 -1714 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3355 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1367 ((-3 (-639 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) +((-2959 (((-1 |#1|) (-639 (-2 (|:| -2534 |#1|) (|:| -1929 (-562))))) 37)) (-3517 (((-1 |#1|) (-1094 |#1|)) 45)) (-2625 (((-1 |#1|) (-1256 |#1|) (-1256 (-562)) (-562)) 34))) +(((-1012 |#1|) (-10 -7 (-15 -3517 ((-1 |#1|) (-1094 |#1|))) (-15 -2959 ((-1 |#1|) (-639 (-2 (|:| -2534 |#1|) (|:| -1929 (-562)))))) (-15 -2625 ((-1 |#1|) (-1256 |#1|) (-1256 (-562)) (-562)))) (-1092)) (T -1012)) +((-2625 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1256 *6)) (-5 *4 (-1256 (-562))) (-5 *5 (-562)) (-4 *6 (-1092)) (-5 *2 (-1 *6)) (-5 *1 (-1012 *6)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -2534 *4) (|:| -1929 (-562))))) (-4 *4 (-1092)) (-5 *2 (-1 *4)) (-5 *1 (-1012 *4)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-1094 *4)) (-4 *4 (-1092)) (-5 *2 (-1 *4)) (-5 *1 (-1012 *4))))) +(-10 -7 (-15 -3517 ((-1 |#1|) (-1094 |#1|))) (-15 -2959 ((-1 |#1|) (-639 (-2 (|:| -2534 |#1|) (|:| -1929 (-562)))))) (-15 -2625 ((-1 |#1|) (-1256 |#1|) (-1256 (-562)) (-562)))) +((-1900 (((-766) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1013 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1900 ((-766) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-13 (-367) (-362))) (T -1013)) +((-1900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-4 *4 (-1232 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) (-4 *9 (-13 (-367) (-362))) (-5 *2 (-766)) (-5 *1 (-1013 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -1900 ((-766) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-4041 (((-112) $ $) NIL)) (-2876 (((-1127) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 11)) (-1731 (((-112) $ $) NIL))) +(((-1014) (-13 (-1075) (-10 -8 (-15 -2876 ((-1127) $)) (-15 -3265 ((-1127) $))))) (T -1014)) +((-2876 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1014)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1014))))) +(-13 (-1075) (-10 -8 (-15 -2876 ((-1127) $)) (-15 -3265 ((-1127) $)))) +((-3528 (((-3 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) "failed") |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) 31) (((-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562))) 28)) (-2631 (((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562))) 33) (((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-406 (-562))) 29) (((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) 32) (((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1|) 27)) (-4123 (((-639 (-406 (-562))) (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) 19)) (-1341 (((-406 (-562)) (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) 16))) +(((-1015 |#1|) (-10 -7 (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1|)) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-406 (-562)))) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562)))) (-15 -3528 ((-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562)))) (-15 -3528 ((-3 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) "failed") |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-15 -1341 ((-406 (-562)) (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-15 -4123 ((-639 (-406 (-562))) (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))))) (-1232 (-562))) (T -1015)) +((-4123 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-5 *2 (-639 (-406 (-562)))) (-5 *1 (-1015 *4)) (-4 *4 (-1232 (-562))))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) (-5 *2 (-406 (-562))) (-5 *1 (-1015 *4)) (-4 *4 (-1232 (-562))))) (-3528 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) (-3528 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) (-5 *4 (-406 (-562))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) (-2631 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-562))) (-5 *2 (-639 (-2 (|:| -1588 *5) (|:| -1602 *5)))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) (-5 *4 (-2 (|:| -1588 *5) (|:| -1602 *5))))) (-2631 (*1 *2 *3 *4) (-12 (-5 *2 (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) (-5 *4 (-406 (-562))))) (-2631 (*1 *2 *3 *4) (-12 (-5 *2 (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) (-5 *4 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))))) (-2631 (*1 *2 *3) (-12 (-5 *2 (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562)))))) +(-10 -7 (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1|)) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-406 (-562)))) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562)))) (-15 -3528 ((-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562)))) (-15 -3528 ((-3 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) "failed") |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-15 -1341 ((-406 (-562)) (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-15 -4123 ((-639 (-406 (-562))) (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))))) +((-3528 (((-3 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) "failed") |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) 35) (((-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562))) 32)) (-2631 (((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562))) 30) (((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-406 (-562))) 26) (((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) 28) (((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1|) 24))) +(((-1016 |#1|) (-10 -7 (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1|)) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-406 (-562)))) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562)))) (-15 -3528 ((-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562)))) (-15 -3528 ((-3 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) "failed") |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))))) (-1232 (-406 (-562)))) (T -1016)) +((-3528 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))))) (-3528 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) (-5 *4 (-406 (-562))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 *4)))) (-2631 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-562))) (-5 *2 (-639 (-2 (|:| -1588 *5) (|:| -1602 *5)))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 *5)) (-5 *4 (-2 (|:| -1588 *5) (|:| -1602 *5))))) (-2631 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-562))) (-5 *2 (-639 (-2 (|:| -1588 *4) (|:| -1602 *4)))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 *4)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *2 (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))) (-5 *4 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))))) (-2631 (*1 *2 *3) (-12 (-5 *2 (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562))))))) +(-10 -7 (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1|)) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-406 (-562)))) (-15 -2631 ((-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562)))) (-15 -3528 ((-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-406 (-562)))) (-15 -3528 ((-3 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) "failed") |#1| (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))) (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))))) +((-4208 (((-224) $) 6) (((-378) $) 9))) +(((-1017) (-139)) (T -1017)) +NIL +(-13 (-610 (-224)) (-610 (-378))) +(((-610 (-224)) . T) ((-610 (-378)) . T)) +((-4351 (((-639 (-378)) (-947 (-562)) (-378)) 28) (((-639 (-378)) (-947 (-406 (-562))) (-378)) 27)) (-3580 (((-639 (-639 (-378))) (-639 (-947 (-562))) (-639 (-1168)) (-378)) 37))) +(((-1018) (-10 -7 (-15 -4351 ((-639 (-378)) (-947 (-406 (-562))) (-378))) (-15 -4351 ((-639 (-378)) (-947 (-562)) (-378))) (-15 -3580 ((-639 (-639 (-378))) (-639 (-947 (-562))) (-639 (-1168)) (-378))))) (T -1018)) +((-3580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-639 (-1168))) (-5 *2 (-639 (-639 (-378)))) (-5 *1 (-1018)) (-5 *5 (-378)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-947 (-562))) (-5 *2 (-639 (-378))) (-5 *1 (-1018)) (-5 *4 (-378)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *2 (-639 (-378))) (-5 *1 (-1018)) (-5 *4 (-378))))) +(-10 -7 (-15 -4351 ((-639 (-378)) (-947 (-406 (-562))) (-378))) (-15 -4351 ((-639 (-378)) (-947 (-562)) (-378))) (-15 -3580 ((-639 (-639 (-378))) (-639 (-947 (-562))) (-639 (-1168)) (-378)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 70)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-1643 (($ $) NIL) (($ $ (-916)) NIL) (($ (-406 (-562))) NIL) (($ (-562)) NIL)) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) 65)) (-1800 (($) NIL T CONST)) (-1502 (((-3 $ "failed") (-1164 $) (-916) (-857)) NIL) (((-3 $ "failed") (-1164 $) (-916)) 50)) (-4048 (((-3 (-406 (-562)) "failed") $) NIL (|has| (-406 (-562)) (-1033 (-406 (-562))))) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-562) "failed") $) NIL (-4037 (|has| (-406 (-562)) (-1033 (-562))) (|has| |#1| (-1033 (-562)))))) (-3961 (((-406 (-562)) $) 15 (|has| (-406 (-562)) (-1033 (-406 (-562))))) (((-406 (-562)) $) 15) ((|#1| $) 108) (((-562) $) NIL (-4037 (|has| (-406 (-562)) (-1033 (-562))) (|has| |#1| (-1033 (-562)))))) (-1924 (($ $ (-857)) 42)) (-4341 (($ $ (-857)) 43)) (-1811 (($ $ $) NIL)) (-3104 (((-406 (-562)) $ $) 19)) (-3668 (((-3 $ "failed") $) 83)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3519 (((-112) $) 61)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL)) (-3392 (((-112) $) 64)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-1580 (((-3 (-1164 $) "failed") $) 78)) (-1795 (((-3 (-857) "failed") $) 77)) (-3176 (((-3 (-1164 $) "failed") $) 75)) (-2315 (((-3 (-1054 $ (-1164 $)) "failed") $) 73)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 84)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4054 (((-857) $) 82) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ $) 58) (($ (-406 (-562))) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 110)) (-2579 (((-766)) NIL)) (-2922 (((-112) $ $) NIL)) (-1406 (((-406 (-562)) $ $) 25)) (-3318 (((-639 $) (-1164 $)) 56) (((-639 $) (-1164 (-406 (-562)))) NIL) (((-639 $) (-1164 (-562))) NIL) (((-639 $) (-947 $)) NIL) (((-639 $) (-947 (-406 (-562)))) NIL) (((-639 $) (-947 (-562))) NIL)) (-3620 (($ (-1054 $ (-1164 $)) (-857)) 41)) (-3526 (($ $) 20)) (-2286 (($) 29 T CONST)) (-2294 (($) 35 T CONST)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 71)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 22)) (-1859 (($ $ $) 33)) (-1848 (($ $) 34) (($ $ $) 69)) (-1835 (($ $ $) 103)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL) (($ $ (-406 (-562))) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 91) (($ $ $) 96) (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ (-562) $) 91) (($ $ (-562)) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-1019 |#1|) (-13 (-1007) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -3620 ($ (-1054 $ (-1164 $)) (-857))) (-15 -2315 ((-3 (-1054 $ (-1164 $)) "failed") $)) (-15 -3104 ((-406 (-562)) $ $)))) (-13 (-843) (-362) (-1017))) (T -1019)) +((-3620 (*1 *1 *2 *3) (-12 (-5 *2 (-1054 (-1019 *4) (-1164 (-1019 *4)))) (-5 *3 (-857)) (-5 *1 (-1019 *4)) (-4 *4 (-13 (-843) (-362) (-1017))))) (-2315 (*1 *2 *1) (|partial| -12 (-5 *2 (-1054 (-1019 *3) (-1164 (-1019 *3)))) (-5 *1 (-1019 *3)) (-4 *3 (-13 (-843) (-362) (-1017))))) (-3104 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-1019 *3)) (-4 *3 (-13 (-843) (-362) (-1017)))))) +(-13 (-1007) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -3620 ($ (-1054 $ (-1164 $)) (-857))) (-15 -2315 ((-3 (-1054 $ (-1164 $)) "failed") $)) (-15 -3104 ((-406 (-562)) $ $)))) +((-2726 (((-2 (|:| -3342 |#2|) (|:| -2431 (-639 |#1|))) |#2| (-639 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-1020 |#1| |#2|) (-10 -7 (-15 -2726 (|#2| |#2| |#1|)) (-15 -2726 ((-2 (|:| -3342 |#2|) (|:| -2431 (-639 |#1|))) |#2| (-639 |#1|)))) (-362) (-650 |#1|)) (T -1020)) +((-2726 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3342 *3) (|:| -2431 (-639 *5)))) (-5 *1 (-1020 *5 *3)) (-5 *4 (-639 *5)) (-4 *3 (-650 *5)))) (-2726 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1020 *3 *2)) (-4 *2 (-650 *3))))) +(-10 -7 (-15 -2726 (|#2| |#2| |#1|)) (-15 -2726 ((-2 (|:| -3342 |#2|) (|:| -2431 (-639 |#1|))) |#2| (-639 |#1|)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1506 ((|#1| $ |#1|) 14)) (-4200 ((|#1| $ |#1|) 12)) (-1806 (($ |#1|) 10)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2343 ((|#1| $) 11)) (-3228 ((|#1| $) 13)) (-4054 (((-857) $) 21 (|has| |#1| (-1092)))) (-1731 (((-112) $ $) 9))) +(((-1021 |#1|) (-13 (-1207) (-10 -8 (-15 -1806 ($ |#1|)) (-15 -2343 (|#1| $)) (-15 -4200 (|#1| $ |#1|)) (-15 -3228 (|#1| $)) (-15 -1506 (|#1| $ |#1|)) (-15 -1731 ((-112) $ $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) (-1207)) (T -1021)) +((-1806 (*1 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-4200 (*1 *2 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-3228 (*1 *2 *1) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-1506 (*1 *2 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-1731 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1021 *3)) (-4 *3 (-1207))))) +(-13 (-1207) (-10 -8 (-15 -1806 ($ |#1|)) (-15 -2343 (|#1| $)) (-15 -4200 (|#1| $ |#1|)) (-15 -3228 (|#1| $)) (-15 -1506 (|#1| $ |#1|)) (-15 -1731 ((-112) $ $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |#4|)))) (-639 |#4|)) NIL)) (-2304 (((-639 $) (-639 |#4|)) 105) (((-639 $) (-639 |#4|) (-112)) 106) (((-639 $) (-639 |#4|) (-112) (-112)) 104) (((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112)) 107)) (-1402 (((-639 |#3|) $) NIL)) (-4170 (((-112) $) NIL)) (-4274 (((-112) $) NIL (|has| |#1| (-554)))) (-4377 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3049 ((|#4| |#4| $) NIL)) (-2798 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 99)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402))) (((-3 |#4| "failed") $ |#3|) 54)) (-1800 (($) NIL T CONST)) (-2207 (((-112) $) 27 (|has| |#1| (-554)))) (-1920 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3852 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2539 (((-112) $) NIL (|has| |#1| (-554)))) (-2839 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3884 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) NIL)) (-3961 (($ (-639 |#4|)) NIL)) (-1434 (((-3 $ "failed") $) 40)) (-2387 ((|#4| |#4| $) 57)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-554)))) (-4091 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3595 ((|#4| |#4| $) NIL)) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4402))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2267 (((-2 (|:| -1450 (-639 |#4|)) (|:| -3316 (-639 |#4|))) $) NIL)) (-4079 (((-112) |#4| $) NIL)) (-3513 (((-112) |#4| $) NIL)) (-2764 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3383 (((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112)) 119)) (-1720 (((-639 |#4|) $) 17 (|has| $ (-6 -4402)))) (-2573 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4339 ((|#3| $) 34)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#4|) $) 18 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-1490 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 22)) (-3754 (((-639 |#3|) $) NIL)) (-2071 (((-112) |#3| $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-1609 (((-3 |#4| (-639 $)) |#4| |#4| $) NIL)) (-1851 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 97)) (-1504 (((-3 |#4| "failed") $) 38)) (-1814 (((-639 $) |#4| $) 80)) (-1950 (((-3 (-112) (-639 $)) |#4| $) NIL)) (-2021 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-4376 (((-639 $) |#4| $) 102) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) 103) (((-639 $) |#4| (-639 $)) NIL)) (-1930 (((-639 $) (-639 |#4|) (-112) (-112) (-112)) 114)) (-1430 (($ |#4| $) 70) (($ (-639 |#4|) $) 71) (((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-3576 (((-639 |#4|) $) NIL)) (-2890 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1849 ((|#4| |#4| $) NIL)) (-1408 (((-112) $ $) NIL)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-2766 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1532 ((|#4| |#4| $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 |#4| "failed") $) 36)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3310 (((-3 $ "failed") $ |#4|) 48)) (-1353 (($ $ |#4|) NIL) (((-639 $) |#4| $) 82) (((-639 $) |#4| (-639 $)) NIL) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) 77)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 16)) (-4307 (($) 14)) (-3598 (((-766) $) NIL)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) 13)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) 21)) (-1812 (($ $ |#3|) 43)) (-3274 (($ $ |#3|) 44)) (-3277 (($ $) NIL)) (-1568 (($ $ |#3|) NIL)) (-4054 (((-857) $) 32) (((-639 |#4|) $) 41)) (-3730 (((-766) $) NIL (|has| |#3| (-367)))) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4252 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) NIL)) (-1612 (((-639 $) |#4| $) 79) (((-639 $) |#4| (-639 $)) NIL) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) NIL)) (-1744 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-4089 (((-639 |#3|) $) NIL)) (-4211 (((-112) |#4| $) NIL)) (-3694 (((-112) |#3| $) 53)) (-1731 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1022 |#1| |#2| |#3| |#4|) (-13 (-1064 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1430 ((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2304 ((-639 $) (-639 |#4|) (-112) (-112))) (-15 -2304 ((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112))) (-15 -1930 ((-639 $) (-639 |#4|) (-112) (-112) (-112))) (-15 -3383 ((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112))))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -1022)) +((-1430 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1022 *5 *6 *7 *3))) (-5 *1 (-1022 *5 *6 *7 *3)) (-4 *3 (-1058 *5 *6 *7)))) (-2304 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) (-2304 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) (-1930 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) (-3383 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-639 *8)) (|:| |towers| (-639 (-1022 *5 *6 *7 *8))))) (-5 *1 (-1022 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) +(-13 (-1064 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1430 ((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2304 ((-639 $) (-639 |#4|) (-112) (-112))) (-15 -2304 ((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112))) (-15 -1930 ((-639 $) (-639 |#4|) (-112) (-112) (-112))) (-15 -3383 ((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112))))) +((-1514 (((-639 (-683 |#1|)) (-639 (-683 |#1|))) 58) (((-683 |#1|) (-683 |#1|)) 57) (((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-639 (-683 |#1|))) 56) (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 53)) (-2957 (((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916)) 52) (((-683 |#1|) (-683 |#1|) (-916)) 51)) (-1644 (((-639 (-683 (-562))) (-639 (-639 (-562)))) 68) (((-639 (-683 (-562))) (-639 (-900 (-562))) (-562)) 67) (((-683 (-562)) (-639 (-562))) 64) (((-683 (-562)) (-900 (-562)) (-562)) 63)) (-1401 (((-683 (-947 |#1|)) (-766)) 81)) (-1915 (((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916)) 37 (|has| |#1| (-6 (-4404 "*")))) (((-683 |#1|) (-683 |#1|) (-916)) 35 (|has| |#1| (-6 (-4404 "*")))))) +(((-1023 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4404 "*"))) (-15 -1915 ((-683 |#1|) (-683 |#1|) (-916))) |%noBranch|) (IF (|has| |#1| (-6 (-4404 "*"))) (-15 -1915 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916))) |%noBranch|) (-15 -1401 ((-683 (-947 |#1|)) (-766))) (-15 -2957 ((-683 |#1|) (-683 |#1|) (-916))) (-15 -2957 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916))) (-15 -1514 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -1514 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -1514 ((-683 |#1|) (-683 |#1|))) (-15 -1514 ((-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -1644 ((-683 (-562)) (-900 (-562)) (-562))) (-15 -1644 ((-683 (-562)) (-639 (-562)))) (-15 -1644 ((-639 (-683 (-562))) (-639 (-900 (-562))) (-562))) (-15 -1644 ((-639 (-683 (-562))) (-639 (-639 (-562)))))) (-1044)) (T -1023)) +((-1644 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-562)))) (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-1023 *4)) (-4 *4 (-1044)))) (-1644 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-900 (-562)))) (-5 *4 (-562)) (-5 *2 (-639 (-683 *4))) (-5 *1 (-1023 *5)) (-4 *5 (-1044)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1023 *4)) (-4 *4 (-1044)))) (-1644 (*1 *2 *3 *4) (-12 (-5 *3 (-900 (-562))) (-5 *4 (-562)) (-5 *2 (-683 *4)) (-5 *1 (-1023 *5)) (-4 *5 (-1044)))) (-1514 (*1 *2 *2) (-12 (-5 *2 (-639 (-683 *3))) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) (-1514 (*1 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) (-1514 (*1 *2 *2 *2) (-12 (-5 *2 (-639 (-683 *3))) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) (-1514 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) (-2957 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-683 *4))) (-5 *3 (-916)) (-4 *4 (-1044)) (-5 *1 (-1023 *4)))) (-2957 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *4)) (-5 *3 (-916)) (-4 *4 (-1044)) (-5 *1 (-1023 *4)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-683 (-947 *4))) (-5 *1 (-1023 *4)) (-4 *4 (-1044)))) (-1915 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-683 *4))) (-5 *3 (-916)) (|has| *4 (-6 (-4404 "*"))) (-4 *4 (-1044)) (-5 *1 (-1023 *4)))) (-1915 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *4)) (-5 *3 (-916)) (|has| *4 (-6 (-4404 "*"))) (-4 *4 (-1044)) (-5 *1 (-1023 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4404 "*"))) (-15 -1915 ((-683 |#1|) (-683 |#1|) (-916))) |%noBranch|) (IF (|has| |#1| (-6 (-4404 "*"))) (-15 -1915 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916))) |%noBranch|) (-15 -1401 ((-683 (-947 |#1|)) (-766))) (-15 -2957 ((-683 |#1|) (-683 |#1|) (-916))) (-15 -2957 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916))) (-15 -1514 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -1514 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -1514 ((-683 |#1|) (-683 |#1|))) (-15 -1514 ((-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -1644 ((-683 (-562)) (-900 (-562)) (-562))) (-15 -1644 ((-683 (-562)) (-639 (-562)))) (-15 -1644 ((-639 (-683 (-562))) (-639 (-900 (-562))) (-562))) (-15 -1644 ((-639 (-683 (-562))) (-639 (-639 (-562)))))) +((-4288 (((-683 |#1|) (-639 (-683 |#1|)) (-1256 |#1|)) 49 (|has| |#1| (-306)))) (-2176 (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 (-1256 |#1|))) 75 (|has| |#1| (-362))) (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 |#1|)) 78 (|has| |#1| (-362)))) (-4067 (((-1256 |#1|) (-639 (-1256 |#1|)) (-562)) 92 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-2260 (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-916)) 84 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112)) 82 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|))) 81 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112) (-562) (-562)) 80 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-3419 (((-112) (-639 (-683 |#1|))) 70 (|has| |#1| (-362))) (((-112) (-639 (-683 |#1|)) (-562)) 72 (|has| |#1| (-362)))) (-2541 (((-1256 (-1256 |#1|)) (-639 (-683 |#1|)) (-1256 |#1|)) 47 (|has| |#1| (-306)))) (-3849 (((-683 |#1|) (-639 (-683 |#1|)) (-683 |#1|)) 33)) (-3088 (((-683 |#1|) (-1256 (-1256 |#1|))) 30)) (-3606 (((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-562)) 64 (|has| |#1| (-362))) (((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|))) 63 (|has| |#1| (-362))) (((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-112) (-562)) 68 (|has| |#1| (-362))))) +(((-1024 |#1|) (-10 -7 (-15 -3088 ((-683 |#1|) (-1256 (-1256 |#1|)))) (-15 -3849 ((-683 |#1|) (-639 (-683 |#1|)) (-683 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -2541 ((-1256 (-1256 |#1|)) (-639 (-683 |#1|)) (-1256 |#1|))) (-15 -4288 ((-683 |#1|) (-639 (-683 |#1|)) (-1256 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3606 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-112) (-562))) (-15 -3606 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -3606 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-562))) (-15 -3419 ((-112) (-639 (-683 |#1|)) (-562))) (-15 -3419 ((-112) (-639 (-683 |#1|)))) (-15 -2176 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 |#1|))) (-15 -2176 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 (-1256 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -2260 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112) (-562) (-562))) (-15 -2260 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)))) (-15 -2260 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112))) (-15 -2260 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-916))) (-15 -4067 ((-1256 |#1|) (-639 (-1256 |#1|)) (-562)))) |%noBranch|) |%noBranch|)) (-1044)) (T -1024)) +((-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1256 *5))) (-5 *4 (-562)) (-5 *2 (-1256 *5)) (-5 *1 (-1024 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)) (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) (-5 *3 (-639 (-683 *5))))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)) (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) (-5 *3 (-639 (-683 *5))))) (-2260 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1044)) (-5 *2 (-639 (-639 (-683 *4)))) (-5 *1 (-1024 *4)) (-5 *3 (-639 (-683 *4))))) (-2260 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-562)) (-4 *6 (-362)) (-4 *6 (-367)) (-4 *6 (-1044)) (-5 *2 (-639 (-639 (-683 *6)))) (-5 *1 (-1024 *6)) (-5 *3 (-639 (-683 *6))))) (-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-1256 (-1256 *5))) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) (-5 *3 (-639 (-683 *5))))) (-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-1256 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) (-5 *3 (-639 (-683 *5))))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-639 (-683 *4))) (-4 *4 (-362)) (-4 *4 (-1044)) (-5 *2 (-112)) (-5 *1 (-1024 *4)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-562)) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-112)) (-5 *1 (-1024 *5)))) (-3606 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-562)) (-5 *2 (-683 *5)) (-5 *1 (-1024 *5)) (-4 *5 (-362)) (-4 *5 (-1044)))) (-3606 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-683 *4))) (-5 *2 (-683 *4)) (-5 *1 (-1024 *4)) (-4 *4 (-362)) (-4 *4 (-1044)))) (-3606 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-639 (-683 *6))) (-5 *4 (-112)) (-5 *5 (-562)) (-5 *2 (-683 *6)) (-5 *1 (-1024 *6)) (-4 *6 (-362)) (-4 *6 (-1044)))) (-4288 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-1256 *5)) (-4 *5 (-306)) (-4 *5 (-1044)) (-5 *2 (-683 *5)) (-5 *1 (-1024 *5)))) (-2541 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-683 *5))) (-4 *5 (-306)) (-4 *5 (-1044)) (-5 *2 (-1256 (-1256 *5))) (-5 *1 (-1024 *5)) (-5 *4 (-1256 *5)))) (-3849 (*1 *2 *3 *2) (-12 (-5 *3 (-639 (-683 *4))) (-5 *2 (-683 *4)) (-4 *4 (-1044)) (-5 *1 (-1024 *4)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-1256 (-1256 *4))) (-4 *4 (-1044)) (-5 *2 (-683 *4)) (-5 *1 (-1024 *4))))) +(-10 -7 (-15 -3088 ((-683 |#1|) (-1256 (-1256 |#1|)))) (-15 -3849 ((-683 |#1|) (-639 (-683 |#1|)) (-683 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -2541 ((-1256 (-1256 |#1|)) (-639 (-683 |#1|)) (-1256 |#1|))) (-15 -4288 ((-683 |#1|) (-639 (-683 |#1|)) (-1256 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3606 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-112) (-562))) (-15 -3606 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -3606 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-562))) (-15 -3419 ((-112) (-639 (-683 |#1|)) (-562))) (-15 -3419 ((-112) (-639 (-683 |#1|)))) (-15 -2176 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 |#1|))) (-15 -2176 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 (-1256 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -2260 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112) (-562) (-562))) (-15 -2260 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)))) (-15 -2260 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112))) (-15 -2260 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-916))) (-15 -4067 ((-1256 |#1|) (-639 (-1256 |#1|)) (-562)))) |%noBranch|) |%noBranch|)) +((-2531 ((|#1| (-916) |#1|) 9))) +(((-1025 |#1|) (-10 -7 (-15 -2531 (|#1| (-916) |#1|))) (-13 (-1092) (-10 -8 (-15 -1835 ($ $ $))))) (T -1025)) +((-2531 (*1 *2 *3 *2) (-12 (-5 *3 (-916)) (-5 *1 (-1025 *2)) (-4 *2 (-13 (-1092) (-10 -8 (-15 -1835 ($ $ $)))))))) +(-10 -7 (-15 -2531 (|#1| (-916) |#1|))) +((-1346 (((-639 (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) (|:| |radvect| (-639 (-683 (-315 (-562))))))) (-683 (-406 (-947 (-562))))) 59)) (-3985 (((-639 (-683 (-315 (-562)))) (-315 (-562)) (-683 (-406 (-947 (-562))))) 48)) (-2252 (((-639 (-315 (-562))) (-683 (-406 (-947 (-562))))) 41)) (-2509 (((-639 (-683 (-315 (-562)))) (-683 (-406 (-947 (-562))))) 68)) (-1327 (((-683 (-315 (-562))) (-683 (-315 (-562)))) 34)) (-2128 (((-639 (-683 (-315 (-562)))) (-639 (-683 (-315 (-562))))) 62)) (-1676 (((-3 (-683 (-315 (-562))) "failed") (-683 (-406 (-947 (-562))))) 66))) +(((-1026) (-10 -7 (-15 -1346 ((-639 (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) (|:| |radvect| (-639 (-683 (-315 (-562))))))) (-683 (-406 (-947 (-562)))))) (-15 -3985 ((-639 (-683 (-315 (-562)))) (-315 (-562)) (-683 (-406 (-947 (-562)))))) (-15 -2252 ((-639 (-315 (-562))) (-683 (-406 (-947 (-562)))))) (-15 -1676 ((-3 (-683 (-315 (-562))) "failed") (-683 (-406 (-947 (-562)))))) (-15 -1327 ((-683 (-315 (-562))) (-683 (-315 (-562))))) (-15 -2128 ((-639 (-683 (-315 (-562)))) (-639 (-683 (-315 (-562)))))) (-15 -2509 ((-639 (-683 (-315 (-562)))) (-683 (-406 (-947 (-562)))))))) (T -1026)) +((-2509 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026)))) (-2128 (*1 *2 *2) (-12 (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026)))) (-1327 (*1 *2 *2) (-12 (-5 *2 (-683 (-315 (-562)))) (-5 *1 (-1026)))) (-1676 (*1 *2 *3) (|partial| -12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-683 (-315 (-562)))) (-5 *1 (-1026)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-315 (-562)))) (-5 *1 (-1026)))) (-3985 (*1 *2 *3 *4) (-12 (-5 *4 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026)) (-5 *3 (-315 (-562))))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) (|:| |radvect| (-639 (-683 (-315 (-562)))))))) (-5 *1 (-1026))))) +(-10 -7 (-15 -1346 ((-639 (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) (|:| |radvect| (-639 (-683 (-315 (-562))))))) (-683 (-406 (-947 (-562)))))) (-15 -3985 ((-639 (-683 (-315 (-562)))) (-315 (-562)) (-683 (-406 (-947 (-562)))))) (-15 -2252 ((-639 (-315 (-562))) (-683 (-406 (-947 (-562)))))) (-15 -1676 ((-3 (-683 (-315 (-562))) "failed") (-683 (-406 (-947 (-562)))))) (-15 -1327 ((-683 (-315 (-562))) (-683 (-315 (-562))))) (-15 -2128 ((-639 (-683 (-315 (-562)))) (-639 (-683 (-315 (-562)))))) (-15 -2509 ((-639 (-683 (-315 (-562)))) (-683 (-406 (-947 (-562))))))) +((-2734 ((|#1| |#1| (-916)) 9))) +(((-1027 |#1|) (-10 -7 (-15 -2734 (|#1| |#1| (-916)))) (-13 (-1092) (-10 -8 (-15 * ($ $ $))))) (T -1027)) +((-2734 (*1 *2 *2 *3) (-12 (-5 *3 (-916)) (-5 *1 (-1027 *2)) (-4 *2 (-13 (-1092) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2734 (|#1| |#1| (-916)))) +((-4054 ((|#1| (-311)) 11) (((-1261) |#1|) 9))) +(((-1028 |#1|) (-10 -7 (-15 -4054 ((-1261) |#1|)) (-15 -4054 (|#1| (-311)))) (-1207)) (T -1028)) +((-4054 (*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1028 *2)) (-4 *2 (-1207)))) (-4054 (*1 *2 *3) (-12 (-5 *2 (-1261)) (-5 *1 (-1028 *3)) (-4 *3 (-1207))))) +(-10 -7 (-15 -4054 ((-1261) |#1|)) (-15 -4054 (|#1| (-311)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-1955 (($ |#4|) 25)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-1943 ((|#4| $) 27)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 46) (($ (-562)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2579 (((-766)) 43)) (-2286 (($) 21 T CONST)) (-2294 (($) 23 T CONST)) (-1731 (((-112) $ $) 40)) (-1848 (($ $) 31) (($ $ $) NIL)) (-1835 (($ $ $) 29)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1029 |#1| |#2| |#3| |#4| |#5|) (-13 (-171) (-38 |#1|) (-10 -8 (-15 -1955 ($ |#4|)) (-15 -4054 ($ |#4|)) (-15 -1943 (|#4| $)))) (-362) (-788) (-845) (-944 |#1| |#2| |#3|) (-639 |#4|)) (T -1029)) +((-1955 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *2 (-944 *3 *4 *5)) (-14 *6 (-639 *2)))) (-4054 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *2 (-944 *3 *4 *5)) (-14 *6 (-639 *2)))) (-1943 (*1 *2 *1) (-12 (-4 *2 (-944 *3 *4 *5)) (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-14 *6 (-639 *2))))) +(-13 (-171) (-38 |#1|) (-10 -8 (-15 -1955 ($ |#4|)) (-15 -4054 ($ |#4|)) (-15 -1943 (|#4| $)))) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL)) (-3052 (((-1261) $ (-1168) (-1168)) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-2392 (((-112) (-112)) 39)) (-1572 (((-112) (-112)) 38)) (-4200 (((-52) $ (-1168) (-52)) NIL)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 (-52) "failed") (-1168) $) NIL)) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-4000 (($ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-3 (-52) "failed") (-1168) $) NIL)) (-1475 (($ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-1505 (((-52) $ (-1168) (-52)) NIL (|has| $ (-6 -4403)))) (-1420 (((-52) $ (-1168)) NIL)) (-1720 (((-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-639 (-52)) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-1168) $) NIL (|has| (-1168) (-845)))) (-1912 (((-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-639 (-52)) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-52) (-1092))))) (-3874 (((-1168) $) NIL (|has| (-1168) (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-1520 (((-639 (-1168)) $) 34)) (-4265 (((-112) (-1168) $) NIL)) (-3262 (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL)) (-4300 (($ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL)) (-2093 (((-639 (-1168)) $) NIL)) (-1570 (((-112) (-1168) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-1421 (((-52) $) NIL (|has| (-1168) (-845)))) (-3251 (((-3 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) "failed") (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL)) (-2716 (($ $ (-52)) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))))) NIL (-12 (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ $ (-293 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL (-12 (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ $ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) NIL (-12 (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ $ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL (-12 (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ $ (-639 (-52)) (-639 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-639 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-52) (-1092))))) (-2411 (((-639 (-52)) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 (((-52) $ (-1168)) 35) (((-52) $ (-1168) (-52)) NIL)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (((-766) (-52) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-52) (-1092)))) (((-766) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL)) (-4054 (((-857) $) 37 (-4037 (|has| (-52) (-609 (-857))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1030) (-13 (-1183 (-1168) (-52)) (-10 -7 (-15 -2392 ((-112) (-112))) (-15 -1572 ((-112) (-112))) (-6 -4402)))) (T -1030)) +((-2392 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1030)))) (-1572 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1030))))) +(-13 (-1183 (-1168) (-52)) (-10 -7 (-15 -2392 ((-112) (-112))) (-15 -1572 ((-112) (-112))) (-6 -4402))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 9)) (-4054 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-1031) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $))))) (T -1031)) +((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1031))))) +(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)))) +((-3961 ((|#2| $) 10))) +(((-1032 |#1| |#2|) (-10 -8 (-15 -3961 (|#2| |#1|))) (-1033 |#2|) (-1207)) (T -1032)) +NIL +(-10 -8 (-15 -3961 (|#2| |#1|))) +((-4048 (((-3 |#1| "failed") $) 9)) (-3961 ((|#1| $) 8)) (-4054 (($ |#1|) 6))) +(((-1033 |#1|) (-139) (-1207)) (T -1033)) +((-4048 (*1 *2 *1) (|partial| -12 (-4 *1 (-1033 *2)) (-4 *2 (-1207)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1207))))) +(-13 (-612 |t#1|) (-10 -8 (-15 -4048 ((-3 |t#1| "failed") $)) (-15 -3961 (|t#1| $)))) +(((-612 |#1|) . T)) +((-4366 (((-639 (-639 (-293 (-406 (-947 |#2|))))) (-639 (-947 |#2|)) (-639 (-1168))) 38))) +(((-1034 |#1| |#2|) (-10 -7 (-15 -4366 ((-639 (-639 (-293 (-406 (-947 |#2|))))) (-639 (-947 |#2|)) (-639 (-1168))))) (-554) (-13 (-554) (-1033 |#1|))) (T -1034)) +((-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-4 *6 (-13 (-554) (-1033 *5))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *6)))))) (-5 *1 (-1034 *5 *6))))) +(-10 -7 (-15 -4366 ((-639 (-639 (-293 (-406 (-947 |#2|))))) (-639 (-947 |#2|)) (-639 (-1168))))) +((-2244 (((-378)) 15)) (-3517 (((-1 (-378)) (-378) (-378)) 20)) (-3355 (((-1 (-378)) (-766)) 42)) (-2665 (((-378)) 33)) (-2451 (((-1 (-378)) (-378) (-378)) 34)) (-4268 (((-378)) 26)) (-3876 (((-1 (-378)) (-378)) 27)) (-4144 (((-378) (-766)) 37)) (-1712 (((-1 (-378)) (-766)) 38)) (-3197 (((-1 (-378)) (-766) (-766)) 41)) (-2088 (((-1 (-378)) (-766) (-766)) 39))) +(((-1035) (-10 -7 (-15 -2244 ((-378))) (-15 -2665 ((-378))) (-15 -4268 ((-378))) (-15 -4144 ((-378) (-766))) (-15 -3517 ((-1 (-378)) (-378) (-378))) (-15 -2451 ((-1 (-378)) (-378) (-378))) (-15 -3876 ((-1 (-378)) (-378))) (-15 -1712 ((-1 (-378)) (-766))) (-15 -2088 ((-1 (-378)) (-766) (-766))) (-15 -3197 ((-1 (-378)) (-766) (-766))) (-15 -3355 ((-1 (-378)) (-766))))) (T -1035)) +((-3355 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) (-3197 (*1 *2 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) (-2088 (*1 *2 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) (-3876 (*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378)))) (-2451 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378)))) (-3517 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-378)) (-5 *1 (-1035)))) (-4268 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035)))) (-2665 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035)))) (-2244 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035))))) +(-10 -7 (-15 -2244 ((-378))) (-15 -2665 ((-378))) (-15 -4268 ((-378))) (-15 -4144 ((-378) (-766))) (-15 -3517 ((-1 (-378)) (-378) (-378))) (-15 -2451 ((-1 (-378)) (-378) (-378))) (-15 -3876 ((-1 (-378)) (-378))) (-15 -1712 ((-1 (-378)) (-766))) (-15 -2088 ((-1 (-378)) (-766) (-766))) (-15 -3197 ((-1 (-378)) (-766) (-766))) (-15 -3355 ((-1 (-378)) (-766)))) +((-1635 (((-417 |#1|) |#1|) 33))) +(((-1036 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1|))) (-1232 (-406 (-947 (-562))))) (T -1036)) +((-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1036 *3)) (-4 *3 (-1232 (-406 (-947 (-562)))))))) +(-10 -7 (-15 -1635 ((-417 |#1|) |#1|))) +((-2606 (((-406 (-417 (-947 |#1|))) (-406 (-947 |#1|))) 14))) +(((-1037 |#1|) (-10 -7 (-15 -2606 ((-406 (-417 (-947 |#1|))) (-406 (-947 |#1|))))) (-306)) (T -1037)) +((-2606 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-417 (-947 *4)))) (-5 *1 (-1037 *4))))) +(-10 -7 (-15 -2606 ((-406 (-417 (-947 |#1|))) (-406 (-947 |#1|))))) +((-1402 (((-639 (-1168)) (-406 (-947 |#1|))) 17)) (-1599 (((-406 (-1164 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168)) 24)) (-1390 (((-406 (-947 |#1|)) (-406 (-1164 (-406 (-947 |#1|)))) (-1168)) 26)) (-3372 (((-3 (-1168) "failed") (-406 (-947 |#1|))) 20)) (-1433 (((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-293 (-406 (-947 |#1|))))) 32) (((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|)))) 33) (((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-1168)) (-639 (-406 (-947 |#1|)))) 28) (((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|))) 29)) (-4054 (((-406 (-947 |#1|)) |#1|) 11))) +(((-1038 |#1|) (-10 -7 (-15 -1402 ((-639 (-1168)) (-406 (-947 |#1|)))) (-15 -3372 ((-3 (-1168) "failed") (-406 (-947 |#1|)))) (-15 -1599 ((-406 (-1164 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168))) (-15 -1390 ((-406 (-947 |#1|)) (-406 (-1164 (-406 (-947 |#1|)))) (-1168))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-1168)) (-639 (-406 (-947 |#1|))))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -4054 ((-406 (-947 |#1|)) |#1|))) (-554)) (T -1038)) +((-4054 (*1 *2 *3) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-1038 *3)) (-4 *3 (-554)))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-293 (-406 (-947 *4))))) (-5 *2 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *1 (-1038 *4)))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-293 (-406 (-947 *4)))) (-5 *2 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *1 (-1038 *4)))) (-1433 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-639 (-1168))) (-5 *4 (-639 (-406 (-947 *5)))) (-5 *2 (-406 (-947 *5))) (-4 *5 (-554)) (-5 *1 (-1038 *5)))) (-1433 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-406 (-947 *4))) (-5 *3 (-1168)) (-4 *4 (-554)) (-5 *1 (-1038 *4)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1164 (-406 (-947 *5))))) (-5 *4 (-1168)) (-5 *2 (-406 (-947 *5))) (-5 *1 (-1038 *5)) (-4 *5 (-554)))) (-1599 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-554)) (-5 *2 (-406 (-1164 (-406 (-947 *5))))) (-5 *1 (-1038 *5)) (-5 *3 (-406 (-947 *5))))) (-3372 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-1168)) (-5 *1 (-1038 *4)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-639 (-1168))) (-5 *1 (-1038 *4))))) +(-10 -7 (-15 -1402 ((-639 (-1168)) (-406 (-947 |#1|)))) (-15 -3372 ((-3 (-1168) "failed") (-406 (-947 |#1|)))) (-15 -1599 ((-406 (-1164 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168))) (-15 -1390 ((-406 (-947 |#1|)) (-406 (-1164 (-406 (-947 |#1|)))) (-1168))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-1168)) (-639 (-406 (-947 |#1|))))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -4054 ((-406 (-947 |#1|)) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1800 (($) 17 T CONST)) (-3846 ((|#1| $) 22)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2049 ((|#1| $) 21)) (-1311 ((|#1|) 19 T CONST)) (-4054 (((-857) $) 11)) (-3154 ((|#1| $) 20)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15))) +(((-1039 |#1|) (-139) (-23)) (T -1039)) +((-3846 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23)))) (-3154 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23)))) (-1311 (*1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3846 (|t#1| $)) (-15 -2049 (|t#1| $)) (-15 -3154 (|t#1| $)) (-15 -1311 (|t#1|) -1497))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3766 (($) 24 T CONST)) (-1800 (($) 17 T CONST)) (-3846 ((|#1| $) 22)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2049 ((|#1| $) 21)) (-1311 ((|#1|) 19 T CONST)) (-4054 (((-857) $) 11)) (-3154 ((|#1| $) 20)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15))) +(((-1040 |#1|) (-139) (-23)) (T -1040)) +((-3766 (*1 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(-13 (-1039 |t#1|) (-10 -8 (-15 -3766 ($) -1497))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-1039 |#1|) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 (-775 |#1| (-859 |#2|)))))) (-639 (-775 |#1| (-859 |#2|)))) NIL)) (-2304 (((-639 $) (-639 (-775 |#1| (-859 |#2|)))) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-112)) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-112) (-112)) NIL)) (-1402 (((-639 (-859 |#2|)) $) NIL)) (-4170 (((-112) $) NIL)) (-4274 (((-112) $) NIL (|has| |#1| (-554)))) (-4377 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-3049 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-2798 (((-639 (-2 (|:| |val| (-775 |#1| (-859 |#2|))) (|:| -1495 $))) (-775 |#1| (-859 |#2|)) $) NIL)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ (-859 |#2|)) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-3 (-775 |#1| (-859 |#2|)) "failed") $ (-859 |#2|)) NIL)) (-1800 (($) NIL T CONST)) (-2207 (((-112) $) NIL (|has| |#1| (-554)))) (-1920 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3852 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2539 (((-112) $) NIL (|has| |#1| (-554)))) (-2839 (((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))) $ (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL)) (-3884 (((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))) $) NIL (|has| |#1| (-554)))) (-2540 (((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 (-775 |#1| (-859 |#2|)))) NIL)) (-3961 (($ (-639 (-775 |#1| (-859 |#2|)))) NIL)) (-1434 (((-3 $ "failed") $) NIL)) (-2387 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-775 |#1| (-859 |#2|)) (-1092))))) (-1475 (($ (-775 |#1| (-859 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (($ (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-775 |#1| (-859 |#2|))) (|:| |den| |#1|)) (-775 |#1| (-859 |#2|)) $) NIL (|has| |#1| (-554)))) (-4091 (((-112) (-775 |#1| (-859 |#2|)) $ (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL)) (-3595 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1955 (((-775 |#1| (-859 |#2|)) (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $ (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (((-775 |#1| (-859 |#2|)) (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $ (-775 |#1| (-859 |#2|))) NIL (|has| $ (-6 -4402))) (((-775 |#1| (-859 |#2|)) (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $ (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL)) (-2267 (((-2 (|:| -1450 (-639 (-775 |#1| (-859 |#2|)))) (|:| -3316 (-639 (-775 |#1| (-859 |#2|))))) $) NIL)) (-4079 (((-112) (-775 |#1| (-859 |#2|)) $) NIL)) (-3513 (((-112) (-775 |#1| (-859 |#2|)) $) NIL)) (-2764 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-1720 (((-639 (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-2573 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-4339 (((-859 |#2|) $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-775 |#1| (-859 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-775 |#1| (-859 |#2|)) (-1092))))) (-1490 (($ (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $) NIL)) (-3754 (((-639 (-859 |#2|)) $) NIL)) (-2071 (((-112) (-859 |#2|) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-1609 (((-3 (-775 |#1| (-859 |#2|)) (-639 $)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1851 (((-639 (-2 (|:| |val| (-775 |#1| (-859 |#2|))) (|:| -1495 $))) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1504 (((-3 (-775 |#1| (-859 |#2|)) "failed") $) NIL)) (-1814 (((-639 $) (-775 |#1| (-859 |#2|)) $) NIL)) (-1950 (((-3 (-112) (-639 $)) (-775 |#1| (-859 |#2|)) $) NIL)) (-2021 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 $))) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) (-775 |#1| (-859 |#2|)) $) NIL)) (-4376 (((-639 $) (-775 |#1| (-859 |#2|)) $) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) $) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-639 $)) NIL) (((-639 $) (-775 |#1| (-859 |#2|)) (-639 $)) NIL)) (-1430 (($ (-775 |#1| (-859 |#2|)) $) NIL) (($ (-639 (-775 |#1| (-859 |#2|))) $) NIL)) (-3576 (((-639 (-775 |#1| (-859 |#2|))) $) NIL)) (-2890 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-1849 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1408 (((-112) $ $) NIL)) (-3725 (((-2 (|:| |num| (-775 |#1| (-859 |#2|))) (|:| |den| |#1|)) (-775 |#1| (-859 |#2|)) $) NIL (|has| |#1| (-554)))) (-2766 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-1532 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 (-775 |#1| (-859 |#2|)) "failed") $) NIL)) (-3251 (((-3 (-775 |#1| (-859 |#2|)) "failed") (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL)) (-3310 (((-3 $ "failed") $ (-775 |#1| (-859 |#2|))) NIL)) (-1353 (($ $ (-775 |#1| (-859 |#2|))) NIL) (((-639 $) (-775 |#1| (-859 |#2|)) $) NIL) (((-639 $) (-775 |#1| (-859 |#2|)) (-639 $)) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) $) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-639 $)) NIL)) (-1763 (((-112) (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|)))) NIL (-12 (|has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|)))) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (($ $ (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) NIL (-12 (|has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|)))) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (($ $ (-293 (-775 |#1| (-859 |#2|)))) NIL (-12 (|has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|)))) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (($ $ (-639 (-293 (-775 |#1| (-859 |#2|))))) NIL (-12 (|has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|)))) (|has| (-775 |#1| (-859 |#2|)) (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-3598 (((-766) $) NIL)) (-1723 (((-766) (-775 |#1| (-859 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (((-766) (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-775 |#1| (-859 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-775 |#1| (-859 |#2|)))) NIL)) (-1812 (($ $ (-859 |#2|)) NIL)) (-3274 (($ $ (-859 |#2|)) NIL)) (-3277 (($ $) NIL)) (-1568 (($ $ (-859 |#2|)) NIL)) (-4054 (((-857) $) NIL) (((-639 (-775 |#1| (-859 |#2|))) $) NIL)) (-3730 (((-766) $) NIL (|has| (-859 |#2|) (-367)))) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 (-775 |#1| (-859 |#2|))))) "failed") (-639 (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 (-775 |#1| (-859 |#2|))))) "failed") (-639 (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL)) (-4252 (((-112) $ (-1 (-112) (-775 |#1| (-859 |#2|)) (-639 (-775 |#1| (-859 |#2|))))) NIL)) (-1612 (((-639 $) (-775 |#1| (-859 |#2|)) $) NIL) (((-639 $) (-775 |#1| (-859 |#2|)) (-639 $)) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) $) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-639 $)) NIL)) (-1744 (((-112) (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-4089 (((-639 (-859 |#2|)) $) NIL)) (-4211 (((-112) (-775 |#1| (-859 |#2|)) $) NIL)) (-3694 (((-112) (-859 |#2|) $) NIL)) (-1731 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1041 |#1| |#2|) (-13 (-1064 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) (-10 -8 (-15 -2304 ((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-112) (-112))))) (-451) (-639 (-1168))) (T -1041)) +((-2304 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1041 *5 *6))))) +(-13 (-1064 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) (-10 -8 (-15 -2304 ((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-112) (-112))))) +((-3517 (((-1 (-562)) (-1086 (-562))) 33)) (-2940 (((-562) (-562) (-562) (-562) (-562)) 30)) (-2068 (((-1 (-562)) |RationalNumber|) NIL)) (-3726 (((-1 (-562)) |RationalNumber|) NIL)) (-3261 (((-1 (-562)) (-562) |RationalNumber|) NIL))) +(((-1042) (-10 -7 (-15 -3517 ((-1 (-562)) (-1086 (-562)))) (-15 -3261 ((-1 (-562)) (-562) |RationalNumber|)) (-15 -2068 ((-1 (-562)) |RationalNumber|)) (-15 -3726 ((-1 (-562)) |RationalNumber|)) (-15 -2940 ((-562) (-562) (-562) (-562) (-562))))) (T -1042)) +((-2940 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1042)))) (-3726 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042)))) (-2068 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042)) (-5 *3 (-562)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-1086 (-562))) (-5 *2 (-1 (-562))) (-5 *1 (-1042))))) +(-10 -7 (-15 -3517 ((-1 (-562)) (-1086 (-562)))) (-15 -3261 ((-1 (-562)) (-562) |RationalNumber|)) (-15 -2068 ((-1 (-562)) |RationalNumber|)) (-15 -3726 ((-1 (-562)) |RationalNumber|)) (-15 -2940 ((-562) (-562) (-562) (-562) (-562)))) +((-4054 (((-857) $) NIL) (($ (-562)) 10))) +(((-1043 |#1|) (-10 -8 (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) (-1044)) (T -1043)) +NIL +(-10 -8 (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-1044) (-139)) (T -1044)) +((-2579 (*1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-766))))) +(-13 (-1051) (-721) (-642 $) (-612 (-562)) (-10 -7 (-15 -2579 ((-766))) (-6 -4399))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-2607 (((-406 (-947 |#2|)) (-639 |#2|) (-639 |#2|) (-766) (-766)) 46))) +(((-1045 |#1| |#2|) (-10 -7 (-15 -2607 ((-406 (-947 |#2|)) (-639 |#2|) (-639 |#2|) (-766) (-766)))) (-1168) (-362)) (T -1045)) +((-2607 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-766)) (-4 *6 (-362)) (-5 *2 (-406 (-947 *6))) (-5 *1 (-1045 *5 *6)) (-14 *5 (-1168))))) +(-10 -7 (-15 -2607 ((-406 (-947 |#2|)) (-639 |#2|) (-639 |#2|) (-766) (-766)))) +((-2952 (((-112) $) 29)) (-3220 (((-112) $) 16)) (-2699 (((-766) $) 13)) (-2709 (((-766) $) 14)) (-1544 (((-112) $) 26)) (-1335 (((-112) $) 31))) +(((-1046 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2709 ((-766) |#1|)) (-15 -2699 ((-766) |#1|)) (-15 -1335 ((-112) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 -1544 ((-112) |#1|)) (-15 -3220 ((-112) |#1|))) (-1047 |#2| |#3| |#4| |#5| |#6|) (-766) (-766) (-1044) (-237 |#3| |#4|) (-237 |#2| |#4|)) (T -1046)) +NIL +(-10 -8 (-15 -2709 ((-766) |#1|)) (-15 -2699 ((-766) |#1|)) (-15 -1335 ((-112) |#1|)) (-15 -2952 ((-112) |#1|)) (-15 -1544 ((-112) |#1|)) (-15 -3220 ((-112) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-2952 (((-112) $) 51)) (-3214 (((-3 $ "failed") $ $) 19)) (-3220 (((-112) $) 53)) (-4336 (((-112) $ (-766)) 61)) (-1800 (($) 17 T CONST)) (-2522 (($ $) 34 (|has| |#3| (-306)))) (-3796 ((|#4| $ (-562)) 39)) (-2173 (((-766) $) 33 (|has| |#3| (-554)))) (-1420 ((|#3| $ (-562) (-562)) 41)) (-1720 (((-639 |#3|) $) 68 (|has| $ (-6 -4402)))) (-3922 (((-766) $) 32 (|has| |#3| (-554)))) (-2318 (((-639 |#5|) $) 31 (|has| |#3| (-554)))) (-2699 (((-766) $) 45)) (-2709 (((-766) $) 44)) (-3292 (((-112) $ (-766)) 60)) (-2783 (((-562) $) 49)) (-4217 (((-562) $) 47)) (-1912 (((-639 |#3|) $) 69 (|has| $ (-6 -4402)))) (-1669 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1092)) (|has| $ (-6 -4402))))) (-4088 (((-562) $) 48)) (-2453 (((-562) $) 46)) (-2885 (($ (-639 (-639 |#3|))) 54)) (-1490 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2824 (((-639 (-639 |#3|)) $) 43)) (-3289 (((-112) $ (-766)) 59)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-554)))) (-1763 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#3|) (-639 |#3|)) 75 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-293 |#3|)) 73 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-639 (-293 |#3|))) 72 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))))) (-3336 (((-112) $ $) 55)) (-2974 (((-112) $) 58)) (-4307 (($) 57)) (-2343 ((|#3| $ (-562) (-562)) 42) ((|#3| $ (-562) (-562) |#3|) 40)) (-1544 (((-112) $) 52)) (-1723 (((-766) |#3| $) 70 (-12 (|has| |#3| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4402)))) (-4220 (($ $) 56)) (-2211 ((|#5| $ (-562)) 38)) (-4054 (((-857) $) 11)) (-1744 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4402)))) (-1335 (((-112) $) 50)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#3|) 35 (|has| |#3| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3492 (((-766) $) 62 (|has| $ (-6 -4402))))) +(((-1047 |#1| |#2| |#3| |#4| |#5|) (-139) (-766) (-766) (-1044) (-237 |t#2| |t#3|) (-237 |t#1| |t#3|)) (T -1047)) +((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-2885 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *5))) (-4 *5 (-1044)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562)))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-766)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-766)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-639 (-639 *5))))) (-2343 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1044)))) (-1420 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1044)))) (-2343 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) (-4 *2 (-1044)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *6 *2 *7)) (-4 *6 (-1044)) (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))) (-2211 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *6 *7 *2)) (-4 *6 (-1044)) (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))) (-4152 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1047 *3 *4 *2 *5 *6)) (-4 *2 (-1044)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-554)))) (-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-1047 *3 *4 *2 *5 *6)) (-4 *2 (-1044)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) (-2522 (*1 *1 *1) (-12 (-4 *1 (-1047 *2 *3 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-766)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-766)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-639 *7))))) +(-13 (-111 |t#3| |t#3|) (-488 |t#3|) (-10 -8 (-6 -4402) (IF (|has| |t#3| (-171)) (-6 (-712 |t#3|)) |%noBranch|) (-15 -2885 ($ (-639 (-639 |t#3|)))) (-15 -3220 ((-112) $)) (-15 -1544 ((-112) $)) (-15 -2952 ((-112) $)) (-15 -1335 ((-112) $)) (-15 -2783 ((-562) $)) (-15 -4088 ((-562) $)) (-15 -4217 ((-562) $)) (-15 -2453 ((-562) $)) (-15 -2699 ((-766) $)) (-15 -2709 ((-766) $)) (-15 -2824 ((-639 (-639 |t#3|)) $)) (-15 -2343 (|t#3| $ (-562) (-562))) (-15 -1420 (|t#3| $ (-562) (-562))) (-15 -2343 (|t#3| $ (-562) (-562) |t#3|)) (-15 -3796 (|t#4| $ (-562))) (-15 -2211 (|t#5| $ (-562))) (-15 -4152 ($ (-1 |t#3| |t#3|) $)) (-15 -4152 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-554)) (-15 -1762 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-362)) (-15 -1859 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-306)) (-15 -2522 ($ $)) |%noBranch|) (IF (|has| |t#3| (-554)) (PROGN (-15 -2173 ((-766) $)) (-15 -3922 ((-766) $)) (-15 -2318 ((-639 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-609 (-857)) . T) ((-308 |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))) ((-488 |#3|) . T) ((-513 |#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))) ((-642 |#3|) . T) ((-712 |#3|) |has| |#3| (-171)) ((-1050 |#3|) . T) ((-1092) . T) ((-1207) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-2952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3220 (((-112) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-1800 (($) NIL T CONST)) (-2522 (($ $) 43 (|has| |#3| (-306)))) (-3796 (((-239 |#2| |#3|) $ (-562)) 32)) (-3416 (($ (-683 |#3|)) 41)) (-2173 (((-766) $) 45 (|has| |#3| (-554)))) (-1420 ((|#3| $ (-562) (-562)) NIL)) (-1720 (((-639 |#3|) $) NIL (|has| $ (-6 -4402)))) (-3922 (((-766) $) 47 (|has| |#3| (-554)))) (-2318 (((-639 (-239 |#1| |#3|)) $) 51 (|has| |#3| (-554)))) (-2699 (((-766) $) NIL)) (-2709 (((-766) $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-2783 (((-562) $) NIL)) (-4217 (((-562) $) NIL)) (-1912 (((-639 |#3|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#3| (-1092))))) (-4088 (((-562) $) NIL)) (-2453 (((-562) $) NIL)) (-2885 (($ (-639 (-639 |#3|))) 27)) (-1490 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2824 (((-639 (-639 |#3|)) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-554)))) (-1763 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#3|) (-639 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-639 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#3| $ (-562) (-562)) NIL) ((|#3| $ (-562) (-562) |#3|) NIL)) (-3627 (((-133)) 54 (|has| |#3| (-362)))) (-1544 (((-112) $) NIL)) (-1723 (((-766) |#3| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#3| (-1092)))) (((-766) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 63 (|has| |#3| (-610 (-535))))) (-2211 (((-239 |#1| |#3|) $ (-562)) 36)) (-4054 (((-857) $) 16) (((-683 |#3|) $) 38)) (-1744 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4402)))) (-1335 (((-112) $) NIL)) (-2286 (($) 13 T CONST)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1048 |#1| |#2| |#3|) (-13 (-1047 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-609 (-683 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1263 |#3|)) |%noBranch|) (IF (|has| |#3| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (-15 -3416 ($ (-683 |#3|))))) (-766) (-766) (-1044)) (T -1048)) +((-3416 (*1 *1 *2) (-12 (-5 *2 (-683 *5)) (-4 *5 (-1044)) (-5 *1 (-1048 *3 *4 *5)) (-14 *3 (-766)) (-14 *4 (-766))))) +(-13 (-1047 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-609 (-683 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1263 |#3|)) |%noBranch|) (IF (|has| |#3| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (-15 -3416 ($ (-683 |#3|))))) +((-1955 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4152 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1049 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4152 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1955 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-766) (-766) (-1044) (-237 |#2| |#3|) (-237 |#1| |#3|) (-1047 |#1| |#2| |#3| |#4| |#5|) (-1044) (-237 |#2| |#7|) (-237 |#1| |#7|) (-1047 |#1| |#2| |#7| |#8| |#9|)) (T -1049)) +((-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1044)) (-4 *2 (-1044)) (-14 *5 (-766)) (-14 *6 (-766)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) (-5 *1 (-1049 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1047 *5 *6 *7 *8 *9)) (-4 *12 (-1047 *5 *6 *2 *10 *11)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1044)) (-4 *10 (-1044)) (-14 *5 (-766)) (-14 *6 (-766)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *2 (-1047 *5 *6 *10 *11 *12)) (-5 *1 (-1049 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1047 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) (-4 *12 (-237 *5 *10))))) +(-10 -7 (-15 -4152 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1955 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ |#1|) 23))) +(((-1050 |#1|) (-139) (-1051)) (T -1050)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1051))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-1049) (-139)) (T -1049)) -NIL -(-13 (-21) (-1102)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-608 (-857)) . T) ((-1102) . T) ((-1091) . T)) -((-4177 (($ $) 16)) (-3512 (($ $) 22)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 49)) (-3517 (($ $) 24)) (-3513 (($ $) 11)) (-3515 (($ $) 38)) (-4377 (((-377) $) NIL) (((-224) $) NIL) (((-883 (-377)) $) 33)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL) (($ (-406 (-544))) 28) (($ (-544)) NIL) (($ (-406 (-544))) 28)) (-3511 (((-765)) 8)) (-3516 (($ $) 39))) -(((-1050 |#1|) (-10 -8 (-15 -3512 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -3513 (|#1| |#1|)) (-15 -3515 (|#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| |#1|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-1051)) (T -1050)) -((-3511 (*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1050 *3)) (-4 *3 (-1051))))) -(-10 -8 (-15 -3512 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -3513 (|#1| |#1|)) (-15 -3515 (|#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3178 ((-881 (-377) |#1|) |#1| (-883 (-377)) (-881 (-377) |#1|))) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 -4377 ((-224) |#1|)) (-15 -4377 ((-377) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| |#1|)) (-15 -3511 ((-765))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3514 (((-544) $) 90)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-4177 (($ $) 88)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-3420 (($ $) 98)) (-1733 (((-112) $ $) 60)) (-4030 (((-544) $) 115)) (-4131 (($) 17 T CONST)) (-3512 (($ $) 87)) (-3558 (((-3 (-544) #1="failed") $) 103) (((-3 (-406 (-544)) #1#) $) 100)) (-3557 (((-544) $) 104) (((-406 (-544)) $) 101)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-4130 (((-112) $) 72)) (-3587 (((-112) $) 113)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 94)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 97)) (-3517 (($ $) 93)) (-3588 (((-112) $) 114)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) 53)) (-2913 (($ $ $) 112)) (-3242 (($ $ $) 111)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-3513 (($ $) 89)) (-3515 (($ $) 91)) (-4139 (((-404 $) $) 75)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-4377 (((-377) $) 106) (((-224) $) 105) (((-883 (-377)) $) 95)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ (-544)) 102) (($ (-406 (-544))) 99)) (-3511 (((-765)) 28)) (-3516 (($ $) 92)) (-2212 (((-112) $ $) 40)) (-3787 (($ $) 116)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-2945 (((-112) $ $) 109)) (-2946 (((-112) $ $) 108)) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 110)) (-3067 (((-112) $ $) 107)) (-4356 (($ $ $) 66)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70) (($ $ (-406 (-544))) 96)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) (((-1051) (-139)) (T -1051)) -((-3787 (*1 *1 *1) (-4 *1 (-1051))) (-3517 (*1 *1 *1) (-4 *1 (-1051))) (-3516 (*1 *1 *1) (-4 *1 (-1051))) (-3515 (*1 *1 *1) (-4 *1 (-1051))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-544)))) (-3513 (*1 *1 *1) (-4 *1 (-1051))) (-4177 (*1 *1 *1) (-4 *1 (-1051))) (-3512 (*1 *1 *1) (-4 *1 (-1051)))) -(-13 (-362) (-842) (-1013) (-1031 (-544)) (-1031 (-406 (-544))) (-995) (-609 (-883 (-377))) (-879 (-377)) (-146) (-10 -8 (-15 -3517 ($ $)) (-15 -3516 ($ $)) (-15 -3515 ($ $)) (-15 -3514 ((-544) $)) (-15 -3513 ($ $)) (-15 -4177 ($ $)) (-15 -3512 ($ $)) (-15 -3787 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-609 (-224)) . T) ((-609 (-377)) . T) ((-609 (-883 (-377))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 $) . T) ((-720) . T) ((-785) . T) ((-786) . T) ((-788) . T) ((-791) . T) ((-842) . T) ((-844) . T) ((-879 (-377)) . T) ((-914) . T) ((-995) . T) ((-1013) . T) ((-1031 (-406 (-544))) . T) ((-1031 (-544)) . T) ((-1048 #1#) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) |#2| $) 23)) (-3521 ((|#1| $) 10)) (-4030 (((-544) |#2| $) 87)) (-3584 (((-3 $ #1="failed") |#2| (-912)) 57)) (-3522 ((|#1| $) 28)) (-3583 ((|#1| |#2| $ |#1|) 37)) (-3519 (($ $) 25)) (-3866 (((-3 |#2| #1#) |#2| $) 86)) (-3587 (((-112) |#2| $) NIL)) (-3588 (((-112) |#2| $) NIL)) (-3518 (((-112) |#2| $) 24)) (-3520 ((|#1| $) 88)) (-3523 ((|#1| $) 27)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3586 ((|#2| $) 78)) (-4353 (((-857) $) 70)) (-4176 ((|#1| |#2| $ |#1|) 38)) (-3585 (((-635 $) |#2|) 59)) (-3437 (((-112) $ $) 73))) -(((-1052 |#1| |#2|) (-13 (-1059 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| $)) (-15 -3522 (|#1| $)) (-15 -3521 (|#1| $)) (-15 -3520 (|#1| $)) (-15 -3519 ($ $)) (-15 -3518 ((-112) |#2| $)) (-15 -3583 (|#1| |#2| $ |#1|)))) (-13 (-842) (-362)) (-1229 |#1|)) (T -1052)) -((-3583 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3523 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3522 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3521 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3520 (*1 *2 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3519 (*1 *1 *1) (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) (-3518 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-842) (-362))) (-5 *2 (-112)) (-5 *1 (-1052 *4 *3)) (-4 *3 (-1229 *4))))) -(-13 (-1059 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| $)) (-15 -3522 (|#1| $)) (-15 -3521 (|#1| $)) (-15 -3520 (|#1| $)) (-15 -3519 ($ $)) (-15 -3518 ((-112) |#2| $)) (-15 -3583 (|#1| |#2| $ |#1|)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2197 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2192 (($ $ $ $) NIL)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-4030 (((-544) $) NIL)) (-2735 (($ $ $) NIL)) (-4131 (($) NIL T CONST)) (-3524 (($ (-1166)) 10) (($ (-544)) 7)) (-3558 (((-3 (-544) "failed") $) NIL)) (-3557 (((-544) $) NIL)) (-2943 (($ $ $) NIL)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-682 (-544)) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL)) (-3406 (((-112) $) NIL)) (-3405 (((-406 (-544)) $) NIL)) (-3377 (($) NIL) (($ $) NIL)) (-2942 (($ $ $) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2190 (($ $ $ $) NIL)) (-2198 (($ $ $) NIL)) (-3587 (((-112) $) NIL)) (-1440 (($ $ $) NIL)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL)) (-2545 (((-112) $) NIL)) (-3055 (((-112) $) NIL)) (-3848 (((-3 $ "failed") $) NIL)) (-3588 (((-112) $) NIL)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2191 (($ $ $ $) NIL)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-2194 (($ $) NIL)) (-4240 (($ $) NIL)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2189 (($ $ $) NIL)) (-3849 (($) NIL T CONST)) (-2196 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) NIL) (($ (-635 $)) NIL)) (-1438 (($ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-2195 (($ $) NIL)) (-3804 (($ $) NIL)) (-4377 (((-544) $) 16) (((-533) $) NIL) (((-883 (-544)) $) NIL) (((-377) $) NIL) (((-224) $) NIL) (($ (-1166)) 9)) (-4353 (((-857) $) 20) (($ (-544)) 6) (($ $) NIL) (($ (-544)) 6)) (-3511 (((-765)) NIL)) (-2199 (((-112) $ $) NIL)) (-3487 (($ $ $) NIL)) (-3076 (($) NIL)) (-2212 (((-112) $ $) NIL)) (-2193 (($ $ $ $) NIL)) (-3787 (($ $) NIL)) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL)) (-4244 (($ $) 19) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL))) -(((-1053) (-13 (-543) (-613 (-1166)) (-10 -8 (-6 -4387) (-6 -4392) (-6 -4388) (-15 -3524 ($ (-1166))) (-15 -3524 ($ (-544)))))) (T -1053)) -((-3524 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1053)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1053))))) -(-13 (-543) (-613 (-1166)) (-10 -8 (-6 -4387) (-6 -4392) (-6 -4388) (-15 -3524 ($ (-1166))) (-15 -3524 ($ (-544))))) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2344 (((-1259) $ (-1166) (-1166)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-3526 (($) 9)) (-4194 (((-51) $ (-1166) (-51)) NIL)) (-3534 (($ $) 30)) (-3537 (($ $) 28)) (-3538 (($ $) 27)) (-3536 (($ $) 29)) (-3533 (($ $) 32)) (-3532 (($ $) 33)) (-3539 (($ $) 26)) (-3535 (($ $) 31)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) 25 (|has| $ (-6 -4400)))) (-2353 (((-3 (-51) #1="failed") (-1166) $) 40)) (-4131 (($) NIL T CONST)) (-3540 (($) 7)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-3809 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) 50 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-3 (-51) #1#) (-1166) $) NIL)) (-3810 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400)))) (-3525 (((-3 (-1148) "failed") $ (-1148) (-544)) 59)) (-1665 (((-51) $ (-1166) (-51)) NIL (|has| $ (-6 -4401)))) (-3498 (((-51) $ (-1166)) NIL)) (-2096 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2554 (((-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) 35 (|has| $ (-6 -4400))) (((-635 (-51)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2347 (((-1166) $) NIL (|has| (-1166) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4401))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-2789 (((-635 (-1166)) $) NIL)) (-2354 (((-112) (-1166) $) NIL)) (-1356 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) 43)) (-2349 (((-635 (-1166)) $) NIL)) (-2350 (((-112) (-1166) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-3529 (((-377) $ (-1166)) 49)) (-3528 (((-635 (-1148)) $ (-1148)) 60)) (-4207 (((-51) $) NIL (|has| (-1166) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) "failed") (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL)) (-2345 (($ $ (-51)) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL (-12 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-308 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (($ $ (-635 (-51)) (-635 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-292 (-51))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091)))) (($ $ (-635 (-292 (-51)))) NIL (-12 (|has| (-51) (-308 (-51))) (|has| (-51) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091))))) (-2351 (((-635 (-51)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (((-51) $ (-1166)) NIL) (((-51) $ (-1166) (-51)) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-3527 (($ $ (-1166)) 51)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091)))) (((-765) (-51) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-51) (-1091)))) (((-765) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) 37)) (-4208 (($ $ $) 38)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-608 (-857))) (|has| (-51) (-608 (-857)))))) (-3531 (($ $ (-1166) (-377)) 47)) (-3530 (($ $ (-1166) (-377)) 48)) (-1358 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 (-1166)) (|:| -2226 (-51)))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-51) (-1091)) (|has| (-2 (|:| -4267 (-1166)) (|:| -2226 (-51))) (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1054) (-13 (-1181 (-1166) (-51)) (-10 -8 (-15 -4208 ($ $ $)) (-15 -3540 ($)) (-15 -3539 ($ $)) (-15 -3538 ($ $)) (-15 -3537 ($ $)) (-15 -3536 ($ $)) (-15 -3535 ($ $)) (-15 -3534 ($ $)) (-15 -3533 ($ $)) (-15 -3532 ($ $)) (-15 -3531 ($ $ (-1166) (-377))) (-15 -3530 ($ $ (-1166) (-377))) (-15 -3529 ((-377) $ (-1166))) (-15 -3528 ((-635 (-1148)) $ (-1148))) (-15 -3527 ($ $ (-1166))) (-15 -3526 ($)) (-15 -3525 ((-3 (-1148) "failed") $ (-1148) (-544))) (-6 -4400)))) (T -1054)) -((-4208 (*1 *1 *1 *1) (-5 *1 (-1054))) (-3540 (*1 *1) (-5 *1 (-1054))) (-3539 (*1 *1 *1) (-5 *1 (-1054))) (-3538 (*1 *1 *1) (-5 *1 (-1054))) (-3537 (*1 *1 *1) (-5 *1 (-1054))) (-3536 (*1 *1 *1) (-5 *1 (-1054))) (-3535 (*1 *1 *1) (-5 *1 (-1054))) (-3534 (*1 *1 *1) (-5 *1 (-1054))) (-3533 (*1 *1 *1) (-5 *1 (-1054))) (-3532 (*1 *1 *1) (-5 *1 (-1054))) (-3531 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-377)) (-5 *1 (-1054)))) (-3530 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-377)) (-5 *1 (-1054)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-377)) (-5 *1 (-1054)))) (-3528 (*1 *2 *1 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1054)) (-5 *3 (-1148)))) (-3527 (*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1054)))) (-3526 (*1 *1) (-5 *1 (-1054))) (-3525 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-1054))))) -(-13 (-1181 (-1166) (-51)) (-10 -8 (-15 -4208 ($ $ $)) (-15 -3540 ($)) (-15 -3539 ($ $)) (-15 -3538 ($ $)) (-15 -3537 ($ $)) (-15 -3536 ($ $)) (-15 -3535 ($ $)) (-15 -3534 ($ $)) (-15 -3533 ($ $)) (-15 -3532 ($ $)) (-15 -3531 ($ $ (-1166) (-377))) (-15 -3530 ($ $ (-1166) (-377))) (-15 -3529 ((-377) $ (-1166))) (-15 -3528 ((-635 (-1148)) $ (-1148))) (-15 -3527 ($ $ (-1166))) (-15 -3526 ($)) (-15 -3525 ((-3 (-1148) "failed") $ (-1148) (-544))) (-6 -4400))) -((-4203 (($ $) 45)) (-3567 (((-112) $ $) 74)) (-3558 (((-3 |#2| #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-939 (-406 (-544)))) 226) (((-3 $ "failed") (-939 (-544))) 225) (((-3 $ "failed") (-939 |#2|)) 228)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL) (((-544) $) NIL) ((|#4| $) NIL) (($ (-939 (-406 (-544)))) 214) (($ (-939 (-544))) 210) (($ (-939 |#2|)) 230)) (-4366 (($ $) NIL) (($ $ |#4|) 43)) (-4101 (((-112) $ $) 111) (((-112) $ (-635 $)) 112)) (-3573 (((-112) $) 56)) (-4159 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 106)) (-3544 (($ $) 137)) (-3555 (($ $) 133)) (-3556 (($ $) 132)) (-3566 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3565 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4102 (((-112) $ $) 120) (((-112) $ (-635 $)) 121)) (-3581 ((|#4| $) 33)) (-3560 (($ $ $) 109)) (-3574 (((-112) $) 55)) (-3580 (((-765) $) 35)) (-3541 (($ $) 151)) (-3542 (($ $) 148)) (-3569 (((-635 $) $) 68)) (-3572 (($ $) 57)) (-3543 (($ $) 144)) (-3570 (((-635 $) $) 65)) (-3571 (($ $) 59)) (-3575 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3559 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3880 (-765))) $ $) 110)) (-3561 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $) 107) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $ |#4|) 108)) (-3562 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $) 103) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $ |#4|) 104)) (-3564 (($ $ $) 89) (($ $ $ |#4|) 94)) (-3563 (($ $ $) 90) (($ $ $ |#4|) 95)) (-3577 (((-635 $) $) 51)) (-4098 (((-112) $ $) 117) (((-112) $ (-635 $)) 118)) (-4093 (($ $ $) 102)) (-3849 (($ $) 37)) (-4106 (((-112) $ $) 72)) (-4099 (((-112) $ $) 113) (((-112) $ (-635 $)) 115)) (-4094 (($ $ $) 100)) (-3579 (($ $) 40)) (-3545 ((|#2| |#2| $) 141) (($ (-635 $)) NIL) (($ $ $) NIL)) (-3553 (($ $ |#2|) NIL) (($ $ $) 130)) (-3554 (($ $ |#2|) 125) (($ $ $) 128)) (-3578 (($ $) 48)) (-3576 (($ $) 52)) (-4377 (((-883 (-377)) $) NIL) (((-883 (-544)) $) NIL) (((-533) $) NIL) (($ (-939 (-406 (-544)))) 216) (($ (-939 (-544))) 212) (($ (-939 |#2|)) 227) (((-1148) $) 249) (((-939 |#2|) $) 161)) (-4353 (((-857) $) 30) (($ (-544)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-939 |#2|) $) 162) (($ (-406 (-544))) NIL) (($ $) NIL)) (-3568 (((-3 (-112) "failed") $ $) 71))) -(((-1055 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 ((-939 |#2|) |#1|)) (-15 -4377 ((-939 |#2|) |#1|)) (-15 -4377 ((-1148) |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3542 (|#1| |#1|)) (-15 -3543 (|#1| |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -3545 (|#2| |#2| |#1|)) (-15 -3553 (|#1| |#1| |#1|)) (-15 -3554 (|#1| |#1| |#1|)) (-15 -3553 (|#1| |#1| |#2|)) (-15 -3554 (|#1| |#1| |#2|)) (-15 -3555 (|#1| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -4377 (|#1| (-939 |#2|))) (-15 -3557 (|#1| (-939 |#2|))) (-15 -3558 ((-3 |#1| "failed") (-939 |#2|))) (-15 -4377 (|#1| (-939 (-544)))) (-15 -3557 (|#1| (-939 (-544)))) (-15 -3558 ((-3 |#1| "failed") (-939 (-544)))) (-15 -4377 (|#1| (-939 (-406 (-544))))) (-15 -3557 (|#1| (-939 (-406 (-544))))) (-15 -3558 ((-3 |#1| "failed") (-939 (-406 (-544))))) (-15 -4093 (|#1| |#1| |#1|)) (-15 -4094 (|#1| |#1| |#1|)) (-15 -3559 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3880 (-765))) |#1| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -4159 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3562 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3562 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1| |#4|)) (-15 -3564 (|#1| |#1| |#1| |#4|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| |#1| |#4|)) (-15 -3566 (|#1| |#1| |#1| |#4|)) (-15 -3565 (|#1| |#1| |#1|)) (-15 -3566 (|#1| |#1| |#1|)) (-15 -4102 ((-112) |#1| (-635 |#1|))) (-15 -4102 ((-112) |#1| |#1|)) (-15 -4098 ((-112) |#1| (-635 |#1|))) (-15 -4098 ((-112) |#1| |#1|)) (-15 -4099 ((-112) |#1| (-635 |#1|))) (-15 -4099 ((-112) |#1| |#1|)) (-15 -4101 ((-112) |#1| (-635 |#1|))) (-15 -4101 ((-112) |#1| |#1|)) (-15 -3567 ((-112) |#1| |#1|)) (-15 -4106 ((-112) |#1| |#1|)) (-15 -3568 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3569 ((-635 |#1|) |#1|)) (-15 -3570 ((-635 |#1|) |#1|)) (-15 -3571 (|#1| |#1|)) (-15 -3572 (|#1| |#1|)) (-15 -3573 ((-112) |#1|)) (-15 -3574 ((-112) |#1|)) (-15 -4366 (|#1| |#1| |#4|)) (-15 -3575 (|#1| |#1| |#4|)) (-15 -3576 (|#1| |#1|)) (-15 -3577 ((-635 |#1|) |#1|)) (-15 -3578 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3580 ((-765) |#1|)) (-15 -3581 (|#4| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4353 (|#1| |#4|)) (-15 -3558 ((-3 |#4| #1="failed") |#1|)) (-15 -3557 (|#4| |#1|)) (-15 -3575 (|#2| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-1056 |#2| |#3| |#4|) (-1042) (-787) (-844)) (T -1055)) -NIL -(-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -3545 (|#1| |#1| |#1|)) (-15 -3545 (|#1| (-635 |#1|))) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 ((-939 |#2|) |#1|)) (-15 -4377 ((-939 |#2|) |#1|)) (-15 -4377 ((-1148) |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3542 (|#1| |#1|)) (-15 -3543 (|#1| |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -3545 (|#2| |#2| |#1|)) (-15 -3553 (|#1| |#1| |#1|)) (-15 -3554 (|#1| |#1| |#1|)) (-15 -3553 (|#1| |#1| |#2|)) (-15 -3554 (|#1| |#1| |#2|)) (-15 -3555 (|#1| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -4377 (|#1| (-939 |#2|))) (-15 -3557 (|#1| (-939 |#2|))) (-15 -3558 ((-3 |#1| "failed") (-939 |#2|))) (-15 -4377 (|#1| (-939 (-544)))) (-15 -3557 (|#1| (-939 (-544)))) (-15 -3558 ((-3 |#1| "failed") (-939 (-544)))) (-15 -4377 (|#1| (-939 (-406 (-544))))) (-15 -3557 (|#1| (-939 (-406 (-544))))) (-15 -3558 ((-3 |#1| "failed") (-939 (-406 (-544))))) (-15 -4093 (|#1| |#1| |#1|)) (-15 -4094 (|#1| |#1| |#1|)) (-15 -3559 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3880 (-765))) |#1| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -4159 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3561 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3562 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -3285 |#1|)) |#1| |#1| |#4|)) (-15 -3562 ((-2 (|:| -4361 |#1|) (|:| |gap| (-765)) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1| |#4|)) (-15 -3564 (|#1| |#1| |#1| |#4|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| |#1| |#4|)) (-15 -3566 (|#1| |#1| |#1| |#4|)) (-15 -3565 (|#1| |#1| |#1|)) (-15 -3566 (|#1| |#1| |#1|)) (-15 -4102 ((-112) |#1| (-635 |#1|))) (-15 -4102 ((-112) |#1| |#1|)) (-15 -4098 ((-112) |#1| (-635 |#1|))) (-15 -4098 ((-112) |#1| |#1|)) (-15 -4099 ((-112) |#1| (-635 |#1|))) (-15 -4099 ((-112) |#1| |#1|)) (-15 -4101 ((-112) |#1| (-635 |#1|))) (-15 -4101 ((-112) |#1| |#1|)) (-15 -3567 ((-112) |#1| |#1|)) (-15 -4106 ((-112) |#1| |#1|)) (-15 -3568 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3569 ((-635 |#1|) |#1|)) (-15 -3570 ((-635 |#1|) |#1|)) (-15 -3571 (|#1| |#1|)) (-15 -3572 (|#1| |#1|)) (-15 -3573 ((-112) |#1|)) (-15 -3574 ((-112) |#1|)) (-15 -4366 (|#1| |#1| |#4|)) (-15 -3575 (|#1| |#1| |#4|)) (-15 -3576 (|#1| |#1|)) (-15 -3577 ((-635 |#1|) |#1|)) (-15 -3578 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3580 ((-765) |#1|)) (-15 -3581 (|#4| |#1|)) (-15 -4377 ((-533) |#1|)) (-15 -4377 ((-883 (-544)) |#1|)) (-15 -4377 ((-883 (-377)) |#1|)) (-15 -4353 (|#1| |#4|)) (-15 -3558 ((-3 |#4| #1="failed") |#1|)) (-15 -3557 (|#4| |#1|)) (-15 -3575 (|#2| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 |#3|) $) 110)) (-3469 (((-1160 $) $ |#3|) 125) (((-1160 |#1|) $) 124)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2213 (($ $) 88 (|has| |#1| (-554)))) (-2211 (((-112) $) 90 (|has| |#1| (-554)))) (-3201 (((-765) $) 112) (((-765) $ (-635 |#3|)) 111)) (-4203 (($ $) 271)) (-3567 (((-112) $ $) 257)) (-1391 (((-3 $ "failed") $ $) 19)) (-4162 (($ $ $) 216 (|has| |#1| (-554)))) (-3549 (((-635 $) $ $) 211 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) 100 (|has| |#1| (-903)))) (-4181 (($ $) 98 (|has| |#1| (-450)))) (-4376 (((-404 $) $) 97 (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 103 (|has| |#1| (-903)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 164) (((-3 (-406 (-544)) #2#) $) 161 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) 159 (|has| |#1| (-1031 (-544)))) (((-3 |#3| #2#) $) 136) (((-3 $ "failed") (-939 (-406 (-544)))) 231 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))) (((-3 $ "failed") (-939 (-544))) 228 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166)))))) (((-3 $ "failed") (-939 |#1|)) 225 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-38 (-544)))) (|has| |#3| (-609 (-1166)))) (-12 (-3726 (|has| |#1| (-543))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (-3726 (|has| |#1| (-984 (-544)))) (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))))) (-3557 ((|#1| $) 163) (((-406 (-544)) $) 162 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 160 (|has| |#1| (-1031 (-544)))) ((|#3| $) 137) (($ (-939 (-406 (-544)))) 230 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))) (($ (-939 (-544))) 227 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166)))))) (($ (-939 |#1|)) 224 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (-3726 (|has| |#1| (-38 (-544)))) (|has| |#3| (-609 (-1166)))) (-12 (-3726 (|has| |#1| (-543))) (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (-3726 (|has| |#1| (-984 (-544)))) (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))))) (-4163 (($ $ $ |#3|) 108 (|has| |#1| (-171))) (($ $ $) 212 (|has| |#1| (-554)))) (-4366 (($ $) 154) (($ $ |#3|) 266)) (-2401 (((-682 (-544)) (-682 $)) 134 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-4101 (((-112) $ $) 256) (((-112) $ (-635 $)) 255)) (-3866 (((-3 $ "failed") $) 33)) (-3573 (((-112) $) 264)) (-4159 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 236)) (-3544 (($ $) 205 (|has| |#1| (-450)))) (-3902 (($ $) 176 (|has| |#1| (-450))) (($ $ |#3|) 105 (|has| |#1| (-450)))) (-3200 (((-635 $) $) 109)) (-4130 (((-112) $) 96 (|has| |#1| (-903)))) (-3555 (($ $) 221 (|has| |#1| (-554)))) (-3556 (($ $) 222 (|has| |#1| (-554)))) (-3566 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3565 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1749 (($ $ |#1| |#2| $) 172)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84 (-12 (|has| |#3| (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 83 (-12 (|has| |#3| (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 169)) (-4102 (((-112) $ $) 250) (((-112) $ (-635 $)) 249)) (-3546 (($ $ $ $ $) 207 (|has| |#1| (-554)))) (-3581 ((|#3| $) 275)) (-3470 (($ (-1160 |#1|) |#3|) 117) (($ (-1160 $) |#3|) 116)) (-3203 (((-635 $) $) 126)) (-4344 (((-112) $) 152)) (-3276 (($ |#1| |#2|) 153) (($ $ |#3| (-765)) 119) (($ $ (-635 |#3|) (-635 (-765))) 118)) (-3560 (($ $ $) 235)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) 120)) (-3574 (((-112) $) 265)) (-3202 ((|#2| $) 170) (((-765) $ |#3|) 122) (((-635 (-765)) $ (-635 |#3|)) 121)) (-2913 (($ $ $) 79 (|has| |#1| (-844)))) (-3580 (((-765) $) 274)) (-3242 (($ $ $) 78 (|has| |#1| (-844)))) (-1750 (($ (-1 |#2| |#2|) $) 171)) (-4365 (($ (-1 |#1| |#1|) $) 151)) (-3468 (((-3 |#3| #3="failed") $) 123)) (-3541 (($ $) 202 (|has| |#1| (-450)))) (-3542 (($ $) 203 (|has| |#1| (-450)))) (-3569 (((-635 $) $) 260)) (-3572 (($ $) 263)) (-3543 (($ $) 204 (|has| |#1| (-450)))) (-3570 (((-635 $) $) 261)) (-3571 (($ $) 262)) (-3277 (($ $) 149)) (-3575 ((|#1| $) 148) (($ $ |#3|) 267)) (-2041 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3559 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3880 (-765))) $ $) 234)) (-3561 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $) 238) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $ |#3|) 237)) (-3562 (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $) 240) (((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $ |#3|) 239)) (-3564 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3563 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3643 (((-1148) $) 9)) (-3591 (($ $ $) 210 (|has| |#1| (-554)))) (-3577 (((-635 $) $) 269)) (-3205 (((-3 (-635 $) #3#) $) 114)) (-3204 (((-3 (-635 $) #3#) $) 115)) (-3206 (((-3 (-2 (|:| |var| |#3|) (|:| -2536 (-765))) #3#) $) 113)) (-4098 (((-112) $ $) 252) (((-112) $ (-635 $)) 251)) (-4093 (($ $ $) 232)) (-3849 (($ $) 273)) (-4106 (((-112) $ $) 258)) (-4099 (((-112) $ $) 254) (((-112) $ (-635 $)) 253)) (-4094 (($ $ $) 233)) (-3579 (($ $) 272)) (-3644 (((-1110) $) 10)) (-3550 (((-2 (|:| -3545 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-554)))) (-3551 (((-2 (|:| -3545 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-554)))) (-1944 (((-112) $) 166)) (-1943 ((|#1| $) 167)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 95 (|has| |#1| (-450)))) (-3545 ((|#1| |#1| $) 206 (|has| |#1| (-450))) (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 102 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 101 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 99 (|has| |#1| (-903)))) (-3552 (((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-554)))) (-3865 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-3553 (($ $ |#1|) 219 (|has| |#1| (-554))) (($ $ $) 217 (|has| |#1| (-554)))) (-3554 (($ $ |#1|) 220 (|has| |#1| (-554))) (($ $ $) 218 (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) 145) (($ $ (-292 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-635 |#3|) (-635 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-635 |#3|) (-635 $)) 138)) (-4164 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4217 (($ $ |#3|) 42) (($ $ (-635 |#3|)) 41) (($ $ |#3| (-765)) 40) (($ $ (-635 |#3|) (-635 (-765))) 39)) (-4355 ((|#2| $) 150) (((-765) $ |#3|) 130) (((-635 (-765)) $ (-635 |#3|)) 129)) (-3578 (($ $) 270)) (-3576 (($ $) 268)) (-4377 (((-883 (-377)) $) 82 (-12 (|has| |#3| (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) 81 (-12 (|has| |#3| (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) 80 (-12 (|has| |#3| (-609 (-533))) (|has| |#1| (-609 (-533))))) (($ (-939 (-406 (-544)))) 229 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166))))) (($ (-939 (-544))) 226 (-3936 (-12 (-3726 (|has| |#1| (-38 (-406 (-544))))) (|has| |#1| (-38 (-544))) (|has| |#3| (-609 (-1166)))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#3| (-609 (-1166)))))) (($ (-939 |#1|)) 223 (|has| |#3| (-609 (-1166)))) (((-1148) $) 201 (-12 (|has| |#1| (-1031 (-544))) (|has| |#3| (-609 (-1166))))) (((-939 |#1|) $) 200 (|has| |#3| (-609 (-1166))))) (-3199 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ |#3|) 106 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 104 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-939 |#1|) $) 199 (|has| |#3| (-609 (-1166)))) (($ (-406 (-544))) 72 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544)))))) (($ $) 85 (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) 168)) (-4084 ((|#1| $ |#2|) 155) (($ $ |#3| (-765)) 128) (($ $ (-635 |#3|) (-635 (-765))) 127)) (-3084 (((-3 $ #1#) $) 73 (-3936 (-3240 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 89 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3568 (((-3 (-112) "failed") $ $) 259)) (-3046 (($) 30 T CONST)) (-3547 (($ $ $ $ (-765)) 208 (|has| |#1| (-554)))) (-3548 (($ $ $ (-765)) 209 (|has| |#1| (-554)))) (-3051 (($ $ |#3|) 38) (($ $ (-635 |#3|)) 37) (($ $ |#3| (-765)) 36) (($ $ (-635 |#3|) (-635 (-765))) 35)) (-2945 (((-112) $ $) 76 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 75 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 77 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 74 (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 157 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1056 |#1| |#2| |#3|) (-139) (-1042) (-787) (-844)) (T -1056)) -((-3581 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-765)))) (-3849 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3578 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3577 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3576 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3575 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-4366 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3572 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3571 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3570 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3569 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3568 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4106 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-3567 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4101 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4101 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-4099 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4099 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-4098 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-4102 (*1 *2 *1 *1) (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)))) (-4102 (*1 *2 *1 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) (-3566 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3565 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3566 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3565 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3564 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3563 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3564 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3563 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) (-3562 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -3285 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3562 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -3285 *1))) (-4 *1 (-1056 *4 *5 *3)))) (-3561 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3561 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1056 *4 *5 *3)))) (-4159 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3560 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3559 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3880 (-765)))) (-4 *1 (-1056 *3 *4 *5)))) (-4094 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-4093 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) (-3558 (*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)))) (-3558 (*1 *1 *2) (|partial| -3936 (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3557 (*1 *1 *2) (-3936 (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4377 (*1 *1 *2) (-3936 (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3558 (*1 *1 *2) (|partial| -3936 (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-3726 (-4 *3 (-38 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-543))) (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-984 (-544)))) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) (-3557 (*1 *1 *2) (-3936 (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-3726 (-4 *3 (-38 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-543))) (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) (-12 (-5 *2 (-939 *3)) (-12 (-3726 (-4 *3 (-984 (-544)))) (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *5 (-609 (-1166))) (-4 *4 (-787)) (-4 *5 (-844)))) (-3556 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3555 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3554 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3553 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3554 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3553 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-4162 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3552 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -3545 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3551 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -3545 *1) (|:| |coef1| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-3550 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-2 (|:| -3545 *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5)))) (-4163 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3549 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5)))) (-3591 (*1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3548 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-554)))) (-3547 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *3 (-554)))) (-3546 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-554)))) (-3545 (*1 *2 *2 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3544 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3543 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3542 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450)))) (-3541 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-450))))) -(-13 (-943 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3581 (|t#3| $)) (-15 -3580 ((-765) $)) (-15 -3849 ($ $)) (-15 -3579 ($ $)) (-15 -4203 ($ $)) (-15 -3578 ($ $)) (-15 -3577 ((-635 $) $)) (-15 -3576 ($ $)) (-15 -3575 ($ $ |t#3|)) (-15 -4366 ($ $ |t#3|)) (-15 -3574 ((-112) $)) (-15 -3573 ((-112) $)) (-15 -3572 ($ $)) (-15 -3571 ($ $)) (-15 -3570 ((-635 $) $)) (-15 -3569 ((-635 $) $)) (-15 -3568 ((-3 (-112) "failed") $ $)) (-15 -4106 ((-112) $ $)) (-15 -3567 ((-112) $ $)) (-15 -4101 ((-112) $ $)) (-15 -4101 ((-112) $ (-635 $))) (-15 -4099 ((-112) $ $)) (-15 -4099 ((-112) $ (-635 $))) (-15 -4098 ((-112) $ $)) (-15 -4098 ((-112) $ (-635 $))) (-15 -4102 ((-112) $ $)) (-15 -4102 ((-112) $ (-635 $))) (-15 -3566 ($ $ $)) (-15 -3565 ($ $ $)) (-15 -3566 ($ $ $ |t#3|)) (-15 -3565 ($ $ $ |t#3|)) (-15 -3564 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3564 ($ $ $ |t#3|)) (-15 -3563 ($ $ $ |t#3|)) (-15 -3562 ((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $)) (-15 -3562 ((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -3285 $)) $ $ |t#3|)) (-15 -3561 ((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -3561 ((-2 (|:| -4361 $) (|:| |gap| (-765)) (|:| -2124 $) (|:| -3285 $)) $ $ |t#3|)) (-15 -4159 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -3560 ($ $ $)) (-15 -3559 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3880 (-765))) $ $)) (-15 -4094 ($ $ $)) (-15 -4093 ($ $ $)) (IF (|has| |t#3| (-609 (-1166))) (PROGN (-6 (-608 (-939 |t#1|))) (-6 (-609 (-939 |t#1|))) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -3558 ((-3 $ "failed") (-939 (-406 (-544))))) (-15 -3557 ($ (-939 (-406 (-544))))) (-15 -4377 ($ (-939 (-406 (-544))))) (-15 -3558 ((-3 $ "failed") (-939 (-544)))) (-15 -3557 ($ (-939 (-544)))) (-15 -4377 ($ (-939 (-544)))) (IF (|has| |t#1| (-984 (-544))) |%noBranch| (PROGN (-15 -3558 ((-3 $ "failed") (-939 |t#1|))) (-15 -3557 ($ (-939 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-544))) (IF (|has| |t#1| (-38 (-406 (-544)))) |%noBranch| (PROGN (-15 -3558 ((-3 $ "failed") (-939 (-544)))) (-15 -3557 ($ (-939 (-544)))) (-15 -4377 ($ (-939 (-544)))) (IF (|has| |t#1| (-543)) |%noBranch| (PROGN (-15 -3558 ((-3 $ "failed") (-939 |t#1|))) (-15 -3557 ($ (-939 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-544))) |%noBranch| (IF (|has| |t#1| (-38 (-406 (-544)))) |%noBranch| (PROGN (-15 -3558 ((-3 $ "failed") (-939 |t#1|))) (-15 -3557 ($ (-939 |t#1|)))))) (-15 -4377 ($ (-939 |t#1|))) (IF (|has| |t#1| (-1031 (-544))) (-6 (-609 (-1148))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -3556 ($ $)) (-15 -3555 ($ $)) (-15 -3554 ($ $ |t#1|)) (-15 -3553 ($ $ |t#1|)) (-15 -3554 ($ $ $)) (-15 -3553 ($ $ $)) (-15 -4162 ($ $ $)) (-15 -3552 ((-2 (|:| -3545 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3551 ((-2 (|:| -3545 $) (|:| |coef1| $)) $ $)) (-15 -3550 ((-2 (|:| -3545 $) (|:| |coef2| $)) $ $)) (-15 -4163 ($ $ $)) (-15 -3549 ((-635 $) $ $)) (-15 -3591 ($ $ $)) (-15 -3548 ($ $ $ (-765))) (-15 -3547 ($ $ $ $ (-765))) (-15 -3546 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (PROGN (-15 -3545 (|t#1| |t#1| $)) (-15 -3544 ($ $)) (-15 -3543 ($ $)) (-15 -3542 ($ $)) (-15 -3541 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 |#3|) . T) ((-611 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-608 (-857)) . T) ((-608 (-939 |#1|)) |has| |#3| (-609 (-1166))) ((-171) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-609 (-533)) -12 (|has| |#1| (-609 (-533))) (|has| |#3| (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#3| (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#3| (-609 (-883 (-544))))) ((-609 (-939 |#1|)) |has| |#3| (-609 (-1166))) ((-609 (-1148)) -12 (|has| |#1| (-1031 (-544))) (|has| |#3| (-609 (-1166)))) ((-289) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-903)) (|has| |#1| (-450))) ((-512 |#3| |#1|) . T) ((-512 |#3| $) . T) ((-512 $ $) . T) ((-554) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 |#3|) . T) ((-879 (-377)) -12 (|has| |#1| (-879 (-377))) (|has| |#3| (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-879 (-544))) (|has| |#3| (-879 (-544)))) ((-943 |#1| |#2| |#3|) . T) ((-903) |has| |#1| (-903)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 |#1|) . T) ((-1031 |#3|) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) |has| |#1| (-903))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3582 (((-635 (-1125)) $) 13)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 24) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-1125) $) 15)) (-3437 (((-112) $ $) NIL))) -(((-1057) (-13 (-1073) (-10 -8 (-15 -3582 ((-635 (-1125)) $)) (-15 -3634 ((-1125) $))))) (T -1057)) -((-3582 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1057)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1057))))) -(-13 (-1073) (-10 -8 (-15 -3582 ((-635 (-1125)) $)) (-15 -3634 ((-1125) $)))) -((-3589 (((-112) |#3| $) 13)) (-3584 (((-3 $ "failed") |#3| (-912)) 23)) (-3866 (((-3 |#3| "failed") |#3| $) 38)) (-3587 (((-112) |#3| $) 16)) (-3588 (((-112) |#3| $) 14))) -(((-1058 |#1| |#2| |#3|) (-10 -8 (-15 -3584 ((-3 |#1| "failed") |#3| (-912))) (-15 -3866 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3587 ((-112) |#3| |#1|)) (-15 -3588 ((-112) |#3| |#1|)) (-15 -3589 ((-112) |#3| |#1|))) (-1059 |#2| |#3|) (-13 (-842) (-362)) (-1229 |#2|)) (T -1058)) -NIL -(-10 -8 (-15 -3584 ((-3 |#1| "failed") |#3| (-912))) (-15 -3866 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3587 ((-112) |#3| |#1|)) (-15 -3588 ((-112) |#3| |#1|)) (-15 -3589 ((-112) |#3| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) |#2| $) 21)) (-4030 (((-544) |#2| $) 22)) (-3584 (((-3 $ "failed") |#2| (-912)) 15)) (-3583 ((|#1| |#2| $ |#1|) 13)) (-3866 (((-3 |#2| "failed") |#2| $) 18)) (-3587 (((-112) |#2| $) 19)) (-3588 (((-112) |#2| $) 20)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3586 ((|#2| $) 17)) (-4353 (((-857) $) 11)) (-4176 ((|#1| |#2| $ |#1|) 14)) (-3585 (((-635 $) |#2|) 16)) (-3437 (((-112) $ $) 6))) -(((-1059 |#1| |#2|) (-139) (-13 (-842) (-362)) (-1229 |t#1|)) (T -1059)) -((-4030 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-544)))) (-3589 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-112)))) (-3588 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-112)))) (-3587 (*1 *2 *3 *1) (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-112)))) (-3866 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1229 *3)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1229 *3)))) (-3585 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-635 *1)) (-4 *1 (-1059 *4 *3)))) (-3584 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-912)) (-4 *4 (-13 (-842) (-362))) (-4 *1 (-1059 *4 *2)) (-4 *2 (-1229 *4)))) (-4176 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2)))) (-3583 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2))))) -(-13 (-1091) (-10 -8 (-15 -4030 ((-544) |t#2| $)) (-15 -3589 ((-112) |t#2| $)) (-15 -3588 ((-112) |t#2| $)) (-15 -3587 ((-112) |t#2| $)) (-15 -3866 ((-3 |t#2| "failed") |t#2| $)) (-15 -3586 (|t#2| $)) (-15 -3585 ((-635 $) |t#2|)) (-15 -3584 ((-3 $ "failed") |t#2| (-912))) (-15 -4176 (|t#1| |t#2| $ |t#1|)) (-15 -3583 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-3840 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765)) 95)) (-3837 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765)) 56)) (-3841 (((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)) 87)) (-3835 (((-765) (-635 |#4|) (-635 |#5|)) 27)) (-3838 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765)) 58) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112)) 60)) (-3839 (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112)) 79)) (-4377 (((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) 82)) (-3836 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-112)) 55)) (-3834 (((-765) (-635 |#4|) (-635 |#5|)) 19))) -(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3834 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3835 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3836 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-112))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765))) (-15 -4377 ((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3841 ((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1060)) -((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3840 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-635 *11)) (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -1688 *11)))))) (-5 *6 (-765)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -1688 *11)))) (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1056 *7 *8 *9)) (-4 *11 (-1062 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-3839 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3839 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3838 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3838 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1062 *7 *8 *9 *3)))) (-3837 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3836 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3835 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3834 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3835 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3836 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-112))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765))) (-15 -4377 ((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3841 ((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)))) -((-3598 (((-112) |#5| $) 20)) (-3596 (((-112) |#5| $) 23)) (-3599 (((-112) |#5| $) 16) (((-112) $) 44)) (-3639 (((-635 $) |#5| $) NIL) (((-635 $) (-635 |#5|) $) 76) (((-635 $) (-635 |#5|) (-635 $)) 74) (((-635 $) |#5| (-635 $)) 77)) (-4175 (($ $ |#5|) NIL) (((-635 $) |#5| $) NIL) (((-635 $) |#5| (-635 $)) 59) (((-635 $) (-635 |#5|) $) 61) (((-635 $) (-635 |#5|) (-635 $)) 63)) (-3590 (((-635 $) |#5| $) NIL) (((-635 $) |#5| (-635 $)) 53) (((-635 $) (-635 |#5|) $) 55) (((-635 $) (-635 |#5|) (-635 $)) 57)) (-3597 (((-112) |#5| $) 26))) -(((-1061 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4175 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -4175 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -4175 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -4175 ((-635 |#1|) |#5| |#1|)) (-15 -3590 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3590 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3590 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3590 ((-635 |#1|) |#5| |#1|)) (-15 -3639 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3639 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3639 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3639 ((-635 |#1|) |#5| |#1|)) (-15 -3596 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#1|)) (-15 -3597 ((-112) |#5| |#1|)) (-15 -3598 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#5| |#1|)) (-15 -4175 (|#1| |#1| |#5|))) (-1062 |#2| |#3| |#4| |#5|) (-450) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -1061)) -NIL -(-10 -8 (-15 -4175 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -4175 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -4175 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -4175 ((-635 |#1|) |#5| |#1|)) (-15 -3590 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3590 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3590 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3590 ((-635 |#1|) |#5| |#1|)) (-15 -3639 ((-635 |#1|) |#5| (-635 |#1|))) (-15 -3639 ((-635 |#1|) (-635 |#5|) (-635 |#1|))) (-15 -3639 ((-635 |#1|) (-635 |#5|) |#1|)) (-15 -3639 ((-635 |#1|) |#5| |#1|)) (-15 -3596 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#1|)) (-15 -3597 ((-112) |#5| |#1|)) (-15 -3598 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#5| |#1|)) (-15 -4175 (|#1| |#1| |#5|))) -((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 126)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ #1#) $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-3598 (((-112) |#4| $) 136)) (-3596 (((-112) |#4| $) 133)) (-3599 (((-112) |#4| $) 137) (((-112) $) 134)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 127)) (-4204 (((-3 |#4| #1#) $) 83)) (-3593 (((-635 $) |#4| $) 129)) (-3595 (((-3 (-112) (-635 $)) |#4| $) 132)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3639 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3844 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| #1#) $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ #1#) $ |#4|) 78)) (-4175 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3590 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-3597 (((-112) |#4| $) 135)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400))))) -(((-1062 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1062)) -((-3599 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3598 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3597 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-3596 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3595 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 (-112) (-635 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3594 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3594 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-3593 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3592 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-3 *3 (-635 *1))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3591 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-4181 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *1)))) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3639 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3639 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-3639 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-3639 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-3590 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-3590 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-3590 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-3590 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-3844 (*1 *1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-635 *6)) (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)))) (-4175 (*1 *2 *3 *1) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) (-4175 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) (-4175 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) (-4175 (*1 *2 *3 *2) (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *5 *6 *7 *8))))) -(-13 (-1199 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3599 ((-112) |t#4| $)) (-15 -3598 ((-112) |t#4| $)) (-15 -3597 ((-112) |t#4| $)) (-15 -3599 ((-112) $)) (-15 -3596 ((-112) |t#4| $)) (-15 -3595 ((-3 (-112) (-635 $)) |t#4| $)) (-15 -3594 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |t#4| $)) (-15 -3594 ((-112) |t#4| $)) (-15 -3593 ((-635 $) |t#4| $)) (-15 -3592 ((-3 |t#4| (-635 $)) |t#4| |t#4| $)) (-15 -3591 ((-635 (-2 (|:| |val| |t#4|) (|:| -1688 $))) |t#4| |t#4| $)) (-15 -4181 ((-635 (-2 (|:| |val| |t#4|) (|:| -1688 $))) |t#4| $)) (-15 -3639 ((-635 $) |t#4| $)) (-15 -3639 ((-635 $) (-635 |t#4|) $)) (-15 -3639 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -3639 ((-635 $) |t#4| (-635 $))) (-15 -3590 ((-635 $) |t#4| $)) (-15 -3590 ((-635 $) |t#4| (-635 $))) (-15 -3590 ((-635 $) (-635 |t#4|) $)) (-15 -3590 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -3844 ($ |t#4| $)) (-15 -3844 ($ (-635 |t#4|) $)) (-15 -4175 ((-635 $) |t#4| $)) (-15 -4175 ((-635 $) |t#4| (-635 $))) (-15 -4175 ((-635 $) (-635 |t#4|) $)) (-15 -4175 ((-635 $) (-635 |t#4|) (-635 $))) (-15 -4089 ((-635 $) (-635 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1199 |#1| |#2| |#3| |#4|) . T) ((-1204) . T)) -((-3606 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|) 81)) (-3603 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|) 112)) (-3605 (((-635 |#5|) |#4| |#5|) 70)) (-3604 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3688 (((-1259)) 37)) (-3686 (((-1259)) 26)) (-3687 (((-1259) (-1148) (-1148) (-1148)) 33)) (-3685 (((-1259) (-1148) (-1148) (-1148)) 22)) (-3600 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|) 95)) (-3601 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112)) 106) (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3602 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|) 101))) -(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3685 ((-1259) (-1148) (-1148) (-1148))) (-15 -3686 ((-1259))) (-15 -3687 ((-1259) (-1148) (-1148) (-1148))) (-15 -3688 ((-1259))) (-15 -3600 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3601 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3601 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112))) (-15 -3602 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3603 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3604 ((-112) |#4| |#5|)) (-15 -3604 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3605 ((-635 |#5|) |#4| |#5|)) (-15 -3606 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1063)) -((-3606 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3605 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3604 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3604 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3603 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3602 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844)) (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -1688 *9)))) (-5 *1 (-1063 *6 *7 *4 *8 *9)))) (-3601 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3600 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3688 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3687 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3686 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))) -(-10 -7 (-15 -3685 ((-1259) (-1148) (-1148) (-1148))) (-15 -3686 ((-1259))) (-15 -3687 ((-1259) (-1148) (-1148) (-1148))) (-15 -3688 ((-1259))) (-15 -3600 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3601 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3601 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112))) (-15 -3602 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3603 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3604 ((-112) |#4| |#5|)) (-15 -3604 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3605 ((-635 |#5|) |#4| |#5|)) (-15 -3606 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|))) -((-2947 (((-112) $ $) NIL)) (-3719 (((-1205) $) 13)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3607 (((-1125) $) 10)) (-4353 (((-857) $) 22) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-1064) (-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $))))) (T -1064)) -((-3607 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1064)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1064))))) -(-13 (-1073) (-10 -8 (-15 -3607 ((-1125) $)) (-15 -3719 ((-1205) $)))) -((-2947 (((-112) $ $) NIL)) (-3610 (($ $ (-635 (-1166)) (-1 (-112) (-635 |#3|))) 33)) (-3611 (($ |#3| |#3|) 22) (($ |#3| |#3| (-635 (-1166))) 20)) (-3927 ((|#3| $) 13)) (-3558 (((-3 (-292 |#3|) "failed") $) 58)) (-3557 (((-292 |#3|) $) NIL)) (-3608 (((-635 (-1166)) $) 16)) (-3609 (((-883 |#1|) $) 11)) (-3928 ((|#3| $) 12)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4206 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-912)) 39)) (-4353 (((-857) $) 86) (($ (-292 |#3|)) 21)) (-3437 (((-112) $ $) 36))) -(((-1065 |#1| |#2| |#3|) (-13 (-1091) (-285 |#3| |#3|) (-1031 (-292 |#3|)) (-10 -8 (-15 -3611 ($ |#3| |#3|)) (-15 -3611 ($ |#3| |#3| (-635 (-1166)))) (-15 -3610 ($ $ (-635 (-1166)) (-1 (-112) (-635 |#3|)))) (-15 -3609 ((-883 |#1|) $)) (-15 -3928 (|#3| $)) (-15 -3927 (|#3| $)) (-15 -4206 (|#3| $ |#3| (-912))) (-15 -3608 ((-635 (-1166)) $)))) (-1091) (-13 (-1042) (-879 |#1|) (-844) (-609 (-883 |#1|))) (-13 (-420 |#2|) (-879 |#1|) (-609 (-883 |#1|)))) (T -1065)) -((-3611 (*1 *1 *2 *2) (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) (-5 *1 (-1065 *3 *4 *2)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))))) (-3611 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-1065 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))) (-3610 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-1 (-112) (-635 *6))) (-4 *6 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-1065 *4 *5 *6)))) (-3609 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 *2))) (-5 *2 (-883 *3)) (-5 *1 (-1065 *3 *4 *5)) (-4 *5 (-13 (-420 *4) (-879 *3) (-609 *2))))) (-3928 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))) (-5 *1 (-1065 *3 *4 *2)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))))) (-3927 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))) (-5 *1 (-1065 *3 *4 *2)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))))) (-4206 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-912)) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-1065 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))) (-3608 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) (-5 *2 (-635 (-1166))) (-5 *1 (-1065 *3 *4 *5)) (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3))))))) -(-13 (-1091) (-285 |#3| |#3|) (-1031 (-292 |#3|)) (-10 -8 (-15 -3611 ($ |#3| |#3|)) (-15 -3611 ($ |#3| |#3| (-635 (-1166)))) (-15 -3610 ($ $ (-635 (-1166)) (-1 (-112) (-635 |#3|)))) (-15 -3609 ((-883 |#1|) $)) (-15 -3928 (|#3| $)) (-15 -3927 (|#3| $)) (-15 -4206 (|#3| $ |#3| (-912))) (-15 -3608 ((-635 (-1166)) $)))) -((-2947 (((-112) $ $) NIL)) (-3949 (((-1166) $) 8)) (-3643 (((-1148) $) 16)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 13))) -(((-1066 |#1|) (-13 (-1091) (-10 -8 (-15 -3949 ((-1166) $)))) (-1166)) (T -1066)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1066 *3)) (-14 *3 *2)))) -(-13 (-1091) (-10 -8 (-15 -3949 ((-1166) $)))) -((-2947 (((-112) $ $) NIL)) (-3613 (($ (-635 (-1065 |#1| |#2| |#3|))) 13)) (-3612 (((-635 (-1065 |#1| |#2| |#3|)) $) 20)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4206 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-912)) 26)) (-4353 (((-857) $) 16)) (-3437 (((-112) $ $) 19))) -(((-1067 |#1| |#2| |#3|) (-13 (-1091) (-285 |#3| |#3|) (-10 -8 (-15 -3613 ($ (-635 (-1065 |#1| |#2| |#3|)))) (-15 -3612 ((-635 (-1065 |#1| |#2| |#3|)) $)) (-15 -4206 (|#3| $ |#3| (-912))))) (-1091) (-13 (-1042) (-879 |#1|) (-844) (-609 (-883 |#1|))) (-13 (-420 |#2|) (-879 |#1|) (-609 (-883 |#1|)))) (T -1067)) -((-3613 (*1 *1 *2) (-12 (-5 *2 (-635 (-1065 *3 *4 *5))) (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))) (-5 *1 (-1067 *3 *4 *5)))) (-3612 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) (-5 *2 (-635 (-1065 *3 *4 *5))) (-5 *1 (-1067 *3 *4 *5)) (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))))) (-4206 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-912)) (-4 *4 (-1091)) (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) (-5 *1 (-1067 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4))))))) -(-13 (-1091) (-285 |#3| |#3|) (-10 -8 (-15 -3613 ($ (-635 (-1065 |#1| |#2| |#3|)))) (-15 -3612 ((-635 (-1065 |#1| |#2| |#3|)) $)) (-15 -4206 (|#3| $ |#3| (-912))))) -((-3614 (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112)) 74) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|))) 76) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112)) 75))) -(((-1068 |#1| |#2|) (-10 -7 (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112))) (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112)))) (-13 (-306) (-146)) (-635 (-1166))) (T -1068)) -((-3614 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1068 *5 *6)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4)))))) (-5 *1 (-1068 *4 *5)) (-5 *3 (-635 (-939 *4))) (-14 *5 (-635 (-1166))))) (-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1068 *5 *6)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166)))))) -(-10 -7 (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112))) (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -3614 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 126)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-362)))) (-2213 (($ $) NIL (|has| |#1| (-362)))) (-2211 (((-112) $) NIL (|has| |#1| (-362)))) (-1929 (((-682 |#1|) (-1253 $)) NIL) (((-682 |#1|)) 115)) (-3734 ((|#1| $) 119)) (-1819 (((-1177 (-912) (-765)) (-544)) NIL (|has| |#1| (-349)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3521 (((-765)) 40 (|has| |#1| (-367)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-1939 (($ (-1253 |#1|) (-1253 $)) NIL) (($ (-1253 |#1|)) 43)) (-1817 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-1928 (((-682 |#1|) $ (-1253 $)) NIL) (((-682 |#1|) $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 106) (((-682 |#1|) (-682 $)) 101)) (-4249 (($ |#2|) 61) (((-3 $ "failed") (-406 |#2|)) NIL (|has| |#1| (-362)))) (-3866 (((-3 $ "failed") $) NIL)) (-3494 (((-912)) 77)) (-3377 (($) 44 (|has| |#1| (-367)))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3215 (($) NIL (|has| |#1| (-349)))) (-1824 (((-112) $) NIL (|has| |#1| (-349)))) (-1914 (($ $ (-765)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-4178 (((-912) $) NIL (|has| |#1| (-349))) (((-826 (-912)) $) NIL (|has| |#1| (-349)))) (-2545 (((-112) $) NIL)) (-3517 ((|#1| $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-2164 ((|#2| $) 84 (|has| |#1| (-362)))) (-2160 (((-912) $) 130 (|has| |#1| (-367)))) (-3463 ((|#2| $) 58)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-3849 (($) NIL (|has| |#1| (-349)) CONST)) (-2535 (($ (-912)) 125 (|has| |#1| (-367)))) (-3644 (((-1110) $) NIL)) (-2544 (($) 121)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1820 (((-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544))))) NIL (|has| |#1| (-349)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4164 ((|#1| (-1253 $)) NIL) ((|#1|) 109)) (-1915 (((-765) $) NIL (|has| |#1| (-349))) (((-3 (-765) "failed") $ $) NIL (|has| |#1| (-349)))) (-4217 (($ $) NIL (-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-765)) NIL (-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1 |#1| |#1|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2543 (((-682 |#1|) (-1253 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3586 ((|#2|) 73)) (-1818 (($) NIL (|has| |#1| (-349)))) (-3625 (((-1253 |#1|) $ (-1253 $)) 89) (((-682 |#1|) (-1253 $) (-1253 $)) NIL) (((-1253 |#1|) $) 71) (((-682 |#1|) (-1253 $)) 85)) (-4377 (((-1253 |#1|) $) NIL) (($ (-1253 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3085 (((-3 (-1253 $) "failed") (-682 $)) NIL (|has| |#1| (-349)))) (-4353 (((-857) $) 57) (($ (-544)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-362))) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-362)) (|has| |#1| (-1031 (-406 (-544))))))) (-3084 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2743 ((|#2| $) 82)) (-3511 (((-765)) 75)) (-2162 (((-1253 $)) 81)) (-2212 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3040 (($) 30 T CONST)) (-3046 (($) 19 T CONST)) (-3051 (($ $) NIL (-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-765)) NIL (-3936 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-349)))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-893 (-1166))))) (($ $ (-1 |#1| |#1|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3437 (((-112) $ $) 63)) (-4356 (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) 67) (($ $ $) NIL)) (-4246 (($ $ $) 65)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-406 (-544)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-544))) NIL (|has| |#1| (-362))))) -(((-1069 |#1| |#2| |#3|) (-718 |#1| |#2|) (-171) (-1229 |#1|) |#2|) (T -1069)) -NIL -(-718 |#1| |#2|) -((-4139 (((-404 |#3|) |#3|) 18))) -(((-1070 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-404 |#3|) |#3|))) (-1229 (-406 (-544))) (-13 (-362) (-146) (-718 (-406 (-544)) |#1|)) (-1229 |#2|)) (T -1070)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-13 (-362) (-146) (-718 (-406 (-544)) *4))) (-5 *2 (-404 *3)) (-5 *1 (-1070 *4 *5 *3)) (-4 *3 (-1229 *5))))) -(-10 -7 (-15 -4139 ((-404 |#3|) |#3|))) -((-4139 (((-404 |#3|) |#3|) 19))) -(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-404 |#3|) |#3|))) (-1229 (-406 (-939 (-544)))) (-13 (-362) (-146) (-718 (-406 (-939 (-544))) |#1|)) (-1229 |#2|)) (T -1071)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-1229 (-406 (-939 (-544))))) (-4 *5 (-13 (-362) (-146) (-718 (-406 (-939 (-544))) *4))) (-5 *2 (-404 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1229 *5))))) -(-10 -7 (-15 -4139 ((-404 |#3|) |#3|))) -((-2947 (((-112) $ $) NIL)) (-2913 (($ $ $) 14)) (-3242 (($ $ $) 15)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3615 (($) 6)) (-4377 (((-1166) $) 18)) (-4353 (((-857) $) 12)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 13)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 8))) -(((-1072) (-13 (-844) (-609 (-1166)) (-10 -8 (-15 -3615 ($))))) (T -1072)) -((-3615 (*1 *1) (-5 *1 (-1072)))) -(-13 (-844) (-609 (-1166)) (-10 -8 (-15 -3615 ($)))) -((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-3437 (((-112) $ $) 6))) -(((-1073) (-139)) (T -1073)) +NIL +(-13 (-21) (-1104)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1104) . T) ((-1092) . T)) +((-2557 (($ $) 16)) (-4103 (($ $) 22)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 49)) (-2247 (($ $) 24)) (-2736 (($ $) 11)) (-4014 (($ $) 38)) (-4208 (((-378) $) NIL) (((-224) $) NIL) (((-887 (-378)) $) 33)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 28) (($ (-562)) NIL) (($ (-406 (-562))) 28)) (-2579 (((-766)) 8)) (-2604 (($ $) 39))) +(((-1052 |#1|) (-10 -8 (-15 -4103 (|#1| |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2533 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| (-562))) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| |#1|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) (-1053)) (T -1052)) +((-2579 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1052 *3)) (-4 *3 (-1053))))) +(-10 -8 (-15 -4103 (|#1| |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2533 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| (-562))) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| |#1|)) (-15 -2579 ((-766))) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-4246 (((-562) $) 90)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-2557 (($ $) 88)) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-1643 (($ $) 98)) (-2569 (((-112) $ $) 60)) (-2277 (((-562) $) 115)) (-1800 (($) 17 T CONST)) (-4103 (($ $) 87)) (-4048 (((-3 (-562) "failed") $) 103) (((-3 (-406 (-562)) "failed") $) 100)) (-3961 (((-562) $) 104) (((-406 (-562)) $) 101)) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-2717 (((-112) $) 72)) (-3519 (((-112) $) 113)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 94)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 97)) (-2247 (($ $) 93)) (-3392 (((-112) $) 114)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1551 (($ $ $) 112)) (-2993 (($ $ $) 111)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-2736 (($ $) 89)) (-4014 (($ $) 91)) (-1635 (((-417 $) $) 75)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-4208 (((-378) $) 106) (((-224) $) 105) (((-887 (-378)) $) 95)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ (-562)) 102) (($ (-406 (-562))) 99)) (-2579 (((-766)) 28)) (-2604 (($ $) 92)) (-2922 (((-112) $ $) 40)) (-3526 (($ $) 116)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 109)) (-1772 (((-112) $ $) 108)) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 110)) (-1759 (((-112) $ $) 107)) (-1859 (($ $ $) 66)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70) (($ $ (-406 (-562))) 96)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) +(((-1053) (-139)) (T -1053)) +((-3526 (*1 *1 *1) (-4 *1 (-1053))) (-2247 (*1 *1 *1) (-4 *1 (-1053))) (-2604 (*1 *1 *1) (-4 *1 (-1053))) (-4014 (*1 *1 *1) (-4 *1 (-1053))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-562)))) (-2736 (*1 *1 *1) (-4 *1 (-1053))) (-2557 (*1 *1 *1) (-4 *1 (-1053))) (-4103 (*1 *1 *1) (-4 *1 (-1053)))) +(-13 (-362) (-843) (-1017) (-1033 (-562)) (-1033 (-406 (-562))) (-997) (-610 (-887 (-378))) (-881 (-378)) (-146) (-10 -8 (-15 -2247 ($ $)) (-15 -2604 ($ $)) (-15 -4014 ($ $)) (-15 -4246 ((-562) $)) (-15 -2736 ($ $)) (-15 -2557 ($ $)) (-15 -4103 ($ $)) (-15 -3526 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-610 (-224)) . T) ((-610 (-378)) . T) ((-610 (-887 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-843) . T) ((-845) . T) ((-881 (-378)) . T) ((-915) . T) ((-997) . T) ((-1017) . T) ((-1033 (-406 (-562))) . T) ((-1033 (-562)) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) |#2| $) 23)) (-1382 ((|#1| $) 10)) (-2277 (((-562) |#2| $) 87)) (-1502 (((-3 $ "failed") |#2| (-916)) 57)) (-1602 ((|#1| $) 28)) (-3104 ((|#1| |#2| $ |#1|) 37)) (-3528 (($ $) 25)) (-3668 (((-3 |#2| "failed") |#2| $) 86)) (-3519 (((-112) |#2| $) NIL)) (-3392 (((-112) |#2| $) NIL)) (-3800 (((-112) |#2| $) 24)) (-3654 ((|#1| $) 88)) (-1588 ((|#1| $) 27)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2096 ((|#2| $) 78)) (-4054 (((-857) $) 70)) (-1406 ((|#1| |#2| $ |#1|) 38)) (-3318 (((-639 $) |#2|) 59)) (-1731 (((-112) $ $) 73))) +(((-1054 |#1| |#2|) (-13 (-1061 |#1| |#2|) (-10 -8 (-15 -1588 (|#1| $)) (-15 -1602 (|#1| $)) (-15 -1382 (|#1| $)) (-15 -3654 (|#1| $)) (-15 -3528 ($ $)) (-15 -3800 ((-112) |#2| $)) (-15 -3104 (|#1| |#2| $ |#1|)))) (-13 (-843) (-362)) (-1232 |#1|)) (T -1054)) +((-3104 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-1588 (*1 *2 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-1602 (*1 *2 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-1382 (*1 *2 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-3654 (*1 *2 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-3528 (*1 *1 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-3800 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-843) (-362))) (-5 *2 (-112)) (-5 *1 (-1054 *4 *3)) (-4 *3 (-1232 *4))))) +(-13 (-1061 |#1| |#2|) (-10 -8 (-15 -1588 (|#1| $)) (-15 -1602 (|#1| $)) (-15 -1382 (|#1| $)) (-15 -3654 (|#1| $)) (-15 -3528 ($ $)) (-15 -3800 ((-112) |#2| $)) (-15 -3104 (|#1| |#2| $ |#1|)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-1685 (($ $ $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-4375 (($ $ $ $) NIL)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-2277 (((-562) $) NIL)) (-3358 (($ $ $) NIL)) (-1800 (($) NIL T CONST)) (-2614 (($ (-1168)) 10) (($ (-562)) 7)) (-4048 (((-3 (-562) "failed") $) NIL)) (-3961 (((-562) $) NIL)) (-1811 (($ $ $) NIL)) (-2406 (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1726 (((-3 (-406 (-562)) "failed") $) NIL)) (-3035 (((-112) $) NIL)) (-1291 (((-406 (-562)) $) NIL)) (-1448 (($) NIL) (($ $) NIL)) (-1787 (($ $ $) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3854 (($ $ $ $) NIL)) (-1292 (($ $ $) NIL)) (-3519 (((-112) $) NIL)) (-2794 (($ $ $) NIL)) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL)) (-1957 (((-112) $) NIL)) (-3130 (((-112) $) NIL)) (-3699 (((-3 $ "failed") $) NIL)) (-3392 (((-112) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2504 (($ $ $ $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3930 (($ $) NIL)) (-3641 (($ $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1809 (($ $ $) NIL)) (-3729 (($) NIL T CONST)) (-4137 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1351 (($ $) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3803 (((-112) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-2372 (($ $) NIL)) (-4220 (($ $) NIL)) (-4208 (((-562) $) 16) (((-535) $) NIL) (((-887 (-562)) $) NIL) (((-378) $) NIL) (((-224) $) NIL) (($ (-1168)) 9)) (-4054 (((-857) $) 20) (($ (-562)) 6) (($ $) NIL) (($ (-562)) 6)) (-2579 (((-766)) NIL)) (-2929 (((-112) $ $) NIL)) (-3261 (($ $ $) NIL)) (-3241 (($) NIL)) (-2922 (((-112) $ $) NIL)) (-3131 (($ $ $ $) NIL)) (-3526 (($ $) NIL)) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL)) (-1848 (($ $) 19) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL))) +(((-1055) (-13 (-544) (-614 (-1168)) (-10 -8 (-6 -4389) (-6 -4394) (-6 -4390) (-15 -2614 ($ (-1168))) (-15 -2614 ($ (-562)))))) (T -1055)) +((-2614 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1055)))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1055))))) +(-13 (-544) (-614 (-1168)) (-10 -8 (-6 -4389) (-6 -4394) (-6 -4390) (-15 -2614 ($ (-1168))) (-15 -2614 ($ (-562))))) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL)) (-3052 (((-1261) $ (-1168) (-1168)) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-3920 (($) 9)) (-4200 (((-52) $ (-1168) (-52)) NIL)) (-2457 (($ $) 30)) (-1342 (($ $) 28)) (-2972 (($ $) 27)) (-3772 (($ $) 29)) (-3621 (($ $) 32)) (-4080 (($ $) 33)) (-2774 (($ $) 26)) (-2179 (($ $) 31)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) 25 (|has| $ (-6 -4402)))) (-1472 (((-3 (-52) "failed") (-1168) $) 40)) (-1800 (($) NIL T CONST)) (-1358 (($) 7)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-4000 (($ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) 50 (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-3 (-52) "failed") (-1168) $) NIL)) (-1475 (($ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402)))) (-1300 (((-3 (-1150) "failed") $ (-1150) (-562)) 59)) (-1505 (((-52) $ (-1168) (-52)) NIL (|has| $ (-6 -4403)))) (-1420 (((-52) $ (-1168)) NIL)) (-1720 (((-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-639 (-52)) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-1168) $) NIL (|has| (-1168) (-845)))) (-1912 (((-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) 35 (|has| $ (-6 -4402))) (((-639 (-52)) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-52) (-1092))))) (-3874 (((-1168) $) NIL (|has| (-1168) (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-1520 (((-639 (-1168)) $) NIL)) (-4265 (((-112) (-1168) $) NIL)) (-3262 (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL)) (-4300 (($ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) 43)) (-2093 (((-639 (-1168)) $) NIL)) (-1570 (((-112) (-1168) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-1632 (((-378) $ (-1168)) 49)) (-2069 (((-639 (-1150)) $ (-1150)) 60)) (-1421 (((-52) $) NIL (|has| (-1168) (-845)))) (-3251 (((-3 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) "failed") (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL)) (-2716 (($ $ (-52)) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))))) NIL (-12 (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ $ (-293 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL (-12 (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ $ (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) NIL (-12 (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ $ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL (-12 (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-308 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (($ $ (-639 (-52)) (-639 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-639 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-52) (-1092))))) (-2411 (((-639 (-52)) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 (((-52) $ (-1168)) NIL) (((-52) $ (-1168) (-52)) NIL)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL)) (-2459 (($ $ (-1168)) 51)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092)))) (((-766) (-52) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-52) (-1092)))) (((-766) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) 37)) (-2767 (($ $ $) 38)) (-4054 (((-857) $) NIL (-4037 (|has| (-52) (-609 (-857))) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-609 (-857)))))) (-1294 (($ $ (-1168) (-378)) 47)) (-2976 (($ $ (-1168) (-378)) 48)) (-1932 (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 (-1168)) (|:| -2694 (-52)))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2320 (-1168)) (|:| -2694 (-52))) (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1056) (-13 (-1183 (-1168) (-52)) (-10 -8 (-15 -2767 ($ $ $)) (-15 -1358 ($)) (-15 -2774 ($ $)) (-15 -2972 ($ $)) (-15 -1342 ($ $)) (-15 -3772 ($ $)) (-15 -2179 ($ $)) (-15 -2457 ($ $)) (-15 -3621 ($ $)) (-15 -4080 ($ $)) (-15 -1294 ($ $ (-1168) (-378))) (-15 -2976 ($ $ (-1168) (-378))) (-15 -1632 ((-378) $ (-1168))) (-15 -2069 ((-639 (-1150)) $ (-1150))) (-15 -2459 ($ $ (-1168))) (-15 -3920 ($)) (-15 -1300 ((-3 (-1150) "failed") $ (-1150) (-562))) (-6 -4402)))) (T -1056)) +((-2767 (*1 *1 *1 *1) (-5 *1 (-1056))) (-1358 (*1 *1) (-5 *1 (-1056))) (-2774 (*1 *1 *1) (-5 *1 (-1056))) (-2972 (*1 *1 *1) (-5 *1 (-1056))) (-1342 (*1 *1 *1) (-5 *1 (-1056))) (-3772 (*1 *1 *1) (-5 *1 (-1056))) (-2179 (*1 *1 *1) (-5 *1 (-1056))) (-2457 (*1 *1 *1) (-5 *1 (-1056))) (-3621 (*1 *1 *1) (-5 *1 (-1056))) (-4080 (*1 *1 *1) (-5 *1 (-1056))) (-1294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-378)) (-5 *1 (-1056)))) (-2976 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-378)) (-5 *1 (-1056)))) (-1632 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-378)) (-5 *1 (-1056)))) (-2069 (*1 *2 *1 *3) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1056)) (-5 *3 (-1150)))) (-2459 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1056)))) (-3920 (*1 *1) (-5 *1 (-1056))) (-1300 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-1056))))) +(-13 (-1183 (-1168) (-52)) (-10 -8 (-15 -2767 ($ $ $)) (-15 -1358 ($)) (-15 -2774 ($ $)) (-15 -2972 ($ $)) (-15 -1342 ($ $)) (-15 -3772 ($ $)) (-15 -2179 ($ $)) (-15 -2457 ($ $)) (-15 -3621 ($ $)) (-15 -4080 ($ $)) (-15 -1294 ($ $ (-1168) (-378))) (-15 -2976 ($ $ (-1168) (-378))) (-15 -1632 ((-378) $ (-1168))) (-15 -2069 ((-639 (-1150)) $ (-1150))) (-15 -2459 ($ $ (-1168))) (-15 -3920 ($)) (-15 -1300 ((-3 (-1150) "failed") $ (-1150) (-562))) (-6 -4402))) +((-3121 (($ $) 45)) (-3784 (((-112) $ $) 74)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-947 (-406 (-562)))) 226) (((-3 $ "failed") (-947 (-562))) 225) (((-3 $ "failed") (-947 |#2|)) 228)) (-3961 ((|#2| $) NIL) (((-406 (-562)) $) NIL) (((-562) $) NIL) ((|#4| $) NIL) (($ (-947 (-406 (-562)))) 214) (($ (-947 (-562))) 210) (($ (-947 |#2|)) 230)) (-1601 (($ $) NIL) (($ $ |#4|) 43)) (-4091 (((-112) $ $) 111) (((-112) $ (-639 $)) 112)) (-2708 (((-112) $) 56)) (-2622 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 106)) (-1410 (($ $) 137)) (-3221 (($ $) 133)) (-1994 (($ $) 132)) (-4093 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2410 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2573 (((-112) $ $) 120) (((-112) $ (-639 $)) 121)) (-4339 ((|#4| $) 33)) (-1415 (($ $ $) 109)) (-2311 (((-112) $) 55)) (-2643 (((-766) $) 35)) (-2985 (($ $) 151)) (-2698 (($ $) 148)) (-4196 (((-639 $) $) 68)) (-4343 (($ $) 57)) (-2889 (($ $) 144)) (-2954 (((-639 $) $) 65)) (-2847 (($ $) 59)) (-1573 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3666 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3761 (-766))) $ $) 110)) (-2924 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $) 107) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $ |#4|) 108)) (-2586 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2264 $)) $ $) 103) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2264 $)) $ $ |#4|) 104)) (-3793 (($ $ $) 89) (($ $ $ |#4|) 94)) (-2310 (($ $ $) 90) (($ $ $ |#4|) 95)) (-2077 (((-639 $) $) 51)) (-2890 (((-112) $ $) 117) (((-112) $ (-639 $)) 118)) (-1849 (($ $ $) 102)) (-3729 (($ $) 37)) (-1408 (((-112) $ $) 72)) (-2766 (((-112) $ $) 113) (((-112) $ (-639 $)) 115)) (-1532 (($ $ $) 100)) (-3063 (($ $) 40)) (-1606 ((|#2| |#2| $) 141) (($ (-639 $)) NIL) (($ $ $) NIL)) (-2285 (($ $ |#2|) NIL) (($ $ $) 130)) (-2094 (($ $ |#2|) 125) (($ $ $) 128)) (-2389 (($ $) 48)) (-3771 (($ $) 52)) (-4208 (((-887 (-378)) $) NIL) (((-887 (-562)) $) NIL) (((-535) $) NIL) (($ (-947 (-406 (-562)))) 216) (($ (-947 (-562))) 212) (($ (-947 |#2|)) 227) (((-1150) $) 249) (((-947 |#2|) $) 161)) (-4054 (((-857) $) 30) (($ (-562)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-947 |#2|) $) 162) (($ (-406 (-562))) NIL) (($ $) NIL)) (-2442 (((-3 (-112) "failed") $ $) 71))) +(((-1057 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4054 (|#1| |#1|)) (-15 -1606 (|#1| |#1| |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 ((-947 |#2|) |#1|)) (-15 -4208 ((-947 |#2|) |#1|)) (-15 -4208 ((-1150) |#1|)) (-15 -2985 (|#1| |#1|)) (-15 -2698 (|#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -1410 (|#1| |#1|)) (-15 -1606 (|#2| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -2094 (|#1| |#1| |#2|)) (-15 -3221 (|#1| |#1|)) (-15 -1994 (|#1| |#1|)) (-15 -4208 (|#1| (-947 |#2|))) (-15 -3961 (|#1| (-947 |#2|))) (-15 -4048 ((-3 |#1| "failed") (-947 |#2|))) (-15 -4208 (|#1| (-947 (-562)))) (-15 -3961 (|#1| (-947 (-562)))) (-15 -4048 ((-3 |#1| "failed") (-947 (-562)))) (-15 -4208 (|#1| (-947 (-406 (-562))))) (-15 -3961 (|#1| (-947 (-406 (-562))))) (-15 -4048 ((-3 |#1| "failed") (-947 (-406 (-562))))) (-15 -1849 (|#1| |#1| |#1|)) (-15 -1532 (|#1| |#1| |#1|)) (-15 -3666 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3761 (-766))) |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -2622 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2924 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1| |#4|)) (-15 -2924 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2586 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2264 |#1|)) |#1| |#1| |#4|)) (-15 -2586 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2310 (|#1| |#1| |#1| |#4|)) (-15 -3793 (|#1| |#1| |#1| |#4|)) (-15 -2310 (|#1| |#1| |#1|)) (-15 -3793 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1| |#1| |#4|)) (-15 -4093 (|#1| |#1| |#1| |#4|)) (-15 -2410 (|#1| |#1| |#1|)) (-15 -4093 (|#1| |#1| |#1|)) (-15 -2573 ((-112) |#1| (-639 |#1|))) (-15 -2573 ((-112) |#1| |#1|)) (-15 -2890 ((-112) |#1| (-639 |#1|))) (-15 -2890 ((-112) |#1| |#1|)) (-15 -2766 ((-112) |#1| (-639 |#1|))) (-15 -2766 ((-112) |#1| |#1|)) (-15 -4091 ((-112) |#1| (-639 |#1|))) (-15 -4091 ((-112) |#1| |#1|)) (-15 -3784 ((-112) |#1| |#1|)) (-15 -1408 ((-112) |#1| |#1|)) (-15 -2442 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4196 ((-639 |#1|) |#1|)) (-15 -2954 ((-639 |#1|) |#1|)) (-15 -2847 (|#1| |#1|)) (-15 -4343 (|#1| |#1|)) (-15 -2708 ((-112) |#1|)) (-15 -2311 ((-112) |#1|)) (-15 -1601 (|#1| |#1| |#4|)) (-15 -1573 (|#1| |#1| |#4|)) (-15 -3771 (|#1| |#1|)) (-15 -2077 ((-639 |#1|) |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -3121 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3729 (|#1| |#1|)) (-15 -2643 ((-766) |#1|)) (-15 -4339 (|#4| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4054 (|#1| |#4|)) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -3961 (|#4| |#1|)) (-15 -1573 (|#2| |#1|)) (-15 -1601 (|#1| |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) (-1058 |#2| |#3| |#4|) (-1044) (-788) (-845)) (T -1057)) +NIL +(-10 -8 (-15 -4054 (|#1| |#1|)) (-15 -1606 (|#1| |#1| |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 ((-947 |#2|) |#1|)) (-15 -4208 ((-947 |#2|) |#1|)) (-15 -4208 ((-1150) |#1|)) (-15 -2985 (|#1| |#1|)) (-15 -2698 (|#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -1410 (|#1| |#1|)) (-15 -1606 (|#2| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -2094 (|#1| |#1| |#2|)) (-15 -3221 (|#1| |#1|)) (-15 -1994 (|#1| |#1|)) (-15 -4208 (|#1| (-947 |#2|))) (-15 -3961 (|#1| (-947 |#2|))) (-15 -4048 ((-3 |#1| "failed") (-947 |#2|))) (-15 -4208 (|#1| (-947 (-562)))) (-15 -3961 (|#1| (-947 (-562)))) (-15 -4048 ((-3 |#1| "failed") (-947 (-562)))) (-15 -4208 (|#1| (-947 (-406 (-562))))) (-15 -3961 (|#1| (-947 (-406 (-562))))) (-15 -4048 ((-3 |#1| "failed") (-947 (-406 (-562))))) (-15 -1849 (|#1| |#1| |#1|)) (-15 -1532 (|#1| |#1| |#1|)) (-15 -3666 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3761 (-766))) |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -2622 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2924 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1| |#4|)) (-15 -2924 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2586 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2264 |#1|)) |#1| |#1| |#4|)) (-15 -2586 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2310 (|#1| |#1| |#1| |#4|)) (-15 -3793 (|#1| |#1| |#1| |#4|)) (-15 -2310 (|#1| |#1| |#1|)) (-15 -3793 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1| |#1| |#4|)) (-15 -4093 (|#1| |#1| |#1| |#4|)) (-15 -2410 (|#1| |#1| |#1|)) (-15 -4093 (|#1| |#1| |#1|)) (-15 -2573 ((-112) |#1| (-639 |#1|))) (-15 -2573 ((-112) |#1| |#1|)) (-15 -2890 ((-112) |#1| (-639 |#1|))) (-15 -2890 ((-112) |#1| |#1|)) (-15 -2766 ((-112) |#1| (-639 |#1|))) (-15 -2766 ((-112) |#1| |#1|)) (-15 -4091 ((-112) |#1| (-639 |#1|))) (-15 -4091 ((-112) |#1| |#1|)) (-15 -3784 ((-112) |#1| |#1|)) (-15 -1408 ((-112) |#1| |#1|)) (-15 -2442 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4196 ((-639 |#1|) |#1|)) (-15 -2954 ((-639 |#1|) |#1|)) (-15 -2847 (|#1| |#1|)) (-15 -4343 (|#1| |#1|)) (-15 -2708 ((-112) |#1|)) (-15 -2311 ((-112) |#1|)) (-15 -1601 (|#1| |#1| |#4|)) (-15 -1573 (|#1| |#1| |#4|)) (-15 -3771 (|#1| |#1|)) (-15 -2077 ((-639 |#1|) |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -3121 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3729 (|#1| |#1|)) (-15 -2643 ((-766) |#1|)) (-15 -4339 (|#4| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4054 (|#1| |#4|)) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -3961 (|#4| |#1|)) (-15 -1573 (|#2| |#1|)) (-15 -1601 (|#1| |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1402 (((-639 |#3|) $) 110)) (-1599 (((-1164 $) $ |#3|) 125) (((-1164 |#1|) $) 124)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2796 (($ $) 88 (|has| |#1| (-554)))) (-4370 (((-112) $) 90 (|has| |#1| (-554)))) (-1986 (((-766) $) 112) (((-766) $ (-639 |#3|)) 111)) (-3121 (($ $) 271)) (-3784 (((-112) $ $) 257)) (-3214 (((-3 $ "failed") $ $) 19)) (-3258 (($ $ $) 216 (|has| |#1| (-554)))) (-4052 (((-639 $) $ $) 211 (|has| |#1| (-554)))) (-3026 (((-417 (-1164 $)) (-1164 $)) 100 (|has| |#1| (-904)))) (-2798 (($ $) 98 (|has| |#1| (-451)))) (-2921 (((-417 $) $) 97 (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 103 (|has| |#1| (-904)))) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-562)) "failed") $) 161 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 159 (|has| |#1| (-1033 (-562)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-947 (-406 (-562)))) 231 (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))) (((-3 $ "failed") (-947 (-562))) 228 (-4037 (-12 (-2236 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168)))))) (((-3 $ "failed") (-947 |#1|)) 225 (-4037 (-12 (-2236 (|has| |#1| (-38 (-406 (-562))))) (-2236 (|has| |#1| (-38 (-562)))) (|has| |#3| (-610 (-1168)))) (-12 (-2236 (|has| |#1| (-544))) (-2236 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (-2236 (|has| |#1| (-987 (-562)))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))))) (-3961 ((|#1| $) 163) (((-406 (-562)) $) 162 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 160 (|has| |#1| (-1033 (-562)))) ((|#3| $) 137) (($ (-947 (-406 (-562)))) 230 (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))) (($ (-947 (-562))) 227 (-4037 (-12 (-2236 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168)))))) (($ (-947 |#1|)) 224 (-4037 (-12 (-2236 (|has| |#1| (-38 (-406 (-562))))) (-2236 (|has| |#1| (-38 (-562)))) (|has| |#3| (-610 (-1168)))) (-12 (-2236 (|has| |#1| (-544))) (-2236 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (-2236 (|has| |#1| (-987 (-562)))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))))) (-2835 (($ $ $ |#3|) 108 (|has| |#1| (-171))) (($ $ $) 212 (|has| |#1| (-554)))) (-1601 (($ $) 154) (($ $ |#3|) 266)) (-2406 (((-683 (-562)) (-683 $)) 134 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 133 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 132) (((-683 |#1|) (-683 $)) 131)) (-4091 (((-112) $ $) 256) (((-112) $ (-639 $)) 255)) (-3668 (((-3 $ "failed") $) 33)) (-2708 (((-112) $) 264)) (-2622 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 236)) (-1410 (($ $) 205 (|has| |#1| (-451)))) (-1498 (($ $) 176 (|has| |#1| (-451))) (($ $ |#3|) 105 (|has| |#1| (-451)))) (-1586 (((-639 $) $) 109)) (-2717 (((-112) $) 96 (|has| |#1| (-904)))) (-3221 (($ $) 221 (|has| |#1| (-554)))) (-1994 (($ $) 222 (|has| |#1| (-554)))) (-4093 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2410 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3122 (($ $ |#1| |#2| $) 172)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84 (-12 (|has| |#3| (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 83 (-12 (|has| |#3| (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1957 (((-112) $) 31)) (-1694 (((-766) $) 169)) (-2573 (((-112) $ $) 250) (((-112) $ (-639 $)) 249)) (-3524 (($ $ $ $ $) 207 (|has| |#1| (-554)))) (-4339 ((|#3| $) 275)) (-1390 (($ (-1164 |#1|) |#3|) 117) (($ (-1164 $) |#3|) 116)) (-1889 (((-639 $) $) 126)) (-3536 (((-112) $) 152)) (-1378 (($ |#1| |#2|) 153) (($ $ |#3| (-766)) 119) (($ $ (-639 |#3|) (-639 (-766))) 118)) (-1415 (($ $ $) 235)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ |#3|) 120)) (-2311 (((-112) $) 265)) (-2076 ((|#2| $) 170) (((-766) $ |#3|) 122) (((-639 (-766)) $ (-639 |#3|)) 121)) (-1551 (($ $ $) 79 (|has| |#1| (-845)))) (-2643 (((-766) $) 274)) (-2993 (($ $ $) 78 (|has| |#1| (-845)))) (-2836 (($ (-1 |#2| |#2|) $) 171)) (-4152 (($ (-1 |#1| |#1|) $) 151)) (-3372 (((-3 |#3| "failed") $) 123)) (-2985 (($ $) 202 (|has| |#1| (-451)))) (-2698 (($ $) 203 (|has| |#1| (-451)))) (-4196 (((-639 $) $) 260)) (-4343 (($ $) 263)) (-2889 (($ $) 204 (|has| |#1| (-451)))) (-2954 (((-639 $) $) 261)) (-2847 (($ $) 262)) (-1560 (($ $) 149)) (-1573 ((|#1| $) 148) (($ $ |#3|) 267)) (-1564 (($ (-639 $)) 94 (|has| |#1| (-451))) (($ $ $) 93 (|has| |#1| (-451)))) (-3666 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3761 (-766))) $ $) 234)) (-2924 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $) 238) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $ |#3|) 237)) (-2586 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2264 $)) $ $) 240) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2264 $)) $ $ |#3|) 239)) (-3793 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2310 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2913 (((-1150) $) 9)) (-1851 (($ $ $) 210 (|has| |#1| (-554)))) (-2077 (((-639 $) $) 269)) (-2042 (((-3 (-639 $) "failed") $) 114)) (-1546 (((-3 (-639 $) "failed") $) 115)) (-1628 (((-3 (-2 (|:| |var| |#3|) (|:| -1960 (-766))) "failed") $) 113)) (-2890 (((-112) $ $) 252) (((-112) $ (-639 $)) 251)) (-1849 (($ $ $) 232)) (-3729 (($ $) 273)) (-1408 (((-112) $ $) 258)) (-2766 (((-112) $ $) 254) (((-112) $ (-639 $)) 253)) (-1532 (($ $ $) 233)) (-3063 (($ $) 272)) (-1709 (((-1112) $) 10)) (-2235 (((-2 (|:| -1606 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-554)))) (-2062 (((-2 (|:| -1606 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-554)))) (-1534 (((-112) $) 166)) (-1547 ((|#1| $) 167)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 95 (|has| |#1| (-451)))) (-1606 ((|#1| |#1| $) 206 (|has| |#1| (-451))) (($ (-639 $)) 92 (|has| |#1| (-451))) (($ $ $) 91 (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) 102 (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) 101 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 99 (|has| |#1| (-904)))) (-2196 (((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-554)))) (-1762 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-2285 (($ $ |#1|) 219 (|has| |#1| (-554))) (($ $ $) 217 (|has| |#1| (-554)))) (-2094 (($ $ |#1|) 220 (|has| |#1| (-554))) (($ $ $) 218 (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-639 $) (-639 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-639 |#3|) (-639 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-639 |#3|) (-639 $)) 138)) (-2455 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4029 (($ $ |#3|) 42) (($ $ (-639 |#3|)) 41) (($ $ |#3| (-766)) 40) (($ $ (-639 |#3|) (-639 (-766))) 39)) (-3598 ((|#2| $) 150) (((-766) $ |#3|) 130) (((-639 (-766)) $ (-639 |#3|)) 129)) (-2389 (($ $) 270)) (-3771 (($ $) 268)) (-4208 (((-887 (-378)) $) 82 (-12 (|has| |#3| (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) 81 (-12 (|has| |#3| (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) 80 (-12 (|has| |#3| (-610 (-535))) (|has| |#1| (-610 (-535))))) (($ (-947 (-406 (-562)))) 229 (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))) (($ (-947 (-562))) 226 (-4037 (-12 (-2236 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168)))))) (($ (-947 |#1|)) 223 (|has| |#3| (-610 (-1168)))) (((-1150) $) 201 (-12 (|has| |#1| (-1033 (-562))) (|has| |#3| (-610 (-1168))))) (((-947 |#1|) $) 200 (|has| |#3| (-610 (-1168))))) (-3900 ((|#1| $) 175 (|has| |#1| (-451))) (($ $ |#3|) 106 (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 104 (-2246 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-947 |#1|) $) 199 (|has| |#3| (-610 (-1168)))) (($ (-406 (-562))) 72 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562)))))) (($ $) 85 (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) 168)) (-3906 ((|#1| $ |#2|) 155) (($ $ |#3| (-766)) 128) (($ $ (-639 |#3|) (-639 (-766))) 127)) (-2805 (((-3 $ "failed") $) 73 (-4037 (-2246 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) 28)) (-3548 (($ $ $ (-766)) 173 (|has| |#1| (-171)))) (-2922 (((-112) $ $) 89 (|has| |#1| (-554)))) (-2286 (($) 18 T CONST)) (-2442 (((-3 (-112) "failed") $ $) 259)) (-2294 (($) 30 T CONST)) (-3330 (($ $ $ $ (-766)) 208 (|has| |#1| (-554)))) (-2249 (($ $ $ (-766)) 209 (|has| |#1| (-554)))) (-3114 (($ $ |#3|) 38) (($ $ (-639 |#3|)) 37) (($ $ |#3| (-766)) 36) (($ $ (-639 |#3|) (-639 (-766))) 35)) (-1798 (((-112) $ $) 76 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 75 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 77 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 74 (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 157 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1058 |#1| |#2| |#3|) (-139) (-1044) (-788) (-845)) (T -1058)) +((-4339 (*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-766)))) (-3729 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3121 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-2389 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-2077 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5)))) (-3771 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-1573 (*1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-1601 (*1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-4343 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-2847 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-2954 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5)))) (-4196 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5)))) (-2442 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-1408 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-3784 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-4091 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-4091 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) (-2766 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-2766 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) (-2890 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-2890 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) (-2573 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-2573 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) (-4093 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-2410 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-4093 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-2410 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-3793 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3793 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-2310 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-2586 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -2264 *1))) (-4 *1 (-1058 *3 *4 *5)))) (-2586 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -2264 *1))) (-4 *1 (-1058 *4 *5 *3)))) (-2924 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-1058 *3 *4 *5)))) (-2924 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-1058 *4 *5 *3)))) (-2622 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-1058 *3 *4 *5)))) (-1415 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3666 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3761 (-766)))) (-4 *1 (-1058 *3 *4 *5)))) (-1532 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-1849 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)))) (-3961 (*1 *1 *2) (-12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)))) (-4048 (*1 *1 *2) (|partial| -4037 (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) (-3961 (*1 *1 *2) (-4037 (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) (-4208 (*1 *1 *2) (-4037 (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) (-4048 (*1 *1 *2) (|partial| -4037 (-12 (-5 *2 (-947 *3)) (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) (-2236 (-4 *3 (-38 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 *3)) (-12 (-2236 (-4 *3 (-544))) (-2236 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 *3)) (-12 (-2236 (-4 *3 (-987 (-562)))) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))))) (-3961 (*1 *1 *2) (-4037 (-12 (-5 *2 (-947 *3)) (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) (-2236 (-4 *3 (-38 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 *3)) (-12 (-2236 (-4 *3 (-544))) (-2236 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 *3)) (-12 (-2236 (-4 *3 (-987 (-562)))) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *5 (-610 (-1168))) (-4 *4 (-788)) (-4 *5 (-845)))) (-1994 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-3221 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-2094 (*1 *1 *1 *2) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-2285 (*1 *1 *1 *2) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-2094 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-2285 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-3258 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-2196 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -1606 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1058 *3 *4 *5)))) (-2062 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -1606 *1) (|:| |coef1| *1))) (-4 *1 (-1058 *3 *4 *5)))) (-2235 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -1606 *1) (|:| |coef2| *1))) (-4 *1 (-1058 *3 *4 *5)))) (-2835 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-4052 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5)))) (-1851 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-2249 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *3 (-554)))) (-3330 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *3 (-554)))) (-3524 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-1606 (*1 *2 *2 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-1410 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-2698 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-2985 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451))))) +(-13 (-944 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4339 (|t#3| $)) (-15 -2643 ((-766) $)) (-15 -3729 ($ $)) (-15 -3063 ($ $)) (-15 -3121 ($ $)) (-15 -2389 ($ $)) (-15 -2077 ((-639 $) $)) (-15 -3771 ($ $)) (-15 -1573 ($ $ |t#3|)) (-15 -1601 ($ $ |t#3|)) (-15 -2311 ((-112) $)) (-15 -2708 ((-112) $)) (-15 -4343 ($ $)) (-15 -2847 ($ $)) (-15 -2954 ((-639 $) $)) (-15 -4196 ((-639 $) $)) (-15 -2442 ((-3 (-112) "failed") $ $)) (-15 -1408 ((-112) $ $)) (-15 -3784 ((-112) $ $)) (-15 -4091 ((-112) $ $)) (-15 -4091 ((-112) $ (-639 $))) (-15 -2766 ((-112) $ $)) (-15 -2766 ((-112) $ (-639 $))) (-15 -2890 ((-112) $ $)) (-15 -2890 ((-112) $ (-639 $))) (-15 -2573 ((-112) $ $)) (-15 -2573 ((-112) $ (-639 $))) (-15 -4093 ($ $ $)) (-15 -2410 ($ $ $)) (-15 -4093 ($ $ $ |t#3|)) (-15 -2410 ($ $ $ |t#3|)) (-15 -3793 ($ $ $)) (-15 -2310 ($ $ $)) (-15 -3793 ($ $ $ |t#3|)) (-15 -2310 ($ $ $ |t#3|)) (-15 -2586 ((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2264 $)) $ $)) (-15 -2586 ((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2264 $)) $ $ |t#3|)) (-15 -2924 ((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -2924 ((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -2097 $) (|:| -2264 $)) $ $ |t#3|)) (-15 -2622 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -1415 ($ $ $)) (-15 -3666 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3761 (-766))) $ $)) (-15 -1532 ($ $ $)) (-15 -1849 ($ $ $)) (IF (|has| |t#3| (-610 (-1168))) (PROGN (-6 (-609 (-947 |t#1|))) (-6 (-610 (-947 |t#1|))) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -4048 ((-3 $ "failed") (-947 (-406 (-562))))) (-15 -3961 ($ (-947 (-406 (-562))))) (-15 -4208 ($ (-947 (-406 (-562))))) (-15 -4048 ((-3 $ "failed") (-947 (-562)))) (-15 -3961 ($ (-947 (-562)))) (-15 -4208 ($ (-947 (-562)))) (IF (|has| |t#1| (-987 (-562))) |%noBranch| (PROGN (-15 -4048 ((-3 $ "failed") (-947 |t#1|))) (-15 -3961 ($ (-947 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-562))) (IF (|has| |t#1| (-38 (-406 (-562)))) |%noBranch| (PROGN (-15 -4048 ((-3 $ "failed") (-947 (-562)))) (-15 -3961 ($ (-947 (-562)))) (-15 -4208 ($ (-947 (-562)))) (IF (|has| |t#1| (-544)) |%noBranch| (PROGN (-15 -4048 ((-3 $ "failed") (-947 |t#1|))) (-15 -3961 ($ (-947 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-562))) |%noBranch| (IF (|has| |t#1| (-38 (-406 (-562)))) |%noBranch| (PROGN (-15 -4048 ((-3 $ "failed") (-947 |t#1|))) (-15 -3961 ($ (-947 |t#1|)))))) (-15 -4208 ($ (-947 |t#1|))) (IF (|has| |t#1| (-1033 (-562))) (-6 (-610 (-1150))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -1994 ($ $)) (-15 -3221 ($ $)) (-15 -2094 ($ $ |t#1|)) (-15 -2285 ($ $ |t#1|)) (-15 -2094 ($ $ $)) (-15 -2285 ($ $ $)) (-15 -3258 ($ $ $)) (-15 -2196 ((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2062 ((-2 (|:| -1606 $) (|:| |coef1| $)) $ $)) (-15 -2235 ((-2 (|:| -1606 $) (|:| |coef2| $)) $ $)) (-15 -2835 ($ $ $)) (-15 -4052 ((-639 $) $ $)) (-15 -1851 ($ $ $)) (-15 -2249 ($ $ $ (-766))) (-15 -3330 ($ $ $ $ (-766))) (-15 -3524 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-451)) (PROGN (-15 -1606 (|t#1| |t#1| $)) (-15 -1410 ($ $)) (-15 -2889 ($ $)) (-15 -2698 ($ $)) (-15 -2985 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 |#3|) . T) ((-612 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-609 (-857)) . T) ((-609 (-947 |#1|)) |has| |#3| (-610 (-1168))) ((-171) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-610 (-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562))))) ((-610 (-947 |#1|)) |has| |#3| (-610 (-1168))) ((-610 (-1150)) -12 (|has| |#1| (-1033 (-562))) (|has| |#3| (-610 (-1168)))) ((-289) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-904)) (|has| |#1| (-451))) ((-513 |#3| |#1|) . T) ((-513 |#3| $) . T) ((-513 $ $) . T) ((-554) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 |#3|) . T) ((-881 (-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378)))) ((-881 (-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))) ((-944 |#1| |#2| |#3|) . T) ((-904) |has| |#1| (-904)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1033 |#3|) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) |has| |#1| (-904))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-2454 (((-639 (-1127)) $) 13)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 24) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 15)) (-1731 (((-112) $ $) NIL))) +(((-1059) (-13 (-1075) (-10 -8 (-15 -2454 ((-639 (-1127)) $)) (-15 -3265 ((-1127) $))))) (T -1059)) +((-2454 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1059)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1059))))) +(-13 (-1075) (-10 -8 (-15 -2454 ((-639 (-1127)) $)) (-15 -3265 ((-1127) $)))) +((-1952 (((-112) |#3| $) 13)) (-1502 (((-3 $ "failed") |#3| (-916)) 23)) (-3668 (((-3 |#3| "failed") |#3| $) 38)) (-3519 (((-112) |#3| $) 16)) (-3392 (((-112) |#3| $) 14))) +(((-1060 |#1| |#2| |#3|) (-10 -8 (-15 -1502 ((-3 |#1| "failed") |#3| (-916))) (-15 -3668 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3519 ((-112) |#3| |#1|)) (-15 -3392 ((-112) |#3| |#1|)) (-15 -1952 ((-112) |#3| |#1|))) (-1061 |#2| |#3|) (-13 (-843) (-362)) (-1232 |#2|)) (T -1060)) +NIL +(-10 -8 (-15 -1502 ((-3 |#1| "failed") |#3| (-916))) (-15 -3668 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3519 ((-112) |#3| |#1|)) (-15 -3392 ((-112) |#3| |#1|)) (-15 -1952 ((-112) |#3| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) |#2| $) 21)) (-2277 (((-562) |#2| $) 22)) (-1502 (((-3 $ "failed") |#2| (-916)) 15)) (-3104 ((|#1| |#2| $ |#1|) 13)) (-3668 (((-3 |#2| "failed") |#2| $) 18)) (-3519 (((-112) |#2| $) 19)) (-3392 (((-112) |#2| $) 20)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2096 ((|#2| $) 17)) (-4054 (((-857) $) 11)) (-1406 ((|#1| |#2| $ |#1|) 14)) (-3318 (((-639 $) |#2|) 16)) (-1731 (((-112) $ $) 6))) +(((-1061 |#1| |#2|) (-139) (-13 (-843) (-362)) (-1232 |t#1|)) (T -1061)) +((-2277 (*1 *2 *3 *1) (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-562)))) (-1952 (*1 *2 *3 *1) (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-112)))) (-3392 (*1 *2 *3 *1) (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-112)))) (-3519 (*1 *2 *3 *1) (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-112)))) (-3668 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-13 (-843) (-362))) (-4 *2 (-1232 *3)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-13 (-843) (-362))) (-4 *2 (-1232 *3)))) (-3318 (*1 *2 *3) (-12 (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-639 *1)) (-4 *1 (-1061 *4 *3)))) (-1502 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-916)) (-4 *4 (-13 (-843) (-362))) (-4 *1 (-1061 *4 *2)) (-4 *2 (-1232 *4)))) (-1406 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1061 *2 *3)) (-4 *2 (-13 (-843) (-362))) (-4 *3 (-1232 *2)))) (-3104 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1061 *2 *3)) (-4 *2 (-13 (-843) (-362))) (-4 *3 (-1232 *2))))) +(-13 (-1092) (-10 -8 (-15 -2277 ((-562) |t#2| $)) (-15 -1952 ((-112) |t#2| $)) (-15 -3392 ((-112) |t#2| $)) (-15 -3519 ((-112) |t#2| $)) (-15 -3668 ((-3 |t#2| "failed") |t#2| $)) (-15 -2096 (|t#2| $)) (-15 -3318 ((-639 $) |t#2|)) (-15 -1502 ((-3 $ "failed") |t#2| (-916))) (-15 -1406 (|t#1| |t#2| $ |t#1|)) (-15 -3104 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-3612 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-766)) 95)) (-3223 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766)) 56)) (-4192 (((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-766)) 87)) (-2793 (((-766) (-639 |#4|) (-639 |#5|)) 27)) (-3467 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766)) 58) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766) (-112)) 60)) (-2018 (((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112)) 79)) (-4208 (((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) 82)) (-1456 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-112)) 55)) (-2903 (((-766) (-639 |#4|) (-639 |#5|)) 19))) +(((-1062 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2903 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -2793 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -1456 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-112))) (-15 -3223 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766))) (-15 -3223 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766) (-112))) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766))) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -2018 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -2018 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3612 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-766))) (-15 -4208 ((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) (-15 -4192 ((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-766)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -1062)) +((-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1495 *9)))) (-5 *4 (-766)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-1261)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1495 *8))) (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1150)) (-5 *1 (-1062 *4 *5 *6 *7 *8)))) (-3612 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-639 *11)) (|:| |todo| (-639 (-2 (|:| |val| *3) (|:| -1495 *11)))))) (-5 *6 (-766)) (-5 *2 (-639 (-2 (|:| |val| (-639 *10)) (|:| -1495 *11)))) (-5 *3 (-639 *10)) (-5 *4 (-639 *11)) (-4 *10 (-1058 *7 *8 *9)) (-4 *11 (-1064 *7 *8 *9 *10)) (-4 *7 (-451)) (-4 *8 (-788)) (-4 *9 (-845)) (-5 *1 (-1062 *7 *8 *9 *10 *11)))) (-2018 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-2018 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-3467 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3467 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-3467 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-766)) (-5 *6 (-112)) (-4 *7 (-451)) (-4 *8 (-788)) (-4 *9 (-845)) (-4 *3 (-1058 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1062 *7 *8 *9 *3 *4)) (-4 *4 (-1064 *7 *8 *9 *3)))) (-3223 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3223 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-1456 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1062 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2903 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -2793 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -1456 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-112))) (-15 -3223 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766))) (-15 -3223 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766) (-112))) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766))) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -2018 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -2018 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3612 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-766))) (-15 -4208 ((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) (-15 -4192 ((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-766)))) +((-4079 (((-112) |#5| $) 20)) (-3513 (((-112) |#5| $) 23)) (-2764 (((-112) |#5| $) 16) (((-112) $) 44)) (-4376 (((-639 $) |#5| $) NIL) (((-639 $) (-639 |#5|) $) 76) (((-639 $) (-639 |#5|) (-639 $)) 74) (((-639 $) |#5| (-639 $)) 77)) (-1353 (($ $ |#5|) NIL) (((-639 $) |#5| $) NIL) (((-639 $) |#5| (-639 $)) 59) (((-639 $) (-639 |#5|) $) 61) (((-639 $) (-639 |#5|) (-639 $)) 63)) (-1612 (((-639 $) |#5| $) NIL) (((-639 $) |#5| (-639 $)) 53) (((-639 $) (-639 |#5|) $) 55) (((-639 $) (-639 |#5|) (-639 $)) 57)) (-4211 (((-112) |#5| $) 26))) +(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1353 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -1353 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -1353 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -1353 ((-639 |#1|) |#5| |#1|)) (-15 -1612 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -1612 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -1612 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -1612 ((-639 |#1|) |#5| |#1|)) (-15 -4376 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -4376 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -4376 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -4376 ((-639 |#1|) |#5| |#1|)) (-15 -3513 ((-112) |#5| |#1|)) (-15 -2764 ((-112) |#1|)) (-15 -4211 ((-112) |#5| |#1|)) (-15 -4079 ((-112) |#5| |#1|)) (-15 -2764 ((-112) |#5| |#1|)) (-15 -1353 (|#1| |#1| |#5|))) (-1064 |#2| |#3| |#4| |#5|) (-451) (-788) (-845) (-1058 |#2| |#3| |#4|)) (T -1063)) +NIL +(-10 -8 (-15 -1353 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -1353 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -1353 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -1353 ((-639 |#1|) |#5| |#1|)) (-15 -1612 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -1612 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -1612 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -1612 ((-639 |#1|) |#5| |#1|)) (-15 -4376 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -4376 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -4376 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -4376 ((-639 |#1|) |#5| |#1|)) (-15 -3513 ((-112) |#5| |#1|)) (-15 -2764 ((-112) |#1|)) (-15 -4211 ((-112) |#5| |#1|)) (-15 -4079 ((-112) |#5| |#1|)) (-15 -2764 ((-112) |#5| |#1|)) (-15 -1353 (|#1| |#1| |#5|))) +((-4041 (((-112) $ $) 7)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |#4|)))) (-639 |#4|)) 85)) (-2304 (((-639 $) (-639 |#4|)) 86) (((-639 $) (-639 |#4|) (-112)) 111)) (-1402 (((-639 |#3|) $) 33)) (-4170 (((-112) $) 26)) (-4274 (((-112) $) 17 (|has| |#1| (-554)))) (-4377 (((-112) |#4| $) 101) (((-112) $) 97)) (-3049 ((|#4| |#4| $) 92)) (-2798 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 126)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) 27)) (-4336 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4402))) (((-3 |#4| "failed") $ |#3|) 79)) (-1800 (($) 45 T CONST)) (-2207 (((-112) $) 22 (|has| |#1| (-554)))) (-1920 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3852 (((-112) $ $) 23 (|has| |#1| (-554)))) (-2539 (((-112) $) 25 (|has| |#1| (-554)))) (-2839 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3884 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3961 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-2387 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4091 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3595 ((|#4| |#4| $) 87)) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4402))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2267 (((-2 (|:| -1450 (-639 |#4|)) (|:| -3316 (-639 |#4|))) $) 105)) (-4079 (((-112) |#4| $) 136)) (-3513 (((-112) |#4| $) 133)) (-2764 (((-112) |#4| $) 137) (((-112) $) 134)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4402)))) (-2573 (((-112) |#4| $) 104) (((-112) $) 103)) (-4339 ((|#3| $) 34)) (-3292 (((-112) $ (-766)) 43)) (-1912 (((-639 |#4|) $) 53 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3754 (((-639 |#3|) $) 32)) (-2071 (((-112) |#3| $) 31)) (-3289 (((-112) $ (-766)) 42)) (-2913 (((-1150) $) 9)) (-1609 (((-3 |#4| (-639 $)) |#4| |#4| $) 128)) (-1851 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 127)) (-1504 (((-3 |#4| "failed") $) 83)) (-1814 (((-639 $) |#4| $) 129)) (-1950 (((-3 (-112) (-639 $)) |#4| $) 132)) (-2021 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4376 (((-639 $) |#4| $) 125) (((-639 $) (-639 |#4|) $) 124) (((-639 $) (-639 |#4|) (-639 $)) 123) (((-639 $) |#4| (-639 $)) 122)) (-1430 (($ |#4| $) 117) (($ (-639 |#4|) $) 116)) (-3576 (((-639 |#4|) $) 107)) (-2890 (((-112) |#4| $) 99) (((-112) $) 95)) (-1849 ((|#4| |#4| $) 90)) (-1408 (((-112) $ $) 110)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2766 (((-112) |#4| $) 100) (((-112) $) 96)) (-1532 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3310 (((-3 $ "failed") $ |#4|) 78)) (-1353 (($ $ |#4|) 77) (((-639 $) |#4| $) 115) (((-639 $) |#4| (-639 $)) 114) (((-639 $) (-639 |#4|) $) 113) (((-639 $) (-639 |#4|) (-639 $)) 112)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) 38)) (-2974 (((-112) $) 41)) (-4307 (($) 40)) (-3598 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4402)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) 60)) (-1812 (($ $ |#3|) 28)) (-3274 (($ $ |#3|) 30)) (-3277 (($ $) 88)) (-1568 (($ $ |#3|) 29)) (-4054 (((-857) $) 11) (((-639 |#4|) $) 37)) (-3730 (((-766) $) 76 (|has| |#3| (-367)))) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4252 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-1612 (((-639 $) |#4| $) 121) (((-639 $) |#4| (-639 $)) 120) (((-639 $) (-639 |#4|) $) 119) (((-639 $) (-639 |#4|) (-639 $)) 118)) (-1744 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4402)))) (-4089 (((-639 |#3|) $) 81)) (-4211 (((-112) |#4| $) 135)) (-3694 (((-112) |#3| $) 80)) (-1731 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4402))))) +(((-1064 |#1| |#2| |#3| |#4|) (-139) (-451) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -1064)) +((-2764 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-4079 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-4211 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-2764 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-3513 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-1950 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-3 (-112) (-639 *1))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-2021 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *1)))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-2021 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-1814 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)))) (-1609 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-3 *3 (-639 *1))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-1851 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *1)))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-2798 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *1)))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-4376 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)))) (-4376 (*1 *2 *3 *1) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *7)))) (-4376 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)))) (-4376 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) (-1612 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)))) (-1612 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) (-1612 (*1 *2 *3 *1) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *7)))) (-1612 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)))) (-1430 (*1 *1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *2)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1430 (*1 *1 *2 *1) (-12 (-5 *2 (-639 *6)) (-4 *1 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)))) (-1353 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)))) (-1353 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) (-1353 (*1 *2 *3 *1) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *7)))) (-1353 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)))) (-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *5 *6 *7 *8))))) +(-13 (-1200 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2764 ((-112) |t#4| $)) (-15 -4079 ((-112) |t#4| $)) (-15 -4211 ((-112) |t#4| $)) (-15 -2764 ((-112) $)) (-15 -3513 ((-112) |t#4| $)) (-15 -1950 ((-3 (-112) (-639 $)) |t#4| $)) (-15 -2021 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 $))) |t#4| $)) (-15 -2021 ((-112) |t#4| $)) (-15 -1814 ((-639 $) |t#4| $)) (-15 -1609 ((-3 |t#4| (-639 $)) |t#4| |t#4| $)) (-15 -1851 ((-639 (-2 (|:| |val| |t#4|) (|:| -1495 $))) |t#4| |t#4| $)) (-15 -2798 ((-639 (-2 (|:| |val| |t#4|) (|:| -1495 $))) |t#4| $)) (-15 -4376 ((-639 $) |t#4| $)) (-15 -4376 ((-639 $) (-639 |t#4|) $)) (-15 -4376 ((-639 $) (-639 |t#4|) (-639 $))) (-15 -4376 ((-639 $) |t#4| (-639 $))) (-15 -1612 ((-639 $) |t#4| $)) (-15 -1612 ((-639 $) |t#4| (-639 $))) (-15 -1612 ((-639 $) (-639 |t#4|) $)) (-15 -1612 ((-639 $) (-639 |t#4|) (-639 $))) (-15 -1430 ($ |t#4| $)) (-15 -1430 ($ (-639 |t#4|) $)) (-15 -1353 ((-639 $) |t#4| $)) (-15 -1353 ((-639 $) |t#4| (-639 $))) (-15 -1353 ((-639 $) (-639 |t#4|) $)) (-15 -1353 ((-639 $) (-639 |t#4|) (-639 $))) (-15 -2304 ((-639 $) (-639 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1200 |#1| |#2| |#3| |#4|) . T) ((-1207) . T)) +((-3764 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|) 81)) (-3719 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|) 112)) (-2180 (((-639 |#5|) |#4| |#5|) 70)) (-2354 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3739 (((-1261)) 37)) (-2511 (((-1261)) 26)) (-2245 (((-1261) (-1150) (-1150) (-1150)) 33)) (-4012 (((-1261) (-1150) (-1150) (-1150)) 22)) (-1473 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|) 95)) (-3191 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#3| (-112)) 106) (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-4129 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|) 101))) +(((-1065 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4012 ((-1261) (-1150) (-1150) (-1150))) (-15 -2511 ((-1261))) (-15 -2245 ((-1261) (-1150) (-1150) (-1150))) (-15 -3739 ((-1261))) (-15 -1473 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3191 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3191 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#3| (-112))) (-15 -4129 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3719 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -2354 ((-112) |#4| |#5|)) (-15 -2354 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2180 ((-639 |#5|) |#4| |#5|)) (-15 -3764 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -1065)) +((-3764 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2180 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2354 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2354 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3719 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-4129 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3191 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1495 *9)))) (-5 *5 (-112)) (-4 *8 (-1058 *6 *7 *4)) (-4 *9 (-1064 *6 *7 *4 *8)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *4 (-845)) (-5 *2 (-639 (-2 (|:| |val| *8) (|:| -1495 *9)))) (-5 *1 (-1065 *6 *7 *4 *8 *9)))) (-3191 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1065 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-1473 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3739 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-2245 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1065 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2511 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-4012 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1065 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(-10 -7 (-15 -4012 ((-1261) (-1150) (-1150) (-1150))) (-15 -2511 ((-1261))) (-15 -2245 ((-1261) (-1150) (-1150) (-1150))) (-15 -3739 ((-1261))) (-15 -1473 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3191 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3191 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#3| (-112))) (-15 -4129 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3719 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -2354 ((-112) |#4| |#5|)) (-15 -2354 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2180 ((-639 |#5|) |#4| |#5|)) (-15 -3764 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|))) +((-4041 (((-112) $ $) NIL)) (-4084 (((-1206) $) 13)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 10)) (-4054 (((-857) $) 22) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-1066) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $))))) (T -1066)) +((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1066)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1066))))) +(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $)))) +((-4041 (((-112) $ $) NIL)) (-3254 (((-1168) $) 8)) (-2913 (((-1150) $) 16)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 13))) +(((-1067 |#1|) (-13 (-1092) (-10 -8 (-15 -3254 ((-1168) $)))) (-1168)) (T -1067)) +((-3254 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1067 *3)) (-14 *3 *2)))) +(-13 (-1092) (-10 -8 (-15 -3254 ((-1168) $)))) +((-4041 (((-112) $ $) NIL)) (-3171 (($ $ (-639 (-1168)) (-1 (-112) (-639 |#3|))) 33)) (-2587 (($ |#3| |#3|) 22) (($ |#3| |#3| (-639 (-1168))) 20)) (-4328 ((|#3| $) 13)) (-4048 (((-3 (-293 |#3|) "failed") $) 58)) (-3961 (((-293 |#3|) $) NIL)) (-2368 (((-639 (-1168)) $) 16)) (-3838 (((-887 |#1|) $) 11)) (-4316 ((|#3| $) 12)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2343 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-916)) 39)) (-4054 (((-857) $) 86) (($ (-293 |#3|)) 21)) (-1731 (((-112) $ $) 36))) +(((-1068 |#1| |#2| |#3|) (-13 (-1092) (-285 |#3| |#3|) (-1033 (-293 |#3|)) (-10 -8 (-15 -2587 ($ |#3| |#3|)) (-15 -2587 ($ |#3| |#3| (-639 (-1168)))) (-15 -3171 ($ $ (-639 (-1168)) (-1 (-112) (-639 |#3|)))) (-15 -3838 ((-887 |#1|) $)) (-15 -4316 (|#3| $)) (-15 -4328 (|#3| $)) (-15 -2343 (|#3| $ |#3| (-916))) (-15 -2368 ((-639 (-1168)) $)))) (-1092) (-13 (-1044) (-881 |#1|) (-845) (-610 (-887 |#1|))) (-13 (-429 |#2|) (-881 |#1|) (-610 (-887 |#1|)))) (T -1068)) +((-2587 (*1 *1 *2 *2) (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) (-5 *1 (-1068 *3 *4 *2)) (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))))) (-2587 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-1068 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) (-3171 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-1 (-112) (-639 *6))) (-4 *6 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-1068 *4 *5 *6)))) (-3838 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 *2))) (-5 *2 (-887 *3)) (-5 *1 (-1068 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-881 *3) (-610 *2))))) (-4316 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) (-5 *1 (-1068 *3 *4 *2)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))))) (-4328 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) (-5 *1 (-1068 *3 *4 *2)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))))) (-2343 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-916)) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-1068 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) (-2368 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) (-5 *2 (-639 (-1168))) (-5 *1 (-1068 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3))))))) +(-13 (-1092) (-285 |#3| |#3|) (-1033 (-293 |#3|)) (-10 -8 (-15 -2587 ($ |#3| |#3|)) (-15 -2587 ($ |#3| |#3| (-639 (-1168)))) (-15 -3171 ($ $ (-639 (-1168)) (-1 (-112) (-639 |#3|)))) (-15 -3838 ((-887 |#1|) $)) (-15 -4316 (|#3| $)) (-15 -4328 (|#3| $)) (-15 -2343 (|#3| $ |#3| (-916))) (-15 -2368 ((-639 (-1168)) $)))) +((-4041 (((-112) $ $) NIL)) (-3139 (($ (-639 (-1068 |#1| |#2| |#3|))) 13)) (-1575 (((-639 (-1068 |#1| |#2| |#3|)) $) 20)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2343 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-916)) 26)) (-4054 (((-857) $) 16)) (-1731 (((-112) $ $) 19))) +(((-1069 |#1| |#2| |#3|) (-13 (-1092) (-285 |#3| |#3|) (-10 -8 (-15 -3139 ($ (-639 (-1068 |#1| |#2| |#3|)))) (-15 -1575 ((-639 (-1068 |#1| |#2| |#3|)) $)) (-15 -2343 (|#3| $ |#3| (-916))))) (-1092) (-13 (-1044) (-881 |#1|) (-845) (-610 (-887 |#1|))) (-13 (-429 |#2|) (-881 |#1|) (-610 (-887 |#1|)))) (T -1069)) +((-3139 (*1 *1 *2) (-12 (-5 *2 (-639 (-1068 *3 *4 *5))) (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) (-5 *1 (-1069 *3 *4 *5)))) (-1575 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) (-5 *2 (-639 (-1068 *3 *4 *5))) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))))) (-2343 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-916)) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4))))))) +(-13 (-1092) (-285 |#3| |#3|) (-10 -8 (-15 -3139 ($ (-639 (-1068 |#1| |#2| |#3|)))) (-15 -1575 ((-639 (-1068 |#1| |#2| |#3|)) $)) (-15 -2343 (|#3| $ |#3| (-916))))) +((-2707 (((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112)) 74) (((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|))) 76) (((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112)) 75))) +(((-1070 |#1| |#2|) (-10 -7 (-15 -2707 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112))) (-15 -2707 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -2707 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112)))) (-13 (-306) (-146)) (-639 (-1168))) (T -1070)) +((-2707 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) (-5 *1 (-1070 *5 *6)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168))))) (-2707 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-5 *2 (-639 (-2 (|:| -1646 (-1164 *4)) (|:| -3593 (-639 (-947 *4)))))) (-5 *1 (-1070 *4 *5)) (-5 *3 (-639 (-947 *4))) (-14 *5 (-639 (-1168))))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) (-5 *1 (-1070 *5 *6)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168)))))) +(-10 -7 (-15 -2707 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112))) (-15 -2707 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -2707 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112)))) +((-1635 (((-417 |#3|) |#3|) 18))) +(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -1635 ((-417 |#3|) |#3|))) (-1232 (-406 (-562))) (-13 (-362) (-146) (-719 (-406 (-562)) |#1|)) (-1232 |#2|)) (T -1071)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-13 (-362) (-146) (-719 (-406 (-562)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1232 *5))))) +(-10 -7 (-15 -1635 ((-417 |#3|) |#3|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 126)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-362)))) (-2796 (($ $) NIL (|has| |#1| (-362)))) (-4370 (((-112) $) NIL (|has| |#1| (-362)))) (-1636 (((-683 |#1|) (-1256 $)) NIL) (((-683 |#1|)) 115)) (-1748 ((|#1| $) 119)) (-3984 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-348)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| |#1| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-362)))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1382 (((-766)) 40 (|has| |#1| (-367)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-4018 (($ (-1256 |#1|) (-1256 $)) NIL) (($ (-1256 |#1|)) 43)) (-2370 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1958 (((-683 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 106) (((-683 |#1|) (-683 $)) 101)) (-1955 (($ |#2|) 61) (((-3 $ "failed") (-406 |#2|)) NIL (|has| |#1| (-362)))) (-3668 (((-3 $ "failed") $) NIL)) (-2173 (((-916)) 77)) (-1448 (($) 44 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-3529 (($) NIL (|has| |#1| (-348)))) (-1322 (((-112) $) NIL (|has| |#1| (-348)))) (-3589 (($ $ (-766)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-2717 (((-112) $) NIL (|has| |#1| (-362)))) (-1900 (((-916) $) NIL (|has| |#1| (-348))) (((-828 (-916)) $) NIL (|has| |#1| (-348)))) (-1957 (((-112) $) NIL)) (-2247 ((|#1| $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1565 ((|#2| $) 84 (|has| |#1| (-362)))) (-1999 (((-916) $) 130 (|has| |#1| (-367)))) (-1943 ((|#2| $) 58)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3729 (($) NIL (|has| |#1| (-348)) CONST)) (-2466 (($ (-916)) 125 (|has| |#1| (-367)))) (-1709 (((-1112) $) NIL)) (-3148 (($) 121)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3233 (((-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562))))) NIL (|has| |#1| (-348)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-2455 ((|#1| (-1256 $)) NIL) ((|#1|) 109)) (-3362 (((-766) $) NIL (|has| |#1| (-348))) (((-3 (-766) "failed") $ $) NIL (|has| |#1| (-348)))) (-4029 (($ $) NIL (-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-766)) NIL (-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-1 |#1| |#1|) (-766)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3187 (((-683 |#1|) (-1256 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2096 ((|#2|) 73)) (-2283 (($) NIL (|has| |#1| (-348)))) (-3593 (((-1256 |#1|) $ (-1256 $)) 89) (((-683 |#1|) (-1256 $) (-1256 $)) NIL) (((-1256 |#1|) $) 71) (((-683 |#1|) (-1256 $)) 85)) (-4208 (((-1256 |#1|) $) NIL) (($ (-1256 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-348)))) (-4054 (((-857) $) 57) (($ (-562)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-362))) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562))))))) (-2805 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3376 ((|#2| $) 82)) (-2579 (((-766)) 75)) (-3928 (((-1256 $)) 81)) (-2922 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2286 (($) 30 T CONST)) (-2294 (($) 19 T CONST)) (-3114 (($ $) NIL (-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-766)) NIL (-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-1 |#1| |#1|) (-766)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-1731 (((-112) $ $) 63)) (-1859 (($ $ $) NIL (|has| |#1| (-362)))) (-1848 (($ $) 67) (($ $ $) NIL)) (-1835 (($ $ $) 65)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-406 (-562)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-562))) NIL (|has| |#1| (-362))))) +(((-1072 |#1| |#2| |#3|) (-719 |#1| |#2|) (-171) (-1232 |#1|) |#2|) (T -1072)) +NIL +(-719 |#1| |#2|) +((-1635 (((-417 |#3|) |#3|) 19))) +(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -1635 ((-417 |#3|) |#3|))) (-1232 (-406 (-947 (-562)))) (-13 (-362) (-146) (-719 (-406 (-947 (-562))) |#1|)) (-1232 |#2|)) (T -1073)) +((-1635 (*1 *2 *3) (-12 (-4 *4 (-1232 (-406 (-947 (-562))))) (-4 *5 (-13 (-362) (-146) (-719 (-406 (-947 (-562))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1232 *5))))) +(-10 -7 (-15 -1635 ((-417 |#3|) |#3|))) +((-4041 (((-112) $ $) NIL)) (-1551 (($ $ $) 14)) (-2993 (($ $ $) 15)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4349 (($) 6)) (-4208 (((-1168) $) 18)) (-4054 (((-857) $) 12)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 13)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 8))) +(((-1074) (-13 (-845) (-610 (-1168)) (-10 -8 (-15 -4349 ($))))) (T -1074)) +((-4349 (*1 *1) (-5 *1 (-1074)))) +(-13 (-845) (-610 (-1168)) (-10 -8 (-15 -4349 ($)))) +((-4041 (((-112) $ $) 7)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-1173)) 16) (((-1173) $) 15)) (-1731 (((-112) $ $) 6))) +(((-1075) (-139)) (T -1075)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-611 #1=(-1171)) . T) ((-608 (-857)) . T) ((-608 #1#) . T) ((-488 #1#) . T) ((-1091) . T)) -((-3618 ((|#1| |#1| (-1 (-544) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3616 (((-1259)) 15)) (-3617 (((-635 |#1|)) 9))) -(((-1074 |#1|) (-10 -7 (-15 -3616 ((-1259))) (-15 -3617 ((-635 |#1|))) (-15 -3618 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3618 (|#1| |#1| (-1 (-544) |#1| |#1|)))) (-131)) (T -1074)) -((-3618 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-544) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))) (-3618 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))) (-3617 (*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-131)))) (-3616 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1074 *3)) (-4 *3 (-131))))) -(-10 -7 (-15 -3616 ((-1259))) (-15 -3617 ((-635 |#1|))) (-15 -3618 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3618 (|#1| |#1| (-1 (-544) |#1| |#1|)))) -((-3621 (($ (-109) $) 16)) (-3622 (((-3 (-109) "failed") (-1166) $) 15)) (-3972 (($) 7)) (-3620 (($) 17)) (-3619 (($) 18)) (-3623 (((-635 (-174)) $) 10)) (-4353 (((-857) $) 21))) -(((-1075) (-13 (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -3623 ((-635 (-174)) $)) (-15 -3622 ((-3 (-109) "failed") (-1166) $)) (-15 -3621 ($ (-109) $)) (-15 -3620 ($)) (-15 -3619 ($))))) (T -1075)) -((-3972 (*1 *1) (-5 *1 (-1075))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-635 (-174))) (-5 *1 (-1075)))) (-3622 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-1075)))) (-3621 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1075)))) (-3620 (*1 *1) (-5 *1 (-1075))) (-3619 (*1 *1) (-5 *1 (-1075)))) -(-13 (-608 (-857)) (-10 -8 (-15 -3972 ($)) (-15 -3623 ((-635 (-174)) $)) (-15 -3622 ((-3 (-109) "failed") (-1166) $)) (-15 -3621 ($ (-109) $)) (-15 -3620 ($)) (-15 -3619 ($)))) -((-3624 (((-1253 (-682 |#1|)) (-635 (-682 |#1|))) 42) (((-1253 (-682 (-939 |#1|))) (-635 (-1166)) (-682 (-939 |#1|))) 62) (((-1253 (-682 (-406 (-939 |#1|)))) (-635 (-1166)) (-682 (-406 (-939 |#1|)))) 78)) (-3625 (((-1253 |#1|) (-682 |#1|) (-635 (-682 |#1|))) 36))) -(((-1076 |#1|) (-10 -7 (-15 -3624 ((-1253 (-682 (-406 (-939 |#1|)))) (-635 (-1166)) (-682 (-406 (-939 |#1|))))) (-15 -3624 ((-1253 (-682 (-939 |#1|))) (-635 (-1166)) (-682 (-939 |#1|)))) (-15 -3624 ((-1253 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3625 ((-1253 |#1|) (-682 |#1|) (-635 (-682 |#1|))))) (-362)) (T -1076)) -((-3625 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-682 *5))) (-5 *3 (-682 *5)) (-4 *5 (-362)) (-5 *2 (-1253 *5)) (-5 *1 (-1076 *5)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-635 (-682 *4))) (-4 *4 (-362)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-1076 *4)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1166))) (-4 *5 (-362)) (-5 *2 (-1253 (-682 (-939 *5)))) (-5 *1 (-1076 *5)) (-5 *4 (-682 (-939 *5))))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-1166))) (-4 *5 (-362)) (-5 *2 (-1253 (-682 (-406 (-939 *5))))) (-5 *1 (-1076 *5)) (-5 *4 (-682 (-406 (-939 *5))))))) -(-10 -7 (-15 -3624 ((-1253 (-682 (-406 (-939 |#1|)))) (-635 (-1166)) (-682 (-406 (-939 |#1|))))) (-15 -3624 ((-1253 (-682 (-939 |#1|))) (-635 (-1166)) (-682 (-939 |#1|)))) (-15 -3624 ((-1253 (-682 |#1|)) (-635 (-682 |#1|)))) (-15 -3625 ((-1253 |#1|) (-682 |#1|) (-635 (-682 |#1|))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1571 (((-635 (-765)) $) NIL) (((-635 (-765)) $ (-1166)) NIL)) (-1605 (((-765) $) NIL) (((-765) $ (-1166)) NIL)) (-3467 (((-635 (-1078 (-1166))) $) NIL)) (-3469 (((-1160 $) $ (-1078 (-1166))) NIL) (((-1160 |#1|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1078 (-1166)))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-1567 (($ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1078 (-1166)) #2#) $) NIL) (((-3 (-1166) #2#) $) NIL) (((-3 (-1115 |#1| (-1166)) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1078 (-1166)) $) NIL) (((-1166) $) NIL) (((-1115 |#1| (-1166)) $) NIL)) (-4163 (($ $ $ (-1078 (-1166))) NIL (|has| |#1| (-171)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ (-1078 (-1166))) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 (-1078 (-1166))) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1078 (-1166)) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1078 (-1166)) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ (-1166)) NIL) (((-765) $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3470 (($ (-1160 |#1|) (-1078 (-1166))) NIL) (($ (-1160 $) (-1078 (-1166))) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-529 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-635 (-1078 (-1166))) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1078 (-1166))) NIL)) (-3202 (((-529 (-1078 (-1166))) $) NIL) (((-765) $ (-1078 (-1166))) NIL) (((-635 (-765)) $ (-635 (-1078 (-1166)))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 (-1078 (-1166))) (-529 (-1078 (-1166)))) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1606 (((-1 $ (-765)) (-1166)) NIL) (((-1 $ (-765)) $) NIL (|has| |#1| (-232)))) (-3468 (((-3 (-1078 (-1166)) #3="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-1569 (((-1078 (-1166)) $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-1570 (((-112) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1078 (-1166))) (|:| -2536 (-765))) #3#) $) NIL)) (-1568 (($ $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1078 (-1166)) |#1|) NIL) (($ $ (-635 (-1078 (-1166))) (-635 |#1|)) NIL) (($ $ (-1078 (-1166)) $) NIL) (($ $ (-635 (-1078 (-1166))) (-635 $)) NIL) (($ $ (-1166) $) NIL (|has| |#1| (-232))) (($ $ (-635 (-1166)) (-635 $)) NIL (|has| |#1| (-232))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-232))) (($ $ (-635 (-1166)) (-635 |#1|)) NIL (|has| |#1| (-232)))) (-4164 (($ $ (-1078 (-1166))) NIL (|has| |#1| (-171)))) (-4217 (($ $ (-1078 (-1166))) NIL) (($ $ (-635 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-635 (-1078 (-1166))) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1572 (((-635 (-1166)) $) NIL)) (-4355 (((-529 (-1078 (-1166))) $) NIL) (((-765) $ (-1078 (-1166))) NIL) (((-635 (-765)) $ (-635 (-1078 (-1166)))) NIL) (((-765) $ (-1166)) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1078 (-1166)) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) NIL (|has| |#1| (-450))) (($ $ (-1078 (-1166))) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-1078 (-1166))) NIL) (($ (-1166)) NIL) (($ (-1115 |#1| (-1166))) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-529 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-635 (-1078 (-1166))) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1078 (-1166))) NIL) (($ $ (-635 (-1078 (-1166)))) NIL) (($ $ (-1078 (-1166)) (-765)) NIL) (($ $ (-635 (-1078 (-1166))) (-635 (-765))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-765)) NIL (|has| |#1| (-232))) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1077 |#1|) (-13 (-252 |#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) (-1031 (-1115 |#1| (-1166)))) (-1042)) (T -1077)) -NIL -(-13 (-252 |#1| (-1166) (-1078 (-1166)) (-529 (-1078 (-1166)))) (-1031 (-1115 |#1| (-1166)))) -((-2947 (((-112) $ $) NIL)) (-1605 (((-765) $) NIL)) (-4238 ((|#1| $) 10)) (-3558 (((-3 |#1| "failed") $) NIL)) (-3557 ((|#1| $) NIL)) (-4178 (((-765) $) 11)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-1606 (($ |#1| (-765)) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4217 (($ $) NIL) (($ $ (-765)) NIL)) (-4353 (((-857) $) NIL) (($ |#1|) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 15))) -(((-1078 |#1|) (-265 |#1|) (-844)) (T -1078)) +(((-93) . T) ((-102) . T) ((-612 #0=(-1173)) . T) ((-609 (-857)) . T) ((-609 #0#) . T) ((-489 #0#) . T) ((-1092) . T)) +((-4156 ((|#1| |#1| (-1 (-562) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3411 (((-1261)) 15)) (-1481 (((-639 |#1|)) 9))) +(((-1076 |#1|) (-10 -7 (-15 -3411 ((-1261))) (-15 -1481 ((-639 |#1|))) (-15 -4156 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4156 (|#1| |#1| (-1 (-562) |#1| |#1|)))) (-131)) (T -1076)) +((-4156 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-562) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1076 *2)))) (-4156 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1076 *2)))) (-1481 (*1 *2) (-12 (-5 *2 (-639 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-131)))) (-3411 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1076 *3)) (-4 *3 (-131))))) +(-10 -7 (-15 -3411 ((-1261))) (-15 -1481 ((-639 |#1|))) (-15 -4156 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4156 (|#1| |#1| (-1 (-562) |#1| |#1|)))) +((-3167 (($ (-109) $) 16)) (-2174 (((-3 (-109) "failed") (-1168) $) 15)) (-4307 (($) 7)) (-4299 (($) 17)) (-2714 (($) 18)) (-2992 (((-639 (-174)) $) 10)) (-4054 (((-857) $) 21))) +(((-1077) (-13 (-609 (-857)) (-10 -8 (-15 -4307 ($)) (-15 -2992 ((-639 (-174)) $)) (-15 -2174 ((-3 (-109) "failed") (-1168) $)) (-15 -3167 ($ (-109) $)) (-15 -4299 ($)) (-15 -2714 ($))))) (T -1077)) +((-4307 (*1 *1) (-5 *1 (-1077))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-639 (-174))) (-5 *1 (-1077)))) (-2174 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-109)) (-5 *1 (-1077)))) (-3167 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1077)))) (-4299 (*1 *1) (-5 *1 (-1077))) (-2714 (*1 *1) (-5 *1 (-1077)))) +(-13 (-609 (-857)) (-10 -8 (-15 -4307 ($)) (-15 -2992 ((-639 (-174)) $)) (-15 -2174 ((-3 (-109) "failed") (-1168) $)) (-15 -3167 ($ (-109) $)) (-15 -4299 ($)) (-15 -2714 ($)))) +((-1902 (((-1256 (-683 |#1|)) (-639 (-683 |#1|))) 42) (((-1256 (-683 (-947 |#1|))) (-639 (-1168)) (-683 (-947 |#1|))) 62) (((-1256 (-683 (-406 (-947 |#1|)))) (-639 (-1168)) (-683 (-406 (-947 |#1|)))) 78)) (-3593 (((-1256 |#1|) (-683 |#1|) (-639 (-683 |#1|))) 36))) +(((-1078 |#1|) (-10 -7 (-15 -1902 ((-1256 (-683 (-406 (-947 |#1|)))) (-639 (-1168)) (-683 (-406 (-947 |#1|))))) (-15 -1902 ((-1256 (-683 (-947 |#1|))) (-639 (-1168)) (-683 (-947 |#1|)))) (-15 -1902 ((-1256 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -3593 ((-1256 |#1|) (-683 |#1|) (-639 (-683 |#1|))))) (-362)) (T -1078)) +((-3593 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-683 *5))) (-5 *3 (-683 *5)) (-4 *5 (-362)) (-5 *2 (-1256 *5)) (-5 *1 (-1078 *5)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-639 (-683 *4))) (-4 *4 (-362)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-1078 *4)))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1168))) (-4 *5 (-362)) (-5 *2 (-1256 (-683 (-947 *5)))) (-5 *1 (-1078 *5)) (-5 *4 (-683 (-947 *5))))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1168))) (-4 *5 (-362)) (-5 *2 (-1256 (-683 (-406 (-947 *5))))) (-5 *1 (-1078 *5)) (-5 *4 (-683 (-406 (-947 *5))))))) +(-10 -7 (-15 -1902 ((-1256 (-683 (-406 (-947 |#1|)))) (-639 (-1168)) (-683 (-406 (-947 |#1|))))) (-15 -1902 ((-1256 (-683 (-947 |#1|))) (-639 (-1168)) (-683 (-947 |#1|)))) (-15 -1902 ((-1256 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -3593 ((-1256 |#1|) (-683 |#1|) (-639 (-683 |#1|))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1880 (((-639 (-766)) $) NIL) (((-639 (-766)) $ (-1168)) NIL)) (-1929 (((-766) $) NIL) (((-766) $ (-1168)) NIL)) (-1402 (((-639 (-1080 (-1168))) $) NIL)) (-1599 (((-1164 $) $ (-1080 (-1168))) NIL) (((-1164 |#1|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-1080 (-1168)))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2798 (($ $) NIL (|has| |#1| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3677 (($ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1080 (-1168)) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL) (((-3 (-1117 |#1| (-1168)) "failed") $) NIL)) (-3961 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1080 (-1168)) $) NIL) (((-1168) $) NIL) (((-1117 |#1| (-1168)) $) NIL)) (-2835 (($ $ $ (-1080 (-1168))) NIL (|has| |#1| (-171)))) (-1601 (($ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-451))) (($ $ (-1080 (-1168))) NIL (|has| |#1| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#1| (-904)))) (-3122 (($ $ |#1| (-530 (-1080 (-1168))) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1080 (-1168)) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1080 (-1168)) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1900 (((-766) $ (-1168)) NIL) (((-766) $) NIL)) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1390 (($ (-1164 |#1|) (-1080 (-1168))) NIL) (($ (-1164 $) (-1080 (-1168))) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-530 (-1080 (-1168)))) NIL) (($ $ (-1080 (-1168)) (-766)) NIL) (($ $ (-639 (-1080 (-1168))) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-1080 (-1168))) NIL)) (-2076 (((-530 (-1080 (-1168))) $) NIL) (((-766) $ (-1080 (-1168))) NIL) (((-639 (-766)) $ (-639 (-1080 (-1168)))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2836 (($ (-1 (-530 (-1080 (-1168))) (-530 (-1080 (-1168)))) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3603 (((-1 $ (-766)) (-1168)) NIL) (((-1 $ (-766)) $) NIL (|has| |#1| (-232)))) (-3372 (((-3 (-1080 (-1168)) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3736 (((-1080 (-1168)) $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-2913 (((-1150) $) NIL)) (-3349 (((-112) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-1080 (-1168))) (|:| -1960 (-766))) "failed") $) NIL)) (-3592 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1080 (-1168)) |#1|) NIL) (($ $ (-639 (-1080 (-1168))) (-639 |#1|)) NIL) (($ $ (-1080 (-1168)) $) NIL) (($ $ (-639 (-1080 (-1168))) (-639 $)) NIL) (($ $ (-1168) $) NIL (|has| |#1| (-232))) (($ $ (-639 (-1168)) (-639 $)) NIL (|has| |#1| (-232))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-232))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-232)))) (-2455 (($ $ (-1080 (-1168))) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-1080 (-1168))) NIL) (($ $ (-639 (-1080 (-1168)))) NIL) (($ $ (-1080 (-1168)) (-766)) NIL) (($ $ (-639 (-1080 (-1168))) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4333 (((-639 (-1168)) $) NIL)) (-3598 (((-530 (-1080 (-1168))) $) NIL) (((-766) $ (-1080 (-1168))) NIL) (((-639 (-766)) $ (-639 (-1080 (-1168)))) NIL) (((-766) $ (-1168)) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1080 (-1168)) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1080 (-1168)) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1080 (-1168)) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-3900 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-1080 (-1168))) NIL (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-1080 (-1168))) NIL) (($ (-1168)) NIL) (($ (-1117 |#1| (-1168))) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-530 (-1080 (-1168)))) NIL) (($ $ (-1080 (-1168)) (-766)) NIL) (($ $ (-639 (-1080 (-1168))) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-1080 (-1168))) NIL) (($ $ (-639 (-1080 (-1168)))) NIL) (($ $ (-1080 (-1168)) (-766)) NIL) (($ $ (-639 (-1080 (-1168))) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1079 |#1|) (-13 (-252 |#1| (-1168) (-1080 (-1168)) (-530 (-1080 (-1168)))) (-1033 (-1117 |#1| (-1168)))) (-1044)) (T -1079)) +NIL +(-13 (-252 |#1| (-1168) (-1080 (-1168)) (-530 (-1080 (-1168)))) (-1033 (-1117 |#1| (-1168)))) +((-4041 (((-112) $ $) NIL)) (-1929 (((-766) $) NIL)) (-2444 ((|#1| $) 10)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3961 ((|#1| $) NIL)) (-1900 (((-766) $) 11)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3603 (($ |#1| (-766)) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4029 (($ $) NIL) (($ $ (-766)) NIL)) (-4054 (((-857) $) NIL) (($ |#1|) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 15))) +(((-1080 |#1|) (-265 |#1|) (-845)) (T -1080)) NIL (-265 |#1|) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4143 (($ |#1| |#1|) 15)) (-4365 (((-635 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-842)))) (-3630 ((|#1| $) 10)) (-3632 ((|#1| $) 9)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3628 (((-544) $) 14)) (-3629 ((|#1| $) 12)) (-3631 ((|#1| $) 11)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4370 (((-635 |#1|) $) 35 (|has| |#1| (-842))) (((-635 |#1|) (-635 $)) 34 (|has| |#1| (-842)))) (-4377 (($ |#1|) 26)) (-4353 (((-857) $) 25 (|has| |#1| (-1091)))) (-4144 (($ |#1| |#1|) 8)) (-3633 (($ $ (-544)) 16)) (-3437 (((-112) $ $) 19 (|has| |#1| (-1091))))) -(((-1079 |#1|) (-13 (-1084 |#1|) (-10 -7 (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-635 |#1|))) |%noBranch|))) (-1204)) (T -1079)) -NIL -(-13 (-1084 |#1|) (-10 -7 (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-635 |#1|))) |%noBranch|))) -((-4365 (((-635 |#2|) (-1 |#2| |#1|) (-1079 |#1|)) 23 (|has| |#1| (-842))) (((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|)) 14))) -(((-1080 |#1| |#2|) (-10 -7 (-15 -4365 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|))) (IF (|has| |#1| (-842)) (-15 -4365 ((-635 |#2|) (-1 |#2| |#1|) (-1079 |#1|))) |%noBranch|)) (-1204) (-1204)) (T -1080)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-842)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-635 *6)) (-5 *1 (-1080 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1079 *6)) (-5 *1 (-1080 *5 *6))))) -(-10 -7 (-15 -4365 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|))) (IF (|has| |#1| (-842)) (-15 -4365 ((-635 |#2|) (-1 |#2| |#1|) (-1079 |#1|))) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3626 (((-635 (-1125)) $) 9)) (-3437 (((-112) $ $) NIL))) -(((-1081) (-13 (-1073) (-10 -8 (-15 -3626 ((-635 (-1125)) $))))) (T -1081)) -((-3626 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1081))))) -(-13 (-1073) (-10 -8 (-15 -3626 ((-635 (-1125)) $)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4238 (((-1166) $) 11)) (-4143 (((-1079 |#1|) $) 12)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-3627 (($ (-1166) (-1079 |#1|)) 10)) (-4353 (((-857) $) 20 (|has| |#1| (-1091)))) (-3437 (((-112) $ $) 15 (|has| |#1| (-1091))))) -(((-1082 |#1|) (-13 (-1204) (-10 -8 (-15 -3627 ($ (-1166) (-1079 |#1|))) (-15 -4238 ((-1166) $)) (-15 -4143 ((-1079 |#1|) $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|))) (-1204)) (T -1082)) -((-3627 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1079 *4)) (-4 *4 (-1204)) (-5 *1 (-1082 *4)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1082 *3)) (-4 *3 (-1204)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-1079 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1204))))) -(-13 (-1204) (-10 -8 (-15 -3627 ($ (-1166) (-1079 |#1|))) (-15 -4238 ((-1166) $)) (-15 -4143 ((-1079 |#1|) $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|))) -((-4365 (((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)) 19))) -(((-1083 |#1| |#2|) (-10 -7 (-15 -4365 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)))) (-1204) (-1204)) (T -1083)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1082 *6)) (-5 *1 (-1083 *5 *6))))) -(-10 -7 (-15 -4365 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)))) -((-4143 (($ |#1| |#1|) 8)) (-3630 ((|#1| $) 11)) (-3632 ((|#1| $) 13)) (-3628 (((-544) $) 9)) (-3629 ((|#1| $) 10)) (-3631 ((|#1| $) 12)) (-4377 (($ |#1|) 6)) (-4144 (($ |#1| |#1|) 15)) (-3633 (($ $ (-544)) 14))) -(((-1084 |#1|) (-139) (-1204)) (T -1084)) -((-4144 (*1 *1 *2 *2) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3633 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1084 *3)) (-4 *3 (-1204)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) (-3628 (*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1204)) (-5 *2 (-544)))) (-4143 (*1 *1 *2 *2) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204))))) -(-13 (-613 |t#1|) (-10 -8 (-15 -4144 ($ |t#1| |t#1|)) (-15 -3633 ($ $ (-544))) (-15 -3632 (|t#1| $)) (-15 -3631 (|t#1| $)) (-15 -3630 (|t#1| $)) (-15 -3629 (|t#1| $)) (-15 -3628 ((-544) $)) (-15 -4143 ($ |t#1| |t#1|)))) -(((-613 |#1|) . T)) -((-4143 (($ |#1| |#1|) 8)) (-4365 ((|#2| (-1 |#1| |#1|) $) 16)) (-3630 ((|#1| $) 11)) (-3632 ((|#1| $) 13)) (-3628 (((-544) $) 9)) (-3629 ((|#1| $) 10)) (-3631 ((|#1| $) 12)) (-4370 ((|#2| (-635 $)) 18) ((|#2| $) 17)) (-4377 (($ |#1|) 6)) (-4144 (($ |#1| |#1|) 15)) (-3633 (($ $ (-544)) 14))) -(((-1085 |#1| |#2|) (-139) (-842) (-1139 |t#1|)) (T -1085)) -((-4370 (*1 *2 *3) (-12 (-5 *3 (-635 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1139 *4)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1139 *3)))) (-4365 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1139 *4))))) -(-13 (-1084 |t#1|) (-10 -8 (-15 -4370 (|t#2| (-635 $))) (-15 -4370 (|t#2| $)) (-15 -4365 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-613 |#1|) . T) ((-1084 |#1|) . T)) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-4204 (((-1125) $) 12)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 20) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3634 (((-635 (-1125)) $) 10)) (-3437 (((-112) $ $) NIL))) -(((-1086) (-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $)) (-15 -4204 ((-1125) $))))) (T -1086)) -((-3634 (*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1086)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1086))))) -(-13 (-1073) (-10 -8 (-15 -3634 ((-635 (-1125)) $)) (-15 -4204 ((-1125) $)))) -((-2947 (((-112) $ $) NIL)) (-1949 (($) NIL (|has| |#1| (-367)))) (-3635 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-3637 (($ $ $) 71)) (-3636 (((-112) $ $) 72)) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#1| (-367)))) (-3640 (($ (-635 |#1|)) NIL) (($) 13)) (-1659 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3809 (($ |#1| $) 67 (|has| $ (-6 -4400))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4400)))) (-3377 (($) NIL (|has| |#1| (-367)))) (-2096 (((-635 |#1|) $) 19 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2913 ((|#1| $) 57 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3242 ((|#1| $) 55 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 34)) (-2160 (((-912) $) NIL (|has| |#1| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3639 (($ $ $) 69)) (-1356 ((|#1| $) 25)) (-4014 (($ |#1| $) 65)) (-2535 (($ (-912)) NIL (|has| |#1| (-367)))) (-3644 (((-1110) $) NIL)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1357 ((|#1| $) 27)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 21)) (-3972 (($) 11)) (-3638 (($ $ |#1|) NIL) (($ $ $) 70)) (-1550 (($) NIL) (($ (-635 |#1|)) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 16)) (-4377 (((-533) $) 52 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 61)) (-1950 (($ $) NIL (|has| |#1| (-367)))) (-4353 (((-857) $) NIL)) (-1951 (((-765) $) NIL)) (-3641 (($ (-635 |#1|)) NIL) (($) 12)) (-1358 (($ (-635 |#1|)) NIL)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 54)) (-4364 (((-765) $) 10 (|has| $ (-6 -4400))))) -(((-1087 |#1|) (-425 |#1|) (-1091)) (T -1087)) -NIL -(-425 |#1|) -((-3635 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3637 (($ $ $) 10)) (-3638 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1088 |#1| |#2|) (-10 -8 (-15 -3635 (|#1| |#2| |#1|)) (-15 -3635 (|#1| |#1| |#2|)) (-15 -3635 (|#1| |#1| |#1|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#2|)) (-15 -3638 (|#1| |#1| |#1|))) (-1089 |#2|) (-1091)) (T -1088)) -NIL -(-10 -8 (-15 -3635 (|#1| |#2| |#1|)) (-15 -3635 (|#1| |#1| |#2|)) (-15 -3635 (|#1| |#1| |#1|)) (-15 -3637 (|#1| |#1| |#1|)) (-15 -3638 (|#1| |#1| |#2|)) (-15 -3638 (|#1| |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-3635 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3637 (($ $ $) 20)) (-3636 (((-112) $ $) 19)) (-1293 (((-112) $ (-765)) 35)) (-3640 (($) 25) (($ (-635 |#1|)) 24)) (-4117 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4400)))) (-4131 (($) 36 T CONST)) (-1424 (($ $) 59 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 58 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4400)))) (-2096 (((-635 |#1|) $) 43 (|has| $ (-6 -4400)))) (-3642 (((-112) $ $) 28)) (-4126 (((-112) $ (-765)) 34)) (-2554 (((-635 |#1|) $) 44 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 38)) (-4123 (((-112) $ (-765)) 33)) (-3643 (((-1148) $) 9)) (-3639 (($ $ $) 23)) (-3644 (((-1110) $) 10)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2098 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#1|) (-635 |#1|)) 50 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 48 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 (-292 |#1|))) 47 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 29)) (-3807 (((-112) $) 32)) (-3972 (($) 31)) (-3638 (($ $ $) 22) (($ $ |#1|) 21)) (-2097 (((-765) |#1| $) 45 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4400)))) (-3804 (($ $) 30)) (-4377 (((-533) $) 60 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 51)) (-4353 (((-857) $) 11)) (-3641 (($) 27) (($ (-635 |#1|)) 26)) (-2099 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 37 (|has| $ (-6 -4400))))) -(((-1089 |#1|) (-139) (-1091)) (T -1089)) -((-3642 (*1 *2 *1 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-3641 (*1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3641 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-1089 *3)))) (-3640 (*1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3640 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-1089 *3)))) (-3639 (*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3638 (*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3638 (*1 *1 *1 *2) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3637 (*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3636 (*1 *2 *1 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))) (-3635 (*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3635 (*1 *1 *1 *2) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) (-3635 (*1 *1 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))) -(-13 (-1091) (-150 |t#1|) (-10 -8 (-6 -4390) (-15 -3642 ((-112) $ $)) (-15 -3641 ($)) (-15 -3641 ($ (-635 |t#1|))) (-15 -3640 ($)) (-15 -3640 ($ (-635 |t#1|))) (-15 -3639 ($ $ $)) (-15 -3638 ($ $ $)) (-15 -3638 ($ $ |t#1|)) (-15 -3637 ($ $ $)) (-15 -3636 ((-112) $ $)) (-15 -3635 ($ $ $)) (-15 -3635 ($ $ |t#1|)) (-15 -3635 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) . T) ((-1204) . T)) -((-3643 (((-1148) $) 10)) (-3644 (((-1110) $) 8))) -(((-1090 |#1|) (-10 -8 (-15 -3643 ((-1148) |#1|)) (-15 -3644 ((-1110) |#1|))) (-1091)) (T -1090)) -NIL -(-10 -8 (-15 -3643 ((-1148) |#1|)) (-15 -3644 ((-1110) |#1|))) -((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6))) -(((-1091) (-139)) (T -1091)) -((-3644 (*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-1110)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-1148))))) -(-13 (-102) (-608 (-857)) (-10 -8 (-15 -3644 ((-1110) $)) (-15 -3643 ((-1148) $)))) -(((-102) . T) ((-608 (-857)) . T)) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) 30)) (-3648 (($ (-635 (-912))) 52)) (-3650 (((-3 $ #1="failed") $ (-912) (-912)) 58)) (-3377 (($) 32)) (-3646 (((-112) (-912) $) 35)) (-2160 (((-912) $) 50)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) 31)) (-3651 (((-3 $ #1#) $ (-912)) 55)) (-3644 (((-1110) $) NIL)) (-3647 (((-1253 $)) 40)) (-3649 (((-635 (-912)) $) 24)) (-3645 (((-765) $ (-912) (-912)) 56)) (-4353 (((-857) $) 29)) (-3437 (((-112) $ $) 21))) -(((-1092 |#1| |#2|) (-13 (-367) (-10 -8 (-15 -3651 ((-3 $ #1="failed") $ (-912))) (-15 -3650 ((-3 $ #1#) $ (-912) (-912))) (-15 -3649 ((-635 (-912)) $)) (-15 -3648 ($ (-635 (-912)))) (-15 -3647 ((-1253 $))) (-15 -3646 ((-112) (-912) $)) (-15 -3645 ((-765) $ (-912) (-912))))) (-912) (-912)) (T -1092)) -((-3651 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-912)) (-5 *1 (-1092 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3650 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-912)) (-5 *1 (-1092 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-3648 (*1 *1 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-3647 (*1 *2) (-12 (-5 *2 (-1253 (-1092 *3 *4))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) (-3646 (*1 *2 *3 *1) (-12 (-5 *3 (-912)) (-5 *2 (-112)) (-5 *1 (-1092 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3645 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-765)) (-5 *1 (-1092 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-367) (-10 -8 (-15 -3651 ((-3 $ #1="failed") $ (-912))) (-15 -3650 ((-3 $ #1#) $ (-912) (-912))) (-15 -3649 ((-635 (-912)) $)) (-15 -3648 ($ (-635 (-912)))) (-15 -3647 ((-1253 $))) (-15 -3646 ((-112) (-912) $)) (-15 -3645 ((-765) $ (-912) (-912))))) -((-2947 (((-112) $ $) NIL)) (-3661 (((-112) $) NIL)) (-3657 (((-1166) $) NIL)) (-3662 (((-112) $) NIL)) (-3942 (((-1148) $) NIL)) (-3664 (((-112) $) NIL)) (-3666 (((-112) $) NIL)) (-3663 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-3660 (((-112) $) NIL)) (-3656 (((-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-3659 (((-112) $) NIL)) (-3655 (((-224) $) NIL)) (-3654 (((-857) $) NIL)) (-3667 (((-112) $ $) NIL)) (-4206 (($ $ (-544)) NIL) (($ $ (-635 (-544))) NIL)) (-3658 (((-635 $) $) NIL)) (-4377 (($ (-1148)) NIL) (($ (-1166)) NIL) (($ (-544)) NIL) (($ (-224)) NIL) (($ (-857)) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL)) (-3652 (($ $) NIL)) (-3653 (($ $) NIL)) (-3665 (((-112) $) NIL)) (-3437 (((-112) $ $) NIL)) (-4364 (((-544) $) NIL))) -(((-1093) (-1094 (-1148) (-1166) (-544) (-224) (-857))) (T -1093)) -NIL -(-1094 (-1148) (-1166) (-544) (-224) (-857)) -((-2947 (((-112) $ $) 7)) (-3661 (((-112) $) 32)) (-3657 ((|#2| $) 27)) (-3662 (((-112) $) 33)) (-3942 ((|#1| $) 28)) (-3664 (((-112) $) 35)) (-3666 (((-112) $) 37)) (-3663 (((-112) $) 34)) (-3643 (((-1148) $) 9)) (-3660 (((-112) $) 31)) (-3656 ((|#3| $) 26)) (-3644 (((-1110) $) 10)) (-3659 (((-112) $) 30)) (-3655 ((|#4| $) 25)) (-3654 ((|#5| $) 24)) (-3667 (((-112) $ $) 38)) (-4206 (($ $ (-544)) 20) (($ $ (-635 (-544))) 19)) (-3658 (((-635 $) $) 29)) (-4377 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-635 $)) 39)) (-4353 (((-857) $) 11)) (-3652 (($ $) 22)) (-3653 (($ $) 23)) (-3665 (((-112) $) 36)) (-3437 (((-112) $ $) 6)) (-4364 (((-544) $) 21))) -(((-1094 |#1| |#2| |#3| |#4| |#5|) (-139) (-1091) (-1091) (-1091) (-1091) (-1091)) (T -1094)) -((-3667 (*1 *2 *1 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112)))) (-3658 (*1 *2 *1) (-12 (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-635 *1)) (-4 *1 (-1094 *3 *4 *5 *6 *7)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *2 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *2 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *2)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) (-3653 (*1 *1 *1) (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *2 (-1091)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)))) (-3652 (*1 *1 *1) (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *2 (-1091)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-544)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091))))) -(-13 (-1091) (-613 |t#1|) (-613 |t#2|) (-613 |t#3|) (-613 |t#4|) (-613 |t#4|) (-613 |t#5|) (-613 (-635 $)) (-10 -8 (-15 -3667 ((-112) $ $)) (-15 -3666 ((-112) $)) (-15 -3665 ((-112) $)) (-15 -3664 ((-112) $)) (-15 -3663 ((-112) $)) (-15 -3662 ((-112) $)) (-15 -3661 ((-112) $)) (-15 -3660 ((-112) $)) (-15 -3659 ((-112) $)) (-15 -3658 ((-635 $) $)) (-15 -3942 (|t#1| $)) (-15 -3657 (|t#2| $)) (-15 -3656 (|t#3| $)) (-15 -3655 (|t#4| $)) (-15 -3654 (|t#5| $)) (-15 -3653 ($ $)) (-15 -3652 ($ $)) (-15 -4364 ((-544) $)) (-15 -4206 ($ $ (-544))) (-15 -4206 ($ $ (-635 (-544)))))) -(((-102) . T) ((-608 (-857)) . T) ((-613 (-635 $)) . T) ((-613 |#1|) . T) ((-613 |#2|) . T) ((-613 |#3|) . T) ((-613 |#4|) . T) ((-613 |#5|) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3661 (((-112) $) 39)) (-3657 ((|#2| $) 42)) (-3662 (((-112) $) 18)) (-3942 ((|#1| $) 19)) (-3664 (((-112) $) 37)) (-3666 (((-112) $) 14)) (-3663 (((-112) $) 38)) (-3643 (((-1148) $) NIL)) (-3660 (((-112) $) 40)) (-3656 ((|#3| $) 44)) (-3644 (((-1110) $) NIL)) (-3659 (((-112) $) 41)) (-3655 ((|#4| $) 43)) (-3654 ((|#5| $) 45)) (-3667 (((-112) $ $) 36)) (-4206 (($ $ (-544)) 56) (($ $ (-635 (-544))) 58)) (-3658 (((-635 $) $) 24)) (-4377 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-635 $)) 46)) (-4353 (((-857) $) 25)) (-3652 (($ $) 23)) (-3653 (($ $) 52)) (-3665 (((-112) $) 21)) (-3437 (((-112) $ $) 35)) (-4364 (((-544) $) 54))) -(((-1095 |#1| |#2| |#3| |#4| |#5|) (-1094 |#1| |#2| |#3| |#4| |#5|) (-1091) (-1091) (-1091) (-1091) (-1091)) (T -1095)) -NIL -(-1094 |#1| |#2| |#3| |#4| |#5|) -((-3784 (((-1259) $) 23)) (-3668 (($ (-1166) (-433) |#2|) 11)) (-4353 (((-857) $) 16))) -(((-1096 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -3668 ($ (-1166) (-433) |#2|)))) (-844) (-420 |#1|)) (T -1096)) -((-3668 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1166)) (-5 *3 (-433)) (-4 *5 (-844)) (-5 *1 (-1096 *5 *4)) (-4 *4 (-420 *5))))) -(-13 (-395) (-10 -8 (-15 -3668 ($ (-1166) (-433) |#2|)))) -((-3671 (((-112) |#5| |#5|) 37)) (-3674 (((-112) |#5| |#5|) 51)) (-3679 (((-112) |#5| (-635 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-3675 (((-112) (-635 |#4|) (-635 |#4|)) 57)) (-3681 (((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) 62)) (-3670 (((-1259)) 33)) (-3669 (((-1259) (-1148) (-1148) (-1148)) 29)) (-3680 (((-635 |#5|) (-635 |#5|)) 81)) (-3682 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) 79)) (-3683 (((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112)) 101)) (-3673 (((-112) |#5| |#5|) 46)) (-3678 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3676 (((-112) (-635 |#4|) (-635 |#4|)) 56)) (-3677 (((-112) (-635 |#4|) (-635 |#4|)) 58)) (-4106 (((-112) (-635 |#4|) (-635 |#4|)) 59)) (-3684 (((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3672 (((-635 |#5|) (-635 |#5|)) 42))) -(((-1097 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3669 ((-1259) (-1148) (-1148) (-1148))) (-15 -3670 ((-1259))) (-15 -3671 ((-112) |#5| |#5|)) (-15 -3672 ((-635 |#5|) (-635 |#5|))) (-15 -3673 ((-112) |#5| |#5|)) (-15 -3674 ((-112) |#5| |#5|)) (-15 -3675 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3676 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3677 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4106 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3678 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3679 ((-112) |#5| |#5|)) (-15 -3679 ((-112) |#5| (-635 |#5|))) (-15 -3680 ((-635 |#5|) (-635 |#5|))) (-15 -3681 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3682 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-15 -3683 ((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3684 ((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1097)) -((-3684 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *4) (|:| |ineq| (-635 *9)))) (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) (-4 *4 (-1062 *6 *7 *8 *9)))) (-3683 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *10) (|:| |ineq| (-635 *9))))) (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))) (-3682 (*1 *2 *2) (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -1688 *7)))) (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)))) (-3680 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1097 *5 *6 *7 *8 *3)))) (-3679 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3678 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-4106 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3677 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3676 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3675 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3674 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3673 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3671 (*1 *2 *3 *3) (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) (-3670 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3669 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))) -(-10 -7 (-15 -3669 ((-1259) (-1148) (-1148) (-1148))) (-15 -3670 ((-1259))) (-15 -3671 ((-112) |#5| |#5|)) (-15 -3672 ((-635 |#5|) (-635 |#5|))) (-15 -3673 ((-112) |#5| |#5|)) (-15 -3674 ((-112) |#5| |#5|)) (-15 -3675 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3676 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3677 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -4106 ((-112) (-635 |#4|) (-635 |#4|))) (-15 -3678 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3679 ((-112) |#5| |#5|)) (-15 -3679 ((-112) |#5| (-635 |#5|))) (-15 -3680 ((-635 |#5|) (-635 |#5|))) (-15 -3681 ((-112) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3682 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-15 -3683 ((-635 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|)))) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3684 ((-3 (-2 (|:| -3667 (-635 |#4|)) (|:| -1688 |#5|) (|:| |ineq| (-635 |#4|))) "failed") (-635 |#4|) |#5| (-635 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3699 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|) 95)) (-3689 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|) 71)) (-3692 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|) 89)) (-3694 (((-635 |#5|) |#4| |#5|) 109)) (-3696 (((-635 |#5|) |#4| |#5|) 116)) (-3698 (((-635 |#5|) |#4| |#5|) 117)) (-3693 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 96)) (-3695 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 115)) (-3697 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3690 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112)) 83) (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3691 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|) 78)) (-3688 (((-1259)) 37)) (-3686 (((-1259)) 26)) (-3687 (((-1259) (-1148) (-1148) (-1148)) 33)) (-3685 (((-1259) (-1148) (-1148) (-1148)) 22))) -(((-1098 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3685 ((-1259) (-1148) (-1148) (-1148))) (-15 -3686 ((-1259))) (-15 -3687 ((-1259) (-1148) (-1148) (-1148))) (-15 -3688 ((-1259))) (-15 -3689 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3690 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3690 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112))) (-15 -3691 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3692 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3697 ((-112) |#4| |#5|)) (-15 -3693 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3694 ((-635 |#5|) |#4| |#5|)) (-15 -3695 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3696 ((-635 |#5|) |#4| |#5|)) (-15 -3697 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3698 ((-635 |#5|) |#4| |#5|)) (-15 -3699 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1062 |#1| |#2| |#3| |#4|)) (T -1098)) -((-3699 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3698 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3697 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3696 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3695 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3694 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3693 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3697 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3692 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3691 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *5 (-112)) (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *4 (-844)) (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -1688 *9)))) (-5 *1 (-1098 *6 *7 *4 *8 *9)))) (-3690 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) (-3689 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) (-3688 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3687 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7)))) (-3686 (*1 *2) (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1062 *4 *5 *6 *7))))) -(-10 -7 (-15 -3685 ((-1259) (-1148) (-1148) (-1148))) (-15 -3686 ((-1259))) (-15 -3687 ((-1259) (-1148) (-1148) (-1148))) (-15 -3688 ((-1259))) (-15 -3689 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3690 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3690 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) |#3| (-112))) (-15 -3691 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3692 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#4| |#5|)) (-15 -3697 ((-112) |#4| |#5|)) (-15 -3693 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3694 ((-635 |#5|) |#4| |#5|)) (-15 -3695 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3696 ((-635 |#5|) |#4| |#5|)) (-15 -3697 ((-635 (-2 (|:| |val| (-112)) (|:| -1688 |#5|))) |#4| |#5|)) (-15 -3698 ((-635 |#5|) |#4| |#5|)) (-15 -3699 ((-635 (-2 (|:| |val| |#4|) (|:| -1688 |#5|))) |#4| |#5|))) -((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 126)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ #1#) $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-3598 (((-112) |#4| $) 136)) (-3596 (((-112) |#4| $) 133)) (-3599 (((-112) |#4| $) 137) (((-112) $) 134)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 127)) (-4204 (((-3 |#4| #1#) $) 83)) (-3593 (((-635 $) |#4| $) 129)) (-3595 (((-3 (-112) (-635 $)) |#4| $) 132)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3639 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3844 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| #1#) $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ #1#) $ |#4|) 78)) (-4175 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3590 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-3597 (((-112) |#4| $) 135)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400))))) -(((-1099 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1099)) -NIL -(-13 (-1062 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1199 |#1| |#2| |#3| |#4|) . T) ((-1204) . T)) -((-3710 (((-635 (-544)) (-544) (-544) (-544)) 22)) (-3709 (((-635 (-544)) (-544) (-544) (-544)) 12)) (-3708 (((-635 (-544)) (-544) (-544) (-544)) 18)) (-3707 (((-544) (-544) (-544)) 9)) (-3706 (((-1253 (-544)) (-635 (-544)) (-1253 (-544)) (-544)) 45) (((-1253 (-544)) (-1253 (-544)) (-1253 (-544)) (-544)) 40)) (-3705 (((-635 (-544)) (-635 (-544)) (-635 (-544)) (-112)) 27)) (-3704 (((-682 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544))) 44)) (-3703 (((-682 (-544)) (-635 (-544)) (-635 (-544))) 32)) (-3702 (((-635 (-682 (-544))) (-635 (-544))) 34)) (-3701 (((-635 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544))) 48)) (-3700 (((-682 (-544)) (-635 (-544)) (-635 (-544)) (-635 (-544))) 56))) -(((-1100) (-10 -7 (-15 -3700 ((-682 (-544)) (-635 (-544)) (-635 (-544)) (-635 (-544)))) (-15 -3701 ((-635 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544)))) (-15 -3702 ((-635 (-682 (-544))) (-635 (-544)))) (-15 -3703 ((-682 (-544)) (-635 (-544)) (-635 (-544)))) (-15 -3704 ((-682 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544)))) (-15 -3705 ((-635 (-544)) (-635 (-544)) (-635 (-544)) (-112))) (-15 -3706 ((-1253 (-544)) (-1253 (-544)) (-1253 (-544)) (-544))) (-15 -3706 ((-1253 (-544)) (-635 (-544)) (-1253 (-544)) (-544))) (-15 -3707 ((-544) (-544) (-544))) (-15 -3708 ((-635 (-544)) (-544) (-544) (-544))) (-15 -3709 ((-635 (-544)) (-544) (-544) (-544))) (-15 -3710 ((-635 (-544)) (-544) (-544) (-544))))) (T -1100)) -((-3710 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544)))) (-3709 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544)))) (-3708 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544)))) (-3707 (*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1100)))) (-3706 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1253 (-544))) (-5 *3 (-635 (-544))) (-5 *4 (-544)) (-5 *1 (-1100)))) (-3706 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1253 (-544))) (-5 *3 (-544)) (-5 *1 (-1100)))) (-3705 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *3 (-112)) (-5 *1 (-1100)))) (-3704 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-682 (-544))) (-5 *3 (-635 (-544))) (-5 *1 (-1100)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1100)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-1100)))) (-3701 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *3 (-682 (-544))) (-5 *1 (-1100)))) (-3700 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1100))))) -(-10 -7 (-15 -3700 ((-682 (-544)) (-635 (-544)) (-635 (-544)) (-635 (-544)))) (-15 -3701 ((-635 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544)))) (-15 -3702 ((-635 (-682 (-544))) (-635 (-544)))) (-15 -3703 ((-682 (-544)) (-635 (-544)) (-635 (-544)))) (-15 -3704 ((-682 (-544)) (-635 (-544)) (-635 (-544)) (-682 (-544)))) (-15 -3705 ((-635 (-544)) (-635 (-544)) (-635 (-544)) (-112))) (-15 -3706 ((-1253 (-544)) (-1253 (-544)) (-1253 (-544)) (-544))) (-15 -3706 ((-1253 (-544)) (-635 (-544)) (-1253 (-544)) (-544))) (-15 -3707 ((-544) (-544) (-544))) (-15 -3708 ((-635 (-544)) (-544) (-544) (-544))) (-15 -3709 ((-635 (-544)) (-544) (-544) (-544))) (-15 -3710 ((-635 (-544)) (-544) (-544) (-544)))) -((** (($ $ (-912)) 10))) -(((-1101 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-912)))) (-1102)) (T -1101)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-912)))) -((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6)) (** (($ $ (-912)) 13)) (* (($ $ $) 14))) -(((-1102) (-139)) (T -1102)) -((* (*1 *1 *1 *1) (-4 *1 (-1102))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-912))))) -(-13 (-1091) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-912))))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL (|has| |#3| (-1091)))) (-3589 (((-112) $) NIL (|has| |#3| (-130)))) (-4114 (($ (-912)) NIL (|has| |#3| (-1042)))) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-2778 (($ $ $) NIL (|has| |#3| (-787)))) (-1391 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1293 (((-112) $ (-765)) NIL)) (-3521 (((-765)) NIL (|has| |#3| (-367)))) (-4030 (((-544) $) NIL (|has| |#3| (-842)))) (-4194 ((|#3| $ (-544) |#3|) NIL (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091)))) (((-3 (-406 (-544)) #1#) $) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1091)))) (-3557 (((-544) $) NIL (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091)))) (((-406 (-544)) $) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) ((|#3| $) NIL (|has| |#3| (-1091)))) (-2401 (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#3| (-634 (-544))) (|has| |#3| (-1042)))) (((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) NIL (|has| |#3| (-1042))) (((-682 |#3|) (-682 $)) NIL (|has| |#3| (-1042)))) (-3866 (((-3 $ "failed") $) NIL (|has| |#3| (-720)))) (-3377 (($) NIL (|has| |#3| (-367)))) (-1665 ((|#3| $ (-544) |#3|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#3| $ (-544)) 12)) (-3587 (((-112) $) NIL (|has| |#3| (-842)))) (-2096 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL (|has| |#3| (-720)))) (-3588 (((-112) $) NIL (|has| |#3| (-842)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2554 (((-635 |#3|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2100 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#3| |#3|) $) NIL)) (-2160 (((-912) $) NIL (|has| |#3| (-367)))) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#3| (-1091)))) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-2535 (($ (-912)) NIL (|has| |#3| (-367)))) (-3644 (((-1110) $) NIL (|has| |#3| (-1091)))) (-4207 ((|#3| $) NIL (|has| (-544) (-844)))) (-2345 (($ $ |#3|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-292 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091)))) (($ $ (-635 |#3|) (-635 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-2351 (((-635 |#3|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#3| $ (-544) |#3|) NIL) ((|#3| $ (-544)) NIL)) (-4243 ((|#3| $ $) NIL (|has| |#3| (-1042)))) (-1552 (($ (-1253 |#3|)) NIL)) (-4318 (((-133)) NIL (|has| |#3| (-362)))) (-4217 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042)))) (-2097 (((-765) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400))) (((-765) |#3| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#3| (-1091))))) (-3804 (($ $) NIL)) (-4353 (((-1253 |#3|) $) NIL) (($ (-544)) NIL (-3936 (-12 (|has| |#3| (-1031 (-544))) (|has| |#3| (-1091))) (|has| |#3| (-1042)))) (($ (-406 (-544))) NIL (-12 (|has| |#3| (-1031 (-406 (-544)))) (|has| |#3| (-1091)))) (($ |#3|) NIL (|has| |#3| (-1091))) (((-857) $) NIL (|has| |#3| (-608 (-857))))) (-3511 (((-765)) NIL (|has| |#3| (-1042)))) (-2099 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4400)))) (-3787 (($ $) NIL (|has| |#3| (-842)))) (-3040 (($) NIL (|has| |#3| (-130)) CONST)) (-3046 (($) NIL (|has| |#3| (-720)) CONST)) (-3051 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-765)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1042)))) (($ $ (-1166)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#3| (-893 (-1166))) (|has| |#3| (-1042)))) (($ $ (-1 |#3| |#3|) (-765)) NIL (|has| |#3| (-1042))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1042)))) (-2945 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-2946 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-3437 (((-112) $ $) NIL (|has| |#3| (-1091)))) (-3066 (((-112) $ $) NIL (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-3067 (((-112) $ $) 17 (-3936 (|has| |#3| (-787)) (|has| |#3| (-842))))) (-4356 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-4244 (($ $ $) NIL (|has| |#3| (-1042))) (($ $) NIL (|has| |#3| (-1042)))) (-4246 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-765)) NIL (|has| |#3| (-720))) (($ $ (-912)) NIL (|has| |#3| (-720)))) (* (($ (-544) $) NIL (|has| |#3| (-1042))) (($ $ $) NIL (|has| |#3| (-720))) (($ $ |#3|) NIL (|has| |#3| (-720))) (($ |#3| $) NIL (|has| |#3| (-720))) (($ (-765) $) NIL (|has| |#3| (-130))) (($ (-912) $) NIL (|has| |#3| (-25)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1103 |#1| |#2| |#3|) (-237 |#1| |#3|) (-765) (-765) (-787)) (T -1103)) +((-4152 (((-639 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 23 (|has| |#1| (-843))) (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 14))) +(((-1081 |#1| |#2|) (-10 -7 (-15 -4152 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|))) (IF (|has| |#1| (-843)) (-15 -4152 ((-639 |#2|) (-1 |#2| |#1|) (-1086 |#1|))) |%noBranch|)) (-1207) (-1207)) (T -1081)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-843)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-639 *6)) (-5 *1 (-1081 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1086 *6)) (-5 *1 (-1081 *5 *6))))) +(-10 -7 (-15 -4152 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|))) (IF (|has| |#1| (-843)) (-15 -4152 ((-639 |#2|) (-1 |#2| |#1|) (-1086 |#1|))) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-2177 (((-639 (-1127)) $) 9)) (-1731 (((-112) $ $) NIL))) +(((-1082) (-13 (-1075) (-10 -8 (-15 -2177 ((-639 (-1127)) $))))) (T -1082)) +((-2177 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1082))))) +(-13 (-1075) (-10 -8 (-15 -2177 ((-639 (-1127)) $)))) +((-4152 (((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 19))) +(((-1083 |#1| |#2|) (-10 -7 (-15 -4152 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)))) (-1207) (-1207)) (T -1083)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1084 *6)) (-5 *1 (-1083 *5 *6))))) +(-10 -7 (-15 -4152 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2444 (((-1168) $) 11)) (-2669 (((-1086 |#1|) $) 12)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3680 (($ (-1168) (-1086 |#1|)) 10)) (-4054 (((-857) $) 20 (|has| |#1| (-1092)))) (-1731 (((-112) $ $) 15 (|has| |#1| (-1092))))) +(((-1084 |#1|) (-13 (-1207) (-10 -8 (-15 -3680 ($ (-1168) (-1086 |#1|))) (-15 -2444 ((-1168) $)) (-15 -2669 ((-1086 |#1|) $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) (-1207)) (T -1084)) +((-3680 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1086 *4)) (-4 *4 (-1207)) (-5 *1 (-1084 *4)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1084 *3)) (-4 *3 (-1207)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-1207))))) +(-13 (-1207) (-10 -8 (-15 -3680 ($ (-1168) (-1086 |#1|))) (-15 -2444 ((-1168) $)) (-15 -2669 ((-1086 |#1|) $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) +((-2669 (($ |#1| |#1|) 8)) (-2010 ((|#1| $) 11)) (-1751 ((|#1| $) 13)) (-1766 (((-562) $) 9)) (-3712 ((|#1| $) 10)) (-2089 ((|#1| $) 12)) (-4208 (($ |#1|) 6)) (-3864 (($ |#1| |#1|) 15)) (-1483 (($ $ (-562)) 14))) +(((-1085 |#1|) (-139) (-1207)) (T -1085)) +((-3864 (*1 *1 *2 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-1483 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1085 *3)) (-4 *3 (-1207)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1207)) (-5 *2 (-562)))) (-2669 (*1 *1 *2 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) +(-13 (-614 |t#1|) (-10 -8 (-15 -3864 ($ |t#1| |t#1|)) (-15 -1483 ($ $ (-562))) (-15 -1751 (|t#1| $)) (-15 -2089 (|t#1| $)) (-15 -2010 (|t#1| $)) (-15 -3712 (|t#1| $)) (-15 -1766 ((-562) $)) (-15 -2669 ($ |t#1| |t#1|)))) +(((-614 |#1|) . T)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2669 (($ |#1| |#1|) 15)) (-4152 (((-639 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-843)))) (-2010 ((|#1| $) 10)) (-1751 ((|#1| $) 9)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1766 (((-562) $) 14)) (-3712 ((|#1| $) 12)) (-2089 ((|#1| $) 11)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3525 (((-639 |#1|) $) 35 (|has| |#1| (-843))) (((-639 |#1|) (-639 $)) 34 (|has| |#1| (-843)))) (-4208 (($ |#1|) 26)) (-4054 (((-857) $) 25 (|has| |#1| (-1092)))) (-3864 (($ |#1| |#1|) 8)) (-1483 (($ $ (-562)) 16)) (-1731 (((-112) $ $) 19 (|has| |#1| (-1092))))) +(((-1086 |#1|) (-13 (-1085 |#1|) (-10 -7 (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-1087 |#1| (-639 |#1|))) |%noBranch|))) (-1207)) (T -1086)) +NIL +(-13 (-1085 |#1|) (-10 -7 (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-1087 |#1| (-639 |#1|))) |%noBranch|))) +((-2669 (($ |#1| |#1|) 8)) (-4152 ((|#2| (-1 |#1| |#1|) $) 16)) (-2010 ((|#1| $) 11)) (-1751 ((|#1| $) 13)) (-1766 (((-562) $) 9)) (-3712 ((|#1| $) 10)) (-2089 ((|#1| $) 12)) (-3525 ((|#2| (-639 $)) 18) ((|#2| $) 17)) (-4208 (($ |#1|) 6)) (-3864 (($ |#1| |#1|) 15)) (-1483 (($ $ (-562)) 14))) +(((-1087 |#1| |#2|) (-139) (-843) (-1141 |t#1|)) (T -1087)) +((-3525 (*1 *2 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1087 *4 *2)) (-4 *4 (-843)) (-4 *2 (-1141 *4)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-843)) (-4 *2 (-1141 *3)))) (-4152 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1087 *4 *2)) (-4 *4 (-843)) (-4 *2 (-1141 *4))))) +(-13 (-1085 |t#1|) (-10 -8 (-15 -3525 (|t#2| (-639 $))) (-15 -3525 (|t#2| $)) (-15 -4152 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-614 |#1|) . T) ((-1085 |#1|) . T)) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1504 (((-1127) $) 12)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 20) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-639 (-1127)) $) 10)) (-1731 (((-112) $ $) NIL))) +(((-1088) (-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $)) (-15 -1504 ((-1127) $))))) (T -1088)) +((-3265 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1088)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1088))))) +(-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $)) (-15 -1504 ((-1127) $)))) +((-2494 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2129 (($ $ $) 10)) (-3703 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1089 |#1| |#2|) (-10 -8 (-15 -2494 (|#1| |#2| |#1|)) (-15 -2494 (|#1| |#1| |#2|)) (-15 -2494 (|#1| |#1| |#1|)) (-15 -2129 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -3703 (|#1| |#1| |#1|))) (-1090 |#2|) (-1092)) (T -1089)) +NIL +(-10 -8 (-15 -2494 (|#1| |#2| |#1|)) (-15 -2494 (|#1| |#1| |#2|)) (-15 -2494 (|#1| |#1| |#1|)) (-15 -2129 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -3703 (|#1| |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-2494 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2129 (($ $ $) 20)) (-2330 (((-112) $ $) 19)) (-4336 (((-112) $ (-766)) 35)) (-1608 (($) 25) (($ (-639 |#1|)) 24)) (-3556 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4402)))) (-1800 (($) 36 T CONST)) (-1459 (($ $) 59 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#1| $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4402)))) (-1720 (((-639 |#1|) $) 43 (|has| $ (-6 -4402)))) (-3027 (((-112) $ $) 28)) (-3292 (((-112) $ (-766)) 34)) (-1912 (((-639 |#1|) $) 44 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 38)) (-3289 (((-112) $ (-766)) 33)) (-2913 (((-1150) $) 9)) (-4376 (($ $ $) 23)) (-1709 (((-1112) $) 10)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1763 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 50 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 48 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 (-293 |#1|))) 47 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 29)) (-2974 (((-112) $) 32)) (-4307 (($) 31)) (-3703 (($ $ $) 22) (($ $ |#1|) 21)) (-1723 (((-766) |#1| $) 45 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4402)))) (-4220 (($ $) 30)) (-4208 (((-535) $) 60 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 51)) (-4054 (((-857) $) 11)) (-1703 (($) 27) (($ (-639 |#1|)) 26)) (-1744 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 6)) (-3492 (((-766) $) 37 (|has| $ (-6 -4402))))) +(((-1090 |#1|) (-139) (-1092)) (T -1090)) +((-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-1703 (*1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-1090 *3)))) (-1608 (*1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-1090 *3)))) (-4376 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-3703 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-3703 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-2129 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-2330 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-2494 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-2494 (*1 *1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) +(-13 (-1092) (-150 |t#1|) (-10 -8 (-6 -4392) (-15 -3027 ((-112) $ $)) (-15 -1703 ($)) (-15 -1703 ($ (-639 |t#1|))) (-15 -1608 ($)) (-15 -1608 ($ (-639 |t#1|))) (-15 -4376 ($ $ $)) (-15 -3703 ($ $ $)) (-15 -3703 ($ $ |t#1|)) (-15 -2129 ($ $ $)) (-15 -2330 ((-112) $ $)) (-15 -2494 ($ $ $)) (-15 -2494 ($ $ |t#1|)) (-15 -2494 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) . T) ((-1207) . T)) +((-2913 (((-1150) $) 10)) (-1709 (((-1112) $) 8))) +(((-1091 |#1|) (-10 -8 (-15 -2913 ((-1150) |#1|)) (-15 -1709 ((-1112) |#1|))) (-1092)) (T -1091)) +NIL +(-10 -8 (-15 -2913 ((-1150) |#1|)) (-15 -1709 ((-1112) |#1|))) +((-4041 (((-112) $ $) 7)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6))) +(((-1092) (-139)) (T -1092)) +((-1709 (*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1112)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1150))))) +(-13 (-102) (-609 (-857)) (-10 -8 (-15 -1709 ((-1112) $)) (-15 -2913 ((-1150) $)))) +(((-102) . T) ((-609 (-857)) . T)) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) 30)) (-1936 (($ (-639 (-916))) 52)) (-2489 (((-3 $ "failed") $ (-916) (-916)) 58)) (-1448 (($) 32)) (-1669 (((-112) (-916) $) 35)) (-1999 (((-916) $) 50)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) 31)) (-4146 (((-3 $ "failed") $ (-916)) 55)) (-1709 (((-1112) $) NIL)) (-3370 (((-1256 $)) 40)) (-3885 (((-639 (-916)) $) 24)) (-3756 (((-766) $ (-916) (-916)) 56)) (-4054 (((-857) $) 29)) (-1731 (((-112) $ $) 21))) +(((-1093 |#1| |#2|) (-13 (-367) (-10 -8 (-15 -4146 ((-3 $ "failed") $ (-916))) (-15 -2489 ((-3 $ "failed") $ (-916) (-916))) (-15 -3885 ((-639 (-916)) $)) (-15 -1936 ($ (-639 (-916)))) (-15 -3370 ((-1256 $))) (-15 -1669 ((-112) (-916) $)) (-15 -3756 ((-766) $ (-916) (-916))))) (-916) (-916)) (T -1093)) +((-4146 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-916)) (-5 *1 (-1093 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2489 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-916)) (-5 *1 (-1093 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-3370 (*1 *2) (-12 (-5 *2 (-1256 (-1093 *3 *4))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-1669 (*1 *2 *3 *1) (-12 (-5 *3 (-916)) (-5 *2 (-112)) (-5 *1 (-1093 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3756 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-766)) (-5 *1 (-1093 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-367) (-10 -8 (-15 -4146 ((-3 $ "failed") $ (-916))) (-15 -2489 ((-3 $ "failed") $ (-916) (-916))) (-15 -3885 ((-639 (-916)) $)) (-15 -1936 ($ (-639 (-916)))) (-15 -3370 ((-1256 $))) (-15 -1669 ((-112) (-916) $)) (-15 -3756 ((-766) $ (-916) (-916))))) +((-4041 (((-112) $ $) NIL)) (-3721 (($) NIL (|has| |#1| (-367)))) (-2494 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-2129 (($ $ $) 71)) (-2330 (((-112) $ $) 72)) (-4336 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-1608 (($ (-639 |#1|)) NIL) (($) 13)) (-3111 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4000 (($ |#1| $) 67 (|has| $ (-6 -4402))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4402)))) (-1448 (($) NIL (|has| |#1| (-367)))) (-1720 (((-639 |#1|) $) 19 (|has| $ (-6 -4402)))) (-3027 (((-112) $ $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-1551 ((|#1| $) 57 (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2993 ((|#1| $) 55 (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 34)) (-1999 (((-916) $) NIL (|has| |#1| (-367)))) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-4376 (($ $ $) 69)) (-3262 ((|#1| $) 25)) (-4300 (($ |#1| $) 65)) (-2466 (($ (-916)) NIL (|has| |#1| (-367)))) (-1709 (((-1112) $) NIL)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1904 ((|#1| $) 27)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 21)) (-4307 (($) 11)) (-3703 (($ $ |#1|) NIL) (($ $ $) 70)) (-3564 (($) NIL) (($ (-639 |#1|)) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) 16)) (-4208 (((-535) $) 52 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 61)) (-2449 (($ $) NIL (|has| |#1| (-367)))) (-4054 (((-857) $) NIL)) (-4234 (((-766) $) NIL)) (-1703 (($ (-639 |#1|)) NIL) (($) 12)) (-1932 (($ (-639 |#1|)) NIL)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 54)) (-3492 (((-766) $) 10 (|has| $ (-6 -4402))))) +(((-1094 |#1|) (-424 |#1|) (-1092)) (T -1094)) +NIL +(-424 |#1|) +((-4041 (((-112) $ $) 7)) (-1873 (((-112) $) 32)) (-1730 ((|#2| $) 27)) (-2186 (((-112) $) 33)) (-3596 ((|#1| $) 28)) (-3155 (((-112) $) 35)) (-4060 (((-112) $) 37)) (-1661 (((-112) $) 34)) (-2913 (((-1150) $) 9)) (-3377 (((-112) $) 31)) (-1757 ((|#3| $) 26)) (-1709 (((-1112) $) 10)) (-3715 (((-112) $) 30)) (-4235 ((|#4| $) 25)) (-2404 ((|#5| $) 24)) (-3342 (((-112) $ $) 38)) (-2343 (($ $ (-562)) 20) (($ $ (-639 (-562))) 19)) (-1716 (((-639 $) $) 29)) (-4208 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-639 $)) 39)) (-4054 (((-857) $) 11)) (-3740 (($ $) 22)) (-3728 (($ $) 23)) (-2849 (((-112) $) 36)) (-1731 (((-112) $ $) 6)) (-3492 (((-562) $) 21))) +(((-1095 |#1| |#2| |#3| |#4| |#5|) (-139) (-1092) (-1092) (-1092) (-1092) (-1092)) (T -1095)) +((-3342 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-2186 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-1716 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-639 *1)) (-4 *1 (-1095 *3 *4 *5 *6 *7)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *2 *4 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *2 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-4235 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *2 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *2)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-3728 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *2 (-1092)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)))) (-3740 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *2 (-1092)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-562)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092))))) +(-13 (-1092) (-614 |t#1|) (-614 |t#2|) (-614 |t#3|) (-614 |t#4|) (-614 |t#4|) (-614 |t#5|) (-614 (-639 $)) (-10 -8 (-15 -3342 ((-112) $ $)) (-15 -4060 ((-112) $)) (-15 -2849 ((-112) $)) (-15 -3155 ((-112) $)) (-15 -1661 ((-112) $)) (-15 -2186 ((-112) $)) (-15 -1873 ((-112) $)) (-15 -3377 ((-112) $)) (-15 -3715 ((-112) $)) (-15 -1716 ((-639 $) $)) (-15 -3596 (|t#1| $)) (-15 -1730 (|t#2| $)) (-15 -1757 (|t#3| $)) (-15 -4235 (|t#4| $)) (-15 -2404 (|t#5| $)) (-15 -3728 ($ $)) (-15 -3740 ($ $)) (-15 -3492 ((-562) $)) (-15 -2343 ($ $ (-562))) (-15 -2343 ($ $ (-639 (-562)))))) +(((-102) . T) ((-609 (-857)) . T) ((-614 (-639 $)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 |#4|) . T) ((-614 |#5|) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1873 (((-112) $) NIL)) (-1730 (((-1168) $) NIL)) (-2186 (((-112) $) NIL)) (-3596 (((-1150) $) NIL)) (-3155 (((-112) $) NIL)) (-4060 (((-112) $) NIL)) (-1661 (((-112) $) NIL)) (-2913 (((-1150) $) NIL)) (-3377 (((-112) $) NIL)) (-1757 (((-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-3715 (((-112) $) NIL)) (-4235 (((-224) $) NIL)) (-2404 (((-857) $) NIL)) (-3342 (((-112) $ $) NIL)) (-2343 (($ $ (-562)) NIL) (($ $ (-639 (-562))) NIL)) (-1716 (((-639 $) $) NIL)) (-4208 (($ (-1150)) NIL) (($ (-1168)) NIL) (($ (-562)) NIL) (($ (-224)) NIL) (($ (-857)) NIL) (($ (-639 $)) NIL)) (-4054 (((-857) $) NIL)) (-3740 (($ $) NIL)) (-3728 (($ $) NIL)) (-2849 (((-112) $) NIL)) (-1731 (((-112) $ $) NIL)) (-3492 (((-562) $) NIL))) +(((-1096) (-1095 (-1150) (-1168) (-562) (-224) (-857))) (T -1096)) +NIL +(-1095 (-1150) (-1168) (-562) (-224) (-857)) +((-4041 (((-112) $ $) NIL)) (-1873 (((-112) $) 39)) (-1730 ((|#2| $) 42)) (-2186 (((-112) $) 18)) (-3596 ((|#1| $) 19)) (-3155 (((-112) $) 37)) (-4060 (((-112) $) 14)) (-1661 (((-112) $) 38)) (-2913 (((-1150) $) NIL)) (-3377 (((-112) $) 40)) (-1757 ((|#3| $) 44)) (-1709 (((-1112) $) NIL)) (-3715 (((-112) $) 41)) (-4235 ((|#4| $) 43)) (-2404 ((|#5| $) 45)) (-3342 (((-112) $ $) 36)) (-2343 (($ $ (-562)) 56) (($ $ (-639 (-562))) 58)) (-1716 (((-639 $) $) 24)) (-4208 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-639 $)) 46)) (-4054 (((-857) $) 25)) (-3740 (($ $) 23)) (-3728 (($ $) 52)) (-2849 (((-112) $) 21)) (-1731 (((-112) $ $) 35)) (-3492 (((-562) $) 54))) +(((-1097 |#1| |#2| |#3| |#4| |#5|) (-1095 |#1| |#2| |#3| |#4| |#5|) (-1092) (-1092) (-1092) (-1092) (-1092)) (T -1097)) +NIL +(-1095 |#1| |#2| |#3| |#4| |#5|) +((-3219 (((-1261) $) 23)) (-1332 (($ (-1168) (-433) |#2|) 11)) (-4054 (((-857) $) 16))) +(((-1098 |#1| |#2|) (-13 (-394) (-10 -8 (-15 -1332 ($ (-1168) (-433) |#2|)))) (-845) (-429 |#1|)) (T -1098)) +((-1332 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-433)) (-4 *5 (-845)) (-5 *1 (-1098 *5 *4)) (-4 *4 (-429 *5))))) +(-13 (-394) (-10 -8 (-15 -1332 ($ (-1168) (-433) |#2|)))) +((-3675 (((-112) |#5| |#5|) 37)) (-1561 (((-112) |#5| |#5|) 51)) (-3934 (((-112) |#5| (-639 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-3097 (((-112) (-639 |#4|) (-639 |#4|)) 57)) (-4225 (((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) 62)) (-3098 (((-1261)) 33)) (-2498 (((-1261) (-1150) (-1150) (-1150)) 29)) (-2543 (((-639 |#5|) (-639 |#5|)) 81)) (-3963 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) 79)) (-3674 (((-639 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112)) 101)) (-1903 (((-112) |#5| |#5|) 46)) (-4187 (((-3 (-112) "failed") |#5| |#5|) 70)) (-2768 (((-112) (-639 |#4|) (-639 |#4|)) 56)) (-2697 (((-112) (-639 |#4|) (-639 |#4|)) 58)) (-1408 (((-112) (-639 |#4|) (-639 |#4|)) 59)) (-3246 (((-3 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3347 (((-639 |#5|) (-639 |#5|)) 42))) +(((-1099 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2498 ((-1261) (-1150) (-1150) (-1150))) (-15 -3098 ((-1261))) (-15 -3675 ((-112) |#5| |#5|)) (-15 -3347 ((-639 |#5|) (-639 |#5|))) (-15 -1903 ((-112) |#5| |#5|)) (-15 -1561 ((-112) |#5| |#5|)) (-15 -3097 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2768 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2697 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -1408 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -4187 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3934 ((-112) |#5| |#5|)) (-15 -3934 ((-112) |#5| (-639 |#5|))) (-15 -2543 ((-639 |#5|) (-639 |#5|))) (-15 -4225 ((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) (-15 -3963 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-15 -3674 ((-639 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -3246 ((-3 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -1099)) +((-3246 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| -3342 (-639 *9)) (|:| -1495 *4) (|:| |ineq| (-639 *9)))) (-5 *1 (-1099 *6 *7 *8 *9 *4)) (-5 *3 (-639 *9)) (-4 *4 (-1064 *6 *7 *8 *9)))) (-3674 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-639 *10)) (-5 *5 (-112)) (-4 *10 (-1064 *6 *7 *8 *9)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) (-5 *2 (-639 (-2 (|:| -3342 (-639 *9)) (|:| -1495 *10) (|:| |ineq| (-639 *9))))) (-5 *1 (-1099 *6 *7 *8 *9 *10)) (-5 *3 (-639 *9)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-639 (-2 (|:| |val| (-639 *6)) (|:| -1495 *7)))) (-4 *6 (-1058 *3 *4 *5)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1099 *3 *4 *5 *6 *7)))) (-4225 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1495 *8))) (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)))) (-2543 (*1 *2 *2) (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-1099 *3 *4 *5 *6 *7)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1099 *5 *6 *7 *8 *3)))) (-3934 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-4187 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-1408 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2697 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2768 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-3097 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-1561 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-1903 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-1099 *3 *4 *5 *6 *7)))) (-3675 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-3098 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1099 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-2498 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(-10 -7 (-15 -2498 ((-1261) (-1150) (-1150) (-1150))) (-15 -3098 ((-1261))) (-15 -3675 ((-112) |#5| |#5|)) (-15 -3347 ((-639 |#5|) (-639 |#5|))) (-15 -1903 ((-112) |#5| |#5|)) (-15 -1561 ((-112) |#5| |#5|)) (-15 -3097 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2768 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2697 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -1408 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -4187 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3934 ((-112) |#5| |#5|)) (-15 -3934 ((-112) |#5| (-639 |#5|))) (-15 -2543 ((-639 |#5|) (-639 |#5|))) (-15 -4225 ((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) (-15 -3963 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-15 -3674 ((-639 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -3246 ((-3 (-2 (|:| -3342 (-639 |#4|)) (|:| -1495 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1780 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|) 95)) (-4072 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|) 71)) (-3711 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|) 89)) (-2038 (((-639 |#5|) |#4| |#5|) 109)) (-2462 (((-639 |#5|) |#4| |#5|) 116)) (-3205 (((-639 |#5|) |#4| |#5|) 117)) (-3373 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 96)) (-3808 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 115)) (-1350 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2506 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#3| (-112)) 83) (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2228 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|) 78)) (-3739 (((-1261)) 37)) (-2511 (((-1261)) 26)) (-2245 (((-1261) (-1150) (-1150) (-1150)) 33)) (-4012 (((-1261) (-1150) (-1150) (-1150)) 22))) +(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4012 ((-1261) (-1150) (-1150) (-1150))) (-15 -2511 ((-1261))) (-15 -2245 ((-1261) (-1150) (-1150) (-1150))) (-15 -3739 ((-1261))) (-15 -4072 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -2506 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2506 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#3| (-112))) (-15 -2228 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3711 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -1350 ((-112) |#4| |#5|)) (-15 -3373 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2038 ((-639 |#5|) |#4| |#5|)) (-15 -3808 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2462 ((-639 |#5|) |#4| |#5|)) (-15 -1350 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -3205 ((-639 |#5|) |#4| |#5|)) (-15 -1780 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -1100)) +((-1780 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-1350 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2462 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3808 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2038 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3373 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-1350 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3711 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2228 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1495 *9)))) (-5 *5 (-112)) (-4 *8 (-1058 *6 *7 *4)) (-4 *9 (-1064 *6 *7 *4 *8)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *4 (-845)) (-5 *2 (-639 (-2 (|:| |val| *8) (|:| -1495 *9)))) (-5 *1 (-1100 *6 *7 *4 *8 *9)))) (-2506 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-4072 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3739 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-2245 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2511 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-4012 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(-10 -7 (-15 -4012 ((-1261) (-1150) (-1150) (-1150))) (-15 -2511 ((-1261))) (-15 -2245 ((-1261) (-1150) (-1150) (-1150))) (-15 -3739 ((-1261))) (-15 -4072 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -2506 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2506 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) |#3| (-112))) (-15 -2228 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -3711 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#4| |#5|)) (-15 -1350 ((-112) |#4| |#5|)) (-15 -3373 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2038 ((-639 |#5|) |#4| |#5|)) (-15 -3808 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -2462 ((-639 |#5|) |#4| |#5|)) (-15 -1350 ((-639 (-2 (|:| |val| (-112)) (|:| -1495 |#5|))) |#4| |#5|)) (-15 -3205 ((-639 |#5|) |#4| |#5|)) (-15 -1780 ((-639 (-2 (|:| |val| |#4|) (|:| -1495 |#5|))) |#4| |#5|))) +((-4041 (((-112) $ $) 7)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |#4|)))) (-639 |#4|)) 85)) (-2304 (((-639 $) (-639 |#4|)) 86) (((-639 $) (-639 |#4|) (-112)) 111)) (-1402 (((-639 |#3|) $) 33)) (-4170 (((-112) $) 26)) (-4274 (((-112) $) 17 (|has| |#1| (-554)))) (-4377 (((-112) |#4| $) 101) (((-112) $) 97)) (-3049 ((|#4| |#4| $) 92)) (-2798 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 126)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) 27)) (-4336 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4402))) (((-3 |#4| "failed") $ |#3|) 79)) (-1800 (($) 45 T CONST)) (-2207 (((-112) $) 22 (|has| |#1| (-554)))) (-1920 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3852 (((-112) $ $) 23 (|has| |#1| (-554)))) (-2539 (((-112) $) 25 (|has| |#1| (-554)))) (-2839 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3884 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3961 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-2387 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4091 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3595 ((|#4| |#4| $) 87)) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4402))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2267 (((-2 (|:| -1450 (-639 |#4|)) (|:| -3316 (-639 |#4|))) $) 105)) (-4079 (((-112) |#4| $) 136)) (-3513 (((-112) |#4| $) 133)) (-2764 (((-112) |#4| $) 137) (((-112) $) 134)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4402)))) (-2573 (((-112) |#4| $) 104) (((-112) $) 103)) (-4339 ((|#3| $) 34)) (-3292 (((-112) $ (-766)) 43)) (-1912 (((-639 |#4|) $) 53 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3754 (((-639 |#3|) $) 32)) (-2071 (((-112) |#3| $) 31)) (-3289 (((-112) $ (-766)) 42)) (-2913 (((-1150) $) 9)) (-1609 (((-3 |#4| (-639 $)) |#4| |#4| $) 128)) (-1851 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 127)) (-1504 (((-3 |#4| "failed") $) 83)) (-1814 (((-639 $) |#4| $) 129)) (-1950 (((-3 (-112) (-639 $)) |#4| $) 132)) (-2021 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4376 (((-639 $) |#4| $) 125) (((-639 $) (-639 |#4|) $) 124) (((-639 $) (-639 |#4|) (-639 $)) 123) (((-639 $) |#4| (-639 $)) 122)) (-1430 (($ |#4| $) 117) (($ (-639 |#4|) $) 116)) (-3576 (((-639 |#4|) $) 107)) (-2890 (((-112) |#4| $) 99) (((-112) $) 95)) (-1849 ((|#4| |#4| $) 90)) (-1408 (((-112) $ $) 110)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2766 (((-112) |#4| $) 100) (((-112) $) 96)) (-1532 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3310 (((-3 $ "failed") $ |#4|) 78)) (-1353 (($ $ |#4|) 77) (((-639 $) |#4| $) 115) (((-639 $) |#4| (-639 $)) 114) (((-639 $) (-639 |#4|) $) 113) (((-639 $) (-639 |#4|) (-639 $)) 112)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) 38)) (-2974 (((-112) $) 41)) (-4307 (($) 40)) (-3598 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4402)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) 60)) (-1812 (($ $ |#3|) 28)) (-3274 (($ $ |#3|) 30)) (-3277 (($ $) 88)) (-1568 (($ $ |#3|) 29)) (-4054 (((-857) $) 11) (((-639 |#4|) $) 37)) (-3730 (((-766) $) 76 (|has| |#3| (-367)))) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4252 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-1612 (((-639 $) |#4| $) 121) (((-639 $) |#4| (-639 $)) 120) (((-639 $) (-639 |#4|) $) 119) (((-639 $) (-639 |#4|) (-639 $)) 118)) (-1744 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4402)))) (-4089 (((-639 |#3|) $) 81)) (-4211 (((-112) |#4| $) 135)) (-3694 (((-112) |#3| $) 80)) (-1731 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4402))))) +(((-1101 |#1| |#2| |#3| |#4|) (-139) (-451) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -1101)) +NIL +(-13 (-1064 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1064 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1200 |#1| |#2| |#3| |#4|) . T) ((-1207) . T)) +((-2896 (((-639 (-562)) (-562) (-562) (-562)) 22)) (-3115 (((-639 (-562)) (-562) (-562) (-562)) 12)) (-1508 (((-639 (-562)) (-562) (-562) (-562)) 18)) (-1734 (((-562) (-562) (-562)) 9)) (-4115 (((-1256 (-562)) (-639 (-562)) (-1256 (-562)) (-562)) 45) (((-1256 (-562)) (-1256 (-562)) (-1256 (-562)) (-562)) 40)) (-2486 (((-639 (-562)) (-639 (-562)) (-639 (-562)) (-112)) 27)) (-1519 (((-683 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562))) 44)) (-3992 (((-683 (-562)) (-639 (-562)) (-639 (-562))) 32)) (-4317 (((-639 (-683 (-562))) (-639 (-562))) 34)) (-2877 (((-639 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562))) 48)) (-1455 (((-683 (-562)) (-639 (-562)) (-639 (-562)) (-639 (-562))) 56))) +(((-1102) (-10 -7 (-15 -1455 ((-683 (-562)) (-639 (-562)) (-639 (-562)) (-639 (-562)))) (-15 -2877 ((-639 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562)))) (-15 -4317 ((-639 (-683 (-562))) (-639 (-562)))) (-15 -3992 ((-683 (-562)) (-639 (-562)) (-639 (-562)))) (-15 -1519 ((-683 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562)))) (-15 -2486 ((-639 (-562)) (-639 (-562)) (-639 (-562)) (-112))) (-15 -4115 ((-1256 (-562)) (-1256 (-562)) (-1256 (-562)) (-562))) (-15 -4115 ((-1256 (-562)) (-639 (-562)) (-1256 (-562)) (-562))) (-15 -1734 ((-562) (-562) (-562))) (-15 -1508 ((-639 (-562)) (-562) (-562) (-562))) (-15 -3115 ((-639 (-562)) (-562) (-562) (-562))) (-15 -2896 ((-639 (-562)) (-562) (-562) (-562))))) (T -1102)) +((-2896 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562)))) (-3115 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562)))) (-1508 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562)))) (-1734 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1102)))) (-4115 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1256 (-562))) (-5 *3 (-639 (-562))) (-5 *4 (-562)) (-5 *1 (-1102)))) (-4115 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1256 (-562))) (-5 *3 (-562)) (-5 *1 (-1102)))) (-2486 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *3 (-112)) (-5 *1 (-1102)))) (-1519 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-683 (-562))) (-5 *3 (-639 (-562))) (-5 *1 (-1102)))) (-3992 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1102)))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-1102)))) (-2877 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *3 (-683 (-562))) (-5 *1 (-1102)))) (-1455 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1102))))) +(-10 -7 (-15 -1455 ((-683 (-562)) (-639 (-562)) (-639 (-562)) (-639 (-562)))) (-15 -2877 ((-639 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562)))) (-15 -4317 ((-639 (-683 (-562))) (-639 (-562)))) (-15 -3992 ((-683 (-562)) (-639 (-562)) (-639 (-562)))) (-15 -1519 ((-683 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562)))) (-15 -2486 ((-639 (-562)) (-639 (-562)) (-639 (-562)) (-112))) (-15 -4115 ((-1256 (-562)) (-1256 (-562)) (-1256 (-562)) (-562))) (-15 -4115 ((-1256 (-562)) (-639 (-562)) (-1256 (-562)) (-562))) (-15 -1734 ((-562) (-562) (-562))) (-15 -1508 ((-639 (-562)) (-562) (-562) (-562))) (-15 -3115 ((-639 (-562)) (-562) (-562) (-562))) (-15 -2896 ((-639 (-562)) (-562) (-562) (-562)))) +((** (($ $ (-916)) 10))) +(((-1103 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-916)))) (-1104)) (T -1103)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-916)))) +((-4041 (((-112) $ $) 7)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6)) (** (($ $ (-916)) 13)) (* (($ $ $) 14))) +(((-1104) (-139)) (T -1104)) +((* (*1 *1 *1 *1) (-4 *1 (-1104))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-916))))) +(-13 (-1092) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-916))))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL (|has| |#3| (-1092)))) (-1952 (((-112) $) NIL (|has| |#3| (-130)))) (-3901 (($ (-916)) NIL (|has| |#3| (-1044)))) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-3659 (($ $ $) NIL (|has| |#3| (-788)))) (-3214 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-4336 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#3| (-367)))) (-2277 (((-562) $) NIL (|has| |#3| (-843)))) (-4200 ((|#3| $ (-562) |#3|) NIL (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1092)))) (-3961 (((-562) $) NIL (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) ((|#3| $) NIL (|has| |#3| (-1092)))) (-2406 (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) (((-2 (|:| -1545 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 $) (-1256 $)) NIL (|has| |#3| (-1044))) (((-683 |#3|) (-683 $)) NIL (|has| |#3| (-1044)))) (-3668 (((-3 $ "failed") $) NIL (|has| |#3| (-721)))) (-1448 (($) NIL (|has| |#3| (-367)))) (-1505 ((|#3| $ (-562) |#3|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#3| $ (-562)) 12)) (-3519 (((-112) $) NIL (|has| |#3| (-843)))) (-1720 (((-639 |#3|) $) NIL (|has| $ (-6 -4402)))) (-1957 (((-112) $) NIL (|has| |#3| (-721)))) (-3392 (((-112) $) NIL (|has| |#3| (-843)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1912 (((-639 |#3|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#3| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1490 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#3| |#3|) $) NIL)) (-1999 (((-916) $) NIL (|has| |#3| (-367)))) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#3| (-1092)))) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-2466 (($ (-916)) NIL (|has| |#3| (-367)))) (-1709 (((-1112) $) NIL (|has| |#3| (-1092)))) (-1421 ((|#3| $) NIL (|has| (-562) (-845)))) (-2716 (($ $ |#3|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-639 |#3|) (-639 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#3| (-1092))))) (-2411 (((-639 |#3|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#3| $ (-562) |#3|) NIL) ((|#3| $ (-562)) NIL)) (-4177 ((|#3| $ $) NIL (|has| |#3| (-1044)))) (-1679 (($ (-1256 |#3|)) NIL)) (-3627 (((-133)) NIL (|has| |#3| (-362)))) (-4029 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1 |#3| |#3|) (-766)) NIL (|has| |#3| (-1044))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1044)))) (-1723 (((-766) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4402))) (((-766) |#3| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#3| (-1092))))) (-4220 (($ $) NIL)) (-4054 (((-1256 |#3|) $) NIL) (($ (-562)) NIL (-4037 (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (|has| |#3| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) (($ |#3|) NIL (|has| |#3| (-1092))) (((-857) $) NIL (|has| |#3| (-609 (-857))))) (-2579 (((-766)) NIL (|has| |#3| (-1044)))) (-1744 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4402)))) (-3526 (($ $) NIL (|has| |#3| (-843)))) (-2286 (($) NIL (|has| |#3| (-130)) CONST)) (-2294 (($) NIL (|has| |#3| (-721)) CONST)) (-3114 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1 |#3| |#3|) (-766)) NIL (|has| |#3| (-1044))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1044)))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1772 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1731 (((-112) $ $) NIL (|has| |#3| (-1092)))) (-1785 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1759 (((-112) $ $) 17 (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1859 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1848 (($ $ $) NIL (|has| |#3| (-1044))) (($ $) NIL (|has| |#3| (-1044)))) (-1835 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-766)) NIL (|has| |#3| (-721))) (($ $ (-916)) NIL (|has| |#3| (-721)))) (* (($ (-562) $) NIL (|has| |#3| (-1044))) (($ $ $) NIL (|has| |#3| (-721))) (($ $ |#3|) NIL (|has| |#3| (-721))) (($ |#3| $) NIL (|has| |#3| (-721))) (($ (-766) $) NIL (|has| |#3| (-130))) (($ (-916) $) NIL (|has| |#3| (-25)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1105 |#1| |#2| |#3|) (-237 |#1| |#3|) (-766) (-766) (-788)) (T -1105)) NIL (-237 |#1| |#3|) -((-3711 (((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 36)) (-3717 (((-544) (-1222 |#2| |#1|)) 68 (|has| |#1| (-450)))) (-3715 (((-544) (-1222 |#2| |#1|)) 53)) (-3712 (((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 44)) (-3716 (((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 67 (|has| |#1| (-450)))) (-3713 (((-635 |#1|) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 47)) (-3714 (((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|)) 52))) -(((-1104 |#1| |#2|) (-10 -7 (-15 -3711 ((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3712 ((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3713 ((-635 |#1|) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3714 ((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3715 ((-544) (-1222 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3716 ((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3717 ((-544) (-1222 |#2| |#1|)))) |%noBranch|)) (-814) (-1166)) (T -1104)) -((-3717 (*1 *2 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))) (-3714 (*1 *2 *3 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) (-5 *1 (-1104 *4 *5)))) (-3713 (*1 *2 *3 *3) (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 *4)) (-5 *1 (-1104 *4 *5)))) (-3712 (*1 *2 *3 *3) (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 (-1222 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1222 *5 *4)))) (-3711 (*1 *2 *3 *3) (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 (-1222 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1222 *5 *4))))) -(-10 -7 (-15 -3711 ((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3712 ((-635 (-1222 |#2| |#1|)) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3713 ((-635 |#1|) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3714 ((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3715 ((-544) (-1222 |#2| |#1|))) (IF (|has| |#1| (-450)) (PROGN (-15 -3716 ((-544) (-1222 |#2| |#1|) (-1222 |#2| |#1|))) (-15 -3717 ((-544) (-1222 |#2| |#1|)))) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-3719 (((-1171) $) 10)) (-3718 (((-635 (-1171)) $) 11)) (-3720 (($ (-635 (-1171)) (-1171)) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 22)) (-3437 (((-112) $ $) 14))) -(((-1105) (-13 (-1091) (-10 -8 (-15 -3720 ($ (-635 (-1171)) (-1171))) (-15 -3719 ((-1171) $)) (-15 -3718 ((-635 (-1171)) $))))) (T -1105)) -((-3720 (*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1171))) (-5 *3 (-1171)) (-5 *1 (-1105)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1105)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1105))))) -(-13 (-1091) (-10 -8 (-15 -3720 ($ (-635 (-1171)) (-1171))) (-15 -3719 ((-1171) $)) (-15 -3718 ((-635 (-1171)) $)))) -((-2947 (((-112) $ $) NIL)) (-3721 (($ (-504) (-1105)) 14)) (-3720 (((-1105) $) 20)) (-3949 (((-504) $) 17)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 28) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-1106) (-13 (-1073) (-10 -8 (-15 -3721 ($ (-504) (-1105))) (-15 -3949 ((-504) $)) (-15 -3720 ((-1105) $))))) (T -1106)) -((-3721 (*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-1106)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1106)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1106))))) -(-13 (-1073) (-10 -8 (-15 -3721 ($ (-504) (-1105))) (-15 -3949 ((-504) $)) (-15 -3720 ((-1105) $)))) -((-4030 (((-3 (-544) #1="failed") |#2| (-1166) |#2| (-1148)) 17) (((-3 (-544) #1#) |#2| (-1166) (-836 |#2|)) 15) (((-3 (-544) #1#) |#2|) 54))) -(((-1107 |#1| |#2|) (-10 -7 (-15 -4030 ((-3 (-544) #1="failed") |#2|)) (-15 -4030 ((-3 (-544) #1#) |#2| (-1166) (-836 |#2|))) (-15 -4030 ((-3 (-544) #1#) |#2| (-1166) |#2| (-1148)))) (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)) (-450)) (-13 (-27) (-1190) (-420 |#1|))) (T -1107)) -((-4030 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-1148)) (-4 *6 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544)) (-5 *1 (-1107 *6 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))))) (-4030 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-836 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) (-4 *6 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544)) (-5 *1 (-1107 *6 *3)))) (-4030 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544)) (-5 *1 (-1107 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4)))))) -(-10 -7 (-15 -4030 ((-3 (-544) #1="failed") |#2|)) (-15 -4030 ((-3 (-544) #1#) |#2| (-1166) (-836 |#2|))) (-15 -4030 ((-3 (-544) #1#) |#2| (-1166) |#2| (-1148)))) -((-4030 (((-3 (-544) #1="failed") (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)) (-1148)) 35) (((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-836 (-406 (-939 |#1|)))) 30) (((-3 (-544) #1#) (-406 (-939 |#1|))) 13))) -(((-1108 |#1|) (-10 -7 (-15 -4030 ((-3 (-544) #1="failed") (-406 (-939 |#1|)))) (-15 -4030 ((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-836 (-406 (-939 |#1|))))) (-15 -4030 ((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)) (-1148)))) (-450)) (T -1108)) -((-4030 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-406 (-939 *6))) (-5 *4 (-1166)) (-5 *5 (-1148)) (-4 *6 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *6)))) (-4030 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-836 (-406 (-939 *6)))) (-5 *3 (-406 (-939 *6))) (-4 *6 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *6)))) (-4030 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *4))))) -(-10 -7 (-15 -4030 ((-3 (-544) #1="failed") (-406 (-939 |#1|)))) (-15 -4030 ((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-836 (-406 (-939 |#1|))))) (-15 -4030 ((-3 (-544) #1#) (-406 (-939 |#1|)) (-1166) (-406 (-939 |#1|)) (-1148)))) -((-4056 (((-313 (-544)) (-48)) 12))) -(((-1109) (-10 -7 (-15 -4056 ((-313 (-544)) (-48))))) (T -1109)) -((-4056 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-313 (-544))) (-5 *1 (-1109))))) -(-10 -7 (-15 -4056 ((-313 (-544)) (-48)))) -((-2947 (((-112) $ $) NIL)) (-2430 (($ $) 40)) (-3589 (((-112) $) 64)) (-3725 (($ $ $) 47)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 89)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-2197 (($ $ $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-2192 (($ $ $ $) 74)) (-4181 (($ $) NIL)) (-4376 (((-404 $) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3521 (((-765)) 76)) (-4030 (((-544) $) NIL)) (-2735 (($ $ $) 71)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) "failed") $) NIL)) (-3557 (((-544) $) NIL)) (-2943 (($ $ $) 58)) (-2401 (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 83) (((-682 (-544)) (-682 $)) 27)) (-3866 (((-3 $ "failed") $) NIL)) (-3407 (((-3 (-406 (-544)) "failed") $) NIL)) (-3406 (((-112) $) NIL)) (-3405 (((-406 (-544)) $) NIL)) (-3377 (($) 86) (($ $) 87)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL)) (-4130 (((-112) $) NIL)) (-2190 (($ $ $ $) NIL)) (-2198 (($ $ $) 84)) (-3587 (((-112) $) NIL)) (-1440 (($ $ $) NIL)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL)) (-2545 (((-112) $) 65)) (-3055 (((-112) $) 63)) (-3726 (($ $) 41)) (-3848 (((-3 $ "failed") $) NIL)) (-3588 (((-112) $) 75)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL)) (-2191 (($ $ $ $) 72)) (-2913 (($ $ $) 67) (($) 38 T CONST)) (-3242 (($ $ $) 66) (($) 37 T CONST)) (-2194 (($ $) NIL)) (-2160 (((-912) $) 79)) (-4240 (($ $) 70)) (-2041 (($ $ $) NIL) (($ (-635 $)) NIL)) (-3643 (((-1148) $) NIL)) (-2189 (($ $ $) NIL)) (-3849 (($) NIL T CONST)) (-2535 (($ (-912)) 78)) (-2196 (($ $) 49)) (-3644 (((-1110) $) 69)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL)) (-3545 (($ $ $) 61) (($ (-635 $)) NIL)) (-1438 (($ $) NIL)) (-4139 (((-404 $) $) NIL)) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL)) (-3865 (((-3 $ "failed") $ $) NIL)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL)) (-3056 (((-112) $) NIL)) (-1732 (((-765) $) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 60)) (-4217 (($ $ (-765)) NIL) (($ $) NIL)) (-2195 (($ $) 50)) (-3804 (($ $) NIL)) (-4377 (((-544) $) 31) (((-533) $) NIL) (((-883 (-544)) $) NIL) (((-377) $) NIL) (((-224) $) NIL)) (-4353 (((-857) $) 30) (($ (-544)) 85) (($ $) NIL) (($ (-544)) 85)) (-3511 (((-765)) NIL)) (-2199 (((-112) $ $) NIL)) (-3487 (($ $ $) NIL)) (-3076 (($) 36)) (-2212 (((-112) $ $) NIL)) (-2193 (($ $ $ $) 73)) (-3787 (($ $) 62)) (-2428 (($ $ $) 43)) (-3040 (($) 34 T CONST)) (-3722 (($ $ $) 46)) (-3046 (($) 35 T CONST)) (-2879 (((-1148) $) 20) (((-1148) $ (-112)) 22) (((-1259) (-817) $) 23) (((-1259) (-817) $ (-112)) 24)) (-3724 (($ $) 44)) (-3051 (($ $ (-765)) NIL) (($ $) NIL)) (-3723 (($ $ $) 45)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 39)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 48)) (-2429 (($ $ $) 42)) (-4244 (($ $) 51) (($ $ $) 53)) (-4246 (($ $ $) 52)) (** (($ $ (-912)) NIL) (($ $ (-765)) 56)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 33) (($ $ $) 54))) -(((-1110) (-13 (-543) (-838) (-655) (-815) (-10 -8 (-6 -4387) (-6 -4392) (-6 -4388) (-15 -3726 ($ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $))))) (T -1110)) -((-3726 (*1 *1 *1) (-5 *1 (-1110))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1110))) (-3724 (*1 *1 *1) (-5 *1 (-1110))) (-3723 (*1 *1 *1 *1) (-5 *1 (-1110))) (-3722 (*1 *1 *1 *1) (-5 *1 (-1110)))) -(-13 (-543) (-838) (-655) (-815) (-10 -8 (-6 -4387) (-6 -4392) (-6 -4388) (-15 -3726 ($ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($ $)) (-15 -3723 ($ $ $)) (-15 -3722 ($ $ $)))) +((-1528 (((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 36)) (-4306 (((-562) (-1229 |#2| |#1|)) 68 (|has| |#1| (-451)))) (-3238 (((-562) (-1229 |#2| |#1|)) 53)) (-3140 (((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 44)) (-1769 (((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 67 (|has| |#1| (-451)))) (-4073 (((-639 |#1|) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 47)) (-3578 (((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 52))) +(((-1106 |#1| |#2|) (-10 -7 (-15 -1528 ((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3140 ((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -4073 ((-639 |#1|) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3578 ((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3238 ((-562) (-1229 |#2| |#1|))) (IF (|has| |#1| (-451)) (PROGN (-15 -1769 ((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -4306 ((-562) (-1229 |#2| |#1|)))) |%noBranch|)) (-815) (-1168)) (T -1106)) +((-4306 (*1 *2 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-451)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5)))) (-1769 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-451)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5)))) (-3578 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5)))) (-4073 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 *4)) (-5 *1 (-1106 *4 *5)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 (-1229 *5 *4))) (-5 *1 (-1106 *4 *5)) (-5 *3 (-1229 *5 *4)))) (-1528 (*1 *2 *3 *3) (-12 (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 (-1229 *5 *4))) (-5 *1 (-1106 *4 *5)) (-5 *3 (-1229 *5 *4))))) +(-10 -7 (-15 -1528 ((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3140 ((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -4073 ((-639 |#1|) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3578 ((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3238 ((-562) (-1229 |#2| |#1|))) (IF (|has| |#1| (-451)) (PROGN (-15 -1769 ((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -4306 ((-562) (-1229 |#2| |#1|)))) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-4008 (($ (-505) (-1110)) 14)) (-2845 (((-1110) $) 20)) (-3254 (((-505) $) 17)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 28) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-1107) (-13 (-1075) (-10 -8 (-15 -4008 ($ (-505) (-1110))) (-15 -3254 ((-505) $)) (-15 -2845 ((-1110) $))))) (T -1107)) +((-4008 (*1 *1 *2 *3) (-12 (-5 *2 (-505)) (-5 *3 (-1110)) (-5 *1 (-1107)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-1107)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1107))))) +(-13 (-1075) (-10 -8 (-15 -4008 ($ (-505) (-1110))) (-15 -3254 ((-505) $)) (-15 -2845 ((-1110) $)))) +((-2277 (((-3 (-562) "failed") |#2| (-1168) |#2| (-1150)) 17) (((-3 (-562) "failed") |#2| (-1168) (-838 |#2|)) 15) (((-3 (-562) "failed") |#2|) 54))) +(((-1108 |#1| |#2|) (-10 -7 (-15 -2277 ((-3 (-562) "failed") |#2|)) (-15 -2277 ((-3 (-562) "failed") |#2| (-1168) (-838 |#2|))) (-15 -2277 ((-3 (-562) "failed") |#2| (-1168) |#2| (-1150)))) (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)) (-451)) (-13 (-27) (-1192) (-429 |#1|))) (T -1108)) +((-2277 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-1150)) (-4 *6 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) (-5 *2 (-562)) (-5 *1 (-1108 *6 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))))) (-2277 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-838 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) (-5 *2 (-562)) (-5 *1 (-1108 *6 *3)))) (-2277 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) (-5 *2 (-562)) (-5 *1 (-1108 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4)))))) +(-10 -7 (-15 -2277 ((-3 (-562) "failed") |#2|)) (-15 -2277 ((-3 (-562) "failed") |#2| (-1168) (-838 |#2|))) (-15 -2277 ((-3 (-562) "failed") |#2| (-1168) |#2| (-1150)))) +((-2277 (((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)) (-1150)) 35) (((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-838 (-406 (-947 |#1|)))) 30) (((-3 (-562) "failed") (-406 (-947 |#1|))) 13))) +(((-1109 |#1|) (-10 -7 (-15 -2277 ((-3 (-562) "failed") (-406 (-947 |#1|)))) (-15 -2277 ((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-838 (-406 (-947 |#1|))))) (-15 -2277 ((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)) (-1150)))) (-451)) (T -1109)) +((-2277 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-406 (-947 *6))) (-5 *4 (-1168)) (-5 *5 (-1150)) (-4 *6 (-451)) (-5 *2 (-562)) (-5 *1 (-1109 *6)))) (-2277 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-838 (-406 (-947 *6)))) (-5 *3 (-406 (-947 *6))) (-4 *6 (-451)) (-5 *2 (-562)) (-5 *1 (-1109 *6)))) (-2277 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-451)) (-5 *2 (-562)) (-5 *1 (-1109 *4))))) +(-10 -7 (-15 -2277 ((-3 (-562) "failed") (-406 (-947 |#1|)))) (-15 -2277 ((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-838 (-406 (-947 |#1|))))) (-15 -2277 ((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)) (-1150)))) +((-4041 (((-112) $ $) NIL)) (-4084 (((-1173) $) 10)) (-4020 (((-639 (-1173)) $) 11)) (-2845 (($ (-639 (-1173)) (-1173)) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 22)) (-1731 (((-112) $ $) 14))) +(((-1110) (-13 (-1092) (-10 -8 (-15 -2845 ($ (-639 (-1173)) (-1173))) (-15 -4084 ((-1173) $)) (-15 -4020 ((-639 (-1173)) $))))) (T -1110)) +((-2845 (*1 *1 *2 *3) (-12 (-5 *2 (-639 (-1173))) (-5 *3 (-1173)) (-5 *1 (-1110)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1110)))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1110))))) +(-13 (-1092) (-10 -8 (-15 -2845 ($ (-639 (-1173)) (-1173))) (-15 -4084 ((-1173) $)) (-15 -4020 ((-639 (-1173)) $)))) +((-4120 (((-315 (-562)) (-48)) 12))) +(((-1111) (-10 -7 (-15 -4120 ((-315 (-562)) (-48))))) (T -1111)) +((-4120 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-562))) (-5 *1 (-1111))))) +(-10 -7 (-15 -4120 ((-315 (-562)) (-48)))) +((-4041 (((-112) $ $) NIL)) (-3295 (($ $) 40)) (-1952 (((-112) $) 64)) (-2265 (($ $ $) 47)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 89)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-1685 (($ $ $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-4375 (($ $ $ $) 74)) (-2798 (($ $) NIL)) (-2921 (((-417 $) $) NIL)) (-2569 (((-112) $ $) NIL)) (-1382 (((-766)) 76)) (-2277 (((-562) $) NIL)) (-3358 (($ $ $) 71)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL)) (-3961 (((-562) $) NIL)) (-1811 (($ $ $) 58)) (-2406 (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 83) (((-683 (-562)) (-683 $)) 27)) (-3668 (((-3 $ "failed") $) NIL)) (-1726 (((-3 (-406 (-562)) "failed") $) NIL)) (-3035 (((-112) $) NIL)) (-1291 (((-406 (-562)) $) NIL)) (-1448 (($) 86) (($ $) 87)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL)) (-2717 (((-112) $) NIL)) (-3854 (($ $ $ $) NIL)) (-1292 (($ $ $) 84)) (-3519 (((-112) $) NIL)) (-2794 (($ $ $) NIL)) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL)) (-1957 (((-112) $) 65)) (-3130 (((-112) $) 63)) (-2236 (($ $) 41)) (-3699 (((-3 $ "failed") $) NIL)) (-3392 (((-112) $) 75)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2504 (($ $ $ $) 72)) (-1551 (($ $ $) 67) (($) 38 T CONST)) (-2993 (($ $ $) 66) (($) 37 T CONST)) (-3930 (($ $) NIL)) (-1999 (((-916) $) 79)) (-3641 (($ $) 70)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2913 (((-1150) $) NIL)) (-1809 (($ $ $) NIL)) (-3729 (($) NIL T CONST)) (-2466 (($ (-916)) 78)) (-4137 (($ $) 49)) (-1709 (((-1112) $) 69)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) 61) (($ (-639 $)) NIL)) (-1351 (($ $) NIL)) (-1635 (((-417 $) $) NIL)) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3803 (((-112) $) NIL)) (-1577 (((-766) $) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 60)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-2372 (($ $) 50)) (-4220 (($ $) NIL)) (-4208 (((-562) $) 31) (((-535) $) NIL) (((-887 (-562)) $) NIL) (((-378) $) NIL) (((-224) $) NIL)) (-4054 (((-857) $) 30) (($ (-562)) 85) (($ $) NIL) (($ (-562)) 85)) (-2579 (((-766)) NIL)) (-2929 (((-112) $ $) NIL)) (-3261 (($ $ $) NIL)) (-3241 (($) 36)) (-2922 (((-112) $ $) NIL)) (-3131 (($ $ $ $) 73)) (-3526 (($ $) 62)) (-2308 (($ $ $) 43)) (-2286 (($) 34 T CONST)) (-2937 (($ $ $) 46)) (-2294 (($) 35 T CONST)) (-2833 (((-1150) $) 20) (((-1150) $ (-112)) 22) (((-1261) (-817) $) 23) (((-1261) (-817) $ (-112)) 24)) (-2945 (($ $) 44)) (-3114 (($ $ (-766)) NIL) (($ $) NIL)) (-2926 (($ $ $) 45)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 39)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 48)) (-2298 (($ $ $) 42)) (-1848 (($ $) 51) (($ $ $) 53)) (-1835 (($ $ $) 52)) (** (($ $ (-916)) NIL) (($ $ (-766)) 56)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 33) (($ $ $) 54))) +(((-1112) (-13 (-544) (-839) (-655) (-823) (-10 -8 (-6 -4389) (-6 -4394) (-6 -4390) (-15 -2236 ($ $)) (-15 -2265 ($ $ $)) (-15 -2945 ($ $)) (-15 -2926 ($ $ $)) (-15 -2937 ($ $ $))))) (T -1112)) +((-2236 (*1 *1 *1) (-5 *1 (-1112))) (-2265 (*1 *1 *1 *1) (-5 *1 (-1112))) (-2945 (*1 *1 *1) (-5 *1 (-1112))) (-2926 (*1 *1 *1 *1) (-5 *1 (-1112))) (-2937 (*1 *1 *1 *1) (-5 *1 (-1112)))) +(-13 (-544) (-839) (-655) (-823) (-10 -8 (-6 -4389) (-6 -4394) (-6 -4390) (-15 -2236 ($ $)) (-15 -2265 ($ $ $)) (-15 -2945 ($ $)) (-15 -2926 ($ $ $)) (-15 -2937 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3728 ((|#1| $) 44)) (-1293 (((-112) $ (-765)) 8)) (-4131 (($) 7 T CONST)) (-3730 ((|#1| |#1| $) 46)) (-3729 ((|#1| $) 45)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-1356 ((|#1| $) 39)) (-4014 (($ |#1| $) 40)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-1357 ((|#1| $) 41)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-3727 (((-765) $) 43)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) 42)) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-1111 |#1|) (-139) (-1204)) (T -1111)) -((-3730 (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1204)) (-5 *2 (-765))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4400) (-15 -3730 (|t#1| |t#1| $)) (-15 -3729 (|t#1| $)) (-15 -3728 (|t#1| $)) (-15 -3727 ((-765) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-3734 ((|#3| $) 76)) (-3558 (((-3 (-544) #1="failed") $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3557 (((-544) $) NIL) (((-406 (-544)) $) NIL) ((|#3| $) 37)) (-2401 (((-682 (-544)) (-682 $)) NIL) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL) (((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 $) (-1253 $)) 73) (((-682 |#3|) (-682 $)) 65)) (-4217 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166)) NIL) (($ $ (-765)) NIL) (($ $) NIL)) (-3733 ((|#3| $) 78)) (-3735 ((|#4| $) 32)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ |#3|) 16)) (** (($ $ (-912)) NIL) (($ $ (-765)) 15) (($ $ (-544)) 82))) -(((-1112 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-544))) (-15 -3733 (|#3| |#1|)) (-15 -3734 (|#3| |#1|)) (-15 -3735 (|#4| |#1|)) (-15 -2401 ((-682 |#3|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -4353 (|#1| |#3|)) (-15 -3558 ((-3 |#3| #1="failed") |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))) (-15 -4353 ((-857) |#1|))) (-1113 |#2| |#3| |#4| |#5|) (-765) (-1042) (-237 |#2| |#3|) (-237 |#2| |#3|)) (T -1112)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-544))) (-15 -3733 (|#3| |#1|)) (-15 -3734 (|#3| |#1|)) (-15 -3735 (|#4| |#1|)) (-15 -2401 ((-682 |#3|) (-682 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 |#3|)) (|:| |vec| (-1253 |#3|))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 |#1|) (-1253 |#1|))) (-15 -2401 ((-682 (-544)) (-682 |#1|))) (-15 -4353 (|#1| |#3|)) (-15 -3558 ((-3 |#3| #1="failed") |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|) (-765))) (-15 -4217 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3734 ((|#2| $) 71)) (-3506 (((-112) $) 111)) (-1391 (((-3 $ "failed") $ $) 19)) (-3508 (((-112) $) 109)) (-1293 (((-112) $ (-765)) 101)) (-3737 (($ |#2|) 74)) (-4131 (($) 17 T CONST)) (-3495 (($ $) 128 (|has| |#2| (-306)))) (-3497 ((|#3| $ (-544)) 123)) (-3558 (((-3 (-544) #1="failed") $) 86 (|has| |#2| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) 83 (|has| |#2| (-1031 (-406 (-544))))) (((-3 |#2| #1#) $) 80)) (-3557 (((-544) $) 85 (|has| |#2| (-1031 (-544)))) (((-406 (-544)) $) 82 (|has| |#2| (-1031 (-406 (-544))))) ((|#2| $) 81)) (-2401 (((-682 (-544)) (-682 $)) 78 (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 77 (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 76) (((-682 |#2|) (-682 $)) 75)) (-3866 (((-3 $ "failed") $) 33)) (-3494 (((-765) $) 129 (|has| |#2| (-554)))) (-3498 ((|#2| $ (-544) (-544)) 121)) (-2096 (((-635 |#2|) $) 94 (|has| $ (-6 -4400)))) (-2545 (((-112) $) 31)) (-3493 (((-765) $) 130 (|has| |#2| (-554)))) (-3492 (((-635 |#4|) $) 131 (|has| |#2| (-554)))) (-3500 (((-765) $) 117)) (-3499 (((-765) $) 118)) (-4126 (((-112) $ (-765)) 102)) (-3731 ((|#2| $) 66 (|has| |#2| (-6 (-4402 #2="*"))))) (-3504 (((-544) $) 113)) (-3502 (((-544) $) 115)) (-2554 (((-635 |#2|) $) 93 (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-3503 (((-544) $) 114)) (-3501 (((-544) $) 116)) (-3509 (($ (-635 (-635 |#2|))) 108)) (-2100 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-4000 (((-635 (-635 |#2|)) $) 119)) (-4123 (((-112) $ (-765)) 103)) (-3643 (((-1148) $) 9)) (-3996 (((-3 $ "failed") $) 65 (|has| |#2| (-362)))) (-3644 (((-1110) $) 10)) (-3865 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-554)))) (-2098 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) 90 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 89 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 87 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) 107)) (-3807 (((-112) $) 104)) (-3972 (($) 105)) (-4206 ((|#2| $ (-544) (-544) |#2|) 122) ((|#2| $ (-544) (-544)) 120)) (-4217 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-765)) 51) (($ $ (-635 (-1166)) (-635 (-765))) 44 (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) 43 (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) 42 (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) 41 (|has| |#2| (-893 (-1166)))) (($ $ (-765)) 39 (|has| |#2| (-232))) (($ $) 37 (|has| |#2| (-232)))) (-3733 ((|#2| $) 70)) (-3736 (($ (-635 |#2|)) 73)) (-3507 (((-112) $) 110)) (-3735 ((|#3| $) 72)) (-3732 ((|#2| $) 67 (|has| |#2| (-6 (-4402 #2#))))) (-2097 (((-765) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4400))) (((-765) |#2| $) 92 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 106)) (-3496 ((|#4| $ (-544)) 124)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 84 (|has| |#2| (-1031 (-406 (-544))))) (($ |#2|) 79)) (-3511 (((-765)) 28)) (-2099 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4400)))) (-3505 (((-112) $) 112)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-765)) 49) (($ $ (-635 (-1166)) (-635 (-765))) 48 (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) 47 (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) 46 (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) 45 (|has| |#2| (-893 (-1166)))) (($ $ (-765)) 40 (|has| |#2| (-232))) (($ $) 38 (|has| |#2| (-232)))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#2|) 127 (|has| |#2| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 64 (|has| |#2| (-362)))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-4364 (((-765) $) 100 (|has| $ (-6 -4400))))) -(((-1113 |#1| |#2| |#3| |#4|) (-139) (-765) (-1042) (-237 |t#1| |t#2|) (-237 |t#1| |t#2|)) (T -1113)) -((-3737 (*1 *1 *2) (-12 (-4 *2 (-1042)) (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-635 *4)) (-4 *4 (-1042)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1042)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *2 (-237 *3 *4)) (-4 *5 (-237 *3 *4)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4402 #1="*"))) (-4 *2 (-1042)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4402 #1#))) (-4 *2 (-1042)))) (-3996 (*1 *1 *1) (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362))))) -(-13 (-230 |t#2|) (-111 |t#2| |t#2|) (-1045 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-376 |t#2|) (-10 -8 (IF (|has| |t#2| (-171)) (-6 (-711 |t#2|)) |%noBranch|) (-15 -3737 ($ |t#2|)) (-15 -3736 ($ (-635 |t#2|))) (-15 -3735 (|t#3| $)) (-15 -3734 (|t#2| $)) (-15 -3733 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4402 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3732 (|t#2| $)) (-15 -3731 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-362)) (PROGN (-15 -3996 ((-3 $ "failed") $)) (-15 ** ($ $ (-544)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4402 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 #2=(-406 (-544))) |has| |#2| (-1031 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#2|) . T) ((-608 (-857)) . T) ((-230 |#2|) . T) ((-232) |has| |#2| (-232)) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-376 |#2|) . T) ((-411 |#2|) . T) ((-487 |#2|) . T) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-641 |#2|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#2| (-634 (-544))) ((-634 |#2|) . T) ((-711 |#2|) -3936 (|has| |#2| (-171)) (|has| |#2| (-6 (-4402 #1#)))) ((-720) . T) ((-893 (-1166)) |has| |#2| (-893 (-1166))) ((-1045 |#1| |#1| |#2| |#3| |#4|) . T) ((-1031 #2#) |has| |#2| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#2| (-1031 (-544))) ((-1031 |#2|) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1204) . T)) -((-3740 ((|#4| |#4|) 70)) (-3738 ((|#4| |#4|) 65)) (-3742 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|) 78)) (-3741 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3739 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1114 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 (|#4| |#4|)) (-15 -3739 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3740 (|#4| |#4|)) (-15 -3741 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3742 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|))) (-306) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|)) (T -1114)) -((-3742 (*1 *2 *3 *4) (-12 (-4 *5 (-306)) (-4 *6 (-371 *5)) (-4 *4 (-371 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4)))) (-5 *1 (-1114 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3740 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) -(-10 -7 (-15 -3738 (|#4| |#4|)) (-15 -3739 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3740 (|#4| |#4|)) (-15 -3741 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3742 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2162 (-635 |#3|))) |#4| |#3|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 17)) (-3467 (((-635 |#2|) $) 158)) (-3469 (((-1160 $) $ |#2|) 53) (((-1160 |#1|) $) 42)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 107 (|has| |#1| (-554)))) (-2213 (($ $) 109 (|has| |#1| (-554)))) (-2211 (((-112) $) 111 (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 |#2|)) 191)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) 155) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 |#2| #2#) $) NIL)) (-3557 ((|#1| $) 153) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) ((|#2| $) NIL)) (-4163 (($ $ $ |#2|) NIL (|has| |#1| (-171)))) (-4366 (($ $) 195)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) 81)) (-3902 (($ $) NIL (|has| |#1| (-450))) (($ $ |#2|) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-529 |#2|) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| |#1| (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| |#1| (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-2545 (((-112) $) 19)) (-2553 (((-765) $) 26)) (-3470 (($ (-1160 |#1|) |#2|) 47) (($ (-1160 $) |#2|) 63)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) 32)) (-3276 (($ |#1| (-529 |#2|)) 70) (($ $ |#2| (-765)) 51) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ |#2|) NIL)) (-3202 (((-529 |#2|) $) 185) (((-765) $ |#2|) 186) (((-635 (-765)) $ (-635 |#2|)) 187)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-529 |#2|) (-529 |#2|)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 119)) (-3468 (((-3 |#2| #3="failed") $) 160)) (-3277 (($ $) 194)) (-3575 ((|#1| $) 36)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-3205 (((-3 (-635 $) #3#) $) NIL)) (-3204 (((-3 (-635 $) #3#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| |#2|) (|:| -2536 (-765))) #3#) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 33)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 137 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) 142 (|has| |#1| (-450))) (($ $ $) 129 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#1| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-903)))) (-3865 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 117 (|has| |#1| (-554)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ |#2| |#1|) 163) (($ $ (-635 |#2|) (-635 |#1|)) 176) (($ $ |#2| $) 162) (($ $ (-635 |#2|) (-635 $)) 175)) (-4164 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-4217 (($ $ |#2|) 193) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4355 (((-529 |#2|) $) 181) (((-765) $ |#2|) 177) (((-635 (-765)) $ (-635 |#2|)) 179)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| |#1| (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| |#1| (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| |#1| (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#1| $) 125 (|has| |#1| (-450))) (($ $ |#2|) 128 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4353 (((-857) $) 148) (($ (-544)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-4224 (((-635 |#1|) $) 151)) (-4084 ((|#1| $ (-529 |#2|)) 72) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 78)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) 114 (|has| |#1| (-554)))) (-3040 (($) 12 T CONST)) (-3046 (($) 14 T CONST)) (-3051 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 96)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 123 (|has| |#1| (-362)))) (-4244 (($ $) 84) (($ $ $) 94)) (-4246 (($ $ $) 48)) (** (($ $ (-912)) 101) (($ $ (-765)) 99)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 87) (($ $ $) 64) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-1115 |#1| |#2|) (-943 |#1| (-529 |#2|) |#2|) (-1042) (-844)) (T -1115)) -NIL -(-943 |#1| (-529 |#2|) |#2|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3891 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 116 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 112 (|has| |#1| (-38 (-406 (-544)))))) (-3893 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4221 (((-939 |#1|) $ (-765)) NIL) (((-939 |#1|) $ (-765) (-765)) NIL)) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $ |#2|) NIL) (((-765) $ |#2| (-765)) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4344 (((-112) $) NIL)) (-3276 (($ $ (-635 |#2|) (-635 (-529 |#2|))) NIL) (($ $ |#2| (-529 |#2|)) NIL) (($ |#1| (-529 |#2|)) NIL) (($ $ |#2| (-765)) 55) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) 110 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4219 (($ $ |#2|) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-4083 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-406 (-544)))))) (-4175 (($ $ (-765)) 13)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4350 (($ $) 108 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (($ $ |#2| $) 94) (($ $ (-635 |#2|) (-635 $)) 87) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL)) (-4217 (($ $ |#2|) 97) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-4355 (((-529 |#2|) $) NIL)) (-3743 (((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|))) 76)) (-3894 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 118 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 114 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 15)) (-4353 (((-857) $) 179) (($ (-544)) NIL) (($ |#1|) 40 (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#2|) 62) (($ |#3|) 60)) (-4084 ((|#1| $ (-529 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL) ((|#3| $ (-765)) 38)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3897 (($ $) 152 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 148 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 156 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-3900 (($ $) 158 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 154 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 150 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 47 T CONST)) (-3046 (($) 54 T CONST)) (-3051 (($ $ |#2|) NIL) (($ $ (-635 |#2|)) NIL) (($ $ |#2| (-765)) NIL) (($ $ (-635 |#2|) (-635 (-765))) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) 181 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 58)) (** (($ $ (-912)) NIL) (($ $ (-765)) 67) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 100 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 57) (($ $ (-406 (-544))) 105 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 103 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) -(((-1116 |#1| |#2| |#3|) (-13 (-734 |#1| |#2|) (-10 -8 (-15 -4084 (|#3| $ (-765))) (-15 -4353 ($ |#2|)) (-15 -4353 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3743 ((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|)))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ |#2| |#1|)) (-15 -4083 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1042) (-844) (-943 |#1| (-529 |#2|) |#2|)) (T -1116)) -((-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *2 (-943 *4 (-529 *5) *5)) (-5 *1 (-1116 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-844)))) (-4353 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-943 *3 (-529 *2) *2)))) (-4353 (*1 *1 *2) (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) (-4 *2 (-943 *3 (-529 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) (-4 *2 (-943 *3 (-529 *4) *4)))) (-3743 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1143 *7))) (-4 *6 (-844)) (-4 *7 (-943 *5 (-529 *6) *6)) (-4 *5 (-1042)) (-5 *2 (-1 (-1143 *7) *7)) (-5 *1 (-1116 *5 *6 *7)))) (-4219 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-943 *3 (-529 *2) *2)))) (-4083 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1116 *4 *3 *5))) (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *1 (-1116 *4 *3 *5)) (-4 *5 (-943 *4 (-529 *3) *3))))) -(-13 (-734 |#1| |#2|) (-10 -8 (-15 -4084 (|#3| $ (-765))) (-15 -4353 ($ |#2|)) (-15 -4353 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3743 ((-1 (-1143 |#3|) |#3|) (-635 |#2|) (-635 (-1143 |#3|)))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ |#2| |#1|)) (-15 -4083 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86) (((-635 $) (-635 |#4|) (-112)) 111)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 126)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ #1#) $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-3598 (((-112) |#4| $) 136)) (-3596 (((-112) |#4| $) 133)) (-3599 (((-112) |#4| $) 137) (((-112) $) 134)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) 128)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 127)) (-4204 (((-3 |#4| #1#) $) 83)) (-3593 (((-635 $) |#4| $) 129)) (-3595 (((-3 (-112) (-635 $)) |#4| $) 132)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3639 (((-635 $) |#4| $) 125) (((-635 $) (-635 |#4|) $) 124) (((-635 $) (-635 |#4|) (-635 $)) 123) (((-635 $) |#4| (-635 $)) 122)) (-3844 (($ |#4| $) 117) (($ (-635 |#4|) $) 116)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| #1#) $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ #1#) $ |#4|) 78)) (-4175 (($ $ |#4|) 77) (((-635 $) |#4| $) 115) (((-635 $) |#4| (-635 $)) 114) (((-635 $) (-635 |#4|) $) 113) (((-635 $) (-635 |#4|) (-635 $)) 112)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-3590 (((-635 $) |#4| $) 121) (((-635 $) |#4| (-635 $)) 120) (((-635 $) (-635 |#4|) $) 119) (((-635 $) (-635 |#4|) (-635 $)) 118)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-3597 (((-112) |#4| $) 135)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400))))) -(((-1117 |#1| |#2| |#3| |#4|) (-139) (-450) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1117)) -NIL -(-13 (-1099 |t#1| |t#2| |t#3| |t#4|) (-778 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-778 |#1| |#2| |#3| |#4|) . T) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1062 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1199 |#1| |#2| |#3| |#4|) . T) ((-1204) . T)) -((-3980 (((-635 |#2|) |#1|) 12)) (-3749 (((-635 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-635 |#2|) |#1|) 49)) (-3747 (((-635 |#2|) |#2| |#2| |#2|) 36) (((-635 |#2|) |#1|) 47)) (-3744 ((|#2| |#1|) 43)) (-3745 (((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3746 (((-635 |#2|) |#2| |#2|) 35) (((-635 |#2|) |#1|) 46)) (-3748 (((-635 |#2|) |#2| |#2| |#2| |#2|) 37) (((-635 |#2|) |#1|) 48)) (-3753 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-3751 ((|#2| |#2| |#2| |#2|) 40)) (-3750 ((|#2| |#2| |#2|) 39)) (-3752 ((|#2| |#2| |#2| |#2| |#2|) 41))) -(((-1118 |#1| |#2|) (-10 -7 (-15 -3980 ((-635 |#2|) |#1|)) (-15 -3744 (|#2| |#1|)) (-15 -3745 ((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3746 ((-635 |#2|) |#1|)) (-15 -3747 ((-635 |#2|) |#1|)) (-15 -3748 ((-635 |#2|) |#1|)) (-15 -3749 ((-635 |#2|) |#1|)) (-15 -3746 ((-635 |#2|) |#2| |#2|)) (-15 -3747 ((-635 |#2|) |#2| |#2| |#2|)) (-15 -3748 ((-635 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3749 ((-635 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2| |#2|)) (-15 -3752 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1229 |#2|) (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (T -1118)) -((-3753 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3752 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3751 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3749 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3748 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3747 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3746 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3)))) (-3749 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-3747 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) (-3745 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-2 (|:| |solns| (-635 *5)) (|:| |maps| (-635 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1118 *3 *5)) (-4 *3 (-1229 *5)))) (-3744 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2)))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -3980 ((-635 |#2|) |#1|)) (-15 -3744 (|#2| |#1|)) (-15 -3745 ((-2 (|:| |solns| (-635 |#2|)) (|:| |maps| (-635 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3746 ((-635 |#2|) |#1|)) (-15 -3747 ((-635 |#2|) |#1|)) (-15 -3748 ((-635 |#2|) |#1|)) (-15 -3749 ((-635 |#2|) |#1|)) (-15 -3746 ((-635 |#2|) |#2| |#2|)) (-15 -3747 ((-635 |#2|) |#2| |#2| |#2|)) (-15 -3748 ((-635 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3749 ((-635 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2| |#2|)) (-15 -3752 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3754 (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|))))) 95) (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166))) 94) (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|)))) 92) (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))) (-635 (-1166))) 90) (((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|)))) 75) (((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))) (-1166)) 76) (((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|))) 70) (((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)) (-1166)) 59)) (-3755 (((-635 (-635 (-313 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166))) 88) (((-635 (-313 |#1|)) (-406 (-939 |#1|)) (-1166)) 43)) (-3756 (((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-406 (-939 |#1|)) (-1166)) 98) (((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166)) 97))) -(((-1119 |#1|) (-10 -7 (-15 -3754 ((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166)))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -3755 ((-635 (-313 |#1|)) (-406 (-939 |#1|)) (-1166))) (-15 -3755 ((-635 (-635 (-313 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3756 ((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3756 ((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-406 (-939 |#1|)) (-1166)))) (-13 (-306) (-844) (-146))) (T -1119)) -((-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-1155 (-635 (-313 *5)) (-635 (-292 (-313 *5))))) (-5 *1 (-1119 *5)))) (-3756 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-406 (-939 *5)))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-1155 (-635 (-313 *5)) (-635 (-292 (-313 *5))))) (-5 *1 (-1119 *5)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-313 *5)))) (-5 *1 (-1119 *5)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-313 *5))) (-5 *1 (-1119 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-635 (-292 (-406 (-939 *4))))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *4))))) (-5 *1 (-1119 *4)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-292 (-406 (-939 *5))))) (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5))))) (-5 *1 (-1119 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-635 (-406 (-939 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *4))))) (-5 *1 (-1119 *4)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5))))) (-5 *1 (-1119 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-292 (-406 (-939 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1119 *4)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-292 (-406 (-939 *5)))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1119 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1119 *4)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1119 *5))))) -(-10 -7 (-15 -3754 ((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)) (-1166))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-406 (-939 |#1|)))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3754 ((-635 (-292 (-313 |#1|))) (-292 (-406 (-939 |#1|))))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-406 (-939 |#1|))))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166)))) (-15 -3754 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -3755 ((-635 (-313 |#1|)) (-406 (-939 |#1|)) (-1166))) (-15 -3755 ((-635 (-635 (-313 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3756 ((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3756 ((-1155 (-635 (-313 |#1|)) (-635 (-292 (-313 |#1|)))) (-406 (-939 |#1|)) (-1166)))) -((-3758 (((-406 (-1160 (-313 |#1|))) (-1253 (-313 |#1|)) (-406 (-1160 (-313 |#1|))) (-544)) 29)) (-3757 (((-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|)))) 40))) -(((-1120 |#1|) (-10 -7 (-15 -3757 ((-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))))) (-15 -3758 ((-406 (-1160 (-313 |#1|))) (-1253 (-313 |#1|)) (-406 (-1160 (-313 |#1|))) (-544)))) (-13 (-554) (-844))) (T -1120)) -((-3758 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-406 (-1160 (-313 *5)))) (-5 *3 (-1253 (-313 *5))) (-5 *4 (-544)) (-4 *5 (-13 (-554) (-844))) (-5 *1 (-1120 *5)))) (-3757 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-406 (-1160 (-313 *3)))) (-4 *3 (-13 (-554) (-844))) (-5 *1 (-1120 *3))))) -(-10 -7 (-15 -3757 ((-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))) (-406 (-1160 (-313 |#1|))))) (-15 -3758 ((-406 (-1160 (-313 |#1|))) (-1253 (-313 |#1|)) (-406 (-1160 (-313 |#1|))) (-544)))) -((-3980 (((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-313 |#1|))) (-635 (-1166))) 222) (((-635 (-292 (-313 |#1|))) (-313 |#1|) (-1166)) 20) (((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)) (-1166)) 26) (((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|))) 25) (((-635 (-292 (-313 |#1|))) (-313 |#1|)) 21))) -(((-1121 |#1|) (-10 -7 (-15 -3980 ((-635 (-292 (-313 |#1|))) (-313 |#1|))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)) (-1166))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-313 |#1|) (-1166))) (-15 -3980 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-313 |#1|))) (-635 (-1166))))) (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (T -1121)) -((-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1166))) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5))))) (-5 *1 (-1121 *5)) (-5 *3 (-635 (-292 (-313 *5)))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-313 *5)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-292 (-313 *5))))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-292 (-313 *4))))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-313 *4))))) -(-10 -7 (-15 -3980 ((-635 (-292 (-313 |#1|))) (-313 |#1|))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-292 (-313 |#1|)) (-1166))) (-15 -3980 ((-635 (-292 (-313 |#1|))) (-313 |#1|) (-1166))) (-15 -3980 ((-635 (-635 (-292 (-313 |#1|)))) (-635 (-292 (-313 |#1|))) (-635 (-1166))))) -((-3760 ((|#2| |#2|) 20 (|has| |#1| (-844))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3759 ((|#2| |#2|) 19 (|has| |#1| (-844))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) -(((-1122 |#1| |#2|) (-10 -7 (-15 -3759 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3760 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-844)) (PROGN (-15 -3759 (|#2| |#2|)) (-15 -3760 (|#2| |#2|))) |%noBranch|)) (-1204) (-13 (-599 (-544) |#1|) (-10 -7 (-6 -4400) (-6 -4401)))) (T -1122)) -((-3760 (*1 *2 *2) (-12 (-4 *3 (-844)) (-4 *3 (-1204)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-599 (-544) *3) (-10 -7 (-6 -4400) (-6 -4401)))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-844)) (-4 *3 (-1204)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-599 (-544) *3) (-10 -7 (-6 -4400) (-6 -4401)))))) (-3760 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-1122 *4 *2)) (-4 *2 (-13 (-599 (-544) *4) (-10 -7 (-6 -4400) (-6 -4401)))))) (-3759 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-1122 *4 *2)) (-4 *2 (-13 (-599 (-544) *4) (-10 -7 (-6 -4400) (-6 -4401))))))) -(-10 -7 (-15 -3759 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3760 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-844)) (PROGN (-15 -3759 (|#2| |#2|)) (-15 -3760 (|#2| |#2|))) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-4295 (((-1154 3 |#1|) $) 107)) (-3770 (((-112) $) 72)) (-3771 (($ $ (-635 (-936 |#1|))) 20) (($ $ (-635 (-635 |#1|))) 75) (($ (-635 (-936 |#1|))) 74) (((-635 (-936 |#1|)) $) 73)) (-3776 (((-112) $) 41)) (-4113 (($ $ (-936 |#1|)) 46) (($ $ (-635 |#1|)) 51) (($ $ (-765)) 53) (($ (-936 |#1|)) 47) (((-936 |#1|) $) 45)) (-3762 (((-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $) 105)) (-3780 (((-765) $) 26)) (-3781 (((-765) $) 25)) (-4294 (($ $ (-765) (-936 |#1|)) 39)) (-3768 (((-112) $) 82)) (-3769 (($ $ (-635 (-635 (-936 |#1|))) (-635 (-170)) (-170)) 89) (($ $ (-635 (-635 (-635 |#1|))) (-635 (-170)) (-170)) 91) (($ $ (-635 (-635 (-936 |#1|))) (-112) (-112)) 85) (($ $ (-635 (-635 (-635 |#1|))) (-112) (-112)) 93) (($ (-635 (-635 (-936 |#1|)))) 86) (($ (-635 (-635 (-936 |#1|))) (-112) (-112)) 87) (((-635 (-635 (-936 |#1|))) $) 84)) (-3917 (($ (-635 $)) 28) (($ $ $) 29)) (-3763 (((-635 (-170)) $) 102)) (-3767 (((-635 (-936 |#1|)) $) 96)) (-3764 (((-635 (-635 (-170))) $) 101)) (-3765 (((-635 (-635 (-635 (-936 |#1|)))) $) NIL)) (-3766 (((-635 (-635 (-635 (-765)))) $) 99)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3777 (((-765) $ (-635 (-936 |#1|))) 37)) (-3774 (((-112) $) 54)) (-3775 (($ $ (-635 (-936 |#1|))) 56) (($ $ (-635 (-635 |#1|))) 62) (($ (-635 (-936 |#1|))) 57) (((-635 (-936 |#1|)) $) 55)) (-3782 (($) 23) (($ (-1154 3 |#1|)) 24)) (-3804 (($ $) 35)) (-3778 (((-635 $) $) 34)) (-4161 (($ (-635 $)) 31)) (-3779 (((-635 $) $) 33)) (-4353 (((-857) $) 111)) (-3772 (((-112) $) 64)) (-3773 (($ $ (-635 (-936 |#1|))) 66) (($ $ (-635 (-635 |#1|))) 69) (($ (-635 (-936 |#1|))) 67) (((-635 (-936 |#1|)) $) 65)) (-3761 (($ $) 106)) (-3437 (((-112) $ $) NIL))) -(((-1123 |#1|) (-1124 |#1|) (-1042)) (T -1123)) -NIL -(-1124 |#1|) -((-2947 (((-112) $ $) 7)) (-4295 (((-1154 3 |#1|) $) 13)) (-3770 (((-112) $) 29)) (-3771 (($ $ (-635 (-936 |#1|))) 33) (($ $ (-635 (-635 |#1|))) 32) (($ (-635 (-936 |#1|))) 31) (((-635 (-936 |#1|)) $) 30)) (-3776 (((-112) $) 44)) (-4113 (($ $ (-936 |#1|)) 49) (($ $ (-635 |#1|)) 48) (($ $ (-765)) 47) (($ (-936 |#1|)) 46) (((-936 |#1|) $) 45)) (-3762 (((-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $) 15)) (-3780 (((-765) $) 58)) (-3781 (((-765) $) 59)) (-4294 (($ $ (-765) (-936 |#1|)) 50)) (-3768 (((-112) $) 21)) (-3769 (($ $ (-635 (-635 (-936 |#1|))) (-635 (-170)) (-170)) 28) (($ $ (-635 (-635 (-635 |#1|))) (-635 (-170)) (-170)) 27) (($ $ (-635 (-635 (-936 |#1|))) (-112) (-112)) 26) (($ $ (-635 (-635 (-635 |#1|))) (-112) (-112)) 25) (($ (-635 (-635 (-936 |#1|)))) 24) (($ (-635 (-635 (-936 |#1|))) (-112) (-112)) 23) (((-635 (-635 (-936 |#1|))) $) 22)) (-3917 (($ (-635 $)) 57) (($ $ $) 56)) (-3763 (((-635 (-170)) $) 16)) (-3767 (((-635 (-936 |#1|)) $) 20)) (-3764 (((-635 (-635 (-170))) $) 17)) (-3765 (((-635 (-635 (-635 (-936 |#1|)))) $) 18)) (-3766 (((-635 (-635 (-635 (-765)))) $) 19)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3777 (((-765) $ (-635 (-936 |#1|))) 51)) (-3774 (((-112) $) 39)) (-3775 (($ $ (-635 (-936 |#1|))) 43) (($ $ (-635 (-635 |#1|))) 42) (($ (-635 (-936 |#1|))) 41) (((-635 (-936 |#1|)) $) 40)) (-3782 (($) 61) (($ (-1154 3 |#1|)) 60)) (-3804 (($ $) 52)) (-3778 (((-635 $) $) 53)) (-4161 (($ (-635 $)) 55)) (-3779 (((-635 $) $) 54)) (-4353 (((-857) $) 11)) (-3772 (((-112) $) 34)) (-3773 (($ $ (-635 (-936 |#1|))) 38) (($ $ (-635 (-635 |#1|))) 37) (($ (-635 (-936 |#1|))) 36) (((-635 (-936 |#1|)) $) 35)) (-3761 (($ $) 14)) (-3437 (((-112) $ $) 6))) -(((-1124 |#1|) (-139) (-1042)) (T -1124)) -((-4353 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-857)))) (-3782 (*1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-1154 3 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) (-3917 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3779 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)))) (-3778 (*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)))) (-3804 (*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-635 (-936 *4))) (-4 *1 (-1124 *4)) (-4 *4 (-1042)) (-5 *2 (-765)))) (-4294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-936 *4)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-4113 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-4113 (*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-4113 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-936 *3)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3773 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3773 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3773 (*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-635 (-936 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) (-4 *1 (-1124 *5)) (-4 *5 (-1042)))) (-3769 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-936 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-3769 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) (-3769 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 *3)))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) (-3769 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-635 (-635 (-936 *4)))) (-5 *3 (-112)) (-4 *4 (-1042)) (-4 *1 (-1124 *4)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-936 *3)))))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-635 (-765))))))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-635 (-936 *3))))))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-170)))))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-170))))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765)))))) (-3761 (*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-1154 3 *3))))) -(-13 (-1091) (-10 -8 (-15 -3782 ($)) (-15 -3782 ($ (-1154 3 |t#1|))) (-15 -3781 ((-765) $)) (-15 -3780 ((-765) $)) (-15 -3917 ($ (-635 $))) (-15 -3917 ($ $ $)) (-15 -4161 ($ (-635 $))) (-15 -3779 ((-635 $) $)) (-15 -3778 ((-635 $) $)) (-15 -3804 ($ $)) (-15 -3777 ((-765) $ (-635 (-936 |t#1|)))) (-15 -4294 ($ $ (-765) (-936 |t#1|))) (-15 -4113 ($ $ (-936 |t#1|))) (-15 -4113 ($ $ (-635 |t#1|))) (-15 -4113 ($ $ (-765))) (-15 -4113 ($ (-936 |t#1|))) (-15 -4113 ((-936 |t#1|) $)) (-15 -3776 ((-112) $)) (-15 -3775 ($ $ (-635 (-936 |t#1|)))) (-15 -3775 ($ $ (-635 (-635 |t#1|)))) (-15 -3775 ($ (-635 (-936 |t#1|)))) (-15 -3775 ((-635 (-936 |t#1|)) $)) (-15 -3774 ((-112) $)) (-15 -3773 ($ $ (-635 (-936 |t#1|)))) (-15 -3773 ($ $ (-635 (-635 |t#1|)))) (-15 -3773 ($ (-635 (-936 |t#1|)))) (-15 -3773 ((-635 (-936 |t#1|)) $)) (-15 -3772 ((-112) $)) (-15 -3771 ($ $ (-635 (-936 |t#1|)))) (-15 -3771 ($ $ (-635 (-635 |t#1|)))) (-15 -3771 ($ (-635 (-936 |t#1|)))) (-15 -3771 ((-635 (-936 |t#1|)) $)) (-15 -3770 ((-112) $)) (-15 -3769 ($ $ (-635 (-635 (-936 |t#1|))) (-635 (-170)) (-170))) (-15 -3769 ($ $ (-635 (-635 (-635 |t#1|))) (-635 (-170)) (-170))) (-15 -3769 ($ $ (-635 (-635 (-936 |t#1|))) (-112) (-112))) (-15 -3769 ($ $ (-635 (-635 (-635 |t#1|))) (-112) (-112))) (-15 -3769 ($ (-635 (-635 (-936 |t#1|))))) (-15 -3769 ($ (-635 (-635 (-936 |t#1|))) (-112) (-112))) (-15 -3769 ((-635 (-635 (-936 |t#1|))) $)) (-15 -3768 ((-112) $)) (-15 -3767 ((-635 (-936 |t#1|)) $)) (-15 -3766 ((-635 (-635 (-635 (-765)))) $)) (-15 -3765 ((-635 (-635 (-635 (-936 |t#1|)))) $)) (-15 -3764 ((-635 (-635 (-170))) $)) (-15 -3763 ((-635 (-170)) $)) (-15 -3762 ((-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) (|:| |constructs| (-765))) $)) (-15 -3761 ($ $)) (-15 -4295 ((-1154 3 |t#1|) $)) (-15 -4353 ((-857) $)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 176) (($ (-1171)) NIL) (((-1171) $) 7)) (-3973 (((-112) $ (|[\|\|]| (-522))) 17) (((-112) $ (|[\|\|]| (-217))) 21) (((-112) $ (|[\|\|]| (-669))) 25) (((-112) $ (|[\|\|]| (-1264))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1106))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-674))) 49) (((-112) $ (|[\|\|]| (-515))) 53) (((-112) $ (|[\|\|]| (-1057))) 57) (((-112) $ (|[\|\|]| (-1265))) 61) (((-112) $ (|[\|\|]| (-523))) 65) (((-112) $ (|[\|\|]| (-153))) 69) (((-112) $ (|[\|\|]| (-664))) 73) (((-112) $ (|[\|\|]| (-311))) 77) (((-112) $ (|[\|\|]| (-1029))) 81) (((-112) $ (|[\|\|]| (-179))) 85) (((-112) $ (|[\|\|]| (-963))) 89) (((-112) $ (|[\|\|]| (-1064))) 93) (((-112) $ (|[\|\|]| (-1081))) 97) (((-112) $ (|[\|\|]| (-1086))) 101) (((-112) $ (|[\|\|]| (-621))) 105) (((-112) $ (|[\|\|]| (-1156))) 109) (((-112) $ (|[\|\|]| (-155))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-476))) 121) (((-112) $ (|[\|\|]| (-588))) 125) (((-112) $ (|[\|\|]| (-504))) 131) (((-112) $ (|[\|\|]| (-1148))) 135) (((-112) $ (|[\|\|]| (-544))) 139)) (-3979 (((-522) $) 18) (((-217) $) 22) (((-669) $) 26) (((-1264) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1106) $) 42) (((-96) $) 46) (((-674) $) 50) (((-515) $) 54) (((-1057) $) 58) (((-1265) $) 62) (((-523) $) 66) (((-153) $) 70) (((-664) $) 74) (((-311) $) 78) (((-1029) $) 82) (((-179) $) 86) (((-963) $) 90) (((-1064) $) 94) (((-1081) $) 98) (((-1086) $) 102) (((-621) $) 106) (((-1156) $) 110) (((-155) $) 114) (((-136) $) 118) (((-476) $) 122) (((-588) $) 126) (((-504) $) 132) (((-1148) $) 136) (((-544) $) 140)) (-3437 (((-112) $ $) NIL))) -(((-1125) (-1127)) (T -1125)) -NIL -(-1127) -((-3783 (((-635 (-1171)) (-1148)) 9))) -(((-1126) (-10 -7 (-15 -3783 ((-635 (-1171)) (-1148))))) (T -1126)) -((-3783 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-635 (-1171))) (-5 *1 (-1126))))) -(-10 -7 (-15 -3783 ((-635 (-1171)) (-1148)))) -((-2947 (((-112) $ $) 7)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-1171)) 16) (((-1171) $) 15)) (-3973 (((-112) $ (|[\|\|]| (-522))) 80) (((-112) $ (|[\|\|]| (-217))) 78) (((-112) $ (|[\|\|]| (-669))) 76) (((-112) $ (|[\|\|]| (-1264))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1106))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-674))) 64) (((-112) $ (|[\|\|]| (-515))) 62) (((-112) $ (|[\|\|]| (-1057))) 60) (((-112) $ (|[\|\|]| (-1265))) 58) (((-112) $ (|[\|\|]| (-523))) 56) (((-112) $ (|[\|\|]| (-153))) 54) (((-112) $ (|[\|\|]| (-664))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1029))) 48) (((-112) $ (|[\|\|]| (-179))) 46) (((-112) $ (|[\|\|]| (-963))) 44) (((-112) $ (|[\|\|]| (-1064))) 42) (((-112) $ (|[\|\|]| (-1081))) 40) (((-112) $ (|[\|\|]| (-1086))) 38) (((-112) $ (|[\|\|]| (-621))) 36) (((-112) $ (|[\|\|]| (-1156))) 34) (((-112) $ (|[\|\|]| (-155))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-476))) 28) (((-112) $ (|[\|\|]| (-588))) 26) (((-112) $ (|[\|\|]| (-504))) 24) (((-112) $ (|[\|\|]| (-1148))) 22) (((-112) $ (|[\|\|]| (-544))) 20)) (-3979 (((-522) $) 79) (((-217) $) 77) (((-669) $) 75) (((-1264) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1106) $) 67) (((-96) $) 65) (((-674) $) 63) (((-515) $) 61) (((-1057) $) 59) (((-1265) $) 57) (((-523) $) 55) (((-153) $) 53) (((-664) $) 51) (((-311) $) 49) (((-1029) $) 47) (((-179) $) 45) (((-963) $) 43) (((-1064) $) 41) (((-1081) $) 39) (((-1086) $) 37) (((-621) $) 35) (((-1156) $) 33) (((-155) $) 31) (((-136) $) 29) (((-476) $) 27) (((-588) $) 25) (((-504) $) 23) (((-1148) $) 21) (((-544) $) 19)) (-3437 (((-112) $ $) 6))) -(((-1127) (-139)) (T -1127)) -((-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-522)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-217)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-669)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1264))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1264)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-137)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-132)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1106)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-96)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-674)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-515)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1057)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1265))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1265)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-523)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-153)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-664))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-664)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-311)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1029)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-179)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-963))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-963)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1064)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1081)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1086)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-621)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1156)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-155)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-136)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-476)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-588))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-588)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-504)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1148)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-544))) (-5 *2 (-112)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-544))))) -(-13 (-1073) (-1249) (-10 -8 (-15 -3973 ((-112) $ (|[\|\|]| (-522)))) (-15 -3979 ((-522) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-217)))) (-15 -3979 ((-217) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-669)))) (-15 -3979 ((-669) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1264)))) (-15 -3979 ((-1264) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-137)))) (-15 -3979 ((-137) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-132)))) (-15 -3979 ((-132) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1106)))) (-15 -3979 ((-1106) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-96)))) (-15 -3979 ((-96) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-674)))) (-15 -3979 ((-674) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-515)))) (-15 -3979 ((-515) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1057)))) (-15 -3979 ((-1057) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1265)))) (-15 -3979 ((-1265) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-523)))) (-15 -3979 ((-523) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-153)))) (-15 -3979 ((-153) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-664)))) (-15 -3979 ((-664) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-311)))) (-15 -3979 ((-311) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1029)))) (-15 -3979 ((-1029) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-179)))) (-15 -3979 ((-179) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-963)))) (-15 -3979 ((-963) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1064)))) (-15 -3979 ((-1064) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1081)))) (-15 -3979 ((-1081) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1086)))) (-15 -3979 ((-1086) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-621)))) (-15 -3979 ((-621) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1156)))) (-15 -3979 ((-1156) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-155)))) (-15 -3979 ((-155) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-136)))) (-15 -3979 ((-136) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-476)))) (-15 -3979 ((-476) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-588)))) (-15 -3979 ((-588) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-504)))) (-15 -3979 ((-504) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-1148)))) (-15 -3979 ((-1148) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-544)))) (-15 -3979 ((-544) $)))) -(((-93) . T) ((-102) . T) ((-611 #1=(-1171)) . T) ((-608 (-857)) . T) ((-608 #1#) . T) ((-488 #1#) . T) ((-1091) . T) ((-1073) . T) ((-1249) . T)) -((-3786 (((-1259) (-635 (-857))) 23) (((-1259) (-857)) 22)) (-3785 (((-1259) (-635 (-857))) 21) (((-1259) (-857)) 20)) (-3784 (((-1259) (-635 (-857))) 19) (((-1259) (-857)) 11) (((-1259) (-1148) (-857)) 17))) -(((-1128) (-10 -7 (-15 -3784 ((-1259) (-1148) (-857))) (-15 -3784 ((-1259) (-857))) (-15 -3785 ((-1259) (-857))) (-15 -3786 ((-1259) (-857))) (-15 -3784 ((-1259) (-635 (-857)))) (-15 -3785 ((-1259) (-635 (-857)))) (-15 -3786 ((-1259) (-635 (-857)))))) (T -1128)) -((-3786 (*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-1148)) (-5 *4 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128))))) -(-10 -7 (-15 -3784 ((-1259) (-1148) (-857))) (-15 -3784 ((-1259) (-857))) (-15 -3785 ((-1259) (-857))) (-15 -3786 ((-1259) (-857))) (-15 -3784 ((-1259) (-635 (-857)))) (-15 -3785 ((-1259) (-635 (-857)))) (-15 -3786 ((-1259) (-635 (-857))))) -((-3790 (($ $ $) 10)) (-3789 (($ $) 9)) (-3793 (($ $ $) 13)) (-3795 (($ $ $) 15)) (-3792 (($ $ $) 12)) (-3794 (($ $ $) 14)) (-3797 (($ $) 17)) (-3796 (($ $) 16)) (-3787 (($ $) 6)) (-3791 (($ $ $) 11) (($ $) 7)) (-3788 (($ $ $) 8))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2775 ((|#1| $) 44)) (-4336 (((-112) $ (-766)) 8)) (-1800 (($) 7 T CONST)) (-2737 ((|#1| |#1| $) 46)) (-3064 ((|#1| $) 45)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3262 ((|#1| $) 39)) (-4300 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1904 ((|#1| $) 41)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2193 (((-766) $) 43)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) 42)) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-1113 |#1|) (-139) (-1207)) (T -1113)) +((-2737 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1207)) (-5 *2 (-766))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4402) (-15 -2737 (|t#1| |t#1| $)) (-15 -3064 (|t#1| $)) (-15 -2775 (|t#1| $)) (-15 -2193 ((-766) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-1748 ((|#3| $) 76)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3961 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#3| $) 37)) (-2406 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1545 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 $) (-1256 $)) 73) (((-683 |#3|) (-683 $)) 65)) (-4029 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-3436 ((|#3| $) 78)) (-3798 ((|#4| $) 32)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ |#3|) 16)) (** (($ $ (-916)) NIL) (($ $ (-766)) 15) (($ $ (-562)) 82))) +(((-1114 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-562))) (-15 -3436 (|#3| |#1|)) (-15 -1748 (|#3| |#1|)) (-15 -3798 (|#4| |#1|)) (-15 -2406 ((-683 |#3|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -4054 (|#1| |#3|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3961 (|#3| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|) (-766))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4054 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916))) (-15 -4054 ((-857) |#1|))) (-1115 |#2| |#3| |#4| |#5|) (-766) (-1044) (-237 |#2| |#3|) (-237 |#2| |#3|)) (T -1114)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-562))) (-15 -3436 (|#3| |#1|)) (-15 -1748 (|#3| |#1|)) (-15 -3798 (|#4| |#1|)) (-15 -2406 ((-683 |#3|) (-683 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -2406 ((-683 (-562)) (-683 |#1|))) (-15 -4054 (|#1| |#3|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3961 (|#3| |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|) (-766))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4054 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1748 ((|#2| $) 71)) (-2952 (((-112) $) 111)) (-3214 (((-3 $ "failed") $ $) 19)) (-3220 (((-112) $) 109)) (-4336 (((-112) $ (-766)) 101)) (-2554 (($ |#2|) 74)) (-1800 (($) 17 T CONST)) (-2522 (($ $) 128 (|has| |#2| (-306)))) (-3796 ((|#3| $ (-562)) 123)) (-4048 (((-3 (-562) "failed") $) 86 (|has| |#2| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 83 (|has| |#2| (-1033 (-406 (-562))))) (((-3 |#2| "failed") $) 80)) (-3961 (((-562) $) 85 (|has| |#2| (-1033 (-562)))) (((-406 (-562)) $) 82 (|has| |#2| (-1033 (-406 (-562))))) ((|#2| $) 81)) (-2406 (((-683 (-562)) (-683 $)) 78 (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 77 (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 76) (((-683 |#2|) (-683 $)) 75)) (-3668 (((-3 $ "failed") $) 33)) (-2173 (((-766) $) 129 (|has| |#2| (-554)))) (-1420 ((|#2| $ (-562) (-562)) 121)) (-1720 (((-639 |#2|) $) 94 (|has| $ (-6 -4402)))) (-1957 (((-112) $) 31)) (-3922 (((-766) $) 130 (|has| |#2| (-554)))) (-2318 (((-639 |#4|) $) 131 (|has| |#2| (-554)))) (-2699 (((-766) $) 117)) (-2709 (((-766) $) 118)) (-3292 (((-112) $ (-766)) 102)) (-2280 ((|#2| $) 66 (|has| |#2| (-6 (-4404 "*"))))) (-2783 (((-562) $) 113)) (-4217 (((-562) $) 115)) (-1912 (((-639 |#2|) $) 93 (|has| $ (-6 -4402)))) (-1669 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402))))) (-4088 (((-562) $) 114)) (-2453 (((-562) $) 116)) (-2885 (($ (-639 (-639 |#2|))) 108)) (-1490 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-2824 (((-639 (-639 |#2|)) $) 119)) (-3289 (((-112) $ (-766)) 103)) (-2913 (((-1150) $) 9)) (-3494 (((-3 $ "failed") $) 65 (|has| |#2| (-362)))) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-554)))) (-1763 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#2|))) 90 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 89 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 87 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) 107)) (-2974 (((-112) $) 104)) (-4307 (($) 105)) (-2343 ((|#2| $ (-562) (-562) |#2|) 122) ((|#2| $ (-562) (-562)) 120)) (-4029 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-766)) 51) (($ $ (-639 (-1168)) (-639 (-766))) 44 (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) 43 (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) 42 (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) 41 (|has| |#2| (-895 (-1168)))) (($ $ (-766)) 39 (|has| |#2| (-232))) (($ $) 37 (|has| |#2| (-232)))) (-3436 ((|#2| $) 70)) (-3448 (($ (-639 |#2|)) 73)) (-1544 (((-112) $) 110)) (-3798 ((|#3| $) 72)) (-3770 ((|#2| $) 67 (|has| |#2| (-6 (-4404 "*"))))) (-1723 (((-766) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4402))) (((-766) |#2| $) 92 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 106)) (-2211 ((|#4| $ (-562)) 124)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 84 (|has| |#2| (-1033 (-406 (-562))))) (($ |#2|) 79)) (-2579 (((-766)) 28)) (-1744 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4402)))) (-1335 (((-112) $) 112)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-766)) 49) (($ $ (-639 (-1168)) (-639 (-766))) 48 (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) 47 (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) 46 (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) 45 (|has| |#2| (-895 (-1168)))) (($ $ (-766)) 40 (|has| |#2| (-232))) (($ $) 38 (|has| |#2| (-232)))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#2|) 127 (|has| |#2| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 64 (|has| |#2| (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-3492 (((-766) $) 100 (|has| $ (-6 -4402))))) +(((-1115 |#1| |#2| |#3| |#4|) (-139) (-766) (-1044) (-237 |t#1| |t#2|) (-237 |t#1| |t#2|)) (T -1115)) +((-2554 (*1 *1 *2) (-12 (-4 *2 (-1044)) (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-639 *4)) (-4 *4 (-1044)) (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *2 *5)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1044)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1044)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *2 *5)) (-4 *4 (-1044)) (-4 *2 (-237 *3 *4)) (-4 *5 (-237 *3 *4)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4404 "*"))) (-4 *2 (-1044)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4404 "*"))) (-4 *2 (-1044)))) (-3494 (*1 *1 *1) (|partial| -12 (-4 *1 (-1115 *2 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362))))) +(-13 (-230 |t#2|) (-111 |t#2| |t#2|) (-1047 |t#1| |t#1| |t#2| |t#3| |t#4|) (-410 |t#2|) (-376 |t#2|) (-10 -8 (IF (|has| |t#2| (-171)) (-6 (-712 |t#2|)) |%noBranch|) (-15 -2554 ($ |t#2|)) (-15 -3448 ($ (-639 |t#2|))) (-15 -3798 (|t#3| $)) (-15 -1748 (|t#2| $)) (-15 -3436 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4404 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3770 (|t#2| $)) (-15 -2280 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-362)) (PROGN (-15 -3494 ((-3 $ "failed") $)) (-15 ** ($ $ (-562)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4404 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-612 #0=(-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#2|) . T) ((-609 (-857)) . T) ((-230 |#2|) . T) ((-232) |has| |#2| (-232)) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-376 |#2|) . T) ((-410 |#2|) . T) ((-488 |#2|) . T) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-642 |#2|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#2| (-635 (-562))) ((-635 |#2|) . T) ((-712 |#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-6 (-4404 "*")))) ((-721) . T) ((-895 (-1168)) |has| |#2| (-895 (-1168))) ((-1047 |#1| |#1| |#2| |#3| |#4|) . T) ((-1033 #0#) |has| |#2| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#2| (-1033 (-562))) ((-1033 |#2|) . T) ((-1050 |#2|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1207) . T)) +((-3339 ((|#4| |#4|) 70)) (-2175 ((|#4| |#4|) 65)) (-1393 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3928 (-639 |#3|))) |#4| |#3|) 78)) (-1867 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3667 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1116 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2175 (|#4| |#4|)) (-15 -3667 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3339 (|#4| |#4|)) (-15 -1867 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1393 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3928 (-639 |#3|))) |#4| |#3|))) (-306) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -1116)) +((-1393 (*1 *2 *3 *4) (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) (-5 *1 (-1116 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1116 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3667 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1116 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2175 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) +(-10 -7 (-15 -2175 (|#4| |#4|)) (-15 -3667 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3339 (|#4| |#4|)) (-15 -1867 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1393 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3928 (-639 |#3|))) |#4| |#3|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 17)) (-1402 (((-639 |#2|) $) 158)) (-1599 (((-1164 $) $ |#2|) 53) (((-1164 |#1|) $) 42)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 107 (|has| |#1| (-554)))) (-2796 (($ $) 109 (|has| |#1| (-554)))) (-4370 (((-112) $) 111 (|has| |#1| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 |#2|)) 191)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-2798 (($ $) NIL (|has| |#1| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 155) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 |#2| "failed") $) NIL)) (-3961 ((|#1| $) 153) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) ((|#2| $) NIL)) (-2835 (($ $ $ |#2|) NIL (|has| |#1| (-171)))) (-1601 (($ $) 195)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) 81)) (-1498 (($ $) NIL (|has| |#1| (-451))) (($ $ |#2|) NIL (|has| |#1| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#1| (-904)))) (-3122 (($ $ |#1| (-530 |#2|) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| |#1| (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-1957 (((-112) $) 19)) (-1694 (((-766) $) 26)) (-1390 (($ (-1164 |#1|) |#2|) 47) (($ (-1164 $) |#2|) 63)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) 32)) (-1378 (($ |#1| (-530 |#2|)) 70) (($ $ |#2| (-766)) 51) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ |#2|) NIL)) (-2076 (((-530 |#2|) $) 185) (((-766) $ |#2|) 186) (((-639 (-766)) $ (-639 |#2|)) 187)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2836 (($ (-1 (-530 |#2|) (-530 |#2|)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 119)) (-3372 (((-3 |#2| "failed") $) 160)) (-1560 (($ $) 194)) (-1573 ((|#1| $) 36)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-2913 (((-1150) $) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| |#2|) (|:| -1960 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 33)) (-1547 ((|#1| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 137 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) 142 (|has| |#1| (-451))) (($ $ $) 129 (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 117 (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#2| |#1|) 163) (($ $ (-639 |#2|) (-639 |#1|)) 176) (($ $ |#2| $) 162) (($ $ (-639 |#2|) (-639 $)) 175)) (-2455 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-4029 (($ $ |#2|) 193) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-3598 (((-530 |#2|) $) 181) (((-766) $ |#2|) 177) (((-639 (-766)) $ (-639 |#2|)) 179)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| |#1| (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-3900 ((|#1| $) 125 (|has| |#1| (-451))) (($ $ |#2|) 128 (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4054 (((-857) $) 148) (($ (-562)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-4358 (((-639 |#1|) $) 151)) (-3906 ((|#1| $ (-530 |#2|)) 72) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) 78)) (-3548 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-2922 (((-112) $ $) 114 (|has| |#1| (-554)))) (-2286 (($) 12 T CONST)) (-2294 (($) 14 T CONST)) (-3114 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) 96)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 123 (|has| |#1| (-362)))) (-1848 (($ $) 84) (($ $ $) 94)) (-1835 (($ $ $) 48)) (** (($ $ (-916)) 101) (($ $ (-766)) 99)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 87) (($ $ $) 64) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-1117 |#1| |#2|) (-944 |#1| (-530 |#2|) |#2|) (-1044) (-845)) (T -1117)) +NIL +(-944 |#1| (-530 |#2|) |#2|) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 |#2|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2988 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 116 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4207 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 112 (|has| |#1| (-38 (-406 (-562)))))) (-3014 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1454 (((-947 |#1|) $ (-766)) NIL) (((-947 |#1|) $ (-766) (-766)) NIL)) (-1756 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-766) $ |#2|) NIL) (((-766) $ |#2| (-766)) NIL)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3536 (((-112) $) NIL)) (-1378 (($ $ (-639 |#2|) (-639 (-530 |#2|))) NIL) (($ $ |#2| (-530 |#2|)) NIL) (($ |#1| (-530 |#2|)) NIL) (($ $ |#2| (-766)) 55) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ $) 110 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-2667 (($ $ |#2|) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-2345 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-406 (-562)))))) (-1353 (($ $ (-766)) 13)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3430 (($ $) 108 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (($ $ |#2| $) 94) (($ $ (-639 |#2|) (-639 $)) 87) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL)) (-4029 (($ $ |#2|) 97) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-3598 (((-530 |#2|) $) NIL)) (-3198 (((-1 (-1148 |#3|) |#3|) (-639 |#2|) (-639 (-1148 |#3|))) 76)) (-3023 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 118 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 114 (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) 15)) (-4054 (((-857) $) 179) (($ (-562)) NIL) (($ |#1|) 40 (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#2|) 62) (($ |#3|) 60)) (-3906 ((|#1| $ (-530 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL) ((|#3| $ (-766)) 38)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-3055 (($ $) 152 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 148 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 156 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-1566 (($ $) 158 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 154 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 150 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 47 T CONST)) (-2294 (($) 54 T CONST)) (-3114 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) 181 (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 58)) (** (($ $ (-916)) NIL) (($ $ (-766)) 67) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 100 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 57) (($ $ (-406 (-562))) 105 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 103 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1118 |#1| |#2| |#3|) (-13 (-735 |#1| |#2|) (-10 -8 (-15 -3906 (|#3| $ (-766))) (-15 -4054 ($ |#2|)) (-15 -4054 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3198 ((-1 (-1148 |#3|) |#3|) (-639 |#2|) (-639 (-1148 |#3|)))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $ |#2| |#1|)) (-15 -2345 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1044) (-845) (-944 |#1| (-530 |#2|) |#2|)) (T -1118)) +((-3906 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *2 (-944 *4 (-530 *5) *5)) (-5 *1 (-1118 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-845)))) (-4054 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-4 *2 (-845)) (-5 *1 (-1118 *3 *2 *4)) (-4 *4 (-944 *3 (-530 *2) *2)))) (-4054 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-4 *4 (-845)) (-5 *1 (-1118 *3 *4 *2)) (-4 *2 (-944 *3 (-530 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-845)) (-5 *1 (-1118 *3 *4 *2)) (-4 *2 (-944 *3 (-530 *4) *4)))) (-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-1148 *7))) (-4 *6 (-845)) (-4 *7 (-944 *5 (-530 *6) *6)) (-4 *5 (-1044)) (-5 *2 (-1 (-1148 *7) *7)) (-5 *1 (-1118 *5 *6 *7)))) (-2667 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-4 *2 (-845)) (-5 *1 (-1118 *3 *2 *4)) (-4 *4 (-944 *3 (-530 *2) *2)))) (-2345 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1118 *4 *3 *5))) (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044)) (-4 *3 (-845)) (-5 *1 (-1118 *4 *3 *5)) (-4 *5 (-944 *4 (-530 *3) *3))))) +(-13 (-735 |#1| |#2|) (-10 -8 (-15 -3906 (|#3| $ (-766))) (-15 -4054 ($ |#2|)) (-15 -4054 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3198 ((-1 (-1148 |#3|) |#3|) (-639 |#2|) (-639 (-1148 |#3|)))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $ |#2| |#1|)) (-15 -2345 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-4041 (((-112) $ $) 7)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |#4|)))) (-639 |#4|)) 85)) (-2304 (((-639 $) (-639 |#4|)) 86) (((-639 $) (-639 |#4|) (-112)) 111)) (-1402 (((-639 |#3|) $) 33)) (-4170 (((-112) $) 26)) (-4274 (((-112) $) 17 (|has| |#1| (-554)))) (-4377 (((-112) |#4| $) 101) (((-112) $) 97)) (-3049 ((|#4| |#4| $) 92)) (-2798 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 126)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) 27)) (-4336 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4402))) (((-3 |#4| "failed") $ |#3|) 79)) (-1800 (($) 45 T CONST)) (-2207 (((-112) $) 22 (|has| |#1| (-554)))) (-1920 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3852 (((-112) $ $) 23 (|has| |#1| (-554)))) (-2539 (((-112) $) 25 (|has| |#1| (-554)))) (-2839 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3884 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3961 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-2387 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4091 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3595 ((|#4| |#4| $) 87)) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4402))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2267 (((-2 (|:| -1450 (-639 |#4|)) (|:| -3316 (-639 |#4|))) $) 105)) (-4079 (((-112) |#4| $) 136)) (-3513 (((-112) |#4| $) 133)) (-2764 (((-112) |#4| $) 137) (((-112) $) 134)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4402)))) (-2573 (((-112) |#4| $) 104) (((-112) $) 103)) (-4339 ((|#3| $) 34)) (-3292 (((-112) $ (-766)) 43)) (-1912 (((-639 |#4|) $) 53 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3754 (((-639 |#3|) $) 32)) (-2071 (((-112) |#3| $) 31)) (-3289 (((-112) $ (-766)) 42)) (-2913 (((-1150) $) 9)) (-1609 (((-3 |#4| (-639 $)) |#4| |#4| $) 128)) (-1851 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 127)) (-1504 (((-3 |#4| "failed") $) 83)) (-1814 (((-639 $) |#4| $) 129)) (-1950 (((-3 (-112) (-639 $)) |#4| $) 132)) (-2021 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4376 (((-639 $) |#4| $) 125) (((-639 $) (-639 |#4|) $) 124) (((-639 $) (-639 |#4|) (-639 $)) 123) (((-639 $) |#4| (-639 $)) 122)) (-1430 (($ |#4| $) 117) (($ (-639 |#4|) $) 116)) (-3576 (((-639 |#4|) $) 107)) (-2890 (((-112) |#4| $) 99) (((-112) $) 95)) (-1849 ((|#4| |#4| $) 90)) (-1408 (((-112) $ $) 110)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2766 (((-112) |#4| $) 100) (((-112) $) 96)) (-1532 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3310 (((-3 $ "failed") $ |#4|) 78)) (-1353 (($ $ |#4|) 77) (((-639 $) |#4| $) 115) (((-639 $) |#4| (-639 $)) 114) (((-639 $) (-639 |#4|) $) 113) (((-639 $) (-639 |#4|) (-639 $)) 112)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) 38)) (-2974 (((-112) $) 41)) (-4307 (($) 40)) (-3598 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4402)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) 60)) (-1812 (($ $ |#3|) 28)) (-3274 (($ $ |#3|) 30)) (-3277 (($ $) 88)) (-1568 (($ $ |#3|) 29)) (-4054 (((-857) $) 11) (((-639 |#4|) $) 37)) (-3730 (((-766) $) 76 (|has| |#3| (-367)))) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4252 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-1612 (((-639 $) |#4| $) 121) (((-639 $) |#4| (-639 $)) 120) (((-639 $) (-639 |#4|) $) 119) (((-639 $) (-639 |#4|) (-639 $)) 118)) (-1744 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4402)))) (-4089 (((-639 |#3|) $) 81)) (-4211 (((-112) |#4| $) 135)) (-3694 (((-112) |#3| $) 80)) (-1731 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4402))))) +(((-1119 |#1| |#2| |#3| |#4|) (-139) (-451) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -1119)) +NIL +(-13 (-1101 |t#1| |t#2| |t#3| |t#4|) (-779 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-779 |#1| |#2| |#3| |#4|) . T) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1064 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1200 |#1| |#2| |#3| |#4|) . T) ((-1207) . T)) +((-4351 (((-639 |#2|) |#1|) 12)) (-3904 (((-639 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-639 |#2|) |#1|) 49)) (-2638 (((-639 |#2|) |#2| |#2| |#2|) 36) (((-639 |#2|) |#1|) 47)) (-2106 ((|#2| |#1|) 43)) (-3897 (((-2 (|:| |solns| (-639 |#2|)) (|:| |maps| (-639 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1427 (((-639 |#2|) |#2| |#2|) 35) (((-639 |#2|) |#1|) 46)) (-4289 (((-639 |#2|) |#2| |#2| |#2| |#2|) 37) (((-639 |#2|) |#1|) 48)) (-2446 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-3748 ((|#2| |#2| |#2| |#2|) 40)) (-2290 ((|#2| |#2| |#2|) 39)) (-2055 ((|#2| |#2| |#2| |#2| |#2|) 41))) +(((-1120 |#1| |#2|) (-10 -7 (-15 -4351 ((-639 |#2|) |#1|)) (-15 -2106 (|#2| |#1|)) (-15 -3897 ((-2 (|:| |solns| (-639 |#2|)) (|:| |maps| (-639 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1427 ((-639 |#2|) |#1|)) (-15 -2638 ((-639 |#2|) |#1|)) (-15 -4289 ((-639 |#2|) |#1|)) (-15 -3904 ((-639 |#2|) |#1|)) (-15 -1427 ((-639 |#2|) |#2| |#2|)) (-15 -2638 ((-639 |#2|) |#2| |#2| |#2|)) (-15 -4289 ((-639 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3904 ((-639 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2290 (|#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2| |#2|)) (-15 -2055 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2446 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1232 |#2|) (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (T -1120)) +((-2446 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-2055 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-3748 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-2290 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-3904 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3)))) (-4289 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3)))) (-2638 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3)))) (-1427 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3)))) (-3904 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) (-4289 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) (-2638 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) (-1427 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-2 (|:| |solns| (-639 *5)) (|:| |maps| (-639 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1120 *3 *5)) (-4 *3 (-1232 *5)))) (-2106 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -4351 ((-639 |#2|) |#1|)) (-15 -2106 (|#2| |#1|)) (-15 -3897 ((-2 (|:| |solns| (-639 |#2|)) (|:| |maps| (-639 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1427 ((-639 |#2|) |#1|)) (-15 -2638 ((-639 |#2|) |#1|)) (-15 -4289 ((-639 |#2|) |#1|)) (-15 -3904 ((-639 |#2|) |#1|)) (-15 -1427 ((-639 |#2|) |#2| |#2|)) (-15 -2638 ((-639 |#2|) |#2| |#2| |#2|)) (-15 -4289 ((-639 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3904 ((-639 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2290 (|#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2| |#2|)) (-15 -2055 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2446 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-4069 (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|))))) 95) (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168))) 94) (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|)))) 92) (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))) (-639 (-1168))) 90) (((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|)))) 75) (((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))) (-1168)) 76) (((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|))) 70) (((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)) (-1168)) 59)) (-3762 (((-639 (-639 (-315 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168))) 88) (((-639 (-315 |#1|)) (-406 (-947 |#1|)) (-1168)) 43)) (-4303 (((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-406 (-947 |#1|)) (-1168)) 98) (((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168)) 97))) +(((-1121 |#1|) (-10 -7 (-15 -4069 ((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -4069 ((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)))) (-15 -4069 ((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -4069 ((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))))) (-15 -4069 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -4069 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))))) (-15 -4069 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168)))) (-15 -4069 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -3762 ((-639 (-315 |#1|)) (-406 (-947 |#1|)) (-1168))) (-15 -3762 ((-639 (-639 (-315 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -4303 ((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -4303 ((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-406 (-947 |#1|)) (-1168)))) (-13 (-306) (-845) (-146))) (T -1121)) +((-4303 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-1157 (-639 (-315 *5)) (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) (-4303 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-947 *5)))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-1157 (-639 (-315 *5)) (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-315 *5)))) (-5 *1 (-1121 *5)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-315 *5))) (-5 *1 (-1121 *5)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-639 (-293 (-406 (-947 *4))))) (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *4))))) (-5 *1 (-1121 *4)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-293 (-406 (-947 *5))))) (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-639 (-406 (-947 *4)))) (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *4))))) (-5 *1 (-1121 *4)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-293 (-406 (-947 *4)))) (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1121 *4)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-947 *5)))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1121 *5)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1121 *4)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1121 *5))))) +(-10 -7 (-15 -4069 ((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -4069 ((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)))) (-15 -4069 ((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -4069 ((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))))) (-15 -4069 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -4069 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))))) (-15 -4069 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168)))) (-15 -4069 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -3762 ((-639 (-315 |#1|)) (-406 (-947 |#1|)) (-1168))) (-15 -3762 ((-639 (-639 (-315 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -4303 ((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -4303 ((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-406 (-947 |#1|)) (-1168)))) +((-2661 (((-406 (-1164 (-315 |#1|))) (-1256 (-315 |#1|)) (-406 (-1164 (-315 |#1|))) (-562)) 29)) (-4090 (((-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|)))) 40))) +(((-1122 |#1|) (-10 -7 (-15 -4090 ((-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))))) (-15 -2661 ((-406 (-1164 (-315 |#1|))) (-1256 (-315 |#1|)) (-406 (-1164 (-315 |#1|))) (-562)))) (-13 (-554) (-845))) (T -1122)) +((-2661 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-406 (-1164 (-315 *5)))) (-5 *3 (-1256 (-315 *5))) (-5 *4 (-562)) (-4 *5 (-13 (-554) (-845))) (-5 *1 (-1122 *5)))) (-4090 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-406 (-1164 (-315 *3)))) (-4 *3 (-13 (-554) (-845))) (-5 *1 (-1122 *3))))) +(-10 -7 (-15 -4090 ((-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))))) (-15 -2661 ((-406 (-1164 (-315 |#1|))) (-1256 (-315 |#1|)) (-406 (-1164 (-315 |#1|))) (-562)))) +((-4351 (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-315 |#1|))) (-639 (-1168))) 222) (((-639 (-293 (-315 |#1|))) (-315 |#1|) (-1168)) 20) (((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1168)) 26) (((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|))) 25) (((-639 (-293 (-315 |#1|))) (-315 |#1|)) 21))) +(((-1123 |#1|) (-10 -7 (-15 -4351 ((-639 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -4351 ((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -4351 ((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1168))) (-15 -4351 ((-639 (-293 (-315 |#1|))) (-315 |#1|) (-1168))) (-15 -4351 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-315 |#1|))) (-639 (-1168))))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (T -1123)) +((-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1123 *5)) (-5 *3 (-639 (-293 (-315 *5)))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1123 *5)) (-5 *3 (-315 *5)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1123 *5)) (-5 *3 (-293 (-315 *5))))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1123 *4)) (-5 *3 (-293 (-315 *4))))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1123 *4)) (-5 *3 (-315 *4))))) +(-10 -7 (-15 -4351 ((-639 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -4351 ((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -4351 ((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1168))) (-15 -4351 ((-639 (-293 (-315 |#1|))) (-315 |#1|) (-1168))) (-15 -4351 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-315 |#1|))) (-639 (-1168))))) +((-4107 ((|#2| |#2|) 20 (|has| |#1| (-845))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-4345 ((|#2| |#2|) 19 (|has| |#1| (-845))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) +(((-1124 |#1| |#2|) (-10 -7 (-15 -4345 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4107 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-845)) (PROGN (-15 -4345 (|#2| |#2|)) (-15 -4107 (|#2| |#2|))) |%noBranch|)) (-1207) (-13 (-600 (-562) |#1|) (-10 -7 (-6 -4402) (-6 -4403)))) (T -1124)) +((-4107 (*1 *2 *2) (-12 (-4 *3 (-845)) (-4 *3 (-1207)) (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-600 (-562) *3) (-10 -7 (-6 -4402) (-6 -4403)))))) (-4345 (*1 *2 *2) (-12 (-4 *3 (-845)) (-4 *3 (-1207)) (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-600 (-562) *3) (-10 -7 (-6 -4402) (-6 -4403)))))) (-4107 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1124 *4 *2)) (-4 *2 (-13 (-600 (-562) *4) (-10 -7 (-6 -4402) (-6 -4403)))))) (-4345 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1124 *4 *2)) (-4 *2 (-13 (-600 (-562) *4) (-10 -7 (-6 -4402) (-6 -4403))))))) +(-10 -7 (-15 -4345 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4107 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-845)) (PROGN (-15 -4345 (|#2| |#2|)) (-15 -4107 (|#2| |#2|))) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-3110 (((-1156 3 |#1|) $) 107)) (-2616 (((-112) $) 72)) (-2338 (($ $ (-639 (-938 |#1|))) 20) (($ $ (-639 (-639 |#1|))) 75) (($ (-639 (-938 |#1|))) 74) (((-639 (-938 |#1|)) $) 73)) (-2376 (((-112) $) 41)) (-1460 (($ $ (-938 |#1|)) 46) (($ $ (-639 |#1|)) 51) (($ $ (-766)) 53) (($ (-938 |#1|)) 47) (((-938 |#1|) $) 45)) (-3231 (((-2 (|:| -2865 (-766)) (|:| |curves| (-766)) (|:| |polygons| (-766)) (|:| |constructs| (-766))) $) 105)) (-4172 (((-766) $) 26)) (-3684 (((-766) $) 25)) (-1754 (($ $ (-766) (-938 |#1|)) 39)) (-3855 (((-112) $) 82)) (-2378 (($ $ (-639 (-639 (-938 |#1|))) (-639 (-170)) (-170)) 89) (($ $ (-639 (-639 (-639 |#1|))) (-639 (-170)) (-170)) 91) (($ $ (-639 (-639 (-938 |#1|))) (-112) (-112)) 85) (($ $ (-639 (-639 (-639 |#1|))) (-112) (-112)) 93) (($ (-639 (-639 (-938 |#1|)))) 86) (($ (-639 (-639 (-938 |#1|))) (-112) (-112)) 87) (((-639 (-639 (-938 |#1|))) $) 84)) (-1610 (($ (-639 $)) 28) (($ $ $) 29)) (-3359 (((-639 (-170)) $) 102)) (-1663 (((-639 (-938 |#1|)) $) 96)) (-2919 (((-639 (-639 (-170))) $) 101)) (-2620 (((-639 (-639 (-639 (-938 |#1|)))) $) NIL)) (-4191 (((-639 (-639 (-639 (-766)))) $) 99)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4236 (((-766) $ (-639 (-938 |#1|))) 37)) (-2060 (((-112) $) 54)) (-1539 (($ $ (-639 (-938 |#1|))) 56) (($ $ (-639 (-639 |#1|))) 62) (($ (-639 (-938 |#1|))) 57) (((-639 (-938 |#1|)) $) 55)) (-3222 (($) 23) (($ (-1156 3 |#1|)) 24)) (-4220 (($ $) 35)) (-2895 (((-639 $) $) 34)) (-3586 (($ (-639 $)) 31)) (-2702 (((-639 $) $) 33)) (-4054 (((-857) $) 111)) (-3840 (((-112) $) 64)) (-3484 (($ $ (-639 (-938 |#1|))) 66) (($ $ (-639 (-639 |#1|))) 69) (($ (-639 (-938 |#1|))) 67) (((-639 (-938 |#1|)) $) 65)) (-2588 (($ $) 106)) (-1731 (((-112) $ $) NIL))) +(((-1125 |#1|) (-1126 |#1|) (-1044)) (T -1125)) +NIL +(-1126 |#1|) +((-4041 (((-112) $ $) 7)) (-3110 (((-1156 3 |#1|) $) 13)) (-2616 (((-112) $) 29)) (-2338 (($ $ (-639 (-938 |#1|))) 33) (($ $ (-639 (-639 |#1|))) 32) (($ (-639 (-938 |#1|))) 31) (((-639 (-938 |#1|)) $) 30)) (-2376 (((-112) $) 44)) (-1460 (($ $ (-938 |#1|)) 49) (($ $ (-639 |#1|)) 48) (($ $ (-766)) 47) (($ (-938 |#1|)) 46) (((-938 |#1|) $) 45)) (-3231 (((-2 (|:| -2865 (-766)) (|:| |curves| (-766)) (|:| |polygons| (-766)) (|:| |constructs| (-766))) $) 15)) (-4172 (((-766) $) 58)) (-3684 (((-766) $) 59)) (-1754 (($ $ (-766) (-938 |#1|)) 50)) (-3855 (((-112) $) 21)) (-2378 (($ $ (-639 (-639 (-938 |#1|))) (-639 (-170)) (-170)) 28) (($ $ (-639 (-639 (-639 |#1|))) (-639 (-170)) (-170)) 27) (($ $ (-639 (-639 (-938 |#1|))) (-112) (-112)) 26) (($ $ (-639 (-639 (-639 |#1|))) (-112) (-112)) 25) (($ (-639 (-639 (-938 |#1|)))) 24) (($ (-639 (-639 (-938 |#1|))) (-112) (-112)) 23) (((-639 (-639 (-938 |#1|))) $) 22)) (-1610 (($ (-639 $)) 57) (($ $ $) 56)) (-3359 (((-639 (-170)) $) 16)) (-1663 (((-639 (-938 |#1|)) $) 20)) (-2919 (((-639 (-639 (-170))) $) 17)) (-2620 (((-639 (-639 (-639 (-938 |#1|)))) $) 18)) (-4191 (((-639 (-639 (-639 (-766)))) $) 19)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4236 (((-766) $ (-639 (-938 |#1|))) 51)) (-2060 (((-112) $) 39)) (-1539 (($ $ (-639 (-938 |#1|))) 43) (($ $ (-639 (-639 |#1|))) 42) (($ (-639 (-938 |#1|))) 41) (((-639 (-938 |#1|)) $) 40)) (-3222 (($) 61) (($ (-1156 3 |#1|)) 60)) (-4220 (($ $) 52)) (-2895 (((-639 $) $) 53)) (-3586 (($ (-639 $)) 55)) (-2702 (((-639 $) $) 54)) (-4054 (((-857) $) 11)) (-3840 (((-112) $) 34)) (-3484 (($ $ (-639 (-938 |#1|))) 38) (($ $ (-639 (-639 |#1|))) 37) (($ (-639 (-938 |#1|))) 36) (((-639 (-938 |#1|)) $) 35)) (-2588 (($ $) 14)) (-1731 (((-112) $ $) 6))) +(((-1126 |#1|) (-139) (-1044)) (T -1126)) +((-4054 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-857)))) (-3222 (*1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-1156 3 *3)) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1610 (*1 *1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) (-3586 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-2702 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)))) (-2895 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)))) (-4220 (*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) (-4236 (*1 *2 *1 *3) (-12 (-5 *3 (-639 (-938 *4))) (-4 *1 (-1126 *4)) (-4 *4 (-1044)) (-5 *2 (-766)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-938 *4)) (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) (-1460 (*1 *1 *1 *2) (-12 (-5 *2 (-938 *3)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1460 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1460 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-938 *3)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-3484 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-3484 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-3484 (*1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-2338 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-2338 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-2338 (*1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-2378 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-639 (-938 *5)))) (-5 *3 (-639 (-170))) (-5 *4 (-170)) (-4 *1 (-1126 *5)) (-4 *5 (-1044)))) (-2378 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-639 (-639 *5)))) (-5 *3 (-639 (-170))) (-5 *4 (-170)) (-4 *1 (-1126 *5)) (-4 *5 (-1044)))) (-2378 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-639 (-639 (-938 *4)))) (-5 *3 (-112)) (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) (-2378 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-639 (-639 (-639 *4)))) (-5 *3 (-112)) (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 *3)))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-2378 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-639 (-639 (-938 *4)))) (-5 *3 (-112)) (-4 *4 (-1044)) (-4 *1 (-1126 *4)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-938 *3)))))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-639 (-766))))))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-639 (-938 *3))))))) (-2919 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-170)))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-170))))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -2865 (-766)) (|:| |curves| (-766)) (|:| |polygons| (-766)) (|:| |constructs| (-766)))))) (-2588 (*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-1156 3 *3))))) +(-13 (-1092) (-10 -8 (-15 -3222 ($)) (-15 -3222 ($ (-1156 3 |t#1|))) (-15 -3684 ((-766) $)) (-15 -4172 ((-766) $)) (-15 -1610 ($ (-639 $))) (-15 -1610 ($ $ $)) (-15 -3586 ($ (-639 $))) (-15 -2702 ((-639 $) $)) (-15 -2895 ((-639 $) $)) (-15 -4220 ($ $)) (-15 -4236 ((-766) $ (-639 (-938 |t#1|)))) (-15 -1754 ($ $ (-766) (-938 |t#1|))) (-15 -1460 ($ $ (-938 |t#1|))) (-15 -1460 ($ $ (-639 |t#1|))) (-15 -1460 ($ $ (-766))) (-15 -1460 ($ (-938 |t#1|))) (-15 -1460 ((-938 |t#1|) $)) (-15 -2376 ((-112) $)) (-15 -1539 ($ $ (-639 (-938 |t#1|)))) (-15 -1539 ($ $ (-639 (-639 |t#1|)))) (-15 -1539 ($ (-639 (-938 |t#1|)))) (-15 -1539 ((-639 (-938 |t#1|)) $)) (-15 -2060 ((-112) $)) (-15 -3484 ($ $ (-639 (-938 |t#1|)))) (-15 -3484 ($ $ (-639 (-639 |t#1|)))) (-15 -3484 ($ (-639 (-938 |t#1|)))) (-15 -3484 ((-639 (-938 |t#1|)) $)) (-15 -3840 ((-112) $)) (-15 -2338 ($ $ (-639 (-938 |t#1|)))) (-15 -2338 ($ $ (-639 (-639 |t#1|)))) (-15 -2338 ($ (-639 (-938 |t#1|)))) (-15 -2338 ((-639 (-938 |t#1|)) $)) (-15 -2616 ((-112) $)) (-15 -2378 ($ $ (-639 (-639 (-938 |t#1|))) (-639 (-170)) (-170))) (-15 -2378 ($ $ (-639 (-639 (-639 |t#1|))) (-639 (-170)) (-170))) (-15 -2378 ($ $ (-639 (-639 (-938 |t#1|))) (-112) (-112))) (-15 -2378 ($ $ (-639 (-639 (-639 |t#1|))) (-112) (-112))) (-15 -2378 ($ (-639 (-639 (-938 |t#1|))))) (-15 -2378 ($ (-639 (-639 (-938 |t#1|))) (-112) (-112))) (-15 -2378 ((-639 (-639 (-938 |t#1|))) $)) (-15 -3855 ((-112) $)) (-15 -1663 ((-639 (-938 |t#1|)) $)) (-15 -4191 ((-639 (-639 (-639 (-766)))) $)) (-15 -2620 ((-639 (-639 (-639 (-938 |t#1|)))) $)) (-15 -2919 ((-639 (-639 (-170))) $)) (-15 -3359 ((-639 (-170)) $)) (-15 -3231 ((-2 (|:| -2865 (-766)) (|:| |curves| (-766)) (|:| |polygons| (-766)) (|:| |constructs| (-766))) $)) (-15 -2588 ($ $)) (-15 -3110 ((-1156 3 |t#1|) $)) (-15 -4054 ((-857) $)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 176) (($ (-1173)) NIL) (((-1173) $) 7)) (-2276 (((-112) $ (|[\|\|]| (-523))) 17) (((-112) $ (|[\|\|]| (-217))) 21) (((-112) $ (|[\|\|]| (-670))) 25) (((-112) $ (|[\|\|]| (-1266))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1107))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-675))) 49) (((-112) $ (|[\|\|]| (-516))) 53) (((-112) $ (|[\|\|]| (-1059))) 57) (((-112) $ (|[\|\|]| (-1267))) 61) (((-112) $ (|[\|\|]| (-524))) 65) (((-112) $ (|[\|\|]| (-153))) 69) (((-112) $ (|[\|\|]| (-665))) 73) (((-112) $ (|[\|\|]| (-310))) 77) (((-112) $ (|[\|\|]| (-1031))) 81) (((-112) $ (|[\|\|]| (-179))) 85) (((-112) $ (|[\|\|]| (-965))) 89) (((-112) $ (|[\|\|]| (-1066))) 93) (((-112) $ (|[\|\|]| (-1082))) 97) (((-112) $ (|[\|\|]| (-1088))) 101) (((-112) $ (|[\|\|]| (-622))) 105) (((-112) $ (|[\|\|]| (-1158))) 109) (((-112) $ (|[\|\|]| (-155))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-477))) 121) (((-112) $ (|[\|\|]| (-589))) 125) (((-112) $ (|[\|\|]| (-505))) 131) (((-112) $ (|[\|\|]| (-1150))) 135) (((-112) $ (|[\|\|]| (-562))) 139)) (-4247 (((-523) $) 18) (((-217) $) 22) (((-670) $) 26) (((-1266) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1107) $) 42) (((-96) $) 46) (((-675) $) 50) (((-516) $) 54) (((-1059) $) 58) (((-1267) $) 62) (((-524) $) 66) (((-153) $) 70) (((-665) $) 74) (((-310) $) 78) (((-1031) $) 82) (((-179) $) 86) (((-965) $) 90) (((-1066) $) 94) (((-1082) $) 98) (((-1088) $) 102) (((-622) $) 106) (((-1158) $) 110) (((-155) $) 114) (((-136) $) 118) (((-477) $) 122) (((-589) $) 126) (((-505) $) 132) (((-1150) $) 136) (((-562) $) 140)) (-1731 (((-112) $ $) NIL))) +(((-1127) (-1129)) (T -1127)) +NIL +(-1129) +((-2358 (((-639 (-1173)) (-1150)) 9))) +(((-1128) (-10 -7 (-15 -2358 ((-639 (-1173)) (-1150))))) (T -1128)) +((-2358 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-639 (-1173))) (-5 *1 (-1128))))) +(-10 -7 (-15 -2358 ((-639 (-1173)) (-1150)))) +((-4041 (((-112) $ $) 7)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-1173)) 16) (((-1173) $) 15)) (-2276 (((-112) $ (|[\|\|]| (-523))) 80) (((-112) $ (|[\|\|]| (-217))) 78) (((-112) $ (|[\|\|]| (-670))) 76) (((-112) $ (|[\|\|]| (-1266))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1107))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-675))) 64) (((-112) $ (|[\|\|]| (-516))) 62) (((-112) $ (|[\|\|]| (-1059))) 60) (((-112) $ (|[\|\|]| (-1267))) 58) (((-112) $ (|[\|\|]| (-524))) 56) (((-112) $ (|[\|\|]| (-153))) 54) (((-112) $ (|[\|\|]| (-665))) 52) (((-112) $ (|[\|\|]| (-310))) 50) (((-112) $ (|[\|\|]| (-1031))) 48) (((-112) $ (|[\|\|]| (-179))) 46) (((-112) $ (|[\|\|]| (-965))) 44) (((-112) $ (|[\|\|]| (-1066))) 42) (((-112) $ (|[\|\|]| (-1082))) 40) (((-112) $ (|[\|\|]| (-1088))) 38) (((-112) $ (|[\|\|]| (-622))) 36) (((-112) $ (|[\|\|]| (-1158))) 34) (((-112) $ (|[\|\|]| (-155))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-477))) 28) (((-112) $ (|[\|\|]| (-589))) 26) (((-112) $ (|[\|\|]| (-505))) 24) (((-112) $ (|[\|\|]| (-1150))) 22) (((-112) $ (|[\|\|]| (-562))) 20)) (-4247 (((-523) $) 79) (((-217) $) 77) (((-670) $) 75) (((-1266) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1107) $) 67) (((-96) $) 65) (((-675) $) 63) (((-516) $) 61) (((-1059) $) 59) (((-1267) $) 57) (((-524) $) 55) (((-153) $) 53) (((-665) $) 51) (((-310) $) 49) (((-1031) $) 47) (((-179) $) 45) (((-965) $) 43) (((-1066) $) 41) (((-1082) $) 39) (((-1088) $) 37) (((-622) $) 35) (((-1158) $) 33) (((-155) $) 31) (((-136) $) 29) (((-477) $) 27) (((-589) $) 25) (((-505) $) 23) (((-1150) $) 21) (((-562) $) 19)) (-1731 (((-112) $ $) 6))) (((-1129) (-139)) (T -1129)) -((-3797 (*1 *1 *1) (-4 *1 (-1129))) (-3796 (*1 *1 *1) (-4 *1 (-1129))) (-3795 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3794 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3793 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3792 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3791 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3790 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3789 (*1 *1 *1) (-4 *1 (-1129))) (-3788 (*1 *1 *1 *1) (-4 *1 (-1129))) (-3791 (*1 *1 *1) (-4 *1 (-1129))) (-3787 (*1 *1 *1) (-4 *1 (-1129)))) -(-13 (-10 -8 (-15 -3787 ($ $)) (-15 -3791 ($ $)) (-15 -3788 ($ $ $)) (-15 -3789 ($ $)) (-15 -3790 ($ $ $)) (-15 -3791 ($ $ $)) (-15 -3792 ($ $ $)) (-15 -3793 ($ $ $)) (-15 -3794 ($ $ $)) (-15 -3795 ($ $ $)) (-15 -3796 ($ $)) (-15 -3797 ($ $)))) -((-2947 (((-112) $ $) 42)) (-3806 ((|#1| $) 16)) (-3798 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-3805 (((-112) $) 18)) (-3803 (($ $ |#1|) 29)) (-3801 (($ $ (-112)) 31)) (-3800 (($ $) 32)) (-3802 (($ $ |#2|) 30)) (-3643 (((-1148) $) NIL)) (-3799 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-3644 (((-1110) $) NIL)) (-3807 (((-112) $) 15)) (-3972 (($) 11)) (-3804 (($ $) 28)) (-3929 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -1688 |#2|))) 22) (((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|)))) 25) (((-635 $) |#1| (-635 |#2|)) 27)) (-4329 ((|#2| $) 17)) (-4353 (((-857) $) 51)) (-3437 (((-112) $ $) 40))) -(((-1130 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -3972 ($)) (-15 -3807 ((-112) $)) (-15 -3806 (|#1| $)) (-15 -4329 (|#2| $)) (-15 -3805 ((-112) $)) (-15 -3929 ($ |#1| |#2| (-112))) (-15 -3929 ($ |#1| |#2|)) (-15 -3929 ($ (-2 (|:| |val| |#1|) (|:| -1688 |#2|)))) (-15 -3929 ((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))))) (-15 -3929 ((-635 $) |#1| (-635 |#2|))) (-15 -3804 ($ $)) (-15 -3803 ($ $ |#1|)) (-15 -3802 ($ $ |#2|)) (-15 -3801 ($ $ (-112))) (-15 -3800 ($ $)) (-15 -3799 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3798 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1091) (-34)) (-13 (-1091) (-34))) (T -1130)) -((-3972 (*1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3806 (*1 *2 *1) (-12 (-4 *2 (-13 (-1091) (-34))) (-5 *1 (-1130 *2 *3)) (-4 *3 (-13 (-1091) (-34))))) (-4329 (*1 *2 *1) (-12 (-4 *2 (-13 (-1091) (-34))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1091) (-34))))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2 *3) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1688 *4))) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1130 *3 *4)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-635 (-2 (|:| |val| *4) (|:| -1688 *5)))) (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-635 (-1130 *4 *5))) (-5 *1 (-1130 *4 *5)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-635 *5)) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-635 (-1130 *3 *5))) (-5 *1 (-1130 *3 *5)) (-4 *3 (-13 (-1091) (-34))))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3803 (*1 *1 *1 *2) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3802 (*1 *1 *1 *2) (-12 (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1091) (-34))) (-4 *2 (-13 (-1091) (-34))))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3799 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1091) (-34))) (-4 *6 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1130 *5 *6)))) (-3798 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1130 *4 *5)) (-4 *4 (-13 (-1091) (-34)))))) -(-13 (-1091) (-10 -8 (-15 -3972 ($)) (-15 -3807 ((-112) $)) (-15 -3806 (|#1| $)) (-15 -4329 (|#2| $)) (-15 -3805 ((-112) $)) (-15 -3929 ($ |#1| |#2| (-112))) (-15 -3929 ($ |#1| |#2|)) (-15 -3929 ($ (-2 (|:| |val| |#1|) (|:| -1688 |#2|)))) (-15 -3929 ((-635 $) (-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))))) (-15 -3929 ((-635 $) |#1| (-635 |#2|))) (-15 -3804 ($ $)) (-15 -3803 ($ $ |#1|)) (-15 -3802 ($ $ |#2|)) (-15 -3801 ($ $ (-112))) (-15 -3800 ($ $)) (-15 -3799 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3798 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2947 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-3806 (((-1130 |#1| |#2|) $) 26)) (-3815 (($ $) 76)) (-3811 (((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3808 (($ $ $ (-635 (-1130 |#1| |#2|))) 90) (($ $ $ (-635 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1293 (((-112) $ (-765)) NIL)) (-3408 (((-1130 |#1| |#2|) $ (-1130 |#1| |#2|)) 43 (|has| $ (-6 -4401)))) (-4194 (((-1130 |#1| |#2|) $ #1="value" (-1130 |#1| |#2|)) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-3813 (((-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))) $) 80)) (-3809 (($ (-1130 |#1| |#2|) $) 39)) (-3810 (($ (-1130 |#1| |#2|) $) 31)) (-2096 (((-635 (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 51)) (-3812 (((-112) (-1130 |#1| |#2|) $) 82)) (-3410 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 (-1130 |#1| |#2|)) $) 55 (|has| $ (-6 -4400)))) (-3646 (((-112) (-1130 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-1130 |#1| |#2|) (-1091))))) (-2100 (($ (-1 (-1130 |#1| |#2|) (-1130 |#1| |#2|)) $) 47 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-1130 |#1| |#2|) (-1130 |#1| |#2|)) $) 46)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 (-1130 |#1| |#2|)) $) 53)) (-3926 (((-112) $) 42)) (-3643 (((-1148) $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-3644 (((-1110) $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-3816 (((-3 $ "failed") $) 75)) (-2098 (((-112) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-1130 |#1| |#2|)))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1091)))) (($ $ (-292 (-1130 |#1| |#2|))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1091)))) (($ $ (-1130 |#1| |#2|) (-1130 |#1| |#2|)) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1091)))) (($ $ (-635 (-1130 |#1| |#2|)) (-635 (-1130 |#1| |#2|))) NIL (-12 (|has| (-1130 |#1| |#2|) (-308 (-1130 |#1| |#2|))) (|has| (-1130 |#1| |#2|) (-1091))))) (-1294 (((-112) $ $) 50)) (-3807 (((-112) $) 23)) (-3972 (($) 25)) (-4206 (((-1130 |#1| |#2|) $ #1#) NIL)) (-3412 (((-544) $ $) NIL)) (-4040 (((-112) $) 44)) (-2097 (((-765) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4400))) (((-765) (-1130 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-1130 |#1| |#2|) (-1091))))) (-3804 (($ $) 49)) (-3929 (($ (-1130 |#1| |#2|)) 10) (($ |#1| |#2| (-635 $)) 13) (($ |#1| |#2| (-635 (-1130 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-635 |#2|)) 18)) (-3814 (((-635 |#2|) $) 81)) (-4353 (((-857) $) 73 (|has| (-1130 |#1| |#2|) (-608 (-857))))) (-3921 (((-635 $) $) 29)) (-3411 (((-112) $ $) NIL (|has| (-1130 |#1| |#2|) (-1091)))) (-2099 (((-112) (-1 (-112) (-1130 |#1| |#2|)) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 64 (|has| (-1130 |#1| |#2|) (-1091)))) (-4364 (((-765) $) 58 (|has| $ (-6 -4400))))) -(((-1131 |#1| |#2|) (-13 (-1003 (-1130 |#1| |#2|)) (-10 -8 (-6 -4401) (-6 -4400) (-15 -3816 ((-3 $ "failed") $)) (-15 -3815 ($ $)) (-15 -3929 ($ (-1130 |#1| |#2|))) (-15 -3929 ($ |#1| |#2| (-635 $))) (-15 -3929 ($ |#1| |#2| (-635 (-1130 |#1| |#2|)))) (-15 -3929 ($ |#1| |#2| |#1| (-635 |#2|))) (-15 -3814 ((-635 |#2|) $)) (-15 -3813 ((-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))) $)) (-15 -3812 ((-112) (-1130 |#1| |#2|) $)) (-15 -3811 ((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3810 ($ (-1130 |#1| |#2|) $)) (-15 -3809 ($ (-1130 |#1| |#2|) $)) (-15 -3808 ($ $ $ (-635 (-1130 |#1| |#2|)))) (-15 -3808 ($ $ $ (-635 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1091) (-34)) (-13 (-1091) (-34))) (T -1131)) -((-3816 (*1 *1 *1) (|partial| -12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3815 (*1 *1 *1) (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-635 (-1131 *2 *3))) (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) (-3929 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-635 (-1130 *2 *3))) (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))) (-5 *1 (-1131 *2 *3)))) (-3929 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-635 *3)) (-4 *3 (-13 (-1091) (-34))) (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-635 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))))) (-3812 (*1 *2 *3 *1) (-12 (-5 *3 (-1130 *4 *5)) (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)))) (-3811 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1130 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1091) (-34))) (-4 *6 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *5 *6)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))) (-3808 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-635 (-1130 *3 *4))) (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))) (-3808 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1130 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34))) (-5 *1 (-1131 *4 *5))))) -(-13 (-1003 (-1130 |#1| |#2|)) (-10 -8 (-6 -4401) (-6 -4400) (-15 -3816 ((-3 $ "failed") $)) (-15 -3815 ($ $)) (-15 -3929 ($ (-1130 |#1| |#2|))) (-15 -3929 ($ |#1| |#2| (-635 $))) (-15 -3929 ($ |#1| |#2| (-635 (-1130 |#1| |#2|)))) (-15 -3929 ($ |#1| |#2| |#1| (-635 |#2|))) (-15 -3814 ((-635 |#2|) $)) (-15 -3813 ((-635 (-2 (|:| |val| |#1|) (|:| -1688 |#2|))) $)) (-15 -3812 ((-112) (-1130 |#1| |#2|) $)) (-15 -3811 ((-112) (-1130 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3810 ($ (-1130 |#1| |#2|) $)) (-15 -3809 ($ (-1130 |#1| |#2|) $)) (-15 -3808 ($ $ $ (-635 (-1130 |#1| |#2|)))) (-15 -3808 ($ $ $ (-635 (-1130 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3818 (($ $) NIL)) (-3734 ((|#2| $) NIL)) (-3506 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3817 (($ (-682 |#2|)) 50)) (-3508 (((-112) $) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-3737 (($ |#2|) 10)) (-4131 (($) NIL T CONST)) (-3495 (($ $) 63 (|has| |#2| (-306)))) (-3497 (((-238 |#1| |#2|) $ (-544)) 36)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 |#2| #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) ((|#2| $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) 77)) (-3494 (((-765) $) 65 (|has| |#2| (-554)))) (-3498 ((|#2| $ (-544) (-544)) NIL)) (-2096 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-2545 (((-112) $) NIL)) (-3493 (((-765) $) 67 (|has| |#2| (-554)))) (-3492 (((-635 (-238 |#1| |#2|)) $) 71 (|has| |#2| (-554)))) (-3500 (((-765) $) NIL)) (-4021 (($ |#2|) 20)) (-3499 (((-765) $) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-3731 ((|#2| $) 61 (|has| |#2| (-6 (-4402 #2="*"))))) (-3504 (((-544) $) NIL)) (-3502 (((-544) $) NIL)) (-2554 (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3503 (((-544) $) NIL)) (-3501 (((-544) $) NIL)) (-3509 (($ (-635 (-635 |#2|))) 31)) (-2100 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4000 (((-635 (-635 |#2|)) $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3996 (((-3 $ "failed") $) 74 (|has| |#2| (-362)))) (-3644 (((-1110) $) NIL)) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-2098 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ (-544) (-544) |#2|) NIL) ((|#2| $ (-544) (-544)) NIL)) (-4217 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3733 ((|#2| $) NIL)) (-3736 (($ (-635 |#2|)) 44)) (-3507 (((-112) $) NIL)) (-3735 (((-238 |#1| |#2|) $) NIL)) (-3732 ((|#2| $) 59 (|has| |#2| (-6 (-4402 #2#))))) (-2097 (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 86 (|has| |#2| (-609 (-533))))) (-3496 (((-238 |#1| |#2|) $ (-544)) 38)) (-4353 (((-857) $) 41) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#2| (-1031 (-406 (-544))))) (($ |#2|) NIL) (((-682 |#2|) $) 46)) (-3511 (((-765)) 18)) (-2099 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3505 (((-112) $) NIL)) (-3040 (($) 12 T CONST)) (-3046 (($) 15 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-765)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) 57) (($ $ (-544)) 76 (|has| |#2| (-362)))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-238 |#1| |#2|) $ (-238 |#1| |#2|)) 53) (((-238 |#1| |#2|) (-238 |#1| |#2|) $) 55)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1132 |#1| |#2|) (-13 (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-608 (-682 |#2|)) (-10 -8 (-15 -4021 ($ |#2|)) (-15 -3818 ($ $)) (-15 -3817 ($ (-682 |#2|))) (IF (|has| |#2| (-6 (-4402 "*"))) (-6 -4389) |%noBranch|) (IF (|has| |#2| (-6 (-4402 "*"))) (IF (|has| |#2| (-6 -4397)) (-6 -4397) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|))) (-765) (-1042)) (T -1132)) -((-4021 (*1 *1 *2) (-12 (-5 *1 (-1132 *3 *2)) (-14 *3 (-765)) (-4 *2 (-1042)))) (-3818 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-765)) (-4 *3 (-1042)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1132 *3 *4)) (-14 *3 (-765))))) -(-13 (-1113 |#1| |#2| (-238 |#1| |#2|) (-238 |#1| |#2|)) (-608 (-682 |#2|)) (-10 -8 (-15 -4021 ($ |#2|)) (-15 -3818 ($ $)) (-15 -3817 ($ (-682 |#2|))) (IF (|has| |#2| (-6 (-4402 "*"))) (-6 -4389) |%noBranch|) (IF (|has| |#2| (-6 (-4402 "*"))) (IF (|has| |#2| (-6 -4397)) (-6 -4397) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-609 (-533))) (-6 (-609 (-533))) |%noBranch|))) -((-3831 (($ $) 19)) (-3821 (($ $ (-143)) 10) (($ $ (-140)) 14)) (-3829 (((-112) $ $) 24)) (-3833 (($ $) 17)) (-4206 (((-143) $ (-544) (-143)) NIL) (((-143) $ (-544)) NIL) (($ $ (-1220 (-544))) NIL) (($ $ $) 29)) (-4353 (($ (-143)) 27) (((-857) $) NIL))) -(((-1133 |#1|) (-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1| (-140))) (-15 -3821 (|#1| |#1| (-143))) (-15 -4353 (|#1| (-143))) (-15 -3829 ((-112) |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4206 ((-143) |#1| (-544))) (-15 -4206 ((-143) |#1| (-544) (-143)))) (-1134)) (T -1133)) -NIL -(-10 -8 (-15 -4353 ((-857) |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1| (-140))) (-15 -3821 (|#1| |#1| (-143))) (-15 -4353 (|#1| (-143))) (-15 -3829 ((-112) |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4206 ((-143) |#1| (-544))) (-15 -4206 ((-143) |#1| (-544) (-143)))) -((-2947 (((-112) $ $) 19 (|has| (-143) (-1091)))) (-3830 (($ $) 120)) (-3831 (($ $) 121)) (-3821 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-3828 (((-112) $ $) 118)) (-3827 (((-112) $ $ (-544)) 117)) (-3822 (((-635 $) $ (-143)) 110) (((-635 $) $ (-140)) 109)) (-1876 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-844)))) (-1874 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| (-143) (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 (((-143) $ (-544) (-143)) 52 (|has| $ (-6 -4401))) (((-143) $ (-1220 (-544)) (-143)) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-3819 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-3824 (($ $ (-1220 (-544)) $) 114)) (-1424 (($ $) 78 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-143) $) 77 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4400)))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4400)))) (-1665 (((-143) $ (-544) (-143)) 53 (|has| $ (-6 -4401)))) (-3498 (((-143) $ (-544)) 51)) (-3829 (((-112) $ $) 119)) (-3823 (((-544) (-1 (-112) (-143)) $) 97) (((-544) (-143) $) 96 (|has| (-143) (-1091))) (((-544) (-143) $ (-544)) 95 (|has| (-143) (-1091))) (((-544) $ $ (-544)) 113) (((-544) (-140) $ (-544)) 112)) (-2096 (((-635 (-143)) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-143)) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| (-143) (-844)))) (-3917 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| (-143) (-844)))) (-3825 (((-112) $ $ (-143)) 115)) (-3826 (((-765) $ $ (-143)) 116)) (-2100 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-3832 (($ $) 122)) (-3833 (($ $) 123)) (-4123 (((-112) $ (-765)) 10)) (-3820 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-3643 (((-1148) $) 22 (|has| (-143) (-1091)))) (-2421 (($ (-143) $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| (-143) (-1091)))) (-4207 (((-143) $) 42 (|has| (-544) (-844)))) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-2345 (($ $ (-143)) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-143)) (-635 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2351 (((-635 (-143)) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 (((-143) $ (-544) (-143)) 50) (((-143) $ (-544)) 49) (($ $ (-1220 (-544))) 63) (($ $ $) 102)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4400))) (((-765) (-143) $) 28 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| (-143) (-609 (-533))))) (-3929 (($ (-635 (-143))) 70)) (-4208 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (($ (-143)) 111) (((-857) $) 18 (|has| (-143) (-608 (-857))))) (-2099 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| (-143) (-844)))) (-2946 (((-112) $ $) 83 (|has| (-143) (-844)))) (-3437 (((-112) $ $) 20 (|has| (-143) (-1091)))) (-3066 (((-112) $ $) 85 (|has| (-143) (-844)))) (-3067 (((-112) $ $) 82 (|has| (-143) (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-1134) (-139)) (T -1134)) -((-3833 (*1 *1 *1) (-4 *1 (-1134))) (-3832 (*1 *1 *1) (-4 *1 (-1134))) (-3831 (*1 *1 *1) (-4 *1 (-1134))) (-3830 (*1 *1 *1) (-4 *1 (-1134))) (-3829 (*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))) (-3828 (*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112)))) (-3827 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-544)) (-5 *2 (-112)))) (-3826 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-765)))) (-3825 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-112)))) (-3824 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1220 (-544))))) (-3823 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-544)))) (-3823 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-544)) (-5 *3 (-140)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1134)))) (-3822 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-635 *1)) (-4 *1 (-1134)))) (-3822 (*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-635 *1)) (-4 *1 (-1134)))) (-3821 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-3821 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-3820 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-3820 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-3819 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143)))) (-3819 (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) (-4206 (*1 *1 *1 *1) (-4 *1 (-1134)))) -(-13 (-19 (-143)) (-10 -8 (-15 -3833 ($ $)) (-15 -3832 ($ $)) (-15 -3831 ($ $)) (-15 -3830 ($ $)) (-15 -3829 ((-112) $ $)) (-15 -3828 ((-112) $ $)) (-15 -3827 ((-112) $ $ (-544))) (-15 -3826 ((-765) $ $ (-143))) (-15 -3825 ((-112) $ $ (-143))) (-15 -3824 ($ $ (-1220 (-544)) $)) (-15 -3823 ((-544) $ $ (-544))) (-15 -3823 ((-544) (-140) $ (-544))) (-15 -4353 ($ (-143))) (-15 -3822 ((-635 $) $ (-143))) (-15 -3822 ((-635 $) $ (-140))) (-15 -3821 ($ $ (-143))) (-15 -3821 ($ $ (-140))) (-15 -3820 ($ $ (-143))) (-15 -3820 ($ $ (-140))) (-15 -3819 ($ $ (-143))) (-15 -3819 ($ $ (-140))) (-15 -4206 ($ $ $)))) -(((-34) . T) ((-102) -3936 (|has| (-143) (-1091)) (|has| (-143) (-844))) ((-608 (-857)) -3936 (|has| (-143) (-1091)) (|has| (-143) (-844)) (|has| (-143) (-608 (-857)))) ((-150 #1=(-143)) . T) ((-609 (-533)) |has| (-143) (-609 (-533))) ((-285 #2=(-544) #1#) . T) ((-287 #2# #1#) . T) ((-308 #1#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))) ((-371 #1#) . T) ((-487 #1#) . T) ((-599 #2# #1#) . T) ((-512 #1# #1#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))) ((-644 #1#) . T) ((-19 #1#) . T) ((-844) |has| (-143) (-844)) ((-1091) -3936 (|has| (-143) (-1091)) (|has| (-143) (-844))) ((-1204) . T)) -((-3840 (((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765)) 93)) (-3837 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765)) 54)) (-3841 (((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)) 85)) (-3835 (((-765) (-635 |#4|) (-635 |#5|)) 27)) (-3838 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765)) 56) (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112)) 58)) (-3839 (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112)) 77)) (-4377 (((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) 80)) (-3836 (((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|) 53)) (-3834 (((-765) (-635 |#4|) (-635 |#5|)) 19))) -(((-1135 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3834 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3835 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3836 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765))) (-15 -4377 ((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3841 ((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -1135)) -((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *4 (-765)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1099 *4 *5 *6 *7)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) (-5 *1 (-1135 *4 *5 *6 *7 *8)))) (-3840 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-635 *11)) (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -1688 *11)))))) (-5 *6 (-765)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -1688 *11)))) (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1056 *7 *8 *9)) (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-5 *1 (-1135 *7 *8 *9 *10 *11)))) (-3839 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-3839 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-3838 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-3838 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *7 *8 *9 *3 *4)) (-4 *4 (-1099 *7 *8 *9 *3)))) (-3837 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-3836 (*1 *2 *3 *4) (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-635 *4)) (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-3835 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3834 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3835 ((-765) (-635 |#4|) (-635 |#5|))) (-15 -3836 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3837 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765) (-112))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5| (-765))) (-15 -3838 ((-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) |#4| |#5|)) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112))) (-15 -3839 ((-635 |#5|) (-635 |#4|) (-635 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3840 ((-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-635 |#4|) (-635 |#5|) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-2 (|:| |done| (-635 |#5|)) (|:| |todo| (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))))) (-765))) (-15 -4377 ((-1148) (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|)))) (-15 -3841 ((-1259) (-635 (-2 (|:| |val| (-635 |#4|)) (|:| -1688 |#5|))) (-765)))) -((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) NIL)) (-4089 (((-635 $) (-635 |#4|)) 110) (((-635 $) (-635 |#4|) (-112)) 111) (((-635 $) (-635 |#4|) (-112) (-112)) 109) (((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3467 (((-635 |#3|) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4095 ((|#4| |#4| $) NIL)) (-4181 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| $) 84)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) 27 (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3283 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3557 (($ (-635 |#4|)) NIL)) (-4205 (((-3 $ #1#) $) 40)) (-4092 ((|#4| |#4| $) 65)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) NIL)) (-3598 (((-112) |#4| $) NIL)) (-3596 (((-112) |#4| $) NIL)) (-3599 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3842 (((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112)) 124)) (-2096 (((-635 |#4|) $) 17 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 18 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-2100 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 22)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-3592 (((-3 |#4| (-635 $)) |#4| |#4| $) NIL)) (-3591 (((-635 (-2 (|:| |val| |#4|) (|:| -1688 $))) |#4| |#4| $) 103)) (-4204 (((-3 |#4| #1#) $) 38)) (-3593 (((-635 $) |#4| $) 88)) (-3595 (((-3 (-112) (-635 $)) |#4| $) NIL)) (-3594 (((-635 (-2 (|:| |val| (-112)) (|:| -1688 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3639 (((-635 $) |#4| $) 107) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 108) (((-635 $) |#4| (-635 $)) NIL)) (-3843 (((-635 $) (-635 |#4|) (-112) (-112) (-112)) 119)) (-3844 (($ |#4| $) 75) (($ (-635 |#4|) $) 76) (((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4104 (((-635 |#4|) $) NIL)) (-4098 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4093 ((|#4| |#4| $) NIL)) (-4106 (((-112) $ $) NIL)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4094 ((|#4| |#4| $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 |#4| #1#) $) 36)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4086 (((-3 $ #1#) $ |#4|) 48)) (-4175 (($ $ |#4|) NIL) (((-635 $) |#4| $) 90) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) 86)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 16)) (-3972 (($) 14)) (-4355 (((-765) $) NIL)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) 13)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 21)) (-3293 (($ $ |#3|) 43)) (-3295 (($ $ |#3|) 44)) (-4091 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) 32) (((-635 |#4|) $) 41)) (-4085 (((-765) $) NIL (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-3590 (((-635 $) |#4| $) 54) (((-635 $) |#4| (-635 $)) NIL) (((-635 $) (-635 |#4|) $) NIL) (((-635 $) (-635 |#4|) (-635 $)) NIL)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) NIL)) (-3597 (((-112) |#4| $) NIL)) (-4340 (((-112) |#3| $) 61)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1136 |#1| |#2| |#3| |#4|) (-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3844 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3843 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -3842 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) (-450) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1136)) -((-3844 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *3))) (-5 *1 (-1136 *5 *6 *7 *3)) (-4 *3 (-1056 *5 *6 *7)))) (-4089 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-4089 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-3843 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8))) (-5 *1 (-1136 *5 *6 *7 *8)))) (-3842 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1136 *5 *6 *7 *8))))) (-5 *1 (-1136 *5 *6 *7 *8)) (-5 *3 (-635 *8))))) -(-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3844 ((-635 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112))) (-15 -4089 ((-635 $) (-635 |#4|) (-112) (-112) (-112) (-112))) (-15 -3843 ((-635 $) (-635 |#4|) (-112) (-112) (-112))) (-15 -3842 ((-2 (|:| |val| (-635 |#4|)) (|:| |towers| (-635 $))) (-635 |#4|) (-112) (-112))))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3728 ((|#1| $) 34)) (-3845 (($ (-635 |#1|)) 39)) (-1293 (((-112) $ (-765)) NIL)) (-4131 (($) NIL T CONST)) (-3730 ((|#1| |#1| $) 36)) (-3729 ((|#1| $) 32)) (-2096 (((-635 |#1|) $) 18 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 22)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-1356 ((|#1| $) 35)) (-4014 (($ |#1| $) 37)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-1357 ((|#1| $) 33)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 31)) (-3972 (($) 38)) (-3727 (((-765) $) 29)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 27)) (-4353 (((-857) $) 14 (|has| |#1| (-608 (-857))))) (-1358 (($ (-635 |#1|)) NIL)) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 17 (|has| |#1| (-1091)))) (-4364 (((-765) $) 30 (|has| $ (-6 -4400))))) -(((-1137 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -3845 ($ (-635 |#1|))))) (-1204)) (T -1137)) -((-3845 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1137 *3))))) -(-13 (-1111 |#1|) (-10 -8 (-15 -3845 ($ (-635 |#1|))))) -((-4194 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1220 (-544)) |#2|) 43) ((|#2| $ (-544) |#2|) 40)) (-3846 (((-112) $) 11)) (-2100 (($ (-1 |#2| |#2|) $) 38)) (-4207 ((|#2| $) NIL) (($ $ (-765)) 16)) (-2345 (($ $ |#2|) 39)) (-3847 (((-112) $) 10)) (-4206 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1220 (-544))) 30) ((|#2| $ (-544)) 22) ((|#2| $ (-544) |#2|) NIL)) (-4197 (($ $ $) 46) (($ $ |#2|) NIL)) (-4208 (($ $ $) 32) (($ |#2| $) NIL) (($ (-635 $)) 35) (($ $ |#2|) NIL))) -(((-1138 |#1| |#2|) (-10 -8 (-15 -3846 ((-112) |#1|)) (-15 -3847 ((-112) |#1|)) (-15 -4194 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -2345 (|#1| |#1| |#2|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4194 (|#2| |#1| (-1220 (-544)) |#2|)) (-15 -4194 (|#2| |#1| #1="last" |#2|)) (-15 -4194 (|#1| |#1| #2="rest" |#1|)) (-15 -4194 (|#2| |#1| #3="first" |#2|)) (-15 -4197 (|#1| |#1| |#2|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -4206 (|#1| |#1| #2#)) (-15 -4207 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| #3#)) (-15 -4207 (|#2| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4194 (|#2| |#1| #4="value" |#2|)) (-15 -4206 (|#2| |#1| #4#)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|))) (-1139 |#2|) (-1204)) (T -1138)) -NIL -(-10 -8 (-15 -3846 ((-112) |#1|)) (-15 -3847 ((-112) |#1|)) (-15 -4194 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544) |#2|)) (-15 -4206 (|#2| |#1| (-544))) (-15 -2345 (|#1| |#1| |#2|)) (-15 -4208 (|#1| |#1| |#2|)) (-15 -4208 (|#1| (-635 |#1|))) (-15 -4206 (|#1| |#1| (-1220 (-544)))) (-15 -4194 (|#2| |#1| (-1220 (-544)) |#2|)) (-15 -4194 (|#2| |#1| #1="last" |#2|)) (-15 -4194 (|#1| |#1| #2="rest" |#1|)) (-15 -4194 (|#2| |#1| #3="first" |#2|)) (-15 -4197 (|#1| |#1| |#2|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -4206 (|#1| |#1| #2#)) (-15 -4207 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| #3#)) (-15 -4207 (|#2| |#1|)) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#1|)) (-15 -4194 (|#2| |#1| #4="value" |#2|)) (-15 -4206 (|#2| |#1| #4#)) (-15 -2100 (|#1| (-1 |#2| |#2|) |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4201 ((|#1| $) 65)) (-4203 (($ $) 67)) (-2344 (((-1259) $ (-544) (-544)) 97 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 52 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 56 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) 54 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 58 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 117 (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) 86 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4400)))) (-4202 ((|#1| $) 66)) (-4131 (($) 7 T CONST)) (-4205 (($ $) 73) (($ $ (-765)) 71)) (-1424 (($ $) 99 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4400))) (($ |#1| $) 100 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1665 ((|#1| $ (-544) |#1|) 85 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 87)) (-3846 (((-112) $) 83)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) 108)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 95 (|has| (-544) (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 94 (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 70) (($ $ (-765)) 68)) (-2421 (($ $ $ (-544)) 116) (($ |#1| $ (-544)) 115)) (-2349 (((-635 (-544)) $) 92)) (-2350 (((-112) (-544) $) 91)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 76) (($ $ (-765)) 74)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2345 (($ $ |#1|) 96 (|has| $ (-6 -4401)))) (-3847 (((-112) $) 84)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 90)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1220 (-544))) 112) ((|#1| $ (-544)) 89) ((|#1| $ (-544) |#1|) 88)) (-3412 (((-544) $ $) 44)) (-2422 (($ $ (-1220 (-544))) 114) (($ $ (-544)) 113)) (-4040 (((-112) $) 46)) (-4198 (($ $) 62)) (-4196 (($ $) 59 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 63)) (-4200 (($ $) 64)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4377 (((-533) $) 98 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 107)) (-4197 (($ $ $) 61 (|has| $ (-6 -4401))) (($ $ |#1|) 60 (|has| $ (-6 -4401)))) (-4208 (($ $ $) 78) (($ |#1| $) 77) (($ (-635 $)) 110) (($ $ |#1|) 109)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-1139 |#1|) (-139) (-1204)) (T -1139)) -((-3847 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1204)) (-5 *2 (-112))))) -(-13 (-1242 |t#1|) (-644 |t#1|) (-10 -8 (-15 -3847 ((-112) $)) (-15 -3846 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T) ((-1242 |#1|) . T)) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) NIL)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1140 |#1| |#2| |#3|) (-1181 |#1| |#2|) (-1091) (-1091) |#2|) (T -1140)) -NIL -(-1181 |#1| |#2|) -((-2947 (((-112) $ $) 7)) (-3848 (((-3 $ "failed") $) 13)) (-3643 (((-1148) $) 9)) (-3849 (($) 14 T CONST)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11)) (-3437 (((-112) $ $) 6))) -(((-1141) (-139)) (T -1141)) -((-3849 (*1 *1) (-4 *1 (-1141))) (-3848 (*1 *1 *1) (|partial| -4 *1 (-1141)))) -(-13 (-1091) (-10 -8 (-15 -3849 ($) -4359) (-15 -3848 ((-3 $ "failed") $)))) -(((-102) . T) ((-608 (-857)) . T) ((-1091) . T)) -((-3852 (((-1143 |#1|) (-1143 |#1|)) 17)) (-3850 (((-1143 |#1|) (-1143 |#1|)) 13)) (-3853 (((-1143 |#1|) (-1143 |#1|) (-544) (-544)) 20)) (-3851 (((-1143 |#1|) (-1143 |#1|)) 15))) -(((-1142 |#1|) (-10 -7 (-15 -3850 ((-1143 |#1|) (-1143 |#1|))) (-15 -3851 ((-1143 |#1|) (-1143 |#1|))) (-15 -3852 ((-1143 |#1|) (-1143 |#1|))) (-15 -3853 ((-1143 |#1|) (-1143 |#1|) (-544) (-544)))) (-13 (-554) (-146))) (T -1142)) -((-3853 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1142 *4)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3)))) (-3850 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3))))) -(-10 -7 (-15 -3850 ((-1143 |#1|) (-1143 |#1|))) (-15 -3851 ((-1143 |#1|) (-1143 |#1|))) (-15 -3852 ((-1143 |#1|) (-1143 |#1|))) (-15 -3853 ((-1143 |#1|) (-1143 |#1|) (-544) (-544)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) NIL)) (-4201 ((|#1| $) NIL)) (-4203 (($ $) 51)) (-2344 (((-1259) $ (-544) (-544)) 76 (|has| $ (-6 -4401)))) (-4191 (($ $ (-544)) 110 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-3858 (((-857) $) 40 (|has| |#1| (-1091)))) (-3857 (((-112)) 39 (|has| |#1| (-1091)))) (-3408 ((|#1| $ |#1|) NIL (|has| $ (-6 -4401)))) (-4193 (($ $ $) 98 (|has| $ (-6 -4401))) (($ $ (-544) $) 122)) (-4192 ((|#1| $ |#1|) 107 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 102 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ #2="first" |#1|) 104 (|has| $ (-6 -4401))) (($ $ #3="rest" $) 106 (|has| $ (-6 -4401))) ((|#1| $ #4="last" |#1|) 109 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 89 (|has| $ (-6 -4401))) ((|#1| $ (-544) |#1|) 55 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 58)) (-4202 ((|#1| $) NIL)) (-4131 (($) NIL T CONST)) (-2440 (($ $) 14)) (-4205 (($ $) 28) (($ $ (-765)) 88)) (-3863 (((-112) (-635 |#1|) $) 116 (|has| |#1| (-1091)))) (-3864 (($ (-635 |#1|)) 112)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) 57)) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3846 (((-112) $) NIL)) (-2096 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3859 (((-1259) (-544) $) 121 (|has| |#1| (-1091)))) (-2439 (((-765) $) 118)) (-3414 (((-635 $) $) NIL)) (-3410 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-4123 (((-112) $ (-765)) NIL)) (-3413 (((-635 |#1|) $) NIL)) (-3926 (((-112) $) NIL)) (-2442 (($ $) 90)) (-2443 (((-112) $) 13)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-4204 ((|#1| $) NIL) (($ $ (-765)) NIL)) (-2421 (($ $ $ (-544)) NIL) (($ |#1| $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) 74)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-3856 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2441 ((|#1| $) 10)) (-4207 ((|#1| $) 27) (($ $ (-765)) 49)) (-3862 (((-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765))) (-765) $) 24)) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3855 (($ (-1 (-112) |#1|) $) 126)) (-3854 (($ (-1 (-112) |#1|) $) 127)) (-2345 (($ $ |#1|) 68 (|has| $ (-6 -4401)))) (-4175 (($ $ (-544)) 31)) (-3847 (((-112) $) 72)) (-2444 (((-112) $) 12)) (-2445 (((-112) $) 117)) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 20)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) 15)) (-3972 (($) 44)) (-4206 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1220 (-544))) NIL) ((|#1| $ (-544)) 54) ((|#1| $ (-544) |#1|) NIL)) (-3412 (((-544) $ $) 48)) (-2422 (($ $ (-1220 (-544))) NIL) (($ $ (-544)) NIL)) (-3861 (($ (-1 $)) 47)) (-4040 (((-112) $) 69)) (-4198 (($ $) 70)) (-4196 (($ $) 99 (|has| $ (-6 -4401)))) (-4199 (((-765) $) NIL)) (-4200 (($ $) NIL)) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 43)) (-4377 (((-533) $) NIL (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 53)) (-3860 (($ |#1| $) 97)) (-4197 (($ $ $) 100 (|has| $ (-6 -4401))) (($ $ |#1|) 101 (|has| $ (-6 -4401)))) (-4208 (($ $ $) 78) (($ |#1| $) 45) (($ (-635 $)) 83) (($ $ |#1|) 77)) (-3274 (($ $) 50)) (-4353 (($ (-635 |#1|)) 111) (((-857) $) 41 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) NIL)) (-3411 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 114 (|has| |#1| (-1091)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1143 |#1|) (-13 (-667 |#1|) (-611 (-635 |#1|)) (-10 -8 (-6 -4401) (-15 -3864 ($ (-635 |#1|))) (IF (|has| |#1| (-1091)) (-15 -3863 ((-112) (-635 |#1|) $)) |%noBranch|) (-15 -3862 ((-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765))) (-765) $)) (-15 -3861 ($ (-1 $))) (-15 -3860 ($ |#1| $)) (IF (|has| |#1| (-1091)) (PROGN (-15 -3859 ((-1259) (-544) $)) (-15 -3858 ((-857) $)) (-15 -3857 ((-112)))) |%noBranch|) (-15 -4193 ($ $ (-544) $)) (-15 -3856 ($ (-1 |#1|))) (-15 -3856 ($ (-1 |#1| |#1|) |#1|)) (-15 -3855 ($ (-1 (-112) |#1|) $)) (-15 -3854 ($ (-1 (-112) |#1|) $)))) (-1204)) (T -1143)) -((-3864 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))) (-3863 (*1 *2 *3 *1) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-4 *4 (-1204)) (-5 *2 (-112)) (-5 *1 (-1143 *4)))) (-3862 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765)))) (-5 *1 (-1143 *4)) (-4 *4 (-1204)) (-5 *3 (-765)))) (-3861 (*1 *1 *2) (-12 (-5 *2 (-1 (-1143 *3))) (-5 *1 (-1143 *3)) (-4 *3 (-1204)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *1 (-1143 *2)) (-4 *2 (-1204)))) (-3859 (*1 *2 *3 *1) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1143 *4)) (-4 *4 (-1091)) (-4 *4 (-1204)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1143 *3)) (-4 *3 (-1091)) (-4 *3 (-1204)))) (-3857 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3)) (-4 *3 (-1091)) (-4 *3 (-1204)))) (-4193 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1143 *3)) (-4 *3 (-1204)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))) (-3855 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))) (-3854 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3))))) -(-13 (-667 |#1|) (-611 (-635 |#1|)) (-10 -8 (-6 -4401) (-15 -3864 ($ (-635 |#1|))) (IF (|has| |#1| (-1091)) (-15 -3863 ((-112) (-635 |#1|) $)) |%noBranch|) (-15 -3862 ((-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765))) (-765) $)) (-15 -3861 ($ (-1 $))) (-15 -3860 ($ |#1| $)) (IF (|has| |#1| (-1091)) (PROGN (-15 -3859 ((-1259) (-544) $)) (-15 -3858 ((-857) $)) (-15 -3857 ((-112)))) |%noBranch|) (-15 -4193 ($ $ (-544) $)) (-15 -3856 ($ (-1 |#1|))) (-15 -3856 ($ (-1 |#1| |#1|) |#1|)) (-15 -3855 ($ (-1 (-112) |#1|) $)) (-15 -3854 ($ (-1 (-112) |#1|) $)))) -((-4208 (((-1143 |#1|) (-1143 (-1143 |#1|))) 15))) -(((-1144 |#1|) (-10 -7 (-15 -4208 ((-1143 |#1|) (-1143 (-1143 |#1|))))) (-1204)) (T -1144)) -((-4208 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1144 *4)) (-4 *4 (-1204))))) -(-10 -7 (-15 -4208 ((-1143 |#1|) (-1143 (-1143 |#1|))))) -((-4248 (((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)) 25)) (-4249 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)) 26)) (-4365 (((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|)) 16))) -(((-1145 |#1| |#2|) (-10 -7 (-15 -4365 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|))) (-15 -4248 ((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))) (-15 -4249 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)))) (-1204) (-1204)) (T -1145)) -((-4249 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1143 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-1145 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1143 *6)) (-4 *6 (-1204)) (-4 *3 (-1204)) (-5 *2 (-1143 *3)) (-5 *1 (-1145 *6 *3)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1143 *6)) (-5 *1 (-1145 *5 *6))))) -(-10 -7 (-15 -4365 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|))) (-15 -4248 ((-1143 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|))) (-15 -4249 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1143 |#1|)))) -((-4365 (((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|)) 21))) -(((-1146 |#1| |#2| |#3|) (-10 -7 (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|)))) (-1204) (-1204) (-1204)) (T -1146)) -((-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-1143 *7)) (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8)) (-5 *1 (-1146 *6 *7 *8))))) -(-10 -7 (-15 -4365 ((-1143 |#3|) (-1 |#3| |#1| |#2|) (-1143 |#1|) (-1143 |#2|)))) -((-2947 (((-112) $ $) 19)) (-3830 (($ $) 120)) (-3831 (($ $) 121)) (-3821 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-3828 (((-112) $ $) 118)) (-3827 (((-112) $ $ (-544)) 117)) (-3942 (($ (-544)) 127)) (-3822 (((-635 $) $ (-143)) 110) (((-635 $) $ (-140)) 109)) (-1876 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-844)))) (-1874 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| (-143) (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 (((-143) $ (-544) (-143)) 52 (|has| $ (-6 -4401))) (((-143) $ (-1220 (-544)) (-143)) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-3819 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-3824 (($ $ (-1220 (-544)) $) 114)) (-1424 (($ $) 78 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ (-143) $) 77 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4400)))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4400)))) (-1665 (((-143) $ (-544) (-143)) 53 (|has| $ (-6 -4401)))) (-3498 (((-143) $ (-544)) 51)) (-3829 (((-112) $ $) 119)) (-3823 (((-544) (-1 (-112) (-143)) $) 97) (((-544) (-143) $) 96 (|has| (-143) (-1091))) (((-544) (-143) $ (-544)) 95 (|has| (-143) (-1091))) (((-544) $ $ (-544)) 113) (((-544) (-140) $ (-544)) 112)) (-2096 (((-635 (-143)) $) 30 (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-143)) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| (-143) (-844)))) (-3917 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| (-143) (-844)))) (-3825 (((-112) $ $ (-143)) 115)) (-3826 (((-765) $ $ (-143)) 116)) (-2100 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-3832 (($ $) 122)) (-3833 (($ $) 123)) (-4123 (((-112) $ (-765)) 10)) (-3820 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-3643 (((-1148) $) 22)) (-2421 (($ (-143) $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21)) (-4207 (((-143) $) 42 (|has| (-544) (-844)))) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-2345 (($ $ (-143)) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-143)) (-635 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2351 (((-635 (-143)) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 (((-143) $ (-544) (-143)) 50) (((-143) $ (-544)) 49) (($ $ (-1220 (-544))) 63) (($ $ $) 102)) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-2097 (((-765) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4400))) (((-765) (-143) $) 28 (-12 (|has| (-143) (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| (-143) (-609 (-533))))) (-3929 (($ (-635 (-143))) 70)) (-4208 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (($ (-143)) 111) (((-857) $) 18)) (-2099 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4400)))) (-2879 (((-1148) $) 131) (((-1148) $ (-112)) 130) (((-1259) (-817) $) 129) (((-1259) (-817) $ (-112)) 128)) (-2945 (((-112) $ $) 84 (|has| (-143) (-844)))) (-2946 (((-112) $ $) 83 (|has| (-143) (-844)))) (-3437 (((-112) $ $) 20)) (-3066 (((-112) $ $) 85 (|has| (-143) (-844)))) (-3067 (((-112) $ $) 82 (|has| (-143) (-844)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-1147) (-139)) (T -1147)) -((-3942 (*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1147))))) -(-13 (-1134) (-1091) (-815) (-10 -8 (-15 -3942 ($ (-544))))) -(((-34) . T) ((-102) . T) ((-608 (-857)) . T) ((-150 #1=(-143)) . T) ((-609 (-533)) |has| (-143) (-609 (-533))) ((-285 #2=(-544) #1#) . T) ((-287 #2# #1#) . T) ((-308 #1#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))) ((-371 #1#) . T) ((-487 #1#) . T) ((-599 #2# #1#) . T) ((-512 #1# #1#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))) ((-644 #1#) . T) ((-19 #1#) . T) ((-815) . T) ((-844) |has| (-143) (-844)) ((-1091) . T) ((-1134) . T) ((-1204) . T)) -((-2947 (((-112) $ $) NIL)) (-3830 (($ $) NIL)) (-3831 (($ $) NIL)) (-3821 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-3828 (((-112) $ $) NIL)) (-3827 (((-112) $ $ (-544)) NIL)) (-3942 (($ (-544)) 7)) (-3822 (((-635 $) $ (-143)) NIL) (((-635 $) $ (-140)) NIL)) (-1876 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-844)))) (-1874 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| (-143) (-844))))) (-3292 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 (((-143) $ (-544) (-143)) NIL (|has| $ (-6 -4401))) (((-143) $ (-1220 (-544)) (-143)) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-3819 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-3824 (($ $ (-1220 (-544)) $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-3810 (($ (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4400))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4400)))) (-1665 (((-143) $ (-544) (-143)) NIL (|has| $ (-6 -4401)))) (-3498 (((-143) $ (-544)) NIL)) (-3829 (((-112) $ $) NIL)) (-3823 (((-544) (-1 (-112) (-143)) $) NIL) (((-544) (-143) $) NIL (|has| (-143) (-1091))) (((-544) (-143) $ (-544)) NIL (|has| (-143) (-1091))) (((-544) $ $ (-544)) NIL) (((-544) (-140) $ (-544)) NIL)) (-2096 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-4021 (($ (-765) (-143)) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| (-143) (-844)))) (-3917 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-844)))) (-2554 (((-635 (-143)) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| (-143) (-844)))) (-3825 (((-112) $ $ (-143)) NIL)) (-3826 (((-765) $ $ (-143)) NIL)) (-2100 (($ (-1 (-143) (-143)) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-3832 (($ $) NIL)) (-3833 (($ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3820 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3643 (((-1148) $) NIL)) (-2421 (($ (-143) $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-143) $) NIL (|has| (-544) (-844)))) (-1425 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2345 (($ $ (-143)) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-292 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091)))) (($ $ (-635 (-143)) (-635 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-2351 (((-635 (-143)) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 (((-143) $ (-544) (-143)) NIL) (((-143) $ (-544)) NIL) (($ $ (-1220 (-544))) NIL) (($ $ $) NIL)) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-2097 (((-765) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400))) (((-765) (-143) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-143) (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-143) (-609 (-533))))) (-3929 (($ (-635 (-143))) NIL)) (-4208 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (($ (-143)) NIL) (((-857) $) NIL)) (-2099 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4400)))) (-2879 (((-1148) $) 18) (((-1148) $ (-112)) 20) (((-1259) (-817) $) 21) (((-1259) (-817) $ (-112)) 22)) (-2945 (((-112) $ $) NIL (|has| (-143) (-844)))) (-2946 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| (-143) (-844)))) (-3067 (((-112) $ $) NIL (|has| (-143) (-844)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1148) (-1147)) (T -1148)) -NIL -(-1147) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)) (|has| |#1| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-2344 (((-1259) $ (-1148) (-1148)) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-1148) |#1|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#1| #1="failed") (-1148) $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#1| #1#) (-1148) $) NIL)) (-3810 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-1148) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-1148)) NIL)) (-2096 (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2554 (((-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-1148) $) NIL (|has| (-1148) (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)) (|has| |#1| (-1091))))) (-2789 (((-635 (-1148)) $) NIL)) (-2354 (((-112) (-1148) $) NIL)) (-1356 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-2349 (((-635 (-1148)) $) NIL)) (-2350 (((-112) (-1148) $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)) (|has| |#1| (-1091))))) (-4207 ((|#1| $) NIL (|has| (-1148) (-844)))) (-1425 (((-3 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) "failed") (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL (-12 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-308 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-1148)) NIL) ((|#1| $ (-1148) |#1|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-608 (-857))) (|has| |#1| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 (-1148)) (|:| -2226 |#1|)) (-1091)) (|has| |#1| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1149 |#1|) (-13 (-1181 (-1148) |#1|) (-10 -7 (-6 -4400))) (-1091)) (T -1149)) -NIL -(-13 (-1181 (-1148) |#1|) (-10 -7 (-6 -4400))) -((-4211 (((-1143 |#1|) (-1143 |#1|)) 77)) (-3866 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 37)) (-3877 (((-1143 |#1|) (-406 (-544)) (-1143 |#1|)) 121 (|has| |#1| (-38 (-406 (-544)))))) (-3880 (((-1143 |#1|) |#1| (-1143 |#1|)) 127 (|has| |#1| (-362)))) (-4214 (((-1143 |#1|) (-1143 |#1|)) 90)) (-3868 (((-1143 (-544)) (-544)) 57)) (-3876 (((-1143 |#1|) (-1143 (-1143 |#1|))) 109 (|has| |#1| (-38 (-406 (-544)))))) (-4210 (((-1143 |#1|) (-544) (-544) (-1143 |#1|)) 95)) (-4345 (((-1143 |#1|) |#1| (-544)) 45)) (-3870 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 60)) (-3878 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 124 (|has| |#1| (-362)))) (-3875 (((-1143 |#1|) |#1| (-1 (-1143 |#1|))) 108 (|has| |#1| (-38 (-406 (-544)))))) (-3879 (((-1143 |#1|) (-1 |#1| (-544)) |#1| (-1 (-1143 |#1|))) 125 (|has| |#1| (-362)))) (-4215 (((-1143 |#1|) (-1143 |#1|)) 89)) (-4216 (((-1143 |#1|) (-1143 |#1|)) 76)) (-4209 (((-1143 |#1|) (-544) (-544) (-1143 |#1|)) 96)) (-4219 (((-1143 |#1|) |#1| (-1143 |#1|)) 105 (|has| |#1| (-38 (-406 (-544)))))) (-3867 (((-1143 (-544)) (-544)) 56)) (-3869 (((-1143 |#1|) |#1|) 59)) (-4212 (((-1143 |#1|) (-1143 |#1|) (-544) (-544)) 92)) (-3872 (((-1143 |#1|) (-1 |#1| (-544)) (-1143 |#1|)) 66)) (-3865 (((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|)) 35)) (-4213 (((-1143 |#1|) (-1143 |#1|)) 91)) (-4174 (((-1143 |#1|) (-1143 |#1|) |#1|) 71)) (-3871 (((-1143 |#1|) (-1143 |#1|)) 62)) (-3873 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 72)) (-4353 (((-1143 |#1|) |#1|) 67)) (-3874 (((-1143 |#1|) (-1143 (-1143 |#1|))) 82)) (-4356 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 36)) (-4244 (((-1143 |#1|) (-1143 |#1|)) 21) (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 23)) (-4246 (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 17)) (* (((-1143 |#1|) (-1143 |#1|) |#1|) 29) (((-1143 |#1|) |#1| (-1143 |#1|)) 26) (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 27))) -(((-1150 |#1|) (-10 -7 (-15 -4246 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4244 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4244 ((-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3865 ((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|))) (-15 -4356 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3866 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -4345 ((-1143 |#1|) |#1| (-544))) (-15 -3867 ((-1143 (-544)) (-544))) (-15 -3868 ((-1143 (-544)) (-544))) (-15 -3869 ((-1143 |#1|) |#1|)) (-15 -3870 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3871 ((-1143 |#1|) (-1143 |#1|))) (-15 -3872 ((-1143 |#1|) (-1 |#1| (-544)) (-1143 |#1|))) (-15 -4353 ((-1143 |#1|) |#1|)) (-15 -4174 ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3873 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4216 ((-1143 |#1|) (-1143 |#1|))) (-15 -4211 ((-1143 |#1|) (-1143 |#1|))) (-15 -3874 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -4215 ((-1143 |#1|) (-1143 |#1|))) (-15 -4214 ((-1143 |#1|) (-1143 |#1|))) (-15 -4213 ((-1143 |#1|) (-1143 |#1|))) (-15 -4212 ((-1143 |#1|) (-1143 |#1|) (-544) (-544))) (-15 -4210 ((-1143 |#1|) (-544) (-544) (-1143 |#1|))) (-15 -4209 ((-1143 |#1|) (-544) (-544) (-1143 |#1|))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 -3875 ((-1143 |#1|) |#1| (-1 (-1143 |#1|)))) (-15 -3876 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -3877 ((-1143 |#1|) (-406 (-544)) (-1143 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3878 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3879 ((-1143 |#1|) (-1 |#1| (-544)) |#1| (-1 (-1143 |#1|)))) (-15 -3880 ((-1143 |#1|) |#1| (-1143 |#1|)))) |%noBranch|)) (-1042)) (T -1150)) -((-3880 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-544))) (-5 *5 (-1 (-1143 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4)))) (-3878 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3877 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1042)) (-5 *3 (-406 (-544))) (-5 *1 (-1150 *4)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042)))) (-3875 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1143 *3))) (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)))) (-4219 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4209 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-4210 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-4212 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4214 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4215 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4)) (-4 *4 (-1042)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4216 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3873 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4174 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-3872 (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *4)) (-5 *3 (-1 *4 (-544))) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3870 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3869 (*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) (-5 *3 (-544)))) (-3867 (*1 *2 *3) (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) (-5 *3 (-544)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) (-3866 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4356 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-3865 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4244 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4244 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) (-4246 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))) -(-10 -7 (-15 -4246 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4244 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4244 ((-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 * ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 * ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3865 ((-3 (-1143 |#1|) "failed") (-1143 |#1|) (-1143 |#1|))) (-15 -4356 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3866 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -4345 ((-1143 |#1|) |#1| (-544))) (-15 -3867 ((-1143 (-544)) (-544))) (-15 -3868 ((-1143 (-544)) (-544))) (-15 -3869 ((-1143 |#1|) |#1|)) (-15 -3870 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3871 ((-1143 |#1|) (-1143 |#1|))) (-15 -3872 ((-1143 |#1|) (-1 |#1| (-544)) (-1143 |#1|))) (-15 -4353 ((-1143 |#1|) |#1|)) (-15 -4174 ((-1143 |#1|) (-1143 |#1|) |#1|)) (-15 -3873 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4216 ((-1143 |#1|) (-1143 |#1|))) (-15 -4211 ((-1143 |#1|) (-1143 |#1|))) (-15 -3874 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -4215 ((-1143 |#1|) (-1143 |#1|))) (-15 -4214 ((-1143 |#1|) (-1143 |#1|))) (-15 -4213 ((-1143 |#1|) (-1143 |#1|))) (-15 -4212 ((-1143 |#1|) (-1143 |#1|) (-544) (-544))) (-15 -4210 ((-1143 |#1|) (-544) (-544) (-1143 |#1|))) (-15 -4209 ((-1143 |#1|) (-544) (-544) (-1143 |#1|))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ((-1143 |#1|) |#1| (-1143 |#1|))) (-15 -3875 ((-1143 |#1|) |#1| (-1 (-1143 |#1|)))) (-15 -3876 ((-1143 |#1|) (-1143 (-1143 |#1|)))) (-15 -3877 ((-1143 |#1|) (-406 (-544)) (-1143 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3878 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3879 ((-1143 |#1|) (-1 |#1| (-544)) |#1| (-1 (-1143 |#1|)))) (-15 -3880 ((-1143 |#1|) |#1| (-1143 |#1|)))) |%noBranch|)) -((-3891 (((-1143 |#1|) (-1143 |#1|)) 100)) (-4046 (((-1143 |#1|) (-1143 |#1|)) 64)) (-3882 (((-2 (|:| -3889 (-1143 |#1|)) (|:| -3890 (-1143 |#1|))) (-1143 |#1|)) 96)) (-3889 (((-1143 |#1|) (-1143 |#1|)) 97)) (-3881 (((-2 (|:| -4045 (-1143 |#1|)) (|:| -4041 (-1143 |#1|))) (-1143 |#1|)) 53)) (-4045 (((-1143 |#1|) (-1143 |#1|)) 54)) (-3893 (((-1143 |#1|) (-1143 |#1|)) 102)) (-4044 (((-1143 |#1|) (-1143 |#1|)) 71)) (-4349 (((-1143 |#1|) (-1143 |#1|)) 39)) (-4350 (((-1143 |#1|) (-1143 |#1|)) 36)) (-3894 (((-1143 |#1|) (-1143 |#1|)) 103)) (-4043 (((-1143 |#1|) (-1143 |#1|)) 72)) (-3892 (((-1143 |#1|) (-1143 |#1|)) 101)) (-4042 (((-1143 |#1|) (-1143 |#1|)) 67)) (-3890 (((-1143 |#1|) (-1143 |#1|)) 98)) (-4041 (((-1143 |#1|) (-1143 |#1|)) 55)) (-3897 (((-1143 |#1|) (-1143 |#1|)) 111)) (-3885 (((-1143 |#1|) (-1143 |#1|)) 86)) (-3895 (((-1143 |#1|) (-1143 |#1|)) 105)) (-3883 (((-1143 |#1|) (-1143 |#1|)) 82)) (-3899 (((-1143 |#1|) (-1143 |#1|)) 115)) (-3887 (((-1143 |#1|) (-1143 |#1|)) 90)) (-3900 (((-1143 |#1|) (-1143 |#1|)) 117)) (-3888 (((-1143 |#1|) (-1143 |#1|)) 92)) (-3898 (((-1143 |#1|) (-1143 |#1|)) 113)) (-3886 (((-1143 |#1|) (-1143 |#1|)) 88)) (-3896 (((-1143 |#1|) (-1143 |#1|)) 107)) (-3884 (((-1143 |#1|) (-1143 |#1|)) 84)) (** (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 40))) -(((-1151 |#1|) (-10 -7 (-15 -4350 ((-1143 |#1|) (-1143 |#1|))) (-15 -4349 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3881 ((-2 (|:| -4045 (-1143 |#1|)) (|:| -4041 (-1143 |#1|))) (-1143 |#1|))) (-15 -4045 ((-1143 |#1|) (-1143 |#1|))) (-15 -4041 ((-1143 |#1|) (-1143 |#1|))) (-15 -4046 ((-1143 |#1|) (-1143 |#1|))) (-15 -4042 ((-1143 |#1|) (-1143 |#1|))) (-15 -4044 ((-1143 |#1|) (-1143 |#1|))) (-15 -4043 ((-1143 |#1|) (-1143 |#1|))) (-15 -3883 ((-1143 |#1|) (-1143 |#1|))) (-15 -3884 ((-1143 |#1|) (-1143 |#1|))) (-15 -3885 ((-1143 |#1|) (-1143 |#1|))) (-15 -3886 ((-1143 |#1|) (-1143 |#1|))) (-15 -3887 ((-1143 |#1|) (-1143 |#1|))) (-15 -3888 ((-1143 |#1|) (-1143 |#1|))) (-15 -3882 ((-2 (|:| -3889 (-1143 |#1|)) (|:| -3890 (-1143 |#1|))) (-1143 |#1|))) (-15 -3889 ((-1143 |#1|) (-1143 |#1|))) (-15 -3890 ((-1143 |#1|) (-1143 |#1|))) (-15 -3891 ((-1143 |#1|) (-1143 |#1|))) (-15 -3892 ((-1143 |#1|) (-1143 |#1|))) (-15 -3893 ((-1143 |#1|) (-1143 |#1|))) (-15 -3894 ((-1143 |#1|) (-1143 |#1|))) (-15 -3895 ((-1143 |#1|) (-1143 |#1|))) (-15 -3896 ((-1143 |#1|) (-1143 |#1|))) (-15 -3897 ((-1143 |#1|) (-1143 |#1|))) (-15 -3898 ((-1143 |#1|) (-1143 |#1|))) (-15 -3899 ((-1143 |#1|) (-1143 |#1|))) (-15 -3900 ((-1143 |#1|) (-1143 |#1|)))) (-38 (-406 (-544)))) (T -1151)) -((-3900 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-2 (|:| -3889 (-1143 *4)) (|:| -3890 (-1143 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-1143 *4)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4043 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-3881 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-2 (|:| -4045 (-1143 *4)) (|:| -4041 (-1143 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-1143 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4349 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) (-4350 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3))))) -(-10 -7 (-15 -4350 ((-1143 |#1|) (-1143 |#1|))) (-15 -4349 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -3881 ((-2 (|:| -4045 (-1143 |#1|)) (|:| -4041 (-1143 |#1|))) (-1143 |#1|))) (-15 -4045 ((-1143 |#1|) (-1143 |#1|))) (-15 -4041 ((-1143 |#1|) (-1143 |#1|))) (-15 -4046 ((-1143 |#1|) (-1143 |#1|))) (-15 -4042 ((-1143 |#1|) (-1143 |#1|))) (-15 -4044 ((-1143 |#1|) (-1143 |#1|))) (-15 -4043 ((-1143 |#1|) (-1143 |#1|))) (-15 -3883 ((-1143 |#1|) (-1143 |#1|))) (-15 -3884 ((-1143 |#1|) (-1143 |#1|))) (-15 -3885 ((-1143 |#1|) (-1143 |#1|))) (-15 -3886 ((-1143 |#1|) (-1143 |#1|))) (-15 -3887 ((-1143 |#1|) (-1143 |#1|))) (-15 -3888 ((-1143 |#1|) (-1143 |#1|))) (-15 -3882 ((-2 (|:| -3889 (-1143 |#1|)) (|:| -3890 (-1143 |#1|))) (-1143 |#1|))) (-15 -3889 ((-1143 |#1|) (-1143 |#1|))) (-15 -3890 ((-1143 |#1|) (-1143 |#1|))) (-15 -3891 ((-1143 |#1|) (-1143 |#1|))) (-15 -3892 ((-1143 |#1|) (-1143 |#1|))) (-15 -3893 ((-1143 |#1|) (-1143 |#1|))) (-15 -3894 ((-1143 |#1|) (-1143 |#1|))) (-15 -3895 ((-1143 |#1|) (-1143 |#1|))) (-15 -3896 ((-1143 |#1|) (-1143 |#1|))) (-15 -3897 ((-1143 |#1|) (-1143 |#1|))) (-15 -3898 ((-1143 |#1|) (-1143 |#1|))) (-15 -3899 ((-1143 |#1|) (-1143 |#1|))) (-15 -3900 ((-1143 |#1|) (-1143 |#1|)))) -((-3891 (((-1143 |#1|) (-1143 |#1|)) 57)) (-4046 (((-1143 |#1|) (-1143 |#1|)) 39)) (-3889 (((-1143 |#1|) (-1143 |#1|)) 53)) (-4045 (((-1143 |#1|) (-1143 |#1|)) 35)) (-3893 (((-1143 |#1|) (-1143 |#1|)) 60)) (-4044 (((-1143 |#1|) (-1143 |#1|)) 42)) (-4349 (((-1143 |#1|) (-1143 |#1|)) 31)) (-4350 (((-1143 |#1|) (-1143 |#1|)) 27)) (-3894 (((-1143 |#1|) (-1143 |#1|)) 61)) (-4043 (((-1143 |#1|) (-1143 |#1|)) 43)) (-3892 (((-1143 |#1|) (-1143 |#1|)) 58)) (-4042 (((-1143 |#1|) (-1143 |#1|)) 40)) (-3890 (((-1143 |#1|) (-1143 |#1|)) 55)) (-4041 (((-1143 |#1|) (-1143 |#1|)) 37)) (-3897 (((-1143 |#1|) (-1143 |#1|)) 65)) (-3885 (((-1143 |#1|) (-1143 |#1|)) 47)) (-3895 (((-1143 |#1|) (-1143 |#1|)) 63)) (-3883 (((-1143 |#1|) (-1143 |#1|)) 45)) (-3899 (((-1143 |#1|) (-1143 |#1|)) 68)) (-3887 (((-1143 |#1|) (-1143 |#1|)) 50)) (-3900 (((-1143 |#1|) (-1143 |#1|)) 69)) (-3888 (((-1143 |#1|) (-1143 |#1|)) 51)) (-3898 (((-1143 |#1|) (-1143 |#1|)) 67)) (-3886 (((-1143 |#1|) (-1143 |#1|)) 49)) (-3896 (((-1143 |#1|) (-1143 |#1|)) 66)) (-3884 (((-1143 |#1|) (-1143 |#1|)) 48)) (** (((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) 33))) -(((-1152 |#1|) (-10 -7 (-15 -4350 ((-1143 |#1|) (-1143 |#1|))) (-15 -4349 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4045 ((-1143 |#1|) (-1143 |#1|))) (-15 -4041 ((-1143 |#1|) (-1143 |#1|))) (-15 -4046 ((-1143 |#1|) (-1143 |#1|))) (-15 -4042 ((-1143 |#1|) (-1143 |#1|))) (-15 -4044 ((-1143 |#1|) (-1143 |#1|))) (-15 -4043 ((-1143 |#1|) (-1143 |#1|))) (-15 -3883 ((-1143 |#1|) (-1143 |#1|))) (-15 -3884 ((-1143 |#1|) (-1143 |#1|))) (-15 -3885 ((-1143 |#1|) (-1143 |#1|))) (-15 -3886 ((-1143 |#1|) (-1143 |#1|))) (-15 -3887 ((-1143 |#1|) (-1143 |#1|))) (-15 -3888 ((-1143 |#1|) (-1143 |#1|))) (-15 -3889 ((-1143 |#1|) (-1143 |#1|))) (-15 -3890 ((-1143 |#1|) (-1143 |#1|))) (-15 -3891 ((-1143 |#1|) (-1143 |#1|))) (-15 -3892 ((-1143 |#1|) (-1143 |#1|))) (-15 -3893 ((-1143 |#1|) (-1143 |#1|))) (-15 -3894 ((-1143 |#1|) (-1143 |#1|))) (-15 -3895 ((-1143 |#1|) (-1143 |#1|))) (-15 -3896 ((-1143 |#1|) (-1143 |#1|))) (-15 -3897 ((-1143 |#1|) (-1143 |#1|))) (-15 -3898 ((-1143 |#1|) (-1143 |#1|))) (-15 -3899 ((-1143 |#1|) (-1143 |#1|))) (-15 -3900 ((-1143 |#1|) (-1143 |#1|)))) (-38 (-406 (-544)))) (T -1152)) -((-3900 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4043 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4041 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4045 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4349 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) (-4350 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) -(-10 -7 (-15 -4350 ((-1143 |#1|) (-1143 |#1|))) (-15 -4349 ((-1143 |#1|) (-1143 |#1|))) (-15 ** ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4045 ((-1143 |#1|) (-1143 |#1|))) (-15 -4041 ((-1143 |#1|) (-1143 |#1|))) (-15 -4046 ((-1143 |#1|) (-1143 |#1|))) (-15 -4042 ((-1143 |#1|) (-1143 |#1|))) (-15 -4044 ((-1143 |#1|) (-1143 |#1|))) (-15 -4043 ((-1143 |#1|) (-1143 |#1|))) (-15 -3883 ((-1143 |#1|) (-1143 |#1|))) (-15 -3884 ((-1143 |#1|) (-1143 |#1|))) (-15 -3885 ((-1143 |#1|) (-1143 |#1|))) (-15 -3886 ((-1143 |#1|) (-1143 |#1|))) (-15 -3887 ((-1143 |#1|) (-1143 |#1|))) (-15 -3888 ((-1143 |#1|) (-1143 |#1|))) (-15 -3889 ((-1143 |#1|) (-1143 |#1|))) (-15 -3890 ((-1143 |#1|) (-1143 |#1|))) (-15 -3891 ((-1143 |#1|) (-1143 |#1|))) (-15 -3892 ((-1143 |#1|) (-1143 |#1|))) (-15 -3893 ((-1143 |#1|) (-1143 |#1|))) (-15 -3894 ((-1143 |#1|) (-1143 |#1|))) (-15 -3895 ((-1143 |#1|) (-1143 |#1|))) (-15 -3896 ((-1143 |#1|) (-1143 |#1|))) (-15 -3897 ((-1143 |#1|) (-1143 |#1|))) (-15 -3898 ((-1143 |#1|) (-1143 |#1|))) (-15 -3899 ((-1143 |#1|) (-1143 |#1|))) (-15 -3900 ((-1143 |#1|) (-1143 |#1|)))) -((-3901 (((-951 |#2|) |#2| |#2|) 35)) (-3902 ((|#2| |#2| |#1|) 19 (|has| |#1| (-306))))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -3901 ((-951 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -3902 (|#2| |#2| |#1|)) |%noBranch|)) (-554) (-1229 |#1|)) (T -1153)) -((-3902 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1229 *3)))) (-3901 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-951 *3)) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -3901 ((-951 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -3902 (|#2| |#2| |#1|)) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-3910 (($ $ (-635 (-765))) 66)) (-4295 (($) 25)) (-3919 (($ $) 41)) (-4158 (((-635 $) $) 50)) (-3925 (((-112) $) 16)) (-3903 (((-635 (-936 |#2|)) $) 73)) (-3904 (($ $) 67)) (-3920 (((-765) $) 36)) (-4021 (($) 24)) (-3913 (($ $ (-635 (-765)) (-936 |#2|)) 59) (($ $ (-635 (-765)) (-765)) 60) (($ $ (-765) (-936 |#2|)) 62)) (-3917 (($ $ $) 47) (($ (-635 $)) 49)) (-3905 (((-765) $) 74)) (-3926 (((-112) $) 15)) (-3643 (((-1148) $) NIL)) (-3924 (((-112) $) 17)) (-3644 (((-1110) $) NIL)) (-3906 (((-170) $) 72)) (-3909 (((-936 |#2|) $) 68)) (-3908 (((-765) $) 69)) (-3907 (((-112) $) 71)) (-3911 (($ $ (-635 (-765)) (-170)) 65)) (-3918 (($ $) 42)) (-4353 (((-857) $) 85)) (-3912 (($ $ (-635 (-765)) (-112)) 64)) (-3921 (((-635 $) $) 11)) (-3922 (($ $ (-765)) 35)) (-3923 (($ $) 31)) (-3914 (($ $ $ (-936 |#2|) (-765)) 55)) (-3915 (($ $ (-936 |#2|)) 54)) (-3916 (($ $ (-635 (-765)) (-936 |#2|)) 53) (($ $ (-635 (-765)) (-765)) 57) (((-765) $ (-936 |#2|)) 58)) (-3437 (((-112) $ $) 79))) -(((-1154 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -3926 ((-112) $)) (-15 -3925 ((-112) $)) (-15 -3924 ((-112) $)) (-15 -4021 ($)) (-15 -4295 ($)) (-15 -3923 ($ $)) (-15 -3922 ($ $ (-765))) (-15 -3921 ((-635 $) $)) (-15 -3920 ((-765) $)) (-15 -3919 ($ $)) (-15 -3918 ($ $)) (-15 -3917 ($ $ $)) (-15 -3917 ($ (-635 $))) (-15 -4158 ((-635 $) $)) (-15 -3916 ($ $ (-635 (-765)) (-936 |#2|))) (-15 -3915 ($ $ (-936 |#2|))) (-15 -3914 ($ $ $ (-936 |#2|) (-765))) (-15 -3913 ($ $ (-635 (-765)) (-936 |#2|))) (-15 -3916 ($ $ (-635 (-765)) (-765))) (-15 -3913 ($ $ (-635 (-765)) (-765))) (-15 -3916 ((-765) $ (-936 |#2|))) (-15 -3913 ($ $ (-765) (-936 |#2|))) (-15 -3912 ($ $ (-635 (-765)) (-112))) (-15 -3911 ($ $ (-635 (-765)) (-170))) (-15 -3910 ($ $ (-635 (-765)))) (-15 -3909 ((-936 |#2|) $)) (-15 -3908 ((-765) $)) (-15 -3907 ((-112) $)) (-15 -3906 ((-170) $)) (-15 -3905 ((-765) $)) (-15 -3904 ($ $)) (-15 -3903 ((-635 (-936 |#2|)) $)))) (-912) (-1042)) (T -1154)) -((-3926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-4021 (*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-4295 (*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3923 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3918 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3917 (*1 *1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3917 (*1 *1 *2) (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3916 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3915 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *4)) (-4 *4 (-1042)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)))) (-3914 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-936 *5)) (-5 *3 (-765)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3916 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)) (-4 *5 (-1042)))) (-3913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)) (-4 *5 (-1042)))) (-3916 (*1 *2 *1 *3) (-12 (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *2 (-765)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)))) (-3912 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-112)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)) (-4 *5 (-1042)))) (-3911 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-765))) (-5 *3 (-170)) (-5 *1 (-1154 *4 *5)) (-14 *4 (-912)) (-4 *5 (-1042)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-936 *4)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-170)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-635 (-936 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) -(-13 (-1091) (-10 -8 (-15 -3926 ((-112) $)) (-15 -3925 ((-112) $)) (-15 -3924 ((-112) $)) (-15 -4021 ($)) (-15 -4295 ($)) (-15 -3923 ($ $)) (-15 -3922 ($ $ (-765))) (-15 -3921 ((-635 $) $)) (-15 -3920 ((-765) $)) (-15 -3919 ($ $)) (-15 -3918 ($ $)) (-15 -3917 ($ $ $)) (-15 -3917 ($ (-635 $))) (-15 -4158 ((-635 $) $)) (-15 -3916 ($ $ (-635 (-765)) (-936 |#2|))) (-15 -3915 ($ $ (-936 |#2|))) (-15 -3914 ($ $ $ (-936 |#2|) (-765))) (-15 -3913 ($ $ (-635 (-765)) (-936 |#2|))) (-15 -3916 ($ $ (-635 (-765)) (-765))) (-15 -3913 ($ $ (-635 (-765)) (-765))) (-15 -3916 ((-765) $ (-936 |#2|))) (-15 -3913 ($ $ (-765) (-936 |#2|))) (-15 -3912 ($ $ (-635 (-765)) (-112))) (-15 -3911 ($ $ (-635 (-765)) (-170))) (-15 -3910 ($ $ (-635 (-765)))) (-15 -3909 ((-936 |#2|) $)) (-15 -3908 ((-765) $)) (-15 -3907 ((-112) $)) (-15 -3906 ((-170) $)) (-15 -3905 ((-765) $)) (-15 -3904 ($ $)) (-15 -3903 ((-635 (-936 |#2|)) $)))) -((-2947 (((-112) $ $) NIL)) (-3927 ((|#2| $) 11)) (-3928 ((|#1| $) 10)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3929 (($ |#1| |#2|) 9)) (-4353 (((-857) $) 16)) (-3437 (((-112) $ $) NIL))) -(((-1155 |#1| |#2|) (-13 (-1091) (-10 -8 (-15 -3929 ($ |#1| |#2|)) (-15 -3928 (|#1| $)) (-15 -3927 (|#2| $)))) (-1091) (-1091)) (T -1155)) -((-3929 (*1 *1 *2 *3) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-3928 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-1155 *2 *3)) (-4 *3 (-1091)))) (-3927 (*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-1155 *3 *2)) (-4 *3 (-1091))))) -(-13 (-1091) (-10 -8 (-15 -3929 ($ |#1| |#2|)) (-15 -3928 (|#1| $)) (-15 -3927 (|#2| $)))) -((-2947 (((-112) $ $) NIL)) (-3930 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-1156) (-13 (-1073) (-10 -8 (-15 -3930 ((-1125) $))))) (T -1156)) -((-3930 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1156))))) -(-13 (-1073) (-10 -8 (-15 -3930 ((-1125) $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 11)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2213 (($ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2211 (((-112) $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-4177 (($ $ (-544)) NIL) (($ $ (-544) (-544)) 66)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) NIL)) (-4138 (((-1164 |#1| |#2| |#3|) $) 36)) (-4135 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 29)) (-4136 (((-1164 |#1| |#2| |#3|) $) 30)) (-3891 (($ $) 107 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 83 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) 103 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 79 (|has| |#1| (-38 (-406 (-544)))))) (-4030 (((-544) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) 111 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 87 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1164 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1166) #2#) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-3 (-406 (-544)) #2#) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362)))) (((-3 (-544) #2#) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))))) (-3557 (((-1164 |#1| |#2| |#3|) $) 131) (((-1166) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-406 (-544)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362)))) (((-544) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))))) (-4137 (($ $) 34) (($ (-544) $) 35)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-1164 |#1| |#2| |#3|)) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-1164 |#1| |#2| |#3|))) (|:| |vec| (-1253 (-1164 |#1| |#2| |#3|)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-634 (-544))) (|has| |#1| (-362)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-634 (-544))) (|has| |#1| (-362))))) (-3866 (((-3 $ "failed") $) 48)) (-4134 (((-406 (-939 |#1|)) $ (-544)) 65 (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) 67 (|has| |#1| (-554)))) (-3377 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3587 (((-112) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3275 (((-112) $) 25)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-879 (-377))) (|has| |#1| (-362)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-879 (-544))) (|has| |#1| (-362))))) (-4178 (((-544) $) NIL) (((-544) $ (-544)) 24)) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL (|has| |#1| (-362)))) (-3381 (((-1164 |#1| |#2| |#3|) $) 38 (|has| |#1| (-362)))) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3848 (((-3 $ "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))))) (-3588 (((-112) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4183 (($ $ (-912)) NIL)) (-4222 (($ (-1 |#1| (-544)) $) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-544)) 18) (($ $ (-1072) (-544)) NIL) (($ $ (-635 (-1072)) (-635 (-544))) NIL)) (-2913 (($ $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3242 (($ $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4349 (($ $) 72 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4185 (($ (-544) (-1164 |#1| |#2| |#3|)) 33)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 70 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 71 (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3513 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3515 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-544)) 145)) (-3865 (((-3 $ "failed") $ $) 49 (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) 73 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-544))))) (($ $ (-1166) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-512 (-1166) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-292 (-1164 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-292 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1164 |#1| |#2| |#3|)) (-635 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-308 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) NIL) (($ $ $) 54 (|has| (-544) (-1102))) (($ $ (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-285 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1250 |#2|)) 51) (($ $ (-765)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 50 (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-3378 (($ $) NIL (|has| |#1| (-362)))) (-3380 (((-1164 |#1| |#2| |#3|) $) 41 (|has| |#1| (-362)))) (-4355 (((-544) $) 37)) (-3894 (($ $) 113 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 89 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 109 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 85 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 105 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 81 (|has| |#1| (-38 (-406 (-544)))))) (-4377 (((-533) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-533))) (|has| |#1| (-362)))) (((-377) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-362)))) (((-883 (-377)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-883 (-377)))) (|has| |#1| (-362)))) (((-883 (-544)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-609 (-883 (-544)))) (|has| |#1| (-362))))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) 149) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1164 |#1| |#2| |#3|)) 27) (($ (-1250 |#2|)) 23) (($ (-1166)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (($ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554)))) (($ (-406 (-544))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-544))))))) (-4084 ((|#1| $ (-544)) 68)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 12)) (-3516 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3897 (($ $) 119 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 95 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3895 (($ $) 115 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 91 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 99 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 101 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 97 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 117 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 93 (|has| |#1| (-38 (-406 (-544)))))) (-3787 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3040 (($) 20 T CONST)) (-3046 (($) 16 T CONST)) (-3051 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-2945 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-2946 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3067 (((-112) $ $) NIL (-3936 (-12 (|has| (-1164 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 44 (|has| |#1| (-362))) (($ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) 45 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 21)) (** (($ $ (-912)) NIL) (($ $ (-765)) 53) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) 74 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 128 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1164 |#1| |#2| |#3|)) 43 (|has| |#1| (-362))) (($ (-1164 |#1| |#2| |#3|) $) 42 (|has| |#1| (-362))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-1157 |#1| |#2| |#3|) (-13 (-1217 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1157)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))) -(-13 (-1217 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) -((-3931 ((|#2| |#2| (-1082 |#2|)) 26) ((|#2| |#2| (-1166)) 28))) -(((-1158 |#1| |#2|) (-10 -7 (-15 -3931 (|#2| |#2| (-1166))) (-15 -3931 (|#2| |#2| (-1082 |#2|)))) (-13 (-554) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-420 |#1|) (-159) (-27) (-1190))) (T -1158)) -((-3931 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-420 *4) (-159) (-27) (-1190))) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1158 *4 *2)))) (-3931 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1158 *4 *2)) (-4 *2 (-13 (-420 *4) (-159) (-27) (-1190)))))) -(-10 -7 (-15 -3931 (|#2| |#2| (-1166))) (-15 -3931 (|#2| |#2| (-1082 |#2|)))) -((-3931 (((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1082 (-406 (-939 |#1|)))) 31) (((-406 (-939 |#1|)) (-939 |#1|) (-1082 (-939 |#1|))) 44) (((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1166)) 33) (((-406 (-939 |#1|)) (-939 |#1|) (-1166)) 36))) -(((-1159 |#1|) (-10 -7 (-15 -3931 ((-406 (-939 |#1|)) (-939 |#1|) (-1166))) (-15 -3931 ((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1166))) (-15 -3931 ((-406 (-939 |#1|)) (-939 |#1|) (-1082 (-939 |#1|)))) (-15 -3931 ((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1082 (-406 (-939 |#1|)))))) (-13 (-554) (-844) (-1031 (-544)))) (T -1159)) -((-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-3 *3 (-313 *5))) (-5 *1 (-1159 *5)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-939 *5))) (-5 *3 (-939 *5)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-406 *3)) (-5 *1 (-1159 *5)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-3 (-406 (-939 *5)) (-313 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-406 (-939 *5))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-406 (-939 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-939 *5))))) -(-10 -7 (-15 -3931 ((-406 (-939 |#1|)) (-939 |#1|) (-1166))) (-15 -3931 ((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1166))) (-15 -3931 ((-406 (-939 |#1|)) (-939 |#1|) (-1082 (-939 |#1|)))) (-15 -3931 ((-3 (-406 (-939 |#1|)) (-313 |#1|)) (-406 (-939 |#1|)) (-1082 (-406 (-939 |#1|)))))) -((-2947 (((-112) $ $) 136)) (-3589 (((-112) $) 27)) (-4173 (((-1253 |#1|) $ (-765)) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4171 (($ (-1160 |#1|)) NIL)) (-3469 (((-1160 $) $ (-1072)) 58) (((-1160 |#1|) $) 47)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) 131 (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4162 (($ $ $) 125 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) 71 (|has| |#1| (-903)))) (-4181 (($ $) NIL (|has| |#1| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 91 (|has| |#1| (-903)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4167 (($ $ (-765)) 39)) (-4166 (($ $ (-765)) 40)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-450)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#1| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-1072) #2#) $) NIL)) (-3557 ((|#1| $) NIL) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-1072) $) NIL)) (-4163 (($ $ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $ $) 127 (|has| |#1| (-171)))) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 56)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) NIL) (((-682 |#1|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4165 (($ $ $) 103)) (-4160 (($ $ $) NIL (|has| |#1| (-554)))) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-3902 (($ $) 132 (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-765) $) 45)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1072) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1072) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-3932 (((-857) $ (-857)) 116)) (-4178 (((-765) $ $) NIL (|has| |#1| (-554)))) (-2545 (((-112) $) 30)) (-2553 (((-765) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#1| (-1141)))) (-3470 (($ (-1160 |#1|) (-1072)) 49) (($ (-1160 $) (-1072)) 65)) (-4183 (($ $ (-765)) 32)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) 63) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) NIL) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 120)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4172 (((-1160 |#1|) $) NIL)) (-3468 (((-3 (-1072) #4="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) 52)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) NIL (|has| |#1| (-450)))) (-3643 (((-1148) $) NIL)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) 38)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) NIL)) (-4219 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) 31)) (-1943 ((|#1| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 79 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-450))) (($ $ $) 134 (|has| |#1| (-450)))) (-4145 (($ $ (-765) |#1| $) 98)) (-3087 (((-404 (-1160 $)) (-1160 $)) 77 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 76 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 84 (|has| |#1| (-903)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ |#1|) 130 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#1|) NIL) (($ $ (-635 (-1072)) (-635 |#1|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-635 (-1072)) (-635 $)) NIL)) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ |#1|) 118) (($ $ $) 119) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-4170 (((-3 $ #5="failed") $ (-765)) 35)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 137 (|has| |#1| (-362)))) (-4164 (($ $ (-1072)) NIL (|has| |#1| (-171))) ((|#1| $) 123 (|has| |#1| (-171)))) (-4217 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4355 (((-765) $) 54) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1072) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) 129 (|has| |#1| (-450))) (($ $ (-1072)) NIL (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-903))))) (-4161 (((-3 $ #5#) $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) #5#) (-406 $) $) NIL (|has| |#1| (-554)))) (-4353 (((-857) $) 117) (($ (-544)) NIL) (($ |#1|) 53) (($ (-1072)) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) 25 (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 15 T CONST)) (-3046 (($) 16 T CONST)) (-3051 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) 96)) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 138 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 66)) (** (($ $ (-912)) 14) (($ $ (-765)) 12)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 24) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) -(((-1160 |#1|) (-13 (-1229 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-857))) (-15 -4145 ($ $ (-765) |#1| $)))) (-1042)) (T -1160)) -((-3932 (*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1160 *3)) (-4 *3 (-1042)))) (-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1160 *3)) (-4 *3 (-1042))))) -(-13 (-1229 |#1|) (-10 -8 (-15 -3932 ((-857) $ (-857))) (-15 -4145 ($ $ (-765) |#1| $)))) -((-4365 (((-1160 |#2|) (-1 |#2| |#1|) (-1160 |#1|)) 13))) -(((-1161 |#1| |#2|) (-10 -7 (-15 -4365 ((-1160 |#2|) (-1 |#2| |#1|) (-1160 |#1|)))) (-1042) (-1042)) (T -1161)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-5 *2 (-1160 *6)) (-5 *1 (-1161 *5 *6))))) -(-10 -7 (-15 -4365 ((-1160 |#2|) (-1 |#2| |#1|) (-1160 |#1|)))) -((-4376 (((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|))) 51)) (-4139 (((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|))) 52))) -(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|)))) (-15 -4376 ((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|))))) (-787) (-844) (-450) (-943 |#3| |#1| |#2|)) (T -1162)) -((-4376 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-404 (-1160 (-406 *7)))) (-5 *1 (-1162 *4 *5 *6 *7)) (-5 *3 (-1160 (-406 *7))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-404 (-1160 (-406 *7)))) (-5 *1 (-1162 *4 *5 *6 *7)) (-5 *3 (-1160 (-406 *7)))))) -(-10 -7 (-15 -4139 ((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|)))) (-15 -4376 ((-404 (-1160 (-406 |#4|))) (-1160 (-406 |#4|))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 11)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) NIL) (($ $ (-406 (-544)) (-406 (-544))) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1157 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1164 |#1| |#2| |#3|) #1#) $) 36)) (-3557 (((-1157 |#1| |#2| |#3|) $) NIL) (((-1164 |#1| |#2| |#3|) $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4187 (((-406 (-544)) $) 55)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4188 (($ (-406 (-544)) (-1157 |#1| |#2| |#3|)) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) NIL) (((-406 (-544)) $ (-406 (-544))) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL) (($ $ (-406 (-544))) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) 20) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4186 (((-1157 |#1| |#2| |#3|) $) 41)) (-4184 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) NIL)) (-4185 (((-1157 |#1| |#2| |#3|) $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 39 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 40 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) NIL) (($ $ $) NIL (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $ (-1250 |#2|)) 38)) (-4355 (((-406 (-544)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) 58) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1157 |#1| |#2| |#3|)) 30) (($ (-1164 |#1| |#2| |#3|)) 31) (($ (-1250 |#2|)) 26) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 12)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 22 T CONST)) (-3046 (($) 16 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 24)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-1163 |#1| |#2| |#3|) (-13 (-1238 |#1| (-1157 |#1| |#2| |#3|)) (-1031 (-1164 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1163)) -((-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))) -(-13 (-1238 |#1| (-1157 |#1| |#2| |#3|)) (-1031 (-1164 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 124)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 115)) (-4218 (((-1222 |#2| |#1|) $ (-765)) 62)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-765)) 78) (($ $ (-765) (-765)) 75)) (-4180 (((-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 101)) (-3891 (($ $) 168 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) 164 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 114) (($ (-1143 |#1|)) 109)) (-3893 (($ $) 172 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) 23)) (-4223 (($ $) 26)) (-4221 (((-939 |#1|) $ (-765)) 74) (((-939 |#1|) $ (-765) (-765)) 76)) (-3275 (((-112) $) 119)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $) 121) (((-765) $ (-765)) 123)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL)) (-4222 (($ (-1 |#1| (-544)) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) 13) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4219 (($ $) 128 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-4175 (($ $ (-765)) 15)) (-3865 (((-3 $ "failed") $ $) 24 (|has| |#1| (-554)))) (-4350 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-4206 ((|#1| $ (-765)) 118) (($ $ $) 127 (|has| (-765) (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $ (-1250 |#2|)) 29)) (-4355 (((-765) $) NIL)) (-3894 (($ $) 174 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 150 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 170 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 166 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) 200) (($ (-544)) NIL) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 125 (|has| |#1| (-171))) (($ (-1222 |#2| |#1|)) 50) (($ (-1250 |#2|)) 32)) (-4224 (((-1143 |#1|) $) 97)) (-4084 ((|#1| $ (-765)) 117)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 53)) (-3897 (($ $) 180 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 156 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 176 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 152 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 184 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 160 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-765)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 186 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 162 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 182 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 158 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 178 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 154 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 17 T CONST)) (-3046 (($) 19 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) 193)) (-4246 (($ $ $) 31)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ |#1|) 197 (|has| |#1| (-362))) (($ $ $) 133 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 136 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-1164 |#1| |#2| |#3|) (-13 (-1246 |#1|) (-10 -8 (-15 -4353 ($ (-1222 |#2| |#1|))) (-15 -4218 ((-1222 |#2| |#1|) $ (-765))) (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1164)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1222 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5)))) (-4218 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1222 *5 *4)) (-5 *1 (-1164 *4 *5 *6)) (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))) -(-13 (-1246 |#1|) (-10 -8 (-15 -4353 ($ (-1222 |#2| |#1|))) (-15 -4218 ((-1222 |#2| |#1|) $ (-765))) (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) -((-4353 (((-857) $) 27) (($ (-1166)) 29)) (-3936 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 40)) (-3933 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 33) (($ $) 34)) (-3940 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 35)) (-3938 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 37)) (-3939 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 36)) (-3937 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 38)) (-3935 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $))) 39))) -(((-1165) (-13 (-608 (-857)) (-10 -8 (-15 -4353 ($ (-1166))) (-15 -3940 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3939 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3938 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3937 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3936 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3935 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3933 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3933 ($ $))))) (T -1165)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1165)))) (-3940 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3939 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3938 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3937 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3936 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3935 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) (-5 *1 (-1165)))) (-3933 (*1 *1 *1) (-5 *1 (-1165)))) -(-13 (-608 (-857)) (-10 -8 (-15 -4353 ($ (-1166))) (-15 -3940 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3939 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3938 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3937 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3936 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3935 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)) (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3933 ($ (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) (|:| CF (-313 (-167 (-377)))) (|:| |switch| $)))) (-15 -3933 ($ $)))) -((-2947 (((-112) $ $) NIL)) (-3944 (($ $ (-635 (-857))) 59)) (-3945 (($ $ (-635 (-857))) 57)) (-3942 (((-1148) $) 84)) (-3947 (((-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))) $) 87)) (-3948 (((-112) $) 22)) (-3946 (($ $ (-635 (-635 (-857)))) 56) (($ $ (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857))))) 82)) (-4131 (($) 123 T CONST)) (-3950 (((-1259)) 105)) (-3178 (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 66) (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 73)) (-4021 (($) 94) (($ $) 100)) (-3949 (($ $) 83)) (-2913 (($ $ $) NIL)) (-3242 (($ $ $) NIL)) (-3941 (((-635 $) $) 106)) (-3643 (((-1148) $) 89)) (-3644 (((-1110) $) NIL)) (-4206 (($ $ (-635 (-857))) 58)) (-4377 (((-533) $) 46) (((-1166) $) 47) (((-883 (-544)) $) 77) (((-883 (-377)) $) 75)) (-4353 (((-857) $) 53) (($ (-1148)) 48)) (-3943 (($ $ (-635 (-857))) 60)) (-2879 (((-1148) $) 33) (((-1148) $ (-112)) 34) (((-1259) (-817) $) 35) (((-1259) (-817) $ (-112)) 36)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) 49)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) 50))) -(((-1166) (-13 (-844) (-609 (-533)) (-815) (-609 (-1166)) (-611 (-1148)) (-609 (-883 (-544))) (-609 (-883 (-377))) (-879 (-544)) (-879 (-377)) (-10 -8 (-15 -4021 ($)) (-15 -4021 ($ $)) (-15 -3950 ((-1259))) (-15 -3949 ($ $)) (-15 -3948 ((-112) $)) (-15 -3947 ((-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))) $)) (-15 -3946 ($ $ (-635 (-635 (-857))))) (-15 -3946 ($ $ (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))))) (-15 -3945 ($ $ (-635 (-857)))) (-15 -3944 ($ $ (-635 (-857)))) (-15 -3943 ($ $ (-635 (-857)))) (-15 -4206 ($ $ (-635 (-857)))) (-15 -3942 ((-1148) $)) (-15 -3941 ((-635 $) $)) (-15 -4131 ($) -4359)))) (T -1166)) -((-4021 (*1 *1) (-5 *1 (-1166))) (-4021 (*1 *1 *1) (-5 *1 (-1166))) (-3950 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1166)))) (-3949 (*1 *1 *1) (-5 *1 (-1166))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857))))) (-5 *1 (-1166)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 (-857)))) (-5 *1 (-1166)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857))))) (-5 *1 (-1166)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1166)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1166)))) (-4131 (*1 *1) (-5 *1 (-1166)))) -(-13 (-844) (-609 (-533)) (-815) (-609 (-1166)) (-611 (-1148)) (-609 (-883 (-544))) (-609 (-883 (-377))) (-879 (-544)) (-879 (-377)) (-10 -8 (-15 -4021 ($)) (-15 -4021 ($ $)) (-15 -3950 ((-1259))) (-15 -3949 ($ $)) (-15 -3948 ((-112) $)) (-15 -3947 ((-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))) $)) (-15 -3946 ($ $ (-635 (-635 (-857))))) (-15 -3946 ($ $ (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) (|:| |args| (-635 (-857)))))) (-15 -3945 ($ $ (-635 (-857)))) (-15 -3944 ($ $ (-635 (-857)))) (-15 -3943 ($ $ (-635 (-857)))) (-15 -4206 ($ $ (-635 (-857)))) (-15 -3942 ((-1148) $)) (-15 -3941 ((-635 $) $)) (-15 -4131 ($) -4359))) -((-3951 (((-1253 |#1|) |#1| (-912)) 16) (((-1253 |#1|) (-635 |#1|)) 20))) -(((-1167 |#1|) (-10 -7 (-15 -3951 ((-1253 |#1|) (-635 |#1|))) (-15 -3951 ((-1253 |#1|) |#1| (-912)))) (-1042)) (T -1167)) -((-3951 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-5 *2 (-1253 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1042)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4)) (-5 *1 (-1167 *4))))) -(-10 -7 (-15 -3951 ((-1253 |#1|) (-635 |#1|))) (-15 -3951 ((-1253 |#1|) |#1| (-912)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| |#1| (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| |#1| (-1031 (-406 (-544))))) (((-3 |#1| #1#) $) NIL)) (-3557 (((-544) $) NIL (|has| |#1| (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| |#1| (-1031 (-406 (-544))))) ((|#1| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-3902 (($ $) NIL (|has| |#1| (-450)))) (-1749 (($ $ |#1| (-964) $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-964)) NIL)) (-3202 (((-964) $) NIL)) (-1750 (($ (-1 (-964) (-964)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#1| $) NIL)) (-4145 (($ $ (-964) |#1| $) NIL (-12 (|has| (-964) (-130)) (|has| |#1| (-554))))) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-4355 (((-964) $) NIL)) (-3199 ((|#1| $) NIL (|has| |#1| (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) NIL) (($ (-406 (-544))) NIL (-3936 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-1031 (-406 (-544))))))) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ (-964)) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#1| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3040 (($) 9 T CONST)) (-3046 (($) 14 T CONST)) (-3437 (((-112) $ $) 16)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 19)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-1168 |#1|) (-13 (-325 |#1| (-964)) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| (-964) (-130)) (-15 -4145 ($ $ (-964) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|))) (-1042)) (T -1168)) -((-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-964)) (-4 *2 (-130)) (-5 *1 (-1168 *3)) (-4 *3 (-554)) (-4 *3 (-1042))))) -(-13 (-325 |#1| #1=(-964)) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| #1# (-130)) (-15 -4145 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|))) -((-3952 (((-1170) (-1166) $) 25)) (-3962 (($) 29)) (-3954 (((-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) (-1166) $) 22)) (-3956 (((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)) $) 41) (((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) 42) (((-1259) (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) 43)) (-3964 (((-1259) (-1166)) 58)) (-3955 (((-1259) (-1166) $) 55) (((-1259) (-1166)) 56) (((-1259)) 57)) (-3960 (((-1259) (-1166)) 37)) (-3958 (((-1166)) 36)) (-3972 (($) 34)) (-3971 (((-435) (-1166) (-435) (-1166) $) 45) (((-435) (-635 (-1166)) (-435) (-1166) $) 49) (((-435) (-1166) (-435)) 46) (((-435) (-1166) (-435) (-1166)) 50)) (-3959 (((-1166)) 35)) (-4353 (((-857) $) 28)) (-3961 (((-1259)) 30) (((-1259) (-1166)) 33)) (-3953 (((-635 (-1166)) (-1166) $) 24)) (-3957 (((-1259) (-1166) (-635 (-1166)) $) 38) (((-1259) (-1166) (-635 (-1166))) 39) (((-1259) (-635 (-1166))) 40))) -(((-1169) (-13 (-608 (-857)) (-10 -8 (-15 -3962 ($)) (-15 -3961 ((-1259))) (-15 -3961 ((-1259) (-1166))) (-15 -3971 ((-435) (-1166) (-435) (-1166) $)) (-15 -3971 ((-435) (-635 (-1166)) (-435) (-1166) $)) (-15 -3971 ((-435) (-1166) (-435))) (-15 -3971 ((-435) (-1166) (-435) (-1166))) (-15 -3960 ((-1259) (-1166))) (-15 -3959 ((-1166))) (-15 -3958 ((-1166))) (-15 -3957 ((-1259) (-1166) (-635 (-1166)) $)) (-15 -3957 ((-1259) (-1166) (-635 (-1166)))) (-15 -3957 ((-1259) (-635 (-1166)))) (-15 -3956 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $)) (-15 -3956 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))) (-15 -3956 ((-1259) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))) (-15 -3955 ((-1259) (-1166) $)) (-15 -3955 ((-1259) (-1166))) (-15 -3955 ((-1259))) (-15 -3964 ((-1259) (-1166))) (-15 -3972 ($)) (-15 -3954 ((-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-1166) $)) (-15 -3953 ((-635 (-1166)) (-1166) $)) (-15 -3952 ((-1170) (-1166) $))))) (T -1169)) -((-3962 (*1 *1) (-5 *1 (-1169))) (-3961 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3971 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-3971 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-435)) (-5 *3 (-635 (-1166))) (-5 *4 (-1166)) (-5 *1 (-1169)))) (-3971 (*1 *2 *3 *2) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-3971 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3959 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))) (-3958 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169)))) (-3957 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3956 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3955 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3955 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) (-3972 (*1 *1) (-5 *1 (-1169))) (-3954 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *1 (-1169)))) (-3953 (*1 *2 *3 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1169)) (-5 *3 (-1166)))) (-3952 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1170)) (-5 *1 (-1169))))) -(-13 (-608 (-857)) (-10 -8 (-15 -3962 ($)) (-15 -3961 ((-1259))) (-15 -3961 ((-1259) (-1166))) (-15 -3971 ((-435) (-1166) (-435) (-1166) $)) (-15 -3971 ((-435) (-635 (-1166)) (-435) (-1166) $)) (-15 -3971 ((-435) (-1166) (-435))) (-15 -3971 ((-435) (-1166) (-435) (-1166))) (-15 -3960 ((-1259) (-1166))) (-15 -3959 ((-1166))) (-15 -3958 ((-1166))) (-15 -3957 ((-1259) (-1166) (-635 (-1166)) $)) (-15 -3957 ((-1259) (-1166) (-635 (-1166)))) (-15 -3957 ((-1259) (-635 (-1166)))) (-15 -3956 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1="void")) $)) (-15 -3956 ((-1259) (-1166) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))) (-15 -3956 ((-1259) (-3 (|:| |fst| (-433)) (|:| -4317 #1#)))) (-15 -3955 ((-1259) (-1166) $)) (-15 -3955 ((-1259) (-1166))) (-15 -3955 ((-1259))) (-15 -3964 ((-1259) (-1166))) (-15 -3972 ($)) (-15 -3954 ((-3 (|:| |fst| (-433)) (|:| -4317 #1#)) (-1166) $)) (-15 -3953 ((-635 (-1166)) (-1166) $)) (-15 -3952 ((-1170) (-1166) $)))) -((-3966 (((-635 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))) $) 59)) (-3968 (((-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))) (-433) $) 43)) (-3963 (($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435))))) 17)) (-3964 (((-1259) $) 67)) (-3969 (((-635 (-1166)) $) 22)) (-3965 (((-1093) $) 55)) (-3970 (((-435) (-1166) $) 27)) (-3967 (((-635 (-1166)) $) 30)) (-3972 (($) 19)) (-3971 (((-435) (-635 (-1166)) (-435) $) 25) (((-435) (-1166) (-435) $) 24)) (-4353 (((-857) $) 9) (((-1177 (-1166) (-435)) $) 13))) -(((-1170) (-13 (-608 (-857)) (-10 -8 (-15 -4353 ((-1177 (-1166) (-435)) $)) (-15 -3972 ($)) (-15 -3971 ((-435) (-635 (-1166)) (-435) $)) (-15 -3971 ((-435) (-1166) (-435) $)) (-15 -3970 ((-435) (-1166) $)) (-15 -3969 ((-635 (-1166)) $)) (-15 -3968 ((-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))) (-433) $)) (-15 -3967 ((-635 (-1166)) $)) (-15 -3966 ((-635 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))) $)) (-15 -3965 ((-1093) $)) (-15 -3964 ((-1259) $)) (-15 -3963 ($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435))))))))) (T -1170)) -((-4353 (*1 *2 *1) (-12 (-5 *2 (-1177 (-1166) (-435))) (-5 *1 (-1170)))) (-3972 (*1 *1) (-5 *1 (-1170))) (-3971 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-435)) (-5 *3 (-635 (-1166))) (-5 *1 (-1170)))) (-3971 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1170)))) (-3970 (*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-435)) (-5 *1 (-1170)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1170)))) (-3968 (*1 *2 *3 *1) (-12 (-5 *3 (-433)) (-5 *2 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))) (-5 *1 (-1170)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1170)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))))) (-5 *1 (-1170)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1170)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1170)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435))))) (-5 *1 (-1170))))) -(-13 (-608 (-857)) (-10 -8 (-15 -4353 ((-1177 (-1166) (-435)) $)) (-15 -3972 ($)) (-15 -3971 ((-435) (-635 (-1166)) (-435) $)) (-15 -3971 ((-435) (-1166) (-435) $)) (-15 -3970 ((-435) (-1166) $)) (-15 -3969 ((-635 (-1166)) $)) (-15 -3968 ((-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))) (-433) $)) (-15 -3967 ((-635 (-1166)) $)) (-15 -3966 ((-635 (-635 (-3 (|:| -3949 (-1166)) (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))) $)) (-15 -3965 ((-1093) $)) (-15 -3964 ((-1259) $)) (-15 -3963 ($ (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435)))))))) -((-2947 (((-112) $ $) NIL)) (-3558 (((-3 (-544) #1="failed") $) 29) (((-3 (-224) #1#) $) 35) (((-3 (-1166) #1#) $) 41) (((-3 (-1148) #1#) $) 47)) (-3557 (((-544) $) 30) (((-224) $) 36) (((-1166) $) 42) (((-1148) $) 48)) (-3977 (((-112) $) 53)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-3976 (((-3 (-544) (-224) (-1166) (-1148) $) $) 55)) (-3975 (((-635 $) $) 57)) (-4377 (((-1093) $) 24) (($ (-1093)) 25)) (-3974 (((-112) $) 56)) (-4353 (((-857) $) 23) (($ (-544)) 26) (($ (-224)) 32) (($ (-1166)) 38) (($ (-1148)) 44) (((-533) $) 59) (((-544) $) 31) (((-224) $) 37) (((-1166) $) 43) (((-1148) $) 49)) (-3973 (((-112) $ (|[\|\|]| (-544))) 10) (((-112) $ (|[\|\|]| (-224))) 13) (((-112) $ (|[\|\|]| (-1166))) 19) (((-112) $ (|[\|\|]| (-1148))) 16)) (-3978 (($ (-1166) (-635 $)) 51) (($ $ (-635 $)) 52)) (-3979 (((-544) $) 27) (((-224) $) 33) (((-1166) $) 39) (((-1148) $) 45)) (-3437 (((-112) $ $) 7))) -(((-1171) (-13 (-1249) (-1091) (-1031 (-544)) (-1031 (-224)) (-1031 (-1166)) (-1031 (-1148)) (-608 (-533)) (-10 -8 (-15 -4377 ((-1093) $)) (-15 -4377 ($ (-1093))) (-15 -4353 ((-544) $)) (-15 -3979 ((-544) $)) (-15 -4353 ((-224) $)) (-15 -3979 ((-224) $)) (-15 -4353 ((-1166) $)) (-15 -3979 ((-1166) $)) (-15 -4353 ((-1148) $)) (-15 -3979 ((-1148) $)) (-15 -3978 ($ (-1166) (-635 $))) (-15 -3978 ($ $ (-635 $))) (-15 -3977 ((-112) $)) (-15 -3976 ((-3 (-544) (-224) (-1166) (-1148) $) $)) (-15 -3975 ((-635 $) $)) (-15 -3974 ((-112) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-544)))) (-15 -3973 ((-112) $ (|[\|\|]| (-224)))) (-15 -3973 ((-112) $ (|[\|\|]| (-1166)))) (-15 -3973 ((-112) $ (|[\|\|]| (-1148))))))) (T -1171)) -((-4377 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1171)))) (-4377 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-1171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1171)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) (-3978 (*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-1171))) (-5 *1 (-1171)))) (-3978 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1171)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-3 (-544) (-224) (-1166) (-1148) (-1171))) (-5 *1 (-1171)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1171)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-544))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)) (-5 *1 (-1171)))) (-3973 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)) (-5 *1 (-1171))))) -(-13 (-1249) (-1091) (-1031 (-544)) (-1031 (-224)) (-1031 (-1166)) (-1031 (-1148)) (-608 (-533)) (-10 -8 (-15 -4377 ((-1093) $)) (-15 -4377 ($ (-1093))) (-15 -4353 ((-544) $)) (-15 -3979 ((-544) $)) (-15 -4353 ((-224) $)) (-15 -3979 ((-224) $)) (-15 -4353 ((-1166) $)) (-15 -3979 ((-1166) $)) (-15 -4353 ((-1148) $)) (-15 -3979 ((-1148) $)) (-15 -3978 ($ (-1166) (-635 $))) (-15 -3978 ($ $ (-635 $))) (-15 -3977 ((-112) $)) (-15 -3976 ((-3 (-544) (-224) (-1166) (-1148) $) $)) (-15 -3975 ((-635 $) $)) (-15 -3974 ((-112) $)) (-15 -3973 ((-112) $ (|[\|\|]| (-544)))) (-15 -3973 ((-112) $ (|[\|\|]| (-224)))) (-15 -3973 ((-112) $ (|[\|\|]| (-1166)))) (-15 -3973 ((-112) $ (|[\|\|]| (-1148)))))) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) 10)) (-3377 (($) 14)) (-2913 (($ $ $) NIL) (($) 7 T CONST)) (-3242 (($ $ $) NIL) (($) 8 T CONST)) (-2160 (((-912) $) 13)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) 12)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL))) -(((-1172 |#1|) (-838) (-912)) (T -1172)) -NIL -(-838) -((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#))) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) 9)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) 7 T CONST)) (-3242 (($ $ $) NIL) (($) 8 T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-4132 (($ $ $) 11)) (-4133 (($ $ $) 10)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL))) -(((-1173 |#1|) (-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($)))) (-912)) (T -1173)) -((-4133 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912)))) (-4132 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912)))) (-4131 (*1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912))))) -(-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($)))) -((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#))) -((-3981 (((-635 (-635 (-939 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166))) 57)) (-3980 (((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|)))) 69) (((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|))) 65) (((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166)) 70) (((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166)) 64) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|))))) 93) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|)))) 92) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166))) 94) (((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))) (-635 (-1166))) 91))) -(((-1174 |#1|) (-10 -7 (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))))) (-15 -3981 ((-635 (-635 (-939 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166))))) (-554)) (T -1174)) -((-3981 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-939 *5)))) (-5 *1 (-1174 *5)))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *4))))) (-5 *1 (-1174 *4)) (-5 *3 (-292 (-406 (-939 *4)))))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *4))))) (-5 *1 (-1174 *4)) (-5 *3 (-406 (-939 *4))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *5))))) (-5 *1 (-1174 *5)) (-5 *3 (-292 (-406 (-939 *5)))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *5))))) (-5 *1 (-1174 *5)) (-5 *3 (-406 (-939 *5))))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-1174 *4)) (-5 *3 (-635 (-292 (-406 (-939 *4))))))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-635 (-406 (-939 *4)))) (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-1174 *4)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-1174 *5)) (-5 *3 (-635 (-292 (-406 (-939 *5))))))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-1174 *5))))) -(-10 -7 (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))) (-635 (-1166)))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-406 (-939 |#1|))))) (-15 -3980 ((-635 (-635 (-292 (-406 (-939 |#1|))))) (-635 (-292 (-406 (-939 |#1|)))))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)) (-1166))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))) (-1166))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-406 (-939 |#1|)))) (-15 -3980 ((-635 (-292 (-406 (-939 |#1|)))) (-292 (-406 (-939 |#1|))))) (-15 -3981 ((-635 (-635 (-939 |#1|))) (-635 (-406 (-939 |#1|))) (-635 (-1166))))) -((-3982 (((-1148)) 7)) (-3984 (((-1148)) 9)) (-3985 (((-1259) (-1148)) 11)) (-3983 (((-1148)) 8))) -(((-1175) (-10 -7 (-15 -3982 ((-1148))) (-15 -3983 ((-1148))) (-15 -3984 ((-1148))) (-15 -3985 ((-1259) (-1148))))) (T -1175)) -((-3985 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1175)))) (-3984 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))) (-3983 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175)))) (-3982 (*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175))))) -(-10 -7 (-15 -3982 ((-1148))) (-15 -3983 ((-1148))) (-15 -3984 ((-1148))) (-15 -3985 ((-1259) (-1148)))) -((-3989 (((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|)))) 38)) (-3992 (((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|))) 24)) (-3993 (((-1178 (-635 |#1|)) (-635 |#1|)) 34)) (-3995 (((-635 (-635 |#1|)) (-635 |#1|)) 30)) (-3998 (((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|)))) 37)) (-3997 (((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|)))) 36)) (-3994 (((-635 (-635 |#1|)) (-635 (-635 |#1|))) 28)) (-3996 (((-635 |#1|) (-635 |#1|)) 31)) (-3988 (((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|)))) 18)) (-3987 (((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|)))) 16)) (-3986 (((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|))) 14)) (-3990 (((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|)))) 39)) (-3991 (((-635 (-635 |#1|)) (-1178 (-635 |#1|))) 41))) -(((-1176 |#1|) (-10 -7 (-15 -3986 ((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|)))) (-15 -3987 ((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3988 ((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3989 ((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3990 ((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3991 ((-635 (-635 |#1|)) (-1178 (-635 |#1|)))) (-15 -3992 ((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)))) (-15 -3993 ((-1178 (-635 |#1|)) (-635 |#1|))) (-15 -3994 ((-635 (-635 |#1|)) (-635 (-635 |#1|)))) (-15 -3995 ((-635 (-635 |#1|)) (-635 |#1|))) (-15 -3996 ((-635 |#1|) (-635 |#1|))) (-15 -3997 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))))) (-15 -3998 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|)))))) (-844)) (T -1176)) -((-3998 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-2 (|:| |f1| (-635 *4)) (|:| |f2| (-635 (-635 (-635 *4)))) (|:| |f3| (-635 (-635 *4))) (|:| |f4| (-635 (-635 (-635 *4)))))) (-5 *1 (-1176 *4)) (-5 *3 (-635 (-635 (-635 *4)))))) (-3997 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-844)) (-5 *3 (-635 *6)) (-5 *5 (-635 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-635 *5)) (|:| |f3| *5) (|:| |f4| (-635 *5)))) (-5 *1 (-1176 *6)) (-5 *4 (-635 *5)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-1176 *3)))) (-3995 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1176 *4)) (-5 *3 (-635 *4)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-844)) (-5 *1 (-1176 *3)))) (-3993 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-1178 (-635 *4))) (-5 *1 (-1176 *4)) (-5 *3 (-635 *4)))) (-3992 (*1 *2 *3) (-12 (-4 *4 (-844)) (-5 *2 (-635 (-635 (-635 *4)))) (-5 *1 (-1176 *4)) (-5 *3 (-635 (-635 *4))))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-1178 (-635 *4))) (-4 *4 (-844)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1176 *4)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1176 *4)) (-4 *4 (-844)))) (-3989 (*1 *2 *2 *3) (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-4 *4 (-844)) (-5 *1 (-1176 *4)))) (-3988 (*1 *2 *3 *2) (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-635 *4)) (-4 *4 (-844)) (-5 *1 (-1176 *4)))) (-3987 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-635 *5)) (-4 *5 (-844)) (-5 *1 (-1176 *5)))) (-3986 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-844)) (-5 *4 (-635 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-635 *4)))) (-5 *1 (-1176 *6)) (-5 *5 (-635 *4))))) -(-10 -7 (-15 -3986 ((-2 (|:| |fs| (-112)) (|:| |sd| (-635 |#1|)) (|:| |td| (-635 (-635 |#1|)))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 |#1|)))) (-15 -3987 ((-635 (-635 (-635 |#1|))) (-1 (-112) |#1| |#1|) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3988 ((-635 (-635 (-635 |#1|))) (-635 |#1|) (-635 (-635 (-635 |#1|))))) (-15 -3989 ((-635 (-635 |#1|)) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3990 ((-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))))) (-15 -3991 ((-635 (-635 |#1|)) (-1178 (-635 |#1|)))) (-15 -3992 ((-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)))) (-15 -3993 ((-1178 (-635 |#1|)) (-635 |#1|))) (-15 -3994 ((-635 (-635 |#1|)) (-635 (-635 |#1|)))) (-15 -3995 ((-635 (-635 |#1|)) (-635 |#1|))) (-15 -3996 ((-635 |#1|) (-635 |#1|))) (-15 -3997 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 |#1|) (-635 (-635 (-635 |#1|))) (-635 (-635 |#1|)) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))) (-635 (-635 (-635 |#1|))))) (-15 -3998 ((-2 (|:| |f1| (-635 |#1|)) (|:| |f2| (-635 (-635 (-635 |#1|)))) (|:| |f3| (-635 (-635 |#1|))) (|:| |f4| (-635 (-635 (-635 |#1|))))) (-635 (-635 (-635 |#1|)))))) -((-2947 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4004 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2344 (((-1259) $ |#1| |#1|) NIL (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#2| $ |#1| |#2|) NIL)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4131 (($) NIL T CONST)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) NIL)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) NIL)) (-2346 ((|#1| $) NIL (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-635 |#2|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2347 ((|#1| $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-2789 (((-635 |#1|) $) NIL)) (-2354 (((-112) |#1| $) NIL)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2349 (((-635 |#1|) $) NIL)) (-2350 (((-112) |#1| $) NIL)) (-3644 (((-1110) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4207 ((|#2| $) NIL (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL)) (-2345 (($ $ |#2|) NIL (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1550 (($) NIL) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) NIL (-12 (|has| $ (-6 -4400)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (((-765) |#2| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091)))) (((-765) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-4353 (((-857) $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) NIL)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) NIL (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) NIL (-3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1177 |#1| |#2|) (-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) (-1091) (-1091)) (T -1177)) -NIL -(-13 (-1181 |#1| |#2|) (-10 -7 (-6 -4400))) -((-3999 (($ (-635 (-635 |#1|))) 10)) (-4000 (((-635 (-635 |#1|)) $) 11)) (-4353 (((-857) $) 26))) -(((-1178 |#1|) (-10 -8 (-15 -3999 ($ (-635 (-635 |#1|)))) (-15 -4000 ((-635 (-635 |#1|)) $)) (-15 -4353 ((-857) $))) (-1091)) (T -1178)) -((-4353 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1178 *3)) (-4 *3 (-1091)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1091)))) (-3999 (*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-1178 *3))))) -(-10 -8 (-15 -3999 ($ (-635 (-635 |#1|)))) (-15 -4000 ((-635 (-635 |#1|)) $)) (-15 -4353 ((-857) $))) -((-4001 ((|#1| (-635 |#1|)) 32)) (-4003 ((|#1| |#1| (-544)) 18)) (-4002 (((-1160 |#1|) |#1| (-912)) 15))) -(((-1179 |#1|) (-10 -7 (-15 -4001 (|#1| (-635 |#1|))) (-15 -4002 ((-1160 |#1|) |#1| (-912))) (-15 -4003 (|#1| |#1| (-544)))) (-362)) (T -1179)) -((-4003 (*1 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-1179 *2)) (-4 *2 (-362)))) (-4002 (*1 *2 *3 *4) (-12 (-5 *4 (-912)) (-5 *2 (-1160 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-362)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-1179 *2)) (-4 *2 (-362))))) -(-10 -7 (-15 -4001 (|#1| (-635 |#1|))) (-15 -4002 ((-1160 |#1|) |#1| (-912))) (-15 -4003 (|#1| |#1| (-544)))) -((-4004 (($) 10) (($ (-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)))) 14)) (-3809 (($ (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2096 (((-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) 39) (((-635 |#3|) $) 41)) (-2100 (($ (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4365 (($ (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1356 (((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 54)) (-4014 (($ (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 16)) (-2349 (((-635 |#2|) $) 19)) (-2350 (((-112) |#2| $) 59)) (-1425 (((-3 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) "failed") (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) 58)) (-1357 (((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) 63)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-2351 (((-635 |#3|) $) 43)) (-4206 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) NIL) (((-765) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) $) NIL) (((-765) |#3| $) NIL) (((-765) (-1 (-112) |#3|) $) 67)) (-4353 (((-857) $) 27)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-3437 (((-112) $ $) 49))) -(((-1180 |#1| |#2| |#3|) (-10 -8 (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -4365 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4004 (|#1| (-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))))) (-15 -4004 (|#1|)) (-15 -4365 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2100 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#3|) |#1|)) (-15 -2096 ((-635 |#3|) |#1|)) (-15 -2097 ((-765) |#3| |#1|)) (-15 -4206 (|#3| |#1| |#2| |#3|)) (-15 -4206 (|#3| |#1| |#2|)) (-15 -2351 ((-635 |#3|) |#1|)) (-15 -2350 ((-112) |#2| |#1|)) (-15 -2349 ((-635 |#2|) |#1|)) (-15 -3809 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3809 (|#1| (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -3809 (|#1| (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -1425 ((-3 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) "failed") (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -1356 ((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -4014 (|#1| (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -1357 ((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -2097 ((-765) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -2096 ((-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2097 ((-765) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2098 ((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2099 ((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2100 (|#1| (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -4365 (|#1| (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|))) (-1181 |#2| |#3|) (-1091) (-1091)) (T -1180)) -NIL -(-10 -8 (-15 -3437 ((-112) |#1| |#1|)) (-15 -4353 ((-857) |#1|)) (-15 -4365 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4004 (|#1| (-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))))) (-15 -4004 (|#1|)) (-15 -4365 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2100 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2099 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2098 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2097 ((-765) (-1 (-112) |#3|) |#1|)) (-15 -2096 ((-635 |#3|) |#1|)) (-15 -2097 ((-765) |#3| |#1|)) (-15 -4206 (|#3| |#1| |#2| |#3|)) (-15 -4206 (|#3| |#1| |#2|)) (-15 -2351 ((-635 |#3|) |#1|)) (-15 -2350 ((-112) |#2| |#1|)) (-15 -2349 ((-635 |#2|) |#1|)) (-15 -3809 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3809 (|#1| (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -3809 (|#1| (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -1425 ((-3 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) "failed") (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -1356 ((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -4014 (|#1| (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -1357 ((-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -2097 ((-765) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) |#1|)) (-15 -2096 ((-635 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2097 ((-765) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2098 ((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2099 ((-112) (-1 (-112) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -2100 (|#1| (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|)) (-15 -4365 (|#1| (-1 (-2 (|:| -4267 |#2|) (|:| -2226 |#3|)) (-2 (|:| -4267 |#2|) (|:| -2226 |#3|))) |#1|))) -((-2947 (((-112) $ $) 19 (-3936 (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4004 (($) 72) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 71)) (-2344 (((-1259) $ |#1| |#1|) 99 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#2| $ |#1| |#2|) 73)) (-1659 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 45 (|has| $ (-6 -4400)))) (-4117 (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 55 (|has| $ (-6 -4400)))) (-2353 (((-3 |#2| #1="failed") |#1| $) 61)) (-4131 (($) 7 T CONST)) (-1424 (($ $) 58 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400))))) (-3809 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 47 (|has| $ (-6 -4400))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 46 (|has| $ (-6 -4400))) (((-3 |#2| #1#) |#1| $) 62)) (-3810 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 54 (|has| $ (-6 -4400)))) (-4249 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 56 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 53 (|has| $ (-6 -4400))) (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 52 (|has| $ (-6 -4400)))) (-1665 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4401)))) (-3498 ((|#2| $ |#1|) 88)) (-2096 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 30 (|has| $ (-6 -4400))) (((-635 |#2|) $) 79 (|has| $ (-6 -4400)))) (-4126 (((-112) $ (-765)) 9)) (-2346 ((|#1| $) 96 (|has| |#1| (-844)))) (-2554 (((-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 29 (|has| $ (-6 -4400))) (((-635 |#2|) $) 80 (|has| $ (-6 -4400)))) (-3646 (((-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400))))) (-2347 ((|#1| $) 95 (|has| |#1| (-844)))) (-2100 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 34 (|has| $ (-6 -4401))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4401)))) (-4365 (($ (-1 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4123 (((-112) $ (-765)) 10)) (-3643 (((-1148) $) 22 (-3936 (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-2789 (((-635 |#1|) $) 63)) (-2354 (((-112) |#1| $) 64)) (-1356 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 39)) (-4014 (($ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 40)) (-2349 (((-635 |#1|) $) 93)) (-2350 (((-112) |#1| $) 92)) (-3644 (((-1110) $) 21 (-3936 (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4207 ((|#2| $) 97 (|has| |#1| (-844)))) (-1425 (((-3 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) "failed") (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 51)) (-2345 (($ $ |#2|) 98 (|has| $ (-6 -4401)))) (-1357 (((-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 41)) (-2098 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 32 (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))))) 26 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-292 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 25 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) 24 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 23 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)))) (($ $ (-635 |#2|) (-635 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-292 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091)))) (($ $ (-635 (-292 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4400)) (|has| |#2| (-1091))))) (-2351 (((-635 |#2|) $) 91)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1550 (($) 49) (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 48)) (-2097 (((-765) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 31 (|has| $ (-6 -4400))) (((-765) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| $ (-6 -4400)))) (((-765) |#2| $) 81 (-12 (|has| |#2| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4400)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 59 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))))) (-3929 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 50)) (-4353 (((-857) $) 18 (-3936 (|has| |#2| (-608 (-857))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857)))))) (-1358 (($ (-635 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) 42)) (-2099 (((-112) (-1 (-112) (-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) $) 33 (|has| $ (-6 -4400))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (-3936 (|has| |#2| (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-1181 |#1| |#2|) (-139) (-1091) (-1091)) (T -1181)) -((-4194 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) (-4004 (*1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) (-4004 (*1 *1 *2) (-12 (-5 *2 (-635 (-2 (|:| -4267 *3) (|:| -2226 *4)))) (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *1 (-1181 *3 *4)))) (-4365 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) -(-13 (-605 |t#1| |t#2|) (-599 |t#1| |t#2|) (-10 -8 (-15 -4194 (|t#2| $ |t#1| |t#2|)) (-15 -4004 ($)) (-15 -4004 ($ (-635 (-2 (|:| -4267 |t#1|) (|:| -2226 |t#2|))))) (-15 -4365 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #1=(-2 (|:| -4267 |#1|) (|:| -2226 |#2|))) . T) ((-102) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))) ((-608 (-857)) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-608 (-857))) (|has| |#2| (-1091)) (|has| |#2| (-608 (-857)))) ((-150 #1#) . T) ((-609 (-533)) |has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-609 (-533))) ((-228 #1#) . T) ((-234 #1#) . T) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 #1#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-487 #1#) . T) ((-487 |#2|) . T) ((-599 |#1| |#2|) . T) ((-512 #1# #1#) -12 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-308 (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)))) (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091))) ((-512 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1091))) ((-605 |#1| |#2|) . T) ((-1091) -3936 (|has| (-2 (|:| -4267 |#1|) (|:| -2226 |#2|)) (-1091)) (|has| |#2| (-1091))) ((-1204) . T)) -((-4010 (((-112)) 24)) (-4007 (((-1259) (-1148)) 26)) (-4011 (((-112)) 36)) (-4008 (((-1259)) 34)) (-4006 (((-1259) (-1148) (-1148)) 25)) (-4012 (((-112)) 37)) (-4014 (((-1259) |#1| |#2|) 44)) (-4005 (((-1259)) 20)) (-4013 (((-3 |#2| "failed") |#1|) 42)) (-4009 (((-1259)) 35))) -(((-1182 |#1| |#2|) (-10 -7 (-15 -4005 ((-1259))) (-15 -4006 ((-1259) (-1148) (-1148))) (-15 -4007 ((-1259) (-1148))) (-15 -4008 ((-1259))) (-15 -4009 ((-1259))) (-15 -4010 ((-112))) (-15 -4011 ((-112))) (-15 -4012 ((-112))) (-15 -4013 ((-3 |#2| "failed") |#1|)) (-15 -4014 ((-1259) |#1| |#2|))) (-1091) (-1091)) (T -1182)) -((-4014 (*1 *2 *3 *4) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4013 (*1 *2 *3) (|partial| -12 (-4 *2 (-1091)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1091)))) (-4012 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4011 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4010 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4009 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4008 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)))) (-4006 (*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)))) (-4005 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) -(-10 -7 (-15 -4005 ((-1259))) (-15 -4006 ((-1259) (-1148) (-1148))) (-15 -4007 ((-1259) (-1148))) (-15 -4008 ((-1259))) (-15 -4009 ((-1259))) (-15 -4010 ((-112))) (-15 -4011 ((-112))) (-15 -4012 ((-112))) (-15 -4013 ((-3 |#2| "failed") |#1|)) (-15 -4014 ((-1259) |#1| |#2|))) -((-4016 (((-1148) (-1148)) 18)) (-4015 (((-51) (-1148)) 21))) -(((-1183) (-10 -7 (-15 -4015 ((-51) (-1148))) (-15 -4016 ((-1148) (-1148))))) (T -1183)) -((-4016 (*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1183)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-1183))))) -(-10 -7 (-15 -4015 ((-51) (-1148))) (-15 -4016 ((-1148) (-1148)))) -((-2947 (((-112) $ $) NIL)) (-4022 (((-635 (-1148)) $) 34)) (-4018 (((-635 (-1148)) $ (-635 (-1148))) 37)) (-4017 (((-635 (-1148)) $ (-635 (-1148))) 36)) (-4019 (((-635 (-1148)) $ (-635 (-1148))) 38)) (-4020 (((-635 (-1148)) $) 33)) (-4021 (($) 22)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4023 (((-635 (-1148)) $) 35)) (-4024 (((-1259) $ (-544)) 29) (((-1259) $) 30)) (-4377 (($ (-857) (-544)) 26) (($ (-857) (-544) (-857)) NIL)) (-4353 (((-857) $) 40) (($ (-857)) 24)) (-3437 (((-112) $ $) NIL))) -(((-1184) (-13 (-1091) (-611 (-857)) (-10 -8 (-15 -4377 ($ (-857) (-544))) (-15 -4377 ($ (-857) (-544) (-857))) (-15 -4024 ((-1259) $ (-544))) (-15 -4024 ((-1259) $)) (-15 -4023 ((-635 (-1148)) $)) (-15 -4022 ((-635 (-1148)) $)) (-15 -4021 ($)) (-15 -4020 ((-635 (-1148)) $)) (-15 -4019 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4018 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4017 ((-635 (-1148)) $ (-635 (-1148))))))) (T -1184)) -((-4377 (*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-1184)))) (-4377 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-1184)))) (-4024 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1184)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1184)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4021 (*1 *1) (-5 *1 (-1184))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4019 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4018 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184)))) (-4017 (*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184))))) -(-13 (-1091) (-611 (-857)) (-10 -8 (-15 -4377 ($ (-857) (-544))) (-15 -4377 ($ (-857) (-544) (-857))) (-15 -4024 ((-1259) $ (-544))) (-15 -4024 ((-1259) $)) (-15 -4023 ((-635 (-1148)) $)) (-15 -4022 ((-635 (-1148)) $)) (-15 -4021 ($)) (-15 -4020 ((-635 (-1148)) $)) (-15 -4019 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4018 ((-635 (-1148)) $ (-635 (-1148)))) (-15 -4017 ((-635 (-1148)) $ (-635 (-1148)))))) -((-4353 (((-1184) |#1|) 11))) -(((-1185 |#1|) (-10 -7 (-15 -4353 ((-1184) |#1|))) (-1091)) (T -1185)) -((-4353 (*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-1185 *3)) (-4 *3 (-1091))))) -(-10 -7 (-15 -4353 ((-1184) |#1|))) -((-2947 (((-112) $ $) NIL)) (-4029 (((-1148) $ (-1148)) 17) (((-1148) $) 16)) (-1841 (((-1148) $ (-1148)) 15)) (-1845 (($ $ (-1148)) NIL)) (-4027 (((-3 (-1148) "failed") $) 11)) (-4028 (((-1148) $) 8)) (-4026 (((-3 (-1148) "failed") $) 12)) (-1842 (((-1148) $) 9)) (-1846 (($ (-387)) NIL) (($ (-387) (-1148)) NIL)) (-3949 (((-387) $) NIL)) (-3643 (((-1148) $) NIL)) (-1843 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4025 (((-112) $) 18)) (-4353 (((-857) $) NIL)) (-1844 (($ $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-1186) (-13 (-364 (-387) (-1148)) (-10 -8 (-15 -4029 ((-1148) $ (-1148))) (-15 -4029 ((-1148) $)) (-15 -4028 ((-1148) $)) (-15 -4027 ((-3 (-1148) "failed") $)) (-15 -4026 ((-3 (-1148) "failed") $)) (-15 -4025 ((-112) $))))) (T -1186)) -((-4029 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4027 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4026 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186))))) -(-13 (-364 (-387) (-1148)) (-10 -8 (-15 -4029 ((-1148) $ (-1148))) (-15 -4029 ((-1148) $)) (-15 -4028 ((-1148) $)) (-15 -4027 ((-3 (-1148) "failed") $)) (-15 -4026 ((-3 (-1148) "failed") $)) (-15 -4025 ((-112) $)))) -((-4030 (((-3 (-544) "failed") |#1|) 19)) (-4031 (((-3 (-544) "failed") |#1|) 14)) (-4032 (((-544) (-1148)) 28))) -(((-1187 |#1|) (-10 -7 (-15 -4030 ((-3 (-544) "failed") |#1|)) (-15 -4031 ((-3 (-544) "failed") |#1|)) (-15 -4032 ((-544) (-1148)))) (-1042)) (T -1187)) -((-4032 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-544)) (-5 *1 (-1187 *4)) (-4 *4 (-1042)))) (-4031 (*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-1187 *3)) (-4 *3 (-1042)))) (-4030 (*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-1187 *3)) (-4 *3 (-1042))))) -(-10 -7 (-15 -4030 ((-3 (-544) "failed") |#1|)) (-15 -4031 ((-3 (-544) "failed") |#1|)) (-15 -4032 ((-544) (-1148)))) -((-4033 (((-1123 (-224))) 9))) -(((-1188) (-10 -7 (-15 -4033 ((-1123 (-224)))))) (T -1188)) -((-4033 (*1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1188))))) -(-10 -7 (-15 -4033 ((-1123 (-224))))) -((-4034 (($) 11)) (-3897 (($ $) 35)) (-3895 (($ $) 33)) (-3883 (($ $) 25)) (-3899 (($ $) 17)) (-3900 (($ $) 15)) (-3898 (($ $) 19)) (-3886 (($ $) 30)) (-3896 (($ $) 34)) (-3884 (($ $) 29))) -(((-1189 |#1|) (-10 -8 (-15 -4034 (|#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3884 (|#1| |#1|))) (-1190)) (T -1189)) -NIL -(-10 -8 (-15 -4034 (|#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3884 (|#1| |#1|))) -((-3891 (($ $) 26)) (-4046 (($ $) 11)) (-3889 (($ $) 27)) (-4045 (($ $) 10)) (-3893 (($ $) 28)) (-4044 (($ $) 9)) (-4034 (($) 16)) (-4349 (($ $) 19)) (-4350 (($ $) 18)) (-3894 (($ $) 29)) (-4043 (($ $) 8)) (-3892 (($ $) 30)) (-4042 (($ $) 7)) (-3890 (($ $) 31)) (-4041 (($ $) 6)) (-3897 (($ $) 20)) (-3885 (($ $) 32)) (-3895 (($ $) 21)) (-3883 (($ $) 33)) (-3899 (($ $) 22)) (-3887 (($ $) 34)) (-3900 (($ $) 23)) (-3888 (($ $) 35)) (-3898 (($ $) 24)) (-3886 (($ $) 36)) (-3896 (($ $) 25)) (-3884 (($ $) 37)) (** (($ $ $) 17))) -(((-1190) (-139)) (T -1190)) -((-4034 (*1 *1) (-4 *1 (-1190)))) -(-13 (-1193) (-95) (-491) (-35) (-283) (-10 -8 (-15 -4034 ($)))) -(((-35) . T) ((-95) . T) ((-283) . T) ((-491) . T) ((-1193) . T)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3806 ((|#1| $) 17)) (-4039 (($ |#1| (-635 $)) 23) (($ (-635 |#1|)) 27) (($ |#1|) 25)) (-1293 (((-112) $ (-765)) 47)) (-3408 ((|#1| $ |#1|) 14 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 13 (|has| $ (-6 -4401)))) (-4131 (($) NIL T CONST)) (-2096 (((-635 |#1|) $) 51 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 42)) (-3410 (((-112) $ $) 32 (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) 40)) (-2554 (((-635 |#1|) $) 52 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2100 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 22)) (-4123 (((-112) $ (-765)) 39)) (-3413 (((-635 |#1|) $) 36)) (-3926 (((-112) $) 35)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-2098 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 73)) (-3807 (((-112) $) 9)) (-3972 (($) 10)) (-4206 ((|#1| $ #1#) NIL)) (-3412 (((-544) $ $) 31)) (-4035 (((-635 $) $) 58)) (-4036 (((-112) $ $) 76)) (-4037 (((-635 $) $) 71)) (-4038 (($ $) 72)) (-4040 (((-112) $) 55)) (-2097 (((-765) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4400))) (((-765) |#1| $) 16 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3804 (($ $) 57)) (-4353 (((-857) $) 60 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 12)) (-3411 (((-112) $ $) 29 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 28 (|has| |#1| (-1091)))) (-4364 (((-765) $) 38 (|has| $ (-6 -4400))))) -(((-1191 |#1|) (-13 (-1003 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -4039 ($ |#1| (-635 $))) (-15 -4039 ($ (-635 |#1|))) (-15 -4039 ($ |#1|)) (-15 -4040 ((-112) $)) (-15 -4038 ($ $)) (-15 -4037 ((-635 $) $)) (-15 -4036 ((-112) $ $)) (-15 -4035 ((-635 $) $)))) (-1091)) (T -1191)) -((-4040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))) (-4039 (*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1191 *2))) (-5 *1 (-1191 *2)) (-4 *2 (-1091)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-1191 *3)))) (-4039 (*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1091)))) (-4038 (*1 *1 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1091)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-635 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))) (-4036 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1091)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-635 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1091))))) -(-13 (-1003 |#1|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -4039 ($ |#1| (-635 $))) (-15 -4039 ($ (-635 |#1|))) (-15 -4039 ($ |#1|)) (-15 -4040 ((-112) $)) (-15 -4038 ($ $)) (-15 -4037 ((-635 $) $)) (-15 -4036 ((-112) $ $)) (-15 -4035 ((-635 $) $)))) -((-4046 (($ $) 15)) (-4044 (($ $) 12)) (-4043 (($ $) 10)) (-4042 (($ $) 17))) -(((-1192 |#1|) (-10 -8 (-15 -4042 (|#1| |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4046 (|#1| |#1|))) (-1193)) (T -1192)) -NIL -(-10 -8 (-15 -4042 (|#1| |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4046 (|#1| |#1|))) -((-4046 (($ $) 11)) (-4045 (($ $) 10)) (-4044 (($ $) 9)) (-4043 (($ $) 8)) (-4042 (($ $) 7)) (-4041 (($ $) 6))) -(((-1193) (-139)) (T -1193)) -((-4046 (*1 *1 *1) (-4 *1 (-1193))) (-4045 (*1 *1 *1) (-4 *1 (-1193))) (-4044 (*1 *1 *1) (-4 *1 (-1193))) (-4043 (*1 *1 *1) (-4 *1 (-1193))) (-4042 (*1 *1 *1) (-4 *1 (-1193))) (-4041 (*1 *1 *1) (-4 *1 (-1193)))) -(-13 (-10 -8 (-15 -4041 ($ $)) (-15 -4042 ($ $)) (-15 -4043 ($ $)) (-15 -4044 ($ $)) (-15 -4045 ($ $)) (-15 -4046 ($ $)))) -((-4049 ((|#2| |#2|) 88)) (-4052 (((-112) |#2|) 26)) (-4050 ((|#2| |#2|) 30)) (-4051 ((|#2| |#2|) 32)) (-4047 ((|#2| |#2| (-1166)) 83) ((|#2| |#2|) 84)) (-4053 (((-167 |#2|) |#2|) 28)) (-4048 ((|#2| |#2| (-1166)) 85) ((|#2| |#2|) 86))) -(((-1194 |#1| |#2|) (-10 -7 (-15 -4047 (|#2| |#2|)) (-15 -4047 (|#2| |#2| (-1166))) (-15 -4048 (|#2| |#2|)) (-15 -4048 (|#2| |#2| (-1166))) (-15 -4049 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -4052 ((-112) |#2|)) (-15 -4053 ((-167 |#2|) |#2|))) (-13 (-450) (-844) (-1031 (-544)) (-634 (-544))) (-13 (-27) (-1190) (-420 |#1|))) (T -1194)) -((-4053 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-167 *3)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-112)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-4050 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-4048 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-4048 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) (-4047 (*1 *2 *2 *3) (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))))) -(-10 -7 (-15 -4047 (|#2| |#2|)) (-15 -4047 (|#2| |#2| (-1166))) (-15 -4048 (|#2| |#2|)) (-15 -4048 (|#2| |#2| (-1166))) (-15 -4049 (|#2| |#2|)) (-15 -4050 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -4052 ((-112) |#2|)) (-15 -4053 ((-167 |#2|) |#2|))) -((-4054 ((|#4| |#4| |#1|) 27)) (-4055 ((|#4| |#4| |#1|) 28))) -(((-1195 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4054 (|#4| |#4| |#1|)) (-15 -4055 (|#4| |#4| |#1|))) (-554) (-371 |#1|) (-371 |#1|) (-679 |#1| |#2| |#3|)) (T -1195)) -((-4055 (*1 *2 *2 *3) (-12 (-4 *3 (-554)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) (-4054 (*1 *2 *2 *3) (-12 (-4 *3 (-554)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) -(-10 -7 (-15 -4054 (|#4| |#4| |#1|)) (-15 -4055 (|#4| |#4| |#1|))) -((-4073 ((|#2| |#2|) 133)) (-4075 ((|#2| |#2|) 130)) (-4072 ((|#2| |#2|) 121)) (-4074 ((|#2| |#2|) 118)) (-4071 ((|#2| |#2|) 126)) (-4070 ((|#2| |#2|) 114)) (-4059 ((|#2| |#2|) 43)) (-4058 ((|#2| |#2|) 94)) (-4056 ((|#2| |#2|) 74)) (-4069 ((|#2| |#2|) 128)) (-4068 ((|#2| |#2|) 116)) (-4081 ((|#2| |#2|) 138)) (-4079 ((|#2| |#2|) 136)) (-4080 ((|#2| |#2|) 137)) (-4078 ((|#2| |#2|) 135)) (-4057 ((|#2| |#2|) 148)) (-4082 ((|#2| |#2|) 30 (-12 (|has| |#2| (-609 (-883 |#1|))) (|has| |#2| (-879 |#1|)) (|has| |#1| (-609 (-883 |#1|))) (|has| |#1| (-879 |#1|))))) (-4060 ((|#2| |#2|) 75)) (-4061 ((|#2| |#2|) 139)) (-4370 ((|#2| |#2|) 140)) (-4067 ((|#2| |#2|) 127)) (-4066 ((|#2| |#2|) 115)) (-4065 ((|#2| |#2|) 134)) (-4077 ((|#2| |#2|) 132)) (-4064 ((|#2| |#2|) 122)) (-4076 ((|#2| |#2|) 120)) (-4063 ((|#2| |#2|) 124)) (-4062 ((|#2| |#2|) 112))) -(((-1196 |#1| |#2|) (-10 -7 (-15 -4370 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4062 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (IF (|has| |#1| (-879 |#1|)) (IF (|has| |#1| (-609 (-883 |#1|))) (IF (|has| |#2| (-609 (-883 |#1|))) (IF (|has| |#2| (-879 |#1|)) (-15 -4082 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-844) (-450)) (-13 (-420 |#1|) (-1190))) (T -1196)) -((-4082 (*1 *2 *2) (-12 (-4 *3 (-609 (-883 *3))) (-4 *3 (-879 *3)) (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-609 (-883 *3))) (-4 *2 (-879 *3)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190))))) (-4370 (*1 *2 *2) (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-420 *3) (-1190)))))) -(-10 -7 (-15 -4370 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4062 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (IF (|has| |#1| (-879 |#1|)) (IF (|has| |#1| (-609 (-883 |#1|))) (IF (|has| |#2| (-609 (-883 |#1|))) (IF (|has| |#2| (-879 |#1|)) (-15 -4082 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1166)) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4221 (((-939 |#1|) $ (-765)) 16) (((-939 |#1|) $ (-765) (-765)) NIL)) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $ (-1166)) NIL) (((-765) $ (-1166) (-765)) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4344 (((-112) $) NIL)) (-3276 (($ $ (-635 (-1166)) (-635 (-529 (-1166)))) NIL) (($ $ (-1166) (-529 (-1166))) NIL) (($ |#1| (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4219 (($ $ (-1166)) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166) |#1|) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-4083 (($ (-1 $) (-1166) |#1|) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4175 (($ $ (-765)) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (($ $ (-1166) $) NIL) (($ $ (-635 (-1166)) (-635 $)) NIL) (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL)) (-4217 (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-4355 (((-529 (-1166)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-1166)) NIL) (($ (-939 |#1|)) NIL)) (-4084 ((|#1| $ (-529 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (((-939 |#1|) $ (-765)) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) NIL T CONST)) (-3046 (($) NIL T CONST)) (-3051 (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1197 |#1|) (-13 (-734 |#1| (-1166)) (-10 -8 (-15 -4084 ((-939 |#1|) $ (-765))) (-15 -4353 ($ (-1166))) (-15 -4353 ($ (-939 |#1|))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ (-1166) |#1|)) (-15 -4083 ($ (-1 $) (-1166) |#1|))) |%noBranch|))) (-1042)) (T -1197)) -((-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-939 *4)) (-5 *1 (-1197 *4)) (-4 *4 (-1042)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1197 *3)) (-4 *3 (-1042)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1042)) (-5 *1 (-1197 *3)))) (-4219 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *1 (-1197 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)))) (-4083 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1197 *4))) (-5 *3 (-1166)) (-5 *1 (-1197 *4)) (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042))))) -(-13 (-734 |#1| (-1166)) (-10 -8 (-15 -4084 ((-939 |#1|) $ (-765))) (-15 -4353 ($ (-1166))) (-15 -4353 ($ (-939 |#1|))) (IF (|has| |#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $ (-1166) |#1|)) (-15 -4083 ($ (-1 $) (-1166) |#1|))) |%noBranch|))) -((-4100 (((-112) |#5| $) 59) (((-112) $) 101)) (-4095 ((|#5| |#5| $) 74)) (-4117 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-4096 (((-635 |#5|) (-635 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-3558 (((-3 $ "failed") (-635 |#5|)) 125)) (-4205 (((-3 $ "failed") $) 111)) (-4092 ((|#5| |#5| $) 93)) (-4101 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-4090 ((|#5| |#5| $) 97)) (-4249 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-4103 (((-2 (|:| -4268 (-635 |#5|)) (|:| -1846 (-635 |#5|))) $) 54)) (-4102 (((-112) |#5| $) 57) (((-112) $) 102)) (-3581 ((|#4| $) 107)) (-4204 (((-3 |#5| "failed") $) 109)) (-4104 (((-635 |#5|) $) 48)) (-4098 (((-112) |#5| $) 66) (((-112) $) 106)) (-4093 ((|#5| |#5| $) 80)) (-4106 (((-112) $ $) 26)) (-4099 (((-112) |#5| $) 62) (((-112) $) 104)) (-4094 ((|#5| |#5| $) 77)) (-4207 (((-3 |#5| "failed") $) 108)) (-4175 (($ $ |#5|) 126)) (-4355 (((-765) $) 51)) (-3929 (($ (-635 |#5|)) 123)) (-3293 (($ $ |#4|) 121)) (-3295 (($ $ |#4|) 120)) (-4091 (($ $) 119)) (-4353 (((-857) $) NIL) (((-635 |#5|) $) 112)) (-4085 (((-765) $) 129)) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-4097 (((-112) $ (-1 (-112) |#5| (-635 |#5|))) 99)) (-4087 (((-635 |#4|) $) 114)) (-4340 (((-112) |#4| $) 117)) (-3437 (((-112) $ $) 19))) -(((-1198 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4085 ((-765) |#1|)) (-15 -4175 (|#1| |#1| |#5|)) (-15 -4117 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4340 ((-112) |#4| |#1|)) (-15 -4087 ((-635 |#4|) |#1|)) (-15 -4205 ((-3 |#1| "failed") |#1|)) (-15 -4204 ((-3 |#5| "failed") |#1|)) (-15 -4207 ((-3 |#5| "failed") |#1|)) (-15 -4090 (|#5| |#5| |#1|)) (-15 -4091 (|#1| |#1|)) (-15 -4092 (|#5| |#5| |#1|)) (-15 -4093 (|#5| |#5| |#1|)) (-15 -4094 (|#5| |#5| |#1|)) (-15 -4095 (|#5| |#5| |#1|)) (-15 -4096 ((-635 |#5|) (-635 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4249 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4098 ((-112) |#1|)) (-15 -4099 ((-112) |#1|)) (-15 -4100 ((-112) |#1|)) (-15 -4097 ((-112) |#1| (-1 (-112) |#5| (-635 |#5|)))) (-15 -4098 ((-112) |#5| |#1|)) (-15 -4099 ((-112) |#5| |#1|)) (-15 -4100 ((-112) |#5| |#1|)) (-15 -4101 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4102 ((-112) |#1|)) (-15 -4102 ((-112) |#5| |#1|)) (-15 -4103 ((-2 (|:| -4268 (-635 |#5|)) (|:| -1846 (-635 |#5|))) |#1|)) (-15 -4355 ((-765) |#1|)) (-15 -4104 ((-635 |#5|) |#1|)) (-15 -4105 ((-3 (-2 (|:| |bas| |#1|) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4105 ((-3 (-2 (|:| |bas| |#1|) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4106 ((-112) |#1| |#1|)) (-15 -3293 (|#1| |#1| |#4|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3581 (|#4| |#1|)) (-15 -3558 ((-3 |#1| "failed") (-635 |#5|))) (-15 -4353 ((-635 |#5|) |#1|)) (-15 -3929 (|#1| (-635 |#5|))) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4117 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) (-1199 |#2| |#3| |#4| |#5|) (-554) (-787) (-844) (-1056 |#2| |#3| |#4|)) (T -1198)) -NIL -(-10 -8 (-15 -4085 ((-765) |#1|)) (-15 -4175 (|#1| |#1| |#5|)) (-15 -4117 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4340 ((-112) |#4| |#1|)) (-15 -4087 ((-635 |#4|) |#1|)) (-15 -4205 ((-3 |#1| "failed") |#1|)) (-15 -4204 ((-3 |#5| "failed") |#1|)) (-15 -4207 ((-3 |#5| "failed") |#1|)) (-15 -4090 (|#5| |#5| |#1|)) (-15 -4091 (|#1| |#1|)) (-15 -4092 (|#5| |#5| |#1|)) (-15 -4093 (|#5| |#5| |#1|)) (-15 -4094 (|#5| |#5| |#1|)) (-15 -4095 (|#5| |#5| |#1|)) (-15 -4096 ((-635 |#5|) (-635 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4249 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4098 ((-112) |#1|)) (-15 -4099 ((-112) |#1|)) (-15 -4100 ((-112) |#1|)) (-15 -4097 ((-112) |#1| (-1 (-112) |#5| (-635 |#5|)))) (-15 -4098 ((-112) |#5| |#1|)) (-15 -4099 ((-112) |#5| |#1|)) (-15 -4100 ((-112) |#5| |#1|)) (-15 -4101 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4102 ((-112) |#1|)) (-15 -4102 ((-112) |#5| |#1|)) (-15 -4103 ((-2 (|:| -4268 (-635 |#5|)) (|:| -1846 (-635 |#5|))) |#1|)) (-15 -4355 ((-765) |#1|)) (-15 -4104 ((-635 |#5|) |#1|)) (-15 -4105 ((-3 (-2 (|:| |bas| |#1|) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4105 ((-3 (-2 (|:| |bas| |#1|) (|:| -3728 (-635 |#5|))) "failed") (-635 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4106 ((-112) |#1| |#1|)) (-15 -3293 (|#1| |#1| |#4|)) (-15 -3295 (|#1| |#1| |#4|)) (-15 -3581 (|#4| |#1|)) (-15 -3558 ((-3 |#1| "failed") (-635 |#5|))) (-15 -4353 ((-635 |#5|) |#1|)) (-15 -3929 (|#1| (-635 |#5|))) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4117 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4249 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4353 ((-857) |#1|)) (-15 -3437 ((-112) |#1| |#1|))) -((-2947 (((-112) $ $) 7)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) 85)) (-4089 (((-635 $) (-635 |#4|)) 86)) (-3467 (((-635 |#3|) $) 33)) (-3291 (((-112) $) 26)) (-3282 (((-112) $) 17 (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) 101) (((-112) $) 97)) (-4095 ((|#4| |#4| $) 92)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) 27)) (-1293 (((-112) $ (-765)) 44)) (-4117 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4400))) (((-3 |#4| "failed") $ |#3|) 79)) (-4131 (($) 45 T CONST)) (-3287 (((-112) $) 22 (|has| |#1| (-554)))) (-3289 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3288 (((-112) $ $) 23 (|has| |#1| (-554)))) (-3290 (((-112) $) 25 (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3283 (((-635 |#4|) (-635 |#4|) $) 18 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) 19 (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) 36)) (-3557 (($ (-635 |#4|)) 35)) (-4205 (((-3 $ "failed") $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1424 (($ $) 68 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#4| $) 67 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4090 ((|#4| |#4| $) 87)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) 105)) (-2096 (((-635 |#4|) $) 52 (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) 104) (((-112) $) 103)) (-3581 ((|#3| $) 34)) (-4126 (((-112) $ (-765)) 43)) (-2554 (((-635 |#4|) $) 53 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) 47)) (-3297 (((-635 |#3|) $) 32)) (-3296 (((-112) |#3| $) 31)) (-4123 (((-112) $ (-765)) 42)) (-3643 (((-1148) $) 9)) (-4204 (((-3 |#4| "failed") $) 83)) (-4104 (((-635 |#4|) $) 107)) (-4098 (((-112) |#4| $) 99) (((-112) $) 95)) (-4093 ((|#4| |#4| $) 90)) (-4106 (((-112) $ $) 110)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) 100) (((-112) $) 96)) (-4094 ((|#4| |#4| $) 91)) (-3644 (((-1110) $) 10)) (-4207 (((-3 |#4| "failed") $) 84)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4086 (((-3 $ "failed") $ |#4|) 78)) (-4175 (($ $ |#4|) 77)) (-2098 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) 38)) (-3807 (((-112) $) 41)) (-3972 (($) 40)) (-4355 (((-765) $) 106)) (-2097 (((-765) |#4| $) 54 (-12 (|has| |#4| (-1091)) (|has| $ (-6 -4400)))) (((-765) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4400)))) (-3804 (($ $) 39)) (-4377 (((-533) $) 69 (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) 60)) (-3293 (($ $ |#3|) 28)) (-3295 (($ $ |#3|) 30)) (-4091 (($ $) 88)) (-3294 (($ $ |#3|) 29)) (-4353 (((-857) $) 11) (((-635 |#4|) $) 37)) (-4085 (((-765) $) 76 (|has| |#3| (-367)))) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) "failed") (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) 98)) (-2099 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) 81)) (-4340 (((-112) |#3| $) 80)) (-3437 (((-112) $ $) 6)) (-4364 (((-765) $) 46 (|has| $ (-6 -4400))))) -(((-1199 |#1| |#2| |#3| |#4|) (-139) (-554) (-787) (-844) (-1056 |t#1| |t#2| |t#3|)) (T -1199)) -((-4106 (*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4105 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3728 (-635 *8)))) (-5 *3 (-635 *8)) (-4 *1 (-1199 *5 *6 *7 *8)))) (-4105 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3728 (-635 *9)))) (-5 *3 (-635 *9)) (-4 *1 (-1199 *6 *7 *8 *9)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *6)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-765)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-2 (|:| -4268 (-635 *6)) (|:| -1846 (-635 *6)))))) (-4102 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4101 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1199 *5 *6 *7 *3)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112)))) (-4100 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4099 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4098 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4097 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-635 *7))) (-4 *1 (-1199 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) (-4249 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1199 *5 *6 *7 *2)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *2 (-1056 *5 *6 *7)))) (-4096 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1199 *5 *6 *7 *8)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)))) (-4095 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4094 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4093 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4092 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4091 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))) (-4090 (*1 *2 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1199 *4 *5 *6 *7)))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-635 (-2 (|:| -4268 *1) (|:| -1846 (-635 *7))))) (-5 *3 (-635 *7)) (-4 *1 (-1199 *4 *5 *6 *7)))) (-4207 (*1 *2 *1) (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4204 (*1 *2 *1) (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4205 (*1 *1 *1) (|partial| -12 (-4 *1 (-1199 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5)))) (-4340 (*1 *2 *3 *1) (-12 (-4 *1 (-1199 *4 *5 *3 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))) (-4117 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1199 *4 *5 *3 *2)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *2 (-1056 *4 *5 *3)))) (-4086 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4175 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-765))))) -(-13 (-969 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4400) (-6 -4401) (-15 -4106 ((-112) $ $)) (-15 -4105 ((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |t#4|))) "failed") (-635 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4105 ((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |t#4|))) "failed") (-635 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4104 ((-635 |t#4|) $)) (-15 -4355 ((-765) $)) (-15 -4103 ((-2 (|:| -4268 (-635 |t#4|)) (|:| -1846 (-635 |t#4|))) $)) (-15 -4102 ((-112) |t#4| $)) (-15 -4102 ((-112) $)) (-15 -4101 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4100 ((-112) |t#4| $)) (-15 -4099 ((-112) |t#4| $)) (-15 -4098 ((-112) |t#4| $)) (-15 -4097 ((-112) $ (-1 (-112) |t#4| (-635 |t#4|)))) (-15 -4100 ((-112) $)) (-15 -4099 ((-112) $)) (-15 -4098 ((-112) $)) (-15 -4249 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4096 ((-635 |t#4|) (-635 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4095 (|t#4| |t#4| $)) (-15 -4094 (|t#4| |t#4| $)) (-15 -4093 (|t#4| |t#4| $)) (-15 -4092 (|t#4| |t#4| $)) (-15 -4091 ($ $)) (-15 -4090 (|t#4| |t#4| $)) (-15 -4089 ((-635 $) (-635 |t#4|))) (-15 -4088 ((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |t#4|)))) (-635 |t#4|))) (-15 -4207 ((-3 |t#4| "failed") $)) (-15 -4204 ((-3 |t#4| "failed") $)) (-15 -4205 ((-3 $ "failed") $)) (-15 -4087 ((-635 |t#3|) $)) (-15 -4340 ((-112) |t#3| $)) (-15 -4117 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4086 ((-3 $ "failed") $ |t#4|)) (-15 -4175 ($ $ |t#4|)) (IF (|has| |t#3| (-367)) (-15 -4085 ((-765) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-608 (-635 |#4|)) . T) ((-608 (-857)) . T) ((-150 |#4|) . T) ((-609 (-533)) |has| |#4| (-609 (-533))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-487 |#4|) . T) ((-512 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1091) . T) ((-1204) . T)) -((-4112 (($ |#1| (-635 (-635 (-936 (-224)))) (-112)) 18)) (-4111 (((-112) $ (-112)) 17)) (-4110 (((-112) $) 16)) (-4108 (((-635 (-635 (-936 (-224)))) $) 13)) (-4107 ((|#1| $) 8)) (-4109 (((-112) $) 15))) -(((-1200 |#1|) (-10 -8 (-15 -4107 (|#1| $)) (-15 -4108 ((-635 (-635 (-936 (-224)))) $)) (-15 -4109 ((-112) $)) (-15 -4110 ((-112) $)) (-15 -4111 ((-112) $ (-112))) (-15 -4112 ($ |#1| (-635 (-635 (-936 (-224)))) (-112)))) (-967)) (T -1200)) -((-4112 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-112)) (-5 *1 (-1200 *2)) (-4 *2 (-967)))) (-4111 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-1200 *3)) (-4 *3 (-967)))) (-4107 (*1 *2 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-967))))) -(-10 -8 (-15 -4107 (|#1| $)) (-15 -4108 ((-635 (-635 (-936 (-224)))) $)) (-15 -4109 ((-112) $)) (-15 -4110 ((-112) $)) (-15 -4111 ((-112) $ (-112))) (-15 -4112 ($ |#1| (-635 (-635 (-936 (-224)))) (-112)))) -((-4114 (((-936 (-224)) (-936 (-224))) 25)) (-4113 (((-936 (-224)) (-224) (-224) (-224) (-224)) 10)) (-4116 (((-635 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-635 (-635 (-224)))) 35)) (-4243 (((-224) (-936 (-224)) (-936 (-224))) 21)) (-4241 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 22)) (-4115 (((-635 (-635 (-224))) (-544)) 31)) (-4244 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 20)) (-4246 (((-936 (-224)) (-936 (-224)) (-936 (-224))) 19)) (* (((-936 (-224)) (-224) (-936 (-224))) 18))) -(((-1201) (-10 -7 (-15 -4113 ((-936 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-936 (-224)) (-224) (-936 (-224)))) (-15 -4246 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4244 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4243 ((-224) (-936 (-224)) (-936 (-224)))) (-15 -4241 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4114 ((-936 (-224)) (-936 (-224)))) (-15 -4115 ((-635 (-635 (-224))) (-544))) (-15 -4116 ((-635 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-635 (-635 (-224))))))) (T -1201)) -((-4116 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-635 (-635 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 (-936 *4))) (-5 *1 (-1201)) (-5 *3 (-936 *4)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-1201)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-4241 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-4243 (*1 *2 *3 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-224)) (-5 *1 (-1201)))) (-4244 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (-4246 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-936 (-224))) (-5 *3 (-224)) (-5 *1 (-1201)))) (-4113 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)) (-5 *3 (-224))))) -(-10 -7 (-15 -4113 ((-936 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-936 (-224)) (-224) (-936 (-224)))) (-15 -4246 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4244 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4243 ((-224) (-936 (-224)) (-936 (-224)))) (-15 -4241 ((-936 (-224)) (-936 (-224)) (-936 (-224)))) (-15 -4114 ((-936 (-224)) (-936 (-224)))) (-15 -4115 ((-635 (-635 (-224))) (-544))) (-15 -4116 ((-635 (-936 (-224))) (-936 (-224)) (-936 (-224)) (-936 (-224)) (-224) (-635 (-635 (-224)))))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4117 ((|#1| $ (-765)) 13)) (-4240 (((-765) $) 12)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4353 (((-951 |#1|) $) 10) (($ (-951 |#1|)) 9) (((-857) $) 23 (|has| |#1| (-608 (-857))))) (-3437 (((-112) $ $) 16 (|has| |#1| (-1091))))) -(((-1202 |#1|) (-13 (-488 (-951 |#1|)) (-10 -8 (-15 -4117 (|#1| $ (-765))) (-15 -4240 ((-765) $)) (IF (|has| |#1| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|))) (-1204)) (T -1202)) -((-4117 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-1202 *2)) (-4 *2 (-1204)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1202 *3)) (-4 *3 (-1204))))) -(-13 (-488 (-951 |#1|)) (-10 -8 (-15 -4117 (|#1| $ (-765))) (-15 -4240 ((-765) $)) (IF (|has| |#1| (-608 (-857))) (-6 (-608 (-857))) |%noBranch|) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|))) -((-4120 (((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)) (-544)) 80)) (-4118 (((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|))) 74)) (-4119 (((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|))) 59))) -(((-1203 |#1|) (-10 -7 (-15 -4118 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)))) (-15 -4119 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)))) (-15 -4120 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)) (-544)))) (-349)) (T -1203)) -((-4120 (*1 *2 *3 *4) (-12 (-5 *4 (-544)) (-4 *5 (-349)) (-5 *2 (-404 (-1160 (-1160 *5)))) (-5 *1 (-1203 *5)) (-5 *3 (-1160 (-1160 *5))))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-404 (-1160 (-1160 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-1160 (-1160 *4))))) (-4118 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-404 (-1160 (-1160 *4)))) (-5 *1 (-1203 *4)) (-5 *3 (-1160 (-1160 *4)))))) -(-10 -7 (-15 -4118 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)))) (-15 -4119 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)))) (-15 -4120 ((-404 (-1160 (-1160 |#1|))) (-1160 (-1160 |#1|)) (-544)))) -NIL -(((-1204) (-139)) (T -1204)) -NIL -(-13 (-10 -7 (-6 -2407))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 9) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-1205) (-1073)) (T -1205)) -NIL -(-1073) -((-4124 (((-112)) 14)) (-4121 (((-1259) (-635 |#1|) (-635 |#1|)) 18) (((-1259) (-635 |#1|)) 19)) (-4126 (((-112) |#1| |#1|) 31 (|has| |#1| (-844)))) (-4123 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-4125 ((|#1| (-635 |#1|)) 32 (|has| |#1| (-844))) ((|#1| (-635 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-4122 (((-2 (|:| -3630 (-635 |#1|)) (|:| -3629 (-635 |#1|)))) 16))) -(((-1206 |#1|) (-10 -7 (-15 -4121 ((-1259) (-635 |#1|))) (-15 -4121 ((-1259) (-635 |#1|) (-635 |#1|))) (-15 -4122 ((-2 (|:| -3630 (-635 |#1|)) (|:| -3629 (-635 |#1|))))) (-15 -4123 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4123 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4125 (|#1| (-635 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4124 ((-112))) (IF (|has| |#1| (-844)) (PROGN (-15 -4125 (|#1| (-635 |#1|))) (-15 -4126 ((-112) |#1| |#1|))) |%noBranch|)) (-1091)) (T -1206)) -((-4126 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-844)) (-4 *3 (-1091)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-844)) (-5 *1 (-1206 *2)))) (-4124 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1091)))) (-4125 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1206 *2)) (-4 *2 (-1091)))) (-4123 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1091)) (-5 *2 (-112)) (-5 *1 (-1206 *3)))) (-4123 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1091)))) (-4122 (*1 *2) (-12 (-5 *2 (-2 (|:| -3630 (-635 *3)) (|:| -3629 (-635 *3)))) (-5 *1 (-1206 *3)) (-4 *3 (-1091)))) (-4121 (*1 *2 *3 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-5 *2 (-1259)) (-5 *1 (-1206 *4)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-5 *2 (-1259)) (-5 *1 (-1206 *4))))) -(-10 -7 (-15 -4121 ((-1259) (-635 |#1|))) (-15 -4121 ((-1259) (-635 |#1|) (-635 |#1|))) (-15 -4122 ((-2 (|:| -3630 (-635 |#1|)) (|:| -3629 (-635 |#1|))))) (-15 -4123 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4123 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4125 (|#1| (-635 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4124 ((-112))) (IF (|has| |#1| (-844)) (PROGN (-15 -4125 (|#1| (-635 |#1|))) (-15 -4126 ((-112) |#1| |#1|))) |%noBranch|)) -((-4127 (((-1259) (-635 (-1166)) (-635 (-1166))) 13) (((-1259) (-635 (-1166))) 11)) (-4129 (((-1259)) 14)) (-4128 (((-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166))))) 18))) -(((-1207) (-10 -7 (-15 -4127 ((-1259) (-635 (-1166)))) (-15 -4127 ((-1259) (-635 (-1166)) (-635 (-1166)))) (-15 -4128 ((-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166)))))) (-15 -4129 ((-1259))))) (T -1207)) -((-4129 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1207)))) (-4128 (*1 *2) (-12 (-5 *2 (-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166))))) (-5 *1 (-1207)))) (-4127 (*1 *2 *3 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207))))) -(-10 -7 (-15 -4127 ((-1259) (-635 (-1166)))) (-15 -4127 ((-1259) (-635 (-1166)) (-635 (-1166)))) (-15 -4128 ((-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166)))))) (-15 -4129 ((-1259)))) -((-4181 (($ $) 17)) (-4130 (((-112) $) 24))) -(((-1208 |#1|) (-10 -8 (-15 -4181 (|#1| |#1|)) (-15 -4130 ((-112) |#1|))) (-1209)) (T -1208)) -NIL -(-10 -8 (-15 -4181 (|#1| |#1|)) (-15 -4130 ((-112) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 52)) (-4376 (((-404 $) $) 53)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-4130 (((-112) $) 54)) (-2545 (((-112) $) 31)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 51)) (-3865 (((-3 $ "failed") $ $) 43)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44)) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24))) -(((-1209) (-139)) (T -1209)) -((-4130 (*1 *2 *1) (-12 (-4 *1 (-1209)) (-5 *2 (-112)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-404 *1)) (-4 *1 (-1209)))) (-4181 (*1 *1 *1) (-4 *1 (-1209))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-404 *1)) (-4 *1 (-1209))))) -(-13 (-450) (-10 -8 (-15 -4130 ((-112) $)) (-15 -4376 ((-404 $) $)) (-15 -4181 ($ $)) (-15 -4139 ((-404 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-289) . T) ((-450) . T) ((-554) . T) ((-641 $) . T) ((-711 $) . T) ((-720) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-4132 (($ $ $) NIL)) (-4133 (($ $ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL))) -(((-1210) (-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))) (T -1210)) -((-4133 (*1 *1 *1 *1) (-5 *1 (-1210))) (-4132 (*1 *1 *1 *1) (-5 *1 (-1210))) (-4131 (*1 *1) (-5 *1 (-1210)))) -(-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($)))) -((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#))) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-4132 (($ $ $) NIL)) (-4133 (($ $ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL))) -(((-1211) (-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))) (T -1211)) -((-4133 (*1 *1 *1 *1) (-5 *1 (-1211))) (-4132 (*1 *1 *1 *1) (-5 *1 (-1211))) (-4131 (*1 *1) (-5 *1 (-1211)))) -(-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($)))) -((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#))) -((-2947 (((-112) $ $) NIL)) (-3521 (((-765)) NIL)) (-4131 (($) NIL)) (-3377 (($) NIL)) (-2913 (($ $ $) NIL) (($) NIL T CONST)) (-3242 (($ $ $) NIL) (($) NIL T CONST)) (-2160 (((-912) $) NIL)) (-3643 (((-1148) $) NIL)) (-2535 (($ (-912)) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) NIL)) (-4132 (($ $ $) NIL)) (-4133 (($ $ $) NIL)) (-2945 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL)) (-3067 (((-112) $ $) NIL))) -(((-1212) (-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($))))) (T -1212)) -((-4133 (*1 *1 *1 *1) (-5 *1 (-1212))) (-4132 (*1 *1 *1 *1) (-5 *1 (-1212))) (-4131 (*1 *1) (-5 *1 (-1212)))) -(-13 (-838) (-10 -8 (-15 -4133 ($ $ $)) (-15 -4132 ($ $ $)) (-15 -4131 ($)))) -((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) (#1=(QUOTE T) #1#))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3514 (((-1243 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 10)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2213 (($ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2211 (((-112) $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-4177 (($ $ (-544)) NIL) (($ $ (-544) (-544)) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) NIL)) (-4138 (((-1243 |#1| |#2| |#3|) $) NIL)) (-4135 (((-3 (-1243 |#1| |#2| |#3|) "failed") $) NIL)) (-4136 (((-1243 |#1| |#2| |#3|) $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4030 (((-544) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1243 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1166) #2#) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-3 (-406 (-544)) #2#) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362)))) (((-3 (-544) #2#) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))))) (-3557 (((-1243 |#1| |#2| |#3|) $) NIL) (((-1166) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (((-406 (-544)) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362)))) (((-544) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))))) (-4137 (($ $) NIL) (($ (-544) $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-1243 |#1| |#2| |#3|)) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-1243 |#1| |#2| |#3|))) (|:| |vec| (-1253 (-1243 |#1| |#2| |#3|)))) (-682 $) (-1253 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-634 (-544))) (|has| |#1| (-362)))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-634 (-544))) (|has| |#1| (-362))))) (-3866 (((-3 $ "failed") $) NIL)) (-4134 (((-406 (-939 |#1|)) $ (-544)) NIL (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) NIL (|has| |#1| (-554)))) (-3377 (($) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3587 (((-112) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-879 (-377))) (|has| |#1| (-362)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-879 (-544))) (|has| |#1| (-362))))) (-4178 (((-544) $) NIL) (((-544) $ (-544)) NIL)) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL (|has| |#1| (-362)))) (-3381 (((-1243 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3848 (((-3 $ "failed") $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))))) (-3588 (((-112) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-4183 (($ $ (-912)) NIL)) (-4222 (($ (-1 |#1| (-544)) $) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-544)) 17) (($ $ (-1072) (-544)) NIL) (($ $ (-635 (-1072)) (-635 (-544))) NIL)) (-2913 (($ $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3242 (($ $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4185 (($ (-544) (-1243 |#1| |#2| |#3|)) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 25 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 26 (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1141)) (|has| |#1| (-362))) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3513 (($ $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3515 (((-1243 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-544)) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-544))))) (($ $ (-1166) (-1243 |#1| |#2| |#3|)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-512 (-1166) (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 (-1243 |#1| |#2| |#3|))) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-512 (-1166) (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-292 (-1243 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-292 (-1243 |#1| |#2| |#3|))) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-635 (-1243 |#1| |#2| |#3|)) (-635 (-1243 |#1| |#2| |#3|))) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-308 (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) NIL) (($ $ $) NIL (|has| (-544) (-1102))) (($ $ (-1243 |#1| |#2| |#3|)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-285 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-1250 |#2|)) 24) (($ $ (-765)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 23 (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-3378 (($ $) NIL (|has| |#1| (-362)))) (-3380 (((-1243 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-4355 (((-544) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4377 (((-533) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-609 (-533))) (|has| |#1| (-362)))) (((-377) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-362)))) (((-883 (-377)) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-609 (-883 (-377)))) (|has| |#1| (-362)))) (((-883 (-544)) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-609 (-883 (-544)))) (|has| |#1| (-362))))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1243 |#1| |#2| |#3|)) NIL) (($ (-1250 |#2|)) 22) (($ (-1166)) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-1166))) (|has| |#1| (-362)))) (($ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554)))) (($ (-406 (-544))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-1031 (-544))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-544))))))) (-4084 ((|#1| $ (-544)) NIL)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 11)) (-3516 (((-1243 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-543)) (|has| |#1| (-362))))) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-903)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3787 (($ $) NIL (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))))) (-3040 (($) 19 T CONST)) (-3046 (($) 15 T CONST)) (-3051 (($ $ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-2945 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-2946 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-3067 (((-112) $ $) NIL (-3936 (-12 (|has| (-1243 |#1| |#2| |#3|) (-814)) (|has| |#1| (-362))) (-12 (|has| (-1243 |#1| |#2| |#3|) (-844)) (|has| |#1| (-362)))))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362))) (($ (-1243 |#1| |#2| |#3|) (-1243 |#1| |#2| |#3|)) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 20)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1243 |#1| |#2| |#3|)) NIL (|has| |#1| (-362))) (($ (-1243 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-1213 |#1| |#2| |#3|) (-13 (-1217 |#1| (-1243 |#1| |#2| |#3|)) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1213)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))) -(-13 (-1217 |#1| (-1243 |#1| |#2| |#3|)) (-10 -8 (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) -((-4365 (((-1213 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1213 |#1| |#3| |#5|)) 23))) -(((-1214 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4365 ((-1213 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1213 |#1| |#3| |#5|)))) (-1042) (-1042) (-1166) (-1166) |#1| |#2|) (T -1214)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5 *7 *9)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1213 *6 *8 *10)) (-5 *1 (-1214 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1166))))) -(-10 -7 (-15 -4365 ((-1213 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1213 |#1| |#3| |#5|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-544)) 101) (($ $ (-544) (-544)) 100)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 108)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 165 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 166 (|has| |#1| (-362)))) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) 156 (|has| |#1| (-362)))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 176)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 160 (|has| |#1| (-362)))) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-4134 (((-406 (-939 |#1|)) $ (-544)) 174 (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) 173 (|has| |#1| (-554)))) (-2942 (($ $ $) 159 (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-4130 (((-112) $) 167 (|has| |#1| (-362)))) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-544) $) 103) (((-544) $ (-544)) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 104)) (-4222 (($ (-1 |#1| (-544)) $) 175)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-544)) 64) (($ $ (-1072) (-544)) 79) (($ $ (-635 (-1072)) (-635 (-544))) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-2041 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 168 (|has| |#1| (-362)))) (-4219 (($ $) 172 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 171 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 153 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-4139 (((-404 $) $) 164 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 161 (|has| |#1| (-362)))) (-4175 (($ $ (-544)) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-544)))))) (-1732 (((-765) $) 157 (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) 107) (($ $ $) 84 (|has| (-544) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 158 (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (-4355 (((-544) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554)))) (-4084 ((|#1| $ (-544)) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544))))))) -(((-1215 |#1|) (-139) (-1042)) (T -1215)) -((-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-4 *3 (-1042)) (-4 *1 (-1215 *3)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-544))) (-4 *1 (-1215 *3)) (-4 *3 (-1042)))) (-4134 (*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1215 *4)) (-4 *4 (-1042)) (-4 *4 (-554)) (-5 *2 (-406 (-939 *4))))) (-4134 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-4 *1 (-1215 *4)) (-4 *4 (-1042)) (-4 *4 (-554)) (-5 *2 (-406 (-939 *4))))) (-4219 (*1 *1 *1) (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))) (-4219 (*1 *1 *1 *2) (-3936 (-12 (-5 *2 (-1166)) (-4 *1 (-1215 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-544)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1215 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -3467 ((-635 *2) *3))) (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544))))))))) -(-13 (-1232 |t#1| (-544)) (-10 -8 (-15 -4225 ($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |t#1|))))) (-15 -4222 ($ (-1 |t#1| (-544)) $)) (IF (|has| |t#1| (-554)) (PROGN (-15 -4134 ((-406 (-939 |t#1|)) $ (-544))) (-15 -4134 ((-406 (-939 |t#1|)) $ (-544) (-544)))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (IF (|has| |t#1| (-15 -4219 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -3467 ((-635 (-1166)) |t#1|))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-953)) (IF (|has| |t#1| (-29 (-544))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-544)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-544) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 $ $) |has| (-544) (-1102)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-641 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) ((-966 |#1| #1# (-1072)) . T) ((-914) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1048 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1209) |has| |#1| (-362)) ((-1232 |#1| #1#) . T)) -((-3589 (((-112) $) 12)) (-3558 (((-3 |#3| #1="failed") $) 17) (((-3 (-1166) #1#) $) NIL) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) NIL)) (-3557 ((|#3| $) 14) (((-1166) $) NIL) (((-406 (-544)) $) NIL) (((-544) $) NIL))) -(((-1216 |#1| |#2| |#3|) (-10 -8 (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -3558 ((-3 |#3| #1#) |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3589 ((-112) |#1|))) (-1217 |#2| |#3|) (-1042) (-1246 |#2|)) (T -1216)) -NIL -(-10 -8 (-15 -3558 ((-3 (-544) #1="failed") |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3558 ((-3 (-1166) #1#) |#1|)) (-15 -3557 ((-1166) |#1|)) (-15 -3558 ((-3 |#3| #1#) |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3589 ((-112) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3514 ((|#2| $) 231 (-3240 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-544)) 101) (($ $ (-544) (-544)) 100)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 108)) (-4138 ((|#2| $) 267)) (-4135 (((-3 |#2| "failed") $) 263)) (-4136 ((|#2| $) 264)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-3089 (((-404 (-1160 $)) (-1160 $)) 240 (-3240 (|has| |#2| (-903)) (|has| |#1| (-362))))) (-4181 (($ $) 165 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 166 (|has| |#1| (-362)))) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 237 (-3240 (|has| |#2| (-903)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) 156 (|has| |#1| (-362)))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4030 (((-544) $) 249 (-3240 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 176)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#2| #2="failed") $) 270) (((-3 (-544) #2#) $) 260 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#1| (-362)))) (((-3 (-406 (-544)) #2#) $) 258 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#1| (-362)))) (((-3 (-1166) #2#) $) 242 (-3240 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-3557 ((|#2| $) 271) (((-544) $) 259 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#1| (-362)))) (((-406 (-544)) $) 257 (-3240 (|has| |#2| (-1031 (-544))) (|has| |#1| (-362)))) (((-1166) $) 241 (-3240 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362))))) (-4137 (($ $) 266) (($ (-544) $) 265)) (-2943 (($ $ $) 160 (|has| |#1| (-362)))) (-4366 (($ $) 63)) (-2401 (((-682 |#2|) (-682 $)) 221 (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) 220 (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 219 (-3240 (|has| |#2| (-634 (-544))) (|has| |#1| (-362)))) (((-682 (-544)) (-682 $)) 218 (-3240 (|has| |#2| (-634 (-544))) (|has| |#1| (-362))))) (-3866 (((-3 $ "failed") $) 33)) (-4134 (((-406 (-939 |#1|)) $ (-544)) 174 (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) 173 (|has| |#1| (-554)))) (-3377 (($) 233 (-3240 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-2942 (($ $ $) 159 (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-4130 (((-112) $) 167 (|has| |#1| (-362)))) (-3587 (((-112) $) 247 (-3240 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 225 (-3240 (|has| |#2| (-879 (-377))) (|has| |#1| (-362)))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 224 (-3240 (|has| |#2| (-879 (-544))) (|has| |#1| (-362))))) (-4178 (((-544) $) 103) (((-544) $ (-544)) 102)) (-2545 (((-112) $) 31)) (-3379 (($ $) 229 (|has| |#1| (-362)))) (-3381 ((|#2| $) 227 (|has| |#1| (-362)))) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-3848 (((-3 $ "failed") $) 261 (-3240 (|has| |#2| (-1141)) (|has| |#1| (-362))))) (-3588 (((-112) $) 248 (-3240 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-4183 (($ $ (-912)) 104)) (-4222 (($ (-1 |#1| (-544)) $) 175)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-544)) 64) (($ $ (-1072) (-544)) 79) (($ $ (-635 (-1072)) (-635 (-544))) 78)) (-2913 (($ $ $) 251 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-3242 (($ $ $) 252 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-4365 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-362)))) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-2041 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-4185 (($ (-544) |#2|) 268)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 168 (|has| |#1| (-362)))) (-4219 (($ $) 172 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 171 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3849 (($) 262 (-3240 (|has| |#2| (-1141)) (|has| |#1| (-362))) CONST)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 153 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-3513 (($ $) 232 (-3240 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-3515 ((|#2| $) 235 (-3240 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3087 (((-404 (-1160 $)) (-1160 $)) 238 (-3240 (|has| |#2| (-903)) (|has| |#1| (-362))))) (-3088 (((-404 (-1160 $)) (-1160 $)) 239 (-3240 (|has| |#2| (-903)) (|has| |#1| (-362))))) (-4139 (((-404 $) $) 164 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 161 (|has| |#1| (-362)))) (-4175 (($ $ (-544)) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-544))))) (($ $ (-1166) |#2|) 212 (-3240 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-1166)) (-635 |#2|)) 211 (-3240 (|has| |#2| (-512 (-1166) |#2|)) (|has| |#1| (-362)))) (($ $ (-635 (-292 |#2|))) 210 (-3240 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-292 |#2|)) 209 (-3240 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) 208 (-3240 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-635 |#2|) (-635 |#2|)) 207 (-3240 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-1732 (((-765) $) 157 (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) 107) (($ $ $) 84 (|has| (-544) (-1102))) (($ $ |#2|) 206 (-3240 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 158 (|has| |#1| (-362)))) (-4217 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) 216 (|has| |#1| (-362))) (($ $ (-765)) 87 (-3936 (-3240 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 85 (-3936 (-3240 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) 92 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) 91 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) 90 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) 89 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-3378 (($ $) 230 (|has| |#1| (-362)))) (-3380 ((|#2| $) 228 (|has| |#1| (-362)))) (-4355 (((-544) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-4377 (((-224) $) 246 (-3240 (|has| |#2| (-1013)) (|has| |#1| (-362)))) (((-377) $) 245 (-3240 (|has| |#2| (-1013)) (|has| |#1| (-362)))) (((-533) $) 244 (-3240 (|has| |#2| (-609 (-533))) (|has| |#1| (-362)))) (((-883 (-377)) $) 223 (-3240 (|has| |#2| (-609 (-883 (-377)))) (|has| |#1| (-362)))) (((-883 (-544)) $) 222 (-3240 (|has| |#2| (-609 (-883 (-544)))) (|has| |#1| (-362))))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 236 (-3240 (-3240 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#1| (-362))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 269) (($ (-1166)) 243 (-3240 (|has| |#2| (-1031 (-1166))) (|has| |#1| (-362)))) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554)))) (-4084 ((|#1| $ (-544)) 62)) (-3084 (((-3 $ "failed") $) 51 (-3936 (-3240 (-3936 (|has| |#2| (-144)) (-3240 (|has| $ (-144)) (|has| |#2| (-903)))) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3516 ((|#2| $) 234 (-3240 (|has| |#2| (-543)) (|has| |#1| (-362))))) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3787 (($ $) 250 (-3240 (|has| |#2| (-814)) (|has| |#1| (-362))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) 214 (|has| |#1| (-362))) (($ $ (-765)) 88 (-3936 (-3240 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 86 (-3936 (-3240 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) 96 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166) (-765)) 95 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-635 (-1166))) 94 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))))) (($ $ (-1166)) 93 (-3936 (-3240 (|has| |#2| (-893 (-1166))) (|has| |#1| (-362))) (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))))) (-2945 (((-112) $ $) 254 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-2946 (((-112) $ $) 255 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 253 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-3067 (((-112) $ $) 256 (-3240 (|has| |#2| (-844)) (|has| |#1| (-362))))) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362))) (($ |#2| |#2|) 226 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-362))) (($ |#2| $) 204 (|has| |#1| (-362))) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544))))))) -(((-1217 |#1| |#2|) (-139) (-1042) (-1246 |t#1|)) (T -1217)) -((-4355 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1246 *3)) (-5 *2 (-544)))) (-4185 (*1 *1 *2 *3) (-12 (-5 *2 (-544)) (-4 *4 (-1042)) (-4 *1 (-1217 *4 *3)) (-4 *3 (-1246 *4)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3)))) (-4137 (*1 *1 *1) (-12 (-4 *1 (-1217 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1246 *2)))) (-4137 (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-4 *1 (-1217 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1246 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3)))) (-4135 (*1 *2 *1) (|partial| -12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3))))) -(-13 (-1215 |t#1|) (-1031 |t#2|) (-611 |t#2|) (-10 -8 (-15 -4185 ($ (-544) |t#2|)) (-15 -4355 ((-544) $)) (-15 -4138 (|t#2| $)) (-15 -4137 ($ $)) (-15 -4137 ($ (-544) $)) (-15 -4136 (|t#2| $)) (-15 -4135 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-362)) (-6 (-984 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-544)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 |#2|) |has| |#1| (-362)) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-362)) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) -3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-146) -3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-611 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 #3=(-1166)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) ((-611 |#1|) |has| |#1| (-171)) ((-611 |#2|) . T) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-609 (-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) ((-609 (-377)) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) ((-609 (-533)) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-544))))) ((-230 |#2|) |has| |#1| (-362)) ((-232) -3936 (|has| |#1| (-15 * (|#1| (-544) |#1|))) (-12 (|has| |#1| (-362)) (|has| |#2| (-232)))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 |#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) ((-285 $ $) |has| (-544) (-1102)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-362) |has| |#1| (-362)) ((-337 |#2|) |has| |#1| (-362)) ((-376 |#2|) |has| |#1| (-362)) ((-399 |#2|) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-512 (-1166) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|))) ((-512 |#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-641 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-641 |#1|) . T) ((-641 |#2|) |has| |#1| (-362)) ((-641 $) . T) ((-634 (-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-634 (-544)))) ((-634 |#2|) |has| |#1| (-362)) ((-711 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 |#2|) |has| |#1| (-362)) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-720) . T) ((-785) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-786) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-788) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-791) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-814) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-842) -12 (|has| |#1| (-362)) (|has| |#2| (-814))) ((-844) -3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-844))) (-12 (|has| |#1| (-362)) (|has| |#2| (-814)))) ((-893 (-1166)) -3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166))))) ((-879 (-377)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-879 (-544)))) ((-877 |#2|) |has| |#1| (-362)) ((-903) -12 (|has| |#1| (-362)) (|has| |#2| (-903))) ((-966 |#1| #1# (-1072)) . T) ((-914) |has| |#1| (-362)) ((-984 |#2|) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1013) -12 (|has| |#1| (-362)) (|has| |#2| (-1013))) ((-1031 (-406 (-544))) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544)))) ((-1031 (-544)) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544)))) ((-1031 #3#) -12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))) ((-1031 |#2|) . T) ((-1048 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-1048 |#1|) . T) ((-1048 |#2|) |has| |#1| (-362)) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) -12 (|has| |#1| (-362)) (|has| |#2| (-1141))) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1204) |has| |#1| (-362)) ((-1209) |has| |#1| (-362)) ((-1215 |#1|) . T) ((-1232 |#1| #1#) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 70)) (-3514 ((|#2| $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-306))))) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 88)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-544)) 97) (($ $ (-544) (-544)) 99)) (-4180 (((-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|))) $) 47)) (-4138 ((|#2| $) 11)) (-4135 (((-3 |#2| "failed") $) 30)) (-4136 ((|#2| $) 31)) (-3891 (($ $) 192 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 168 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-903))))) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-903))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) 188 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 164 (|has| |#1| (-38 (-406 (-544)))))) (-4030 (((-544) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-814))))) (-4225 (($ (-1143 (-2 (|:| |k| (-544)) (|:| |c| |#1|)))) 57)) (-3893 (($ $) 196 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 172 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) 144) (((-3 (-544) #2#) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544))))) (((-3 (-406 (-544)) #2#) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544))))) (((-3 (-1166) #2#) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))))) (-3557 ((|#2| $) 143) (((-544) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544))))) (((-406 (-544)) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-544))))) (((-1166) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166)))))) (-4137 (($ $) 61) (($ (-544) $) 24)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 |#2|) (-682 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-634 (-544))))) (((-682 (-544)) (-682 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-634 (-544)))))) (-3866 (((-3 $ "failed") $) 77)) (-4134 (((-406 (-939 |#1|)) $ (-544)) 112 (|has| |#1| (-554))) (((-406 (-939 |#1|)) $ (-544) (-544)) 114 (|has| |#1| (-554)))) (-3377 (($) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-543))))) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3587 (((-112) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-814))))) (-3275 (((-112) $) 64)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-879 (-544)))))) (-4178 (((-544) $) 93) (((-544) $ (-544)) 95)) (-2545 (((-112) $) NIL)) (-3379 (($ $) NIL (|has| |#1| (-362)))) (-3381 ((|#2| $) 151 (|has| |#1| (-362)))) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3848 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1141))))) (-3588 (((-112) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-814))))) (-4183 (($ $ (-912)) 136)) (-4222 (($ (-1 |#1| (-544)) $) 132)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-544)) 19) (($ $ (-1072) (-544)) NIL) (($ $ (-635 (-1072)) (-635 (-544))) NIL)) (-2913 (($ $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-3242 (($ $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-4365 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-362)))) (-4349 (($ $) 162 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4185 (($ (-544) |#2|) 10)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 145 (|has| |#1| (-362)))) (-4219 (($ $) 214 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 219 (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))))))) (-3849 (($) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1141))) CONST)) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3513 (($ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-306))))) (-3515 ((|#2| $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-543))))) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-903))))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-903))))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-544)) 126)) (-3865 (((-3 $ "failed") $ $) 116 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) 160 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-544))))) (($ $ (-1166) |#2|) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|)))) (($ $ (-635 (-1166)) (-635 |#2|)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-512 (-1166) |#2|)))) (($ $ (-635 (-292 |#2|))) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|)))) (($ $ (-292 |#2|)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|)))) (($ $ (-635 |#2|) (-635 |#2|)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-544)) 91) (($ $ $) 79 (|has| (-544) (-1102))) (($ $ |#2|) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) 137 (-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-1166)) 140 (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166))))))) (-3378 (($ $) NIL (|has| |#1| (-362)))) (-3380 ((|#2| $) 152 (|has| |#1| (-362)))) (-4355 (((-544) $) 12)) (-3894 (($ $) 198 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 174 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 194 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 170 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 190 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 166 (|has| |#1| (-38 (-406 (-544)))))) (-4377 (((-224) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1013)))) (((-377) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1013)))) (((-533) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-609 (-533))))) (((-883 (-377)) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-609 (-883 (-544))))))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-362)) (|has| |#2| (-903))))) (-3274 (($ $) 124)) (-4353 (((-857) $) 244) (($ (-544)) 23) (($ |#1|) 21 (|has| |#1| (-171))) (($ |#2|) 20) (($ (-1166)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-1031 (-1166))))) (($ (-406 (-544))) 155 (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-544)) 74)) (-3084 (((-3 $ "failed") $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#1| (-362)) (|has| |#2| (-903))) (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144)))))) (-3511 (((-765)) 142)) (-4179 ((|#1| $) 90)) (-3516 ((|#2| $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-543))))) (-3897 (($ $) 204 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 180 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 200 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 176 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 208 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 184 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-544)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-544)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 210 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 186 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 206 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 182 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 202 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 178 (|has| |#1| (-38 (-406 (-544)))))) (-3787 (($ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-814))))) (-3040 (($) 13 T CONST)) (-3046 (($) 17 T CONST)) (-3051 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-765)) NIL (|has| |#1| (-362))) (($ $ (-765)) NIL (-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $) NIL (-3936 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-544) |#1|))))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-1166) (-765)) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-635 (-1166))) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166)))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-544) |#1|)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-893 (-1166))))))) (-2945 (((-112) $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-2946 (((-112) $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-3437 (((-112) $ $) 63)) (-3066 (((-112) $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-3067 (((-112) $ $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-844))))) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362))) (($ |#2| |#2|) 150 (|has| |#1| (-362)))) (-4244 (($ $) 213) (($ $ $) 68)) (-4246 (($ $ $) 66)) (** (($ $ (-912)) NIL) (($ $ (-765)) 73) (($ $ (-544)) 146 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-362))) (($ |#2| $) 147 (|has| |#1| (-362))) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-1218 |#1| |#2|) (-1217 |#1| |#2|) (-1042) (-1246 |#1|)) (T -1218)) -NIL -(-1217 |#1| |#2|) -((-4141 (((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112)) 12)) (-4140 (((-404 |#1|) |#1|) 22)) (-4139 (((-404 |#1|) |#1|) 21))) -(((-1219 |#1|) (-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1|)) (-15 -4141 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112)))) (-1229 (-544))) (T -1219)) -((-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544))))) (-4140 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544)))))) -(-10 -7 (-15 -4139 ((-404 |#1|) |#1|)) (-15 -4140 ((-404 |#1|) |#1|)) (-15 -4141 ((-2 (|:| |contp| (-544)) (|:| -2812 (-635 (-2 (|:| |irr| |#1|) (|:| -2530 (-544)))))) |#1| (-112)))) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4143 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4365 (((-1143 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-842)))) (-3630 ((|#1| $) 14)) (-3632 ((|#1| $) 10)) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-3628 (((-544) $) 18)) (-3629 ((|#1| $) 17)) (-3631 ((|#1| $) 11)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4142 (((-112) $) 16)) (-4370 (((-1143 |#1|) $) 38 (|has| |#1| (-842))) (((-1143 |#1|) (-635 $)) 37 (|has| |#1| (-842)))) (-4377 (($ |#1|) 25)) (-4353 (($ (-1079 |#1|)) 24) (((-857) $) 34 (|has| |#1| (-1091)))) (-4144 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3633 (($ $ (-544)) 13)) (-3437 (((-112) $ $) 27 (|has| |#1| (-1091))))) -(((-1220 |#1|) (-13 (-1084 |#1|) (-10 -8 (-15 -4144 ($ |#1|)) (-15 -4143 ($ |#1|)) (-15 -4353 ($ (-1079 |#1|))) (-15 -4142 ((-112) $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-1143 |#1|))) |%noBranch|))) (-1204)) (T -1220)) -((-4144 (*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1204)))) (-4143 (*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1204)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1079 *3)) (-4 *3 (-1204)) (-5 *1 (-1220 *3)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1204))))) -(-13 (-1084 |#1|) (-10 -8 (-15 -4144 ($ |#1|)) (-15 -4143 ($ |#1|)) (-15 -4353 ($ (-1079 |#1|))) (-15 -4142 ((-112) $)) (IF (|has| |#1| (-1091)) (-6 (-1091)) |%noBranch|) (IF (|has| |#1| (-842)) (-6 (-1085 |#1| (-1143 |#1|))) |%noBranch|))) -((-4365 (((-1143 |#2|) (-1 |#2| |#1|) (-1220 |#1|)) 23 (|has| |#1| (-842))) (((-1220 |#2|) (-1 |#2| |#1|) (-1220 |#1|)) 17))) -(((-1221 |#1| |#2|) (-10 -7 (-15 -4365 ((-1220 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) (IF (|has| |#1| (-842)) (-15 -4365 ((-1143 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) |%noBranch|)) (-1204) (-1204)) (T -1221)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-842)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1143 *6)) (-5 *1 (-1221 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1220 *6)) (-5 *1 (-1221 *5 *6))))) -(-10 -7 (-15 -4365 ((-1220 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) (IF (|has| |#1| (-842)) (-15 -4365 ((-1143 |#2|) (-1 |#2| |#1|) (-1220 |#1|))) |%noBranch|)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4173 (((-1253 |#2|) $ (-765)) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4171 (($ (-1160 |#2|)) NIL)) (-3469 (((-1160 $) $ (-1072)) NIL) (((-1160 |#2|) $) NIL)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2213 (($ $) NIL (|has| |#2| (-554)))) (-2211 (((-112) $) NIL (|has| |#2| (-554)))) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4162 (($ $ $) NIL (|has| |#2| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4181 (($ $) NIL (|has| |#2| (-450)))) (-4376 (((-404 $) $) NIL (|has| |#2| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-1733 (((-112) $ $) NIL (|has| |#2| (-362)))) (-4167 (($ $ (-765)) NIL)) (-4166 (($ $ (-765)) NIL)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-450)))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| #2="failed") $) NIL) (((-3 (-406 (-544)) #2#) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) NIL (|has| |#2| (-1031 (-544)))) (((-3 (-1072) #2#) $) NIL)) (-3557 ((|#2| $) NIL) (((-406 (-544)) $) NIL (|has| |#2| (-1031 (-406 (-544))))) (((-544) $) NIL (|has| |#2| (-1031 (-544)))) (((-1072) $) NIL)) (-4163 (($ $ $ (-1072)) NIL (|has| |#2| (-171))) ((|#2| $ $) NIL (|has| |#2| (-171)))) (-2943 (($ $ $) NIL (|has| |#2| (-362)))) (-4366 (($ $) NIL)) (-2401 (((-682 (-544)) (-682 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) NIL (|has| |#2| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#2|)) (|:| |vec| (-1253 |#2|))) (-682 $) (-1253 $)) NIL) (((-682 |#2|) (-682 $)) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-2942 (($ $ $) NIL (|has| |#2| (-362)))) (-4165 (($ $ $) NIL)) (-4160 (($ $ $) NIL (|has| |#2| (-554)))) (-4159 (((-2 (|:| -4361 |#2|) (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#2| (-362)))) (-3902 (($ $) NIL (|has| |#2| (-450))) (($ $ (-1072)) NIL (|has| |#2| (-450)))) (-3200 (((-635 $) $) NIL)) (-4130 (((-112) $) NIL (|has| |#2| (-903)))) (-1749 (($ $ |#2| (-765) $) NIL)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) NIL (-12 (|has| (-1072) (-879 (-377))) (|has| |#2| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) NIL (-12 (|has| (-1072) (-879 (-544))) (|has| |#2| (-879 (-544)))))) (-4178 (((-765) $ $) NIL (|has| |#2| (-554)))) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3848 (((-3 $ "failed") $) NIL (|has| |#2| (-1141)))) (-3470 (($ (-1160 |#2|) (-1072)) NIL) (($ (-1160 $) (-1072)) NIL)) (-4183 (($ $ (-765)) NIL)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-3276 (($ |#2| (-765)) 17) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) NIL) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-2913 (($ $ $) NIL (|has| |#2| (-844)))) (-3242 (($ $ $) NIL (|has| |#2| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-4172 (((-1160 |#2|) $) NIL)) (-3468 (((-3 (-1072) #4="failed") $) NIL)) (-3277 (($ $) NIL)) (-3575 ((|#2| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-3643 (((-1148) $) NIL)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) NIL)) (-3205 (((-3 (-635 $) #4#) $) NIL)) (-3204 (((-3 (-635 $) #4#) $) NIL)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) NIL)) (-4219 (($ $) NIL (|has| |#2| (-38 (-406 (-544)))))) (-3849 (($) NIL (|has| |#2| (-1141)) CONST)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 ((|#2| $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#2| (-450)))) (-3545 (($ (-635 $)) NIL (|has| |#2| (-450))) (($ $ $) NIL (|has| |#2| (-450)))) (-4145 (($ $ (-765) |#2| $) NIL)) (-3087 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) NIL (|has| |#2| (-903)))) (-4139 (((-404 $) $) NIL (|has| |#2| (-903)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#2| (-362)))) (-3865 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#2| (-362)))) (-4174 (($ $ (-635 (-292 $))) NIL) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#2|) NIL) (($ $ (-635 (-1072)) (-635 |#2|)) NIL) (($ $ (-1072) $) NIL) (($ $ (-635 (-1072)) (-635 $)) NIL)) (-1732 (((-765) $) NIL (|has| |#2| (-362)))) (-4206 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#2| (-554))) ((|#2| (-406 $) |#2|) NIL (|has| |#2| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#2| (-554)))) (-4170 (((-3 $ #5="failed") $ (-765)) NIL)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#2| (-362)))) (-4164 (($ $ (-1072)) NIL (|has| |#2| (-171))) ((|#2| $) NIL (|has| |#2| (-171)))) (-4217 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4355 (((-765) $) NIL) (((-765) $ (-1072)) NIL) (((-635 (-765)) $ (-635 (-1072))) NIL)) (-4377 (((-883 (-377)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#2| (-609 (-883 (-377)))))) (((-883 (-544)) $) NIL (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#2| (-609 (-883 (-544)))))) (((-533) $) NIL (-12 (|has| (-1072) (-609 (-533))) (|has| |#2| (-609 (-533)))))) (-3199 ((|#2| $) NIL (|has| |#2| (-450))) (($ $ (-1072)) NIL (|has| |#2| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-903))))) (-4161 (((-3 $ #5#) $ $) NIL (|has| |#2| (-554))) (((-3 (-406 $) #5#) (-406 $) $) NIL (|has| |#2| (-554)))) (-4353 (((-857) $) 13) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-1072)) NIL) (($ (-1250 |#1|)) 19) (($ (-406 (-544))) NIL (-3936 (|has| |#2| (-38 (-406 (-544)))) (|has| |#2| (-1031 (-406 (-544)))))) (($ $) NIL (|has| |#2| (-554)))) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-765)) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3084 (((-3 $ #1#) $) NIL (-3936 (-12 (|has| $ (-144)) (|has| |#2| (-903))) (|has| |#2| (-144))))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| |#2| (-171)))) (-2212 (((-112) $ $) NIL (|has| |#2| (-554)))) (-3040 (($) NIL T CONST)) (-3046 (($) 14 T CONST)) (-3051 (($ $ (-1072)) NIL) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) NIL) (($ $ (-1166)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1166) (-765)) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) NIL (|has| |#2| (-893 (-1166)))) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2945 (((-112) $ $) NIL (|has| |#2| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3437 (((-112) $ $) NIL)) (-3066 (((-112) $ $) NIL (|has| |#2| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#2| (-844)))) (-4356 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-406 (-544))) NIL (|has| |#2| (-38 (-406 (-544))))) (($ (-406 (-544)) $) NIL (|has| |#2| (-38 (-406 (-544))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1222 |#1| |#2|) (-13 (-1229 |#2|) (-611 (-1250 |#1|)) (-10 -8 (-15 -4145 ($ $ (-765) |#2| $)))) (-1166) (-1042)) (T -1222)) -((-4145 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1222 *4 *3)) (-14 *4 (-1166)) (-4 *3 (-1042))))) -(-13 (-1229 |#2|) (-611 (-1250 |#1|)) (-10 -8 (-15 -4145 ($ $ (-765) |#2| $)))) -((-4365 (((-1222 |#3| |#4|) (-1 |#4| |#2|) (-1222 |#1| |#2|)) 15))) -(((-1223 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 ((-1222 |#3| |#4|) (-1 |#4| |#2|) (-1222 |#1| |#2|)))) (-1166) (-1042) (-1166) (-1042)) (T -1223)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1222 *5 *6)) (-14 *5 (-1166)) (-4 *6 (-1042)) (-4 *8 (-1042)) (-5 *2 (-1222 *7 *8)) (-5 *1 (-1223 *5 *6 *7 *8)) (-14 *7 (-1166))))) -(-10 -7 (-15 -4365 ((-1222 |#3| |#4|) (-1 |#4| |#2|) (-1222 |#1| |#2|)))) -((-4148 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4146 ((|#1| |#3|) 13)) (-4147 ((|#3| |#3|) 19))) -(((-1224 |#1| |#2| |#3|) (-10 -7 (-15 -4146 (|#1| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-554) (-984 |#1|) (-1229 |#2|)) (T -1224)) -((-4148 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1224 *4 *5 *3)) (-4 *3 (-1229 *5)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *4 (-984 *3)) (-5 *1 (-1224 *3 *4 *2)) (-4 *2 (-1229 *4)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-1224 *2 *4 *3)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -4146 (|#1| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4148 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4150 (((-3 |#2| "failed") |#2| (-765) |#1|) 29)) (-4149 (((-3 |#2| "failed") |#2| (-765)) 30)) (-4152 (((-3 (-2 (|:| -3523 |#2|) (|:| -3522 |#2|)) "failed") |#2|) 42)) (-4153 (((-635 |#2|) |#2|) 44)) (-4151 (((-3 |#2| "failed") |#2| |#2|) 39))) -(((-1225 |#1| |#2|) (-10 -7 (-15 -4149 ((-3 |#2| "failed") |#2| (-765))) (-15 -4150 ((-3 |#2| "failed") |#2| (-765) |#1|)) (-15 -4151 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4152 ((-3 (-2 (|:| -3523 |#2|) (|:| -3522 |#2|)) "failed") |#2|)) (-15 -4153 ((-635 |#2|) |#2|))) (-13 (-554) (-146)) (-1229 |#1|)) (T -1225)) -((-4153 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-635 *3)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-1229 *4)))) (-4152 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-2 (|:| -3523 *3) (|:| -3522 *3))) (-5 *1 (-1225 *4 *3)) (-4 *3 (-1229 *4)))) (-4151 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1229 *3)))) (-4150 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-1229 *4)))) (-4149 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-1229 *4))))) -(-10 -7 (-15 -4149 ((-3 |#2| "failed") |#2| (-765))) (-15 -4150 ((-3 |#2| "failed") |#2| (-765) |#1|)) (-15 -4151 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4152 ((-3 (-2 (|:| -3523 |#2|) (|:| -3522 |#2|)) "failed") |#2|)) (-15 -4153 ((-635 |#2|) |#2|))) -((-4154 (((-3 (-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) "failed") |#2| |#2|) 31))) -(((-1226 |#1| |#2|) (-10 -7 (-15 -4154 ((-3 (-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) "failed") |#2| |#2|))) (-554) (-1229 |#1|)) (T -1226)) -((-4154 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-1226 *4 *3)) (-4 *3 (-1229 *4))))) -(-10 -7 (-15 -4154 ((-3 (-2 (|:| -2124 |#2|) (|:| -3285 |#2|)) "failed") |#2| |#2|))) -((-4155 ((|#2| |#2| |#2|) 19)) (-4156 ((|#2| |#2| |#2|) 30)) (-4157 ((|#2| |#2| |#2| (-765) (-765)) 36))) -(((-1227 |#1| |#2|) (-10 -7 (-15 -4155 (|#2| |#2| |#2|)) (-15 -4156 (|#2| |#2| |#2|)) (-15 -4157 (|#2| |#2| |#2| (-765) (-765)))) (-1042) (-1229 |#1|)) (T -1227)) -((-4157 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-1227 *4 *2)) (-4 *2 (-1229 *4)))) (-4156 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1229 *3)))) (-4155 (*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1229 *3))))) -(-10 -7 (-15 -4155 (|#2| |#2| |#2|)) (-15 -4156 (|#2| |#2| |#2|)) (-15 -4157 (|#2| |#2| |#2| (-765) (-765)))) -((-4173 (((-1253 |#2|) $ (-765)) 114)) (-3467 (((-635 (-1072)) $) 15)) (-4171 (($ (-1160 |#2|)) 67)) (-3201 (((-765) $) NIL) (((-765) $ (-635 (-1072))) 18)) (-3089 (((-404 (-1160 $)) (-1160 $)) 184)) (-4181 (($ $) 174)) (-4376 (((-404 $) $) 172)) (-3086 (((-3 (-635 (-1160 $)) "failed") (-635 (-1160 $)) (-1160 $)) 82)) (-4167 (($ $ (-765)) 71)) (-4166 (($ $ (-765)) 73)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3558 (((-3 |#2| #1="failed") $) 117) (((-3 (-406 (-544)) #1#) $) NIL) (((-3 (-544) #1#) $) NIL) (((-3 (-1072) #1#) $) NIL)) (-3557 ((|#2| $) 115) (((-406 (-544)) $) NIL) (((-544) $) NIL) (((-1072) $) NIL)) (-4160 (($ $ $) 151)) (-4159 (((-2 (|:| -4361 |#2|) (|:| -2124 $) (|:| -3285 $)) $ $) 153)) (-4178 (((-765) $ $) 169)) (-3848 (((-3 $ "failed") $) 123)) (-3276 (($ |#2| (-765)) NIL) (($ $ (-1072) (-765)) 47) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-3202 (((-765) $) NIL) (((-765) $ (-1072)) 42) (((-635 (-765)) $ (-635 (-1072))) 43)) (-4172 (((-1160 |#2|) $) 59)) (-3468 (((-3 (-1072) "failed") $) 40)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) 70)) (-4219 (($ $) 196)) (-3849 (($) 119)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 181)) (-3087 (((-404 (-1160 $)) (-1160 $)) 88)) (-3088 (((-404 (-1160 $)) (-1160 $)) 86)) (-4139 (((-404 $) $) 107)) (-4174 (($ $ (-635 (-292 $))) 39) (($ $ (-292 $)) NIL) (($ $ $ $) NIL) (($ $ (-635 $) (-635 $)) NIL) (($ $ (-1072) |#2|) 31) (($ $ (-635 (-1072)) (-635 |#2|)) 28) (($ $ (-1072) $) 25) (($ $ (-635 (-1072)) (-635 $)) 23)) (-1732 (((-765) $) 187)) (-4206 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) 147) ((|#2| (-406 $) |#2|) 186) (((-406 $) $ (-406 $)) 168)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 190)) (-4217 (($ $ (-1072)) 140) (($ $ (-635 (-1072))) NIL) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL) (($ $ (-765)) NIL) (($ $) 138) (($ $ (-1166)) NIL) (($ $ (-635 (-1166))) NIL) (($ $ (-1166) (-765)) NIL) (($ $ (-635 (-1166)) (-635 (-765))) NIL) (($ $ (-1 |#2| |#2|) (-765)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4355 (((-765) $) NIL) (((-765) $ (-1072)) 16) (((-635 (-765)) $ (-635 (-1072))) 20)) (-3199 ((|#2| $) NIL) (($ $ (-1072)) 125)) (-4161 (((-3 $ "failed") $ $) 161) (((-3 (-406 $) "failed") (-406 $) $) 157)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#2|) NIL) (($ (-1072)) 51) (($ (-406 (-544))) NIL) (($ $) NIL))) -(((-1228 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -4206 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1732 ((-765) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -4219 (|#1| |#1|)) (-15 -4206 (|#2| (-406 |#1|) |#2|)) (-15 -4158 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4159 ((-2 (|:| -4361 |#2|) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -4160 (|#1| |#1| |#1|)) (-15 -4161 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -4161 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4178 ((-765) |#1| |#1|)) (-15 -4206 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4166 (|#1| |#1| (-765))) (-15 -4167 (|#1| |#1| (-765))) (-15 -4168 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| (-765))) (-15 -4171 (|#1| (-1160 |#2|))) (-15 -4172 ((-1160 |#2|) |#1|)) (-15 -4173 ((-1253 |#2|) |#1| (-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4206 (|#2| |#1| |#2|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3089 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3199 (|#1| |#1| (-1072))) (-15 -3467 ((-635 (-1072)) |#1|)) (-15 -3201 ((-765) |#1| (-635 (-1072)))) (-15 -3201 ((-765) |#1|)) (-15 -3276 (|#1| |#1| (-635 (-1072)) (-635 (-765)))) (-15 -3276 (|#1| |#1| (-1072) (-765))) (-15 -3202 ((-635 (-765)) |#1| (-635 (-1072)))) (-15 -3202 ((-765) |#1| (-1072))) (-15 -3468 ((-3 (-1072) "failed") |#1|)) (-15 -4355 ((-635 (-765)) |#1| (-635 (-1072)))) (-15 -4355 ((-765) |#1| (-1072))) (-15 -4353 (|#1| (-1072))) (-15 -3558 ((-3 (-1072) #1="failed") |#1|)) (-15 -3557 ((-1072) |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1072)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-1072) |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1072)) (-635 |#2|))) (-15 -4174 (|#1| |#1| (-1072) |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4355 ((-765) |#1|)) (-15 -3276 (|#1| |#2| (-765))) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3202 ((-765) |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -4217 (|#1| |#1| (-635 (-1072)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1072) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1072)))) (-15 -4217 (|#1| |#1| (-1072))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) (-1229 |#2|) (-1042)) (T -1228)) -NIL -(-10 -8 (-15 -4353 (|#1| |#1|)) (-15 -3090 ((-1160 |#1|) (-1160 |#1|) (-1160 |#1|))) (-15 -4376 ((-404 |#1|) |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -3849 (|#1|)) (-15 -3848 ((-3 |#1| "failed") |#1|)) (-15 -4206 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1732 ((-765) |#1|)) (-15 -3264 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -4219 (|#1| |#1|)) (-15 -4206 (|#2| (-406 |#1|) |#2|)) (-15 -4158 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4159 ((-2 (|:| -4361 |#2|) (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| |#1|)) (-15 -4160 (|#1| |#1| |#1|)) (-15 -4161 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -4161 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4178 ((-765) |#1| |#1|)) (-15 -4206 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4166 (|#1| |#1| (-765))) (-15 -4167 (|#1| |#1| (-765))) (-15 -4168 ((-2 (|:| -2124 |#1|) (|:| -3285 |#1|)) |#1| (-765))) (-15 -4171 (|#1| (-1160 |#2|))) (-15 -4172 ((-1160 |#2|) |#1|)) (-15 -4173 ((-1253 |#2|) |#1| (-765))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4217 (|#1| |#1| (-1 |#2| |#2|) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1166) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1166)))) (-15 -4217 (|#1| |#1| (-1166))) (-15 -4217 (|#1| |#1|)) (-15 -4217 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4206 (|#2| |#1| |#2|)) (-15 -4139 ((-404 |#1|) |#1|)) (-15 -3089 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3088 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3087 ((-404 (-1160 |#1|)) (-1160 |#1|))) (-15 -3086 ((-3 (-635 (-1160 |#1|)) "failed") (-635 (-1160 |#1|)) (-1160 |#1|))) (-15 -3199 (|#1| |#1| (-1072))) (-15 -3467 ((-635 (-1072)) |#1|)) (-15 -3201 ((-765) |#1| (-635 (-1072)))) (-15 -3201 ((-765) |#1|)) (-15 -3276 (|#1| |#1| (-635 (-1072)) (-635 (-765)))) (-15 -3276 (|#1| |#1| (-1072) (-765))) (-15 -3202 ((-635 (-765)) |#1| (-635 (-1072)))) (-15 -3202 ((-765) |#1| (-1072))) (-15 -3468 ((-3 (-1072) "failed") |#1|)) (-15 -4355 ((-635 (-765)) |#1| (-635 (-1072)))) (-15 -4355 ((-765) |#1| (-1072))) (-15 -4353 (|#1| (-1072))) (-15 -3558 ((-3 (-1072) #1="failed") |#1|)) (-15 -3557 ((-1072) |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1072)) (-635 |#1|))) (-15 -4174 (|#1| |#1| (-1072) |#1|)) (-15 -4174 (|#1| |#1| (-635 (-1072)) (-635 |#2|))) (-15 -4174 (|#1| |#1| (-1072) |#2|)) (-15 -4174 (|#1| |#1| (-635 |#1|) (-635 |#1|))) (-15 -4174 (|#1| |#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| (-292 |#1|))) (-15 -4174 (|#1| |#1| (-635 (-292 |#1|)))) (-15 -4355 ((-765) |#1|)) (-15 -3276 (|#1| |#2| (-765))) (-15 -3558 ((-3 (-544) #1#) |#1|)) (-15 -3557 ((-544) |#1|)) (-15 -3558 ((-3 (-406 (-544)) #1#) |#1|)) (-15 -3557 ((-406 (-544)) |#1|)) (-15 -3557 (|#2| |#1|)) (-15 -3558 ((-3 |#2| #1#) |#1|)) (-15 -4353 (|#1| |#2|)) (-15 -3202 ((-765) |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -4217 (|#1| |#1| (-635 (-1072)) (-635 (-765)))) (-15 -4217 (|#1| |#1| (-1072) (-765))) (-15 -4217 (|#1| |#1| (-635 (-1072)))) (-15 -4217 (|#1| |#1| (-1072))) (-15 -4353 (|#1| (-544))) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4173 (((-1253 |#1|) $ (-765)) 238)) (-3467 (((-635 (-1072)) $) 110)) (-4171 (($ (-1160 |#1|)) 236)) (-3469 (((-1160 $) $ (-1072)) 125) (((-1160 |#1|) $) 124)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2213 (($ $) 88 (|has| |#1| (-554)))) (-2211 (((-112) $) 90 (|has| |#1| (-554)))) (-3201 (((-765) $) 112) (((-765) $ (-635 (-1072))) 111)) (-1391 (((-3 $ "failed") $ $) 19)) (-4162 (($ $ $) 223 (|has| |#1| (-554)))) (-3089 (((-404 (-1160 $)) (-1160 $)) 100 (|has| |#1| (-903)))) (-4181 (($ $) 98 (|has| |#1| (-450)))) (-4376 (((-404 $) $) 97 (|has| |#1| (-450)))) (-3086 (((-3 (-635 (-1160 $)) #1="failed") (-635 (-1160 $)) (-1160 $)) 103 (|has| |#1| (-903)))) (-1733 (((-112) $ $) 208 (|has| |#1| (-362)))) (-4167 (($ $ (-765)) 231)) (-4166 (($ $ (-765)) 230)) (-4158 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-450)))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| #2="failed") $) 164) (((-3 (-406 (-544)) #2#) $) 161 (|has| |#1| (-1031 (-406 (-544))))) (((-3 (-544) #2#) $) 159 (|has| |#1| (-1031 (-544)))) (((-3 (-1072) #2#) $) 136)) (-3557 ((|#1| $) 163) (((-406 (-544)) $) 162 (|has| |#1| (-1031 (-406 (-544))))) (((-544) $) 160 (|has| |#1| (-1031 (-544)))) (((-1072) $) 137)) (-4163 (($ $ $ (-1072)) 108 (|has| |#1| (-171))) ((|#1| $ $) 226 (|has| |#1| (-171)))) (-2943 (($ $ $) 212 (|has| |#1| (-362)))) (-4366 (($ $) 154)) (-2401 (((-682 (-544)) (-682 $)) 134 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 (-544))) (|:| |vec| (-1253 (-544)))) (-682 $) (-1253 $)) 133 (|has| |#1| (-634 (-544)))) (((-2 (|:| -1728 (-682 |#1|)) (|:| |vec| (-1253 |#1|))) (-682 $) (-1253 $)) 132) (((-682 |#1|) (-682 $)) 131)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 211 (|has| |#1| (-362)))) (-4165 (($ $ $) 229)) (-4160 (($ $ $) 220 (|has| |#1| (-554)))) (-4159 (((-2 (|:| -4361 |#1|) (|:| -2124 $) (|:| -3285 $)) $ $) 219 (|has| |#1| (-554)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 206 (|has| |#1| (-362)))) (-3902 (($ $) 176 (|has| |#1| (-450))) (($ $ (-1072)) 105 (|has| |#1| (-450)))) (-3200 (((-635 $) $) 109)) (-4130 (((-112) $) 96 (|has| |#1| (-903)))) (-1749 (($ $ |#1| (-765) $) 172)) (-3178 (((-881 (-377) $) $ (-883 (-377)) (-881 (-377) $)) 84 (-12 (|has| (-1072) (-879 (-377))) (|has| |#1| (-879 (-377))))) (((-881 (-544) $) $ (-883 (-544)) (-881 (-544) $)) 83 (-12 (|has| (-1072) (-879 (-544))) (|has| |#1| (-879 (-544)))))) (-4178 (((-765) $ $) 224 (|has| |#1| (-554)))) (-2545 (((-112) $) 31)) (-2553 (((-765) $) 169)) (-3848 (((-3 $ "failed") $) 204 (|has| |#1| (-1141)))) (-3470 (($ (-1160 |#1|) (-1072)) 117) (($ (-1160 $) (-1072)) 116)) (-4183 (($ $ (-765)) 235)) (-1730 (((-3 (-635 $) #3="failed") (-635 $) $) 215 (|has| |#1| (-362)))) (-3203 (((-635 $) $) 126)) (-4344 (((-112) $) 152)) (-3276 (($ |#1| (-765)) 153) (($ $ (-1072) (-765)) 119) (($ $ (-635 (-1072)) (-635 (-765))) 118)) (-4169 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $ (-1072)) 120) (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 233)) (-3202 (((-765) $) 170) (((-765) $ (-1072)) 122) (((-635 (-765)) $ (-635 (-1072))) 121)) (-2913 (($ $ $) 79 (|has| |#1| (-844)))) (-3242 (($ $ $) 78 (|has| |#1| (-844)))) (-1750 (($ (-1 (-765) (-765)) $) 171)) (-4365 (($ (-1 |#1| |#1|) $) 151)) (-4172 (((-1160 |#1|) $) 237)) (-3468 (((-3 (-1072) #4="failed") $) 123)) (-3277 (($ $) 149)) (-3575 ((|#1| $) 148)) (-2041 (($ (-635 $)) 94 (|has| |#1| (-450))) (($ $ $) 93 (|has| |#1| (-450)))) (-3643 (((-1148) $) 9)) (-4168 (((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765)) 232)) (-3205 (((-3 (-635 $) #4#) $) 114)) (-3204 (((-3 (-635 $) #4#) $) 115)) (-3206 (((-3 (-2 (|:| |var| (-1072)) (|:| -2536 (-765))) #4#) $) 113)) (-4219 (($ $) 216 (|has| |#1| (-38 (-406 (-544)))))) (-3849 (($) 203 (|has| |#1| (-1141)) CONST)) (-3644 (((-1110) $) 10)) (-1944 (((-112) $) 166)) (-1943 ((|#1| $) 167)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 95 (|has| |#1| (-450)))) (-3545 (($ (-635 $)) 92 (|has| |#1| (-450))) (($ $ $) 91 (|has| |#1| (-450)))) (-3087 (((-404 (-1160 $)) (-1160 $)) 102 (|has| |#1| (-903)))) (-3088 (((-404 (-1160 $)) (-1160 $)) 101 (|has| |#1| (-903)))) (-4139 (((-404 $) $) 99 (|has| |#1| (-903)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 214 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 213 (|has| |#1| (-362)))) (-3865 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 207 (|has| |#1| (-362)))) (-4174 (($ $ (-635 (-292 $))) 145) (($ $ (-292 $)) 144) (($ $ $ $) 143) (($ $ (-635 $) (-635 $)) 142) (($ $ (-1072) |#1|) 141) (($ $ (-635 (-1072)) (-635 |#1|)) 140) (($ $ (-1072) $) 139) (($ $ (-635 (-1072)) (-635 $)) 138)) (-1732 (((-765) $) 209 (|has| |#1| (-362)))) (-4206 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-406 $) (-406 $) (-406 $)) 225 (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) 217 (|has| |#1| (-362))) (((-406 $) $ (-406 $)) 205 (|has| |#1| (-554)))) (-4170 (((-3 $ "failed") $ (-765)) 234)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 210 (|has| |#1| (-362)))) (-4164 (($ $ (-1072)) 107 (|has| |#1| (-171))) ((|#1| $) 227 (|has| |#1| (-171)))) (-4217 (($ $ (-1072)) 42) (($ $ (-635 (-1072))) 41) (($ $ (-1072) (-765)) 40) (($ $ (-635 (-1072)) (-635 (-765))) 39) (($ $ (-765)) 253) (($ $) 251) (($ $ (-1166)) 250 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 249 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 248 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 247 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-4355 (((-765) $) 150) (((-765) $ (-1072)) 130) (((-635 (-765)) $ (-635 (-1072))) 129)) (-4377 (((-883 (-377)) $) 82 (-12 (|has| (-1072) (-609 (-883 (-377)))) (|has| |#1| (-609 (-883 (-377)))))) (((-883 (-544)) $) 81 (-12 (|has| (-1072) (-609 (-883 (-544)))) (|has| |#1| (-609 (-883 (-544)))))) (((-533) $) 80 (-12 (|has| (-1072) (-609 (-533))) (|has| |#1| (-609 (-533)))))) (-3199 ((|#1| $) 175 (|has| |#1| (-450))) (($ $ (-1072)) 106 (|has| |#1| (-450)))) (-3085 (((-3 (-1253 $) #1#) (-682 $)) 104 (-3240 (|has| $ (-144)) (|has| |#1| (-903))))) (-4161 (((-3 $ "failed") $ $) 222 (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) 221 (|has| |#1| (-554)))) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 165) (($ (-1072)) 135) (($ (-406 (-544))) 72 (-3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544)))))) (($ $) 85 (|has| |#1| (-554)))) (-4224 (((-635 |#1|) $) 168)) (-4084 ((|#1| $ (-765)) 155) (($ $ (-1072) (-765)) 128) (($ $ (-635 (-1072)) (-635 (-765))) 127)) (-3084 (((-3 $ #1#) $) 73 (-3936 (-3240 (|has| $ (-144)) (|has| |#1| (-903))) (|has| |#1| (-144))))) (-3511 (((-765)) 28)) (-1748 (($ $ $ (-765)) 173 (|has| |#1| (-171)))) (-2212 (((-112) $ $) 89 (|has| |#1| (-554)))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-1072)) 38) (($ $ (-635 (-1072))) 37) (($ $ (-1072) (-765)) 36) (($ $ (-635 (-1072)) (-635 (-765))) 35) (($ $ (-765)) 254) (($ $) 252) (($ $ (-1166)) 246 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166))) 245 (|has| |#1| (-893 (-1166)))) (($ $ (-1166) (-765)) 244 (|has| |#1| (-893 (-1166)))) (($ $ (-635 (-1166)) (-635 (-765))) 243 (|has| |#1| (-893 (-1166)))) (($ $ (-1 |#1| |#1|) (-765)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-2945 (((-112) $ $) 76 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 75 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 6)) (-3066 (((-112) $ $) 77 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 74 (|has| |#1| (-844)))) (-4356 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 158 (|has| |#1| (-38 (-406 (-544))))) (($ (-406 (-544)) $) 157 (|has| |#1| (-38 (-406 (-544))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1229 |#1|) (-139) (-1042)) (T -1229)) -((-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1229 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-5 *2 (-1160 *3)))) (-4171 (*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1042)) (-4 *1 (-1229 *3)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4170 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4169 (*1 *2 *1 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1229 *3)))) (-4168 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1229 *4)))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4165 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)))) (-4217 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))) (-4163 (*1 *2 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171)))) (-4206 (*1 *2 *2 *2) (-12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554)))) (-4178 (*1 *2 *1 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554)) (-5 *2 (-765)))) (-4162 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))) (-4161 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))) (-4161 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554)))) (-4160 (*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))) (-4159 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| -4361 *3) (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1229 *3)))) (-4158 (*1 *2 *1 *1) (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1229 *3)))) (-4206 (*1 *2 *3 *2) (-12 (-5 *3 (-406 *1)) (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-4219 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544))))))) -(-13 (-943 |t#1| (-765) (-1072)) (-285 |t#1| |t#1|) (-285 $ $) (-232) (-230 |t#1|) (-10 -8 (-15 -4173 ((-1253 |t#1|) $ (-765))) (-15 -4172 ((-1160 |t#1|) $)) (-15 -4171 ($ (-1160 |t#1|))) (-15 -4183 ($ $ (-765))) (-15 -4170 ((-3 $ "failed") $ (-765))) (-15 -4169 ((-2 (|:| -2124 $) (|:| -3285 $)) $ $)) (-15 -4168 ((-2 (|:| -2124 $) (|:| -3285 $)) $ (-765))) (-15 -4167 ($ $ (-765))) (-15 -4166 ($ $ (-765))) (-15 -4165 ($ $ $)) (-15 -4217 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1141)) (-6 (-1141)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -4164 (|t#1| $)) (-15 -4163 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-285 (-406 $) (-406 $))) (-15 -4206 ((-406 $) (-406 $) (-406 $))) (-15 -4178 ((-765) $ $)) (-15 -4162 ($ $ $)) (-15 -4161 ((-3 $ "failed") $ $)) (-15 -4161 ((-3 (-406 $) "failed") (-406 $) $)) (-15 -4160 ($ $ $)) (-15 -4159 ((-2 (|:| -4361 |t#1|) (|:| -2124 $) (|:| -3285 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-15 -4158 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-306)) (-6 -4396) (-15 -4206 (|t#1| (-406 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-544)))) (-15 -4219 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-765)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) -3936 (|has| |#1| (-1031 (-406 (-544)))) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 #3=(-1072)) . T) ((-611 |#1|) . T) ((-611 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-609 (-533)) -12 (|has| |#1| (-609 (-533))) (|has| (-1072) (-609 (-533)))) ((-609 (-883 (-377))) -12 (|has| |#1| (-609 (-883 (-377)))) (|has| (-1072) (-609 (-883 (-377))))) ((-609 (-883 (-544))) -12 (|has| |#1| (-609 (-883 (-544)))) (|has| (-1072) (-609 (-883 (-544))))) ((-230 |#1|) . T) ((-232) . T) ((-285 (-406 $) (-406 $)) |has| |#1| (-554)) ((-285 |#1| |#1|) . T) ((-285 $ $) . T) ((-289) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 $) . T) ((-325 |#1| #1#) . T) ((-376 |#1|) . T) ((-411 |#1|) . T) ((-450) -3936 (|has| |#1| (-903)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-512 #3# |#1|) . T) ((-512 #3# $) . T) ((-512 $ $) . T) ((-554) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-641 #2#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-634 (-544)) |has| |#1| (-634 (-544))) ((-634 |#1|) . T) ((-711 #2#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362))) ((-720) . T) ((-844) |has| |#1| (-844)) ((-893 #3#) . T) ((-893 (-1166)) |has| |#1| (-893 (-1166))) ((-879 (-377)) -12 (|has| |#1| (-879 (-377))) (|has| (-1072) (-879 (-377)))) ((-879 (-544)) -12 (|has| |#1| (-879 (-544))) (|has| (-1072) (-879 (-544)))) ((-943 |#1| #1# #3#) . T) ((-903) |has| |#1| (-903)) ((-914) |has| |#1| (-362)) ((-1031 (-406 (-544))) |has| |#1| (-1031 (-406 (-544)))) ((-1031 (-544)) |has| |#1| (-1031 (-544))) ((-1031 #3#) . T) ((-1031 |#1|) . T) ((-1048 #2#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-903)) (|has| |#1| (-554)) (|has| |#1| (-450)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1141) |has| |#1| (-1141)) ((-1209) |has| |#1| (-903))) -((-4365 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1230 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|))) (-1042) (-1229 |#1|) (-1042) (-1229 |#3|)) (T -1230)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1229 *6)) (-5 *1 (-1230 *5 *4 *6 *2)) (-4 *4 (-1229 *5))))) -(-10 -7 (-15 -4365 (|#4| (-1 |#3| |#1|) |#2|))) -((-3467 (((-635 (-1072)) $) 28)) (-4366 (($ $) 25)) (-3276 (($ |#2| |#3|) NIL) (($ $ (-1072) |#3|) 22) (($ $ (-635 (-1072)) (-635 |#3|)) 21)) (-3277 (($ $) 14)) (-3575 ((|#2| $) 12)) (-4355 ((|#3| $) 10))) -(((-1231 |#1| |#2| |#3|) (-10 -8 (-15 -3467 ((-635 (-1072)) |#1|)) (-15 -3276 (|#1| |#1| (-635 (-1072)) (-635 |#3|))) (-15 -3276 (|#1| |#1| (-1072) |#3|)) (-15 -4366 (|#1| |#1|)) (-15 -3276 (|#1| |#2| |#3|)) (-15 -4355 (|#3| |#1|)) (-15 -3277 (|#1| |#1|)) (-15 -3575 (|#2| |#1|))) (-1232 |#2| |#3|) (-1042) (-786)) (T -1231)) -NIL -(-10 -8 (-15 -3467 ((-635 (-1072)) |#1|)) (-15 -3276 (|#1| |#1| (-635 (-1072)) (-635 |#3|))) (-15 -3276 (|#1| |#1| (-1072) |#3|)) (-15 -4366 (|#1| |#1|)) (-15 -3276 (|#1| |#2| |#3|)) (-15 -4355 (|#3| |#1|)) (-15 -3277 (|#1| |#1|)) (-15 -3575 (|#2| |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-4180 (((-1143 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-3275 (((-112) $) 76)) (-4178 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-2545 (((-112) $) 31)) (-4183 (($ $ (-912)) 104)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| |#2|) 64) (($ $ (-1072) |#2|) 79) (($ $ (-635 (-1072)) (-635 |#2|)) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4175 (($ $ |#2|) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4206 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4355 ((|#2| $) 67)) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-4084 ((|#1| $ |#2|) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-4176 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544))))))) -(((-1232 |#1| |#2|) (-139) (-1042) (-786)) (T -1232)) -((-4180 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1143 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4206 (*1 *2 *1 *3) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1166)))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4178 (*1 *2 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4177 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4177 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4176 (*1 *2 *1 *3) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4353 (*2 (-1166)))) (-4 *2 (-1042)))) (-4175 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) (-4174 (*1 *2 *1 *3) (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1143 *3))))) -(-13 (-966 |t#1| |t#2| (-1072)) (-10 -8 (-15 -4180 ((-1143 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4206 (|t#1| $ |t#2|)) (-15 -4238 ((-1166) $)) (-15 -4179 (|t#1| $)) (-15 -4183 ($ $ (-912))) (-15 -4178 (|t#2| $)) (-15 -4178 (|t#2| $ |t#2|)) (-15 -4177 ($ $ |t#2|)) (-15 -4177 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4353 (|t#1| (-1166)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4176 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4175 ($ $ |t#2|)) (IF (|has| |t#2| (-1102)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-232)) (IF (|has| |t#1| (-893 (-1166))) (-6 (-893 (-1166))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4174 ((-1143 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #1#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-285 $ $) |has| |#2| (-1102)) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-641 #1#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-966 |#1| |#2| (-1072)) . T) ((-1048 #1#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-4181 ((|#2| |#2|) 12)) (-4376 (((-404 |#2|) |#2|) 14)) (-4182 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-544))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-544)))) 30))) -(((-1233 |#1| |#2|) (-10 -7 (-15 -4376 ((-404 |#2|) |#2|)) (-15 -4181 (|#2| |#2|)) (-15 -4182 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-544))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-544)))))) (-554) (-13 (-1229 |#1|) (-554) (-10 -8 (-15 -3545 ($ $ $))))) (T -1233)) -((-4182 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-544)))) (-4 *4 (-13 (-1229 *3) (-554) (-10 -8 (-15 -3545 ($ $ $))))) (-4 *3 (-554)) (-5 *1 (-1233 *3 *4)))) (-4181 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-1229 *3) (-554) (-10 -8 (-15 -3545 ($ $ $))))))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-1233 *4 *3)) (-4 *3 (-13 (-1229 *4) (-554) (-10 -8 (-15 -3545 ($ $ $)))))))) -(-10 -7 (-15 -4376 ((-404 |#2|) |#2|)) (-15 -4181 (|#2| |#2|)) (-15 -4182 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-544))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-544)))))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 11)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) NIL) (($ $ (-406 (-544)) (-406 (-544))) NIL)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) NIL)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-1213 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1243 |#1| |#2| |#3|) #1#) $) 22)) (-3557 (((-1213 |#1| |#2| |#3|) $) NIL) (((-1243 |#1| |#2| |#3|) $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4187 (((-406 (-544)) $) 57)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4188 (($ (-406 (-544)) (-1213 |#1| |#2| |#3|)) NIL)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) NIL) (((-406 (-544)) $ (-406 (-544))) NIL)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) NIL) (($ $ (-406 (-544))) NIL)) (-1730 (((-3 (-635 $) #2="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) 30) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4186 (((-1213 |#1| |#2| |#3|) $) 60)) (-4184 (((-3 (-1213 |#1| |#2| |#3|) "failed") $) NIL)) (-4185 (((-1213 |#1| |#2| |#3|) $) NIL)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) NIL (|has| |#1| (-362)))) (-4219 (($ $) 39 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) NIL (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 40 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) NIL)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) NIL) (($ $ $) NIL (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $ (-1250 |#2|)) 38)) (-4355 (((-406 (-544)) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) NIL)) (-4353 (((-857) $) 88) (($ (-544)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1213 |#1| |#2| |#3|)) 16) (($ (-1243 |#1| |#2| |#3|)) 17) (($ (-1250 |#2|)) 36) (($ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 12)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 32 T CONST)) (-3046 (($) 26 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 34)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ (-544)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-1234 |#1| |#2| |#3|) (-13 (-1238 |#1| (-1213 |#1| |#2| |#3|)) (-1031 (-1243 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1234)) -((-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1234 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1234 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))) -(-13 (-1238 |#1| (-1213 |#1| |#2| |#3|)) (-1031 (-1243 |#1| |#2| |#3|)) (-611 (-1250 |#2|)) (-10 -8 (-15 -4217 ($ $ (-1250 |#2|))) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) -((-4365 (((-1234 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1234 |#1| |#3| |#5|)) 24))) -(((-1235 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4365 ((-1234 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1234 |#1| |#3| |#5|)))) (-1042) (-1042) (-1166) (-1166) |#1| |#2|) (T -1235)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1234 *5 *7 *9)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1234 *6 *8 *10)) (-5 *1 (-1235 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1166))))) -(-10 -7 (-15 -4365 ((-1234 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1234 |#1| |#3| |#5|)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) 101) (($ $ (-406 (-544)) (-406 (-544))) 100)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) 108)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 165 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 166 (|has| |#1| (-362)))) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) 156 (|has| |#1| (-362)))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) 174)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-2943 (($ $ $) 160 (|has| |#1| (-362)))) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 159 (|has| |#1| (-362)))) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-4130 (((-112) $) 167 (|has| |#1| (-362)))) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) 103) (((-406 (-544)) $ (-406 (-544))) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 104) (($ $ (-406 (-544))) 173)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-406 (-544))) 64) (($ $ (-1072) (-406 (-544))) 79) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-2041 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3643 (((-1148) $) 9)) (-2779 (($ $) 168 (|has| |#1| (-362)))) (-4219 (($ $) 172 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 171 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 153 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-4139 (((-404 $) $) 164 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 161 (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) 157 (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) 107) (($ $ $) 84 (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 158 (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-4355 (((-406 (-544)) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544))))))) -(((-1236 |#1|) (-139) (-1042)) (T -1236)) -((-4225 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| *4)))) (-4 *4 (-1042)) (-4 *1 (-1236 *4)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-1236 *3)) (-4 *3 (-1042)))) (-4219 (*1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))) (-4219 (*1 *1 *1 *2) (-3936 (-12 (-5 *2 (-1166)) (-4 *1 (-1236 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-544)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1236 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -3467 ((-635 *2) *3))) (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544))))))))) -(-13 (-1232 |t#1| (-406 (-544))) (-10 -8 (-15 -4225 ($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |t#1|))))) (-15 -4183 ($ $ (-406 (-544)))) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (IF (|has| |t#1| (-15 -4219 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -3467 ((-635 (-1166)) |t#1|))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-953)) (IF (|has| |t#1| (-29 (-544))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-406 (-544))) . T) ((-25) . T) ((-38 #2=(-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 $ $) |has| (-406 (-544)) (-1102)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-641 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) ((-966 |#1| #1# (-1072)) . T) ((-914) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1048 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1209) |has| |#1| (-362)) ((-1232 |#1| #1#) . T)) -((-3589 (((-112) $) 12)) (-3558 (((-3 |#3| "failed") $) 17)) (-3557 ((|#3| $) 14))) -(((-1237 |#1| |#2| |#3|) (-10 -8 (-15 -3558 ((-3 |#3| "failed") |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3589 ((-112) |#1|))) (-1238 |#2| |#3|) (-1042) (-1215 |#2|)) (T -1237)) -NIL -(-10 -8 (-15 -3558 ((-3 |#3| "failed") |#1|)) (-15 -3557 (|#3| |#1|)) (-15 -3589 ((-112) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) 101) (($ $ (-406 (-544)) (-406 (-544))) 100)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) 108)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 165 (|has| |#1| (-362)))) (-4376 (((-404 $) $) 166 (|has| |#1| (-362)))) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) 156 (|has| |#1| (-362)))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) 174)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#2| "failed") $) 185)) (-3557 ((|#2| $) 186)) (-2943 (($ $ $) 160 (|has| |#1| (-362)))) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-4187 (((-406 (-544)) $) 182)) (-2942 (($ $ $) 159 (|has| |#1| (-362)))) (-4188 (($ (-406 (-544)) |#2|) 183)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 154 (|has| |#1| (-362)))) (-4130 (((-112) $) 167 (|has| |#1| (-362)))) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) 103) (((-406 (-544)) $ (-406 (-544))) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 104) (($ $ (-406 (-544))) 173)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 163 (|has| |#1| (-362)))) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-406 (-544))) 64) (($ $ (-1072) (-406 (-544))) 79) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-2041 (($ (-635 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-4186 ((|#2| $) 181)) (-4184 (((-3 |#2| "failed") $) 179)) (-4185 ((|#2| $) 180)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 168 (|has| |#1| (-362)))) (-4219 (($ $) 172 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 171 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 153 (|has| |#1| (-362)))) (-3545 (($ (-635 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-4139 (((-404 $) $) 164 (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 161 (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 155 (|has| |#1| (-362)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) 157 (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) 107) (($ $ $) 84 (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 158 (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-4355 (((-406 (-544)) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 184) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544))))))) -(((-1238 |#1| |#2|) (-139) (-1042) (-1215 |t#1|)) (T -1238)) -((-4355 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1215 *3)) (-5 *2 (-406 (-544))))) (-4188 (*1 *1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-4 *4 (-1042)) (-4 *1 (-1238 *4 *3)) (-4 *3 (-1215 *4)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1215 *3)) (-5 *2 (-406 (-544))))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3)))) (-4184 (*1 *2 *1) (|partial| -12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3))))) -(-13 (-1236 |t#1|) (-1031 |t#2|) (-611 |t#2|) (-10 -8 (-15 -4188 ($ (-406 (-544)) |t#2|)) (-15 -4187 ((-406 (-544)) $)) (-15 -4186 (|t#2| $)) (-15 -4355 ((-406 (-544)) $)) (-15 -4185 (|t#2| $)) (-15 -4184 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-406 (-544))) . T) ((-25) . T) ((-38 #2=(-406 (-544))) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 |#2|) . T) ((-611 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 $ $) |has| (-406 (-544)) (-1102)) ((-289) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-450) |has| |#1| (-362)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-554) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-641 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) ((-966 |#1| #1# (-1072)) . T) ((-914) |has| |#1| (-362)) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1031 |#2|) . T) ((-1048 #2#) -3936 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-544))))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1209) |has| |#1| (-362)) ((-1232 |#1| #1#) . T) ((-1236 |#1|) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 96)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (($ $ (-406 (-544))) 106) (($ $ (-406 (-544)) (-406 (-544))) 108)) (-4180 (((-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|))) $) 51)) (-3891 (($ $) 180 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 156 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-362)))) (-4376 (((-404 $) $) NIL (|has| |#1| (-362)))) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1733 (((-112) $ $) NIL (|has| |#1| (-362)))) (-3889 (($ $) 176 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 152 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-765) (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#1|)))) 61)) (-3893 (($ $) 184 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 160 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| "failed") $) NIL)) (-3557 ((|#2| $) NIL)) (-2943 (($ $ $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) 79)) (-4187 (((-406 (-544)) $) 13)) (-2942 (($ $ $) NIL (|has| |#1| (-362)))) (-4188 (($ (-406 (-544)) |#2|) 11)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) NIL (|has| |#1| (-362)))) (-4130 (((-112) $) NIL (|has| |#1| (-362)))) (-3275 (((-112) $) 68)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-406 (-544)) $) 103) (((-406 (-544)) $ (-406 (-544))) 104)) (-2545 (((-112) $) NIL)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 120) (($ $ (-406 (-544))) 118)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-406 (-544))) 31) (($ $ (-1072) (-406 (-544))) NIL) (($ $ (-635 (-1072)) (-635 (-406 (-544)))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 115)) (-4349 (($ $) 150 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-2041 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4186 ((|#2| $) 12)) (-4184 (((-3 |#2| "failed") $) 41)) (-4185 ((|#2| $) 42)) (-3643 (((-1148) $) NIL)) (-2779 (($ $) 93 (|has| |#1| (-362)))) (-4219 (($ $) 135 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 140 (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))))))) (-3644 (((-1110) $) NIL)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) NIL (|has| |#1| (-362)))) (-3545 (($ (-635 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4139 (((-404 $) $) NIL (|has| |#1| (-362)))) (-1731 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) NIL (|has| |#1| (-362)))) (-4175 (($ $ (-406 (-544))) 112)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3122 (((-3 (-635 $) "failed") (-635 $) $) NIL (|has| |#1| (-362)))) (-4350 (($ $) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))))) (-1732 (((-765) $) NIL (|has| |#1| (-362)))) (-4206 ((|#1| $ (-406 (-544))) 100) (($ $ $) 86 (|has| (-406 (-544)) (-1102)))) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) NIL (|has| |#1| (-362)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) 127 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-4355 (((-406 (-544)) $) 16)) (-3894 (($ $) 186 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 162 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 182 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 158 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 178 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 154 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 110)) (-4353 (((-857) $) NIL) (($ (-544)) 35) (($ |#1|) 27 (|has| |#1| (-171))) (($ |#2|) 32) (($ (-406 (-544))) 128 (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554)))) (-4084 ((|#1| $ (-406 (-544))) 99)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) 117)) (-4179 ((|#1| $) 98)) (-3897 (($ $) 192 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 168 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) 188 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 164 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 196 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 172 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-406 (-544))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-544))))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 198 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 174 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 194 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 170 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 190 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 166 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 21 T CONST)) (-3046 (($) 17 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-544)) |#1|))))) (-3437 (((-112) $ $) 66)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 92 (|has| |#1| (-362)))) (-4244 (($ $) 131) (($ $ $) 72)) (-4246 (($ $ $) 70)) (** (($ $ (-912)) NIL) (($ $ (-765)) 76) (($ $ (-544)) 145 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 146 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-1239 |#1| |#2|) (-1238 |#1| |#2|) (-1042) (-1215 |#1|)) (T -1239)) -NIL -(-1238 |#1| |#2|) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 34)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL)) (-2213 (($ $) NIL)) (-2211 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 (-544) #1="failed") $) NIL (|has| (-1234 |#2| |#3| |#4|) (-1031 (-544)))) (((-3 (-406 (-544)) #1#) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-1031 (-406 (-544))))) (((-3 (-1234 |#2| |#3| |#4|) #1#) $) 20)) (-3557 (((-544) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-1031 (-544)))) (((-406 (-544)) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-1031 (-406 (-544))))) (((-1234 |#2| |#3| |#4|) $) NIL)) (-4366 (($ $) 35)) (-3866 (((-3 $ "failed") $) 25)) (-3902 (($ $) NIL (|has| (-1234 |#2| |#3| |#4|) (-450)))) (-1749 (($ $ (-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|) $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) 11)) (-4344 (((-112) $) NIL)) (-3276 (($ (-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) 23)) (-3202 (((-318 |#2| |#3| |#4|) $) NIL)) (-1750 (($ (-1 (-318 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) $) NIL)) (-4365 (($ (-1 (-1234 |#2| |#3| |#4|) (-1234 |#2| |#3| |#4|)) $) NIL)) (-4190 (((-3 (-836 |#2|) "failed") $) 74)) (-3277 (($ $) NIL)) (-3575 (((-1234 |#2| |#3| |#4|) $) 18)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-1944 (((-112) $) NIL)) (-1943 (((-1234 |#2| |#3| |#4|) $) NIL)) (-3865 (((-3 $ "failed") $ (-1234 |#2| |#3| |#4|)) NIL (|has| (-1234 |#2| |#3| |#4|) (-554))) (((-3 $ "failed") $ $) NIL)) (-4189 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1234 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $) 57)) (-4355 (((-318 |#2| |#3| |#4|) $) 14)) (-3199 (((-1234 |#2| |#3| |#4|) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-450)))) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ (-1234 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-406 (-544))) NIL (-3936 (|has| (-1234 |#2| |#3| |#4|) (-1031 (-406 (-544)))) (|has| (-1234 |#2| |#3| |#4|) (-38 (-406 (-544))))))) (-4224 (((-635 (-1234 |#2| |#3| |#4|)) $) NIL)) (-4084 (((-1234 |#2| |#3| |#4|) $ (-318 |#2| |#3| |#4|)) NIL)) (-3084 (((-3 $ "failed") $) NIL (|has| (-1234 |#2| |#3| |#4|) (-144)))) (-3511 (((-765)) NIL)) (-1748 (($ $ $ (-765)) NIL (|has| (-1234 |#2| |#3| |#4|) (-171)))) (-2212 (((-112) $ $) NIL)) (-3040 (($) 62 T CONST)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ (-1234 |#2| |#3| |#4|)) NIL (|has| (-1234 |#2| |#3| |#4|) (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ (-1234 |#2| |#3| |#4|)) NIL) (($ (-1234 |#2| |#3| |#4|) $) NIL) (($ (-406 (-544)) $) NIL (|has| (-1234 |#2| |#3| |#4|) (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| (-1234 |#2| |#3| |#4|) (-38 (-406 (-544))))))) -(((-1240 |#1| |#2| |#3| |#4|) (-13 (-325 (-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-554) (-10 -8 (-15 -4190 ((-3 (-836 |#2|) "failed") $)) (-15 -4189 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1234 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $)))) (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450)) (-13 (-27) (-1190) (-420 |#1|)) (-1166) |#2|) (T -1240)) -((-4190 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) (-5 *2 (-836 *4)) (-5 *1 (-1240 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4))) (-4189 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1234 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| *4)))))) (|:| |%type| (-1148)))) (-5 *1 (-1240 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4)))) -(-13 (-325 (-1234 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-554) (-10 -8 (-15 -4190 ((-3 (-836 |#2|) "failed") $)) (-15 -4189 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1234 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| |#2|)))))) (|:| |%type| (-1148))) "failed") $)))) -((-3806 ((|#2| $) 28)) (-4201 ((|#2| $) 18)) (-4203 (($ $) 35)) (-4191 (($ $ (-544)) 63)) (-1293 (((-112) $ (-765)) 32)) (-3408 ((|#2| $ |#2|) 60)) (-4192 ((|#2| $ |#2|) 58)) (-4194 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-3409 (($ $ (-635 $)) 59)) (-4202 ((|#2| $) 17)) (-4205 (($ $) NIL) (($ $ (-765)) 41)) (-3414 (((-635 $) $) 25)) (-3410 (((-112) $ $) 49)) (-4126 (((-112) $ (-765)) 31)) (-4123 (((-112) $ (-765)) 30)) (-3926 (((-112) $) 27)) (-4204 ((|#2| $) 23) (($ $ (-765)) 45)) (-4206 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4040 (((-112) $) 21)) (-4198 (($ $) 38)) (-4196 (($ $) 64)) (-4199 (((-765) $) 40)) (-4200 (($ $) 39)) (-4208 (($ $ $) 57) (($ |#2| $) NIL)) (-3921 (((-635 $) $) 26)) (-3437 (((-112) $ $) 47)) (-4364 (((-765) $) 34))) -(((-1241 |#1| |#2|) (-10 -8 (-15 -4191 (|#1| |#1| (-544))) (-15 -4194 (|#2| |#1| "last" |#2|)) (-15 -4192 (|#2| |#1| |#2|)) (-15 -4194 (|#1| |#1| "rest" |#1|)) (-15 -4194 (|#2| |#1| "first" |#2|)) (-15 -4196 (|#1| |#1|)) (-15 -4198 (|#1| |#1|)) (-15 -4199 ((-765) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4201 (|#2| |#1|)) (-15 -4202 (|#2| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4204 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "last")) (-15 -4204 (|#2| |#1|)) (-15 -4205 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| "rest")) (-15 -4205 (|#1| |#1|)) (-15 -4206 (|#2| |#1| "first")) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#1|)) (-15 -3408 (|#2| |#1| |#2|)) (-15 -4194 (|#2| |#1| #1="value" |#2|)) (-15 -3409 (|#1| |#1| (-635 |#1|))) (-15 -3410 ((-112) |#1| |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -3806 (|#2| |#1|)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765)))) (-1242 |#2|) (-1204)) (T -1241)) -NIL -(-10 -8 (-15 -4191 (|#1| |#1| (-544))) (-15 -4194 (|#2| |#1| "last" |#2|)) (-15 -4192 (|#2| |#1| |#2|)) (-15 -4194 (|#1| |#1| "rest" |#1|)) (-15 -4194 (|#2| |#1| "first" |#2|)) (-15 -4196 (|#1| |#1|)) (-15 -4198 (|#1| |#1|)) (-15 -4199 ((-765) |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -4201 (|#2| |#1|)) (-15 -4202 (|#2| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -4204 (|#1| |#1| (-765))) (-15 -4206 (|#2| |#1| "last")) (-15 -4204 (|#2| |#1|)) (-15 -4205 (|#1| |#1| (-765))) (-15 -4206 (|#1| |#1| "rest")) (-15 -4205 (|#1| |#1|)) (-15 -4206 (|#2| |#1| "first")) (-15 -4208 (|#1| |#2| |#1|)) (-15 -4208 (|#1| |#1| |#1|)) (-15 -3408 (|#2| |#1| |#2|)) (-15 -4194 (|#2| |#1| #1="value" |#2|)) (-15 -3409 (|#1| |#1| (-635 |#1|))) (-15 -3410 ((-112) |#1| |#1|)) (-15 -4040 ((-112) |#1|)) (-15 -4206 (|#2| |#1| #1#)) (-15 -3806 (|#2| |#1|)) (-15 -3926 ((-112) |#1|)) (-15 -3414 ((-635 |#1|) |#1|)) (-15 -3921 ((-635 |#1|) |#1|)) (-15 -3437 ((-112) |#1| |#1|)) (-15 -4364 ((-765) |#1|)) (-15 -1293 ((-112) |#1| (-765))) (-15 -4126 ((-112) |#1| (-765))) (-15 -4123 ((-112) |#1| (-765)))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-3806 ((|#1| $) 48)) (-4201 ((|#1| $) 65)) (-4203 (($ $) 67)) (-4191 (($ $ (-544)) 52 (|has| $ (-6 -4401)))) (-1293 (((-112) $ (-765)) 8)) (-3408 ((|#1| $ |#1|) 39 (|has| $ (-6 -4401)))) (-4193 (($ $ $) 56 (|has| $ (-6 -4401)))) (-4192 ((|#1| $ |#1|) 54 (|has| $ (-6 -4401)))) (-4195 ((|#1| $ |#1|) 58 (|has| $ (-6 -4401)))) (-4194 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4401))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4401))) (($ $ "rest" $) 55 (|has| $ (-6 -4401))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4401)))) (-3409 (($ $ (-635 $)) 41 (|has| $ (-6 -4401)))) (-4202 ((|#1| $) 66)) (-4131 (($) 7 T CONST)) (-4205 (($ $) 73) (($ $ (-765)) 71)) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-3414 (((-635 $) $) 50)) (-3410 (((-112) $ $) 42 (|has| |#1| (-1091)))) (-4126 (((-112) $ (-765)) 9)) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35)) (-4123 (((-112) $ (-765)) 10)) (-3413 (((-635 |#1|) $) 45)) (-3926 (((-112) $) 49)) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-4204 ((|#1| $) 70) (($ $ (-765)) 68)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 76) (($ $ (-765)) 74)) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3412 (((-544) $ $) 44)) (-4040 (((-112) $) 46)) (-4198 (($ $) 62)) (-4196 (($ $) 59 (|has| $ (-6 -4401)))) (-4199 (((-765) $) 63)) (-4200 (($ $) 64)) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3804 (($ $) 13)) (-4197 (($ $ $) 61 (|has| $ (-6 -4401))) (($ $ |#1|) 60 (|has| $ (-6 -4401)))) (-4208 (($ $ $) 78) (($ |#1| $) 77)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-3921 (((-635 $) $) 51)) (-3411 (((-112) $ $) 43 (|has| |#1| (-1091)))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-1242 |#1|) (-139) (-1204)) (T -1242)) -((-4208 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4208 (*1 *1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4205 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4204 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4200 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) (-4198 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4197 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4197 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4196 (*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4195 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4193 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4194 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) (-4192 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4194 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-544)) (|has| *1 (-6 -4401)) (-4 *1 (-1242 *3)) (-4 *3 (-1204))))) -(-13 (-1003 |t#1|) (-10 -8 (-15 -4208 ($ $ $)) (-15 -4208 ($ |t#1| $)) (-15 -4207 (|t#1| $)) (-15 -4206 (|t#1| $ "first")) (-15 -4207 ($ $ (-765))) (-15 -4205 ($ $)) (-15 -4206 ($ $ "rest")) (-15 -4205 ($ $ (-765))) (-15 -4204 (|t#1| $)) (-15 -4206 (|t#1| $ "last")) (-15 -4204 ($ $ (-765))) (-15 -4203 ($ $)) (-15 -4202 (|t#1| $)) (-15 -4201 (|t#1| $)) (-15 -4200 ($ $)) (-15 -4199 ((-765) $)) (-15 -4198 ($ $)) (IF (|has| $ (-6 -4401)) (PROGN (-15 -4197 ($ $ $)) (-15 -4197 ($ $ |t#1|)) (-15 -4196 ($ $)) (-15 -4195 (|t#1| $ |t#1|)) (-15 -4194 (|t#1| $ "first" |t#1|)) (-15 -4193 ($ $ $)) (-15 -4194 ($ $ "rest" $)) (-15 -4192 (|t#1| $ |t#1|)) (-15 -4194 (|t#1| $ "last" |t#1|)) (-15 -4191 ($ $ (-544)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1091)) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-608 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-487 |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-1003 |#1|) . T) ((-1091) |has| |#1| (-1091)) ((-1204) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-3467 (((-635 (-1072)) $) NIL)) (-4238 (((-1166) $) 86)) (-4218 (((-1222 |#2| |#1|) $ (-765)) 73)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2213 (($ $) NIL (|has| |#1| (-554)))) (-2211 (((-112) $) 136 (|has| |#1| (-554)))) (-4177 (($ $ (-765)) 121) (($ $ (-765) (-765)) 123)) (-4180 (((-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 42)) (-3891 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 53) (($ (-1143 |#1|)) NIL)) (-3893 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) NIL T CONST)) (-4211 (($ $) 127)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4223 (($ $) 134)) (-4221 (((-939 |#1|) $ (-765)) 63) (((-939 |#1|) $ (-765) (-765)) 65)) (-3275 (((-112) $) NIL)) (-4034 (($) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $) NIL) (((-765) $ (-765)) NIL)) (-2545 (((-112) $) NIL)) (-4214 (($ $) 111)) (-3394 (($ $ (-544)) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4210 (($ (-544) (-544) $) 129)) (-4183 (($ $ (-912)) 133)) (-4222 (($ (-1 |#1| (-544)) $) 105)) (-4344 (((-112) $) NIL)) (-3276 (($ |#1| (-765)) 15) (($ $ (-1072) (-765)) NIL) (($ $ (-635 (-1072)) (-635 (-765))) NIL)) (-4365 (($ (-1 |#1| |#1|) $) 93)) (-4349 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-4215 (($ $) 109)) (-4216 (($ $) 107)) (-4209 (($ (-544) (-544) $) 131)) (-4219 (($ $) 144 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 150 (-3936 (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190))) (-12 (|has| |#1| (-38 (-406 (-544)))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|)))))) (($ $ (-1250 |#2|)) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3644 (((-1110) $) NIL)) (-4212 (($ $ (-544) (-544)) 115)) (-4175 (($ $ (-765)) 117)) (-3865 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-4350 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4213 (($ $) 113)) (-4174 (((-1143 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-4206 ((|#1| $ (-765)) 90) (($ $ $) 125 (|has| (-765) (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 102 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $ (-1250 |#2|)) 98)) (-4355 (((-765) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 119)) (-4353 (((-857) $) NIL) (($ (-544)) 24) (($ (-406 (-544))) 142 (|has| |#1| (-38 (-406 (-544))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 23 (|has| |#1| (-171))) (($ (-1222 |#2| |#1|)) 79) (($ (-1250 |#2|)) 20)) (-4224 (((-1143 |#1|) $) NIL)) (-4084 ((|#1| $ (-765)) 89)) (-3084 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3511 (((-765)) NIL)) (-4179 ((|#1| $) 87)) (-3897 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-765)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) NIL (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 17 T CONST)) (-3046 (($) 13 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) NIL (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-3437 (((-112) $ $) NIL)) (-4356 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) 101)) (-4246 (($ $ $) 18)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ |#1|) 139 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-406 (-544)) $) NIL (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) NIL (|has| |#1| (-38 (-406 (-544))))))) -(((-1243 |#1| |#2| |#3|) (-13 (-1246 |#1|) (-10 -8 (-15 -4353 ($ (-1222 |#2| |#1|))) (-15 -4218 ((-1222 |#2| |#1|) $ (-765))) (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (-15 -4216 ($ $)) (-15 -4215 ($ $)) (-15 -4214 ($ $)) (-15 -4213 ($ $)) (-15 -4212 ($ $ (-544) (-544))) (-15 -4211 ($ $)) (-15 -4210 ($ (-544) (-544) $)) (-15 -4209 ($ (-544) (-544) $)) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) (-1042) (-1166) |#1|) (T -1243)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-1222 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) (-5 *1 (-1243 *3 *4 *5)))) (-4218 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1222 *5 *4)) (-5 *1 (-1243 *4 *5 *6)) (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *5 *3))) (-4216 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4215 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4214 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4213 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4212 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-4211 (*1 *1 *1) (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2))) (-4210 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-4209 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3)))) -(-13 (-1246 |#1|) (-10 -8 (-15 -4353 ($ (-1222 |#2| |#1|))) (-15 -4218 ((-1222 |#2| |#1|) $ (-765))) (-15 -4353 ($ (-1250 |#2|))) (-15 -4217 ($ $ (-1250 |#2|))) (-15 -4216 ($ $)) (-15 -4215 ($ $)) (-15 -4214 ($ $)) (-15 -4213 ($ $)) (-15 -4212 ($ $ (-544) (-544))) (-15 -4211 ($ $)) (-15 -4210 ($ (-544) (-544) $)) (-15 -4209 ($ (-544) (-544) $)) (IF (|has| |#1| (-38 (-406 (-544)))) (-15 -4219 ($ $ (-1250 |#2|))) |%noBranch|))) -((-4365 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1244 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4365 (|#4| (-1 |#2| |#1|) |#3|))) (-1042) (-1042) (-1246 |#1|) (-1246 |#2|)) (T -1244)) -((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1246 *6)) (-5 *1 (-1244 *5 *6 *4 *2)) (-4 *4 (-1246 *5))))) -(-10 -7 (-15 -4365 (|#4| (-1 |#2| |#1|) |#3|))) -((-3589 (((-112) $) 15)) (-3891 (($ $) 91)) (-4046 (($ $) 67)) (-3889 (($ $) 87)) (-4045 (($ $) 63)) (-3893 (($ $) 95)) (-4044 (($ $) 71)) (-4349 (($ $) 61)) (-4350 (($ $) 59)) (-3894 (($ $) 97)) (-4043 (($ $) 73)) (-3892 (($ $) 93)) (-4042 (($ $) 69)) (-3890 (($ $) 89)) (-4041 (($ $) 65)) (-4353 (((-857) $) 47) (($ (-544)) NIL) (($ (-406 (-544))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3897 (($ $) 103)) (-3885 (($ $) 79)) (-3895 (($ $) 99)) (-3883 (($ $) 75)) (-3899 (($ $) 107)) (-3887 (($ $) 83)) (-3900 (($ $) 109)) (-3888 (($ $) 85)) (-3898 (($ $) 105)) (-3886 (($ $) 81)) (-3896 (($ $) 101)) (-3884 (($ $) 77)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-406 (-544))) 57))) -(((-1245 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -4046 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -4042 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))) (-15 -3589 ((-112) |#1|)) (-15 -4353 ((-857) |#1|))) (-1246 |#2|) (-1042)) (T -1245)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-406 (-544)))) (-15 -4046 (|#1| |#1|)) (-15 -4045 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -4042 (|#1| |#1|)) (-15 -4041 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3889 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -3899 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -4350 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2|)) (-15 -4353 (|#1| |#1|)) (-15 -4353 (|#1| (-406 (-544)))) (-15 -4353 (|#1| (-544))) (-15 ** (|#1| |#1| (-765))) (-15 ** (|#1| |#1| (-912))) (-15 -3589 ((-112) |#1|)) (-15 -4353 ((-857) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-3467 (((-635 (-1072)) $) 77)) (-4238 (((-1166) $) 106)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2213 (($ $) 55 (|has| |#1| (-554)))) (-2211 (((-112) $) 57 (|has| |#1| (-554)))) (-4177 (($ $ (-765)) 101) (($ $ (-765) (-765)) 100)) (-4180 (((-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|))) $) 108)) (-3891 (($ $) 138 (|has| |#1| (-38 (-406 (-544)))))) (-4046 (($ $) 121 (|has| |#1| (-38 (-406 (-544)))))) (-1391 (((-3 $ "failed") $ $) 19)) (-3420 (($ $) 120 (|has| |#1| (-38 (-406 (-544)))))) (-3889 (($ $) 137 (|has| |#1| (-38 (-406 (-544)))))) (-4045 (($ $) 122 (|has| |#1| (-38 (-406 (-544)))))) (-4225 (($ (-1143 (-2 (|:| |k| (-765)) (|:| |c| |#1|)))) 158) (($ (-1143 |#1|)) 156)) (-3893 (($ $) 136 (|has| |#1| (-38 (-406 (-544)))))) (-4044 (($ $) 123 (|has| |#1| (-38 (-406 (-544)))))) (-4131 (($) 17 T CONST)) (-4366 (($ $) 63)) (-3866 (((-3 $ "failed") $) 33)) (-4223 (($ $) 155)) (-4221 (((-939 |#1|) $ (-765)) 153) (((-939 |#1|) $ (-765) (-765)) 152)) (-3275 (((-112) $) 76)) (-4034 (($) 148 (|has| |#1| (-38 (-406 (-544)))))) (-4178 (((-765) $) 103) (((-765) $ (-765)) 102)) (-2545 (((-112) $) 31)) (-3394 (($ $ (-544)) 119 (|has| |#1| (-38 (-406 (-544)))))) (-4183 (($ $ (-912)) 104)) (-4222 (($ (-1 |#1| (-544)) $) 154)) (-4344 (((-112) $) 65)) (-3276 (($ |#1| (-765)) 64) (($ $ (-1072) (-765)) 79) (($ $ (-635 (-1072)) (-635 (-765))) 78)) (-4365 (($ (-1 |#1| |#1|) $) 66)) (-4349 (($ $) 145 (|has| |#1| (-38 (-406 (-544)))))) (-3277 (($ $) 68)) (-3575 ((|#1| $) 69)) (-3643 (((-1148) $) 9)) (-4219 (($ $) 150 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-1166)) 149 (-3936 (-12 (|has| |#1| (-29 (-544))) (|has| |#1| (-953)) (|has| |#1| (-1190)) (|has| |#1| (-38 (-406 (-544))))) (-12 (|has| |#1| (-15 -3467 ((-635 (-1166)) |#1|))) (|has| |#1| (-15 -4219 (|#1| |#1| (-1166)))) (|has| |#1| (-38 (-406 (-544)))))))) (-3644 (((-1110) $) 10)) (-4175 (($ $ (-765)) 98)) (-3865 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-4350 (($ $) 146 (|has| |#1| (-38 (-406 (-544)))))) (-4174 (((-1143 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-765)))))) (-4206 ((|#1| $ (-765)) 107) (($ $ $) 84 (|has| (-765) (-1102)))) (-4217 (($ $ (-635 (-1166)) (-635 (-765))) 92 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) 91 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) 90 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 89 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) 87 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-4355 (((-765) $) 67)) (-3894 (($ $) 135 (|has| |#1| (-38 (-406 (-544)))))) (-4043 (($ $) 124 (|has| |#1| (-38 (-406 (-544)))))) (-3892 (($ $) 134 (|has| |#1| (-38 (-406 (-544)))))) (-4042 (($ $) 125 (|has| |#1| (-38 (-406 (-544)))))) (-3890 (($ $) 133 (|has| |#1| (-38 (-406 (-544)))))) (-4041 (($ $) 126 (|has| |#1| (-38 (-406 (-544)))))) (-3274 (($ $) 75)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ (-406 (-544))) 60 (|has| |#1| (-38 (-406 (-544))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-4224 (((-1143 |#1|) $) 157)) (-4084 ((|#1| $ (-765)) 62)) (-3084 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-3511 (((-765)) 28)) (-4179 ((|#1| $) 105)) (-3897 (($ $) 144 (|has| |#1| (-38 (-406 (-544)))))) (-3885 (($ $) 132 (|has| |#1| (-38 (-406 (-544)))))) (-2212 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3895 (($ $) 143 (|has| |#1| (-38 (-406 (-544)))))) (-3883 (($ $) 131 (|has| |#1| (-38 (-406 (-544)))))) (-3899 (($ $) 142 (|has| |#1| (-38 (-406 (-544)))))) (-3887 (($ $) 130 (|has| |#1| (-38 (-406 (-544)))))) (-4176 ((|#1| $ (-765)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-765)))) (|has| |#1| (-15 -4353 (|#1| (-1166))))))) (-3900 (($ $) 141 (|has| |#1| (-38 (-406 (-544)))))) (-3888 (($ $) 129 (|has| |#1| (-38 (-406 (-544)))))) (-3898 (($ $) 140 (|has| |#1| (-38 (-406 (-544)))))) (-3886 (($ $) 128 (|has| |#1| (-38 (-406 (-544)))))) (-3896 (($ $) 139 (|has| |#1| (-38 (-406 (-544)))))) (-3884 (($ $) 127 (|has| |#1| (-38 (-406 (-544)))))) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3051 (($ $ (-635 (-1166)) (-635 (-765))) 96 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166) (-765)) 95 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-635 (-1166))) 94 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-1166)) 93 (-12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (($ $ (-765)) 88 (|has| |#1| (-15 * (|#1| (-765) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-765) |#1|))))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ |#1|) 151 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 118 (|has| |#1| (-38 (-406 (-544)))))) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-544)) $) 59 (|has| |#1| (-38 (-406 (-544))))) (($ $ (-406 (-544))) 58 (|has| |#1| (-38 (-406 (-544))))))) -(((-1246 |#1|) (-139) (-1042)) (T -1246)) -((-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 (-2 (|:| |k| (-765)) (|:| |c| *3)))) (-4 *3 (-1042)) (-4 *1 (-1246 *3)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-1042)) (-5 *2 (-1143 *3)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-4 *1 (-1246 *3)))) (-4223 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-544))) (-4 *1 (-1246 *3)) (-4 *3 (-1042)))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1246 *4)) (-4 *4 (-1042)) (-5 *2 (-939 *4)))) (-4221 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-4 *1 (-1246 *4)) (-4 *4 (-1042)) (-5 *2 (-939 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) (-4219 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))) (-4219 (*1 *1 *1 *2) (-3936 (-12 (-5 *2 (-1166)) (-4 *1 (-1246 *3)) (-4 *3 (-1042)) (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190)) (-4 *3 (-38 (-406 (-544)))))) (-12 (-5 *2 (-1166)) (-4 *1 (-1246 *3)) (-4 *3 (-1042)) (-12 (|has| *3 (-15 -3467 ((-635 *2) *3))) (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544))))))))) -(-13 (-1232 |t#1| (-765)) (-10 -8 (-15 -4225 ($ (-1143 (-2 (|:| |k| (-765)) (|:| |c| |t#1|))))) (-15 -4224 ((-1143 |t#1|) $)) (-15 -4225 ($ (-1143 |t#1|))) (-15 -4223 ($ $)) (-15 -4222 ($ (-1 |t#1| (-544)) $)) (-15 -4221 ((-939 |t#1|) $ (-765))) (-15 -4221 ((-939 |t#1|) $ (-765) (-765))) (IF (|has| |t#1| (-362)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-544)))) (PROGN (-15 -4219 ($ $)) (IF (|has| |t#1| (-15 -4219 (|t#1| |t#1| (-1166)))) (IF (|has| |t#1| (-15 -3467 ((-635 (-1166)) |t#1|))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1190)) (IF (|has| |t#1| (-953)) (IF (|has| |t#1| (-29 (-544))) (-15 -4219 ($ $ (-1166))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-995)) (-6 (-1190))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-765)) . T) ((-25) . T) ((-38 #2=(-406 (-544))) |has| |#1| (-38 (-406 (-544)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-35) |has| |#1| (-38 (-406 (-544)))) ((-95) |has| |#1| (-38 (-406 (-544)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-406 (-544)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-611 #2#) |has| |#1| (-38 (-406 (-544)))) ((-611 (-544)) . T) ((-611 |#1|) |has| |#1| (-171)) ((-611 $) |has| |#1| (-554)) ((-608 (-857)) . T) ((-171) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-765) |#1|))) ((-283) |has| |#1| (-38 (-406 (-544)))) ((-285 $ $) |has| (-765) (-1102)) ((-289) |has| |#1| (-554)) ((-491) |has| |#1| (-38 (-406 (-544)))) ((-554) |has| |#1| (-554)) ((-641 #2#) |has| |#1| (-38 (-406 (-544)))) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #2#) |has| |#1| (-38 (-406 (-544)))) ((-711 |#1|) |has| |#1| (-171)) ((-711 $) |has| |#1| (-554)) ((-720) . T) ((-893 (-1166)) -12 (|has| |#1| (-893 (-1166))) (|has| |#1| (-15 * (|#1| (-765) |#1|)))) ((-966 |#1| #1# (-1072)) . T) ((-995) |has| |#1| (-38 (-406 (-544)))) ((-1048 #2#) |has| |#1| (-38 (-406 (-544)))) ((-1048 |#1|) . T) ((-1048 $) -3936 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1190) |has| |#1| (-38 (-406 (-544)))) ((-1193) |has| |#1| (-38 (-406 (-544)))) ((-1232 |#1| #1#) . T)) -((-4228 (((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|))) 24)) (-4227 (((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4226 (((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|)) 13)) (-4231 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4230 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4232 ((|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|)) 54)) (-4233 (((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|)))) 61)) (-4229 ((|#2| |#2| |#2|) 43))) -(((-1247 |#1| |#2|) (-10 -7 (-15 -4226 ((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|))) (-15 -4227 ((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4228 ((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|)))) (-15 -4229 (|#2| |#2| |#2|)) (-15 -4230 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4231 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4232 (|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|))) (-15 -4233 ((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|)))))) (-38 (-406 (-544))) (-1246 |#1|)) (T -1247)) -((-4233 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 (-1 *6 (-635 *6)))) (-4 *5 (-38 (-406 (-544)))) (-4 *6 (-1246 *5)) (-5 *2 (-635 *6)) (-5 *1 (-1247 *5 *6)))) (-4232 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-635 *2))) (-5 *4 (-635 *5)) (-4 *5 (-38 (-406 (-544)))) (-4 *2 (-1246 *5)) (-5 *1 (-1247 *5 *2)))) (-4231 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-1247 *4 *2)) (-4 *4 (-38 (-406 (-544)))))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-1247 *4 *2)) (-4 *4 (-38 (-406 (-544)))))) (-4229 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1246 *3)))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-635 *5))) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-1 (-1143 *4) (-635 (-1143 *4)))) (-5 *1 (-1247 *4 *5)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-1 (-1143 *4) (-1143 *4) (-1143 *4))) (-5 *1 (-1247 *4 *5)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544)))) (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1247 *4 *5))))) -(-10 -7 (-15 -4226 ((-1 (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2|))) (-15 -4227 ((-1 (-1143 |#1|) (-1143 |#1|) (-1143 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4228 ((-1 (-1143 |#1|) (-635 (-1143 |#1|))) (-1 |#2| (-635 |#2|)))) (-15 -4229 (|#2| |#2| |#2|)) (-15 -4230 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4231 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4232 (|#2| (-1 |#2| (-635 |#2|)) (-635 |#1|))) (-15 -4233 ((-635 |#2|) (-635 |#1|) (-635 (-1 |#2| (-635 |#2|)))))) -((-4235 ((|#2| |#4| (-765)) 30)) (-4234 ((|#4| |#2|) 25)) (-4237 ((|#4| (-406 |#2|)) 52 (|has| |#1| (-554)))) (-4236 (((-1 |#4| (-635 |#4|)) |#3|) 46))) -(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4234 (|#4| |#2|)) (-15 -4235 (|#2| |#4| (-765))) (-15 -4236 ((-1 |#4| (-635 |#4|)) |#3|)) (IF (|has| |#1| (-554)) (-15 -4237 (|#4| (-406 |#2|))) |%noBranch|)) (-1042) (-1229 |#1|) (-651 |#2|) (-1246 |#1|)) (T -1248)) -((-4237 (*1 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-554)) (-4 *4 (-1042)) (-4 *2 (-1246 *4)) (-5 *1 (-1248 *4 *5 *6 *2)) (-4 *6 (-651 *5)))) (-4236 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *5 (-1229 *4)) (-5 *2 (-1 *6 (-635 *6))) (-5 *1 (-1248 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1246 *4)))) (-4235 (*1 *2 *3 *4) (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-4 *2 (-1229 *5)) (-5 *1 (-1248 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1246 *5)))) (-4234 (*1 *2 *3) (-12 (-4 *4 (-1042)) (-4 *3 (-1229 *4)) (-4 *2 (-1246 *4)) (-5 *1 (-1248 *4 *3 *5 *2)) (-4 *5 (-651 *3))))) -(-10 -7 (-15 -4234 (|#4| |#2|)) (-15 -4235 (|#2| |#4| (-765))) (-15 -4236 ((-1 |#4| (-635 |#4|)) |#3|)) (IF (|has| |#1| (-554)) (-15 -4237 (|#4| (-406 |#2|))) |%noBranch|)) -NIL -(((-1249) (-139)) (T -1249)) -NIL -(-13 (-10 -7 (-6 -2407))) -((-2947 (((-112) $ $) NIL)) (-4238 (((-1166)) 12)) (-3643 (((-1148) $) 17)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 11) (((-1166) $) 8)) (-3437 (((-112) $ $) 14))) -(((-1250 |#1|) (-13 (-1091) (-608 (-1166)) (-10 -8 (-15 -4353 ((-1166) $)) (-15 -4238 ((-1166))))) (-1166)) (T -1250)) -((-4353 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2))) (-4238 (*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2)))) -(-13 (-1091) (-608 (-1166)) (-10 -8 (-15 -4353 ((-1166) $)) (-15 -4238 ((-1166))))) -((-4245 (($ (-765)) 18)) (-4242 (((-682 |#2|) $ $) 40)) (-4239 ((|#2| $) 48)) (-4240 ((|#2| $) 47)) (-4243 ((|#2| $ $) 35)) (-4241 (($ $ $) 44)) (-4244 (($ $) 22) (($ $ $) 28)) (-4246 (($ $ $) 15)) (* (($ (-544) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1251 |#1| |#2|) (-10 -8 (-15 -4239 (|#2| |#1|)) (-15 -4240 (|#2| |#1|)) (-15 -4241 (|#1| |#1| |#1|)) (-15 -4242 ((-682 |#2|) |#1| |#1|)) (-15 -4243 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4245 (|#1| (-765))) (-15 -4246 (|#1| |#1| |#1|))) (-1252 |#2|) (-1204)) (T -1251)) -NIL -(-10 -8 (-15 -4239 (|#2| |#1|)) (-15 -4240 (|#2| |#1|)) (-15 -4241 (|#1| |#1| |#1|)) (-15 -4242 ((-682 |#2|) |#1| |#1|)) (-15 -4243 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-544) |#1|)) (-15 -4244 (|#1| |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4245 (|#1| (-765))) (-15 -4246 (|#1| |#1| |#1|))) -((-2947 (((-112) $ $) 19 (|has| |#1| (-1091)))) (-4245 (($ (-765)) 112 (|has| |#1| (-23)))) (-2344 (((-1259) $ (-544) (-544)) 40 (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4401))) (($ $) 88 (-12 (|has| |#1| (-844)) (|has| $ (-6 -4401))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) 8)) (-4194 ((|#1| $ (-544) |#1|) 52 (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) 58 (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4400)))) (-4131 (($) 7 T CONST)) (-2416 (($ $) 90 (|has| $ (-6 -4401)))) (-2417 (($ $) 100)) (-1424 (($ $) 78 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-3810 (($ |#1| $) 77 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) 53 (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) 51)) (-3823 (((-544) (-1 (-112) |#1|) $) 97) (((-544) |#1| $) 96 (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) 95 (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) 30 (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) 105 (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) 69)) (-4126 (((-112) $ (-765)) 9)) (-2346 (((-544) $) 43 (|has| (-544) (-844)))) (-2913 (($ $ $) 87 (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-2347 (((-544) $) 44 (|has| (-544) (-844)))) (-3242 (($ $ $) 86 (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4239 ((|#1| $) 102 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-4123 (((-112) $ (-765)) 10)) (-4240 ((|#1| $) 103 (-12 (|has| |#1| (-1042)) (|has| |#1| (-995))))) (-3643 (((-1148) $) 22 (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) 60) (($ $ $ (-544)) 59)) (-2349 (((-635 (-544)) $) 46)) (-2350 (((-112) (-544) $) 47)) (-3644 (((-1110) $) 21 (|has| |#1| (-1091)))) (-4207 ((|#1| $) 42 (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2345 (($ $ |#1|) 41 (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) 14)) (-2348 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) 48)) (-3807 (((-112) $) 11)) (-3972 (($) 12)) (-4206 ((|#1| $ (-544) |#1|) 50) ((|#1| $ (-544)) 49) (($ $ (-1220 (-544))) 63)) (-4243 ((|#1| $ $) 106 (|has| |#1| (-1042)))) (-2422 (($ $ (-544)) 62) (($ $ (-1220 (-544))) 61)) (-4241 (($ $ $) 104 (|has| |#1| (-1042)))) (-2097 (((-765) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4400))) (((-765) |#1| $) 28 (-12 (|has| |#1| (-1091)) (|has| $ (-6 -4400))))) (-1875 (($ $ $ (-544)) 91 (|has| $ (-6 -4401)))) (-3804 (($ $) 13)) (-4377 (((-533) $) 79 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 70)) (-4208 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-635 $)) 65)) (-4353 (((-857) $) 18 (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) 84 (|has| |#1| (-844)))) (-2946 (((-112) $ $) 83 (|has| |#1| (-844)))) (-3437 (((-112) $ $) 20 (|has| |#1| (-1091)))) (-3066 (((-112) $ $) 85 (|has| |#1| (-844)))) (-3067 (((-112) $ $) 82 (|has| |#1| (-844)))) (-4244 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4246 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-544) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-720))) (($ $ |#1|) 107 (|has| |#1| (-720)))) (-4364 (((-765) $) 6 (|has| $ (-6 -4400))))) -(((-1252 |#1|) (-139) (-1204)) (T -1252)) -((-4246 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-25)))) (-4245 (*1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1252 *3)) (-4 *3 (-23)) (-4 *3 (-1204)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-21)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-4 *1 (-1252 *3)) (-4 *3 (-1204)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) (-4243 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-1042)))) (-4242 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1204)) (-4 *3 (-1042)) (-5 *2 (-682 *3)))) (-4241 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-1042)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-995)) (-4 *2 (-1042)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-995)) (-4 *2 (-1042))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4246 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4245 ($ (-765))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4244 ($ $)) (-15 -4244 ($ $ $)) (-15 * ($ (-544) $))) |%noBranch|) (IF (|has| |t#1| (-720)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-15 -4243 (|t#1| $ $)) (-15 -4242 ((-682 |t#1|) $ $)) (-15 -4241 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-995)) (IF (|has| |t#1| (-1042)) (PROGN (-15 -4240 (|t#1| $)) (-15 -4239 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-608 (-857)) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844)) (|has| |#1| (-608 (-857)))) ((-150 |#1|) . T) ((-609 (-533)) |has| |#1| (-609 (-533))) ((-285 #1=(-544) |#1|) . T) ((-287 #1# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-371 |#1|) . T) ((-487 |#1|) . T) ((-599 #1# |#1|) . T) ((-512 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))) ((-644 |#1|) . T) ((-19 |#1|) . T) ((-844) |has| |#1| (-844)) ((-1091) -3936 (|has| |#1| (-1091)) (|has| |#1| (-844))) ((-1204) . T)) -((-2947 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-4245 (($ (-765)) NIL (|has| |#1| (-23)))) (-4247 (($ (-635 |#1|)) 9)) (-2344 (((-1259) $ (-544) (-544)) NIL (|has| $ (-6 -4401)))) (-1876 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-844)))) (-1874 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4401))) (($ $) NIL (-12 (|has| $ (-6 -4401)) (|has| |#1| (-844))))) (-3292 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-844)))) (-1293 (((-112) $ (-765)) NIL)) (-4194 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401))) ((|#1| $ (-1220 (-544)) |#1|) NIL (|has| $ (-6 -4401)))) (-4117 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4131 (($) NIL T CONST)) (-2416 (($ $) NIL (|has| $ (-6 -4401)))) (-2417 (($ $) NIL)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-3810 (($ |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4249 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4400))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4400)))) (-1665 ((|#1| $ (-544) |#1|) NIL (|has| $ (-6 -4401)))) (-3498 ((|#1| $ (-544)) NIL)) (-3823 (((-544) (-1 (-112) |#1|) $) NIL) (((-544) |#1| $) NIL (|has| |#1| (-1091))) (((-544) |#1| $ (-544)) NIL (|has| |#1| (-1091)))) (-2096 (((-635 |#1|) $) 15 (|has| $ (-6 -4400)))) (-4242 (((-682 |#1|) $ $) NIL (|has| |#1| (-1042)))) (-4021 (($ (-765) |#1|) NIL)) (-4126 (((-112) $ (-765)) NIL)) (-2346 (((-544) $) NIL (|has| (-544) (-844)))) (-2913 (($ $ $) NIL (|has| |#1| (-844)))) (-3917 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-844)))) (-2554 (((-635 |#1|) $) NIL (|has| $ (-6 -4400)))) (-3646 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2347 (((-544) $) NIL (|has| (-544) (-844)))) (-3242 (($ $ $) NIL (|has| |#1| (-844)))) (-2100 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4239 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-4123 (((-112) $ (-765)) NIL)) (-4240 ((|#1| $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1042))))) (-3643 (((-1148) $) NIL (|has| |#1| (-1091)))) (-2421 (($ |#1| $ (-544)) NIL) (($ $ $ (-544)) NIL)) (-2349 (((-635 (-544)) $) NIL)) (-2350 (((-112) (-544) $) NIL)) (-3644 (((-1110) $) NIL (|has| |#1| (-1091)))) (-4207 ((|#1| $) NIL (|has| (-544) (-844)))) (-1425 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2345 (($ $ |#1|) NIL (|has| $ (-6 -4401)))) (-2098 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 (-292 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-292 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091)))) (($ $ (-635 |#1|) (-635 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1091))))) (-1294 (((-112) $ $) NIL)) (-2348 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-2351 (((-635 |#1|) $) NIL)) (-3807 (((-112) $) NIL)) (-3972 (($) NIL)) (-4206 ((|#1| $ (-544) |#1|) NIL) ((|#1| $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4243 ((|#1| $ $) NIL (|has| |#1| (-1042)))) (-2422 (($ $ (-544)) NIL) (($ $ (-1220 (-544))) NIL)) (-4241 (($ $ $) NIL (|has| |#1| (-1042)))) (-2097 (((-765) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400))) (((-765) |#1| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#1| (-1091))))) (-1875 (($ $ $ (-544)) NIL (|has| $ (-6 -4401)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) 19 (|has| |#1| (-609 (-533))))) (-3929 (($ (-635 |#1|)) 8)) (-4208 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-635 $)) NIL)) (-4353 (((-857) $) NIL (|has| |#1| (-608 (-857))))) (-2099 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4400)))) (-2945 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3437 (((-112) $ $) NIL (|has| |#1| (-1091)))) (-3066 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3067 (((-112) $ $) NIL (|has| |#1| (-844)))) (-4244 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4246 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-544) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-720))) (($ $ |#1|) NIL (|has| |#1| (-720)))) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1253 |#1|) (-13 (-1252 |#1|) (-10 -8 (-15 -4247 ($ (-635 |#1|))))) (-1204)) (T -1253)) -((-4247 (*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1253 *3))))) -(-13 (-1252 |#1|) (-10 -8 (-15 -4247 ($ (-635 |#1|))))) -((-4248 (((-1253 |#2|) (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|) 13)) (-4249 ((|#2| (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|) 15)) (-4365 (((-3 (-1253 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1253 |#1|)) 28) (((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 18))) -(((-1254 |#1| |#2|) (-10 -7 (-15 -4248 ((-1253 |#2|) (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4365 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (-15 -4365 ((-3 (-1253 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1253 |#1|)))) (-1204) (-1204)) (T -1254)) -((-4365 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6)))) (-4249 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) (-5 *1 (-1254 *5 *2)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1253 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-5 *2 (-1253 *5)) (-5 *1 (-1254 *6 *5))))) -(-10 -7 (-15 -4248 ((-1253 |#2|) (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4249 (|#2| (-1 |#2| |#1| |#2|) (-1253 |#1|) |#2|)) (-15 -4365 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (-15 -4365 ((-3 (-1253 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1253 |#1|)))) -((-4250 (((-466) (-635 (-635 (-936 (-224)))) (-635 (-260))) 21) (((-466) (-635 (-635 (-936 (-224))))) 20) (((-466) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260))) 19)) (-4251 (((-1256) (-635 (-635 (-936 (-224)))) (-635 (-260))) 27) (((-1256) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260))) 26)) (-4353 (((-1256) (-466)) 38))) -(((-1255) (-10 -7 (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260)))) (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))))) (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))) (-635 (-260)))) (-15 -4251 ((-1256) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260)))) (-15 -4251 ((-1256) (-635 (-635 (-936 (-224)))) (-635 (-260)))) (-15 -4353 ((-1256) (-466))))) (T -1255)) -((-4353 (*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1256)) (-5 *1 (-1255)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-1255)))) (-4251 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *6 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-1255)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-635 (-260))) (-5 *2 (-466)) (-5 *1 (-1255)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-466)) (-5 *1 (-1255)))) (-4250 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *6 (-635 (-260))) (-5 *2 (-466)) (-5 *1 (-1255))))) -(-10 -7 (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260)))) (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))))) (-15 -4250 ((-466) (-635 (-635 (-936 (-224)))) (-635 (-260)))) (-15 -4251 ((-1256) (-635 (-635 (-936 (-224)))) (-867) (-867) (-912) (-635 (-260)))) (-15 -4251 ((-1256) (-635 (-635 (-936 (-224)))) (-635 (-260)))) (-15 -4353 ((-1256) (-466)))) -((-2947 (((-112) $ $) NIL)) (-4269 (((-1148) $ (-1148)) 92) (((-1148) $ (-1148) (-1148)) 90) (((-1148) $ (-1148) (-635 (-1148))) 89)) (-4265 (($) 59)) (-4252 (((-1259) $ (-466) (-912)) 45)) (-4258 (((-1259) $ (-912) (-1148)) 75) (((-1259) $ (-912) (-867)) 76)) (-4280 (((-1259) $ (-912) (-377) (-377)) 48)) (-4290 (((-1259) $ (-1148)) 71)) (-4253 (((-1259) $ (-912) (-1148)) 80)) (-4254 (((-1259) $ (-912) (-377) (-377)) 49)) (-4291 (((-1259) $ (-912) (-912)) 46)) (-4271 (((-1259) $) 72)) (-4256 (((-1259) $ (-912) (-1148)) 79)) (-4260 (((-1259) $ (-466) (-912)) 31)) (-4257 (((-1259) $ (-912) (-1148)) 78)) (-4293 (((-635 (-260)) $) 23) (($ $ (-635 (-260))) 24)) (-4292 (((-1259) $ (-765) (-765)) 43)) (-4264 (($ $) 60) (($ (-466) (-635 (-260))) 61)) (-3643 (((-1148) $) NIL)) (-4267 (((-544) $) 38)) (-3644 (((-1110) $) NIL)) (-4261 (((-1253 (-3 (-466) "undefined")) $) 37)) (-4262 (((-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544)) (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867)) (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544)))) $) 36)) (-4263 (((-1259) $ (-912) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-867) (-544) (-867) (-544)) 70)) (-4266 (((-635 (-936 (-224))) $) NIL)) (-4259 (((-466) $ (-912)) 33)) (-4289 (((-1259) $ (-765) (-765) (-912) (-912)) 40)) (-4287 (((-1259) $ (-1148)) 81)) (-4255 (((-1259) $ (-912) (-1148)) 77)) (-4353 (((-857) $) 87)) (-4268 (((-1259) $) 82)) (-4286 (((-1259) $ (-912) (-1148)) 73) (((-1259) $ (-912) (-867)) 74)) (-3437 (((-112) $ $) NIL))) -(((-1256) (-13 (-1091) (-10 -8 (-15 -4266 ((-635 (-936 (-224))) $)) (-15 -4265 ($)) (-15 -4264 ($ $)) (-15 -4293 ((-635 (-260)) $)) (-15 -4293 ($ $ (-635 (-260)))) (-15 -4264 ($ (-466) (-635 (-260)))) (-15 -4263 ((-1259) $ (-912) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-867) (-544) (-867) (-544))) (-15 -4262 ((-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544)) (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867)) (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544)))) $)) (-15 -4261 ((-1253 (-3 (-466) "undefined")) $)) (-15 -4290 ((-1259) $ (-1148))) (-15 -4260 ((-1259) $ (-466) (-912))) (-15 -4259 ((-466) $ (-912))) (-15 -4286 ((-1259) $ (-912) (-1148))) (-15 -4286 ((-1259) $ (-912) (-867))) (-15 -4258 ((-1259) $ (-912) (-1148))) (-15 -4258 ((-1259) $ (-912) (-867))) (-15 -4257 ((-1259) $ (-912) (-1148))) (-15 -4256 ((-1259) $ (-912) (-1148))) (-15 -4255 ((-1259) $ (-912) (-1148))) (-15 -4287 ((-1259) $ (-1148))) (-15 -4268 ((-1259) $)) (-15 -4289 ((-1259) $ (-765) (-765) (-912) (-912))) (-15 -4254 ((-1259) $ (-912) (-377) (-377))) (-15 -4280 ((-1259) $ (-912) (-377) (-377))) (-15 -4253 ((-1259) $ (-912) (-1148))) (-15 -4292 ((-1259) $ (-765) (-765))) (-15 -4252 ((-1259) $ (-466) (-912))) (-15 -4291 ((-1259) $ (-912) (-912))) (-15 -4269 ((-1148) $ (-1148))) (-15 -4269 ((-1148) $ (-1148) (-1148))) (-15 -4269 ((-1148) $ (-1148) (-635 (-1148)))) (-15 -4271 ((-1259) $)) (-15 -4267 ((-544) $)) (-15 -4353 ((-857) $))))) (T -1256)) -((-4353 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1256)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-635 (-936 (-224)))) (-5 *1 (-1256)))) (-4265 (*1 *1) (-5 *1 (-1256))) (-4264 (*1 *1 *1) (-5 *1 (-1256))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1256)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1256)))) (-4264 (*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-635 (-260))) (-5 *1 (-1256)))) (-4263 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-912)) (-5 *4 (-224)) (-5 *5 (-544)) (-5 *6 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4262 (*1 *2 *1) (-12 (-5 *2 (-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544)) (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867)) (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544))))) (-5 *1 (-1256)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-1253 (-3 (-466) "undefined"))) (-5 *1 (-1256)))) (-4290 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4260 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4259 (*1 *2 *1 *3) (-12 (-5 *3 (-912)) (-5 *2 (-466)) (-5 *1 (-1256)))) (-4286 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4286 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4258 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4258 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4257 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4256 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4255 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4287 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4289 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-765)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4254 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-912)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4280 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-912)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4253 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4252 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4291 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4269 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256)))) (-4269 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256)))) (-4269 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1256)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1256))))) -(-13 (-1091) (-10 -8 (-15 -4266 ((-635 (-936 (-224))) $)) (-15 -4265 ($)) (-15 -4264 ($ $)) (-15 -4293 ((-635 (-260)) $)) (-15 -4293 ($ $ (-635 (-260)))) (-15 -4264 ($ (-466) (-635 (-260)))) (-15 -4263 ((-1259) $ (-912) (-224) (-224) (-224) (-224) (-544) (-544) (-544) (-544) (-867) (-544) (-867) (-544))) (-15 -4262 ((-1253 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544)) (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867)) (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544)))) $)) (-15 -4261 ((-1253 (-3 (-466) "undefined")) $)) (-15 -4290 ((-1259) $ (-1148))) (-15 -4260 ((-1259) $ (-466) (-912))) (-15 -4259 ((-466) $ (-912))) (-15 -4286 ((-1259) $ (-912) (-1148))) (-15 -4286 ((-1259) $ (-912) (-867))) (-15 -4258 ((-1259) $ (-912) (-1148))) (-15 -4258 ((-1259) $ (-912) (-867))) (-15 -4257 ((-1259) $ (-912) (-1148))) (-15 -4256 ((-1259) $ (-912) (-1148))) (-15 -4255 ((-1259) $ (-912) (-1148))) (-15 -4287 ((-1259) $ (-1148))) (-15 -4268 ((-1259) $)) (-15 -4289 ((-1259) $ (-765) (-765) (-912) (-912))) (-15 -4254 ((-1259) $ (-912) (-377) (-377))) (-15 -4280 ((-1259) $ (-912) (-377) (-377))) (-15 -4253 ((-1259) $ (-912) (-1148))) (-15 -4292 ((-1259) $ (-765) (-765))) (-15 -4252 ((-1259) $ (-466) (-912))) (-15 -4291 ((-1259) $ (-912) (-912))) (-15 -4269 ((-1148) $ (-1148))) (-15 -4269 ((-1148) $ (-1148) (-1148))) (-15 -4269 ((-1148) $ (-1148) (-635 (-1148)))) (-15 -4271 ((-1259) $)) (-15 -4267 ((-544) $)) (-15 -4353 ((-857) $)))) -((-2947 (((-112) $ $) NIL)) (-4281 (((-1259) $ (-377)) 142) (((-1259) $ (-377) (-377) (-377)) 143)) (-4269 (((-1148) $ (-1148)) 150) (((-1148) $ (-1148) (-1148)) 148) (((-1148) $ (-1148) (-635 (-1148))) 147)) (-4297 (($) 50)) (-4288 (((-1259) $ (-377) (-377) (-377) (-377) (-377)) 118) (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $) 116) (((-1259) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 117) (((-1259) $ (-544) (-544) (-377) (-377) (-377)) 119) (((-1259) $ (-377) (-377)) 120) (((-1259) $ (-377) (-377) (-377)) 127)) (-4300 (((-377)) 99) (((-377) (-377)) 100)) (-4302 (((-377)) 94) (((-377) (-377)) 96)) (-4301 (((-377)) 97) (((-377) (-377)) 98)) (-4298 (((-377)) 103) (((-377) (-377)) 104)) (-4299 (((-377)) 101) (((-377) (-377)) 102)) (-4280 (((-1259) $ (-377) (-377)) 144)) (-4290 (((-1259) $ (-1148)) 128)) (-4295 (((-1123 (-224)) $) 51) (($ $ (-1123 (-224))) 52)) (-4276 (((-1259) $ (-1148)) 156)) (-4275 (((-1259) $ (-1148)) 157)) (-4282 (((-1259) $ (-377) (-377)) 126) (((-1259) $ (-544) (-544)) 141)) (-4291 (((-1259) $ (-912) (-912)) 134)) (-4271 (((-1259) $) 114)) (-4279 (((-1259) $ (-1148)) 155)) (-4284 (((-1259) $ (-1148)) 111)) (-4293 (((-635 (-260)) $) 53) (($ $ (-635 (-260))) 54)) (-4292 (((-1259) $ (-765) (-765)) 133)) (-4294 (((-1259) $ (-765) (-936 (-224))) 162)) (-4296 (($ $) 56) (($ (-1123 (-224)) (-1148)) 57) (($ (-1123 (-224)) (-635 (-260))) 58)) (-4273 (((-1259) $ (-377) (-377) (-377)) 108)) (-3643 (((-1148) $) NIL)) (-4267 (((-544) $) 105)) (-4272 (((-1259) $ (-377)) 145)) (-4277 (((-1259) $ (-377)) 160)) (-3644 (((-1110) $) NIL)) (-4278 (((-1259) $ (-377)) 159)) (-4283 (((-1259) $ (-1148)) 113)) (-4289 (((-1259) $ (-765) (-765) (-912) (-912)) 132)) (-4285 (((-1259) $ (-1148)) 110)) (-4287 (((-1259) $ (-1148)) 112)) (-4270 (((-1259) $ (-156) (-156)) 131)) (-4353 (((-857) $) 139)) (-4268 (((-1259) $) 115)) (-4274 (((-1259) $ (-1148)) 158)) (-4286 (((-1259) $ (-1148)) 109)) (-3437 (((-112) $ $) NIL))) -(((-1257) (-13 (-1091) (-10 -8 (-15 -4302 ((-377))) (-15 -4302 ((-377) (-377))) (-15 -4301 ((-377))) (-15 -4301 ((-377) (-377))) (-15 -4300 ((-377))) (-15 -4300 ((-377) (-377))) (-15 -4299 ((-377))) (-15 -4299 ((-377) (-377))) (-15 -4298 ((-377))) (-15 -4298 ((-377) (-377))) (-15 -4297 ($)) (-15 -4296 ($ $)) (-15 -4296 ($ (-1123 (-224)) (-1148))) (-15 -4296 ($ (-1123 (-224)) (-635 (-260)))) (-15 -4295 ((-1123 (-224)) $)) (-15 -4295 ($ $ (-1123 (-224)))) (-15 -4294 ((-1259) $ (-765) (-936 (-224)))) (-15 -4293 ((-635 (-260)) $)) (-15 -4293 ($ $ (-635 (-260)))) (-15 -4292 ((-1259) $ (-765) (-765))) (-15 -4291 ((-1259) $ (-912) (-912))) (-15 -4290 ((-1259) $ (-1148))) (-15 -4289 ((-1259) $ (-765) (-765) (-912) (-912))) (-15 -4288 ((-1259) $ (-377) (-377) (-377) (-377) (-377))) (-15 -4288 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -4288 ((-1259) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4288 ((-1259) $ (-544) (-544) (-377) (-377) (-377))) (-15 -4288 ((-1259) $ (-377) (-377))) (-15 -4288 ((-1259) $ (-377) (-377) (-377))) (-15 -4287 ((-1259) $ (-1148))) (-15 -4286 ((-1259) $ (-1148))) (-15 -4285 ((-1259) $ (-1148))) (-15 -4284 ((-1259) $ (-1148))) (-15 -4283 ((-1259) $ (-1148))) (-15 -4282 ((-1259) $ (-377) (-377))) (-15 -4282 ((-1259) $ (-544) (-544))) (-15 -4281 ((-1259) $ (-377))) (-15 -4281 ((-1259) $ (-377) (-377) (-377))) (-15 -4280 ((-1259) $ (-377) (-377))) (-15 -4279 ((-1259) $ (-1148))) (-15 -4278 ((-1259) $ (-377))) (-15 -4277 ((-1259) $ (-377))) (-15 -4276 ((-1259) $ (-1148))) (-15 -4275 ((-1259) $ (-1148))) (-15 -4274 ((-1259) $ (-1148))) (-15 -4273 ((-1259) $ (-377) (-377) (-377))) (-15 -4272 ((-1259) $ (-377))) (-15 -4271 ((-1259) $)) (-15 -4270 ((-1259) $ (-156) (-156))) (-15 -4269 ((-1148) $ (-1148))) (-15 -4269 ((-1148) $ (-1148) (-1148))) (-15 -4269 ((-1148) $ (-1148) (-635 (-1148)))) (-15 -4268 ((-1259) $)) (-15 -4267 ((-544) $))))) (T -1257)) -((-4302 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4301 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4301 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4300 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4300 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4299 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4299 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4298 (*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4298 (*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) (-4297 (*1 *1) (-5 *1 (-1257))) (-4296 (*1 *1 *1) (-5 *1 (-1257))) (-4296 (*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1148)) (-5 *1 (-1257)))) (-4296 (*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-635 (-260))) (-5 *1 (-1257)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1257)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1257)))) (-4294 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1257)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1257)))) (-4292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4291 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4290 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4289 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-765)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-544)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4288 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4287 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4286 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4285 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4284 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4283 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4281 (*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4281 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4280 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4279 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4278 (*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4277 (*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4275 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4274 (*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4273 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4272 (*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4270 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4269 (*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1257)))) (-4269 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1257)))) (-4269 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1257)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1257)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1257))))) -(-13 (-1091) (-10 -8 (-15 -4302 ((-377))) (-15 -4302 ((-377) (-377))) (-15 -4301 ((-377))) (-15 -4301 ((-377) (-377))) (-15 -4300 ((-377))) (-15 -4300 ((-377) (-377))) (-15 -4299 ((-377))) (-15 -4299 ((-377) (-377))) (-15 -4298 ((-377))) (-15 -4298 ((-377) (-377))) (-15 -4297 ($)) (-15 -4296 ($ $)) (-15 -4296 ($ (-1123 (-224)) (-1148))) (-15 -4296 ($ (-1123 (-224)) (-635 (-260)))) (-15 -4295 ((-1123 (-224)) $)) (-15 -4295 ($ $ (-1123 (-224)))) (-15 -4294 ((-1259) $ (-765) (-936 (-224)))) (-15 -4293 ((-635 (-260)) $)) (-15 -4293 ($ $ (-635 (-260)))) (-15 -4292 ((-1259) $ (-765) (-765))) (-15 -4291 ((-1259) $ (-912) (-912))) (-15 -4290 ((-1259) $ (-1148))) (-15 -4289 ((-1259) $ (-765) (-765) (-912) (-912))) (-15 -4288 ((-1259) $ (-377) (-377) (-377) (-377) (-377))) (-15 -4288 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -4288 ((-1259) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -4288 ((-1259) $ (-544) (-544) (-377) (-377) (-377))) (-15 -4288 ((-1259) $ (-377) (-377))) (-15 -4288 ((-1259) $ (-377) (-377) (-377))) (-15 -4287 ((-1259) $ (-1148))) (-15 -4286 ((-1259) $ (-1148))) (-15 -4285 ((-1259) $ (-1148))) (-15 -4284 ((-1259) $ (-1148))) (-15 -4283 ((-1259) $ (-1148))) (-15 -4282 ((-1259) $ (-377) (-377))) (-15 -4282 ((-1259) $ (-544) (-544))) (-15 -4281 ((-1259) $ (-377))) (-15 -4281 ((-1259) $ (-377) (-377) (-377))) (-15 -4280 ((-1259) $ (-377) (-377))) (-15 -4279 ((-1259) $ (-1148))) (-15 -4278 ((-1259) $ (-377))) (-15 -4277 ((-1259) $ (-377))) (-15 -4276 ((-1259) $ (-1148))) (-15 -4275 ((-1259) $ (-1148))) (-15 -4274 ((-1259) $ (-1148))) (-15 -4273 ((-1259) $ (-377) (-377) (-377))) (-15 -4272 ((-1259) $ (-377))) (-15 -4271 ((-1259) $)) (-15 -4270 ((-1259) $ (-156) (-156))) (-15 -4269 ((-1148) $ (-1148))) (-15 -4269 ((-1148) $ (-1148) (-1148))) (-15 -4269 ((-1148) $ (-1148) (-635 (-1148)))) (-15 -4268 ((-1259) $)) (-15 -4267 ((-544) $)))) -((-4311 (((-635 (-1148)) (-635 (-1148))) 94) (((-635 (-1148))) 90)) (-4312 (((-635 (-1148))) 88)) (-4309 (((-635 (-912)) (-635 (-912))) 63) (((-635 (-912))) 60)) (-4308 (((-635 (-765)) (-635 (-765))) 57) (((-635 (-765))) 53)) (-4310 (((-1259)) 65)) (-4314 (((-912) (-912)) 81) (((-912)) 80)) (-4313 (((-912) (-912)) 79) (((-912)) 78)) (-4306 (((-867) (-867)) 75) (((-867)) 74)) (-4316 (((-224)) 85) (((-224) (-377)) 87)) (-4315 (((-912)) 82) (((-912) (-912)) 83)) (-4307 (((-912) (-912)) 77) (((-912)) 76)) (-4303 (((-867) (-867)) 69) (((-867)) 67)) (-4304 (((-867) (-867)) 71) (((-867)) 70)) (-4305 (((-867) (-867)) 73) (((-867)) 72))) -(((-1258) (-10 -7 (-15 -4303 ((-867))) (-15 -4303 ((-867) (-867))) (-15 -4304 ((-867))) (-15 -4304 ((-867) (-867))) (-15 -4305 ((-867))) (-15 -4305 ((-867) (-867))) (-15 -4306 ((-867))) (-15 -4306 ((-867) (-867))) (-15 -4307 ((-912))) (-15 -4307 ((-912) (-912))) (-15 -4308 ((-635 (-765)))) (-15 -4308 ((-635 (-765)) (-635 (-765)))) (-15 -4309 ((-635 (-912)))) (-15 -4309 ((-635 (-912)) (-635 (-912)))) (-15 -4310 ((-1259))) (-15 -4311 ((-635 (-1148)))) (-15 -4311 ((-635 (-1148)) (-635 (-1148)))) (-15 -4312 ((-635 (-1148)))) (-15 -4313 ((-912))) (-15 -4314 ((-912))) (-15 -4313 ((-912) (-912))) (-15 -4314 ((-912) (-912))) (-15 -4315 ((-912) (-912))) (-15 -4315 ((-912))) (-15 -4316 ((-224) (-377))) (-15 -4316 ((-224))))) (T -1258)) -((-4316 (*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1258)))) (-4316 (*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-224)) (-5 *1 (-1258)))) (-4315 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4315 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4314 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4314 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4313 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4312 (*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258)))) (-4311 (*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258)))) (-4311 (*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258)))) (-4310 (*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1258)))) (-4309 (*1 *2 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1258)))) (-4309 (*1 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1258)))) (-4308 (*1 *2 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1258)))) (-4308 (*1 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1258)))) (-4307 (*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4307 (*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) (-4306 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4306 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4305 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4305 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4304 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4304 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4303 (*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) (-4303 (*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258))))) -(-10 -7 (-15 -4303 ((-867))) (-15 -4303 ((-867) (-867))) (-15 -4304 ((-867))) (-15 -4304 ((-867) (-867))) (-15 -4305 ((-867))) (-15 -4305 ((-867) (-867))) (-15 -4306 ((-867))) (-15 -4306 ((-867) (-867))) (-15 -4307 ((-912))) (-15 -4307 ((-912) (-912))) (-15 -4308 ((-635 (-765)))) (-15 -4308 ((-635 (-765)) (-635 (-765)))) (-15 -4309 ((-635 (-912)))) (-15 -4309 ((-635 (-912)) (-635 (-912)))) (-15 -4310 ((-1259))) (-15 -4311 ((-635 (-1148)))) (-15 -4311 ((-635 (-1148)) (-635 (-1148)))) (-15 -4312 ((-635 (-1148)))) (-15 -4313 ((-912))) (-15 -4314 ((-912))) (-15 -4313 ((-912) (-912))) (-15 -4314 ((-912) (-912))) (-15 -4315 ((-912) (-912))) (-15 -4315 ((-912))) (-15 -4316 ((-224) (-377))) (-15 -4316 ((-224)))) -((-4317 (($) 7)) (-4353 (((-857) $) 10))) -(((-1259) (-13 (-608 (-857)) (-10 -8 (-15 -4317 ($))))) (T -1259)) -((-4317 (*1 *1) (-5 *1 (-1259)))) -(-13 (-608 (-857)) (-10 -8 (-15 -4317 ($)))) -((-4356 (($ $ |#2|) 10))) -(((-1260 |#1| |#2|) (-10 -8 (-15 -4356 (|#1| |#1| |#2|))) (-1261 |#2|) (-362)) (T -1260)) -NIL -(-10 -8 (-15 -4356 (|#1| |#1| |#2|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4318 (((-133)) 28)) (-4353 (((-857) $) 11)) (-3040 (($) 18 T CONST)) (-3437 (((-112) $ $) 6)) (-4356 (($ $ |#1|) 29)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1261 |#1|) (-139) (-362)) (T -1261)) -((-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-362)))) (-4318 (*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-362)) (-5 *2 (-133))))) -(-13 (-711 |t#1|) (-10 -8 (-15 -4356 ($ $ |t#1|)) (-15 -4318 ((-133))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-711 |#1|) . T) ((-1048 |#1|) . T) ((-1091) . T)) -((-4323 (((-635 (-1197 |#1|)) (-1166) (-1197 |#1|)) 74)) (-4321 (((-1143 (-1143 (-939 |#1|))) (-1166) (-1143 (-939 |#1|))) 53)) (-4324 (((-1 (-1143 (-1197 |#1|)) (-1143 (-1197 |#1|))) (-765) (-1197 |#1|) (-1143 (-1197 |#1|))) 64)) (-4319 (((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765)) 55)) (-4322 (((-1 (-1160 (-939 |#1|)) (-939 |#1|)) (-1166)) 29)) (-4320 (((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765)) 54))) -(((-1262 |#1|) (-10 -7 (-15 -4319 ((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765))) (-15 -4320 ((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765))) (-15 -4321 ((-1143 (-1143 (-939 |#1|))) (-1166) (-1143 (-939 |#1|)))) (-15 -4322 ((-1 (-1160 (-939 |#1|)) (-939 |#1|)) (-1166))) (-15 -4323 ((-635 (-1197 |#1|)) (-1166) (-1197 |#1|))) (-15 -4324 ((-1 (-1143 (-1197 |#1|)) (-1143 (-1197 |#1|))) (-765) (-1197 |#1|) (-1143 (-1197 |#1|))))) (-362)) (T -1262)) -((-4324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-765)) (-4 *6 (-362)) (-5 *4 (-1197 *6)) (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1262 *6)) (-5 *5 (-1143 *4)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-635 (-1197 *5))) (-5 *1 (-1262 *5)) (-5 *4 (-1197 *5)))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1 (-1160 (-939 *4)) (-939 *4))) (-5 *1 (-1262 *4)) (-4 *4 (-362)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-1143 (-1143 (-939 *5)))) (-5 *1 (-1262 *5)) (-5 *4 (-1143 (-939 *5))))) (-4320 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1143 (-939 *4)) (-1143 (-939 *4)))) (-5 *1 (-1262 *4)) (-4 *4 (-362)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1143 (-939 *4)) (-1143 (-939 *4)))) (-5 *1 (-1262 *4)) (-4 *4 (-362))))) -(-10 -7 (-15 -4319 ((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765))) (-15 -4320 ((-1 (-1143 (-939 |#1|)) (-1143 (-939 |#1|))) (-765))) (-15 -4321 ((-1143 (-1143 (-939 |#1|))) (-1166) (-1143 (-939 |#1|)))) (-15 -4322 ((-1 (-1160 (-939 |#1|)) (-939 |#1|)) (-1166))) (-15 -4323 ((-635 (-1197 |#1|)) (-1166) (-1197 |#1|))) (-15 -4324 ((-1 (-1143 (-1197 |#1|)) (-1143 (-1197 |#1|))) (-765) (-1197 |#1|) (-1143 (-1197 |#1|))))) -((-4326 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|) 75)) (-4325 (((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|)))) 74))) -(((-1263 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|))) (-349) (-1229 |#1|) (-1229 |#2|) (-409 |#2| |#3|)) (T -1263)) -((-4326 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3)) (-5 *2 (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) (-5 *1 (-1263 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-4325 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-2 (|:| -2162 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) (-5 *1 (-1263 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) -(-10 -7 (-15 -4325 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))))) (-15 -4326 ((-2 (|:| -2162 (-682 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-682 |#2|))) |#2|))) -((-2947 (((-112) $ $) NIL)) (-4327 (((-1125) $) 11)) (-4328 (((-1125) $) 9)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 19) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-1264) (-13 (-1073) (-10 -8 (-15 -4328 ((-1125) $)) (-15 -4327 ((-1125) $))))) (T -1264)) -((-4328 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264)))) (-4327 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264))))) -(-13 (-1073) (-10 -8 (-15 -4328 ((-1125) $)) (-15 -4327 ((-1125) $)))) -((-2947 (((-112) $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4329 (((-1125) $) 9)) (-4353 (((-857) $) 17) (($ (-1171)) NIL) (((-1171) $) NIL)) (-3437 (((-112) $ $) NIL))) -(((-1265) (-13 (-1073) (-10 -8 (-15 -4329 ((-1125) $))))) (T -1265)) -((-4329 (*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1265))))) -(-13 (-1073) (-10 -8 (-15 -4329 ((-1125) $)))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 42)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) NIL)) (-2545 (((-112) $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4353 (((-857) $) 63) (($ (-544)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-171)))) (-3511 (((-765)) NIL)) (-4330 (((-1259) (-765)) 16)) (-3040 (($) 27 T CONST)) (-3046 (($) 66 T CONST)) (-3437 (((-112) $ $) 68)) (-4356 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-4244 (($ $) 70) (($ $ $) NIL)) (-4246 (($ $ $) 46)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) -(((-1266 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1042) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4356 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4330 ((-1259) (-765))))) (-1042) (-844) (-787) (-943 |#1| |#3| |#2|) (-635 |#2|) (-635 (-765)) (-765)) (T -1266)) -((-4356 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-787)) (-14 *6 (-635 *3)) (-5 *1 (-1266 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-943 *2 *4 *3)) (-14 *7 (-635 (-765))) (-14 *8 (-765)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) (-14 *8 (-635 *5)) (-5 *2 (-1259)) (-5 *1 (-1266 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-943 *4 *6 *5)) (-14 *9 (-635 *3)) (-14 *10 *3)))) -(-13 (-1042) (-488 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -4356 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4330 ((-1259) (-765))))) -((-2947 (((-112) $ $) NIL)) (-4088 (((-635 (-2 (|:| -4268 $) (|:| -1846 (-635 |#4|)))) (-635 |#4|)) NIL)) (-4089 (((-635 $) (-635 |#4|)) 89)) (-3467 (((-635 |#3|) $) NIL)) (-3291 (((-112) $) NIL)) (-3282 (((-112) $) NIL (|has| |#1| (-554)))) (-4100 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4095 ((|#4| |#4| $) NIL)) (-3292 (((-2 (|:| |under| $) (|:| -3515 $) (|:| |upper| $)) $ |#3|) NIL)) (-1293 (((-112) $ (-765)) NIL)) (-4117 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4131 (($) NIL T CONST)) (-3287 (((-112) $) NIL (|has| |#1| (-554)))) (-3289 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3288 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3290 (((-112) $) NIL (|has| |#1| (-554)))) (-4096 (((-635 |#4|) (-635 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3283 (((-635 |#4|) (-635 |#4|) $) 25 (|has| |#1| (-554)))) (-3284 (((-635 |#4|) (-635 |#4|) $) NIL (|has| |#1| (-554)))) (-3558 (((-3 $ "failed") (-635 |#4|)) NIL)) (-3557 (($ (-635 |#4|)) NIL)) (-4205 (((-3 $ #1#) $) 71)) (-4092 ((|#4| |#4| $) 76)) (-1424 (($ $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-3810 (($ |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3285 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4101 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4090 ((|#4| |#4| $) NIL)) (-4249 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4400))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4400))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4103 (((-2 (|:| -4268 (-635 |#4|)) (|:| -1846 (-635 |#4|))) $) NIL)) (-2096 (((-635 |#4|) $) NIL (|has| $ (-6 -4400)))) (-4102 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3581 ((|#3| $) 77)) (-4126 (((-112) $ (-765)) NIL)) (-2554 (((-635 |#4|) $) 29 (|has| $ (-6 -4400)))) (-3646 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091))))) (-4333 (((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-635 |#4|)) 35)) (-2100 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4401)))) (-4365 (($ (-1 |#4| |#4|) $) NIL)) (-3297 (((-635 |#3|) $) NIL)) (-3296 (((-112) |#3| $) NIL)) (-4123 (((-112) $ (-765)) NIL)) (-3643 (((-1148) $) NIL)) (-4204 (((-3 |#4| #1#) $) NIL)) (-4104 (((-635 |#4|) $) 51)) (-4098 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4093 ((|#4| |#4| $) 75)) (-4106 (((-112) $ $) 86)) (-3286 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4099 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4094 ((|#4| |#4| $) NIL)) (-3644 (((-1110) $) NIL)) (-4207 (((-3 |#4| #1#) $) 70)) (-1425 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4086 (((-3 $ #1#) $ |#4|) NIL)) (-4175 (($ $ |#4|) NIL)) (-2098 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4174 (($ $ (-635 |#4|) (-635 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-292 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091)))) (($ $ (-635 (-292 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1091))))) (-1294 (((-112) $ $) NIL)) (-3807 (((-112) $) 68)) (-3972 (($) 43)) (-4355 (((-765) $) NIL)) (-2097 (((-765) |#4| $) NIL (-12 (|has| $ (-6 -4400)) (|has| |#4| (-1091)))) (((-765) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-3804 (($ $) NIL)) (-4377 (((-533) $) NIL (|has| |#4| (-609 (-533))))) (-3929 (($ (-635 |#4|)) NIL)) (-3293 (($ $ |#3|) NIL)) (-3295 (($ $ |#3|) NIL)) (-4091 (($ $) NIL)) (-3294 (($ $ |#3|) NIL)) (-4353 (((-857) $) NIL) (((-635 |#4|) $) 58)) (-4085 (((-765) $) NIL (|has| |#3| (-367)))) (-4332 (((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 41) (((-3 $ "failed") (-635 |#4|)) 42)) (-4331 (((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 66) (((-635 $) (-635 |#4|)) 67)) (-4105 (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3728 (-635 |#4|))) #1#) (-635 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4097 (((-112) $ (-1 (-112) |#4| (-635 |#4|))) NIL)) (-2099 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4400)))) (-4087 (((-635 |#3|) $) NIL)) (-4340 (((-112) |#3| $) NIL)) (-3437 (((-112) $ $) NIL)) (-4364 (((-765) $) NIL (|has| $ (-6 -4400))))) -(((-1267 |#1| |#2| |#3| |#4|) (-13 (-1199 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4333 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4333 ((-3 $ "failed") (-635 |#4|))) (-15 -4332 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4332 ((-3 $ "failed") (-635 |#4|))) (-15 -4331 ((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4331 ((-635 $) (-635 |#4|))))) (-554) (-787) (-844) (-1056 |#1| |#2| |#3|)) (T -1267)) -((-4333 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))) (-4333 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6)))) (-4332 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8)))) (-4332 (*1 *1 *2) (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6)))) (-4331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844)) (-5 *2 (-635 (-1267 *6 *7 *8 *9))) (-5 *1 (-1267 *6 *7 *8 *9)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 (-1267 *4 *5 *6 *7))) (-5 *1 (-1267 *4 *5 *6 *7))))) -(-13 (-1199 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4333 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4333 ((-3 $ "failed") (-635 |#4|))) (-15 -4332 ((-3 $ "failed") (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4332 ((-3 $ "failed") (-635 |#4|))) (-15 -4331 ((-635 $) (-635 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4331 ((-635 $) (-635 |#4|))))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-1391 (((-3 $ "failed") $ $) 19)) (-4131 (($) 17 T CONST)) (-3866 (((-3 $ "failed") $) 33)) (-2545 (((-112) $) 31)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#1|) 39)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) -(((-1268 |#1|) (-139) (-1042)) (T -1268)) -NIL -(-13 (-1042) (-111 |t#1| |t#1|) (-611 |t#1|) (-10 -7 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-608 (-857)) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 |#1|) |has| |#1| (-171)) ((-720) . T) ((-1048 |#1|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T)) -((-2947 (((-112) $ $) 59)) (-3589 (((-112) $) NIL)) (-4341 (((-635 |#1|) $) 45)) (-4354 (($ $ (-765)) 39)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4342 (($ $ (-765)) 18 (|has| |#2| (-171))) (($ $ $) 19 (|has| |#2| (-171)))) (-4131 (($) NIL T CONST)) (-4346 (($ $ $) 62) (($ $ (-813 |#1|)) 48) (($ $ |#1|) 52)) (-3558 (((-3 (-813 |#1|) "failed") $) NIL)) (-3557 (((-813 |#1|) $) NIL)) (-4366 (($ $) 32)) (-3866 (((-3 $ "failed") $) NIL)) (-4358 (((-112) $) NIL)) (-4357 (($ $) NIL)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-813 |#1|) |#2|) 31)) (-4343 (($ $) 33)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 12)) (-4362 (((-813 |#1|) $) NIL)) (-4363 (((-813 |#1|) $) 34)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-4347 (($ $ $) 61) (($ $ (-813 |#1|)) 50) (($ $ |#1|) 54)) (-1893 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3277 (((-813 |#1|) $) 28)) (-3575 ((|#2| $) 30)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4355 (((-765) $) 36)) (-4360 (((-112) $) 40)) (-4359 ((|#2| $) NIL)) (-4353 (((-857) $) NIL) (($ (-813 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-544)) NIL)) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-813 |#1|)) NIL)) (-4361 ((|#2| $ $) 64) ((|#2| $ (-813 |#1|)) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) 13 T CONST)) (-3046 (($) 15 T CONST)) (-3045 (((-635 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3437 (((-112) $ $) 38)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 22)) (** (($ $ (-765)) NIL) (($ $ (-912)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-813 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1269 |#1| |#2|) (-13 (-383 |#2| (-813 |#1|)) (-1276 |#1| |#2|)) (-844) (-1042)) (T -1269)) -NIL -(-13 (-383 |#2| (-813 |#1|)) (-1276 |#1| |#2|)) -((-4349 ((|#3| |#3| (-765)) 23)) (-4350 ((|#3| |#3| (-765)) 27)) (-4334 ((|#3| |#3| |#3| (-765)) 28))) -(((-1270 |#1| |#2| |#3|) (-10 -7 (-15 -4350 (|#3| |#3| (-765))) (-15 -4349 (|#3| |#3| (-765))) (-15 -4334 (|#3| |#3| |#3| (-765)))) (-13 (-1042) (-711 (-406 (-544)))) (-844) (-1276 |#2| |#1|)) (T -1270)) -((-4334 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4)))) (-4349 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4)))) (-4350 (*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844)) (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4))))) -(-10 -7 (-15 -4350 (|#3| |#3| (-765))) (-15 -4349 (|#3| |#3| (-765))) (-15 -4334 (|#3| |#3| |#3| (-765)))) -((-4339 (((-112) $) 14)) (-4340 (((-112) $) 13)) (-4335 (($ $) 18) (($ $ (-765)) 19))) -(((-1271 |#1| |#2|) (-10 -8 (-15 -4335 (|#1| |#1| (-765))) (-15 -4335 (|#1| |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4340 ((-112) |#1|))) (-1272 |#2|) (-362)) (T -1271)) -NIL -(-10 -8 (-15 -4335 (|#1| |#1| (-765))) (-15 -4335 (|#1| |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4340 ((-112) |#1|))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-2214 (((-2 (|:| -1920 $) (|:| -4387 $) (|:| |associate| $)) $) 42)) (-2213 (($ $) 41)) (-2211 (((-112) $) 39)) (-4339 (((-112) $) 95)) (-4336 (((-765)) 91)) (-1391 (((-3 $ "failed") $ $) 19)) (-4181 (($ $) 74)) (-4376 (((-404 $) $) 73)) (-1733 (((-112) $ $) 60)) (-4131 (($) 17 T CONST)) (-3558 (((-3 |#1| "failed") $) 102)) (-3557 ((|#1| $) 103)) (-2943 (($ $ $) 56)) (-3866 (((-3 $ "failed") $) 33)) (-2942 (($ $ $) 57)) (-3123 (((-2 (|:| -4361 (-635 $)) (|:| -2544 $)) (-635 $)) 52)) (-1914 (($ $ (-765)) 88 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4130 (((-112) $) 72)) (-4178 (((-826 (-912)) $) 85 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2545 (((-112) $) 31)) (-1730 (((-3 (-635 $) #1="failed") (-635 $) $) 53)) (-2041 (($ $ $) 47) (($ (-635 $)) 46)) (-3643 (((-1148) $) 9)) (-2779 (($ $) 71)) (-4338 (((-112) $) 94)) (-3644 (((-1110) $) 10)) (-3090 (((-1160 $) (-1160 $) (-1160 $)) 45)) (-3545 (($ $ $) 49) (($ (-635 $)) 48)) (-4139 (((-404 $) $) 75)) (-4337 (((-826 (-912))) 92)) (-1731 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2544 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 54)) (-3865 (((-3 $ "failed") $ $) 43)) (-3122 (((-3 (-635 $) "failed") (-635 $) $) 51)) (-1732 (((-765) $) 59)) (-3264 (((-2 (|:| -2124 $) (|:| -3285 $)) $ $) 58)) (-1915 (((-3 (-765) "failed") $ $) 86 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4318 (((-133)) 100)) (-4355 (((-826 (-912)) $) 93)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ $) 44) (($ (-406 (-544))) 67) (($ |#1|) 101)) (-3084 (((-3 $ "failed") $) 84 (-3936 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3511 (((-765)) 28)) (-2212 (((-112) $ $) 40)) (-4340 (((-112) $) 96)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-4335 (($ $) 90 (|has| |#1| (-367))) (($ $ (-765)) 89 (|has| |#1| (-367)))) (-3437 (((-112) $ $) 6)) (-4356 (($ $ $) 66) (($ $ |#1|) 99)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32) (($ $ (-544)) 70)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ $ (-406 (-544))) 69) (($ (-406 (-544)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) -(((-1272 |#1|) (-139) (-362)) (T -1272)) -((-4340 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-826 (-912))))) (-4337 (*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-826 (-912))))) (-4336 (*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-765)))) (-4335 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-362)) (-4 *2 (-367)))) (-4335 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-4 *3 (-367))))) -(-13 (-362) (-1031 |t#1|) (-1261 |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-401)) |%noBranch|) (-15 -4340 ((-112) $)) (-15 -4339 ((-112) $)) (-15 -4338 ((-112) $)) (-15 -4355 ((-826 (-912)) $)) (-15 -4337 ((-826 (-912)))) (-15 -4336 ((-765))) (IF (|has| |t#1| (-367)) (PROGN (-6 (-401)) (-15 -4335 ($ $)) (-15 -4335 ($ $ (-765)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-406 (-544))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -3936 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-611 #1#) . T) ((-611 (-544)) . T) ((-611 |#1|) . T) ((-611 $) . T) ((-608 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) -3936 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-450) . T) ((-554) . T) ((-641 #1#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-711 #1#) . T) ((-711 |#1|) . T) ((-711 $) . T) ((-720) . T) ((-914) . T) ((-1031 |#1|) . T) ((-1048 #1#) . T) ((-1048 |#1|) . T) ((-1048 $) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1209) . T) ((-1261 |#1|) . T)) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4341 (((-635 |#1|) $) 41)) (-1391 (((-3 $ "failed") $ $) 19)) (-4342 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-765)) 43 (|has| |#2| (-171)))) (-4131 (($) 17 T CONST)) (-4346 (($ $ |#1|) 55) (($ $ (-813 |#1|)) 54) (($ $ $) 53)) (-3558 (((-3 (-813 |#1|) "failed") $) 65)) (-3557 (((-813 |#1|) $) 66)) (-3866 (((-3 $ "failed") $) 33)) (-4358 (((-112) $) 46)) (-4357 (($ $) 45)) (-2545 (((-112) $) 31)) (-4344 (((-112) $) 51)) (-4345 (($ (-813 |#1|) |#2|) 52)) (-4343 (($ $) 50)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 61)) (-4362 (((-813 |#1|) $) 62)) (-4365 (($ (-1 |#2| |#2|) $) 42)) (-4347 (($ $ |#1|) 58) (($ $ (-813 |#1|)) 57) (($ $ $) 56)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4360 (((-112) $) 48)) (-4359 ((|#2| $) 47)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#2|) 69) (($ (-813 |#1|)) 64) (($ |#1|) 49)) (-4361 ((|#2| $ (-813 |#1|)) 60) ((|#2| $ $) 59)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1273 |#1| |#2|) (-139) (-844) (-1042)) (T -1273)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) (-4348 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-2 (|:| |k| (-813 *3)) (|:| |c| *4))))) (-4361 (*1 *2 *1 *3) (-12 (-5 *3 (-813 *4)) (-4 *1 (-1273 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1042)))) (-4361 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (-4347 (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4347 (*1 *1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-4347 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4346 (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-4346 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4345 (*1 *1 *2 *3) (-12 (-5 *2 (-813 *4)) (-4 *4 (-844)) (-4 *1 (-1273 *4 *3)) (-4 *3 (-1042)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-4343 (*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4353 (*1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-4359 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) (-4357 (*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) (-4342 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)) (-4 *3 (-171)))) (-4342 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-4 *4 (-171)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-635 *3))))) -(-13 (-1042) (-1268 |t#2|) (-1031 (-813 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4362 ((-813 |t#1|) $)) (-15 -4348 ((-2 (|:| |k| (-813 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4361 (|t#2| $ (-813 |t#1|))) (-15 -4361 (|t#2| $ $)) (-15 -4347 ($ $ |t#1|)) (-15 -4347 ($ $ (-813 |t#1|))) (-15 -4347 ($ $ $)) (-15 -4346 ($ $ |t#1|)) (-15 -4346 ($ $ (-813 |t#1|))) (-15 -4346 ($ $ $)) (-15 -4345 ($ (-813 |t#1|) |t#2|)) (-15 -4344 ((-112) $)) (-15 -4343 ($ $)) (-15 -4353 ($ |t#1|)) (-15 -4360 ((-112) $)) (-15 -4359 (|t#2| $)) (-15 -4358 ((-112) $)) (-15 -4357 ($ $)) (IF (|has| |t#2| (-171)) (PROGN (-15 -4342 ($ $ $)) (-15 -4342 ($ $ (-765)))) |%noBranch|) (-15 -4365 ($ (-1 |t#2| |t#2|) $)) (-15 -4341 ((-635 |t#1|) $)) (IF (|has| |t#2| (-6 -4393)) (-6 -4393) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 #1=(-813 |#1|)) . T) ((-611 |#2|) . T) ((-608 (-857)) . T) ((-641 |#2|) . T) ((-641 $) . T) ((-711 |#2|) |has| |#2| (-171)) ((-720) . T) ((-1031 #1#) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1268 |#2|) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4341 (((-635 |#1|) $) 85)) (-4354 (($ $ (-765)) 88)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4342 (($ $ $) NIL (|has| |#2| (-171))) (($ $ (-765)) NIL (|has| |#2| (-171)))) (-4131 (($) NIL T CONST)) (-4346 (($ $ |#1|) NIL) (($ $ (-813 |#1|)) NIL) (($ $ $) NIL)) (-3558 (((-3 (-813 |#1|) #1="failed") $) NIL) (((-3 (-886 |#1|) #1#) $) NIL)) (-3557 (((-813 |#1|) $) NIL) (((-886 |#1|) $) NIL)) (-4366 (($ $) 87)) (-3866 (((-3 $ "failed") $) NIL)) (-4358 (((-112) $) 76)) (-4357 (($ $) 80)) (-4351 (($ $ $ (-765)) 89)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-813 |#1|) |#2|) NIL) (($ (-886 |#1|) |#2|) 25)) (-4343 (($ $) 102)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4362 (((-813 |#1|) $) NIL)) (-4363 (((-813 |#1|) $) NIL)) (-4365 (($ (-1 |#2| |#2|) $) NIL)) (-4347 (($ $ |#1|) NIL) (($ $ (-813 |#1|)) NIL) (($ $ $) NIL)) (-4349 (($ $ (-765)) 96 (|has| |#2| (-711 (-406 (-544)))))) (-1893 (((-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3277 (((-886 |#1|) $) 69)) (-3575 ((|#2| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4350 (($ $ (-765)) 93 (|has| |#2| (-711 (-406 (-544)))))) (-4355 (((-765) $) 86)) (-4360 (((-112) $) 70)) (-4359 ((|#2| $) 74)) (-4353 (((-857) $) 56) (($ (-544)) NIL) (($ |#2|) 50) (($ (-813 |#1|)) NIL) (($ |#1|) 58) (($ (-886 |#1|)) NIL) (($ (-657 |#1| |#2|)) 42) (((-1269 |#1| |#2|) $) 63) (((-1278 |#1| |#2|) $) 68)) (-4224 (((-635 |#2|) $) NIL)) (-4084 ((|#2| $ (-886 |#1|)) NIL)) (-4361 ((|#2| $ (-813 |#1|)) NIL) ((|#2| $ $) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) 21 T CONST)) (-3046 (($) 24 T CONST)) (-3045 (((-635 (-2 (|:| |k| (-886 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4352 (((-3 (-657 |#1| |#2|) "failed") $) 101)) (-3437 (((-112) $ $) 64)) (-4244 (($ $) 95) (($ $ $) 94)) (-4246 (($ $ $) 20)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-886 |#1|)) NIL))) -(((-1274 |#1| |#2|) (-13 (-1276 |#1| |#2|) (-383 |#2| (-886 |#1|)) (-10 -8 (-15 -4353 ($ (-657 |#1| |#2|))) (-15 -4353 ((-1269 |#1| |#2|) $)) (-15 -4353 ((-1278 |#1| |#2|) $)) (-15 -4352 ((-3 (-657 |#1| |#2|) "failed") $)) (-15 -4351 ($ $ $ (-765))) (IF (|has| |#2| (-711 (-406 (-544)))) (PROGN (-15 -4350 ($ $ (-765))) (-15 -4349 ($ $ (-765)))) |%noBranch|))) (-844) (-171)) (T -1274)) -((-4353 (*1 *1 *2) (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *1 (-1274 *3 *4)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1278 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4352 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4351 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) (-4350 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-544)))) (-4 *3 (-844)) (-4 *4 (-171)))) (-4349 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-544)))) (-4 *3 (-844)) (-4 *4 (-171))))) -(-13 (-1276 |#1| |#2|) (-383 |#2| (-886 |#1|)) (-10 -8 (-15 -4353 ($ (-657 |#1| |#2|))) (-15 -4353 ((-1269 |#1| |#2|) $)) (-15 -4353 ((-1278 |#1| |#2|) $)) (-15 -4352 ((-3 (-657 |#1| |#2|) "failed") $)) (-15 -4351 ($ $ $ (-765))) (IF (|has| |#2| (-711 (-406 (-544)))) (PROGN (-15 -4350 ($ $ (-765))) (-15 -4349 ($ $ (-765)))) |%noBranch|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-4341 (((-635 (-1166)) $) NIL)) (-4369 (($ (-1269 (-1166) |#1|)) NIL)) (-4354 (($ $ (-765)) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4342 (($ $ $) NIL (|has| |#1| (-171))) (($ $ (-765)) NIL (|has| |#1| (-171)))) (-4131 (($) NIL T CONST)) (-4346 (($ $ (-1166)) NIL) (($ $ (-813 (-1166))) NIL) (($ $ $) NIL)) (-3558 (((-3 (-813 (-1166)) "failed") $) NIL)) (-3557 (((-813 (-1166)) $) NIL)) (-3866 (((-3 $ "failed") $) NIL)) (-4358 (((-112) $) NIL)) (-4357 (($ $) NIL)) (-2545 (((-112) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-813 (-1166)) |#1|) NIL)) (-4343 (($ $) NIL)) (-4348 (((-2 (|:| |k| (-813 (-1166))) (|:| |c| |#1|)) $) NIL)) (-4362 (((-813 (-1166)) $) NIL)) (-4363 (((-813 (-1166)) $) NIL)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-4347 (($ $ (-1166)) NIL) (($ $ (-813 (-1166))) NIL) (($ $ $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4370 (((-1269 (-1166) |#1|) $) NIL)) (-4355 (((-765) $) NIL)) (-4360 (((-112) $) NIL)) (-4359 ((|#1| $) NIL)) (-4353 (((-857) $) NIL) (($ (-544)) NIL) (($ |#1|) NIL) (($ (-813 (-1166))) NIL) (($ (-1166)) NIL)) (-4361 ((|#1| $ (-813 (-1166))) NIL) ((|#1| $ $) NIL)) (-3511 (((-765)) NIL)) (-3040 (($) NIL T CONST)) (-4368 (((-635 (-2 (|:| |k| (-1166)) (|:| |c| $))) $) NIL)) (-3046 (($) NIL T CONST)) (-3437 (((-112) $ $) NIL)) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) NIL)) (** (($ $ (-912)) NIL) (($ $ (-765)) NIL)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1166) $) NIL))) -(((-1275 |#1|) (-13 (-1276 (-1166) |#1|) (-10 -8 (-15 -4370 ((-1269 (-1166) |#1|) $)) (-15 -4369 ($ (-1269 (-1166) |#1|))) (-15 -4368 ((-635 (-2 (|:| |k| (-1166)) (|:| |c| $))) $)))) (-1042)) (T -1275)) -((-4370 (*1 *2 *1) (-12 (-5 *2 (-1269 (-1166) *3)) (-5 *1 (-1275 *3)) (-4 *3 (-1042)))) (-4369 (*1 *1 *2) (-12 (-5 *2 (-1269 (-1166) *3)) (-4 *3 (-1042)) (-5 *1 (-1275 *3)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| (-1166)) (|:| |c| (-1275 *3))))) (-5 *1 (-1275 *3)) (-4 *3 (-1042))))) -(-13 (-1276 #1=(-1166) |#1|) (-10 -8 (-15 -4370 ((-1269 #1# |#1|) $)) (-15 -4369 ($ (-1269 #1# |#1|))) (-15 -4368 ((-635 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) -((-2947 (((-112) $ $) 7)) (-3589 (((-112) $) 16)) (-4341 (((-635 |#1|) $) 41)) (-4354 (($ $ (-765)) 74)) (-1391 (((-3 $ "failed") $ $) 19)) (-4342 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-765)) 43 (|has| |#2| (-171)))) (-4131 (($) 17 T CONST)) (-4346 (($ $ |#1|) 55) (($ $ (-813 |#1|)) 54) (($ $ $) 53)) (-3558 (((-3 (-813 |#1|) "failed") $) 65)) (-3557 (((-813 |#1|) $) 66)) (-3866 (((-3 $ "failed") $) 33)) (-4358 (((-112) $) 46)) (-4357 (($ $) 45)) (-2545 (((-112) $) 31)) (-4344 (((-112) $) 51)) (-4345 (($ (-813 |#1|) |#2|) 52)) (-4343 (($ $) 50)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) 61)) (-4362 (((-813 |#1|) $) 62)) (-4363 (((-813 |#1|) $) 76)) (-4365 (($ (-1 |#2| |#2|) $) 42)) (-4347 (($ $ |#1|) 58) (($ $ (-813 |#1|)) 57) (($ $ $) 56)) (-3643 (((-1148) $) 9)) (-3644 (((-1110) $) 10)) (-4355 (((-765) $) 75)) (-4360 (((-112) $) 48)) (-4359 ((|#2| $) 47)) (-4353 (((-857) $) 11) (($ (-544)) 29) (($ |#2|) 69) (($ (-813 |#1|)) 64) (($ |#1|) 49)) (-4361 ((|#2| $ (-813 |#1|)) 60) ((|#2| $ $) 59)) (-3511 (((-765)) 28)) (-3040 (($) 18 T CONST)) (-3046 (($) 30 T CONST)) (-3437 (((-112) $ $) 6)) (-4244 (($ $) 22) (($ $ $) 21)) (-4246 (($ $ $) 14)) (** (($ $ (-912)) 25) (($ $ (-765)) 32)) (* (($ (-912) $) 13) (($ (-765) $) 15) (($ (-544) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1276 |#1| |#2|) (-139) (-844) (-1042)) (T -1276)) -((-4363 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-765)))) (-4354 (*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))))) -(-13 (-1273 |t#1| |t#2|) (-10 -8 (-15 -4363 ((-813 |t#1|) $)) (-15 -4355 ((-765) $)) (-15 -4354 ($ $ (-765))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-611 (-544)) . T) ((-611 #1=(-813 |#1|)) . T) ((-611 |#2|) . T) ((-608 (-857)) . T) ((-641 |#2|) . T) ((-641 $) . T) ((-711 |#2|) |has| |#2| (-171)) ((-720) . T) ((-1031 #1#) . T) ((-1048 |#2|) . T) ((-1042) . T) ((-1049) . T) ((-1102) . T) ((-1091) . T) ((-1268 |#2|) . T) ((-1273 |#1| |#2|) . T)) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) NIL)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4131 (($) NIL T CONST)) (-3558 (((-3 |#2| "failed") $) NIL)) (-3557 ((|#2| $) NIL)) (-4366 (($ $) NIL)) (-3866 (((-3 $ "failed") $) 35)) (-4358 (((-112) $) 30)) (-4357 (($ $) 31)) (-2545 (((-112) $) NIL)) (-2553 (((-765) $) NIL)) (-3203 (((-635 $) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ |#2| |#1|) NIL)) (-4362 ((|#2| $) 19)) (-4363 ((|#2| $) 16)) (-4365 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3277 ((|#2| $) NIL)) (-3575 ((|#1| $) NIL)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4360 (((-112) $) 27)) (-4359 ((|#1| $) 28)) (-4353 (((-857) $) 54) (($ (-544)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-4224 (((-635 |#1|) $) NIL)) (-4084 ((|#1| $ |#2|) NIL)) (-4361 ((|#1| $ |#2|) 24)) (-3511 (((-765)) 14)) (-3040 (($) 25 T CONST)) (-3046 (($) 11 T CONST)) (-3045 (((-635 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3437 (((-112) $ $) 26)) (-4356 (($ $ |#1|) 56 (|has| |#1| (-362)))) (-4244 (($ $) NIL) (($ $ $) NIL)) (-4246 (($ $ $) 43)) (** (($ $ (-912)) NIL) (($ $ (-765)) 45)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4364 (((-765) $) 15))) -(((-1277 |#1| |#2|) (-13 (-1042) (-1268 |#1|) (-383 |#1| |#2|) (-611 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4364 ((-765) $)) (-15 -4363 (|#2| $)) (-15 -4362 (|#2| $)) (-15 -4366 ($ $)) (-15 -4361 (|#1| $ |#2|)) (-15 -4360 ((-112) $)) (-15 -4359 (|#1| $)) (-15 -4358 ((-112) $)) (-15 -4357 ($ $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -4356 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4393)) (-6 -4393) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|))) (-1042) (-840)) (T -1277)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-4365 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-840)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-4363 (*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))) (-4362 (*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042)))) (-4361 (*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-4359 (*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840)))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840)))) (-4357 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840)))) (-4356 (*1 *1 *1 *2) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-840))))) -(-13 (-1042) (-1268 |#1|) (-383 |#1| |#2|) (-611 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4364 ((-765) $)) (-15 -4363 (|#2| $)) (-15 -4362 (|#2| $)) (-15 -4366 ($ $)) (-15 -4361 (|#1| $ |#2|)) (-15 -4360 ((-112) $)) (-15 -4359 (|#1| $)) (-15 -4358 ((-112) $)) (-15 -4357 ($ $)) (-15 -4365 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -4356 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4393)) (-6 -4393) |%noBranch|) (IF (|has| |#1| (-6 -4397)) (-6 -4397) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|))) -((-2947 (((-112) $ $) 26)) (-3589 (((-112) $) NIL)) (-4341 (((-635 |#1|) $) 120)) (-4369 (($ (-1269 |#1| |#2|)) 44)) (-4354 (($ $ (-765)) 32)) (-1391 (((-3 $ "failed") $ $) NIL)) (-4342 (($ $ $) 48 (|has| |#2| (-171))) (($ $ (-765)) 46 (|has| |#2| (-171)))) (-4131 (($) NIL T CONST)) (-4346 (($ $ |#1|) 102) (($ $ (-813 |#1|)) 103) (($ $ $) 25)) (-3558 (((-3 (-813 |#1|) "failed") $) NIL)) (-3557 (((-813 |#1|) $) NIL)) (-3866 (((-3 $ "failed") $) 110)) (-4358 (((-112) $) 105)) (-4357 (($ $) 106)) (-2545 (((-112) $) NIL)) (-4344 (((-112) $) NIL)) (-4345 (($ (-813 |#1|) |#2|) 19)) (-4343 (($ $) NIL)) (-4348 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4362 (((-813 |#1|) $) 111)) (-4363 (((-813 |#1|) $) 114)) (-4365 (($ (-1 |#2| |#2|) $) 119)) (-4347 (($ $ |#1|) 100) (($ $ (-813 |#1|)) 101) (($ $ $) 56)) (-3643 (((-1148) $) NIL)) (-3644 (((-1110) $) NIL)) (-4370 (((-1269 |#1| |#2|) $) 84)) (-4355 (((-765) $) 117)) (-4360 (((-112) $) 70)) (-4359 ((|#2| $) 28)) (-4353 (((-857) $) 63) (($ (-544)) 77) (($ |#2|) 74) (($ (-813 |#1|)) 17) (($ |#1|) 73)) (-4361 ((|#2| $ (-813 |#1|)) 104) ((|#2| $ $) 27)) (-3511 (((-765)) 108)) (-3040 (($) 14 T CONST)) (-4368 (((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3046 (($) 29 T CONST)) (-3437 (((-112) $ $) 13)) (-4244 (($ $) 88) (($ $ $) 91)) (-4246 (($ $ $) 55)) (** (($ $ (-912)) NIL) (($ $ (-765)) 49)) (* (($ (-912) $) NIL) (($ (-765) $) 47) (($ (-544) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1278 |#1| |#2|) (-13 (-1276 |#1| |#2|) (-10 -8 (-15 -4370 ((-1269 |#1| |#2|) $)) (-15 -4369 ($ (-1269 |#1| |#2|))) (-15 -4368 ((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-844) (-1042)) (T -1278)) -((-4370 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) (-4369 (*1 *1 *2) (-12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *1 (-1278 *3 *4)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-635 (-2 (|:| |k| *3) (|:| |c| (-1278 *3 *4))))) (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))))) -(-13 (-1276 |#1| |#2|) (-10 -8 (-15 -4370 ((-1269 |#1| |#2|) $)) (-15 -4369 ($ (-1269 |#1| |#2|))) (-15 -4368 ((-635 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-4371 (((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-544)) 15) (((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|))) 11))) -(((-1279 |#1|) (-10 -7 (-15 -4371 ((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|)))) (-15 -4371 ((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-544)))) (-1204)) (T -1279)) -((-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-635 (-1143 *5)) (-635 (-1143 *5)))) (-5 *4 (-544)) (-5 *2 (-635 (-1143 *5))) (-5 *1 (-1279 *5)) (-4 *5 (-1204)))) (-4371 (*1 *2 *3) (-12 (-5 *3 (-1 (-1143 *4) (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1279 *4)) (-4 *4 (-1204))))) -(-10 -7 (-15 -4371 ((-1143 |#1|) (-1 (-1143 |#1|) (-1143 |#1|)))) (-15 -4371 ((-635 (-1143 |#1|)) (-1 (-635 (-1143 |#1|)) (-635 (-1143 |#1|))) (-544)))) -((-4373 (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|))) 147) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112)) 146) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112)) 145) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112) (-112)) 144) (((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-1039 |#1| |#2|)) 129)) (-4372 (((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|))) 71) (((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112)) 70) (((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112) (-112)) 69)) (-4376 (((-635 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|)) 60)) (-4374 (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|))) 114) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112)) 113) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112)) 112) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112) (-112)) 111) (((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|)) 106)) (-4375 (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|))) 119) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112)) 118) (((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112)) 117) (((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|)) 116)) (-4377 (((-635 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) 97) (((-1160 (-1017 (-406 |#1|))) (-1160 |#1|)) 88) (((-939 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|))) 95) (((-939 (-1017 (-406 |#1|))) (-939 |#1|)) 93) (((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|))) 32))) -(((-1280 |#1| |#2| |#3|) (-10 -7 (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112))) (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-1039 |#1| |#2|))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)))) (-15 -4376 ((-635 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|))) (-15 -4377 ((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|)))) (-15 -4377 ((-939 (-1017 (-406 |#1|))) (-939 |#1|))) (-15 -4377 ((-939 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|)))) (-15 -4377 ((-1160 (-1017 (-406 |#1|))) (-1160 |#1|))) (-15 -4377 ((-635 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))))) (-13 (-842) (-306) (-146) (-1013)) (-635 (-1166)) (-635 (-1166))) (T -1280)) -((-4377 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6)))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-774 *4 (-858 *6)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-1160 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-1160 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-774 *4 (-858 *6))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *6 (-635 (-1166))) (-5 *2 (-939 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-939 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-939 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-774 *4 (-858 *5))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-774 *4 (-858 *6))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4375 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4374 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4374 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4374 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4373 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4)))))) (-5 *1 (-1280 *4 *5 *6)) (-5 *3 (-635 (-939 *4))) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4373 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4373 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4373 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4373 (*1 *2 *3) (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4)))))) (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) (-4372 (*1 *2 *3) (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *4 *5))) (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) (-4372 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) (-4372 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166)))))) -(-10 -7 (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)) (-112))) (-15 -4372 ((-635 (-1039 |#1| |#2|)) (-635 (-939 |#1|)))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-1039 |#1| |#2|))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)) (-112))) (-15 -4373 ((-635 (-2 (|:| -1891 (-1160 |#1|)) (|:| -3625 (-635 (-939 |#1|))))) (-635 (-939 |#1|)))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112))) (-15 -4374 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-1039 |#1| |#2|))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112) (-112))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)) (-112))) (-15 -4375 ((-635 (-635 (-1017 (-406 |#1|)))) (-635 (-939 |#1|)))) (-15 -4376 ((-635 (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))) (-1039 |#1| |#2|))) (-15 -4377 ((-774 |#1| (-858 |#3|)) (-774 |#1| (-858 |#2|)))) (-15 -4377 ((-939 (-1017 (-406 |#1|))) (-939 |#1|))) (-15 -4377 ((-939 (-1017 (-406 |#1|))) (-774 |#1| (-858 |#3|)))) (-15 -4377 ((-1160 (-1017 (-406 |#1|))) (-1160 |#1|))) (-15 -4377 ((-635 (-774 |#1| (-858 |#3|))) (-1136 |#1| (-529 (-858 |#3|)) (-858 |#3|) (-774 |#1| (-858 |#3|)))))) -((-4380 (((-3 (-1253 (-406 (-544))) "failed") (-1253 |#1|) |#1|) 21)) (-4378 (((-112) (-1253 |#1|)) 12)) (-4379 (((-3 (-1253 (-544)) "failed") (-1253 |#1|)) 16))) -(((-1281 |#1|) (-10 -7 (-15 -4378 ((-112) (-1253 |#1|))) (-15 -4379 ((-3 (-1253 (-544)) "failed") (-1253 |#1|))) (-15 -4380 ((-3 (-1253 (-406 (-544))) "failed") (-1253 |#1|) |#1|))) (-634 (-544))) (T -1281)) -((-4380 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) (-5 *2 (-1253 (-406 (-544)))) (-5 *1 (-1281 *4)))) (-4379 (*1 *2 *3) (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) (-5 *2 (-1253 (-544))) (-5 *1 (-1281 *4)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) (-5 *2 (-112)) (-5 *1 (-1281 *4))))) -(-10 -7 (-15 -4378 ((-112) (-1253 |#1|))) (-15 -4379 ((-3 (-1253 (-544)) "failed") (-1253 |#1|))) (-15 -4380 ((-3 (-1253 (-406 (-544))) "failed") (-1253 |#1|) |#1|))) -((-2947 (((-112) $ $) NIL)) (-3589 (((-112) $) 11)) (-1391 (((-3 $ "failed") $ $) NIL)) (-3521 (((-765)) 8)) (-4131 (($) NIL T CONST)) (-3866 (((-3 $ "failed") $) 43)) (-3377 (($) 36)) (-2545 (((-112) $) NIL)) (-3848 (((-3 $ "failed") $) 29)) (-2160 (((-912) $) 15)) (-3643 (((-1148) $) NIL)) (-3849 (($) 25 T CONST)) (-2535 (($ (-912)) 37)) (-3644 (((-1110) $) NIL)) (-4377 (((-544) $) 13)) (-4353 (((-857) $) 22) (($ (-544)) 19)) (-3511 (((-765)) 9)) (-3040 (($) 23 T CONST)) (-3046 (($) 24 T CONST)) (-3437 (((-112) $ $) 27)) (-4244 (($ $) 38) (($ $ $) 35)) (-4246 (($ $ $) 26)) (** (($ $ (-912)) NIL) (($ $ (-765)) 40)) (* (($ (-912) $) NIL) (($ (-765) $) NIL) (($ (-544) $) 32) (($ $ $) 31))) -(((-1282 |#1|) (-13 (-171) (-367) (-609 (-544)) (-1141)) (-912)) (T -1282)) -NIL -(-13 (-171) (-367) (-609 (-544)) (-1141)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3183541 3183546 3183551 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3183526 3183531 3183536 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3183511 3183516 3183521 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3183496 3183501 3183506 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1282 3182672 3183371 3183448 "ZMOD" 3183453 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1281 3181782 3181946 3182155 "ZLINDEP" 3182504 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1280 3171086 3172850 3174822 "ZDSOLVE" 3179912 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1279 3170332 3170473 3170662 "YSTREAM" 3170932 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1278 3168143 3169633 3169837 "XRPOLY" 3170175 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1277 3164731 3166014 3166589 "XPR" 3167615 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1276 3162522 3163856 3163911 "XPOLYC" 3164199 NIL XPOLYC (NIL T T) -9 NIL 3164312 NIL) (-1275 3160287 3161862 3162066 "XPOLY" 3162362 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1274 3156707 3158804 3159192 "XPBWPOLY" 3159945 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1273 3152041 3153296 3153351 "XFALG" 3155523 NIL XFALG (NIL T T) -9 NIL 3156312 NIL) (-1272 3147954 3150204 3150246 "XF" 3150867 NIL XF (NIL T) -9 NIL 3151267 NIL) (-1271 3147575 3147663 3147832 "XF-" 3147837 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1270 3146708 3146812 3147017 "XEXPPKG" 3147467 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1269 3144852 3146558 3146654 "XDPOLY" 3146659 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1268 3143797 3144363 3144406 "XALG" 3144411 NIL XALG (NIL T) -9 NIL 3144522 NIL) (-1267 3137293 3141774 3142268 "WUTSET" 3143389 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1266 3135584 3136345 3136668 "WP" 3137104 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1265 3135213 3135406 3135476 "WHILEAST" 3135536 T WHILEAST (NIL) -8 NIL NIL NIL) (-1264 3134712 3134930 3135024 "WHEREAST" 3135141 T WHEREAST (NIL) -8 NIL NIL NIL) (-1263 3133598 3133796 3134091 "WFFINTBS" 3134509 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1262 3131502 3131929 3132391 "WEIER" 3133170 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1261 3130649 3131073 3131115 "VSPACE" 3131251 NIL VSPACE (NIL T) -9 NIL 3131325 NIL) (-1260 3130487 3130514 3130605 "VSPACE-" 3130610 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1259 3130295 3130338 3130406 "VOID" 3130441 T VOID (NIL) -8 NIL NIL NIL) (-1258 3126720 3127358 3128095 "VIEWDEF" 3129580 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1257 3116056 3118268 3120441 "VIEW3D" 3124569 T VIEW3D (NIL) -8 NIL NIL NIL) (-1256 3108338 3109967 3111546 "VIEW2D" 3114499 T VIEW2D (NIL) -8 NIL NIL NIL) (-1255 3106474 3106833 3107239 "VIEW" 3107954 T VIEW (NIL) -7 NIL NIL NIL) (-1254 3105051 3105310 3105628 "VECTOR2" 3106204 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1253 3100455 3104821 3104913 "VECTOR" 3104994 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1252 3093982 3098239 3098282 "VECTCAT" 3099275 NIL VECTCAT (NIL T) -9 NIL 3099861 NIL) (-1251 3092996 3093250 3093640 "VECTCAT-" 3093645 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1250 3092477 3092647 3092767 "VARIABLE" 3092911 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1249 3092410 3092415 3092445 "UTYPE" 3092450 T UTYPE (NIL) -9 NIL NIL NIL) (-1248 3091240 3091394 3091656 "UTSODETL" 3092236 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1247 3088680 3089140 3089664 "UTSODE" 3090781 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1246 3079923 3085247 3085290 "UTSCAT" 3086402 NIL UTSCAT (NIL T) -9 NIL 3087159 NIL) (-1245 3077278 3077993 3078982 "UTSCAT-" 3078987 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1244 3076905 3076948 3077081 "UTS2" 3077229 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1243 3068781 3074531 3075020 "UTS" 3076474 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1242 3063055 3065619 3065662 "URAGG" 3067732 NIL URAGG (NIL T) -9 NIL 3068455 NIL) (-1241 3059997 3060859 3061981 "URAGG-" 3061986 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1240 3055728 3058611 3059083 "UPXSSING" 3059661 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1239 3048843 3055632 3055704 "UPXSCONS" 3055709 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1238 3039090 3045838 3045900 "UPXSCCA" 3046474 NIL UPXSCCA (NIL T T) -9 NIL 3046707 NIL) (-1237 3038728 3038813 3038987 "UPXSCCA-" 3038992 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1236 3028828 3035349 3035392 "UPXSCAT" 3036040 NIL UPXSCAT (NIL T) -9 NIL 3036648 NIL) (-1235 3028258 3028337 3028516 "UPXS2" 3028743 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1234 3020364 3027505 3027778 "UPXS" 3028043 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1233 3019021 3019273 3019623 "UPSQFREE" 3020108 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1232 3012809 3015823 3015878 "UPSCAT" 3017039 NIL UPSCAT (NIL T T) -9 NIL 3017813 NIL) (-1231 3012013 3012220 3012547 "UPSCAT-" 3012552 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1230 3011640 3011683 3011816 "UPOLYC2" 3011964 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1229 2997523 3005488 3005531 "UPOLYC" 3007632 NIL UPOLYC (NIL T) -9 NIL 3008853 NIL) (-1228 2988888 2991301 2994436 "UPOLYC-" 2994441 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1227 2988227 2988334 2988498 "UPMP" 2988777 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1226 2987780 2987861 2988000 "UPDIVP" 2988140 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1225 2986348 2986597 2986913 "UPDECOMP" 2987529 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1224 2985583 2985695 2985880 "UPCDEN" 2986232 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1223 2985102 2985171 2985320 "UP2" 2985508 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1222 2976716 2984785 2984914 "UP" 2985021 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1221 2975931 2976058 2976263 "UNISEG2" 2976559 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1220 2974448 2975135 2975412 "UNISEG" 2975689 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1219 2973508 2973688 2973914 "UNIFACT" 2974264 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1218 2961564 2973412 2973484 "ULSCONS" 2973489 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1217 2944196 2956122 2956184 "ULSCCAT" 2956822 NIL ULSCCAT (NIL T T) -9 NIL 2957110 NIL) (-1216 2943282 2943515 2943891 "ULSCCAT-" 2943896 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1215 2933159 2939594 2939637 "ULSCAT" 2940500 NIL ULSCAT (NIL T) -9 NIL 2941230 NIL) (-1214 2932589 2932668 2932847 "ULS2" 2933074 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1213 2916572 2931766 2932017 "ULS" 2932396 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1212 2915712 2916187 2916288 "UINT8" 2916399 T UINT8 (NIL) -8 NIL NIL 2916478) (-1211 2914851 2915326 2915427 "UINT32" 2915538 T UINT32 (NIL) -8 NIL NIL 2915617) (-1210 2913990 2914465 2914566 "UINT16" 2914677 T UINT16 (NIL) -8 NIL NIL 2914756) (-1209 2912393 2913316 2913346 "UFD" 2913558 T UFD (NIL) -9 NIL 2913672 NIL) (-1208 2912187 2912233 2912328 "UFD-" 2912333 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1207 2911269 2911452 2911668 "UDVO" 2911993 T UDVO (NIL) -7 NIL NIL NIL) (-1206 2909085 2909494 2909965 "UDPO" 2910833 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1205 2908872 2909040 2909071 "TYPEAST" 2909076 T TYPEAST (NIL) -8 NIL NIL NIL) (-1204 2908805 2908810 2908840 "TYPE" 2908845 T TYPE (NIL) -9 NIL NIL NIL) (-1203 2907776 2907978 2908218 "TWOFACT" 2908599 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1202 2906848 2907185 2907420 "TUPLE" 2907576 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1201 2904539 2905058 2905597 "TUBETOOL" 2906331 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1200 2903388 2903593 2903834 "TUBE" 2904332 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1199 2892055 2896147 2896244 "TSETCAT" 2901513 NIL TSETCAT (NIL T T T T) -9 NIL 2903044 NIL) (-1198 2886790 2888387 2890278 "TSETCAT-" 2890283 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1197 2881554 2885762 2886045 "TS" 2886542 NIL TS (NIL T) -8 NIL NIL NIL) (-1196 2875817 2876663 2877605 "TRMANIP" 2880690 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1195 2875258 2875321 2875484 "TRIMAT" 2875749 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1194 2873054 2873291 2873655 "TRIGMNIP" 2875007 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1193 2872574 2872687 2872717 "TRIGCAT" 2872930 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1192 2872243 2872322 2872463 "TRIGCAT-" 2872468 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1191 2869141 2871101 2871382 "TREE" 2871997 NIL TREE (NIL T) -8 NIL NIL NIL) (-1190 2868415 2868943 2868973 "TRANFUN" 2869008 T TRANFUN (NIL) -9 NIL 2869074 NIL) (-1189 2867694 2867885 2868165 "TRANFUN-" 2868170 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1188 2867498 2867530 2867591 "TOPSP" 2867655 T TOPSP (NIL) -7 NIL NIL NIL) (-1187 2866846 2866961 2867115 "TOOLSIGN" 2867379 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1186 2865507 2866023 2866262 "TEXTFILE" 2866629 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1185 2865288 2865319 2865391 "TEX1" 2865470 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1184 2863227 2863741 2864170 "TEX" 2864881 T TEX (NIL) -8 NIL NIL NIL) (-1183 2862875 2862938 2863028 "TEMUTL" 2863159 T TEMUTL (NIL) -7 NIL NIL NIL) (-1182 2861029 2861309 2861634 "TBCMPPK" 2862598 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1181 2852919 2859189 2859245 "TBAGG" 2859645 NIL TBAGG (NIL T T) -9 NIL 2859856 NIL) (-1180 2847989 2849477 2851231 "TBAGG-" 2851236 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1179 2847373 2847480 2847625 "TANEXP" 2847878 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1178 2846785 2846884 2847022 "TABLEAU" 2847270 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1177 2840288 2846642 2846735 "TABLE" 2846740 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1176 2834896 2836116 2837364 "TABLBUMP" 2839074 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1175 2834324 2834424 2834552 "SYSTEM" 2834790 T SYSTEM (NIL) -7 NIL NIL NIL) (-1174 2830787 2831482 2832265 "SYSSOLP" 2833575 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1173 2829847 2830314 2830427 "SYSNNI" 2830613 NIL SYSNNI (NIL NIL) -8 NIL NIL 2830692) (-1172 2829303 2829708 2829750 "SYSINT" 2829755 NIL SYSINT (NIL NIL) -8 NIL NIL 2829763) (-1171 2825649 2826564 2827280 "SYNTAX" 2828609 T SYNTAX (NIL) -8 NIL NIL NIL) (-1170 2822807 2823409 2824041 "SYMTAB" 2825039 T SYMTAB (NIL) -8 NIL NIL NIL) (-1169 2818080 2818976 2819953 "SYMS" 2821852 T SYMS (NIL) -8 NIL NIL NIL) (-1168 2815362 2817541 2817771 "SYMPOLY" 2817888 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1167 2814879 2814954 2815077 "SYMFUNC" 2815274 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1166 2810931 2812191 2813004 "SYMBOL" 2814088 T SYMBOL (NIL) -8 NIL NIL NIL) (-1165 2804470 2806159 2807879 "SWITCH" 2809233 T SWITCH (NIL) -8 NIL NIL NIL) (-1164 2797740 2803291 2803594 "SUTS" 2804225 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1163 2789845 2796987 2797260 "SUPXS" 2797525 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1162 2789004 2789131 2789348 "SUPFRACF" 2789713 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1161 2788625 2788684 2788797 "SUP2" 2788939 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1160 2780195 2788243 2788369 "SUP" 2788534 NIL SUP (NIL T) -8 NIL NIL NIL) (-1159 2778608 2778882 2779245 "SUMRF" 2779894 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1158 2777922 2777988 2778187 "SUMFS" 2778529 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1157 2761945 2777099 2777350 "SULS" 2777729 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1156 2761574 2761767 2761837 "SUCHTAST" 2761897 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1155 2760896 2761099 2761239 "SUCH" 2761482 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1154 2754790 2755802 2756761 "SUBSPACE" 2759984 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1153 2754220 2754310 2754474 "SUBRESP" 2754678 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1152 2748393 2749513 2750660 "STTFNC" 2753120 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1151 2741762 2743058 2744369 "STTF" 2747129 NIL STTF (NIL T) -7 NIL NIL NIL) (-1150 2733077 2734944 2736738 "STTAYLOR" 2740003 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1149 2726323 2732941 2733024 "STRTBL" 2733029 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1148 2721714 2726278 2726309 "STRING" 2726314 T STRING (NIL) -8 NIL NIL NIL) (-1147 2716602 2721087 2721117 "STRICAT" 2721176 T STRICAT (NIL) -9 NIL 2721238 NIL) (-1146 2716112 2716189 2716333 "STREAM3" 2716519 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1145 2715094 2715277 2715512 "STREAM2" 2715925 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1144 2714782 2714834 2714927 "STREAM1" 2715036 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1143 2707594 2712401 2713012 "STREAM" 2714206 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1142 2706610 2706791 2707022 "STINPROD" 2707410 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1141 2706188 2706372 2706402 "STEP" 2706482 T STEP (NIL) -9 NIL 2706560 NIL) (-1140 2699733 2706087 2706164 "STBL" 2706169 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1139 2694909 2698954 2698997 "STAGG" 2699150 NIL STAGG (NIL T) -9 NIL 2699239 NIL) (-1138 2692617 2693217 2694087 "STAGG-" 2694092 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1137 2690812 2692387 2692479 "STACK" 2692560 NIL STACK (NIL T) -8 NIL NIL NIL) (-1136 2683564 2688953 2689409 "SREGSET" 2690442 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1135 2675990 2677358 2678871 "SRDCMPK" 2682170 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1134 2668957 2673430 2673460 "SRAGG" 2674763 T SRAGG (NIL) -9 NIL 2675371 NIL) (-1133 2667974 2668229 2668608 "SRAGG-" 2668613 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1132 2662473 2666921 2667342 "SQMATRIX" 2667600 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1131 2656223 2659191 2659918 "SPLTREE" 2661818 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1130 2652213 2652879 2653525 "SPLNODE" 2655649 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1129 2651260 2651493 2651523 "SPFCAT" 2651967 T SPFCAT (NIL) -9 NIL NIL NIL) (-1128 2649997 2650207 2650471 "SPECOUT" 2651018 T SPECOUT (NIL) -7 NIL NIL NIL) (-1127 2641649 2643393 2643423 "SPADXPT" 2647815 T SPADXPT (NIL) -9 NIL 2649849 NIL) (-1126 2641410 2641450 2641519 "SPADPRSR" 2641602 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1125 2639593 2641365 2641396 "SPADAST" 2641401 T SPADAST (NIL) -8 NIL NIL NIL) (-1124 2631564 2633311 2633354 "SPACEC" 2637727 NIL SPACEC (NIL T) -9 NIL 2639543 NIL) (-1123 2629735 2631496 2631545 "SPACE3" 2631550 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1122 2628487 2628658 2628949 "SORTPAK" 2629540 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1121 2626537 2626840 2627259 "SOLVETRA" 2628151 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1120 2625548 2625770 2626044 "SOLVESER" 2626310 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1119 2620768 2621649 2622651 "SOLVERAD" 2624600 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1118 2616583 2617192 2617921 "SOLVEFOR" 2620135 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1117 2610907 2615932 2616029 "SNTSCAT" 2616034 NIL SNTSCAT (NIL T T T T) -9 NIL 2616104 NIL) (-1116 2605050 2609230 2609621 "SMTS" 2610597 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1115 2599527 2604938 2605015 "SMP" 2605020 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1114 2597686 2597987 2598385 "SMITH" 2599224 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1113 2590579 2594731 2594834 "SMATCAT" 2596188 NIL SMATCAT (NIL NIL T T T) -9 NIL 2596738 NIL) (-1112 2587540 2588356 2589527 "SMATCAT-" 2589532 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1111 2585253 2586776 2586819 "SKAGG" 2587080 NIL SKAGG (NIL T) -9 NIL 2587215 NIL) (-1110 2581597 2584669 2584864 "SINT" 2585051 T SINT (NIL) -8 NIL NIL 2585224) (-1109 2581369 2581407 2581473 "SIMPAN" 2581553 T SIMPAN (NIL) -7 NIL NIL NIL) (-1108 2580228 2580442 2580710 "SIGNRF" 2581135 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1107 2579054 2579198 2579482 "SIGNEF" 2580064 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1106 2578387 2578637 2578761 "SIGAST" 2578952 T SIGAST (NIL) -8 NIL NIL NIL) (-1105 2577694 2577922 2578062 "SIG" 2578269 T SIG (NIL) -8 NIL NIL NIL) (-1104 2575384 2575838 2576344 "SHP" 2577235 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1103 2569297 2575285 2575361 "SHDP" 2575366 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1102 2568896 2569062 2569092 "SGROUP" 2569185 T SGROUP (NIL) -9 NIL 2569247 NIL) (-1101 2568754 2568780 2568853 "SGROUP-" 2568858 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1100 2565590 2566287 2567010 "SGCF" 2568053 T SGCF (NIL) -7 NIL NIL NIL) (-1099 2560012 2565037 2565134 "SFRTCAT" 2565139 NIL SFRTCAT (NIL T T T T) -9 NIL 2565178 NIL) (-1098 2553436 2554451 2555587 "SFRGCD" 2558995 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1097 2546564 2547635 2548821 "SFQCMPK" 2552369 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1096 2546186 2546275 2546385 "SFORT" 2546505 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1095 2545331 2546026 2546147 "SEXOF" 2546152 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1094 2540870 2541559 2541654 "SEXCAT" 2544591 NIL SEXCAT (NIL T T T T T) -9 NIL 2545169 NIL) (-1093 2540004 2540751 2540819 "SEX" 2540824 T SEX (NIL) -8 NIL NIL NIL) (-1092 2538261 2538721 2539024 "SETMN" 2539747 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1091 2537867 2537993 2538023 "SETCAT" 2538140 T SETCAT (NIL) -9 NIL 2538225 NIL) (-1090 2537647 2537699 2537798 "SETCAT-" 2537803 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1089 2534034 2536108 2536151 "SETAGG" 2537021 NIL SETAGG (NIL T) -9 NIL 2537361 NIL) (-1088 2533492 2533608 2533845 "SETAGG-" 2533850 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1087 2530672 2533426 2533474 "SET" 2533479 NIL SET (NIL T) -8 NIL NIL NIL) (-1086 2530142 2530368 2530469 "SEQAST" 2530593 T SEQAST (NIL) -8 NIL NIL NIL) (-1085 2529341 2529635 2529696 "SEGXCAT" 2529982 NIL SEGXCAT (NIL T T) -9 NIL 2530102 NIL) (-1084 2528320 2528534 2528577 "SEGCAT" 2529099 NIL SEGCAT (NIL T) -9 NIL 2529320 NIL) (-1083 2527941 2528000 2528113 "SEGBIND2" 2528255 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1082 2526990 2527320 2527520 "SEGBIND" 2527776 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1081 2526591 2526791 2526868 "SEGAST" 2526935 T SEGAST (NIL) -8 NIL NIL NIL) (-1080 2525810 2525936 2526140 "SEG2" 2526435 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1079 2524866 2525476 2525658 "SEG" 2525663 NIL SEG (NIL T) -8 NIL NIL NIL) (-1078 2524303 2524801 2524848 "SDVAR" 2524853 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1077 2516634 2524073 2524203 "SDPOL" 2524208 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1076 2515227 2515493 2515812 "SCPKG" 2516349 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1075 2514363 2514543 2514743 "SCOPE" 2515049 T SCOPE (NIL) -8 NIL NIL NIL) (-1074 2513584 2513717 2513896 "SCACHE" 2514218 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1073 2513256 2513416 2513446 "SASTCAT" 2513451 T SASTCAT (NIL) -9 NIL 2513464 NIL) (-1072 2512770 2513091 2513167 "SAOS" 2513202 T SAOS (NIL) -8 NIL NIL NIL) (-1071 2512335 2512370 2512543 "SAERFFC" 2512729 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1070 2511928 2511963 2512122 "SAEFACT" 2512294 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1069 2505911 2511825 2511905 "SAE" 2511910 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1068 2504232 2504546 2504947 "RURPK" 2505577 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1067 2502868 2503147 2503459 "RULESET" 2504066 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1066 2502507 2502662 2502745 "RULECOLD" 2502820 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1065 2499694 2500197 2500662 "RULE" 2502188 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1064 2499192 2499411 2499505 "RSTRCAST" 2499622 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1063 2494041 2494835 2495755 "RSETGCD" 2498391 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1062 2483325 2488350 2488447 "RSETCAT" 2492566 NIL RSETCAT (NIL T T T T) -9 NIL 2493663 NIL) (-1061 2481252 2481791 2482615 "RSETCAT-" 2482620 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1060 2473639 2475014 2476534 "RSDCMPK" 2479851 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2471644 2472085 2472159 "RRCC" 2473245 NIL RRCC (NIL T T) -9 NIL 2473589 NIL) (-1058 2470995 2471169 2471448 "RRCC-" 2471453 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1057 2470465 2470691 2470792 "RPTAST" 2470916 T RPTAST (NIL) -8 NIL NIL NIL) (-1056 2444502 2454058 2454125 "RPOLCAT" 2464789 NIL RPOLCAT (NIL T T T) -9 NIL 2467948 NIL) (-1055 2436038 2438364 2441474 "RPOLCAT-" 2441479 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1054 2427087 2434249 2434731 "ROUTINE" 2435578 T ROUTINE (NIL) -8 NIL NIL NIL) (-1053 2423922 2426713 2426853 "ROMAN" 2426969 T ROMAN (NIL) -8 NIL NIL NIL) (-1052 2422199 2422782 2423042 "ROIRC" 2423727 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1051 2418596 2420835 2420865 "RNS" 2421169 T RNS (NIL) -9 NIL 2421442 NIL) (-1050 2417105 2417488 2418022 "RNS-" 2418097 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1049 2416554 2416936 2416966 "RNG" 2416971 T RNG (NIL) -9 NIL 2416992 NIL) (-1048 2415946 2416308 2416351 "RMODULE" 2416413 NIL RMODULE (NIL T) -9 NIL 2416455 NIL) (-1047 2414782 2414876 2415212 "RMCAT2" 2415847 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1046 2411659 2414128 2414425 "RMATRIX" 2414544 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1045 2404601 2406835 2406950 "RMATCAT" 2410309 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2411291 NIL) (-1044 2403976 2404123 2404430 "RMATCAT-" 2404435 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1043 2403543 2403618 2403746 "RINTERP" 2403895 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1042 2402676 2403196 2403226 "RING" 2403282 T RING (NIL) -9 NIL 2403368 NIL) (-1041 2402468 2402512 2402609 "RING-" 2402614 NIL RING- (NIL T) -8 NIL NIL NIL) (-1040 2401309 2401546 2401804 "RIDIST" 2402232 T RIDIST (NIL) -7 NIL NIL NIL) (-1039 2392652 2400777 2400983 "RGCHAIN" 2401157 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1038 2392028 2392408 2392449 "RGBCSPC" 2392507 NIL RGBCSPC (NIL T) -9 NIL 2392559 NIL) (-1037 2391212 2391567 2391608 "RGBCMDL" 2391840 NIL RGBCMDL (NIL T) -9 NIL 2391954 NIL) (-1036 2390858 2390921 2391024 "RFFACTOR" 2391143 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1035 2390583 2390618 2390715 "RFFACT" 2390817 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1034 2388700 2389064 2389446 "RFDIST" 2390223 T RFDIST (NIL) -7 NIL NIL NIL) (-1033 2385694 2386308 2386978 "RF" 2388064 NIL RF (NIL T) -7 NIL NIL NIL) (-1032 2385147 2385239 2385402 "RETSOL" 2385596 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1031 2384783 2384863 2384906 "RETRACT" 2385039 NIL RETRACT (NIL T) -9 NIL 2385126 NIL) (-1030 2384632 2384657 2384744 "RETRACT-" 2384749 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1029 2384261 2384454 2384524 "RETAST" 2384584 T RETAST (NIL) -8 NIL NIL NIL) (-1028 2377117 2383914 2384041 "RESULT" 2384156 T RESULT (NIL) -8 NIL NIL NIL) (-1027 2375743 2376386 2376585 "RESRING" 2377020 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1026 2375379 2375428 2375526 "RESLATC" 2375680 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1025 2375085 2375119 2375226 "REPSQ" 2375338 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1024 2374783 2374817 2374928 "REPDB" 2375044 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1023 2368693 2370072 2371295 "REP2" 2373595 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1022 2365070 2365751 2366559 "REP1" 2367920 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1021 2362492 2363072 2363674 "REP" 2364490 T REP (NIL) -7 NIL NIL NIL) (-1020 2355245 2360633 2361089 "REGSET" 2362122 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1019 2354058 2354393 2354643 "REF" 2355030 NIL REF (NIL T) -8 NIL NIL NIL) (-1018 2353435 2353538 2353705 "REDORDER" 2353942 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1017 2349471 2352648 2352875 "RECLOS" 2353263 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1016 2348523 2348704 2348919 "REALSOLV" 2349278 T REALSOLV (NIL) -7 NIL NIL NIL) (-1015 2345006 2345808 2346692 "REAL0Q" 2347688 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1014 2340607 2341595 2342656 "REAL0" 2343987 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1013 2340453 2340494 2340524 "REAL" 2340529 T REAL (NIL) -9 NIL 2340564 NIL) (-1012 2339951 2340170 2340264 "RDUCEAST" 2340381 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1011 2339356 2339428 2339635 "RDIV" 2339873 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1010 2338424 2338598 2338811 "RDIST" 2339178 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1009 2337021 2337308 2337680 "RDETRS" 2338132 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1008 2334833 2335287 2335825 "RDETR" 2336563 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1007 2333444 2333722 2334126 "RDEEFS" 2334549 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1006 2331939 2332245 2332677 "RDEEF" 2333132 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1005 2326209 2329075 2329105 "RCFIELD" 2330400 T RCFIELD (NIL) -9 NIL 2331130 NIL) (-1004 2324273 2324777 2325473 "RCFIELD-" 2325548 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1003 2320589 2322374 2322417 "RCAGG" 2323501 NIL RCAGG (NIL T) -9 NIL 2323966 NIL) (-1002 2320217 2320311 2320474 "RCAGG-" 2320479 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1001 2319552 2319664 2319829 "RATRET" 2320101 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1000 2319105 2319172 2319293 "RATFACT" 2319480 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-999 2318420 2318540 2318690 "RANDSRC" 2318975 T RANDSRC (NIL) -7 NIL NIL NIL) (-998 2318157 2318201 2318272 "RADUTIL" 2318369 T RADUTIL (NIL) -7 NIL NIL NIL) (-997 2311340 2316999 2317307 "RADIX" 2317881 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-996 2303008 2311184 2311312 "RADFF" 2311317 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-995 2302660 2302735 2302763 "RADCAT" 2302920 T RADCAT (NIL) -9 NIL NIL NIL) (-994 2302445 2302493 2302590 "RADCAT-" 2302595 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-993 2300596 2302220 2302309 "QUEUE" 2302389 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-992 2300234 2300277 2300404 "QUATCT2" 2300547 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-991 2293988 2297283 2297323 "QUATCAT" 2298103 NIL QUATCAT (NIL T) -9 NIL 2298869 NIL) (-990 2290153 2291183 2292563 "QUATCAT-" 2292657 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-989 2286736 2290090 2290135 "QUAT" 2290140 NIL QUAT (NIL T) -8 NIL NIL NIL) (-988 2284256 2285820 2285861 "QUAGG" 2286236 NIL QUAGG (NIL T) -9 NIL 2286411 NIL) (-987 2283888 2284081 2284149 "QQUTAST" 2284208 T QQUTAST (NIL) -8 NIL NIL NIL) (-986 2282813 2283286 2283458 "QFORM" 2283760 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-985 2282451 2282494 2282621 "QFCAT2" 2282764 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-984 2273679 2278868 2278908 "QFCAT" 2279566 NIL QFCAT (NIL T) -9 NIL 2280567 NIL) (-983 2269287 2270476 2272055 "QFCAT-" 2272149 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-982 2268747 2268857 2268987 "QEQUAT" 2269177 T QEQUAT (NIL) -8 NIL NIL NIL) (-981 2261895 2262966 2264150 "QCMPACK" 2267680 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-980 2261140 2261314 2261546 "QALGSET2" 2261715 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-979 2258722 2259141 2259567 "QALGSET" 2260797 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-978 2257413 2257636 2257953 "PWFFINTB" 2258495 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-977 2255612 2255780 2256134 "PUSHVAR" 2257227 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-976 2251530 2252584 2252625 "PTRANFN" 2254509 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-975 2249932 2250223 2250545 "PTPACK" 2251241 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-974 2249564 2249621 2249730 "PTFUNC2" 2249869 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-973 2244091 2248436 2248477 "PTCAT" 2248773 NIL PTCAT (NIL T) -9 NIL 2248926 NIL) (-972 2243749 2243784 2243908 "PSQFR" 2244050 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-971 2242344 2242642 2242976 "PSEUDLIN" 2243447 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-970 2229114 2231478 2233802 "PSETPK" 2240104 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-969 2222158 2224872 2224968 "PSETCAT" 2227989 NIL PSETCAT (NIL T T T T) -9 NIL 2228803 NIL) (-968 2219994 2220628 2221449 "PSETCAT-" 2221454 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-967 2219343 2219508 2219536 "PSCURVE" 2219804 T PSCURVE (NIL) -9 NIL 2219971 NIL) (-966 2215699 2217181 2217246 "PSCAT" 2218090 NIL PSCAT (NIL T T T) -9 NIL 2218330 NIL) (-965 2214762 2214978 2215378 "PSCAT-" 2215383 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-964 2213494 2214127 2214332 "PRTITION" 2214577 T PRTITION (NIL) -8 NIL NIL NIL) (-963 2212996 2213215 2213307 "PRTDAST" 2213422 T PRTDAST (NIL) -8 NIL NIL NIL) (-962 2202094 2204300 2206488 "PRS" 2210858 NIL PRS (NIL T T) -7 NIL NIL NIL) (-961 2199952 2201444 2201484 "PRQAGG" 2201667 NIL PRQAGG (NIL T) -9 NIL 2201769 NIL) (-960 2199338 2199567 2199595 "PROPLOG" 2199780 T PROPLOG (NIL) -9 NIL 2199902 NIL) (-959 2196508 2197152 2197616 "PROPFRML" 2198906 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-958 2195968 2196078 2196208 "PROPERTY" 2196398 T PROPERTY (NIL) -8 NIL NIL NIL) (-957 2190053 2194134 2194954 "PRODUCT" 2195194 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-956 2189849 2189881 2189940 "PRINT" 2190014 T PRINT (NIL) -7 NIL NIL NIL) (-955 2189189 2189306 2189458 "PRIMES" 2189729 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-954 2187254 2187655 2188121 "PRIMELT" 2188768 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-953 2186983 2187032 2187060 "PRIMCAT" 2187184 T PRIMCAT (NIL) -9 NIL NIL NIL) (-952 2185990 2186168 2186396 "PRIMARR2" 2186801 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-951 2182151 2185928 2185973 "PRIMARR" 2185978 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-950 2181794 2181850 2181961 "PREASSOC" 2182089 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-949 2179114 2181252 2181486 "PR" 2181605 NIL PR (NIL T T) -8 NIL NIL NIL) (-948 2178589 2178722 2178750 "PPCURVE" 2178955 T PPCURVE (NIL) -9 NIL 2179091 NIL) (-947 2178211 2178384 2178467 "PORTNUM" 2178526 T PORTNUM (NIL) -8 NIL NIL NIL) (-946 2175570 2175969 2176561 "POLYROOT" 2177792 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-945 2174953 2175011 2175245 "POLYLIFT" 2175506 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-944 2171228 2171677 2172306 "POLYCATQ" 2174498 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-943 2158059 2163403 2163468 "POLYCAT" 2166982 NIL POLYCAT (NIL T T T) -9 NIL 2168910 NIL) (-942 2151566 2153408 2155773 "POLYCAT-" 2155778 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-941 2151153 2151221 2151341 "POLY2UP" 2151492 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-940 2150785 2150842 2150951 "POLY2" 2151090 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-939 2144761 2150389 2150549 "POLY" 2150658 NIL POLY (NIL T) -8 NIL NIL NIL) (-938 2143446 2143685 2143961 "POLUTIL" 2144535 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-937 2141801 2142078 2142409 "POLTOPOL" 2143168 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-936 2137319 2141737 2141783 "POINT" 2141788 NIL POINT (NIL T) -8 NIL NIL NIL) (-935 2135506 2135863 2136238 "PNTHEORY" 2136964 T PNTHEORY (NIL) -7 NIL NIL NIL) (-934 2133925 2134222 2134634 "PMTOOLS" 2135204 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-933 2133518 2133596 2133713 "PMSYM" 2133841 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-932 2133028 2133097 2133271 "PMQFCAT" 2133443 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-931 2132424 2132510 2132671 "PMPREDFS" 2132929 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-930 2131779 2131889 2132045 "PMPRED" 2132301 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-929 2130422 2130630 2131015 "PMPLCAT" 2131541 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-928 2129954 2130033 2130185 "PMLSAGG" 2130337 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-927 2129429 2129505 2129686 "PMKERNEL" 2129872 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-926 2129046 2129121 2129234 "PMINS" 2129348 NIL PMINS (NIL T) -7 NIL NIL NIL) (-925 2128474 2128543 2128759 "PMFS" 2128971 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-924 2127702 2127820 2128025 "PMDOWN" 2128351 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-923 2126976 2127087 2127250 "PMASSFS" 2127588 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-922 2126139 2126298 2126480 "PMASS" 2126814 T PMASS (NIL) -7 NIL NIL NIL) (-921 2125794 2125862 2125956 "PLOTTOOL" 2126065 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-920 2121608 2122642 2123563 "PLOT3D" 2124893 T PLOT3D (NIL) -8 NIL NIL NIL) (-919 2120520 2120697 2120932 "PLOT1" 2121412 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-918 2115142 2116331 2117479 "PLOT" 2119392 T PLOT (NIL) -8 NIL NIL NIL) (-917 2090536 2095208 2100059 "PLEQN" 2110408 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-916 2090229 2090276 2090379 "PINTERPA" 2090483 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-915 2089547 2089669 2089849 "PINTERP" 2090094 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-914 2087944 2088885 2088913 "PID" 2089095 T PID (NIL) -9 NIL 2089229 NIL) (-913 2087669 2087706 2087794 "PICOERCE" 2087901 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-912 2086917 2087438 2087525 "PI" 2087565 T PI (NIL) -8 NIL NIL 2087632) (-911 2086237 2086376 2086552 "PGROEB" 2086773 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-910 2081824 2082638 2083543 "PGE" 2085352 T PGE (NIL) -7 NIL NIL NIL) (-909 2079948 2080194 2080560 "PGCD" 2081541 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-908 2079286 2079389 2079550 "PFRPAC" 2079832 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-907 2075968 2077834 2078187 "PFR" 2078965 NIL PFR (NIL T) -8 NIL NIL NIL) (-906 2074357 2074601 2074926 "PFOTOOLS" 2075715 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-905 2072890 2073129 2073480 "PFOQ" 2074114 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-904 2071363 2071575 2071938 "PFO" 2072674 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-903 2068797 2070034 2070062 "PFECAT" 2070647 T PFECAT (NIL) -9 NIL 2071031 NIL) (-902 2068242 2068396 2068610 "PFECAT-" 2068615 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-901 2066846 2067097 2067398 "PFBRU" 2067991 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-900 2064713 2065064 2065496 "PFBR" 2066497 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-899 2061303 2064602 2064671 "PF" 2064676 NIL PF (NIL NIL) -8 NIL NIL NIL) (-898 2056569 2057510 2058380 "PERMGRP" 2060466 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-897 2054701 2055632 2055673 "PERMCAT" 2056119 NIL PERMCAT (NIL T) -9 NIL 2056424 NIL) (-896 2054354 2054395 2054519 "PERMAN" 2054654 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-895 2050270 2051730 2052406 "PERM" 2053711 NIL PERM (NIL T) -8 NIL NIL NIL) (-894 2047808 2049935 2050057 "PENDTREE" 2050181 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-893 2045901 2046635 2046676 "PDRING" 2047333 NIL PDRING (NIL T) -9 NIL 2047619 NIL) (-892 2045004 2045222 2045584 "PDRING-" 2045589 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-891 2042246 2042997 2043665 "PDEPROB" 2044356 T PDEPROB (NIL) -8 NIL NIL NIL) (-890 2039793 2040295 2040850 "PDEPACK" 2041711 T PDEPACK (NIL) -7 NIL NIL NIL) (-889 2038705 2038895 2039146 "PDECOMP" 2039592 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-888 2036310 2037127 2037155 "PDECAT" 2037942 T PDECAT (NIL) -9 NIL 2038655 NIL) (-887 2036061 2036094 2036184 "PCOMP" 2036271 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-886 2034266 2034862 2035159 "PBWLB" 2035790 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-885 2033898 2033955 2034064 "PATTERN2" 2034203 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-884 2031655 2032043 2032500 "PATTERN1" 2033487 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-883 2024162 2025728 2027066 "PATTERN" 2030338 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-882 2023726 2023793 2023925 "PATRES2" 2024089 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-881 2021121 2021675 2022156 "PATRES" 2023291 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-880 2019004 2019409 2019816 "PATMATCH" 2020788 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-879 2018540 2018723 2018764 "PATMAB" 2018871 NIL PATMAB (NIL T) -9 NIL 2018954 NIL) (-878 2017085 2017394 2017652 "PATLRES" 2018345 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-877 2016631 2016754 2016795 "PATAB" 2016800 NIL PATAB (NIL T) -9 NIL 2016972 NIL) (-876 2014112 2014644 2015217 "PARTPERM" 2016078 T PARTPERM (NIL) -7 NIL NIL NIL) (-875 2013733 2013796 2013898 "PARSURF" 2014043 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-874 2013365 2013422 2013531 "PARSU2" 2013670 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-873 2013129 2013169 2013236 "PARSER" 2013318 T PARSER (NIL) -7 NIL NIL NIL) (-872 2012750 2012813 2012915 "PARSCURV" 2013060 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-871 2012382 2012439 2012548 "PARSC2" 2012687 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-870 2012021 2012079 2012176 "PARPCURV" 2012318 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-869 2011653 2011710 2011819 "PARPC2" 2011958 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-868 2011173 2011259 2011378 "PAN2EXPR" 2011554 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-867 2009979 2010294 2010522 "PALETTE" 2010965 T PALETTE (NIL) -8 NIL NIL NIL) (-866 2008447 2008984 2009344 "PAIR" 2009665 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-865 2002374 2007706 2007900 "PADICRC" 2008302 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-864 1995659 2001720 2001904 "PADICRAT" 2002222 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-863 1992871 1994399 1994439 "PADICCT" 1995020 NIL PADICCT (NIL NIL) -9 NIL 1995302 NIL) (-862 1991223 1992808 1992853 "PADIC" 1992858 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-861 1990180 1990380 1990648 "PADEPAC" 1991010 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-860 1989392 1989525 1989731 "PADE" 1990042 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-859 1987814 1988600 1988880 "OWP" 1989196 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-858 1986887 1987419 1987591 "OVAR" 1987682 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-857 1975794 1977996 1980196 "OUTFORM" 1984707 T OUTFORM (NIL) -8 NIL NIL NIL) (-856 1975130 1975391 1975518 "OUTBFILE" 1975687 T OUTBFILE (NIL) -8 NIL NIL NIL) (-855 1974437 1974602 1974630 "OUTBCON" 1974948 T OUTBCON (NIL) -9 NIL 1975114 NIL) (-854 1974038 1974150 1974307 "OUTBCON-" 1974312 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-853 1973302 1973423 1973584 "OUT" 1973897 T OUT (NIL) -7 NIL NIL NIL) (-852 1972710 1973031 1973120 "OSI" 1973233 T OSI (NIL) -8 NIL NIL NIL) (-851 1972266 1972578 1972606 "OSGROUP" 1972611 T OSGROUP (NIL) -9 NIL 1972633 NIL) (-850 1971011 1971238 1971523 "ORTHPOL" 1972013 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-849 1968611 1970846 1970967 "OREUP" 1970972 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-848 1966063 1968302 1968429 "ORESUP" 1968553 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-847 1963591 1964091 1964652 "OREPCTO" 1965552 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-846 1957422 1959582 1959623 "OREPCAT" 1961971 NIL OREPCAT (NIL T) -9 NIL 1963075 NIL) (-845 1954590 1955365 1956416 "OREPCAT-" 1956421 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-844 1953767 1954039 1954067 "ORDSET" 1954376 T ORDSET (NIL) -9 NIL 1954540 NIL) (-843 1953286 1953408 1953601 "ORDSET-" 1953606 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-842 1951920 1952677 1952705 "ORDRING" 1952907 T ORDRING (NIL) -9 NIL 1953032 NIL) (-841 1951565 1951659 1951803 "ORDRING-" 1951808 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-840 1950971 1951408 1951436 "ORDMON" 1951441 T ORDMON (NIL) -9 NIL 1951462 NIL) (-839 1950133 1950280 1950475 "ORDFUNS" 1950820 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-838 1949497 1949890 1949918 "ORDFIN" 1949983 T ORDFIN (NIL) -9 NIL 1950057 NIL) (-837 1948763 1948890 1949076 "ORDCOMP2" 1949357 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-836 1945362 1947349 1947758 "ORDCOMP" 1948387 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-835 1941970 1942853 1943667 "OPTPROB" 1944568 T OPTPROB (NIL) -8 NIL NIL NIL) (-834 1938772 1939411 1940115 "OPTPACK" 1941286 T OPTPACK (NIL) -7 NIL NIL NIL) (-833 1936485 1937225 1937253 "OPTCAT" 1938072 T OPTCAT (NIL) -9 NIL 1938722 NIL) (-832 1935928 1936162 1936267 "OPSIG" 1936400 T OPSIG (NIL) -8 NIL NIL NIL) (-831 1935696 1935735 1935801 "OPQUERY" 1935882 T OPQUERY (NIL) -7 NIL NIL NIL) (-830 1935231 1935402 1935443 "OPERCAT" 1935578 NIL OPERCAT (NIL T) -9 NIL 1935646 NIL) (-829 1935077 1935104 1935190 "OPERCAT-" 1935195 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-828 1932245 1933388 1933892 "OP" 1934606 NIL OP (NIL T) -8 NIL NIL NIL) (-827 1931550 1931665 1931839 "ONECOMP2" 1932117 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-826 1928402 1930347 1930716 "ONECOMP" 1931214 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-825 1927821 1927927 1928057 "OMSERVER" 1928292 T OMSERVER (NIL) -7 NIL NIL NIL) (-824 1924709 1927261 1927301 "OMSAGG" 1927362 NIL OMSAGG (NIL T) -9 NIL 1927426 NIL) (-823 1923332 1923595 1923877 "OMPKG" 1924447 T OMPKG (NIL) -7 NIL NIL NIL) (-822 1921914 1922881 1923050 "OMLO" 1923213 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-821 1920839 1920986 1921213 "OMEXPR" 1921740 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-820 1920017 1920260 1920420 "OMERRK" 1920699 T OMERRK (NIL) -8 NIL NIL NIL) (-819 1919335 1919563 1919699 "OMERR" 1919901 T OMERR (NIL) -8 NIL NIL NIL) (-818 1918813 1919012 1919120 "OMENC" 1919247 T OMENC (NIL) -8 NIL NIL NIL) (-817 1912708 1913893 1915064 "OMDEV" 1917662 T OMDEV (NIL) -8 NIL NIL NIL) (-816 1911777 1911948 1912142 "OMCONN" 1912534 T OMCONN (NIL) -8 NIL NIL NIL) (-815 1911207 1911310 1911338 "OM" 1911637 T OM (NIL) -9 NIL NIL NIL) (-814 1909828 1910770 1910798 "OINTDOM" 1910803 T OINTDOM (NIL) -9 NIL 1910824 NIL) (-813 1905634 1906818 1907534 "OFMONOID" 1909144 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-812 1905072 1905571 1905616 "ODVAR" 1905621 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-811 1902532 1904817 1904972 "ODR" 1904977 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-810 1894917 1902308 1902434 "ODPOL" 1902439 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-809 1888800 1894789 1894894 "ODP" 1894899 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-808 1887566 1887781 1888056 "ODETOOLS" 1888574 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-807 1884535 1885191 1885907 "ODESYS" 1886899 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-806 1879417 1880325 1881350 "ODERTRIC" 1883610 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-805 1878843 1878925 1879119 "ODERED" 1879329 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-804 1875739 1876285 1876960 "ODERAT" 1878268 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-803 1872699 1873163 1873760 "ODEPRRIC" 1875268 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-802 1870669 1871238 1871724 "ODEPROB" 1872233 T ODEPROB (NIL) -8 NIL NIL NIL) (-801 1867191 1867674 1868321 "ODEPRIM" 1870148 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-800 1866440 1866542 1866802 "ODEPAL" 1867083 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-799 1862602 1863393 1864257 "ODEPACK" 1865596 T ODEPACK (NIL) -7 NIL NIL NIL) (-798 1861635 1861742 1861971 "ODEINT" 1862491 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-797 1855736 1857161 1858608 "ODEIFTBL" 1860208 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-796 1851085 1851867 1852822 "ODEEF" 1854899 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-795 1850420 1850509 1850739 "ODECONST" 1850990 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-794 1848571 1849206 1849234 "ODECAT" 1849839 T ODECAT (NIL) -9 NIL 1850370 NIL) (-793 1848209 1848252 1848379 "OCTCT2" 1848522 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-792 1845128 1847921 1848040 "OCT" 1848122 NIL OCT (NIL T) -8 NIL NIL NIL) (-791 1844506 1844948 1844976 "OCAMON" 1844981 T OCAMON (NIL) -9 NIL 1845002 NIL) (-790 1839287 1841680 1841720 "OC" 1842817 NIL OC (NIL T) -9 NIL 1843675 NIL) (-789 1836535 1837276 1838259 "OC-" 1838353 NIL OC- (NIL T T) -8 NIL NIL NIL) (-788 1836092 1836407 1836435 "OASGP" 1836440 T OASGP (NIL) -9 NIL 1836460 NIL) (-787 1835379 1835842 1835870 "OAMONS" 1835910 T OAMONS (NIL) -9 NIL 1835953 NIL) (-786 1834819 1835226 1835254 "OAMON" 1835259 T OAMON (NIL) -9 NIL 1835279 NIL) (-785 1834123 1834615 1834643 "OAGROUP" 1834648 T OAGROUP (NIL) -9 NIL 1834668 NIL) (-784 1833813 1833863 1833951 "NUMTUBE" 1834067 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-783 1827386 1828904 1830440 "NUMQUAD" 1832297 T NUMQUAD (NIL) -7 NIL NIL NIL) (-782 1823142 1824130 1825155 "NUMODE" 1826381 T NUMODE (NIL) -7 NIL NIL NIL) (-781 1820523 1821377 1821405 "NUMINT" 1822328 T NUMINT (NIL) -9 NIL 1823092 NIL) (-780 1819471 1819668 1819886 "NUMFMT" 1820325 T NUMFMT (NIL) -7 NIL NIL NIL) (-779 1805830 1808775 1811307 "NUMERIC" 1816978 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-778 1800254 1805279 1805374 "NTSCAT" 1805379 NIL NTSCAT (NIL T T T T) -9 NIL 1805418 NIL) (-777 1799448 1799613 1799806 "NTPOLFN" 1800093 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-776 1799080 1799137 1799246 "NSUP2" 1799385 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-775 1786965 1795905 1796717 "NSUP" 1798301 NIL NSUP (NIL T) -8 NIL NIL NIL) (-774 1777010 1786739 1786872 "NSMP" 1786877 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-773 1775442 1775743 1776100 "NREP" 1776698 NIL NREP (NIL T) -7 NIL NIL NIL) (-772 1774033 1774285 1774643 "NPCOEF" 1775185 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-771 1773099 1773214 1773430 "NORMRETR" 1773914 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-770 1771140 1771430 1771839 "NORMPK" 1772807 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-769 1770825 1770853 1770977 "NORMMA" 1771106 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-768 1770614 1770643 1770712 "NONE1" 1770789 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-767 1770441 1770571 1770600 "NONE" 1770605 T NONE (NIL) -8 NIL NIL NIL) (-766 1769924 1769986 1770172 "NODE1" 1770373 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-765 1768198 1769021 1769276 "NNI" 1769623 T NNI (NIL) -8 NIL NIL 1769858) (-764 1766618 1766931 1767295 "NLINSOL" 1767866 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-763 1762886 1763854 1764753 "NIPROB" 1765739 T NIPROB (NIL) -8 NIL NIL NIL) (-762 1761643 1761877 1762179 "NFINTBAS" 1762648 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-761 1760817 1761293 1761334 "NETCLT" 1761506 NIL NETCLT (NIL T) -9 NIL 1761588 NIL) (-760 1759525 1759756 1760037 "NCODIV" 1760585 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-759 1759287 1759324 1759399 "NCNTFRAC" 1759482 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-758 1757467 1757831 1758251 "NCEP" 1758912 NIL NCEP (NIL T) -7 NIL NIL NIL) (-757 1756385 1757117 1757145 "NASRING" 1757255 T NASRING (NIL) -9 NIL 1757329 NIL) (-756 1756180 1756224 1756318 "NASRING-" 1756323 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-755 1755333 1755832 1755860 "NARNG" 1755977 T NARNG (NIL) -9 NIL 1756068 NIL) (-754 1755025 1755092 1755226 "NARNG-" 1755231 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-753 1753904 1754111 1754346 "NAGSP" 1754810 T NAGSP (NIL) -7 NIL NIL NIL) (-752 1745176 1746860 1748533 "NAGS" 1752251 T NAGS (NIL) -7 NIL NIL NIL) (-751 1743724 1744032 1744363 "NAGF07" 1744865 T NAGF07 (NIL) -7 NIL NIL NIL) (-750 1738262 1739553 1740860 "NAGF04" 1742437 T NAGF04 (NIL) -7 NIL NIL NIL) (-749 1731230 1732844 1734477 "NAGF02" 1736649 T NAGF02 (NIL) -7 NIL NIL NIL) (-748 1726454 1727554 1728671 "NAGF01" 1730133 T NAGF01 (NIL) -7 NIL NIL NIL) (-747 1720082 1721648 1723233 "NAGE04" 1724889 T NAGE04 (NIL) -7 NIL NIL NIL) (-746 1711251 1713372 1715502 "NAGE02" 1717972 T NAGE02 (NIL) -7 NIL NIL NIL) (-745 1707204 1708151 1709115 "NAGE01" 1710307 T NAGE01 (NIL) -7 NIL NIL NIL) (-744 1704999 1705533 1706091 "NAGD03" 1706666 T NAGD03 (NIL) -7 NIL NIL NIL) (-743 1696749 1698677 1700631 "NAGD02" 1703065 T NAGD02 (NIL) -7 NIL NIL NIL) (-742 1690560 1691985 1693425 "NAGD01" 1695329 T NAGD01 (NIL) -7 NIL NIL NIL) (-741 1686769 1687591 1688428 "NAGC06" 1689743 T NAGC06 (NIL) -7 NIL NIL NIL) (-740 1685234 1685566 1685922 "NAGC05" 1686433 T NAGC05 (NIL) -7 NIL NIL NIL) (-739 1684610 1684729 1684873 "NAGC02" 1685110 T NAGC02 (NIL) -7 NIL NIL NIL) (-738 1683670 1684227 1684267 "NAALG" 1684346 NIL NAALG (NIL T) -9 NIL 1684407 NIL) (-737 1683505 1683534 1683624 "NAALG-" 1683629 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-736 1677455 1678563 1679750 "MULTSQFR" 1682401 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-735 1676774 1676849 1677033 "MULTFACT" 1677367 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-734 1669867 1673737 1673790 "MTSCAT" 1674860 NIL MTSCAT (NIL T T) -9 NIL 1675374 NIL) (-733 1669579 1669633 1669725 "MTHING" 1669807 NIL MTHING (NIL T) -7 NIL NIL NIL) (-732 1669371 1669404 1669464 "MSYSCMD" 1669539 T MSYSCMD (NIL) -7 NIL NIL NIL) (-731 1666466 1668932 1668973 "MSETAGG" 1668978 NIL MSETAGG (NIL T) -9 NIL 1669012 NIL) (-730 1662578 1665221 1665541 "MSET" 1666179 NIL MSET (NIL T) -8 NIL NIL NIL) (-729 1658463 1659957 1660702 "MRING" 1661878 NIL MRING (NIL T T) -8 NIL NIL NIL) (-728 1658029 1658096 1658227 "MRF2" 1658390 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-727 1657647 1657682 1657826 "MRATFAC" 1657988 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-726 1655259 1655554 1655985 "MPRFF" 1657352 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-725 1649345 1655113 1655210 "MPOLY" 1655215 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-724 1648835 1648870 1649078 "MPCPF" 1649304 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-723 1648349 1648392 1648576 "MPC3" 1648786 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-722 1647544 1647625 1647846 "MPC2" 1648264 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-721 1645845 1646182 1646572 "MONOTOOL" 1647204 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-720 1645096 1645387 1645415 "MONOID" 1645634 T MONOID (NIL) -9 NIL 1645781 NIL) (-719 1644642 1644761 1644942 "MONOID-" 1644947 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-718 1635510 1641409 1641468 "MONOGEN" 1642142 NIL MONOGEN (NIL T T) -9 NIL 1642598 NIL) (-717 1632749 1633477 1634470 "MONOGEN-" 1634589 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-716 1631608 1632028 1632056 "MONADWU" 1632448 T MONADWU (NIL) -9 NIL 1632686 NIL) (-715 1630980 1631139 1631387 "MONADWU-" 1631392 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-714 1630365 1630583 1630611 "MONAD" 1630818 T MONAD (NIL) -9 NIL 1630930 NIL) (-713 1630050 1630128 1630260 "MONAD-" 1630265 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-712 1628366 1628963 1629242 "MOEBIUS" 1629803 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-711 1627758 1628136 1628176 "MODULE" 1628181 NIL MODULE (NIL T) -9 NIL 1628207 NIL) (-710 1627326 1627422 1627612 "MODULE-" 1627617 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-709 1625085 1625734 1626061 "MODRING" 1627150 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-708 1622073 1623190 1623711 "MODOP" 1624614 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-707 1620688 1621140 1621417 "MODMONOM" 1621936 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-706 1610535 1618979 1619393 "MODMON" 1620325 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-705 1607752 1609403 1609679 "MODFIELD" 1610410 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-704 1606756 1607033 1607223 "MMLFORM" 1607582 T MMLFORM (NIL) -8 NIL NIL NIL) (-703 1606282 1606325 1606504 "MMAP" 1606707 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-702 1604499 1605232 1605273 "MLO" 1605696 NIL MLO (NIL T) -9 NIL 1605938 NIL) (-701 1601866 1602381 1602983 "MLIFT" 1603980 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-700 1601257 1601341 1601495 "MKUCFUNC" 1601777 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-699 1600856 1600926 1601049 "MKRECORD" 1601180 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-698 1599904 1600065 1600293 "MKFUNC" 1600667 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-697 1599292 1599396 1599552 "MKFLCFN" 1599787 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-696 1598835 1599202 1599261 "MKCHSET" 1599266 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-695 1598112 1598214 1598399 "MKBCFUNC" 1598728 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-694 1594856 1597666 1597802 "MINT" 1597996 T MINT (NIL) -8 NIL NIL NIL) (-693 1593668 1593911 1594188 "MHROWRED" 1594611 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-692 1589103 1592203 1592608 "MFLOAT" 1593283 T MFLOAT (NIL) -8 NIL NIL NIL) (-691 1588460 1588536 1588707 "MFINFACT" 1589015 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-690 1584795 1585638 1586517 "MESH" 1587601 T MESH (NIL) -7 NIL NIL NIL) (-689 1583185 1583497 1583850 "MDDFACT" 1584482 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-688 1580027 1582344 1582385 "MDAGG" 1582640 NIL MDAGG (NIL T) -9 NIL 1582783 NIL) (-687 1569823 1579320 1579527 "MCMPLX" 1579840 T MCMPLX (NIL) -8 NIL NIL NIL) (-686 1568964 1569110 1569310 "MCDEN" 1569672 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-685 1566854 1567124 1567504 "MCALCFN" 1568694 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-684 1565779 1566019 1566252 "MAYBE" 1566660 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-683 1563391 1563914 1564476 "MATSTOR" 1565250 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-682 1559396 1562763 1563011 "MATRIX" 1563176 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-681 1555165 1555869 1556605 "MATLIN" 1558753 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-680 1553759 1553912 1554245 "MATCAT2" 1555000 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-679 1543907 1547048 1547125 "MATCAT" 1552008 NIL MATCAT (NIL T T T) -9 NIL 1553425 NIL) (-678 1540271 1541284 1542640 "MATCAT-" 1542645 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-677 1538383 1538707 1539091 "MAPPKG3" 1539946 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-676 1537364 1537537 1537759 "MAPPKG2" 1538207 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-675 1535863 1536147 1536474 "MAPPKG1" 1537070 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-674 1534969 1535269 1535446 "MAPPAST" 1535706 T MAPPAST (NIL) -8 NIL NIL NIL) (-673 1534580 1534638 1534761 "MAPHACK3" 1534905 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-672 1534172 1534233 1534347 "MAPHACK2" 1534512 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-671 1533610 1533713 1533855 "MAPHACK1" 1534063 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-670 1531716 1532310 1532614 "MAGMA" 1533338 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-669 1531222 1531440 1531531 "MACROAST" 1531645 T MACROAST (NIL) -8 NIL NIL NIL) (-668 1527689 1529461 1529922 "M3D" 1530794 NIL M3D (NIL T) -8 NIL NIL NIL) (-667 1521845 1526058 1526099 "LZSTAGG" 1526881 NIL LZSTAGG (NIL T) -9 NIL 1527176 NIL) (-666 1517819 1518976 1520433 "LZSTAGG-" 1520438 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-665 1514933 1515710 1516197 "LWORD" 1517364 NIL LWORD (NIL T) -8 NIL NIL NIL) (-664 1514536 1514737 1514812 "LSTAST" 1514878 T LSTAST (NIL) -8 NIL NIL NIL) (-663 1507768 1514307 1514441 "LSQM" 1514446 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-662 1506992 1507131 1507359 "LSPP" 1507623 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-661 1503834 1504491 1505204 "LSMP1" 1506311 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-660 1501669 1501963 1502412 "LSMP" 1503530 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-659 1495596 1500836 1500877 "LSAGG" 1500939 NIL LSAGG (NIL T) -9 NIL 1501017 NIL) (-658 1492291 1493215 1494428 "LSAGG-" 1494433 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-657 1489917 1491435 1491684 "LPOLY" 1492086 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-656 1489499 1489584 1489707 "LPEFRAC" 1489826 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-655 1489151 1489263 1489291 "LOGIC" 1489402 T LOGIC (NIL) -9 NIL 1489483 NIL) (-654 1489013 1489036 1489107 "LOGIC-" 1489112 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-653 1488206 1488346 1488539 "LODOOPS" 1488869 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-652 1486744 1486979 1487332 "LODOF" 1487953 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-651 1483114 1485497 1485538 "LODOCAT" 1485976 NIL LODOCAT (NIL T) -9 NIL 1486187 NIL) (-650 1482847 1482905 1483032 "LODOCAT-" 1483037 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-649 1480216 1482688 1482806 "LODO2" 1482811 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-648 1477700 1480153 1480198 "LODO1" 1480203 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-647 1475172 1477616 1477682 "LODO" 1477687 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-646 1474032 1474197 1474509 "LODEEF" 1474995 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-645 1472379 1473126 1473379 "LO" 1473864 NIL LO (NIL T T T) -8 NIL NIL NIL) (-644 1467665 1470509 1470550 "LNAGG" 1471497 NIL LNAGG (NIL T) -9 NIL 1471941 NIL) (-643 1466812 1467026 1467368 "LNAGG-" 1467373 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-642 1462975 1463737 1464376 "LMOPS" 1466227 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-641 1462370 1462732 1462773 "LMODULE" 1462834 NIL LMODULE (NIL T) -9 NIL 1462876 NIL) (-640 1459616 1462015 1462138 "LMDICT" 1462280 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-639 1459342 1459524 1459584 "LITERAL" 1459589 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-638 1458867 1458941 1459080 "LIST3" 1459262 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-637 1457001 1457313 1457712 "LIST2MAP" 1458514 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-636 1456008 1456186 1456414 "LIST2" 1456819 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-635 1449237 1454954 1455252 "LIST" 1455743 NIL LIST (NIL T) -8 NIL NIL NIL) (-634 1447967 1448603 1448644 "LINEXP" 1448899 NIL LINEXP (NIL T) -9 NIL 1449048 NIL) (-633 1446614 1446874 1447171 "LINDEP" 1447719 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-632 1443452 1444152 1444910 "LIMITRF" 1445888 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-631 1441751 1442039 1442448 "LIMITPS" 1443154 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-630 1440800 1441243 1441283 "LIECAT" 1441423 NIL LIECAT (NIL T) -9 NIL 1441574 NIL) (-629 1440641 1440668 1440756 "LIECAT-" 1440761 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-628 1435128 1440152 1440380 "LIE" 1440462 NIL LIE (NIL T T) -8 NIL NIL NIL) (-627 1427742 1434577 1434742 "LIB" 1434983 T LIB (NIL) -8 NIL NIL NIL) (-626 1423379 1424260 1425195 "LGROBP" 1426859 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-625 1422219 1422911 1422939 "LFCAT" 1423146 T LFCAT (NIL) -9 NIL 1423285 NIL) (-624 1420085 1420359 1420721 "LF" 1421940 NIL LF (NIL T T) -7 NIL NIL NIL) (-623 1416989 1417617 1418305 "LEXTRIPK" 1419449 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-622 1413760 1414559 1415062 "LEXP" 1416569 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-621 1413263 1413481 1413573 "LETAST" 1413688 T LETAST (NIL) -8 NIL NIL NIL) (-620 1411661 1411974 1412375 "LEADCDET" 1412945 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-619 1410851 1410925 1411154 "LAZM3PK" 1411582 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-618 1405820 1408928 1409466 "LAUPOL" 1410363 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-617 1405385 1405429 1405597 "LAPLACE" 1405770 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-616 1404466 1405016 1405057 "LALG" 1405119 NIL LALG (NIL T) -9 NIL 1405178 NIL) (-615 1404180 1404239 1404375 "LALG-" 1404380 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-614 1402154 1403281 1403532 "LA" 1404013 NIL LA (NIL T T T) -8 NIL NIL NIL) (-613 1401989 1402013 1402054 "KVTFROM" 1402116 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-612 1400792 1401206 1401435 "KTVLOGIC" 1401780 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-611 1400627 1400651 1400692 "KRCFROM" 1400754 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-610 1399531 1399718 1400017 "KOVACIC" 1400427 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-609 1399366 1399390 1399431 "KONVERT" 1399493 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-608 1399201 1399225 1399266 "KOERCE" 1399328 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-607 1398703 1398784 1398914 "KERNEL2" 1399115 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-606 1396437 1397197 1397590 "KERNEL" 1398342 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-605 1390288 1394976 1395030 "KDAGG" 1395407 NIL KDAGG (NIL T T) -9 NIL 1395613 NIL) (-604 1389817 1389941 1390146 "KDAGG-" 1390151 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1382994 1389478 1389633 "KAFILE" 1389695 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-602 1377481 1382505 1382733 "JORDAN" 1382815 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-601 1376887 1377130 1377251 "JOINAST" 1377380 T JOINAST (NIL) -8 NIL NIL NIL) (-600 1376733 1376792 1376847 "JAVACODE" 1376852 T JAVACODE (NIL) -8 NIL NIL NIL) (-599 1373032 1374938 1374992 "IXAGG" 1375921 NIL IXAGG (NIL T T) -9 NIL 1376380 NIL) (-598 1371951 1372257 1372676 "IXAGG-" 1372681 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-597 1367531 1371873 1371932 "IVECTOR" 1371937 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-596 1366297 1366534 1366800 "ITUPLE" 1367298 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-595 1364733 1364910 1365216 "ITRIGMNP" 1366119 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-594 1363478 1363682 1363965 "ITFUN3" 1364509 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-593 1363110 1363167 1363276 "ITFUN2" 1363415 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-592 1360947 1361972 1362271 "ITAYLOR" 1362844 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-591 1349930 1355084 1356247 "ISUPS" 1359817 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-590 1349034 1349174 1349410 "ISUMP" 1349777 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-589 1344298 1348835 1348914 "ISTRING" 1348987 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-588 1343801 1344019 1344111 "ISAST" 1344226 T ISAST (NIL) -8 NIL NIL NIL) (-587 1343011 1343092 1343308 "IRURPK" 1343715 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-586 1341947 1342148 1342388 "IRSN" 1342791 T IRSN (NIL) -7 NIL NIL NIL) (-585 1339976 1340331 1340767 "IRRF2F" 1341585 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-584 1339723 1339761 1339837 "IRREDFFX" 1339932 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-583 1338338 1338597 1338896 "IROOT" 1339456 NIL IROOT (NIL T) -7 NIL NIL NIL) (-582 1337410 1337523 1337744 "IR2F" 1338221 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-581 1335023 1335518 1336084 "IR2" 1336888 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-580 1331655 1332707 1333399 "IR" 1334363 NIL IR (NIL T) -8 NIL NIL NIL) (-579 1331446 1331480 1331540 "IPRNTPK" 1331615 T IPRNTPK (NIL) -7 NIL NIL NIL) (-578 1328067 1331335 1331404 "IPF" 1331409 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-577 1326432 1327992 1328049 "IPADIC" 1328054 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-576 1325772 1325992 1326122 "IP4ADDR" 1326322 T IP4ADDR (NIL) -8 NIL NIL NIL) (-575 1325272 1325476 1325586 "IOMODE" 1325682 T IOMODE (NIL) -8 NIL NIL NIL) (-574 1324345 1324869 1324996 "IOBFILE" 1325165 T IOBFILE (NIL) -8 NIL NIL NIL) (-573 1323833 1324249 1324277 "IOBCON" 1324282 T IOBCON (NIL) -9 NIL 1324303 NIL) (-572 1323330 1323388 1323578 "INVLAPLA" 1323769 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-571 1313027 1315368 1317742 "INTTR" 1321006 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-570 1309371 1310113 1310977 "INTTOOLS" 1312212 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-569 1308957 1309048 1309165 "INTSLPE" 1309274 T INTSLPE (NIL) -7 NIL NIL NIL) (-568 1306952 1308880 1308939 "INTRVL" 1308944 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-567 1304554 1305066 1305641 "INTRF" 1306437 NIL INTRF (NIL T) -7 NIL NIL NIL) (-566 1303965 1304062 1304204 "INTRET" 1304452 NIL INTRET (NIL T) -7 NIL NIL NIL) (-565 1301962 1302351 1302821 "INTRAT" 1303573 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-564 1299190 1299773 1300399 "INTPM" 1301447 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-563 1295916 1296508 1297246 "INTPAF" 1298583 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-562 1291095 1292057 1293108 "INTPACK" 1294885 T INTPACK (NIL) -7 NIL NIL NIL) (-561 1290347 1290499 1290707 "INTHERTR" 1290937 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-560 1289786 1289866 1290054 "INTHERAL" 1290261 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-559 1287632 1288075 1288532 "INTHEORY" 1289349 T INTHEORY (NIL) -7 NIL NIL NIL) (-558 1278998 1280601 1282362 "INTG0" 1286002 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-557 1265271 1268636 1272021 "INTFTBL" 1275633 T INTFTBL (NIL) -8 NIL NIL NIL) (-556 1264520 1264658 1264831 "INTFACT" 1265130 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-555 1261911 1262355 1262917 "INTEF" 1264076 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-554 1260378 1261083 1261111 "INTDOM" 1261412 T INTDOM (NIL) -9 NIL 1261619 NIL) (-553 1259747 1259921 1260163 "INTDOM-" 1260168 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-552 1256242 1258131 1258185 "INTCAT" 1258984 NIL INTCAT (NIL T) -9 NIL 1259304 NIL) (-551 1255715 1255817 1255945 "INTBIT" 1256134 T INTBIT (NIL) -7 NIL NIL NIL) (-550 1254386 1254540 1254854 "INTALG" 1255560 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-549 1253843 1253933 1254103 "INTAF" 1254290 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-548 1247299 1253653 1253793 "INTABL" 1253798 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-547 1246762 1247175 1247203 "INT8" 1247208 T INT8 (NIL) -8 NIL NIL 1247216) (-546 1246224 1246637 1246665 "INT32" 1246670 T INT32 (NIL) -8 NIL NIL 1246678) (-545 1245686 1246099 1246127 "INT16" 1246132 T INT16 (NIL) -8 NIL NIL 1246140) (-544 1242600 1245415 1245542 "INT" 1245579 T INT (NIL) -8 NIL NIL NIL) (-543 1237617 1240289 1240317 "INS" 1241251 T INS (NIL) -9 NIL 1241916 NIL) (-542 1234857 1235628 1236602 "INS-" 1236675 NIL INS- (NIL T) -8 NIL NIL NIL) (-541 1233705 1233910 1234186 "INPSIGN" 1234632 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-540 1232823 1232940 1233137 "INPRODPF" 1233585 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-539 1231717 1231834 1232071 "INPRODFF" 1232703 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-538 1230717 1230869 1231129 "INNMFACT" 1231553 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-537 1229914 1230011 1230199 "INMODGCD" 1230616 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-536 1228423 1228667 1228991 "INFSP" 1229659 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-535 1227607 1227724 1227907 "INFPROD0" 1228303 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-534 1227217 1227277 1227375 "INFORM1" 1227542 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-533 1224099 1225282 1225797 "INFORM" 1226710 T INFORM (NIL) -8 NIL NIL NIL) (-532 1223622 1223711 1223825 "INFINITY" 1224005 T INFINITY (NIL) -7 NIL NIL NIL) (-531 1222798 1223342 1223443 "INETCLTS" 1223541 T INETCLTS (NIL) -8 NIL NIL NIL) (-530 1221415 1221664 1221985 "INEP" 1222546 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-529 1220691 1221312 1221377 "INDE" 1221382 NIL INDE (NIL T) -8 NIL NIL NIL) (-528 1220255 1220323 1220440 "INCRMAPS" 1220618 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-527 1219073 1219524 1219730 "INBFILE" 1220069 T INBFILE (NIL) -8 NIL NIL NIL) (-526 1214384 1215309 1216253 "INBFF" 1218161 NIL INBFF (NIL T) -7 NIL NIL NIL) (-525 1213292 1213561 1213589 "INBCON" 1214102 T INBCON (NIL) -9 NIL 1214368 NIL) (-524 1212544 1212767 1213043 "INBCON-" 1213048 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-523 1212046 1212265 1212357 "INAST" 1212472 T INAST (NIL) -8 NIL NIL NIL) (-522 1211500 1211725 1211831 "IMPTAST" 1211960 T IMPTAST (NIL) -8 NIL NIL NIL) (-521 1207993 1211344 1211448 "IMATRIX" 1211453 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-520 1206705 1206828 1207143 "IMATQF" 1207849 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-519 1204925 1205152 1205489 "IMATLIN" 1206461 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-518 1199553 1204849 1204907 "ILIST" 1204912 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-517 1197506 1199413 1199526 "IIARRAY2" 1199531 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-516 1192941 1197417 1197481 "IFF" 1197486 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-515 1192315 1192558 1192674 "IFAST" 1192845 T IFAST (NIL) -8 NIL NIL NIL) (-514 1187358 1191607 1191795 "IFARRAY" 1192172 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-513 1186565 1187262 1187335 "IFAMON" 1187340 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-512 1186149 1186214 1186268 "IEVALAB" 1186475 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-511 1185824 1185892 1186052 "IEVALAB-" 1186057 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-510 1185101 1185713 1185788 "IDPOAMS" 1185793 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-509 1184435 1184990 1185065 "IDPOAM" 1185070 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-508 1184093 1184349 1184412 "IDPO" 1184417 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-507 1183178 1183428 1183481 "IDPC" 1183894 NIL IDPC (NIL T T) -9 NIL 1184043 NIL) (-506 1182674 1183070 1183143 "IDPAM" 1183148 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-505 1182077 1182566 1182639 "IDPAG" 1182644 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-504 1181845 1181992 1182042 "IDENT" 1182047 T IDENT (NIL) -8 NIL NIL NIL) (-503 1178100 1178948 1179843 "IDECOMP" 1181002 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-502 1170974 1172023 1173070 "IDEAL" 1177136 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-501 1170138 1170250 1170449 "ICDEN" 1170858 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-500 1169237 1169618 1169765 "ICARD" 1170011 T ICARD (NIL) -8 NIL NIL NIL) (-499 1167297 1167610 1168015 "IBPTOOLS" 1168914 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-498 1162931 1166917 1167030 "IBITS" 1167216 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-497 1159654 1160230 1160925 "IBATOOL" 1162348 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-496 1157434 1157895 1158428 "IBACHIN" 1159189 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-495 1155311 1157280 1157383 "IARRAY2" 1157388 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-494 1151464 1155237 1155294 "IARRAY1" 1155299 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-493 1145467 1149876 1150357 "IAN" 1151003 T IAN (NIL) -8 NIL NIL NIL) (-492 1144978 1145035 1145208 "IALGFACT" 1145404 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-491 1144506 1144619 1144647 "HYPCAT" 1144854 T HYPCAT (NIL) -9 NIL NIL NIL) (-490 1144044 1144161 1144347 "HYPCAT-" 1144352 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-489 1143666 1143839 1143922 "HOSTNAME" 1143981 T HOSTNAME (NIL) -8 NIL NIL NIL) (-488 1143511 1143548 1143589 "HOMOTOP" 1143594 NIL HOMOTOP (NIL T) -9 NIL 1143627 NIL) (-487 1140190 1141521 1141562 "HOAGG" 1142543 NIL HOAGG (NIL T) -9 NIL 1143222 NIL) (-486 1138784 1139183 1139709 "HOAGG-" 1139714 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-485 1132847 1138381 1138529 "HEXADEC" 1138656 T HEXADEC (NIL) -8 NIL NIL NIL) (-484 1131595 1131817 1132080 "HEUGCD" 1132624 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-483 1130698 1131432 1131562 "HELLFDIV" 1131567 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-482 1128926 1130475 1130563 "HEAP" 1130642 NIL HEAP (NIL T) -8 NIL NIL NIL) (-481 1128217 1128478 1128612 "HEADAST" 1128812 T HEADAST (NIL) -8 NIL NIL NIL) (-480 1122144 1128132 1128194 "HDP" 1128199 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-479 1115926 1121779 1121931 "HDMP" 1122045 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-478 1115251 1115390 1115554 "HB" 1115782 T HB (NIL) -7 NIL NIL NIL) (-477 1108750 1115097 1115201 "HASHTBL" 1115206 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-476 1108253 1108471 1108563 "HASAST" 1108678 T HASAST (NIL) -8 NIL NIL NIL) (-475 1106069 1107875 1108057 "HACKPI" 1108091 T HACKPI (NIL) -8 NIL NIL NIL) (-474 1101791 1105922 1106035 "GTSET" 1106040 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-473 1095319 1101669 1101767 "GSTBL" 1101772 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-472 1087634 1094350 1094615 "GSERIES" 1095110 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-471 1086801 1087192 1087220 "GROUP" 1087423 T GROUP (NIL) -9 NIL 1087557 NIL) (-470 1086167 1086326 1086577 "GROUP-" 1086582 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-469 1084536 1084855 1085242 "GROEBSOL" 1085844 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-468 1083476 1083738 1083789 "GRMOD" 1084318 NIL GRMOD (NIL T T) -9 NIL 1084486 NIL) (-467 1083244 1083280 1083408 "GRMOD-" 1083413 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-466 1078570 1079598 1080598 "GRIMAGE" 1082264 T GRIMAGE (NIL) -8 NIL NIL NIL) (-465 1077037 1077297 1077621 "GRDEF" 1078266 T GRDEF (NIL) -7 NIL NIL NIL) (-464 1076481 1076597 1076738 "GRAY" 1076916 T GRAY (NIL) -7 NIL NIL NIL) (-463 1075694 1076074 1076125 "GRALG" 1076278 NIL GRALG (NIL T T) -9 NIL 1076371 NIL) (-462 1075355 1075428 1075591 "GRALG-" 1075596 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-461 1072159 1074940 1075118 "GPOLSET" 1075262 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-460 1071513 1071570 1071828 "GOSPER" 1072096 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-459 1067272 1067951 1068477 "GMODPOL" 1071212 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-458 1066277 1066461 1066699 "GHENSEL" 1067084 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-457 1060328 1061171 1062198 "GENUPS" 1065361 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-456 1060025 1060076 1060165 "GENUFACT" 1060271 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-455 1059437 1059514 1059679 "GENPGCD" 1059943 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-454 1058911 1058946 1059159 "GENMFACT" 1059396 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-453 1057479 1057734 1058041 "GENEEZ" 1058654 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-452 1051423 1057090 1057252 "GDMP" 1057402 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-451 1040822 1045194 1046300 "GCNAALG" 1050406 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-450 1039249 1040077 1040105 "GCDDOM" 1040360 T GCDDOM (NIL) -9 NIL 1040517 NIL) (-449 1038719 1038846 1039061 "GCDDOM-" 1039066 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-448 1027339 1029665 1032057 "GBINTERN" 1036410 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-447 1025176 1025468 1025889 "GBF" 1027014 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-446 1023957 1024122 1024389 "GBEUCLID" 1024992 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-445 1022629 1022814 1023118 "GB" 1023736 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-444 1021978 1022103 1022252 "GAUSSFAC" 1022500 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-443 1020345 1020647 1020961 "GALUTIL" 1021697 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-442 1018653 1018927 1019251 "GALPOLYU" 1020072 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-441 1016018 1016308 1016715 "GALFACTU" 1018350 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-440 1007824 1009323 1010931 "GALFACT" 1014450 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-439 1005212 1005870 1005898 "FVFUN" 1007054 T FVFUN (NIL) -9 NIL 1007774 NIL) (-438 1004478 1004660 1004688 "FVC" 1004979 T FVC (NIL) -9 NIL 1005162 NIL) (-437 1004120 1004275 1004356 "FUNCTION" 1004430 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-436 1002938 1003421 1003624 "FTEM" 1003937 T FTEM (NIL) -8 NIL NIL NIL) (-435 1000721 1001269 1001732 "FT" 1002495 T FT (NIL) -8 NIL NIL NIL) (-434 998977 999266 999670 "FSUPFACT" 1000412 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-433 997374 997663 997995 "FST" 998665 T FST (NIL) -8 NIL NIL NIL) (-432 996545 996651 996846 "FSRED" 997256 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-431 995224 995479 995833 "FSPRMELT" 996260 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-430 992309 992747 993246 "FSPECF" 994787 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-429 991823 991877 992054 "FSINT" 992250 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-428 990150 990816 991119 "FSERIES" 991602 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-427 989164 989280 989511 "FSCINT" 990030 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-426 988206 988349 988576 "FSAGG2" 989017 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-425 984440 987150 987191 "FSAGG" 987561 NIL FSAGG (NIL T) -9 NIL 987820 NIL) (-424 982202 982803 983599 "FSAGG-" 983694 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 979857 980136 980690 "FS2UPS" 981920 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-422 978714 978885 979194 "FS2EXPXP" 979682 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-421 978296 978339 978494 "FS2" 978665 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 960385 968799 968839 "FS" 972687 NIL FS (NIL T) -9 NIL 974976 NIL) (-419 949116 952079 956108 "FS-" 956405 NIL FS- (NIL T T) -8 NIL NIL NIL) (-418 948542 948657 948809 "FRUTIL" 948996 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-417 943649 946260 946300 "FRNAALG" 947696 NIL FRNAALG (NIL T) -9 NIL 948303 NIL) (-416 939378 940432 941690 "FRNAALG-" 942440 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 939016 939059 939186 "FRNAAF2" 939329 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 937423 937870 938165 "FRMOD" 938828 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 936618 936705 936994 "FRIDEAL2" 937330 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-412 934397 935001 935318 "FRIDEAL" 936409 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-411 933537 933944 933985 "FRETRCT" 933990 NIL FRETRCT (NIL T) -9 NIL 934166 NIL) (-410 932670 932894 933238 "FRETRCT-" 933243 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 929882 931058 931117 "FRAMALG" 931999 NIL FRAMALG (NIL T T) -9 NIL 932291 NIL) (-408 928016 928471 929101 "FRAMALG-" 929324 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 927652 927709 927816 "FRAC2" 927953 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-406 921631 927127 927403 "FRAC" 927408 NIL FRAC (NIL T) -8 NIL NIL NIL) (-405 921267 921324 921431 "FR2" 921568 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 912837 916843 918174 "FR" 919968 NIL FR (NIL T) -8 NIL NIL NIL) (-403 907514 910362 910390 "FPS" 911509 T FPS (NIL) -9 NIL 912066 NIL) (-402 906963 907072 907236 "FPS-" 907382 NIL FPS- (NIL T) -8 NIL NIL NIL) (-401 904419 906052 906080 "FPC" 906305 T FPC (NIL) -9 NIL 906447 NIL) (-400 904212 904252 904349 "FPC-" 904354 NIL FPC- (NIL T) -8 NIL NIL NIL) (-399 903090 903700 903741 "FPATMAB" 903746 NIL FPATMAB (NIL T) -9 NIL 903898 NIL) (-398 900790 901266 901692 "FPARFRAC" 902727 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-397 896223 896721 897403 "FORTRAN" 900222 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-396 893899 894461 894489 "FORTFN" 895549 T FORTFN (NIL) -9 NIL 896173 NIL) (-395 893663 893713 893741 "FORTCAT" 893800 T FORTCAT (NIL) -9 NIL 893862 NIL) (-394 891379 891879 892418 "FORT" 893144 T FORT (NIL) -7 NIL NIL NIL) (-393 891167 891197 891266 "FORMULA1" 891343 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 889300 889783 890173 "FORMULA" 890797 T FORMULA (NIL) -8 NIL NIL NIL) (-391 888823 888875 889048 "FORDER" 889242 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-390 887919 888083 888276 "FOP" 888650 T FOP (NIL) -7 NIL NIL NIL) (-389 886527 887199 887373 "FNLA" 887801 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-388 885282 885671 885699 "FNCAT" 886159 T FNCAT (NIL) -9 NIL 886419 NIL) (-387 884848 885241 885269 "FNAME" 885274 T FNAME (NIL) -8 NIL NIL NIL) (-386 883511 884440 884468 "FMTC" 884473 T FMTC (NIL) -9 NIL 884509 NIL) (-385 879873 881034 881663 "FMONOID" 882915 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-384 877297 877943 877971 "FMFUN" 879115 T FMFUN (NIL) -9 NIL 879823 NIL) (-383 874491 875325 875379 "FMCAT" 876574 NIL FMCAT (NIL T T) -9 NIL 877069 NIL) (-382 873760 873941 873969 "FMC" 874259 T FMC (NIL) -9 NIL 874441 NIL) (-381 872653 873526 873626 "FM1" 873705 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 871872 872395 872544 "FM" 872549 NIL FM (NIL T T) -8 NIL NIL NIL) (-379 869646 870062 870556 "FLOATRP" 871423 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-378 867084 867584 868162 "FLOATCP" 869113 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 860712 864813 865434 "FLOAT" 866483 T FLOAT (NIL) -8 NIL NIL NIL) (-376 859521 860325 860366 "FLINEXP" 860371 NIL FLINEXP (NIL T) -9 NIL 860464 NIL) (-375 858675 858910 859238 "FLINEXP-" 859243 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-374 857751 857895 858119 "FLASORT" 858527 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-373 854968 855810 855862 "FLALG" 857089 NIL FLALG (NIL T T) -9 NIL 857556 NIL) (-372 854010 854153 854380 "FLAGG2" 854821 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-371 847794 851496 851537 "FLAGG" 852799 NIL FLAGG (NIL T) -9 NIL 853451 NIL) (-370 846520 846859 847349 "FLAGG-" 847354 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-369 843495 844469 844528 "FINRALG" 845656 NIL FINRALG (NIL T T) -9 NIL 846164 NIL) (-368 842655 842884 843223 "FINRALG-" 843228 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-367 842061 842274 842302 "FINITE" 842498 T FINITE (NIL) -9 NIL 842605 NIL) (-366 834519 836680 836720 "FINAALG" 840387 NIL FINAALG (NIL T) -9 NIL 841840 NIL) (-365 829860 830901 832045 "FINAALG-" 833424 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-364 828544 828856 828910 "FILECAT" 829594 NIL FILECAT (NIL T T) -9 NIL 829810 NIL) (-363 827939 828299 828402 "FILE" 828474 NIL FILE (NIL T) -8 NIL NIL NIL) (-362 825809 827301 827329 "FIELD" 827369 T FIELD (NIL) -9 NIL 827449 NIL) (-361 824429 824814 825325 "FIELD-" 825330 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-360 822307 823064 823411 "FGROUP" 824115 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-359 821397 821561 821781 "FGLMICPK" 822139 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-358 817266 821322 821379 "FFX" 821384 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-357 816867 816928 817063 "FFSLPE" 817199 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-356 816371 816407 816616 "FFPOLY2" 816825 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 812364 813143 813939 "FFPOLY" 815607 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-354 808252 812283 812346 "FFP" 812351 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-353 803415 807595 807785 "FFNBX" 808106 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 798391 802550 802808 "FFNBP" 803269 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 793061 797675 797886 "FFNB" 798224 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 791893 792091 792406 "FFINTBAS" 792858 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 788123 790300 790328 "FFIELDC" 790948 T FFIELDC (NIL) -9 NIL 791324 NIL) (-348 786786 787156 787653 "FFIELDC-" 787658 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 786356 786401 786525 "FFHOM" 786728 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 784054 784538 785055 "FFF" 785871 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 779709 783796 783897 "FFCGX" 783997 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 775378 779441 779548 "FFCGP" 779652 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 770598 775105 775213 "FFCG" 775314 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 770009 770052 770287 "FFCAT2" 770549 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 751851 760880 760966 "FFCAT" 766131 NIL FFCAT (NIL T T T) -9 NIL 767582 NIL) (-340 747049 748096 749410 "FFCAT-" 750640 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-339 742484 746960 747024 "FF" 747029 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-338 731698 735456 736676 "FEXPR" 741336 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-337 730698 731133 731174 "FEVALAB" 731258 NIL FEVALAB (NIL T) -9 NIL 731519 NIL) (-336 729857 730067 730405 "FEVALAB-" 730410 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-335 726923 727638 727753 "FDIVCAT" 729321 NIL FDIVCAT (NIL T T T T) -9 NIL 729758 NIL) (-334 726685 726712 726882 "FDIVCAT-" 726887 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 725905 725992 726269 "FDIV2" 726592 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 724498 725288 725491 "FDIV" 725804 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-331 723184 723443 723732 "FCPAK1" 724229 T FCPAK1 (NIL) -7 NIL NIL NIL) (-330 722312 722684 722825 "FCOMP" 723075 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-329 706049 709462 713000 "FC" 718794 T FC (NIL) -8 NIL NIL NIL) (-328 698630 702613 702653 "FAXF" 704455 NIL FAXF (NIL T) -9 NIL 705147 NIL) (-327 695909 696564 697389 "FAXF-" 697854 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-326 691009 695285 695461 "FARRAY" 695766 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-325 686269 688294 688347 "FAMR" 689370 NIL FAMR (NIL T T) -9 NIL 689830 NIL) (-324 685159 685461 685896 "FAMR-" 685901 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-323 684355 685081 685134 "FAMONOID" 685139 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-322 682167 682851 682904 "FAMONC" 683845 NIL FAMONC (NIL T T) -9 NIL 684231 NIL) (-321 680859 681921 682058 "FAGROUP" 682063 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-320 678654 678973 679376 "FACUTIL" 680540 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-319 677753 677938 678160 "FACTFUNC" 678464 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-318 670160 677004 677216 "EXPUPXS" 677609 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-317 667643 668183 668769 "EXPRTUBE" 669594 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-316 663837 664429 665166 "EXPRODE" 666982 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-315 658244 658831 659644 "EXPR2UPS" 663135 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 657880 657937 658044 "EXPR2" 658181 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 643315 656535 656963 "EXPR" 657484 NIL EXPR (NIL T) -8 NIL NIL NIL) (-312 634746 642447 642744 "EXPEXPAN" 643152 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-311 634253 634470 634561 "EXITAST" 634675 T EXITAST (NIL) -8 NIL NIL NIL) (-310 634080 634210 634239 "EXIT" 634244 T EXIT (NIL) -8 NIL NIL NIL) (-309 633707 633769 633882 "EVALCYC" 634012 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-308 633248 633366 633407 "EVALAB" 633577 NIL EVALAB (NIL T) -9 NIL 633681 NIL) (-307 632729 632851 633072 "EVALAB-" 633077 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-306 630197 631465 631493 "EUCDOM" 632048 T EUCDOM (NIL) -9 NIL 632398 NIL) (-305 628602 629044 629634 "EUCDOM-" 629639 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-304 628234 628291 628400 "ESTOOLS2" 628539 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 627985 628027 628107 "ESTOOLS1" 628186 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 615525 618283 621033 "ESTOOLS" 625255 T ESTOOLS (NIL) -7 NIL NIL NIL) (-301 615270 615302 615384 "ESCONT1" 615487 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-300 611645 612405 613185 "ESCONT" 614510 T ESCONT (NIL) -7 NIL NIL NIL) (-299 611320 611370 611470 "ES2" 611589 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 610950 611008 611117 "ES1" 611256 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 604855 606583 606611 "ES" 609379 T ES (NIL) -9 NIL 610788 NIL) (-296 599803 601089 602906 "ES-" 603070 NIL ES- (NIL T) -8 NIL NIL NIL) (-295 599019 599148 599324 "ERROR" 599647 T ERROR (NIL) -7 NIL NIL NIL) (-294 592524 598878 598969 "EQTBL" 598974 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-293 592156 592213 592322 "EQ2" 592461 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 584713 587470 588919 "EQ" 590740 NIL -3935 (NIL T) -8 NIL NIL NIL) (-291 580005 581051 582144 "EP" 583652 NIL EP (NIL T) -7 NIL NIL NIL) (-290 578587 578888 579205 "ENV" 579708 T ENV (NIL) -8 NIL NIL NIL) (-289 577766 578286 578314 "ENTIRER" 578319 T ENTIRER (NIL) -9 NIL 578365 NIL) (-288 574324 575775 576145 "EMR" 577565 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-287 573468 573653 573707 "ELTAGG" 574087 NIL ELTAGG (NIL T T) -9 NIL 574298 NIL) (-286 573187 573249 573390 "ELTAGG-" 573395 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-285 572976 573005 573059 "ELTAB" 573143 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-284 572102 572248 572447 "ELFUTS" 572827 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-283 571844 571900 571928 "ELEMFUN" 572033 T ELEMFUN (NIL) -9 NIL NIL NIL) (-282 571714 571735 571803 "ELEMFUN-" 571808 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-281 566605 569814 569855 "ELAGG" 570795 NIL ELAGG (NIL T) -9 NIL 571258 NIL) (-280 564890 565324 565987 "ELAGG-" 565992 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-279 563547 563827 564122 "ELABEXPR" 564615 T ELABEXPR (NIL) -8 NIL NIL NIL) (-278 556540 558214 559041 "EFUPXS" 562823 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-277 550117 551791 552601 "EFULS" 555816 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-276 547539 547897 548376 "EFSTRUC" 549749 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-275 536611 538176 539736 "EF" 546054 NIL EF (NIL T T) -7 NIL NIL NIL) (-274 535712 536096 536245 "EAB" 536482 T EAB (NIL) -8 NIL NIL NIL) (-273 534921 535671 535699 "E04UCFA" 535704 T E04UCFA (NIL) -8 NIL NIL NIL) (-272 534130 534880 534908 "E04NAFA" 534913 T E04NAFA (NIL) -8 NIL NIL NIL) (-271 533339 534089 534117 "E04MBFA" 534122 T E04MBFA (NIL) -8 NIL NIL NIL) (-270 532548 533298 533326 "E04JAFA" 533331 T E04JAFA (NIL) -8 NIL NIL NIL) (-269 531759 532507 532535 "E04GCFA" 532540 T E04GCFA (NIL) -8 NIL NIL NIL) (-268 530970 531718 531746 "E04FDFA" 531751 T E04FDFA (NIL) -8 NIL NIL NIL) (-267 530179 530929 530957 "E04DGFA" 530962 T E04DGFA (NIL) -8 NIL NIL NIL) (-266 524357 525704 527068 "E04AGNT" 528835 T E04AGNT (NIL) -7 NIL NIL NIL) (-265 523063 523543 523583 "DVARCAT" 524058 NIL DVARCAT (NIL T) -9 NIL 524257 NIL) (-264 522267 522479 522793 "DVARCAT-" 522798 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-263 515208 522066 522195 "DSMP" 522200 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-262 514873 514932 515030 "DROPT1" 515143 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 509988 511114 512251 "DROPT0" 513756 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 504798 505933 507001 "DROPT" 508940 T DROPT (NIL) -8 NIL NIL NIL) (-259 503143 503468 503854 "DRAWPT" 504432 T DRAWPT (NIL) -7 NIL NIL NIL) (-258 502776 502829 502947 "DRAWHACK" 503084 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 501507 501776 502067 "DRAWCX" 502505 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 501023 501091 501242 "DRAWCURV" 501433 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 491494 493453 495568 "DRAWCFUN" 498928 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 486081 487004 488083 "DRAW" 490468 NIL DRAW (NIL T) -7 NIL NIL NIL) (-253 482894 484776 484817 "DQAGG" 485446 NIL DQAGG (NIL T) -9 NIL 485719 NIL) (-252 471209 477872 477955 "DPOLCAT" 479807 NIL DPOLCAT (NIL T T T T) -9 NIL 480352 NIL) (-251 466099 467428 469369 "DPOLCAT-" 469374 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-250 459261 465960 466058 "DPMO" 466063 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-249 452326 459041 459208 "DPMM" 459213 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-248 451990 452245 452293 "DOMCTOR" 452298 T DOMCTOR (NIL) -8 NIL NIL NIL) (-247 451285 451512 451649 "DOMAIN" 451873 T DOMAIN (NIL) -8 NIL NIL NIL) (-246 445067 450920 451072 "DMP" 451186 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-245 444667 444723 444867 "DLP" 445005 NIL DLP (NIL T) -7 NIL NIL NIL) (-244 438539 443994 444184 "DLIST" 444509 NIL DLIST (NIL T) -8 NIL NIL NIL) (-243 435384 437392 437433 "DLAGG" 437983 NIL DLAGG (NIL T) -9 NIL 438213 NIL) (-242 434197 434827 434855 "DIVRING" 434947 T DIVRING (NIL) -9 NIL 435030 NIL) (-241 433434 433624 433924 "DIVRING-" 433929 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-240 431536 431893 432299 "DISPLAY" 433048 T DISPLAY (NIL) -7 NIL NIL NIL) (-239 430384 430587 430852 "DIRPROD2" 431329 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 424333 430298 430361 "DIRPROD" 430366 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-237 413603 419548 419601 "DIRPCAT" 420011 NIL DIRPCAT (NIL NIL T) -9 NIL 420851 NIL) (-236 410929 411571 412452 "DIRPCAT-" 412789 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-235 410216 410376 410562 "DIOSP" 410763 T DIOSP (NIL) -7 NIL NIL NIL) (-234 406918 409128 409169 "DIOPS" 409603 NIL DIOPS (NIL T) -9 NIL 409832 NIL) (-233 406467 406581 406772 "DIOPS-" 406777 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-232 405359 405953 405981 "DIFRING" 406168 T DIFRING (NIL) -9 NIL 406278 NIL) (-231 405005 405082 405234 "DIFRING-" 405239 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-230 402810 404048 404089 "DIFEXT" 404452 NIL DIFEXT (NIL T) -9 NIL 404746 NIL) (-229 401095 401523 402189 "DIFEXT-" 402194 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-228 398417 400627 400668 "DIAGG" 400673 NIL DIAGG (NIL T) -9 NIL 400693 NIL) (-227 397801 397958 398210 "DIAGG-" 398215 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-226 393265 396760 397037 "DHMATRIX" 397570 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-225 388877 389786 390796 "DFSFUN" 392275 T DFSFUN (NIL) -7 NIL NIL NIL) (-224 383997 387808 388120 "DFLOAT" 388585 T DFLOAT (NIL) -8 NIL NIL NIL) (-223 382225 382506 382902 "DFINTTLS" 383705 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-222 379290 380246 380646 "DERHAM" 381891 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-221 377139 379065 379154 "DEQUEUE" 379234 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-220 376354 376487 376683 "DEGRED" 377001 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-219 372929 373629 374437 "DEFINTRF" 375627 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-218 370568 371009 371580 "DEFINTEF" 372476 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-217 369945 370188 370303 "DEFAST" 370473 T DEFAST (NIL) -8 NIL NIL NIL) (-216 364008 369542 369690 "DECIMAL" 369817 T DECIMAL (NIL) -8 NIL NIL NIL) (-215 361520 361978 362484 "DDFACT" 363552 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-214 361116 361159 361310 "DBLRESP" 361471 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-213 359015 359349 359709 "DBASE" 360883 NIL DBASE (NIL T) -8 NIL NIL NIL) (-212 358284 358495 358641 "DATAARY" 358914 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-211 357417 358243 358271 "D03FAFA" 358276 T D03FAFA (NIL) -8 NIL NIL NIL) (-210 356551 357376 357404 "D03EEFA" 357409 T D03EEFA (NIL) -8 NIL NIL NIL) (-209 354501 354967 355456 "D03AGNT" 356082 T D03AGNT (NIL) -7 NIL NIL NIL) (-208 353817 354460 354488 "D02EJFA" 354493 T D02EJFA (NIL) -8 NIL NIL NIL) (-207 353133 353776 353804 "D02CJFA" 353809 T D02CJFA (NIL) -8 NIL NIL NIL) (-206 352449 353092 353120 "D02BHFA" 353125 T D02BHFA (NIL) -8 NIL NIL NIL) (-205 351765 352408 352436 "D02BBFA" 352441 T D02BBFA (NIL) -8 NIL NIL NIL) (-204 344963 346551 348157 "D02AGNT" 350179 T D02AGNT (NIL) -7 NIL NIL NIL) (-203 342732 343254 343800 "D01WGTS" 344437 T D01WGTS (NIL) -7 NIL NIL NIL) (-202 341827 342691 342719 "D01TRNS" 342724 T D01TRNS (NIL) -8 NIL NIL NIL) (-201 340922 341786 341814 "D01GBFA" 341819 T D01GBFA (NIL) -8 NIL NIL NIL) (-200 340017 340881 340909 "D01FCFA" 340914 T D01FCFA (NIL) -8 NIL NIL NIL) (-199 339112 339976 340004 "D01ASFA" 340009 T D01ASFA (NIL) -8 NIL NIL NIL) (-198 338207 339071 339099 "D01AQFA" 339104 T D01AQFA (NIL) -8 NIL NIL NIL) (-197 337302 338166 338194 "D01APFA" 338199 T D01APFA (NIL) -8 NIL NIL NIL) (-196 336397 337261 337289 "D01ANFA" 337294 T D01ANFA (NIL) -8 NIL NIL NIL) (-195 335492 336356 336384 "D01AMFA" 336389 T D01AMFA (NIL) -8 NIL NIL NIL) (-194 334587 335451 335479 "D01ALFA" 335484 T D01ALFA (NIL) -8 NIL NIL NIL) (-193 333682 334546 334574 "D01AKFA" 334579 T D01AKFA (NIL) -8 NIL NIL NIL) (-192 332777 333641 333669 "D01AJFA" 333674 T D01AJFA (NIL) -8 NIL NIL NIL) (-191 326074 327625 329186 "D01AGNT" 331236 T D01AGNT (NIL) -7 NIL NIL NIL) (-190 325411 325539 325691 "CYCLOTOM" 325942 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-189 322146 322859 323586 "CYCLES" 324704 T CYCLES (NIL) -7 NIL NIL NIL) (-188 321458 321592 321763 "CVMP" 322007 NIL CVMP (NIL T) -7 NIL NIL NIL) (-187 319229 319487 319863 "CTRIGMNP" 321186 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-186 318765 318960 319061 "CTORKIND" 319148 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 318236 318464 318492 "CTORCAT" 318612 T CTORCAT (NIL) -9 NIL 318695 NIL) (-184 317931 318011 318137 "CTORCAT-" 318142 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 317447 317634 317732 "CTORCALL" 317853 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 316970 317238 317312 "CTOR" 317393 T CTOR (NIL) -8 NIL NIL NIL) (-181 316344 316443 316596 "CSTTOOLS" 316867 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-180 312143 312800 313558 "CRFP" 315656 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-179 311645 311864 311956 "CRCEAST" 312071 T CRCEAST (NIL) -8 NIL NIL NIL) (-178 310692 310877 311105 "CRAPACK" 311449 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-177 310076 310177 310381 "CPMATCH" 310568 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-176 309801 309829 309935 "CPIMA" 310042 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-175 306165 306837 307555 "COORDSYS" 309136 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-174 305549 305678 305828 "CONTOUR" 306035 T CONTOUR (NIL) -8 NIL NIL NIL) (-173 301477 303552 304044 "CONTFRAC" 305089 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-172 301357 301378 301406 "CONDUIT" 301443 T CONDUIT (NIL) -9 NIL NIL NIL) (-171 300530 301050 301078 "COMRING" 301083 T COMRING (NIL) -9 NIL 301135 NIL) (-170 299611 299888 300072 "COMPPROP" 300366 T COMPPROP (NIL) -8 NIL NIL NIL) (-169 299272 299307 299435 "COMPLPAT" 299570 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-168 298908 298965 299072 "COMPLEX2" 299209 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 288983 298717 298826 "COMPLEX" 298831 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-166 288701 288736 288834 "COMPFACT" 288942 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-165 272883 283094 283134 "COMPCAT" 284138 NIL COMPCAT (NIL T) -9 NIL 285523 NIL) (-164 262420 265336 268956 "COMPCAT-" 269312 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-163 262149 262177 262280 "COMMUPC" 262386 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-162 261944 261977 262036 "COMMONOP" 262110 T COMMONOP (NIL) -7 NIL NIL NIL) (-161 261548 261748 261823 "COMMAAST" 261889 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 261131 261299 261386 "COMM" 261481 T COMM (NIL) -8 NIL NIL NIL) (-159 260380 260574 260602 "COMBOPC" 260940 T COMBOPC (NIL) -9 NIL 261115 NIL) (-158 259276 259486 259728 "COMBINAT" 260170 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-157 255474 256047 256687 "COMBF" 258698 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-156 254260 254590 254825 "COLOR" 255259 T COLOR (NIL) -8 NIL NIL NIL) (-155 253763 253981 254073 "COLONAST" 254188 T COLONAST (NIL) -8 NIL NIL NIL) (-154 253403 253450 253575 "CMPLXRT" 253710 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-153 252878 253103 253202 "CLLCTAST" 253324 T CLLCTAST (NIL) -8 NIL NIL NIL) (-152 248380 249408 250488 "CLIP" 251818 T CLIP (NIL) -7 NIL NIL NIL) (-151 246762 247486 247725 "CLIF" 248207 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-150 242984 244908 244949 "CLAGG" 245878 NIL CLAGG (NIL T) -9 NIL 246414 NIL) (-149 241406 241863 242446 "CLAGG-" 242451 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-148 240950 241035 241175 "CINTSLPE" 241315 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-147 238451 238922 239470 "CHVAR" 240478 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-146 237694 238214 238242 "CHARZ" 238247 T CHARZ (NIL) -9 NIL 238262 NIL) (-145 237448 237488 237566 "CHARPOL" 237648 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-144 236575 237128 237156 "CHARNZ" 237203 T CHARNZ (NIL) -9 NIL 237259 NIL) (-143 234564 235265 235600 "CHAR" 236260 T CHAR (NIL) -8 NIL NIL NIL) (-142 234290 234351 234379 "CFCAT" 234490 T CFCAT (NIL) -9 NIL NIL NIL) (-141 233535 233646 233828 "CDEN" 234174 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-140 229527 232688 232968 "CCLASS" 233275 T CCLASS (NIL) -8 NIL NIL NIL) (-139 228834 228977 229140 "CATEGORY" 229384 T -10 (NIL) -8 NIL NIL NIL) (-138 228498 228753 228801 "CATCTOR" 228806 T CATCTOR (NIL) -8 NIL NIL NIL) (-137 227972 228198 228297 "CATAST" 228419 T CATAST (NIL) -8 NIL NIL NIL) (-136 227475 227693 227785 "CASEAST" 227900 T CASEAST (NIL) -8 NIL NIL NIL) (-135 226583 226731 226952 "CARTEN2" 227322 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221635 222612 223365 "CARTEN" 225886 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-133 219977 220785 221042 "CARD" 221398 T CARD (NIL) -8 NIL NIL NIL) (-132 219580 219781 219856 "CAPSLAST" 219922 T CAPSLAST (NIL) -8 NIL NIL NIL) (-131 218952 219280 219308 "CACHSET" 219440 T CACHSET (NIL) -9 NIL 219517 NIL) (-130 218448 218744 218772 "CABMON" 218822 T CABMON (NIL) -9 NIL 218878 NIL) (-129 213857 217916 218079 "BYTEBUF" 218305 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 212880 213403 213539 "BYTE" 213702 T BYTE (NIL) -8 NIL NIL 213818) (-127 210439 212572 212679 "BTREE" 212806 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 207939 210087 210209 "BTOURN" 210349 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205358 207409 207450 "BTCAT" 207518 NIL BTCAT (NIL T) -9 NIL 207595 NIL) (-124 205025 205105 205254 "BTCAT-" 205259 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200317 204168 204196 "BTAGG" 204418 T BTAGG (NIL) -9 NIL 204579 NIL) (-122 199807 199932 200138 "BTAGG-" 200143 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 196853 199085 199300 "BSTREE" 199624 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 195991 196117 196301 "BRILL" 196709 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 192691 194717 194758 "BRAGG" 195407 NIL BRAGG (NIL T) -9 NIL 195665 NIL) (-118 191223 191628 192182 "BRAGG-" 192187 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 184508 190569 190753 "BPADICRT" 191071 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 182860 184445 184490 "BPADIC" 184495 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 182558 182588 182702 "BOUNDZRO" 182824 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 180179 180623 181143 "BOP1" 182071 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 175694 176785 177652 "BOP" 179332 T BOP (NIL) -8 NIL NIL NIL) (-112 174396 175118 175311 "BOOLEAN" 175521 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 173758 174136 174190 "BMODULE" 174195 NIL BMODULE (NIL T T) -9 NIL 174260 NIL) (-110 169588 173556 173629 "BITS" 173705 T BITS (NIL) -8 NIL NIL NIL) (-109 169000 169122 169264 "BINDING" 169466 T BINDING (NIL) -8 NIL NIL NIL) (-108 163066 168599 168746 "BINARY" 168873 T BINARY (NIL) -8 NIL NIL NIL) (-107 160893 162321 162362 "BGAGG" 162622 NIL BGAGG (NIL T) -9 NIL 162759 NIL) (-106 160724 160756 160847 "BGAGG-" 160852 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 159822 160108 160313 "BFUNCT" 160539 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 158506 158687 158975 "BEZOUT" 159646 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155025 157358 157688 "BBTREE" 158209 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 154759 154812 154840 "BASTYPE" 154959 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 154612 154640 154713 "BASTYPE-" 154718 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154046 154122 154274 "BALFACT" 154523 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 152929 153461 153647 "AUTOMOR" 153891 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 152655 152660 152686 "ATTREG" 152691 T ATTREG (NIL) -9 NIL NIL NIL) (-97 150934 151352 151704 "ATTRBUT" 152321 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 150569 150762 150828 "ATTRAST" 150886 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150105 150218 150244 "ATRIG" 150445 T ATRIG (NIL) -9 NIL NIL NIL) (-94 149914 149955 150042 "ATRIG-" 150047 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 149585 149745 149771 "ASTCAT" 149776 T ASTCAT (NIL) -9 NIL 149806 NIL) (-92 149312 149371 149490 "ASTCAT-" 149495 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 147509 149088 149176 "ASTACK" 149255 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146014 146311 146676 "ASSOCEQ" 147191 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145068 145673 145797 "ASP9" 145921 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 143959 144673 144815 "ASP80" 144957 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 143723 143907 143946 "ASP8" 143951 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 142699 143400 143518 "ASP78" 143636 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 141690 142379 142496 "ASP77" 142613 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 140624 141328 141459 "ASP74" 141590 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 139546 140259 140391 "ASP73" 140523 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 138467 139181 139313 "ASP7" 139445 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 137593 138293 138393 "ASP6" 138398 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136563 137270 137388 "ASP55" 137506 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135535 136237 136356 "ASP50" 136475 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134645 135236 135346 "ASP49" 135456 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 133452 134184 134352 "ASP42" 134534 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 132251 132985 133155 "ASP41" 133339 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131361 131952 132062 "ASP4" 132172 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 130333 131038 131156 "ASP35" 131274 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130098 130281 130320 "ASP34" 130325 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 129835 129902 129978 "ASP33" 130053 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128752 129470 129602 "ASP31" 129734 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128517 128700 128739 "ASP30" 128744 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128252 128321 128397 "ASP29" 128472 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128017 128200 128239 "ASP28" 128244 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 127782 127965 128004 "ASP27" 128009 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 126888 127480 127591 "ASP24" 127702 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 125987 126690 126802 "ASP20" 126807 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 124953 125661 125780 "ASP19" 125899 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 124690 124757 124833 "ASP12" 124908 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 123564 124289 124433 "ASP10" 124577 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 122674 123265 123375 "ASP1" 123485 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 120573 122518 122609 "ARRAY2" 122614 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119605 119778 119999 "ARRAY12" 120396 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 115421 119253 119367 "ARRAY1" 119522 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 109780 111651 111726 "ARR2CAT" 114356 NIL ARR2CAT (NIL T T T) -9 NIL 115114 NIL) (-56 107214 107958 108912 "ARR2CAT-" 108917 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106808 107041 107120 "ARITY" 107153 T ARITY (NIL) -8 NIL NIL NIL) (-54 105556 105708 106014 "APPRULE" 106644 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105207 105255 105374 "APPLYORE" 105502 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104485 104608 104765 "ANY1" 105081 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 103459 103750 103945 "ANY" 104308 T ANY (NIL) -8 NIL NIL NIL) (-50 101024 101896 102223 "ANTISYM" 103183 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100539 100728 100825 "ANON" 100945 T ANON (NIL) -8 NIL NIL NIL) (-48 94680 99078 99532 "AN" 100103 T AN (NIL) -8 NIL NIL NIL) (-47 90936 92290 92341 "AMR" 93089 NIL AMR (NIL T T) -9 NIL 93689 NIL) (-46 90048 90269 90632 "AMR-" 90637 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74604 89965 90026 "ALIST" 90031 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71473 74198 74367 "ALGSC" 74522 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68029 68583 69190 "ALGPKG" 70913 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67306 67407 67591 "ALGMFACT" 67915 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63045 63730 64385 "ALGMANIP" 66829 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54462 62671 62821 "ALGFF" 62978 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53658 53789 53968 "ALGFACT" 54320 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52723 53289 53327 "ALGEBRA" 53332 NIL ALGEBRA (NIL T) -9 NIL 53373 NIL) (-37 52441 52500 52632 "ALGEBRA-" 52637 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34706 50443 50495 "ALAGG" 50631 NIL ALAGG (NIL T T) -9 NIL 50792 NIL) (-35 34242 34355 34381 "AHYP" 34582 T AHYP (NIL) -9 NIL NIL NIL) (-34 33173 33421 33447 "AGG" 33946 T AGG (NIL) -9 NIL 34225 NIL) (-33 32607 32769 32983 "AGG-" 32988 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30284 30706 31124 "AF" 32249 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29791 30009 30099 "ADDAST" 30212 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29060 29318 29474 "ACPLOT" 29653 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18408 26273 26324 "ACFS" 27035 NIL ACFS (NIL T) -9 NIL 27274 NIL) (-28 16422 16912 17687 "ACFS-" 17692 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-523)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-217)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-670))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-670)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1266))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1266)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-137)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-132)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1107)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-96)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-675))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-675)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-516)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1059)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1267)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-524)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-153)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-665))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-665)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-310)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1031)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-179)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-965))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-965)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1066)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1088)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-622)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1158)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-155)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-136)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-477))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-477)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-589))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-589)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-505))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-505)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1150))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1150)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-112)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-562))))) +(-13 (-1075) (-1251) (-10 -8 (-15 -2276 ((-112) $ (|[\|\|]| (-523)))) (-15 -4247 ((-523) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-217)))) (-15 -4247 ((-217) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-670)))) (-15 -4247 ((-670) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1266)))) (-15 -4247 ((-1266) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-137)))) (-15 -4247 ((-137) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-132)))) (-15 -4247 ((-132) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1107)))) (-15 -4247 ((-1107) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-96)))) (-15 -4247 ((-96) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-675)))) (-15 -4247 ((-675) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-516)))) (-15 -4247 ((-516) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1059)))) (-15 -4247 ((-1059) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1267)))) (-15 -4247 ((-1267) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-524)))) (-15 -4247 ((-524) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-153)))) (-15 -4247 ((-153) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-665)))) (-15 -4247 ((-665) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-310)))) (-15 -4247 ((-310) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1031)))) (-15 -4247 ((-1031) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-179)))) (-15 -4247 ((-179) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-965)))) (-15 -4247 ((-965) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1066)))) (-15 -4247 ((-1066) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1082)))) (-15 -4247 ((-1082) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1088)))) (-15 -4247 ((-1088) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-622)))) (-15 -4247 ((-622) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1158)))) (-15 -4247 ((-1158) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-155)))) (-15 -4247 ((-155) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-136)))) (-15 -4247 ((-136) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-477)))) (-15 -4247 ((-477) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-589)))) (-15 -4247 ((-589) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-505)))) (-15 -4247 ((-505) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1150)))) (-15 -4247 ((-1150) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-562)))) (-15 -4247 ((-562) $)))) +(((-93) . T) ((-102) . T) ((-612 #0=(-1173)) . T) ((-609 (-857)) . T) ((-609 #0#) . T) ((-489 #0#) . T) ((-1092) . T) ((-1075) . T) ((-1251) . T)) +((-4028 (((-1261) (-639 (-857))) 23) (((-1261) (-857)) 22)) (-1437 (((-1261) (-639 (-857))) 21) (((-1261) (-857)) 20)) (-3219 (((-1261) (-639 (-857))) 19) (((-1261) (-857)) 11) (((-1261) (-1150) (-857)) 17))) +(((-1130) (-10 -7 (-15 -3219 ((-1261) (-1150) (-857))) (-15 -3219 ((-1261) (-857))) (-15 -1437 ((-1261) (-857))) (-15 -4028 ((-1261) (-857))) (-15 -3219 ((-1261) (-639 (-857)))) (-15 -1437 ((-1261) (-639 (-857)))) (-15 -4028 ((-1261) (-639 (-857)))))) (T -1130)) +((-4028 (*1 *2 *3) (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130))))) +(-10 -7 (-15 -3219 ((-1261) (-1150) (-857))) (-15 -3219 ((-1261) (-857))) (-15 -1437 ((-1261) (-857))) (-15 -4028 ((-1261) (-857))) (-15 -3219 ((-1261) (-639 (-857)))) (-15 -1437 ((-1261) (-639 (-857)))) (-15 -4028 ((-1261) (-639 (-857))))) +((-4230 (($ $ $) 10)) (-2791 (($ $) 9)) (-3690 (($ $ $) 13)) (-1868 (($ $ $) 15)) (-4266 (($ $ $) 12)) (-3350 (($ $ $) 14)) (-2190 (($ $) 17)) (-3402 (($ $) 16)) (-3526 (($ $) 6)) (-3819 (($ $ $) 11) (($ $) 7)) (-2088 (($ $ $) 8))) +(((-1131) (-139)) (T -1131)) +((-2190 (*1 *1 *1) (-4 *1 (-1131))) (-3402 (*1 *1 *1) (-4 *1 (-1131))) (-1868 (*1 *1 *1 *1) (-4 *1 (-1131))) (-3350 (*1 *1 *1 *1) (-4 *1 (-1131))) (-3690 (*1 *1 *1 *1) (-4 *1 (-1131))) (-4266 (*1 *1 *1 *1) (-4 *1 (-1131))) (-3819 (*1 *1 *1 *1) (-4 *1 (-1131))) (-4230 (*1 *1 *1 *1) (-4 *1 (-1131))) (-2791 (*1 *1 *1) (-4 *1 (-1131))) (-2088 (*1 *1 *1 *1) (-4 *1 (-1131))) (-3819 (*1 *1 *1) (-4 *1 (-1131))) (-3526 (*1 *1 *1) (-4 *1 (-1131)))) +(-13 (-10 -8 (-15 -3526 ($ $)) (-15 -3819 ($ $)) (-15 -2088 ($ $ $)) (-15 -2791 ($ $)) (-15 -4230 ($ $ $)) (-15 -3819 ($ $ $)) (-15 -4266 ($ $ $)) (-15 -3690 ($ $ $)) (-15 -3350 ($ $ $)) (-15 -1868 ($ $ $)) (-15 -3402 ($ $)) (-15 -2190 ($ $)))) +((-4041 (((-112) $ $) 42)) (-2534 ((|#1| $) 16)) (-3880 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-3981 (((-112) $) 18)) (-2248 (($ $ |#1|) 29)) (-3552 (($ $ (-112)) 31)) (-2883 (($ $) 32)) (-3501 (($ $ |#2|) 30)) (-2913 (((-1150) $) NIL)) (-3043 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-1709 (((-1112) $) NIL)) (-2974 (((-112) $) 15)) (-4307 (($) 11)) (-4220 (($ $) 28)) (-4066 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -1495 |#2|))) 22) (((-639 $) (-639 (-2 (|:| |val| |#1|) (|:| -1495 |#2|)))) 25) (((-639 $) |#1| (-639 |#2|)) 27)) (-3317 ((|#2| $) 17)) (-4054 (((-857) $) 51)) (-1731 (((-112) $ $) 40))) +(((-1132 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -4307 ($)) (-15 -2974 ((-112) $)) (-15 -2534 (|#1| $)) (-15 -3317 (|#2| $)) (-15 -3981 ((-112) $)) (-15 -4066 ($ |#1| |#2| (-112))) (-15 -4066 ($ |#1| |#2|)) (-15 -4066 ($ (-2 (|:| |val| |#1|) (|:| -1495 |#2|)))) (-15 -4066 ((-639 $) (-639 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))))) (-15 -4066 ((-639 $) |#1| (-639 |#2|))) (-15 -4220 ($ $)) (-15 -2248 ($ $ |#1|)) (-15 -3501 ($ $ |#2|)) (-15 -3552 ($ $ (-112))) (-15 -2883 ($ $)) (-15 -3043 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3880 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1092) (-34)) (-13 (-1092) (-34))) (T -1132)) +((-4307 (*1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-2974 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-2534 (*1 *2 *1) (-12 (-4 *2 (-13 (-1092) (-34))) (-5 *1 (-1132 *2 *3)) (-4 *3 (-13 (-1092) (-34))))) (-3317 (*1 *2 *1) (-12 (-4 *2 (-13 (-1092) (-34))) (-5 *1 (-1132 *3 *2)) (-4 *3 (-13 (-1092) (-34))))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-4066 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-4066 (*1 *1 *2 *3) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-4066 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1495 *4))) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1132 *3 *4)))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| |val| *4) (|:| -1495 *5)))) (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-639 (-1132 *4 *5))) (-5 *1 (-1132 *4 *5)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *5)) (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-639 (-1132 *3 *5))) (-5 *1 (-1132 *3 *5)) (-4 *3 (-13 (-1092) (-34))))) (-4220 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-2248 (*1 *1 *1 *2) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-3501 (*1 *1 *1 *2) (-12 (-5 *1 (-1132 *3 *2)) (-4 *3 (-13 (-1092) (-34))) (-4 *2 (-13 (-1092) (-34))))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-2883 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-3043 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1092) (-34))) (-4 *6 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1132 *5 *6)))) (-3880 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5)) (-4 *4 (-13 (-1092) (-34)))))) +(-13 (-1092) (-10 -8 (-15 -4307 ($)) (-15 -2974 ((-112) $)) (-15 -2534 (|#1| $)) (-15 -3317 (|#2| $)) (-15 -3981 ((-112) $)) (-15 -4066 ($ |#1| |#2| (-112))) (-15 -4066 ($ |#1| |#2|)) (-15 -4066 ($ (-2 (|:| |val| |#1|) (|:| -1495 |#2|)))) (-15 -4066 ((-639 $) (-639 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))))) (-15 -4066 ((-639 $) |#1| (-639 |#2|))) (-15 -4220 ($ $)) (-15 -2248 ($ $ |#1|)) (-15 -3501 ($ $ |#2|)) (-15 -3552 ($ $ (-112))) (-15 -2883 ($ $)) (-15 -3043 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3880 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-4041 (((-112) $ $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-2534 (((-1132 |#1| |#2|) $) 26)) (-2109 (($ $) 76)) (-1700 (((-112) (-1132 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-2084 (($ $ $ (-639 (-1132 |#1| |#2|))) 90) (($ $ $ (-639 (-1132 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-4336 (((-112) $ (-766)) NIL)) (-1512 (((-1132 |#1| |#2|) $ (-1132 |#1| |#2|)) 43 (|has| $ (-6 -4403)))) (-4200 (((-1132 |#1| |#2|) $ "value" (-1132 |#1| |#2|)) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 41 (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-3794 (((-639 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))) $) 80)) (-4000 (($ (-1132 |#1| |#2|) $) 39)) (-1475 (($ (-1132 |#1| |#2|) $) 31)) (-1720 (((-639 (-1132 |#1| |#2|)) $) NIL (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 51)) (-3460 (((-112) (-1132 |#1| |#2|) $) 82)) (-4379 (((-112) $ $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 (-1132 |#1| |#2|)) $) 55 (|has| $ (-6 -4402)))) (-1669 (((-112) (-1132 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-1132 |#1| |#2|) (-1092))))) (-1490 (($ (-1 (-1132 |#1| |#2|) (-1132 |#1| |#2|)) $) 47 (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-1132 |#1| |#2|) (-1132 |#1| |#2|)) $) 46)) (-3289 (((-112) $ (-766)) NIL)) (-4007 (((-639 (-1132 |#1| |#2|)) $) 53)) (-3449 (((-112) $) 42)) (-2913 (((-1150) $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-1709 (((-1112) $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-3723 (((-3 $ "failed") $) 75)) (-1763 (((-112) (-1 (-112) (-1132 |#1| |#2|)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-1132 |#1| |#2|)))) NIL (-12 (|has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|))) (|has| (-1132 |#1| |#2|) (-1092)))) (($ $ (-293 (-1132 |#1| |#2|))) NIL (-12 (|has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|))) (|has| (-1132 |#1| |#2|) (-1092)))) (($ $ (-1132 |#1| |#2|) (-1132 |#1| |#2|)) NIL (-12 (|has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|))) (|has| (-1132 |#1| |#2|) (-1092)))) (($ $ (-639 (-1132 |#1| |#2|)) (-639 (-1132 |#1| |#2|))) NIL (-12 (|has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|))) (|has| (-1132 |#1| |#2|) (-1092))))) (-3336 (((-112) $ $) 50)) (-2974 (((-112) $) 23)) (-4307 (($) 25)) (-2343 (((-1132 |#1| |#2|) $ "value") NIL)) (-2568 (((-562) $ $) NIL)) (-2424 (((-112) $) 44)) (-1723 (((-766) (-1 (-112) (-1132 |#1| |#2|)) $) NIL (|has| $ (-6 -4402))) (((-766) (-1132 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-1132 |#1| |#2|) (-1092))))) (-4220 (($ $) 49)) (-4066 (($ (-1132 |#1| |#2|)) 10) (($ |#1| |#2| (-639 $)) 13) (($ |#1| |#2| (-639 (-1132 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-639 |#2|)) 18)) (-3777 (((-639 |#2|) $) 81)) (-4054 (((-857) $) 73 (|has| (-1132 |#1| |#2|) (-609 (-857))))) (-2906 (((-639 $) $) 29)) (-4055 (((-112) $ $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-1744 (((-112) (-1 (-112) (-1132 |#1| |#2|)) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 64 (|has| (-1132 |#1| |#2|) (-1092)))) (-3492 (((-766) $) 58 (|has| $ (-6 -4402))))) +(((-1133 |#1| |#2|) (-13 (-1005 (-1132 |#1| |#2|)) (-10 -8 (-6 -4403) (-6 -4402) (-15 -3723 ((-3 $ "failed") $)) (-15 -2109 ($ $)) (-15 -4066 ($ (-1132 |#1| |#2|))) (-15 -4066 ($ |#1| |#2| (-639 $))) (-15 -4066 ($ |#1| |#2| (-639 (-1132 |#1| |#2|)))) (-15 -4066 ($ |#1| |#2| |#1| (-639 |#2|))) (-15 -3777 ((-639 |#2|) $)) (-15 -3794 ((-639 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))) $)) (-15 -3460 ((-112) (-1132 |#1| |#2|) $)) (-15 -1700 ((-112) (-1132 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1475 ($ (-1132 |#1| |#2|) $)) (-15 -4000 ($ (-1132 |#1| |#2|) $)) (-15 -2084 ($ $ $ (-639 (-1132 |#1| |#2|)))) (-15 -2084 ($ $ $ (-639 (-1132 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1092) (-34)) (-13 (-1092) (-34))) (T -1133)) +((-3723 (*1 *1 *1) (|partial| -12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-2109 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-4066 (*1 *1 *2) (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) (-4066 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-639 (-1133 *2 *3))) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-4066 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-639 (-1132 *2 *3))) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))) (-5 *1 (-1133 *2 *3)))) (-4066 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-13 (-1092) (-34))) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-639 *4)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-3460 (*1 *2 *3 *1) (-12 (-5 *3 (-1132 *4 *5)) (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *4 *5)))) (-1700 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1132 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1092) (-34))) (-4 *6 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *5 *6)))) (-1475 (*1 *1 *2 *1) (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) (-2084 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-639 (-1132 *3 *4))) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) (-2084 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1132 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) (-5 *1 (-1133 *4 *5))))) +(-13 (-1005 (-1132 |#1| |#2|)) (-10 -8 (-6 -4403) (-6 -4402) (-15 -3723 ((-3 $ "failed") $)) (-15 -2109 ($ $)) (-15 -4066 ($ (-1132 |#1| |#2|))) (-15 -4066 ($ |#1| |#2| (-639 $))) (-15 -4066 ($ |#1| |#2| (-639 (-1132 |#1| |#2|)))) (-15 -4066 ($ |#1| |#2| |#1| (-639 |#2|))) (-15 -3777 ((-639 |#2|) $)) (-15 -3794 ((-639 (-2 (|:| |val| |#1|) (|:| -1495 |#2|))) $)) (-15 -3460 ((-112) (-1132 |#1| |#2|) $)) (-15 -1700 ((-112) (-1132 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1475 ($ (-1132 |#1| |#2|) $)) (-15 -4000 ($ (-1132 |#1| |#2|) $)) (-15 -2084 ($ $ $ (-639 (-1132 |#1| |#2|)))) (-15 -2084 ($ $ $ (-639 (-1132 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-2529 (($ $) NIL)) (-1748 ((|#2| $) NIL)) (-2952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2203 (($ (-683 |#2|)) 50)) (-3220 (((-112) $) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-2554 (($ |#2|) 10)) (-1800 (($) NIL T CONST)) (-2522 (($ $) 63 (|has| |#2| (-306)))) (-3796 (((-239 |#1| |#2|) $ (-562)) 36)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 |#2| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) ((|#2| $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) 77)) (-2173 (((-766) $) 65 (|has| |#2| (-554)))) (-1420 ((|#2| $ (-562) (-562)) NIL)) (-1720 (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1957 (((-112) $) NIL)) (-3922 (((-766) $) 67 (|has| |#2| (-554)))) (-2318 (((-639 (-239 |#1| |#2|)) $) 71 (|has| |#2| (-554)))) (-2699 (((-766) $) NIL)) (-1458 (($ |#2|) 20)) (-2709 (((-766) $) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-2280 ((|#2| $) 61 (|has| |#2| (-6 (-4404 "*"))))) (-2783 (((-562) $) NIL)) (-4217 (((-562) $) NIL)) (-1912 (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-4088 (((-562) $) NIL)) (-2453 (((-562) $) NIL)) (-2885 (($ (-639 (-639 |#2|))) 31)) (-1490 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2824 (((-639 (-639 |#2|)) $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-3494 (((-3 $ "failed") $) 74 (|has| |#2| (-362)))) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-1763 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ (-562) (-562) |#2|) NIL) ((|#2| $ (-562) (-562)) NIL)) (-4029 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3436 ((|#2| $) NIL)) (-3448 (($ (-639 |#2|)) 44)) (-1544 (((-112) $) NIL)) (-3798 (((-239 |#1| |#2|) $) NIL)) (-3770 ((|#2| $) 59 (|has| |#2| (-6 (-4404 "*"))))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 86 (|has| |#2| (-610 (-535))))) (-2211 (((-239 |#1| |#2|) $ (-562)) 38)) (-4054 (((-857) $) 41) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#2| (-1033 (-406 (-562))))) (($ |#2|) NIL) (((-683 |#2|) $) 46)) (-2579 (((-766)) 18)) (-1744 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1335 (((-112) $) NIL)) (-2286 (($) 12 T CONST)) (-2294 (($) 15 T CONST)) (-3114 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) 57) (($ $ (-562)) 76 (|has| |#2| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) 53) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) 55)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1134 |#1| |#2|) (-13 (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-609 (-683 |#2|)) (-10 -8 (-15 -1458 ($ |#2|)) (-15 -2529 ($ $)) (-15 -2203 ($ (-683 |#2|))) (IF (|has| |#2| (-6 (-4404 "*"))) (-6 -4391) |%noBranch|) (IF (|has| |#2| (-6 (-4404 "*"))) (IF (|has| |#2| (-6 -4399)) (-6 -4399) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) (-766) (-1044)) (T -1134)) +((-1458 (*1 *1 *2) (-12 (-5 *1 (-1134 *3 *2)) (-14 *3 (-766)) (-4 *2 (-1044)))) (-2529 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-14 *2 (-766)) (-4 *3 (-1044)))) (-2203 (*1 *1 *2) (-12 (-5 *2 (-683 *4)) (-4 *4 (-1044)) (-5 *1 (-1134 *3 *4)) (-14 *3 (-766))))) +(-13 (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-609 (-683 |#2|)) (-10 -8 (-15 -1458 ($ |#2|)) (-15 -2529 ($ $)) (-15 -2203 ($ (-683 |#2|))) (IF (|has| |#2| (-6 (-4404 "*"))) (-6 -4391) |%noBranch|) (IF (|has| |#2| (-6 (-4404 "*"))) (IF (|has| |#2| (-6 -4399)) (-6 -4399) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) +((-1576 (($ $) 19)) (-3398 (($ $ (-143)) 10) (($ $ (-140)) 14)) (-3847 (((-112) $ $) 24)) (-3141 (($ $) 17)) (-2343 (((-143) $ (-562) (-143)) NIL) (((-143) $ (-562)) NIL) (($ $ (-1223 (-562))) NIL) (($ $ $) 29)) (-4054 (($ (-143)) 27) (((-857) $) NIL))) +(((-1135 |#1|) (-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -2343 (|#1| |#1| |#1|)) (-15 -3398 (|#1| |#1| (-140))) (-15 -3398 (|#1| |#1| (-143))) (-15 -4054 (|#1| (-143))) (-15 -3847 ((-112) |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -2343 ((-143) |#1| (-562))) (-15 -2343 ((-143) |#1| (-562) (-143)))) (-1136)) (T -1135)) +NIL +(-10 -8 (-15 -4054 ((-857) |#1|)) (-15 -2343 (|#1| |#1| |#1|)) (-15 -3398 (|#1| |#1| (-140))) (-15 -3398 (|#1| |#1| (-143))) (-15 -4054 (|#1| (-143))) (-15 -3847 ((-112) |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -2343 ((-143) |#1| (-562))) (-15 -2343 ((-143) |#1| (-562) (-143)))) +((-4041 (((-112) $ $) 19 (|has| (-143) (-1092)))) (-2744 (($ $) 120)) (-1576 (($ $) 121)) (-3398 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3052 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4403)))) (-3824 (((-112) $ $) 118)) (-3801 (((-112) $ $ (-562)) 117)) (-2176 (((-639 $) $ (-143)) 110) (((-639 $) $ (-140)) 109)) (-1399 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-845)))) (-3381 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4403))) (($ $) 88 (-12 (|has| (-143) (-845)) (|has| $ (-6 -4403))))) (-1395 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-845)))) (-4336 (((-112) $ (-766)) 8)) (-4200 (((-143) $ (-562) (-143)) 52 (|has| $ (-6 -4403))) (((-143) $ (-1223 (-562)) (-143)) 58 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-1968 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2447 (($ $) 90 (|has| $ (-6 -4403)))) (-2677 (($ $) 100)) (-3944 (($ $ (-1223 (-562)) $) 114)) (-1459 (($ $) 78 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ (-143) $) 77 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4402)))) (-1955 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4402))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4402)))) (-1505 (((-143) $ (-562) (-143)) 53 (|has| $ (-6 -4403)))) (-1420 (((-143) $ (-562)) 51)) (-3847 (((-112) $ $) 119)) (-4264 (((-562) (-1 (-112) (-143)) $) 97) (((-562) (-143) $) 96 (|has| (-143) (-1092))) (((-562) (-143) $ (-562)) 95 (|has| (-143) (-1092))) (((-562) $ $ (-562)) 113) (((-562) (-140) $ (-562)) 112)) (-1720 (((-639 (-143)) $) 30 (|has| $ (-6 -4402)))) (-1458 (($ (-766) (-143)) 69)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| (-143) (-845)))) (-1610 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-845)))) (-1912 (((-639 (-143)) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| (-143) (-845)))) (-4263 (((-112) $ $ (-143)) 115)) (-3789 (((-766) $ $ (-143)) 116)) (-1490 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-1614 (($ $) 122)) (-3141 (($ $) 123)) (-3289 (((-112) $ (-766)) 10)) (-1980 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-2913 (((-1150) $) 22 (|has| (-143) (-1092)))) (-3297 (($ (-143) $ (-562)) 60) (($ $ $ (-562)) 59)) (-2093 (((-639 (-562)) $) 46)) (-1570 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| (-143) (-1092)))) (-1421 (((-143) $) 42 (|has| (-562) (-845)))) (-3251 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-2716 (($ $ (-143)) 41 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-143)) (-639 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-2411 (((-639 (-143)) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 (((-143) $ (-562) (-143)) 50) (((-143) $ (-562)) 49) (($ $ (-1223 (-562))) 63) (($ $ $) 102)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4402))) (((-766) (-143) $) 28 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402))))) (-1853 (($ $ $ (-562)) 91 (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| (-143) (-610 (-535))))) (-4066 (($ (-639 (-143))) 70)) (-2767 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4054 (($ (-143)) 111) (((-857) $) 18 (|has| (-143) (-609 (-857))))) (-1744 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) 84 (|has| (-143) (-845)))) (-1772 (((-112) $ $) 83 (|has| (-143) (-845)))) (-1731 (((-112) $ $) 20 (|has| (-143) (-1092)))) (-1785 (((-112) $ $) 85 (|has| (-143) (-845)))) (-1759 (((-112) $ $) 82 (|has| (-143) (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-1136) (-139)) (T -1136)) +((-3141 (*1 *1 *1) (-4 *1 (-1136))) (-1614 (*1 *1 *1) (-4 *1 (-1136))) (-1576 (*1 *1 *1) (-4 *1 (-1136))) (-2744 (*1 *1 *1) (-4 *1 (-1136))) (-3847 (*1 *2 *1 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-112)))) (-3824 (*1 *2 *1 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-112)))) (-3801 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-562)) (-5 *2 (-112)))) (-3789 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-143)) (-5 *2 (-766)))) (-4263 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-143)) (-5 *2 (-112)))) (-3944 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1223 (-562))))) (-4264 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-562)))) (-4264 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-562)) (-5 *3 (-140)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1136)))) (-2176 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-639 *1)) (-4 *1 (-1136)))) (-2176 (*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-639 *1)) (-4 *1 (-1136)))) (-3398 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143)))) (-3398 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) (-1980 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143)))) (-1980 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) (-1968 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143)))) (-1968 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) (-2343 (*1 *1 *1 *1) (-4 *1 (-1136)))) +(-13 (-19 (-143)) (-10 -8 (-15 -3141 ($ $)) (-15 -1614 ($ $)) (-15 -1576 ($ $)) (-15 -2744 ($ $)) (-15 -3847 ((-112) $ $)) (-15 -3824 ((-112) $ $)) (-15 -3801 ((-112) $ $ (-562))) (-15 -3789 ((-766) $ $ (-143))) (-15 -4263 ((-112) $ $ (-143))) (-15 -3944 ($ $ (-1223 (-562)) $)) (-15 -4264 ((-562) $ $ (-562))) (-15 -4264 ((-562) (-140) $ (-562))) (-15 -4054 ($ (-143))) (-15 -2176 ((-639 $) $ (-143))) (-15 -2176 ((-639 $) $ (-140))) (-15 -3398 ($ $ (-143))) (-15 -3398 ($ $ (-140))) (-15 -1980 ($ $ (-143))) (-15 -1980 ($ $ (-140))) (-15 -1968 ($ $ (-143))) (-15 -1968 ($ $ (-140))) (-15 -2343 ($ $ $)))) +(((-34) . T) ((-102) -4037 (|has| (-143) (-1092)) (|has| (-143) (-845))) ((-609 (-857)) -4037 (|has| (-143) (-1092)) (|has| (-143) (-845)) (|has| (-143) (-609 (-857)))) ((-150 #0=(-143)) . T) ((-610 (-535)) |has| (-143) (-610 (-535))) ((-285 #1=(-562) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))) ((-372 #0#) . T) ((-488 #0#) . T) ((-600 #1# #0#) . T) ((-513 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))) ((-645 #0#) . T) ((-19 #0#) . T) ((-845) |has| (-143) (-845)) ((-1092) -4037 (|has| (-143) (-1092)) (|has| (-143) (-845))) ((-1207) . T)) +((-3612 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-766)) 93)) (-3223 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766)) 54)) (-4192 (((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-766)) 85)) (-2793 (((-766) (-639 |#4|) (-639 |#5|)) 27)) (-3467 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766)) 56) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766) (-112)) 58)) (-2018 (((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112)) 77)) (-4208 (((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) 80)) (-1456 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|) 53)) (-2903 (((-766) (-639 |#4|) (-639 |#5|)) 19))) +(((-1137 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2903 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -2793 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -1456 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -3223 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766))) (-15 -3223 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766) (-112))) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766))) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -2018 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -2018 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3612 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-766))) (-15 -4208 ((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) (-15 -4192 ((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-766)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1137)) +((-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1495 *9)))) (-5 *4 (-766)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-1261)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1495 *8))) (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1150)) (-5 *1 (-1137 *4 *5 *6 *7 *8)))) (-3612 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-639 *11)) (|:| |todo| (-639 (-2 (|:| |val| *3) (|:| -1495 *11)))))) (-5 *6 (-766)) (-5 *2 (-639 (-2 (|:| |val| (-639 *10)) (|:| -1495 *11)))) (-5 *3 (-639 *10)) (-5 *4 (-639 *11)) (-4 *10 (-1058 *7 *8 *9)) (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-451)) (-4 *8 (-788)) (-4 *9 (-845)) (-5 *1 (-1137 *7 *8 *9 *10 *11)))) (-2018 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) (-2018 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) (-3467 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3467 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1137 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3467 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-766)) (-5 *6 (-112)) (-4 *7 (-451)) (-4 *8 (-788)) (-4 *9 (-845)) (-4 *3 (-1058 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1137 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) (-3223 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3223 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1137 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-1456 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1137 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2903 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -2793 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -1456 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -3223 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766))) (-15 -3223 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766) (-112))) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5| (-766))) (-15 -3467 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) |#4| |#5|)) (-15 -2018 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -2018 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3612 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))))) (-766))) (-15 -4208 ((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|)))) (-15 -4192 ((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1495 |#5|))) (-766)))) +((-4041 (((-112) $ $) NIL)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |#4|)))) (-639 |#4|)) NIL)) (-2304 (((-639 $) (-639 |#4|)) 110) (((-639 $) (-639 |#4|) (-112)) 111) (((-639 $) (-639 |#4|) (-112) (-112)) 109) (((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112)) 112)) (-1402 (((-639 |#3|) $) NIL)) (-4170 (((-112) $) NIL)) (-4274 (((-112) $) NIL (|has| |#1| (-554)))) (-4377 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3049 ((|#4| |#4| $) NIL)) (-2798 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| $) 84)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402))) (((-3 |#4| "failed") $ |#3|) 62)) (-1800 (($) NIL T CONST)) (-2207 (((-112) $) 27 (|has| |#1| (-554)))) (-1920 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3852 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2539 (((-112) $) NIL (|has| |#1| (-554)))) (-2839 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3884 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) NIL)) (-3961 (($ (-639 |#4|)) NIL)) (-1434 (((-3 $ "failed") $) 40)) (-2387 ((|#4| |#4| $) 65)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-554)))) (-4091 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3595 ((|#4| |#4| $) NIL)) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4402))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2267 (((-2 (|:| -1450 (-639 |#4|)) (|:| -3316 (-639 |#4|))) $) NIL)) (-4079 (((-112) |#4| $) NIL)) (-3513 (((-112) |#4| $) NIL)) (-2764 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3383 (((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112)) 124)) (-1720 (((-639 |#4|) $) 17 (|has| $ (-6 -4402)))) (-2573 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4339 ((|#3| $) 34)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#4|) $) 18 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-1490 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 22)) (-3754 (((-639 |#3|) $) NIL)) (-2071 (((-112) |#3| $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-1609 (((-3 |#4| (-639 $)) |#4| |#4| $) NIL)) (-1851 (((-639 (-2 (|:| |val| |#4|) (|:| -1495 $))) |#4| |#4| $) 103)) (-1504 (((-3 |#4| "failed") $) 38)) (-1814 (((-639 $) |#4| $) 88)) (-1950 (((-3 (-112) (-639 $)) |#4| $) NIL)) (-2021 (((-639 (-2 (|:| |val| (-112)) (|:| -1495 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-4376 (((-639 $) |#4| $) 107) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) 108) (((-639 $) |#4| (-639 $)) NIL)) (-1930 (((-639 $) (-639 |#4|) (-112) (-112) (-112)) 119)) (-1430 (($ |#4| $) 75) (($ (-639 |#4|) $) 76) (((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-3576 (((-639 |#4|) $) NIL)) (-2890 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1849 ((|#4| |#4| $) NIL)) (-1408 (((-112) $ $) NIL)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-2766 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1532 ((|#4| |#4| $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 |#4| "failed") $) 36)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3310 (((-3 $ "failed") $ |#4|) 48)) (-1353 (($ $ |#4|) NIL) (((-639 $) |#4| $) 90) (((-639 $) |#4| (-639 $)) NIL) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) 86)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 16)) (-4307 (($) 14)) (-3598 (((-766) $) NIL)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) 13)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) 21)) (-1812 (($ $ |#3|) 43)) (-3274 (($ $ |#3|) 44)) (-3277 (($ $) NIL)) (-1568 (($ $ |#3|) NIL)) (-4054 (((-857) $) 32) (((-639 |#4|) $) 41)) (-3730 (((-766) $) NIL (|has| |#3| (-367)))) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4252 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) NIL)) (-1612 (((-639 $) |#4| $) 54) (((-639 $) |#4| (-639 $)) NIL) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) NIL)) (-1744 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-4089 (((-639 |#3|) $) NIL)) (-4211 (((-112) |#4| $) NIL)) (-3694 (((-112) |#3| $) 61)) (-1731 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1138 |#1| |#2| |#3| |#4|) (-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1430 ((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2304 ((-639 $) (-639 |#4|) (-112) (-112))) (-15 -2304 ((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112))) (-15 -1930 ((-639 $) (-639 |#4|) (-112) (-112) (-112))) (-15 -3383 ((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112))))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -1138)) +((-1430 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1138 *5 *6 *7 *3))) (-5 *1 (-1138 *5 *6 *7 *3)) (-4 *3 (-1058 *5 *6 *7)))) (-2304 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) (-2304 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) (-1930 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) (-3383 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-639 *8)) (|:| |towers| (-639 (-1138 *5 *6 *7 *8))))) (-5 *1 (-1138 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) +(-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1430 ((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2304 ((-639 $) (-639 |#4|) (-112) (-112))) (-15 -2304 ((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112))) (-15 -1930 ((-639 $) (-639 |#4|) (-112) (-112) (-112))) (-15 -3383 ((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112))))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2775 ((|#1| $) 34)) (-2440 (($ (-639 |#1|)) 39)) (-4336 (((-112) $ (-766)) NIL)) (-1800 (($) NIL T CONST)) (-2737 ((|#1| |#1| $) 36)) (-3064 ((|#1| $) 32)) (-1720 (((-639 |#1|) $) 18 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 22)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3262 ((|#1| $) 35)) (-4300 (($ |#1| $) 37)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1904 ((|#1| $) 33)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 31)) (-4307 (($) 38)) (-2193 (((-766) $) 29)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) 27)) (-4054 (((-857) $) 14 (|has| |#1| (-609 (-857))))) (-1932 (($ (-639 |#1|)) NIL)) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 17 (|has| |#1| (-1092)))) (-3492 (((-766) $) 30 (|has| $ (-6 -4402))))) +(((-1139 |#1|) (-13 (-1113 |#1|) (-10 -8 (-15 -2440 ($ (-639 |#1|))))) (-1207)) (T -1139)) +((-2440 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1139 *3))))) +(-13 (-1113 |#1|) (-10 -8 (-15 -2440 ($ (-639 |#1|))))) +((-4200 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1223 (-562)) |#2|) 43) ((|#2| $ (-562) |#2|) 40)) (-3266 (((-112) $) 11)) (-1490 (($ (-1 |#2| |#2|) $) 38)) (-1421 ((|#2| $) NIL) (($ $ (-766)) 16)) (-2716 (($ $ |#2|) 39)) (-2017 (((-112) $) 10)) (-2343 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1223 (-562))) 30) ((|#2| $ (-562)) 22) ((|#2| $ (-562) |#2|) NIL)) (-4142 (($ $ $) 46) (($ $ |#2|) NIL)) (-2767 (($ $ $) 32) (($ |#2| $) NIL) (($ (-639 $)) 35) (($ $ |#2|) NIL))) +(((-1140 |#1| |#2|) (-10 -8 (-15 -3266 ((-112) |#1|)) (-15 -2017 ((-112) |#1|)) (-15 -4200 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2716 (|#1| |#1| |#2|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -4200 (|#2| |#1| (-1223 (-562)) |#2|)) (-15 -4200 (|#2| |#1| "last" |#2|)) (-15 -4200 (|#1| |#1| "rest" |#1|)) (-15 -4200 (|#2| |#1| "first" |#2|)) (-15 -4142 (|#1| |#1| |#2|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -2343 (|#2| |#1| "last")) (-15 -2343 (|#1| |#1| "rest")) (-15 -1421 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "first")) (-15 -1421 (|#2| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -2343 (|#2| |#1| "value")) (-15 -1490 (|#1| (-1 |#2| |#2|) |#1|))) (-1141 |#2|) (-1207)) (T -1140)) +NIL +(-10 -8 (-15 -3266 ((-112) |#1|)) (-15 -2017 ((-112) |#1|)) (-15 -4200 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2716 (|#1| |#1| |#2|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -4200 (|#2| |#1| (-1223 (-562)) |#2|)) (-15 -4200 (|#2| |#1| "last" |#2|)) (-15 -4200 (|#1| |#1| "rest" |#1|)) (-15 -4200 (|#2| |#1| "first" |#2|)) (-15 -4142 (|#1| |#1| |#2|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -2343 (|#2| |#1| "last")) (-15 -2343 (|#1| |#1| "rest")) (-15 -1421 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "first")) (-15 -1421 (|#2| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -2343 (|#2| |#1| "value")) (-15 -1490 (|#1| (-1 |#2| |#2|) |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2534 ((|#1| $) 48)) (-2359 ((|#1| $) 65)) (-3121 (($ $) 67)) (-3052 (((-1261) $ (-562) (-562)) 97 (|has| $ (-6 -4403)))) (-2254 (($ $ (-562)) 52 (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) 8)) (-1512 ((|#1| $ |#1|) 39 (|has| $ (-6 -4403)))) (-3012 (($ $ $) 56 (|has| $ (-6 -4403)))) (-3950 ((|#1| $ |#1|) 54 (|has| $ (-6 -4403)))) (-2687 ((|#1| $ |#1|) 58 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4403))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4403))) (($ $ "rest" $) 55 (|has| $ (-6 -4403))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 117 (|has| $ (-6 -4403))) ((|#1| $ (-562) |#1|) 86 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 41 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4402)))) (-2350 ((|#1| $) 66)) (-1800 (($) 7 T CONST)) (-1434 (($ $) 73) (($ $ (-766)) 71)) (-1459 (($ $) 99 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4402))) (($ |#1| $) 100 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1505 ((|#1| $ (-562) |#1|) 85 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 87)) (-3266 (((-112) $) 83)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 50)) (-4379 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) 108)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 95 (|has| (-562) (-845)))) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 94 (|has| (-562) (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3289 (((-112) $ (-766)) 10)) (-4007 (((-639 |#1|) $) 45)) (-3449 (((-112) $) 49)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 70) (($ $ (-766)) 68)) (-3297 (($ $ $ (-562)) 116) (($ |#1| $ (-562)) 115)) (-2093 (((-639 (-562)) $) 92)) (-1570 (((-112) (-562) $) 91)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 76) (($ $ (-766)) 74)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2716 (($ $ |#1|) 96 (|has| $ (-6 -4403)))) (-2017 (((-112) $) 84)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) 90)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1223 (-562))) 112) ((|#1| $ (-562)) 89) ((|#1| $ (-562) |#1|) 88)) (-2568 (((-562) $ $) 44)) (-2880 (($ $ (-1223 (-562))) 114) (($ $ (-562)) 113)) (-2424 (((-112) $) 46)) (-2613 (($ $) 62)) (-4327 (($ $) 59 (|has| $ (-6 -4403)))) (-2296 (((-766) $) 63)) (-3913 (($ $) 64)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 98 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 107)) (-4142 (($ $ $) 61 (|has| $ (-6 -4403))) (($ $ |#1|) 60 (|has| $ (-6 -4403)))) (-2767 (($ $ $) 78) (($ |#1| $) 77) (($ (-639 $)) 110) (($ $ |#1|) 109)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) 51)) (-4055 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-1141 |#1|) (-139) (-1207)) (T -1141)) +((-2017 (*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) +(-13 (-1244 |t#1|) (-645 |t#1|) (-10 -8 (-15 -2017 ((-112) $)) (-15 -3266 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T) ((-1244 |#1|) . T)) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-3052 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) NIL)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 |#2| "failed") |#1| $) NIL)) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 ((|#1| $) NIL (|has| |#1| (-845)))) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-3874 ((|#1| $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1520 (((-639 |#1|) $) NIL)) (-4265 (((-112) |#1| $) NIL)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-2093 (((-639 |#1|) $) NIL)) (-1570 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-4054 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1142 |#1| |#2| |#3|) (-1183 |#1| |#2|) (-1092) (-1092) |#2|) (T -1142)) +NIL +(-1183 |#1| |#2|) +((-4041 (((-112) $ $) 7)) (-3699 (((-3 $ "failed") $) 13)) (-2913 (((-1150) $) 9)) (-3729 (($) 14 T CONST)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11)) (-1731 (((-112) $ $) 6))) +(((-1143) (-139)) (T -1143)) +((-3729 (*1 *1) (-4 *1 (-1143))) (-3699 (*1 *1 *1) (|partial| -4 *1 (-1143)))) +(-13 (-1092) (-10 -8 (-15 -3729 ($) -1497) (-15 -3699 ((-3 $ "failed") $)))) +(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) +((-2729 (((-1148 |#1|) (-1148 |#1|)) 17)) (-2398 (((-1148 |#1|) (-1148 |#1|)) 13)) (-4329 (((-1148 |#1|) (-1148 |#1|) (-562) (-562)) 20)) (-2200 (((-1148 |#1|) (-1148 |#1|)) 15))) +(((-1144 |#1|) (-10 -7 (-15 -2398 ((-1148 |#1|) (-1148 |#1|))) (-15 -2200 ((-1148 |#1|) (-1148 |#1|))) (-15 -2729 ((-1148 |#1|) (-1148 |#1|))) (-15 -4329 ((-1148 |#1|) (-1148 |#1|) (-562) (-562)))) (-13 (-554) (-146))) (T -1144)) +((-4329 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1144 *4)))) (-2729 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1144 *3)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1144 *3)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1144 *3))))) +(-10 -7 (-15 -2398 ((-1148 |#1|) (-1148 |#1|))) (-15 -2200 ((-1148 |#1|) (-1148 |#1|))) (-15 -2729 ((-1148 |#1|) (-1148 |#1|))) (-15 -4329 ((-1148 |#1|) (-1148 |#1|) (-562) (-562)))) +((-2767 (((-1148 |#1|) (-1148 (-1148 |#1|))) 15))) +(((-1145 |#1|) (-10 -7 (-15 -2767 ((-1148 |#1|) (-1148 (-1148 |#1|))))) (-1207)) (T -1145)) +((-2767 (*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1145 *4)) (-4 *4 (-1207))))) +(-10 -7 (-15 -2767 ((-1148 |#1|) (-1148 (-1148 |#1|))))) +((-2578 (((-1148 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|)) 25)) (-1955 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|)) 26)) (-4152 (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 16))) +(((-1146 |#1| |#2|) (-10 -7 (-15 -4152 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (-15 -2578 ((-1148 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|))) (-15 -1955 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|)))) (-1207) (-1207)) (T -1146)) +((-1955 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1148 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-1146 *5 *2)))) (-2578 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1148 *6)) (-4 *6 (-1207)) (-4 *3 (-1207)) (-5 *2 (-1148 *3)) (-5 *1 (-1146 *6 *3)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6))))) +(-10 -7 (-15 -4152 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (-15 -2578 ((-1148 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|))) (-15 -1955 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|)))) +((-4152 (((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-1148 |#2|)) 21))) +(((-1147 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-1148 |#2|)))) (-1207) (-1207) (-1207)) (T -1147)) +((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1148 *6)) (-5 *5 (-1148 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) (-5 *1 (-1147 *6 *7 *8))))) +(-10 -7 (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-1148 |#2|)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) NIL)) (-2359 ((|#1| $) NIL)) (-3121 (($ $) 51)) (-3052 (((-1261) $ (-562) (-562)) 76 (|has| $ (-6 -4403)))) (-2254 (($ $ (-562)) 110 (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-2100 (((-857) $) 40 (|has| |#1| (-1092)))) (-4003 (((-112)) 39 (|has| |#1| (-1092)))) (-1512 ((|#1| $ |#1|) NIL (|has| $ (-6 -4403)))) (-3012 (($ $ $) 98 (|has| $ (-6 -4403))) (($ $ (-562) $) 122)) (-3950 ((|#1| $ |#1|) 107 (|has| $ (-6 -4403)))) (-2687 ((|#1| $ |#1|) 102 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4403))) (($ $ "rest" $) 106 (|has| $ (-6 -4403))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 89 (|has| $ (-6 -4403))) ((|#1| $ (-562) |#1|) 55 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 58)) (-2350 ((|#1| $) NIL)) (-1800 (($) NIL T CONST)) (-4293 (($ $) 14)) (-1434 (($ $) 28) (($ $ (-766)) 88)) (-2555 (((-112) (-639 |#1|) $) 116 (|has| |#1| (-1092)))) (-2136 (($ (-639 |#1|)) 112)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) 57)) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-3266 (((-112) $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-3463 (((-1261) (-562) $) 121 (|has| |#1| (-1092)))) (-2505 (((-766) $) 118)) (-2720 (((-639 $) $) NIL)) (-4379 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-3289 (((-112) $ (-766)) NIL)) (-4007 (((-639 |#1|) $) NIL)) (-3449 (((-112) $) NIL)) (-1892 (($ $) 90)) (-3718 (((-112) $) 13)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1504 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-3297 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) 74)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2167 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-3038 ((|#1| $) 10)) (-1421 ((|#1| $) 27) (($ $ (-766)) 49)) (-2011 (((-2 (|:| |cycle?| (-112)) (|:| -2178 (-766)) (|:| |period| (-766))) (-766) $) 24)) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3535 (($ (-1 (-112) |#1|) $) 126)) (-3546 (($ (-1 (-112) |#1|) $) 127)) (-2716 (($ $ |#1|) 68 (|has| $ (-6 -4403)))) (-1353 (($ $ (-562)) 31)) (-2017 (((-112) $) 72)) (-3663 (((-112) $) 12)) (-3431 (((-112) $) 117)) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 20)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) 15)) (-4307 (($) 44)) (-2343 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1223 (-562))) NIL) ((|#1| $ (-562)) 54) ((|#1| $ (-562) |#1|) NIL)) (-2568 (((-562) $ $) 48)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2322 (($ (-1 $)) 47)) (-2424 (((-112) $) 69)) (-2613 (($ $) 70)) (-4327 (($ $) 99 (|has| $ (-6 -4403)))) (-2296 (((-766) $) NIL)) (-3913 (($ $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) 43)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 53)) (-3949 (($ |#1| $) 97)) (-4142 (($ $ $) 100 (|has| $ (-6 -4403))) (($ $ |#1|) 101 (|has| $ (-6 -4403)))) (-2767 (($ $ $) 78) (($ |#1| $) 45) (($ (-639 $)) 83) (($ $ |#1|) 77)) (-2256 (($ $) 50)) (-4054 (($ (-639 |#1|)) 111) (((-857) $) 41 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) NIL)) (-4055 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 114 (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1148 |#1|) (-13 (-668 |#1|) (-612 (-639 |#1|)) (-10 -8 (-6 -4403) (-15 -2136 ($ (-639 |#1|))) (IF (|has| |#1| (-1092)) (-15 -2555 ((-112) (-639 |#1|) $)) |%noBranch|) (-15 -2011 ((-2 (|:| |cycle?| (-112)) (|:| -2178 (-766)) (|:| |period| (-766))) (-766) $)) (-15 -2322 ($ (-1 $))) (-15 -3949 ($ |#1| $)) (IF (|has| |#1| (-1092)) (PROGN (-15 -3463 ((-1261) (-562) $)) (-15 -2100 ((-857) $)) (-15 -4003 ((-112)))) |%noBranch|) (-15 -3012 ($ $ (-562) $)) (-15 -2167 ($ (-1 |#1|))) (-15 -2167 ($ (-1 |#1| |#1|) |#1|)) (-15 -3535 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)))) (-1207)) (T -1148)) +((-2136 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) (-2555 (*1 *2 *3 *1) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-4 *4 (-1207)) (-5 *2 (-112)) (-5 *1 (-1148 *4)))) (-2011 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2178 (-766)) (|:| |period| (-766)))) (-5 *1 (-1148 *4)) (-4 *4 (-1207)) (-5 *3 (-766)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1 (-1148 *3))) (-5 *1 (-1148 *3)) (-4 *3 (-1207)))) (-3949 (*1 *1 *2 *1) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1207)))) (-3463 (*1 *2 *3 *1) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1148 *4)) (-4 *4 (-1092)) (-4 *4 (-1207)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1148 *3)) (-4 *3 (-1092)) (-4 *3 (-1207)))) (-4003 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3)) (-4 *3 (-1092)) (-4 *3 (-1207)))) (-3012 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1148 *3)) (-4 *3 (-1207)))) (-2167 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) (-2167 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) (-3535 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) +(-13 (-668 |#1|) (-612 (-639 |#1|)) (-10 -8 (-6 -4403) (-15 -2136 ($ (-639 |#1|))) (IF (|has| |#1| (-1092)) (-15 -2555 ((-112) (-639 |#1|) $)) |%noBranch|) (-15 -2011 ((-2 (|:| |cycle?| (-112)) (|:| -2178 (-766)) (|:| |period| (-766))) (-766) $)) (-15 -2322 ($ (-1 $))) (-15 -3949 ($ |#1| $)) (IF (|has| |#1| (-1092)) (PROGN (-15 -3463 ((-1261) (-562) $)) (-15 -2100 ((-857) $)) (-15 -4003 ((-112)))) |%noBranch|) (-15 -3012 ($ $ (-562) $)) (-15 -2167 ($ (-1 |#1|))) (-15 -2167 ($ (-1 |#1| |#1|) |#1|)) (-15 -3535 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)))) +((-4041 (((-112) $ $) 19)) (-2744 (($ $) 120)) (-1576 (($ $) 121)) (-3398 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3052 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4403)))) (-3824 (((-112) $ $) 118)) (-3801 (((-112) $ $ (-562)) 117)) (-3596 (($ (-562)) 127)) (-2176 (((-639 $) $ (-143)) 110) (((-639 $) $ (-140)) 109)) (-1399 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-845)))) (-3381 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4403))) (($ $) 88 (-12 (|has| (-143) (-845)) (|has| $ (-6 -4403))))) (-1395 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-845)))) (-4336 (((-112) $ (-766)) 8)) (-4200 (((-143) $ (-562) (-143)) 52 (|has| $ (-6 -4403))) (((-143) $ (-1223 (-562)) (-143)) 58 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-1968 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2447 (($ $) 90 (|has| $ (-6 -4403)))) (-2677 (($ $) 100)) (-3944 (($ $ (-1223 (-562)) $) 114)) (-1459 (($ $) 78 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ (-143) $) 77 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4402)))) (-1955 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4402))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4402)))) (-1505 (((-143) $ (-562) (-143)) 53 (|has| $ (-6 -4403)))) (-1420 (((-143) $ (-562)) 51)) (-3847 (((-112) $ $) 119)) (-4264 (((-562) (-1 (-112) (-143)) $) 97) (((-562) (-143) $) 96 (|has| (-143) (-1092))) (((-562) (-143) $ (-562)) 95 (|has| (-143) (-1092))) (((-562) $ $ (-562)) 113) (((-562) (-140) $ (-562)) 112)) (-1720 (((-639 (-143)) $) 30 (|has| $ (-6 -4402)))) (-1458 (($ (-766) (-143)) 69)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| (-143) (-845)))) (-1610 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-845)))) (-1912 (((-639 (-143)) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| (-143) (-845)))) (-4263 (((-112) $ $ (-143)) 115)) (-3789 (((-766) $ $ (-143)) 116)) (-1490 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-1614 (($ $) 122)) (-3141 (($ $) 123)) (-3289 (((-112) $ (-766)) 10)) (-1980 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-2913 (((-1150) $) 22)) (-3297 (($ (-143) $ (-562)) 60) (($ $ $ (-562)) 59)) (-2093 (((-639 (-562)) $) 46)) (-1570 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21)) (-1421 (((-143) $) 42 (|has| (-562) (-845)))) (-3251 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-2716 (($ $ (-143)) 41 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-143)) (-639 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-2411 (((-639 (-143)) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 (((-143) $ (-562) (-143)) 50) (((-143) $ (-562)) 49) (($ $ (-1223 (-562))) 63) (($ $ $) 102)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4402))) (((-766) (-143) $) 28 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4402))))) (-1853 (($ $ $ (-562)) 91 (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| (-143) (-610 (-535))))) (-4066 (($ (-639 (-143))) 70)) (-2767 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4054 (($ (-143)) 111) (((-857) $) 18)) (-1744 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4402)))) (-2833 (((-1150) $) 131) (((-1150) $ (-112)) 130) (((-1261) (-817) $) 129) (((-1261) (-817) $ (-112)) 128)) (-1798 (((-112) $ $) 84 (|has| (-143) (-845)))) (-1772 (((-112) $ $) 83 (|has| (-143) (-845)))) (-1731 (((-112) $ $) 20)) (-1785 (((-112) $ $) 85 (|has| (-143) (-845)))) (-1759 (((-112) $ $) 82 (|has| (-143) (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-1149) (-139)) (T -1149)) +((-3596 (*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1149))))) +(-13 (-1136) (-1092) (-823) (-10 -8 (-15 -3596 ($ (-562))))) +(((-34) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 #0=(-143)) . T) ((-610 (-535)) |has| (-143) (-610 (-535))) ((-285 #1=(-562) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))) ((-372 #0#) . T) ((-488 #0#) . T) ((-600 #1# #0#) . T) ((-513 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))) ((-645 #0#) . T) ((-19 #0#) . T) ((-823) . T) ((-845) |has| (-143) (-845)) ((-1092) . T) ((-1136) . T) ((-1207) . T)) +((-4041 (((-112) $ $) NIL)) (-2744 (($ $) NIL)) (-1576 (($ $) NIL)) (-3398 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-3824 (((-112) $ $) NIL)) (-3801 (((-112) $ $ (-562)) NIL)) (-3596 (($ (-562)) 7)) (-2176 (((-639 $) $ (-143)) NIL) (((-639 $) $ (-140)) NIL)) (-1399 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-845)))) (-3381 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-845))))) (-1395 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 (((-143) $ (-562) (-143)) NIL (|has| $ (-6 -4403))) (((-143) $ (-1223 (-562)) (-143)) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-1968 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-3944 (($ $ (-1223 (-562)) $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-1475 (($ (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4402))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1505 (((-143) $ (-562) (-143)) NIL (|has| $ (-6 -4403)))) (-1420 (((-143) $ (-562)) NIL)) (-3847 (((-112) $ $) NIL)) (-4264 (((-562) (-1 (-112) (-143)) $) NIL) (((-562) (-143) $) NIL (|has| (-143) (-1092))) (((-562) (-143) $ (-562)) NIL (|has| (-143) (-1092))) (((-562) $ $ (-562)) NIL) (((-562) (-140) $ (-562)) NIL)) (-1720 (((-639 (-143)) $) NIL (|has| $ (-6 -4402)))) (-1458 (($ (-766) (-143)) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| (-143) (-845)))) (-1610 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-845)))) (-1912 (((-639 (-143)) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-143) (-845)))) (-4263 (((-112) $ $ (-143)) NIL)) (-3789 (((-766) $ $ (-143)) NIL)) (-1490 (($ (-1 (-143) (-143)) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-1614 (($ $) NIL)) (-3141 (($ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-1980 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2913 (((-1150) $) NIL)) (-3297 (($ (-143) $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-143) $) NIL (|has| (-562) (-845)))) (-3251 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2716 (($ $ (-143)) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-143)) (-639 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-2411 (((-639 (-143)) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 (((-143) $ (-562) (-143)) NIL) (((-143) $ (-562)) NIL) (($ $ (-1223 (-562))) NIL) (($ $ $) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402))) (((-766) (-143) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-143) (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-143) (-610 (-535))))) (-4066 (($ (-639 (-143))) NIL)) (-2767 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4054 (($ (-143)) NIL) (((-857) $) NIL)) (-1744 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4402)))) (-2833 (((-1150) $) 18) (((-1150) $ (-112)) 20) (((-1261) (-817) $) 21) (((-1261) (-817) $ (-112)) 22)) (-1798 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1772 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1759 (((-112) $ $) NIL (|has| (-143) (-845)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1150) (-1149)) (T -1150)) +NIL +(-1149) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)) (|has| |#1| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL)) (-3052 (((-1261) $ (-1150) (-1150)) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-1150) |#1|) NIL)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 |#1| "failed") (-1150) $) NIL)) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092))))) (-4000 (($ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402))) (((-3 |#1| "failed") (-1150) $) NIL)) (-1475 (($ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-1150) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-1150)) NIL)) (-1720 (((-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-1150) $) NIL (|has| (-1150) (-845)))) (-1912 (((-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-1150) $) NIL (|has| (-1150) (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)) (|has| |#1| (-1092))))) (-1520 (((-639 (-1150)) $) NIL)) (-4265 (((-112) (-1150) $) NIL)) (-3262 (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL)) (-4300 (($ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL)) (-2093 (((-639 (-1150)) $) NIL)) (-1570 (((-112) (-1150) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)) (|has| |#1| (-1092))))) (-1421 ((|#1| $) NIL (|has| (-1150) (-845)))) (-3251 (((-3 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) "failed") (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (($ $ (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL (-12 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-308 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-1150)) NIL) ((|#1| $ (-1150) |#1|) NIL)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL)) (-4054 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-609 (-857))) (|has| |#1| (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 (-1150)) (|:| -2694 |#1|)) (-1092)) (|has| |#1| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1151 |#1|) (-13 (-1183 (-1150) |#1|) (-10 -7 (-6 -4402))) (-1092)) (T -1151)) +NIL +(-13 (-1183 (-1150) |#1|) (-10 -7 (-6 -4402))) +((-2970 (((-1148 |#1|) (-1148 |#1|)) 77)) (-3668 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 37)) (-1315 (((-1148 |#1|) (-406 (-562)) (-1148 |#1|)) 121 (|has| |#1| (-38 (-406 (-562)))))) (-3761 (((-1148 |#1|) |#1| (-1148 |#1|)) 127 (|has| |#1| (-362)))) (-2009 (((-1148 |#1|) (-1148 |#1|)) 90)) (-1856 (((-1148 (-562)) (-562)) 57)) (-1740 (((-1148 |#1|) (-1148 (-1148 |#1|))) 109 (|has| |#1| (-38 (-406 (-562)))))) (-4325 (((-1148 |#1|) (-562) (-562) (-1148 |#1|)) 95)) (-3045 (((-1148 |#1|) |#1| (-562)) 45)) (-3247 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 60)) (-3926 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 124 (|has| |#1| (-362)))) (-3281 (((-1148 |#1|) |#1| (-1 (-1148 |#1|))) 108 (|has| |#1| (-38 (-406 (-562)))))) (-2394 (((-1148 |#1|) (-1 |#1| (-562)) |#1| (-1 (-1148 |#1|))) 125 (|has| |#1| (-362)))) (-1650 (((-1148 |#1|) (-1148 |#1|)) 89)) (-1638 (((-1148 |#1|) (-1148 |#1|)) 76)) (-2584 (((-1148 |#1|) (-562) (-562) (-1148 |#1|)) 96)) (-2667 (((-1148 |#1|) |#1| (-1148 |#1|)) 105 (|has| |#1| (-38 (-406 (-562)))))) (-3437 (((-1148 (-562)) (-562)) 56)) (-1645 (((-1148 |#1|) |#1|) 59)) (-2863 (((-1148 |#1|) (-1148 |#1|) (-562) (-562)) 92)) (-3489 (((-1148 |#1|) (-1 |#1| (-562)) (-1148 |#1|)) 66)) (-1762 (((-3 (-1148 |#1|) "failed") (-1148 |#1|) (-1148 |#1|)) 35)) (-1574 (((-1148 |#1|) (-1148 |#1|)) 91)) (-1433 (((-1148 |#1|) (-1148 |#1|) |#1|) 71)) (-4086 (((-1148 |#1|) (-1148 |#1|)) 62)) (-3036 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 72)) (-4054 (((-1148 |#1|) |#1|) 67)) (-2752 (((-1148 |#1|) (-1148 (-1148 |#1|))) 82)) (-1859 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 36)) (-1848 (((-1148 |#1|) (-1148 |#1|)) 21) (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 23)) (-1835 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 17)) (* (((-1148 |#1|) (-1148 |#1|) |#1|) 29) (((-1148 |#1|) |#1| (-1148 |#1|)) 26) (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 27))) +(((-1152 |#1|) (-10 -7 (-15 -1835 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1848 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1848 ((-1148 |#1|) (-1148 |#1|))) (-15 * ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 * ((-1148 |#1|) |#1| (-1148 |#1|))) (-15 * ((-1148 |#1|) (-1148 |#1|) |#1|)) (-15 -1762 ((-3 (-1148 |#1|) "failed") (-1148 |#1|) (-1148 |#1|))) (-15 -1859 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3668 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -3045 ((-1148 |#1|) |#1| (-562))) (-15 -3437 ((-1148 (-562)) (-562))) (-15 -1856 ((-1148 (-562)) (-562))) (-15 -1645 ((-1148 |#1|) |#1|)) (-15 -3247 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4086 ((-1148 |#1|) (-1148 |#1|))) (-15 -3489 ((-1148 |#1|) (-1 |#1| (-562)) (-1148 |#1|))) (-15 -4054 ((-1148 |#1|) |#1|)) (-15 -1433 ((-1148 |#1|) (-1148 |#1|) |#1|)) (-15 -3036 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1638 ((-1148 |#1|) (-1148 |#1|))) (-15 -2970 ((-1148 |#1|) (-1148 |#1|))) (-15 -2752 ((-1148 |#1|) (-1148 (-1148 |#1|)))) (-15 -1650 ((-1148 |#1|) (-1148 |#1|))) (-15 -2009 ((-1148 |#1|) (-1148 |#1|))) (-15 -1574 ((-1148 |#1|) (-1148 |#1|))) (-15 -2863 ((-1148 |#1|) (-1148 |#1|) (-562) (-562))) (-15 -4325 ((-1148 |#1|) (-562) (-562) (-1148 |#1|))) (-15 -2584 ((-1148 |#1|) (-562) (-562) (-1148 |#1|))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ((-1148 |#1|) |#1| (-1148 |#1|))) (-15 -3281 ((-1148 |#1|) |#1| (-1 (-1148 |#1|)))) (-15 -1740 ((-1148 |#1|) (-1148 (-1148 |#1|)))) (-15 -1315 ((-1148 |#1|) (-406 (-562)) (-1148 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3926 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2394 ((-1148 |#1|) (-1 |#1| (-562)) |#1| (-1 (-1148 |#1|)))) (-15 -3761 ((-1148 |#1|) |#1| (-1148 |#1|)))) |%noBranch|)) (-1044)) (T -1152)) +((-3761 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-2394 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-562))) (-5 *5 (-1 (-1148 *4))) (-4 *4 (-362)) (-4 *4 (-1044)) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)))) (-3926 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1315 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1044)) (-5 *3 (-406 (-562))) (-5 *1 (-1152 *4)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1148 *3))) (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)))) (-2667 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-2584 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) (-5 *1 (-1152 *4)))) (-4325 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) (-5 *1 (-1152 *4)))) (-2863 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) (-5 *1 (-1152 *4)))) (-1574 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-2009 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1650 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1044)))) (-2970 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-3036 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1433 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-4054 (*1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044)))) (-3489 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1 *4 (-562))) (-4 *4 (-1044)) (-5 *1 (-1152 *4)))) (-4086 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-3247 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1645 (*1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044)))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-1152 *4)) (-4 *4 (-1044)) (-5 *3 (-562)))) (-3437 (*1 *2 *3) (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-1152 *4)) (-4 *4 (-1044)) (-5 *3 (-562)))) (-3045 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044)))) (-3668 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1859 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1762 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1848 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1848 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1835 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) +(-10 -7 (-15 -1835 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1848 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1848 ((-1148 |#1|) (-1148 |#1|))) (-15 * ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 * ((-1148 |#1|) |#1| (-1148 |#1|))) (-15 * ((-1148 |#1|) (-1148 |#1|) |#1|)) (-15 -1762 ((-3 (-1148 |#1|) "failed") (-1148 |#1|) (-1148 |#1|))) (-15 -1859 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3668 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -3045 ((-1148 |#1|) |#1| (-562))) (-15 -3437 ((-1148 (-562)) (-562))) (-15 -1856 ((-1148 (-562)) (-562))) (-15 -1645 ((-1148 |#1|) |#1|)) (-15 -3247 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4086 ((-1148 |#1|) (-1148 |#1|))) (-15 -3489 ((-1148 |#1|) (-1 |#1| (-562)) (-1148 |#1|))) (-15 -4054 ((-1148 |#1|) |#1|)) (-15 -1433 ((-1148 |#1|) (-1148 |#1|) |#1|)) (-15 -3036 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1638 ((-1148 |#1|) (-1148 |#1|))) (-15 -2970 ((-1148 |#1|) (-1148 |#1|))) (-15 -2752 ((-1148 |#1|) (-1148 (-1148 |#1|)))) (-15 -1650 ((-1148 |#1|) (-1148 |#1|))) (-15 -2009 ((-1148 |#1|) (-1148 |#1|))) (-15 -1574 ((-1148 |#1|) (-1148 |#1|))) (-15 -2863 ((-1148 |#1|) (-1148 |#1|) (-562) (-562))) (-15 -4325 ((-1148 |#1|) (-562) (-562) (-1148 |#1|))) (-15 -2584 ((-1148 |#1|) (-562) (-562) (-1148 |#1|))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ((-1148 |#1|) |#1| (-1148 |#1|))) (-15 -3281 ((-1148 |#1|) |#1| (-1 (-1148 |#1|)))) (-15 -1740 ((-1148 |#1|) (-1148 (-1148 |#1|)))) (-15 -1315 ((-1148 |#1|) (-406 (-562)) (-1148 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -3926 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2394 ((-1148 |#1|) (-1 |#1| (-562)) |#1| (-1 (-1148 |#1|)))) (-15 -3761 ((-1148 |#1|) |#1| (-1148 |#1|)))) |%noBranch|)) +((-2988 (((-1148 |#1|) (-1148 |#1|)) 57)) (-4097 (((-1148 |#1|) (-1148 |#1|)) 39)) (-4207 (((-1148 |#1|) (-1148 |#1|)) 53)) (-4074 (((-1148 |#1|) (-1148 |#1|)) 35)) (-3014 (((-1148 |#1|) (-1148 |#1|)) 60)) (-4119 (((-1148 |#1|) (-1148 |#1|)) 42)) (-4365 (((-1148 |#1|) (-1148 |#1|)) 31)) (-3430 (((-1148 |#1|) (-1148 |#1|)) 27)) (-3023 (((-1148 |#1|) (-1148 |#1|)) 61)) (-4130 (((-1148 |#1|) (-1148 |#1|)) 43)) (-3001 (((-1148 |#1|) (-1148 |#1|)) 58)) (-4108 (((-1148 |#1|) (-1148 |#1|)) 40)) (-2978 (((-1148 |#1|) (-1148 |#1|)) 55)) (-4087 (((-1148 |#1|) (-1148 |#1|)) 37)) (-3055 (((-1148 |#1|) (-1148 |#1|)) 65)) (-4165 (((-1148 |#1|) (-1148 |#1|)) 47)) (-3033 (((-1148 |#1|) (-1148 |#1|)) 63)) (-4138 (((-1148 |#1|) (-1148 |#1|)) 45)) (-3078 (((-1148 |#1|) (-1148 |#1|)) 68)) (-4182 (((-1148 |#1|) (-1148 |#1|)) 50)) (-1566 (((-1148 |#1|) (-1148 |#1|)) 69)) (-4195 (((-1148 |#1|) (-1148 |#1|)) 51)) (-3066 (((-1148 |#1|) (-1148 |#1|)) 67)) (-4174 (((-1148 |#1|) (-1148 |#1|)) 49)) (-3044 (((-1148 |#1|) (-1148 |#1|)) 66)) (-4151 (((-1148 |#1|) (-1148 |#1|)) 48)) (** (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 33))) +(((-1153 |#1|) (-10 -7 (-15 -3430 ((-1148 |#1|) (-1148 |#1|))) (-15 -4365 ((-1148 |#1|) (-1148 |#1|))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4074 ((-1148 |#1|) (-1148 |#1|))) (-15 -4087 ((-1148 |#1|) (-1148 |#1|))) (-15 -4097 ((-1148 |#1|) (-1148 |#1|))) (-15 -4108 ((-1148 |#1|) (-1148 |#1|))) (-15 -4119 ((-1148 |#1|) (-1148 |#1|))) (-15 -4130 ((-1148 |#1|) (-1148 |#1|))) (-15 -4138 ((-1148 |#1|) (-1148 |#1|))) (-15 -4151 ((-1148 |#1|) (-1148 |#1|))) (-15 -4165 ((-1148 |#1|) (-1148 |#1|))) (-15 -4174 ((-1148 |#1|) (-1148 |#1|))) (-15 -4182 ((-1148 |#1|) (-1148 |#1|))) (-15 -4195 ((-1148 |#1|) (-1148 |#1|))) (-15 -4207 ((-1148 |#1|) (-1148 |#1|))) (-15 -2978 ((-1148 |#1|) (-1148 |#1|))) (-15 -2988 ((-1148 |#1|) (-1148 |#1|))) (-15 -3001 ((-1148 |#1|) (-1148 |#1|))) (-15 -3014 ((-1148 |#1|) (-1148 |#1|))) (-15 -3023 ((-1148 |#1|) (-1148 |#1|))) (-15 -3033 ((-1148 |#1|) (-1148 |#1|))) (-15 -3044 ((-1148 |#1|) (-1148 |#1|))) (-15 -3055 ((-1148 |#1|) (-1148 |#1|))) (-15 -3066 ((-1148 |#1|) (-1148 |#1|))) (-15 -3078 ((-1148 |#1|) (-1148 |#1|))) (-15 -1566 ((-1148 |#1|) (-1148 |#1|)))) (-38 (-406 (-562)))) (T -1153)) +((-1566 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3055 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3044 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-2988 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-2978 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4207 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4174 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4165 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4108 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4365 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3))))) +(-10 -7 (-15 -3430 ((-1148 |#1|) (-1148 |#1|))) (-15 -4365 ((-1148 |#1|) (-1148 |#1|))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4074 ((-1148 |#1|) (-1148 |#1|))) (-15 -4087 ((-1148 |#1|) (-1148 |#1|))) (-15 -4097 ((-1148 |#1|) (-1148 |#1|))) (-15 -4108 ((-1148 |#1|) (-1148 |#1|))) (-15 -4119 ((-1148 |#1|) (-1148 |#1|))) (-15 -4130 ((-1148 |#1|) (-1148 |#1|))) (-15 -4138 ((-1148 |#1|) (-1148 |#1|))) (-15 -4151 ((-1148 |#1|) (-1148 |#1|))) (-15 -4165 ((-1148 |#1|) (-1148 |#1|))) (-15 -4174 ((-1148 |#1|) (-1148 |#1|))) (-15 -4182 ((-1148 |#1|) (-1148 |#1|))) (-15 -4195 ((-1148 |#1|) (-1148 |#1|))) (-15 -4207 ((-1148 |#1|) (-1148 |#1|))) (-15 -2978 ((-1148 |#1|) (-1148 |#1|))) (-15 -2988 ((-1148 |#1|) (-1148 |#1|))) (-15 -3001 ((-1148 |#1|) (-1148 |#1|))) (-15 -3014 ((-1148 |#1|) (-1148 |#1|))) (-15 -3023 ((-1148 |#1|) (-1148 |#1|))) (-15 -3033 ((-1148 |#1|) (-1148 |#1|))) (-15 -3044 ((-1148 |#1|) (-1148 |#1|))) (-15 -3055 ((-1148 |#1|) (-1148 |#1|))) (-15 -3066 ((-1148 |#1|) (-1148 |#1|))) (-15 -3078 ((-1148 |#1|) (-1148 |#1|))) (-15 -1566 ((-1148 |#1|) (-1148 |#1|)))) +((-2988 (((-1148 |#1|) (-1148 |#1|)) 100)) (-4097 (((-1148 |#1|) (-1148 |#1|)) 64)) (-2032 (((-2 (|:| -4207 (-1148 |#1|)) (|:| -2978 (-1148 |#1|))) (-1148 |#1|)) 96)) (-4207 (((-1148 |#1|) (-1148 |#1|)) 97)) (-1949 (((-2 (|:| -4074 (-1148 |#1|)) (|:| -4087 (-1148 |#1|))) (-1148 |#1|)) 53)) (-4074 (((-1148 |#1|) (-1148 |#1|)) 54)) (-3014 (((-1148 |#1|) (-1148 |#1|)) 102)) (-4119 (((-1148 |#1|) (-1148 |#1|)) 71)) (-4365 (((-1148 |#1|) (-1148 |#1|)) 39)) (-3430 (((-1148 |#1|) (-1148 |#1|)) 36)) (-3023 (((-1148 |#1|) (-1148 |#1|)) 103)) (-4130 (((-1148 |#1|) (-1148 |#1|)) 72)) (-3001 (((-1148 |#1|) (-1148 |#1|)) 101)) (-4108 (((-1148 |#1|) (-1148 |#1|)) 67)) (-2978 (((-1148 |#1|) (-1148 |#1|)) 98)) (-4087 (((-1148 |#1|) (-1148 |#1|)) 55)) (-3055 (((-1148 |#1|) (-1148 |#1|)) 111)) (-4165 (((-1148 |#1|) (-1148 |#1|)) 86)) (-3033 (((-1148 |#1|) (-1148 |#1|)) 105)) (-4138 (((-1148 |#1|) (-1148 |#1|)) 82)) (-3078 (((-1148 |#1|) (-1148 |#1|)) 115)) (-4182 (((-1148 |#1|) (-1148 |#1|)) 90)) (-1566 (((-1148 |#1|) (-1148 |#1|)) 117)) (-4195 (((-1148 |#1|) (-1148 |#1|)) 92)) (-3066 (((-1148 |#1|) (-1148 |#1|)) 113)) (-4174 (((-1148 |#1|) (-1148 |#1|)) 88)) (-3044 (((-1148 |#1|) (-1148 |#1|)) 107)) (-4151 (((-1148 |#1|) (-1148 |#1|)) 84)) (** (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 40))) +(((-1154 |#1|) (-10 -7 (-15 -3430 ((-1148 |#1|) (-1148 |#1|))) (-15 -4365 ((-1148 |#1|) (-1148 |#1|))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1949 ((-2 (|:| -4074 (-1148 |#1|)) (|:| -4087 (-1148 |#1|))) (-1148 |#1|))) (-15 -4074 ((-1148 |#1|) (-1148 |#1|))) (-15 -4087 ((-1148 |#1|) (-1148 |#1|))) (-15 -4097 ((-1148 |#1|) (-1148 |#1|))) (-15 -4108 ((-1148 |#1|) (-1148 |#1|))) (-15 -4119 ((-1148 |#1|) (-1148 |#1|))) (-15 -4130 ((-1148 |#1|) (-1148 |#1|))) (-15 -4138 ((-1148 |#1|) (-1148 |#1|))) (-15 -4151 ((-1148 |#1|) (-1148 |#1|))) (-15 -4165 ((-1148 |#1|) (-1148 |#1|))) (-15 -4174 ((-1148 |#1|) (-1148 |#1|))) (-15 -4182 ((-1148 |#1|) (-1148 |#1|))) (-15 -4195 ((-1148 |#1|) (-1148 |#1|))) (-15 -2032 ((-2 (|:| -4207 (-1148 |#1|)) (|:| -2978 (-1148 |#1|))) (-1148 |#1|))) (-15 -4207 ((-1148 |#1|) (-1148 |#1|))) (-15 -2978 ((-1148 |#1|) (-1148 |#1|))) (-15 -2988 ((-1148 |#1|) (-1148 |#1|))) (-15 -3001 ((-1148 |#1|) (-1148 |#1|))) (-15 -3014 ((-1148 |#1|) (-1148 |#1|))) (-15 -3023 ((-1148 |#1|) (-1148 |#1|))) (-15 -3033 ((-1148 |#1|) (-1148 |#1|))) (-15 -3044 ((-1148 |#1|) (-1148 |#1|))) (-15 -3055 ((-1148 |#1|) (-1148 |#1|))) (-15 -3066 ((-1148 |#1|) (-1148 |#1|))) (-15 -3078 ((-1148 |#1|) (-1148 |#1|))) (-15 -1566 ((-1148 |#1|) (-1148 |#1|)))) (-38 (-406 (-562)))) (T -1154)) +((-1566 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3055 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3044 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-2988 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-2978 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4207 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-2032 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-2 (|:| -4207 (-1148 *4)) (|:| -2978 (-1148 *4)))) (-5 *1 (-1154 *4)) (-5 *3 (-1148 *4)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4174 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4165 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4108 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-1949 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-2 (|:| -4074 (-1148 *4)) (|:| -4087 (-1148 *4)))) (-5 *1 (-1154 *4)) (-5 *3 (-1148 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4365 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3))))) +(-10 -7 (-15 -3430 ((-1148 |#1|) (-1148 |#1|))) (-15 -4365 ((-1148 |#1|) (-1148 |#1|))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1949 ((-2 (|:| -4074 (-1148 |#1|)) (|:| -4087 (-1148 |#1|))) (-1148 |#1|))) (-15 -4074 ((-1148 |#1|) (-1148 |#1|))) (-15 -4087 ((-1148 |#1|) (-1148 |#1|))) (-15 -4097 ((-1148 |#1|) (-1148 |#1|))) (-15 -4108 ((-1148 |#1|) (-1148 |#1|))) (-15 -4119 ((-1148 |#1|) (-1148 |#1|))) (-15 -4130 ((-1148 |#1|) (-1148 |#1|))) (-15 -4138 ((-1148 |#1|) (-1148 |#1|))) (-15 -4151 ((-1148 |#1|) (-1148 |#1|))) (-15 -4165 ((-1148 |#1|) (-1148 |#1|))) (-15 -4174 ((-1148 |#1|) (-1148 |#1|))) (-15 -4182 ((-1148 |#1|) (-1148 |#1|))) (-15 -4195 ((-1148 |#1|) (-1148 |#1|))) (-15 -2032 ((-2 (|:| -4207 (-1148 |#1|)) (|:| -2978 (-1148 |#1|))) (-1148 |#1|))) (-15 -4207 ((-1148 |#1|) (-1148 |#1|))) (-15 -2978 ((-1148 |#1|) (-1148 |#1|))) (-15 -2988 ((-1148 |#1|) (-1148 |#1|))) (-15 -3001 ((-1148 |#1|) (-1148 |#1|))) (-15 -3014 ((-1148 |#1|) (-1148 |#1|))) (-15 -3023 ((-1148 |#1|) (-1148 |#1|))) (-15 -3033 ((-1148 |#1|) (-1148 |#1|))) (-15 -3044 ((-1148 |#1|) (-1148 |#1|))) (-15 -3055 ((-1148 |#1|) (-1148 |#1|))) (-15 -3066 ((-1148 |#1|) (-1148 |#1|))) (-15 -3078 ((-1148 |#1|) (-1148 |#1|))) (-15 -1566 ((-1148 |#1|) (-1148 |#1|)))) +((-1852 (((-953 |#2|) |#2| |#2|) 35)) (-1498 ((|#2| |#2| |#1|) 19 (|has| |#1| (-306))))) +(((-1155 |#1| |#2|) (-10 -7 (-15 -1852 ((-953 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -1498 (|#2| |#2| |#1|)) |%noBranch|)) (-554) (-1232 |#1|)) (T -1155)) +((-1498 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1232 *3)))) (-1852 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-953 *3)) (-5 *1 (-1155 *4 *3)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -1852 ((-953 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -1498 (|#2| |#2| |#1|)) |%noBranch|)) +((-4041 (((-112) $ $) NIL)) (-2632 (($ $ (-639 (-766))) 66)) (-3110 (($) 25)) (-2968 (($ $) 41)) (-4157 (((-639 $) $) 50)) (-3856 (((-112) $) 16)) (-3232 (((-639 (-938 |#2|)) $) 73)) (-3862 (($ $) 67)) (-3034 (((-766) $) 36)) (-1458 (($) 24)) (-3009 (($ $ (-639 (-766)) (-938 |#2|)) 59) (($ $ (-639 (-766)) (-766)) 60) (($ $ (-766) (-938 |#2|)) 62)) (-1610 (($ $ $) 47) (($ (-639 $)) 49)) (-3328 (((-766) $) 74)) (-3449 (((-112) $) 15)) (-2913 (((-1150) $) NIL)) (-3174 (((-112) $) 17)) (-1709 (((-1112) $) NIL)) (-2471 (((-170) $) 72)) (-2445 (((-938 |#2|) $) 68)) (-3882 (((-766) $) 69)) (-2316 (((-112) $) 71)) (-1899 (($ $ (-639 (-766)) (-170)) 65)) (-3259 (($ $) 42)) (-4054 (((-857) $) 85)) (-1344 (($ $ (-639 (-766)) (-112)) 64)) (-2906 (((-639 $) $) 11)) (-2786 (($ $ (-766)) 35)) (-1432 (($ $) 31)) (-1704 (($ $ $ (-938 |#2|) (-766)) 55)) (-3540 (($ $ (-938 |#2|)) 54)) (-2758 (($ $ (-639 (-766)) (-938 |#2|)) 53) (($ $ (-639 (-766)) (-766)) 57) (((-766) $ (-938 |#2|)) 58)) (-1731 (((-112) $ $) 79))) +(((-1156 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -3449 ((-112) $)) (-15 -3856 ((-112) $)) (-15 -3174 ((-112) $)) (-15 -1458 ($)) (-15 -3110 ($)) (-15 -1432 ($ $)) (-15 -2786 ($ $ (-766))) (-15 -2906 ((-639 $) $)) (-15 -3034 ((-766) $)) (-15 -2968 ($ $)) (-15 -3259 ($ $)) (-15 -1610 ($ $ $)) (-15 -1610 ($ (-639 $))) (-15 -4157 ((-639 $) $)) (-15 -2758 ($ $ (-639 (-766)) (-938 |#2|))) (-15 -3540 ($ $ (-938 |#2|))) (-15 -1704 ($ $ $ (-938 |#2|) (-766))) (-15 -3009 ($ $ (-639 (-766)) (-938 |#2|))) (-15 -2758 ($ $ (-639 (-766)) (-766))) (-15 -3009 ($ $ (-639 (-766)) (-766))) (-15 -2758 ((-766) $ (-938 |#2|))) (-15 -3009 ($ $ (-766) (-938 |#2|))) (-15 -1344 ($ $ (-639 (-766)) (-112))) (-15 -1899 ($ $ (-639 (-766)) (-170))) (-15 -2632 ($ $ (-639 (-766)))) (-15 -2445 ((-938 |#2|) $)) (-15 -3882 ((-766) $)) (-15 -2316 ((-112) $)) (-15 -2471 ((-170) $)) (-15 -3328 ((-766) $)) (-15 -3862 ($ $)) (-15 -3232 ((-639 (-938 |#2|)) $)))) (-916) (-1044)) (T -1156)) +((-3449 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-1458 (*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-3110 (*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-1432 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-2786 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2968 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-3259 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-1610 (*1 *1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-938 *4)) (-4 *4 (-1044)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)))) (-1704 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-938 *5)) (-5 *3 (-766)) (-4 *5 (-1044)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-3009 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-2758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-766)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)) (-4 *5 (-1044)))) (-3009 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-766)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)) (-4 *5 (-1044)))) (-2758 (*1 *2 *1 *3) (-12 (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *2 (-766)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-3009 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-1344 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-112)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)) (-4 *5 (-1044)))) (-1899 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-170)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)) (-4 *5 (-1044)))) (-2632 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-938 *4)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2471 (*1 *2 *1) (-12 (-5 *2 (-170)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3862 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-639 (-938 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044))))) +(-13 (-1092) (-10 -8 (-15 -3449 ((-112) $)) (-15 -3856 ((-112) $)) (-15 -3174 ((-112) $)) (-15 -1458 ($)) (-15 -3110 ($)) (-15 -1432 ($ $)) (-15 -2786 ($ $ (-766))) (-15 -2906 ((-639 $) $)) (-15 -3034 ((-766) $)) (-15 -2968 ($ $)) (-15 -3259 ($ $)) (-15 -1610 ($ $ $)) (-15 -1610 ($ (-639 $))) (-15 -4157 ((-639 $) $)) (-15 -2758 ($ $ (-639 (-766)) (-938 |#2|))) (-15 -3540 ($ $ (-938 |#2|))) (-15 -1704 ($ $ $ (-938 |#2|) (-766))) (-15 -3009 ($ $ (-639 (-766)) (-938 |#2|))) (-15 -2758 ($ $ (-639 (-766)) (-766))) (-15 -3009 ($ $ (-639 (-766)) (-766))) (-15 -2758 ((-766) $ (-938 |#2|))) (-15 -3009 ($ $ (-766) (-938 |#2|))) (-15 -1344 ($ $ (-639 (-766)) (-112))) (-15 -1899 ($ $ (-639 (-766)) (-170))) (-15 -2632 ($ $ (-639 (-766)))) (-15 -2445 ((-938 |#2|) $)) (-15 -3882 ((-766) $)) (-15 -2316 ((-112) $)) (-15 -2471 ((-170) $)) (-15 -3328 ((-766) $)) (-15 -3862 ($ $)) (-15 -3232 ((-639 (-938 |#2|)) $)))) +((-4041 (((-112) $ $) NIL)) (-4328 ((|#2| $) 11)) (-4316 ((|#1| $) 10)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4066 (($ |#1| |#2|) 9)) (-4054 (((-857) $) 16)) (-1731 (((-112) $ $) NIL))) +(((-1157 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -4066 ($ |#1| |#2|)) (-15 -4316 (|#1| $)) (-15 -4328 (|#2| $)))) (-1092) (-1092)) (T -1157)) +((-4066 (*1 *1 *2 *3) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-4316 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-1157 *2 *3)) (-4 *3 (-1092)))) (-4328 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-1157 *3 *2)) (-4 *3 (-1092))))) +(-13 (-1092) (-10 -8 (-15 -4066 ($ |#1| |#2|)) (-15 -4316 (|#1| $)) (-15 -4328 (|#2| $)))) +((-4041 (((-112) $ $) NIL)) (-1820 (((-1127) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-1158) (-13 (-1075) (-10 -8 (-15 -1820 ((-1127) $))))) (T -1158)) +((-1820 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1158))))) +(-13 (-1075) (-10 -8 (-15 -1820 ((-1127) $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) 11)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2796 (($ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-4370 (((-112) $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2557 (($ $ (-562)) NIL) (($ $ (-562) (-562)) 66)) (-1938 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) NIL)) (-4226 (((-1166 |#1| |#2| |#3|) $) 36)) (-3006 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 29)) (-1469 (((-1166 |#1| |#2| |#3|) $) 30)) (-2988 (($ $) 107 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 83 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-2798 (($ $) NIL (|has| |#1| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4207 (($ $) 103 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 79 (|has| |#1| (-38 (-406 (-562)))))) (-2277 (((-562) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) NIL)) (-3014 (($ $) 111 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 87 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1168) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-562) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))))) (-3961 (((-1166 |#1| |#2| |#3|) $) 131) (((-1168) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (((-406 (-562)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362)))) (((-562) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))))) (-2724 (($ $) 34) (($ (-562) $) 35)) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) NIL)) (-2406 (((-683 (-1166 |#1| |#2| |#3|)) (-683 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1545 (-683 (-1166 |#1| |#2| |#3|))) (|:| |vec| (-1256 (-1166 |#1| |#2| |#3|)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-635 (-562))) (|has| |#1| (-362)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-635 (-562))) (|has| |#1| (-362))))) (-3668 (((-3 $ "failed") $) 48)) (-1493 (((-406 (-947 |#1|)) $ (-562)) 65 (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) 67 (|has| |#1| (-554)))) (-1448 (($) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2717 (((-112) $) NIL (|has| |#1| (-362)))) (-3519 (((-112) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-1756 (((-112) $) 25)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-881 (-378))) (|has| |#1| (-362)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-881 (-562))) (|has| |#1| (-362))))) (-1900 (((-562) $) NIL) (((-562) $ (-562)) 24)) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL (|has| |#1| (-362)))) (-4065 (((-1166 |#1| |#2| |#3|) $) 38 (|has| |#1| (-362)))) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3699 (((-3 $ "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1143)) (|has| |#1| (-362))))) (-3392 (((-112) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-3374 (($ $ (-916)) NIL)) (-4222 (($ (-1 |#1| (-562)) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-562)) 18) (($ $ (-1074) (-562)) NIL) (($ $ (-639 (-1074)) (-639 (-562))) NIL)) (-1551 (($ $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-2993 (($ $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4365 (($ $) 72 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1485 (($ (-562) (-1166 |#1| |#2| |#3|)) 33)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-2667 (($ $) 70 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 71 (|has| |#1| (-38 (-406 (-562)))))) (-3729 (($) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1143)) (|has| |#1| (-362))) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2736 (($ $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-4014 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ (-562)) 145)) (-1762 (((-3 $ "failed") $ $) 49 (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) 73 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-562))))) (($ $ (-1168) (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-513 (-1168) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-513 (-1168) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-293 (-1166 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-1166 |#1| |#2| |#3|)) (-639 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) NIL) (($ $ $) 54 (|has| (-562) (-1104))) (($ $ (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-285 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) (-766)) NIL (|has| |#1| (-362))) (($ $ (-1252 |#2|)) 51) (($ $ (-766)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 50 (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-3658 (($ $) NIL (|has| |#1| (-362)))) (-4076 (((-1166 |#1| |#2| |#3|) $) 41 (|has| |#1| (-362)))) (-3598 (((-562) $) 37)) (-3023 (($ $) 113 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 89 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 109 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 85 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 105 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 81 (|has| |#1| (-38 (-406 (-562)))))) (-4208 (((-535) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-610 (-535))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1017)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1017)) (|has| |#1| (-362)))) (((-887 (-378)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-610 (-887 (-378)))) (|has| |#1| (-362)))) (((-887 (-562)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-610 (-887 (-562)))) (|has| |#1| (-362))))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-2256 (($ $) NIL)) (-4054 (((-857) $) 149) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1166 |#1| |#2| |#3|)) 27) (($ (-1252 |#2|)) 23) (($ (-1168)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (($ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554)))) (($ (-406 (-562))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-562))))))) (-3906 ((|#1| $ (-562)) 68)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-2328 ((|#1| $) 12)) (-2604 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-3055 (($ $) 119 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 95 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3033 (($ $) 115 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 91 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 99 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 101 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 97 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 117 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 93 (|has| |#1| (-38 (-406 (-562)))))) (-3526 (($ $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-2286 (($) 20 T CONST)) (-2294 (($) 16 T CONST)) (-3114 (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) (-766)) NIL (|has| |#1| (-362))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-1798 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1772 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1759 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 44 (|has| |#1| (-362))) (($ (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) 45 (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 21)) (** (($ $ (-916)) NIL) (($ $ (-766)) 53) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) 74 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 128 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1166 |#1| |#2| |#3|)) 43 (|has| |#1| (-362))) (($ (-1166 |#1| |#2| |#3|) $) 42 (|has| |#1| (-362))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-1159 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -4054 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1159)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) +(-13 (-1218 |#1| (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -4054 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) +((-1625 ((|#2| |#2| (-1084 |#2|)) 26) ((|#2| |#2| (-1168)) 28))) +(((-1160 |#1| |#2|) (-10 -7 (-15 -1625 (|#2| |#2| (-1168))) (-15 -1625 (|#2| |#2| (-1084 |#2|)))) (-13 (-554) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-429 |#1|) (-159) (-27) (-1192))) (T -1160)) +((-1625 (*1 *2 *2 *3) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1192))) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1160 *4 *2)))) (-1625 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1160 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1192)))))) +(-10 -7 (-15 -1625 (|#2| |#2| (-1168))) (-15 -1625 (|#2| |#2| (-1084 |#2|)))) +((-1625 (((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1084 (-406 (-947 |#1|)))) 31) (((-406 (-947 |#1|)) (-947 |#1|) (-1084 (-947 |#1|))) 44) (((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1168)) 33) (((-406 (-947 |#1|)) (-947 |#1|) (-1168)) 36))) +(((-1161 |#1|) (-10 -7 (-15 -1625 ((-406 (-947 |#1|)) (-947 |#1|) (-1168))) (-15 -1625 ((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1168))) (-15 -1625 ((-406 (-947 |#1|)) (-947 |#1|) (-1084 (-947 |#1|)))) (-15 -1625 ((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1084 (-406 (-947 |#1|)))))) (-13 (-554) (-845) (-1033 (-562)))) (T -1161)) +((-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-3 *3 (-315 *5))) (-5 *1 (-1161 *5)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-947 *5))) (-5 *3 (-947 *5)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-406 *3)) (-5 *1 (-1161 *5)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-3 (-406 (-947 *5)) (-315 *5))) (-5 *1 (-1161 *5)) (-5 *3 (-406 (-947 *5))))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-406 (-947 *5))) (-5 *1 (-1161 *5)) (-5 *3 (-947 *5))))) +(-10 -7 (-15 -1625 ((-406 (-947 |#1|)) (-947 |#1|) (-1168))) (-15 -1625 ((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1168))) (-15 -1625 ((-406 (-947 |#1|)) (-947 |#1|) (-1084 (-947 |#1|)))) (-15 -1625 ((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1084 (-406 (-947 |#1|)))))) +((-4152 (((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|)) 13))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -4152 ((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|)))) (-1044) (-1044)) (T -1162)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-1164 *6)) (-5 *1 (-1162 *5 *6))))) +(-10 -7 (-15 -4152 ((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|)))) +((-2921 (((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|))) 51)) (-1635 (((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|))) 52))) +(((-1163 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|)))) (-15 -2921 ((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|))))) (-788) (-845) (-451) (-944 |#3| |#1| |#2|)) (T -1163)) +((-2921 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-451)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 (-406 *7)))) (-5 *1 (-1163 *4 *5 *6 *7)) (-5 *3 (-1164 (-406 *7))))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-451)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 (-406 *7)))) (-5 *1 (-1163 *4 *5 *6 *7)) (-5 *3 (-1164 (-406 *7)))))) +(-10 -7 (-15 -1635 ((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|)))) (-15 -2921 ((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|))))) +((-4041 (((-112) $ $) 136)) (-1952 (((-112) $) 27)) (-2844 (((-1256 |#1|) $ (-766)) NIL)) (-1402 (((-639 (-1074)) $) NIL)) (-2427 (($ (-1164 |#1|)) NIL)) (-1599 (((-1164 $) $ (-1074)) 58) (((-1164 |#1|) $) 47)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) 131 (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-1074))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3258 (($ $ $) 125 (|has| |#1| (-554)))) (-3026 (((-417 (-1164 $)) (-1164 $)) 71 (|has| |#1| (-904)))) (-2798 (($ $) NIL (|has| |#1| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 91 (|has| |#1| (-904)))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2897 (($ $ (-766)) 39)) (-3028 (($ $ (-766)) 40)) (-4157 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-451)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1074) "failed") $) NIL)) (-3961 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1074) $) NIL)) (-2835 (($ $ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $ $) 127 (|has| |#1| (-171)))) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) 56)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-4267 (($ $ $) 103)) (-2375 (($ $ $) NIL (|has| |#1| (-554)))) (-2622 (((-2 (|:| -4221 |#1|) (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-554)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-1498 (($ $) 132 (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#1| (-904)))) (-3122 (($ $ |#1| (-766) $) 45)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1995 (((-857) $ (-857)) 116)) (-1900 (((-766) $ $) NIL (|has| |#1| (-554)))) (-1957 (((-112) $) 30)) (-1694 (((-766) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)))) (-1390 (($ (-1164 |#1|) (-1074)) 49) (($ (-1164 $) (-1074)) 65)) (-3374 (($ $ (-766)) 32)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-766)) 63) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-1074)) NIL) (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 120)) (-2076 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2836 (($ (-1 (-766) (-766)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4298 (((-1164 |#1|) $) NIL)) (-3372 (((-3 (-1074) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) 52)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-2913 (((-1150) $) NIL)) (-3594 (((-2 (|:| -2097 $) (|:| -2264 $)) $ (-766)) 38)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-1074)) (|:| -1960 (-766))) "failed") $) NIL)) (-2667 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3729 (($) NIL (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 31)) (-1547 ((|#1| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 79 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) 134 (|has| |#1| (-451)))) (-3348 (($ $ (-766) |#1| $) 98)) (-3986 (((-417 (-1164 $)) (-1164 $)) 77 (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) 76 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 84 (|has| |#1| (-904)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ |#1|) 130 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#1|) NIL) (($ $ (-639 (-1074)) (-639 |#1|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-639 (-1074)) (-639 $)) NIL)) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ |#1|) 118) (($ $ $) 119) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-1530 (((-3 $ "failed") $ (-766)) 35)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 137 (|has| |#1| (-362)))) (-2455 (($ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $) 123 (|has| |#1| (-171)))) (-4029 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3598 (((-766) $) 54) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-3900 ((|#1| $) 129 (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-3586 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-554)))) (-4054 (((-857) $) 117) (($ (-562)) NIL) (($ |#1|) 53) (($ (-1074)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-766)) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) 25 (|has| |#1| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) 15 T CONST)) (-2294 (($) 16 T CONST)) (-3114 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) 96)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 138 (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 66)) (** (($ $ (-916)) 14) (($ $ (-766)) 12)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 24) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) +(((-1164 |#1|) (-13 (-1232 |#1|) (-10 -8 (-15 -1995 ((-857) $ (-857))) (-15 -3348 ($ $ (-766) |#1| $)))) (-1044)) (T -1164)) +((-1995 (*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1164 *3)) (-4 *3 (-1044)))) (-3348 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1164 *3)) (-4 *3 (-1044))))) +(-13 (-1232 |#1|) (-10 -8 (-15 -1995 ((-857) $ (-857))) (-15 -3348 ($ $ (-766) |#1| $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) 11)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2557 (($ $ (-406 (-562))) NIL) (($ $ (-406 (-562)) (-406 (-562))) NIL)) (-1938 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) NIL)) (-2988 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| |#1| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4207 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-1159 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 36)) (-3961 (((-1159 |#1| |#2| |#3|) $) NIL) (((-1166 |#1| |#2| |#3|) $) NIL)) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-3952 (((-406 (-562)) $) 55)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-1499 (($ (-406 (-562)) (-1159 |#1| |#2| |#3|)) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2717 (((-112) $) NIL (|has| |#1| (-362)))) (-1756 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-406 (-562)) $) NIL) (((-406 (-562)) $ (-406 (-562))) NIL)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) NIL) (($ $ (-406 (-562))) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-406 (-562))) 20) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4098 (((-1159 |#1| |#2| |#3|) $) 41)) (-2287 (((-3 (-1159 |#1| |#2| |#3|) "failed") $) NIL)) (-1485 (((-1159 |#1| |#2| |#3|) $) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-2667 (($ $) 39 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 40 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ (-406 (-562))) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) NIL) (($ $ $) NIL (|has| (-406 (-562)) (-1104)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $ (-1252 |#2|)) 38)) (-3598 (((-406 (-562)) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) NIL)) (-4054 (((-857) $) 58) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1159 |#1| |#2| |#3|)) 30) (($ (-1166 |#1| |#2| |#3|)) 31) (($ (-1252 |#2|)) 26) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-3906 ((|#1| $ (-406 (-562))) NIL)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-2328 ((|#1| $) 12)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 22 T CONST)) (-2294 (($) 16 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 24)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-1165 |#1| |#2| |#3|) (-13 (-1239 |#1| (-1159 |#1| |#2| |#3|)) (-1033 (-1166 |#1| |#2| |#3|)) (-612 (-1252 |#2|)) (-10 -8 (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1165)) +((-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) +(-13 (-1239 |#1| (-1159 |#1| |#2| |#3|)) (-1033 (-1166 |#1| |#2| |#3|)) (-612 (-1252 |#2|)) (-10 -8 (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 124)) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) 115)) (-2004 (((-1229 |#2| |#1|) $ (-766)) 62)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2557 (($ $ (-766)) 78) (($ $ (-766) (-766)) 75)) (-1938 (((-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|))) $) 101)) (-2988 (($ $) 168 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4207 (($ $) 164 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|)))) 114) (($ (-1148 |#1|)) 109)) (-3014 (($ $) 172 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) 23)) (-2834 (($ $) 26)) (-1454 (((-947 |#1|) $ (-766)) 74) (((-947 |#1|) $ (-766) (-766)) 76)) (-1756 (((-112) $) 119)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-766) $) 121) (((-766) $ (-766)) 123)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) NIL)) (-4222 (($ (-1 |#1| (-562)) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-766)) 13) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-2667 (($ $) 128 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 129 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-1353 (($ $ (-766)) 15)) (-1762 (((-3 $ "failed") $ $) 24 (|has| |#1| (-554)))) (-3430 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-766)))))) (-2343 ((|#1| $ (-766)) 118) (($ $ $) 127 (|has| (-766) (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $ (-1252 |#2|)) 29)) (-3598 (((-766) $) NIL)) (-3023 (($ $) 174 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 150 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 170 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 166 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) NIL)) (-4054 (((-857) $) 200) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 125 (|has| |#1| (-171))) (($ (-1229 |#2| |#1|)) 50) (($ (-1252 |#2|)) 32)) (-4358 (((-1148 |#1|) $) 97)) (-3906 ((|#1| $ (-766)) 117)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-2328 ((|#1| $) 53)) (-3055 (($ $) 180 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 156 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 176 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 152 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 184 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 160 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-766)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-766)))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) 186 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 162 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 182 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 158 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 178 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 154 (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 17 T CONST)) (-2294 (($) 19 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) 193)) (-1835 (($ $ $) 31)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ |#1|) 197 (|has| |#1| (-362))) (($ $ $) 133 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 136 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-1166 |#1| |#2| |#3|) (-13 (-1247 |#1|) (-10 -8 (-15 -4054 ($ (-1229 |#2| |#1|))) (-15 -2004 ((-1229 |#2| |#1|) $ (-766))) (-15 -4054 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1166)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1229 *4 *3)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-1166 *3 *4 *5)))) (-2004 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1229 *5 *4)) (-5 *1 (-1166 *4 *5 *6)) (-4 *4 (-1044)) (-14 *5 (-1168)) (-14 *6 *4))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) +(-13 (-1247 |#1|) (-10 -8 (-15 -4054 ($ (-1229 |#2| |#1|))) (-15 -2004 ((-1229 |#2| |#1|) $ (-766))) (-15 -4054 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) +((-4054 (((-857) $) 27) (($ (-1168)) 29)) (-4037 (($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 40)) (-4023 (($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 33) (($ $) 34)) (-4347 (($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 35)) (-4337 (($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 37)) (-4324 (($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 36)) (-4313 (($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 38)) (-3311 (($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 39))) +(((-1167) (-13 (-609 (-857)) (-10 -8 (-15 -4054 ($ (-1168))) (-15 -4347 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4324 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4337 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4313 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4037 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3311 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4023 ($ $))))) (T -1167)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1167)))) (-4347 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4324 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4337 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4313 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4037 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-3311 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4023 (*1 *1 *1) (-5 *1 (-1167)))) +(-13 (-609 (-857)) (-10 -8 (-15 -4054 ($ (-1168))) (-15 -4347 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4324 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4337 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4313 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4037 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3311 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4023 ($ $)))) +((-4041 (((-112) $ $) NIL)) (-3164 (($ $ (-639 (-857))) 59)) (-1782 (($ $ (-639 (-857))) 57)) (-3596 (((-1150) $) 84)) (-3652 (((-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) (|:| |args| (-639 (-857)))) $) 87)) (-3465 (((-112) $) 22)) (-1482 (($ $ (-639 (-639 (-857)))) 56) (($ $ (-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) (|:| |args| (-639 (-857))))) 82)) (-1800 (($) 123 T CONST)) (-3243 (((-1261)) 105)) (-2533 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 66) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 73)) (-1458 (($) 94) (($ $) 100)) (-3254 (($ $) 83)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3716 (((-639 $) $) 106)) (-2913 (((-1150) $) 89)) (-1709 (((-1112) $) NIL)) (-2343 (($ $ (-639 (-857))) 58)) (-4208 (((-535) $) 46) (((-1168) $) 47) (((-887 (-562)) $) 77) (((-887 (-378)) $) 75)) (-4054 (((-857) $) 53) (($ (-1150)) 48)) (-1674 (($ $ (-639 (-857))) 60)) (-2833 (((-1150) $) 33) (((-1150) $ (-112)) 34) (((-1261) (-817) $) 35) (((-1261) (-817) $ (-112)) 36)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) 49)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) 50))) +(((-1168) (-13 (-845) (-610 (-535)) (-823) (-610 (-1168)) (-612 (-1150)) (-610 (-887 (-562))) (-610 (-887 (-378))) (-881 (-562)) (-881 (-378)) (-10 -8 (-15 -1458 ($)) (-15 -1458 ($ $)) (-15 -3243 ((-1261))) (-15 -3254 ($ $)) (-15 -3465 ((-112) $)) (-15 -3652 ((-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) (|:| |args| (-639 (-857)))) $)) (-15 -1482 ($ $ (-639 (-639 (-857))))) (-15 -1482 ($ $ (-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) (|:| |args| (-639 (-857)))))) (-15 -1782 ($ $ (-639 (-857)))) (-15 -3164 ($ $ (-639 (-857)))) (-15 -1674 ($ $ (-639 (-857)))) (-15 -2343 ($ $ (-639 (-857)))) (-15 -3596 ((-1150) $)) (-15 -3716 ((-639 $) $)) (-15 -1800 ($) -1497)))) (T -1168)) +((-1458 (*1 *1) (-5 *1 (-1168))) (-1458 (*1 *1 *1) (-5 *1 (-1168))) (-3243 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1168)))) (-3254 (*1 *1 *1) (-5 *1 (-1168))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) (|:| |args| (-639 (-857))))) (-5 *1 (-1168)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 (-857)))) (-5 *1 (-1168)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) (|:| |args| (-639 (-857))))) (-5 *1 (-1168)))) (-1782 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) (-3164 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) (-1674 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1168)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1168)))) (-1800 (*1 *1) (-5 *1 (-1168)))) +(-13 (-845) (-610 (-535)) (-823) (-610 (-1168)) (-612 (-1150)) (-610 (-887 (-562))) (-610 (-887 (-378))) (-881 (-562)) (-881 (-378)) (-10 -8 (-15 -1458 ($)) (-15 -1458 ($ $)) (-15 -3243 ((-1261))) (-15 -3254 ($ $)) (-15 -3465 ((-112) $)) (-15 -3652 ((-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) (|:| |args| (-639 (-857)))) $)) (-15 -1482 ($ $ (-639 (-639 (-857))))) (-15 -1482 ($ $ (-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) (|:| |args| (-639 (-857)))))) (-15 -1782 ($ $ (-639 (-857)))) (-15 -3164 ($ $ (-639 (-857)))) (-15 -1674 ($ $ (-639 (-857)))) (-15 -2343 ($ $ (-639 (-857)))) (-15 -3596 ((-1150) $)) (-15 -3716 ((-639 $) $)) (-15 -1800 ($) -1497))) +((-2006 (((-1256 |#1|) |#1| (-916)) 16) (((-1256 |#1|) (-639 |#1|)) 20))) +(((-1169 |#1|) (-10 -7 (-15 -2006 ((-1256 |#1|) (-639 |#1|))) (-15 -2006 ((-1256 |#1|) |#1| (-916)))) (-1044)) (T -1169)) +((-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-5 *2 (-1256 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1044)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1044)) (-5 *2 (-1256 *4)) (-5 *1 (-1169 *4))))) +(-10 -7 (-15 -2006 ((-1256 |#1|) (-639 |#1|))) (-15 -2006 ((-1256 |#1|) |#1| (-916)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3961 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1498 (($ $) NIL (|has| |#1| (-451)))) (-3122 (($ $ |#1| (-966) $) NIL)) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-966)) NIL)) (-2076 (((-966) $) NIL)) (-2836 (($ (-1 (-966) (-966)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-3348 (($ $ (-966) |#1| $) NIL (-12 (|has| (-966) (-130)) (|has| |#1| (-554))))) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-3598 (((-966) $) NIL)) (-3900 ((|#1| $) NIL (|has| |#1| (-451)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ (-966)) NIL)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2286 (($) 9 T CONST)) (-2294 (($) 14 T CONST)) (-1731 (((-112) $ $) 16)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 19)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-1170 |#1|) (-13 (-325 |#1| (-966)) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| (-966) (-130)) (-15 -3348 ($ $ (-966) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|))) (-1044)) (T -1170)) +((-3348 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-966)) (-4 *2 (-130)) (-5 *1 (-1170 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) +(-13 (-325 |#1| (-966)) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| (-966) (-130)) (-15 -3348 ($ $ (-966) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|))) +((-3676 (((-1172) (-1168) $) 25)) (-2019 (($) 29)) (-2181 (((-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-1168) $) 22)) (-2054 (((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2650 "void")) $) 41) (((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) 42) (((-1261) (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) 43)) (-3760 (((-1261) (-1168)) 58)) (-2456 (((-1261) (-1168) $) 55) (((-1261) (-1168)) 56) (((-1261)) 57)) (-1752 (((-1261) (-1168)) 37)) (-2481 (((-1168)) 36)) (-4307 (($) 34)) (-2602 (((-436) (-1168) (-436) (-1168) $) 45) (((-436) (-639 (-1168)) (-436) (-1168) $) 49) (((-436) (-1168) (-436)) 46) (((-436) (-1168) (-436) (-1168)) 50)) (-1838 (((-1168)) 35)) (-4054 (((-857) $) 28)) (-3429 (((-1261)) 30) (((-1261) (-1168)) 33)) (-2469 (((-639 (-1168)) (-1168) $) 24)) (-1629 (((-1261) (-1168) (-639 (-1168)) $) 38) (((-1261) (-1168) (-639 (-1168))) 39) (((-1261) (-639 (-1168))) 40))) +(((-1171) (-13 (-609 (-857)) (-10 -8 (-15 -2019 ($)) (-15 -3429 ((-1261))) (-15 -3429 ((-1261) (-1168))) (-15 -2602 ((-436) (-1168) (-436) (-1168) $)) (-15 -2602 ((-436) (-639 (-1168)) (-436) (-1168) $)) (-15 -2602 ((-436) (-1168) (-436))) (-15 -2602 ((-436) (-1168) (-436) (-1168))) (-15 -1752 ((-1261) (-1168))) (-15 -1838 ((-1168))) (-15 -2481 ((-1168))) (-15 -1629 ((-1261) (-1168) (-639 (-1168)) $)) (-15 -1629 ((-1261) (-1168) (-639 (-1168)))) (-15 -1629 ((-1261) (-639 (-1168)))) (-15 -2054 ((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2650 "void")) $)) (-15 -2054 ((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2650 "void")))) (-15 -2054 ((-1261) (-3 (|:| |fst| (-433)) (|:| -2650 "void")))) (-15 -2456 ((-1261) (-1168) $)) (-15 -2456 ((-1261) (-1168))) (-15 -2456 ((-1261))) (-15 -3760 ((-1261) (-1168))) (-15 -4307 ($)) (-15 -2181 ((-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-1168) $)) (-15 -2469 ((-639 (-1168)) (-1168) $)) (-15 -3676 ((-1172) (-1168) $))))) (T -1171)) +((-2019 (*1 *1) (-5 *1 (-1171))) (-3429 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1171)))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2602 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) (-2602 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-436)) (-5 *3 (-639 (-1168))) (-5 *4 (-1168)) (-5 *1 (-1171)))) (-2602 (*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) (-2602 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-1838 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1171)))) (-2481 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1171)))) (-1629 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-1629 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2054 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1168)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2456 (*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2456 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1171)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-4307 (*1 *1) (-5 *1 (-1171))) (-2181 (*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *1 (-1171)))) (-2469 (*1 *2 *3 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1171)) (-5 *3 (-1168)))) (-3676 (*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-1172)) (-5 *1 (-1171))))) +(-13 (-609 (-857)) (-10 -8 (-15 -2019 ($)) (-15 -3429 ((-1261))) (-15 -3429 ((-1261) (-1168))) (-15 -2602 ((-436) (-1168) (-436) (-1168) $)) (-15 -2602 ((-436) (-639 (-1168)) (-436) (-1168) $)) (-15 -2602 ((-436) (-1168) (-436))) (-15 -2602 ((-436) (-1168) (-436) (-1168))) (-15 -1752 ((-1261) (-1168))) (-15 -1838 ((-1168))) (-15 -2481 ((-1168))) (-15 -1629 ((-1261) (-1168) (-639 (-1168)) $)) (-15 -1629 ((-1261) (-1168) (-639 (-1168)))) (-15 -1629 ((-1261) (-639 (-1168)))) (-15 -2054 ((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2650 "void")) $)) (-15 -2054 ((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2650 "void")))) (-15 -2054 ((-1261) (-3 (|:| |fst| (-433)) (|:| -2650 "void")))) (-15 -2456 ((-1261) (-1168) $)) (-15 -2456 ((-1261) (-1168))) (-15 -2456 ((-1261))) (-15 -3760 ((-1261) (-1168))) (-15 -4307 ($)) (-15 -2181 ((-3 (|:| |fst| (-433)) (|:| -2650 "void")) (-1168) $)) (-15 -2469 ((-639 (-1168)) (-1168) $)) (-15 -3676 ((-1172) (-1168) $)))) +((-4261 (((-639 (-639 (-3 (|:| -3254 (-1168)) (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) $) 59)) (-4061 (((-639 (-3 (|:| -3254 (-1168)) (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))) (-433) $) 43)) (-3135 (($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-436))))) 17)) (-3760 (((-1261) $) 67)) (-2927 (((-639 (-1168)) $) 22)) (-2582 (((-1096) $) 55)) (-2742 (((-436) (-1168) $) 27)) (-1290 (((-639 (-1168)) $) 30)) (-4307 (($) 19)) (-2602 (((-436) (-639 (-1168)) (-436) $) 25) (((-436) (-1168) (-436) $) 24)) (-4054 (((-857) $) 9) (((-1180 (-1168) (-436)) $) 13))) +(((-1172) (-13 (-609 (-857)) (-10 -8 (-15 -4054 ((-1180 (-1168) (-436)) $)) (-15 -4307 ($)) (-15 -2602 ((-436) (-639 (-1168)) (-436) $)) (-15 -2602 ((-436) (-1168) (-436) $)) (-15 -2742 ((-436) (-1168) $)) (-15 -2927 ((-639 (-1168)) $)) (-15 -4061 ((-639 (-3 (|:| -3254 (-1168)) (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))) (-433) $)) (-15 -1290 ((-639 (-1168)) $)) (-15 -4261 ((-639 (-639 (-3 (|:| -3254 (-1168)) (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) $)) (-15 -2582 ((-1096) $)) (-15 -3760 ((-1261) $)) (-15 -3135 ($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-436))))))))) (T -1172)) +((-4054 (*1 *2 *1) (-12 (-5 *2 (-1180 (-1168) (-436))) (-5 *1 (-1172)))) (-4307 (*1 *1) (-5 *1 (-1172))) (-2602 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-639 (-1168))) (-5 *1 (-1172)))) (-2602 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1172)))) (-2742 (*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-436)) (-5 *1 (-1172)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1172)))) (-4061 (*1 *2 *3 *1) (-12 (-5 *3 (-433)) (-5 *2 (-639 (-3 (|:| -3254 (-1168)) (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) (-5 *1 (-1172)))) (-1290 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1172)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-3 (|:| -3254 (-1168)) (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))))) (-5 *1 (-1172)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1172)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1172)))) (-3135 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-436))))) (-5 *1 (-1172))))) +(-13 (-609 (-857)) (-10 -8 (-15 -4054 ((-1180 (-1168) (-436)) $)) (-15 -4307 ($)) (-15 -2602 ((-436) (-639 (-1168)) (-436) $)) (-15 -2602 ((-436) (-1168) (-436) $)) (-15 -2742 ((-436) (-1168) $)) (-15 -2927 ((-639 (-1168)) $)) (-15 -4061 ((-639 (-3 (|:| -3254 (-1168)) (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))) (-433) $)) (-15 -1290 ((-639 (-1168)) $)) (-15 -4261 ((-639 (-639 (-3 (|:| -3254 (-1168)) (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) $)) (-15 -2582 ((-1096) $)) (-15 -3760 ((-1261) $)) (-15 -3135 ($ (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-436)))))))) +((-4041 (((-112) $ $) NIL)) (-4048 (((-3 (-562) "failed") $) 29) (((-3 (-224) "failed") $) 35) (((-3 (-1168) "failed") $) 41) (((-3 (-1150) "failed") $) 47)) (-3961 (((-562) $) 30) (((-224) $) 36) (((-1168) $) 42) (((-1150) $) 48)) (-2230 (((-112) $) 53)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4068 (((-3 (-562) (-224) (-1168) (-1150) $) $) 55)) (-2369 (((-639 $) $) 57)) (-4208 (((-1096) $) 24) (($ (-1096)) 25)) (-3915 (((-112) $) 56)) (-4054 (((-857) $) 23) (($ (-562)) 26) (($ (-224)) 32) (($ (-1168)) 38) (($ (-1150)) 44) (((-535) $) 59) (((-562) $) 31) (((-224) $) 37) (((-1168) $) 43) (((-1150) $) 49)) (-2276 (((-112) $ (|[\|\|]| (-562))) 10) (((-112) $ (|[\|\|]| (-224))) 13) (((-112) $ (|[\|\|]| (-1168))) 19) (((-112) $ (|[\|\|]| (-1150))) 16)) (-2730 (($ (-1168) (-639 $)) 51) (($ $ (-639 $)) 52)) (-4247 (((-562) $) 27) (((-224) $) 33) (((-1168) $) 39) (((-1150) $) 45)) (-1731 (((-112) $ $) 7))) +(((-1173) (-13 (-1251) (-1092) (-1033 (-562)) (-1033 (-224)) (-1033 (-1168)) (-1033 (-1150)) (-609 (-535)) (-10 -8 (-15 -4208 ((-1096) $)) (-15 -4208 ($ (-1096))) (-15 -4054 ((-562) $)) (-15 -4247 ((-562) $)) (-15 -4054 ((-224) $)) (-15 -4247 ((-224) $)) (-15 -4054 ((-1168) $)) (-15 -4247 ((-1168) $)) (-15 -4054 ((-1150) $)) (-15 -4247 ((-1150) $)) (-15 -2730 ($ (-1168) (-639 $))) (-15 -2730 ($ $ (-639 $))) (-15 -2230 ((-112) $)) (-15 -4068 ((-3 (-562) (-224) (-1168) (-1150) $) $)) (-15 -2369 ((-639 $) $)) (-15 -3915 ((-112) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-562)))) (-15 -2276 ((-112) $ (|[\|\|]| (-224)))) (-15 -2276 ((-112) $ (|[\|\|]| (-1168)))) (-15 -2276 ((-112) $ (|[\|\|]| (-1150))))))) (T -1173)) +((-4208 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1173)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1173)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1173)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1173)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1173)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1173)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1173)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1173)))) (-2730 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-1173))) (-5 *1 (-1173)))) (-2730 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1173)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-3 (-562) (-224) (-1168) (-1150) (-1173))) (-5 *1 (-1173)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1173)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-112)) (-5 *1 (-1173)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1173)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-1173)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1150))) (-5 *2 (-112)) (-5 *1 (-1173))))) +(-13 (-1251) (-1092) (-1033 (-562)) (-1033 (-224)) (-1033 (-1168)) (-1033 (-1150)) (-609 (-535)) (-10 -8 (-15 -4208 ((-1096) $)) (-15 -4208 ($ (-1096))) (-15 -4054 ((-562) $)) (-15 -4247 ((-562) $)) (-15 -4054 ((-224) $)) (-15 -4247 ((-224) $)) (-15 -4054 ((-1168) $)) (-15 -4247 ((-1168) $)) (-15 -4054 ((-1150) $)) (-15 -4247 ((-1150) $)) (-15 -2730 ($ (-1168) (-639 $))) (-15 -2730 ($ $ (-639 $))) (-15 -2230 ((-112) $)) (-15 -4068 ((-3 (-562) (-224) (-1168) (-1150) $) $)) (-15 -2369 ((-639 $) $)) (-15 -3915 ((-112) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-562)))) (-15 -2276 ((-112) $ (|[\|\|]| (-224)))) (-15 -2276 ((-112) $ (|[\|\|]| (-1168)))) (-15 -2276 ((-112) $ (|[\|\|]| (-1150)))))) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) 10)) (-1448 (($) 14)) (-1551 (($ $ $) NIL) (($) 7 T CONST)) (-2993 (($ $ $) NIL) (($) 8 T CONST)) (-1999 (((-916) $) 13)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) 12)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL))) +(((-1174 |#1|) (-839) (-916)) (T -1174)) +NIL +(-839) +((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1800 (($) 9)) (-1448 (($) NIL)) (-1551 (($ $ $) NIL) (($) 7 T CONST)) (-2993 (($ $ $) NIL) (($) 8 T CONST)) (-1999 (((-916) $) NIL)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-3010 (($ $ $) 11)) (-2998 (($ $ $) 10)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL))) +(((-1175 |#1|) (-13 (-839) (-10 -8 (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($)))) (-916)) (T -1175)) +((-2998 (*1 *1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) (-3010 (*1 *1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) (-1800 (*1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916))))) +(-13 (-839) (-10 -8 (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($)))) +((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-1996 (((-639 (-639 (-947 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168))) 57)) (-4351 (((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|)))) 69) (((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|))) 65) (((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168)) 70) (((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168)) 64) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|))))) 93) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|)))) 92) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168))) 94) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))) (-639 (-1168))) 91))) +(((-1176 |#1|) (-10 -7 (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168)))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -4351 ((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168))) (-15 -4351 ((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -4351 ((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)))) (-15 -4351 ((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))))) (-15 -1996 ((-639 (-639 (-947 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168))))) (-554)) (T -1176)) +((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-947 *5)))) (-5 *1 (-1176 *5)))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *4))))) (-5 *1 (-1176 *4)) (-5 *3 (-293 (-406 (-947 *4)))))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *4))))) (-5 *1 (-1176 *4)) (-5 *3 (-406 (-947 *4))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *5))))) (-5 *1 (-1176 *5)) (-5 *3 (-293 (-406 (-947 *5)))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *5))))) (-5 *1 (-1176 *5)) (-5 *3 (-406 (-947 *5))))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-1176 *4)) (-5 *3 (-639 (-293 (-406 (-947 *4))))))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-639 (-406 (-947 *4)))) (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-1176 *4)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-1176 *5)) (-5 *3 (-639 (-293 (-406 (-947 *5))))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-1176 *5))))) +(-10 -7 (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168)))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))))) (-15 -4351 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -4351 ((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168))) (-15 -4351 ((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -4351 ((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)))) (-15 -4351 ((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))))) (-15 -1996 ((-639 (-639 (-947 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168))))) +((-3625 (((-1150)) 7)) (-2306 (((-1150)) 9)) (-2487 (((-1261) (-1150)) 11)) (-3493 (((-1150)) 8))) +(((-1177) (-10 -7 (-15 -3625 ((-1150))) (-15 -3493 ((-1150))) (-15 -2306 ((-1150))) (-15 -2487 ((-1261) (-1150))))) (T -1177)) +((-2487 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1177)))) (-2306 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177)))) (-3493 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177)))) (-3625 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177))))) +(-10 -7 (-15 -3625 ((-1150))) (-15 -3493 ((-1150))) (-15 -2306 ((-1150))) (-15 -2487 ((-1261) (-1150)))) +((-3102 (((-639 (-639 |#1|)) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|)))) 38)) (-3149 (((-639 (-639 (-639 |#1|))) (-639 (-639 |#1|))) 24)) (-3486 (((-1179 (-639 |#1|)) (-639 |#1|)) 34)) (-3734 (((-639 (-639 |#1|)) (-639 |#1|)) 30)) (-3993 (((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 (-639 (-639 |#1|)))) 37)) (-2152 (((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 |#1|) (-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|)))) 36)) (-2146 (((-639 (-639 |#1|)) (-639 (-639 |#1|))) 28)) (-3494 (((-639 |#1|) (-639 |#1|)) 31)) (-3450 (((-639 (-639 (-639 |#1|))) (-639 |#1|) (-639 (-639 (-639 |#1|)))) 18)) (-2598 (((-639 (-639 (-639 |#1|))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 (-639 |#1|)))) 16)) (-3987 (((-2 (|:| |fs| (-112)) (|:| |sd| (-639 |#1|)) (|:| |td| (-639 (-639 |#1|)))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 |#1|))) 14)) (-1727 (((-639 (-639 |#1|)) (-639 (-639 (-639 |#1|)))) 39)) (-1487 (((-639 (-639 |#1|)) (-1179 (-639 |#1|))) 41))) +(((-1178 |#1|) (-10 -7 (-15 -3987 ((-2 (|:| |fs| (-112)) (|:| |sd| (-639 |#1|)) (|:| |td| (-639 (-639 |#1|)))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 |#1|)))) (-15 -2598 ((-639 (-639 (-639 |#1|))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 (-639 |#1|))))) (-15 -3450 ((-639 (-639 (-639 |#1|))) (-639 |#1|) (-639 (-639 (-639 |#1|))))) (-15 -3102 ((-639 (-639 |#1|)) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))))) (-15 -1727 ((-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))))) (-15 -1487 ((-639 (-639 |#1|)) (-1179 (-639 |#1|)))) (-15 -3149 ((-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)))) (-15 -3486 ((-1179 (-639 |#1|)) (-639 |#1|))) (-15 -2146 ((-639 (-639 |#1|)) (-639 (-639 |#1|)))) (-15 -3734 ((-639 (-639 |#1|)) (-639 |#1|))) (-15 -3494 ((-639 |#1|) (-639 |#1|))) (-15 -2152 ((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 |#1|) (-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))))) (-15 -3993 ((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 (-639 (-639 |#1|)))))) (-845)) (T -1178)) +((-3993 (*1 *2 *3) (-12 (-4 *4 (-845)) (-5 *2 (-2 (|:| |f1| (-639 *4)) (|:| |f2| (-639 (-639 (-639 *4)))) (|:| |f3| (-639 (-639 *4))) (|:| |f4| (-639 (-639 (-639 *4)))))) (-5 *1 (-1178 *4)) (-5 *3 (-639 (-639 (-639 *4)))))) (-2152 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-845)) (-5 *3 (-639 *6)) (-5 *5 (-639 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-639 *5)) (|:| |f3| *5) (|:| |f4| (-639 *5)))) (-5 *1 (-1178 *6)) (-5 *4 (-639 *5)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-1178 *3)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-845)) (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4)) (-5 *3 (-639 *4)))) (-2146 (*1 *2 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-845)) (-5 *1 (-1178 *3)))) (-3486 (*1 *2 *3) (-12 (-4 *4 (-845)) (-5 *2 (-1179 (-639 *4))) (-5 *1 (-1178 *4)) (-5 *3 (-639 *4)))) (-3149 (*1 *2 *3) (-12 (-4 *4 (-845)) (-5 *2 (-639 (-639 (-639 *4)))) (-5 *1 (-1178 *4)) (-5 *3 (-639 (-639 *4))))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-1179 (-639 *4))) (-4 *4 (-845)) (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-639 *4)))) (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4)) (-4 *4 (-845)))) (-3102 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-639 (-639 *4)))) (-5 *2 (-639 (-639 *4))) (-4 *4 (-845)) (-5 *1 (-1178 *4)))) (-3450 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-639 (-639 *4)))) (-5 *3 (-639 *4)) (-4 *4 (-845)) (-5 *1 (-1178 *4)))) (-2598 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-639 (-639 (-639 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-639 *5)) (-4 *5 (-845)) (-5 *1 (-1178 *5)))) (-3987 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-845)) (-5 *4 (-639 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-639 *4)))) (-5 *1 (-1178 *6)) (-5 *5 (-639 *4))))) +(-10 -7 (-15 -3987 ((-2 (|:| |fs| (-112)) (|:| |sd| (-639 |#1|)) (|:| |td| (-639 (-639 |#1|)))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 |#1|)))) (-15 -2598 ((-639 (-639 (-639 |#1|))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 (-639 |#1|))))) (-15 -3450 ((-639 (-639 (-639 |#1|))) (-639 |#1|) (-639 (-639 (-639 |#1|))))) (-15 -3102 ((-639 (-639 |#1|)) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))))) (-15 -1727 ((-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))))) (-15 -1487 ((-639 (-639 |#1|)) (-1179 (-639 |#1|)))) (-15 -3149 ((-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)))) (-15 -3486 ((-1179 (-639 |#1|)) (-639 |#1|))) (-15 -2146 ((-639 (-639 |#1|)) (-639 (-639 |#1|)))) (-15 -3734 ((-639 (-639 |#1|)) (-639 |#1|))) (-15 -3494 ((-639 |#1|) (-639 |#1|))) (-15 -2152 ((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 |#1|) (-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))))) (-15 -3993 ((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 (-639 (-639 |#1|)))))) +((-3631 (($ (-639 (-639 |#1|))) 10)) (-2824 (((-639 (-639 |#1|)) $) 11)) (-4054 (((-857) $) 26))) +(((-1179 |#1|) (-10 -8 (-15 -3631 ($ (-639 (-639 |#1|)))) (-15 -2824 ((-639 (-639 |#1|)) $)) (-15 -4054 ((-857) $))) (-1092)) (T -1179)) +((-4054 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1179 *3)) (-4 *3 (-1092)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 *3))) (-5 *1 (-1179 *3)) (-4 *3 (-1092)))) (-3631 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-1179 *3))))) +(-10 -8 (-15 -3631 ($ (-639 (-639 |#1|)))) (-15 -2824 ((-639 (-639 |#1|)) $)) (-15 -4054 ((-857) $))) +((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-3052 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) NIL)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1472 (((-3 |#2| "failed") |#1| $) NIL)) (-1800 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) NIL)) (-4197 ((|#1| $) NIL (|has| |#1| (-845)))) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-639 |#2|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-3874 ((|#1| $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1520 (((-639 |#1|) $) NIL)) (-4265 (((-112) |#1| $) NIL)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-2093 (((-639 |#1|) $) NIL)) (-1570 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL)) (-2716 (($ $ |#2|) NIL (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3564 (($) NIL) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) NIL (-12 (|has| $ (-6 -4402)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-4054 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) NIL)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) NIL (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1180 |#1| |#2|) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4402))) (-1092) (-1092)) (T -1180)) +NIL +(-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4402))) +((-3720 ((|#1| (-639 |#1|)) 32)) (-1356 ((|#1| |#1| (-562)) 18)) (-2712 (((-1164 |#1|) |#1| (-916)) 15))) +(((-1181 |#1|) (-10 -7 (-15 -3720 (|#1| (-639 |#1|))) (-15 -2712 ((-1164 |#1|) |#1| (-916))) (-15 -1356 (|#1| |#1| (-562)))) (-362)) (T -1181)) +((-1356 (*1 *2 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-1181 *2)) (-4 *2 (-362)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-5 *2 (-1164 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-362)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-1181 *2)) (-4 *2 (-362))))) +(-10 -7 (-15 -3720 (|#1| (-639 |#1|))) (-15 -2712 ((-1164 |#1|) |#1| (-916))) (-15 -1356 (|#1| |#1| (-562)))) +((-1443 (($) 10) (($ (-639 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)))) 14)) (-4000 (($ (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1720 (((-639 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) $) 39) (((-639 |#3|) $) 41)) (-1490 (($ (-1 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4152 (($ (-1 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3262 (((-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) $) 54)) (-4300 (($ (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) $) 16)) (-2093 (((-639 |#2|) $) 19)) (-1570 (((-112) |#2| $) 59)) (-3251 (((-3 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) "failed") (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) $) 58)) (-1904 (((-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) $) 63)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-2411 (((-639 |#3|) $) 43)) (-2343 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) $) NIL) (((-766) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) $) NIL) (((-766) |#3| $) NIL) (((-766) (-1 (-112) |#3|) $) 67)) (-4054 (((-857) $) 27)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1731 (((-112) $ $) 49))) +(((-1182 |#1| |#2| |#3|) (-10 -8 (-15 -1731 ((-112) |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -4152 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1443 (|#1| (-639 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))))) (-15 -1443 (|#1|)) (-15 -4152 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1490 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#3|) |#1|)) (-15 -1720 ((-639 |#3|) |#1|)) (-15 -1723 ((-766) |#3| |#1|)) (-15 -2343 (|#3| |#1| |#2| |#3|)) (-15 -2343 (|#3| |#1| |#2|)) (-15 -2411 ((-639 |#3|) |#1|)) (-15 -1570 ((-112) |#2| |#1|)) (-15 -2093 ((-639 |#2|) |#1|)) (-15 -4000 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4000 (|#1| (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -4000 (|#1| (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -3251 ((-3 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) "failed") (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -3262 ((-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -4300 (|#1| (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -1904 ((-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -1723 ((-766) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -1720 ((-639 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -1723 ((-766) (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -1763 ((-112) (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -1744 ((-112) (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -1490 (|#1| (-1 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -4152 (|#1| (-1 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|))) (-1183 |#2| |#3|) (-1092) (-1092)) (T -1182)) +NIL +(-10 -8 (-15 -1731 ((-112) |#1| |#1|)) (-15 -4054 ((-857) |#1|)) (-15 -4152 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1443 (|#1| (-639 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))))) (-15 -1443 (|#1|)) (-15 -4152 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1490 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1744 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1763 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#3|) |#1|)) (-15 -1720 ((-639 |#3|) |#1|)) (-15 -1723 ((-766) |#3| |#1|)) (-15 -2343 (|#3| |#1| |#2| |#3|)) (-15 -2343 (|#3| |#1| |#2|)) (-15 -2411 ((-639 |#3|) |#1|)) (-15 -1570 ((-112) |#2| |#1|)) (-15 -2093 ((-639 |#2|) |#1|)) (-15 -4000 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4000 (|#1| (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -4000 (|#1| (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -3251 ((-3 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) "failed") (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -3262 ((-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -4300 (|#1| (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -1904 ((-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -1723 ((-766) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) |#1|)) (-15 -1720 ((-639 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -1723 ((-766) (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -1763 ((-112) (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -1744 ((-112) (-1 (-112) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -1490 (|#1| (-1 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|)) (-15 -4152 (|#1| (-1 (-2 (|:| -2320 |#2|) (|:| -2694 |#3|)) (-2 (|:| -2320 |#2|) (|:| -2694 |#3|))) |#1|))) +((-4041 (((-112) $ $) 19 (-4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-1443 (($) 72) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 71)) (-3052 (((-1261) $ |#1| |#1|) 99 (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) 8)) (-4200 ((|#2| $ |#1| |#2|) 73)) (-3111 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 45 (|has| $ (-6 -4402)))) (-3556 (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 55 (|has| $ (-6 -4402)))) (-1472 (((-3 |#2| "failed") |#1| $) 61)) (-1800 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402))))) (-4000 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 47 (|has| $ (-6 -4402))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 46 (|has| $ (-6 -4402))) (((-3 |#2| "failed") |#1| $) 62)) (-1475 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 54 (|has| $ (-6 -4402)))) (-1955 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 56 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 53 (|has| $ (-6 -4402))) (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 52 (|has| $ (-6 -4402)))) (-1505 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4403)))) (-1420 ((|#2| $ |#1|) 88)) (-1720 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 30 (|has| $ (-6 -4402))) (((-639 |#2|) $) 79 (|has| $ (-6 -4402)))) (-3292 (((-112) $ (-766)) 9)) (-4197 ((|#1| $) 96 (|has| |#1| (-845)))) (-1912 (((-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 29 (|has| $ (-6 -4402))) (((-639 |#2|) $) 80 (|has| $ (-6 -4402)))) (-1669 (((-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402))))) (-3874 ((|#1| $) 95 (|has| |#1| (-845)))) (-1490 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 34 (|has| $ (-6 -4403))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4403)))) (-4152 (($ (-1 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3289 (((-112) $ (-766)) 10)) (-2913 (((-1150) $) 22 (-4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-1520 (((-639 |#1|) $) 63)) (-4265 (((-112) |#1| $) 64)) (-3262 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 39)) (-4300 (($ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 40)) (-2093 (((-639 |#1|) $) 93)) (-1570 (((-112) |#1| $) 92)) (-1709 (((-1112) $) 21 (-4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-1421 ((|#2| $) 97 (|has| |#1| (-845)))) (-3251 (((-3 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) "failed") (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 51)) (-2716 (($ $ |#2|) 98 (|has| $ (-6 -4403)))) (-1904 (((-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 41)) (-1763 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 32 (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))))) 26 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 25 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) 24 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 23 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4402)) (|has| |#2| (-1092))))) (-2411 (((-639 |#2|) $) 91)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3564 (($) 49) (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 48)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 31 (|has| $ (-6 -4402))) (((-766) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| $ (-6 -4402)))) (((-766) |#2| $) 81 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4402)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))))) (-4066 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 50)) (-4054 (((-857) $) 18 (-4037 (|has| |#2| (-609 (-857))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857)))))) (-1932 (($ (-639 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) 42)) (-1744 (((-112) (-1 (-112) (-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) $) 33 (|has| $ (-6 -4402))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (-4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-1183 |#1| |#2|) (-139) (-1092) (-1092)) (T -1183)) +((-4200 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-1443 (*1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-1443 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2320 *3) (|:| -2694 *4)))) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *1 (-1183 *3 *4)))) (-4152 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092))))) +(-13 (-606 |t#1| |t#2|) (-600 |t#1| |t#2|) (-10 -8 (-15 -4200 (|t#2| $ |t#1| |t#2|)) (-15 -1443 ($)) (-15 -1443 ($ (-639 (-2 (|:| -2320 |t#1|) (|:| -2694 |t#2|))))) (-15 -4152 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2320 |#1|) (|:| -2694 |#2|))) . T) ((-102) -4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) ((-609 (-857)) -4037 (|has| |#2| (-1092)) (|has| |#2| (-609 (-857))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-609 (-857)))) ((-150 #0#) . T) ((-610 (-535)) |has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-610 (-535))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-488 #0#) . T) ((-488 |#2|) . T) ((-600 |#1| |#2|) . T) ((-513 #0# #0#) -12 (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-308 (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)))) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-606 |#1| |#2|) . T) ((-1092) -4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2320 |#1|) (|:| -2694 |#2|)) (-1092))) ((-1207) . T)) +((-1426 (((-112)) 24)) (-1338 (((-1261) (-1150)) 26)) (-2156 (((-112)) 36)) (-1764 (((-1261)) 34)) (-1451 (((-1261) (-1150) (-1150)) 25)) (-3805 (((-112)) 37)) (-4300 (((-1261) |#1| |#2|) 44)) (-3031 (((-1261)) 20)) (-2523 (((-3 |#2| "failed") |#1|) 42)) (-1687 (((-1261)) 35))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -3031 ((-1261))) (-15 -1451 ((-1261) (-1150) (-1150))) (-15 -1338 ((-1261) (-1150))) (-15 -1764 ((-1261))) (-15 -1687 ((-1261))) (-15 -1426 ((-112))) (-15 -2156 ((-112))) (-15 -3805 ((-112))) (-15 -2523 ((-3 |#2| "failed") |#1|)) (-15 -4300 ((-1261) |#1| |#2|))) (-1092) (-1092)) (T -1184)) +((-4300 (*1 *2 *3 *4) (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-2523 (*1 *2 *3) (|partial| -12 (-4 *2 (-1092)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1092)))) (-3805 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-2156 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-1426 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-1687 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-1764 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1184 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)))) (-1451 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1184 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)))) (-3031 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092))))) +(-10 -7 (-15 -3031 ((-1261))) (-15 -1451 ((-1261) (-1150) (-1150))) (-15 -1338 ((-1261) (-1150))) (-15 -1764 ((-1261))) (-15 -1687 ((-1261))) (-15 -1426 ((-112))) (-15 -2156 ((-112))) (-15 -3805 ((-112))) (-15 -2523 ((-3 |#2| "failed") |#1|)) (-15 -4300 ((-1261) |#1| |#2|))) +((-2749 (((-1150) (-1150)) 18)) (-4175 (((-52) (-1150)) 21))) +(((-1185) (-10 -7 (-15 -4175 ((-52) (-1150))) (-15 -2749 ((-1150) (-1150))))) (T -1185)) +((-2749 (*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1185)))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-1185))))) +(-10 -7 (-15 -4175 ((-52) (-1150))) (-15 -2749 ((-1150) (-1150)))) +((-4054 (((-1187) |#1|) 11))) +(((-1186 |#1|) (-10 -7 (-15 -4054 ((-1187) |#1|))) (-1092)) (T -1186)) +((-4054 (*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-1186 *3)) (-4 *3 (-1092))))) +(-10 -7 (-15 -4054 ((-1187) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1522 (((-639 (-1150)) $) 34)) (-3250 (((-639 (-1150)) $ (-639 (-1150))) 37)) (-3491 (((-639 (-1150)) $ (-639 (-1150))) 36)) (-1916 (((-639 (-1150)) $ (-639 (-1150))) 38)) (-3515 (((-639 (-1150)) $) 33)) (-1458 (($) 22)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3108 (((-639 (-1150)) $) 35)) (-1479 (((-1261) $ (-562)) 29) (((-1261) $) 30)) (-4208 (($ (-857) (-562)) 26) (($ (-857) (-562) (-857)) NIL)) (-4054 (((-857) $) 40) (($ (-857)) 24)) (-1731 (((-112) $ $) NIL))) +(((-1187) (-13 (-1092) (-612 (-857)) (-10 -8 (-15 -4208 ($ (-857) (-562))) (-15 -4208 ($ (-857) (-562) (-857))) (-15 -1479 ((-1261) $ (-562))) (-15 -1479 ((-1261) $)) (-15 -3108 ((-639 (-1150)) $)) (-15 -1522 ((-639 (-1150)) $)) (-15 -1458 ($)) (-15 -3515 ((-639 (-1150)) $)) (-15 -1916 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -3250 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -3491 ((-639 (-1150)) $ (-639 (-1150))))))) (T -1187)) +((-4208 (*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-1187)))) (-4208 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-1187)))) (-1479 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1187)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1187)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-1458 (*1 *1) (-5 *1 (-1187))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-1916 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-3250 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-3491 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) +(-13 (-1092) (-612 (-857)) (-10 -8 (-15 -4208 ($ (-857) (-562))) (-15 -4208 ($ (-857) (-562) (-857))) (-15 -1479 ((-1261) $ (-562))) (-15 -1479 ((-1261) $)) (-15 -3108 ((-639 (-1150)) $)) (-15 -1522 ((-639 (-1150)) $)) (-15 -1458 ($)) (-15 -3515 ((-639 (-1150)) $)) (-15 -1916 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -3250 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -3491 ((-639 (-1150)) $ (-639 (-1150)))))) +((-4041 (((-112) $ $) NIL)) (-2583 (((-1150) $ (-1150)) 17) (((-1150) $) 16)) (-3067 (((-1150) $ (-1150)) 15)) (-2413 (($ $ (-1150)) NIL)) (-1302 (((-3 (-1150) "failed") $) 11)) (-4101 (((-1150) $) 8)) (-1861 (((-3 (-1150) "failed") $) 12)) (-1805 (((-1150) $) 9)) (-3316 (($ (-387)) NIL) (($ (-387) (-1150)) NIL)) (-3254 (((-387) $) NIL)) (-2913 (((-1150) $) NIL)) (-3523 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2778 (((-112) $) 18)) (-4054 (((-857) $) NIL)) (-3948 (($ $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-1188) (-13 (-363 (-387) (-1150)) (-10 -8 (-15 -2583 ((-1150) $ (-1150))) (-15 -2583 ((-1150) $)) (-15 -4101 ((-1150) $)) (-15 -1302 ((-3 (-1150) "failed") $)) (-15 -1861 ((-3 (-1150) "failed") $)) (-15 -2778 ((-112) $))))) (T -1188)) +((-2583 (*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-1302 (*1 *2 *1) (|partial| -12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-1861 (*1 *2 *1) (|partial| -12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188))))) +(-13 (-363 (-387) (-1150)) (-10 -8 (-15 -2583 ((-1150) $ (-1150))) (-15 -2583 ((-1150) $)) (-15 -4101 ((-1150) $)) (-15 -1302 ((-3 (-1150) "failed") $)) (-15 -1861 ((-3 (-1150) "failed") $)) (-15 -2778 ((-112) $)))) +((-2277 (((-3 (-562) "failed") |#1|) 19)) (-1589 (((-3 (-562) "failed") |#1|) 14)) (-4183 (((-562) (-1150)) 28))) +(((-1189 |#1|) (-10 -7 (-15 -2277 ((-3 (-562) "failed") |#1|)) (-15 -1589 ((-3 (-562) "failed") |#1|)) (-15 -4183 ((-562) (-1150)))) (-1044)) (T -1189)) +((-4183 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-562)) (-5 *1 (-1189 *4)) (-4 *4 (-1044)))) (-1589 (*1 *2 *3) (|partial| -12 (-5 *2 (-562)) (-5 *1 (-1189 *3)) (-4 *3 (-1044)))) (-2277 (*1 *2 *3) (|partial| -12 (-5 *2 (-562)) (-5 *1 (-1189 *3)) (-4 *3 (-1044))))) +(-10 -7 (-15 -2277 ((-3 (-562) "failed") |#1|)) (-15 -1589 ((-3 (-562) "failed") |#1|)) (-15 -4183 ((-562) (-1150)))) +((-2239 (((-1125 (-224))) 9))) +(((-1190) (-10 -7 (-15 -2239 ((-1125 (-224)))))) (T -1190)) +((-2239 (*1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1190))))) +(-10 -7 (-15 -2239 ((-1125 (-224))))) +((-4100 (($) 11)) (-3055 (($ $) 35)) (-3033 (($ $) 33)) (-4138 (($ $) 25)) (-3078 (($ $) 17)) (-1566 (($ $) 15)) (-3066 (($ $) 19)) (-4174 (($ $) 30)) (-3044 (($ $) 34)) (-4151 (($ $) 29))) +(((-1191 |#1|) (-10 -8 (-15 -4100 (|#1|)) (-15 -3055 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -4138 (|#1| |#1|)) (-15 -4174 (|#1| |#1|)) (-15 -4151 (|#1| |#1|))) (-1192)) (T -1191)) +NIL +(-10 -8 (-15 -4100 (|#1|)) (-15 -3055 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -4138 (|#1| |#1|)) (-15 -4174 (|#1| |#1|)) (-15 -4151 (|#1| |#1|))) +((-2988 (($ $) 26)) (-4097 (($ $) 11)) (-4207 (($ $) 27)) (-4074 (($ $) 10)) (-3014 (($ $) 28)) (-4119 (($ $) 9)) (-4100 (($) 16)) (-4365 (($ $) 19)) (-3430 (($ $) 18)) (-3023 (($ $) 29)) (-4130 (($ $) 8)) (-3001 (($ $) 30)) (-4108 (($ $) 7)) (-2978 (($ $) 31)) (-4087 (($ $) 6)) (-3055 (($ $) 20)) (-4165 (($ $) 32)) (-3033 (($ $) 21)) (-4138 (($ $) 33)) (-3078 (($ $) 22)) (-4182 (($ $) 34)) (-1566 (($ $) 23)) (-4195 (($ $) 35)) (-3066 (($ $) 24)) (-4174 (($ $) 36)) (-3044 (($ $) 25)) (-4151 (($ $) 37)) (** (($ $ $) 17))) +(((-1192) (-139)) (T -1192)) +((-4100 (*1 *1) (-4 *1 (-1192)))) +(-13 (-1195) (-95) (-492) (-35) (-283) (-10 -8 (-15 -4100 ($)))) +(((-35) . T) ((-95) . T) ((-283) . T) ((-492) . T) ((-1195) . T)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2534 ((|#1| $) 17)) (-3086 (($ |#1| (-639 $)) 23) (($ (-639 |#1|)) 27) (($ |#1|) 25)) (-4336 (((-112) $ (-766)) 47)) (-1512 ((|#1| $ |#1|) 14 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 13 (|has| $ (-6 -4403)))) (-1800 (($) NIL T CONST)) (-1720 (((-639 |#1|) $) 51 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 42)) (-4379 (((-112) $ $) 32 (|has| |#1| (-1092)))) (-3292 (((-112) $ (-766)) 40)) (-1912 (((-639 |#1|) $) 52 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1490 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 22)) (-3289 (((-112) $ (-766)) 39)) (-4007 (((-639 |#1|) $) 36)) (-3449 (((-112) $) 35)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1763 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 73)) (-2974 (((-112) $) 9)) (-4307 (($) 10)) (-2343 ((|#1| $ "value") NIL)) (-2568 (((-562) $ $) 31)) (-2963 (((-639 $) $) 58)) (-2668 (((-112) $ $) 76)) (-4232 (((-639 $) $) 71)) (-3927 (($ $) 72)) (-2424 (((-112) $) 55)) (-1723 (((-766) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4402))) (((-766) |#1| $) 16 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-4220 (($ $) 57)) (-4054 (((-857) $) 60 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) 12)) (-4055 (((-112) $ $) 29 (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 28 (|has| |#1| (-1092)))) (-3492 (((-766) $) 38 (|has| $ (-6 -4402))))) +(((-1193 |#1|) (-13 (-1005 |#1|) (-10 -8 (-6 -4402) (-6 -4403) (-15 -3086 ($ |#1| (-639 $))) (-15 -3086 ($ (-639 |#1|))) (-15 -3086 ($ |#1|)) (-15 -2424 ((-112) $)) (-15 -3927 ($ $)) (-15 -4232 ((-639 $) $)) (-15 -2668 ((-112) $ $)) (-15 -2963 ((-639 $) $)))) (-1092)) (T -1193)) +((-2424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1092)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-1193 *2))) (-5 *1 (-1193 *2)) (-4 *2 (-1092)))) (-3086 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-1193 *3)))) (-3086 (*1 *1 *2) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1092)))) (-3927 (*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1092)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-639 (-1193 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1092)))) (-2668 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1092)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-639 (-1193 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) +(-13 (-1005 |#1|) (-10 -8 (-6 -4402) (-6 -4403) (-15 -3086 ($ |#1| (-639 $))) (-15 -3086 ($ (-639 |#1|))) (-15 -3086 ($ |#1|)) (-15 -2424 ((-112) $)) (-15 -3927 ($ $)) (-15 -4232 ((-639 $) $)) (-15 -2668 ((-112) $ $)) (-15 -2963 ((-639 $) $)))) +((-4097 (($ $) 15)) (-4119 (($ $) 12)) (-4130 (($ $) 10)) (-4108 (($ $) 17))) +(((-1194 |#1|) (-10 -8 (-15 -4108 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -4097 (|#1| |#1|))) (-1195)) (T -1194)) +NIL +(-10 -8 (-15 -4108 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -4097 (|#1| |#1|))) +((-4097 (($ $) 11)) (-4074 (($ $) 10)) (-4119 (($ $) 9)) (-4130 (($ $) 8)) (-4108 (($ $) 7)) (-4087 (($ $) 6))) +(((-1195) (-139)) (T -1195)) +((-4097 (*1 *1 *1) (-4 *1 (-1195))) (-4074 (*1 *1 *1) (-4 *1 (-1195))) (-4119 (*1 *1 *1) (-4 *1 (-1195))) (-4130 (*1 *1 *1) (-4 *1 (-1195))) (-4108 (*1 *1 *1) (-4 *1 (-1195))) (-4087 (*1 *1 *1) (-4 *1 (-1195)))) +(-13 (-10 -8 (-15 -4087 ($ $)) (-15 -4108 ($ $)) (-15 -4130 ($ $)) (-15 -4119 ($ $)) (-15 -4074 ($ $)) (-15 -4097 ($ $)))) +((-1675 ((|#2| |#2|) 88)) (-3263 (((-112) |#2|) 26)) (-1657 ((|#2| |#2|) 30)) (-1670 ((|#2| |#2|) 32)) (-3487 ((|#2| |#2| (-1168)) 83) ((|#2| |#2|) 84)) (-1905 (((-168 |#2|) |#2|) 28)) (-1984 ((|#2| |#2| (-1168)) 85) ((|#2| |#2|) 86))) +(((-1196 |#1| |#2|) (-10 -7 (-15 -3487 (|#2| |#2|)) (-15 -3487 (|#2| |#2| (-1168))) (-15 -1984 (|#2| |#2|)) (-15 -1984 (|#2| |#2| (-1168))) (-15 -1675 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -3263 ((-112) |#2|)) (-15 -1905 ((-168 |#2|) |#2|))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -1196)) +((-1905 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-168 *3)) (-5 *1 (-1196 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-3263 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-112)) (-5 *1 (-1196 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-1984 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-1984 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-3487 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) +(-10 -7 (-15 -3487 (|#2| |#2|)) (-15 -3487 (|#2| |#2| (-1168))) (-15 -1984 (|#2| |#2|)) (-15 -1984 (|#2| |#2| (-1168))) (-15 -1675 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -3263 ((-112) |#2|)) (-15 -1905 ((-168 |#2|) |#2|))) +((-1691 ((|#4| |#4| |#1|) 27)) (-3279 ((|#4| |#4| |#1|) 28))) +(((-1197 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1691 (|#4| |#4| |#1|)) (-15 -3279 (|#4| |#4| |#1|))) (-554) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -1197)) +((-3279 (*1 *2 *2 *3) (-12 (-4 *3 (-554)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1197 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-1691 (*1 *2 *2 *3) (-12 (-4 *3 (-554)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1197 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) +(-10 -7 (-15 -1691 (|#4| |#4| |#1|)) (-15 -3279 (|#4| |#4| |#1|))) +((-3774 ((|#2| |#2|) 133)) (-1777 ((|#2| |#2|) 130)) (-4147 ((|#2| |#2|) 121)) (-2157 ((|#2| |#2|) 118)) (-2591 ((|#2| |#2|) 126)) (-3825 ((|#2| |#2|) 114)) (-1818 ((|#2| |#2|) 43)) (-3272 ((|#2| |#2|) 94)) (-4120 ((|#2| |#2|) 74)) (-2028 ((|#2| |#2|) 128)) (-3147 ((|#2| |#2|) 116)) (-3898 ((|#2| |#2|) 138)) (-2564 ((|#2| |#2|) 136)) (-2319 ((|#2| |#2|) 137)) (-1778 ((|#2| |#2|) 135)) (-3588 ((|#2| |#2|) 148)) (-2502 ((|#2| |#2|) 30 (-12 (|has| |#2| (-610 (-887 |#1|))) (|has| |#2| (-881 |#1|)) (|has| |#1| (-610 (-887 |#1|))) (|has| |#1| (-881 |#1|))))) (-1470 ((|#2| |#2|) 75)) (-3032 ((|#2| |#2|) 139)) (-3525 ((|#2| |#2|) 140)) (-4355 ((|#2| |#2|) 127)) (-2795 ((|#2| |#2|) 115)) (-2994 ((|#2| |#2|) 134)) (-1863 ((|#2| |#2|) 132)) (-1463 ((|#2| |#2|) 122)) (-1749 ((|#2| |#2|) 120)) (-1774 ((|#2| |#2|) 124)) (-3299 ((|#2| |#2|) 112))) +(((-1198 |#1| |#2|) (-10 -7 (-15 -3525 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -3588 (|#2| |#2|)) (-15 -3272 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -3032 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -1463 (|#2| |#2|)) (-15 -2994 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)) (-15 -4355 (|#2| |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -2028 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -2591 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -2157 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1863 (|#2| |#2|)) (-15 -1778 (|#2| |#2|)) (-15 -2564 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (IF (|has| |#1| (-881 |#1|)) (IF (|has| |#1| (-610 (-887 |#1|))) (IF (|has| |#2| (-610 (-887 |#1|))) (IF (|has| |#2| (-881 |#1|)) (-15 -2502 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-845) (-451)) (-13 (-429 |#1|) (-1192))) (T -1198)) +((-2502 (*1 *2 *2) (-12 (-4 *3 (-610 (-887 *3))) (-4 *3 (-881 *3)) (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-610 (-887 *3))) (-4 *2 (-881 *3)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2564 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1778 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1863 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1749 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2157 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2591 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2028 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3147 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-4355 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2795 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2994 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1463 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1774 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3032 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1470 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3272 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3588 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3525 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192)))))) +(-10 -7 (-15 -3525 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -3588 (|#2| |#2|)) (-15 -3272 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1470 (|#2| |#2|)) (-15 -3032 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -1463 (|#2| |#2|)) (-15 -2994 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)) (-15 -4355 (|#2| |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -2028 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -2591 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -2157 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1863 (|#2| |#2|)) (-15 -1778 (|#2| |#2|)) (-15 -2564 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -3898 (|#2| |#2|)) (IF (|has| |#1| (-881 |#1|)) (IF (|has| |#1| (-610 (-887 |#1|))) (IF (|has| |#2| (-610 (-887 |#1|))) (IF (|has| |#2| (-881 |#1|)) (-15 -2502 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-4377 (((-112) |#5| $) 59) (((-112) $) 101)) (-3049 ((|#5| |#5| $) 74)) (-3556 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-2839 (((-639 |#5|) (-639 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-4048 (((-3 $ "failed") (-639 |#5|)) 125)) (-1434 (((-3 $ "failed") $) 111)) (-2387 ((|#5| |#5| $) 93)) (-4091 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-3595 ((|#5| |#5| $) 97)) (-1955 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-2267 (((-2 (|:| -1450 (-639 |#5|)) (|:| -3316 (-639 |#5|))) $) 54)) (-2573 (((-112) |#5| $) 57) (((-112) $) 102)) (-4339 ((|#4| $) 107)) (-1504 (((-3 |#5| "failed") $) 109)) (-3576 (((-639 |#5|) $) 48)) (-2890 (((-112) |#5| $) 66) (((-112) $) 106)) (-1849 ((|#5| |#5| $) 80)) (-1408 (((-112) $ $) 26)) (-2766 (((-112) |#5| $) 62) (((-112) $) 104)) (-1532 ((|#5| |#5| $) 77)) (-1421 (((-3 |#5| "failed") $) 108)) (-1353 (($ $ |#5|) 126)) (-3598 (((-766) $) 51)) (-4066 (($ (-639 |#5|)) 123)) (-1812 (($ $ |#4|) 121)) (-3274 (($ $ |#4|) 120)) (-3277 (($ $) 119)) (-4054 (((-857) $) NIL) (((-639 |#5|) $) 112)) (-3730 (((-766) $) 129)) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-4252 (((-112) $ (-1 (-112) |#5| (-639 |#5|))) 99)) (-4089 (((-639 |#4|) $) 114)) (-3694 (((-112) |#4| $) 117)) (-1731 (((-112) $ $) 19))) +(((-1199 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3730 ((-766) |#1|)) (-15 -1353 (|#1| |#1| |#5|)) (-15 -3556 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3694 ((-112) |#4| |#1|)) (-15 -4089 ((-639 |#4|) |#1|)) (-15 -1434 ((-3 |#1| "failed") |#1|)) (-15 -1504 ((-3 |#5| "failed") |#1|)) (-15 -1421 ((-3 |#5| "failed") |#1|)) (-15 -3595 (|#5| |#5| |#1|)) (-15 -3277 (|#1| |#1|)) (-15 -2387 (|#5| |#5| |#1|)) (-15 -1849 (|#5| |#5| |#1|)) (-15 -1532 (|#5| |#5| |#1|)) (-15 -3049 (|#5| |#5| |#1|)) (-15 -2839 ((-639 |#5|) (-639 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1955 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2890 ((-112) |#1|)) (-15 -2766 ((-112) |#1|)) (-15 -4377 ((-112) |#1|)) (-15 -4252 ((-112) |#1| (-1 (-112) |#5| (-639 |#5|)))) (-15 -2890 ((-112) |#5| |#1|)) (-15 -2766 ((-112) |#5| |#1|)) (-15 -4377 ((-112) |#5| |#1|)) (-15 -4091 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2573 ((-112) |#1|)) (-15 -2573 ((-112) |#5| |#1|)) (-15 -2267 ((-2 (|:| -1450 (-639 |#5|)) (|:| -3316 (-639 |#5|))) |#1|)) (-15 -3598 ((-766) |#1|)) (-15 -3576 ((-639 |#5|) |#1|)) (-15 -2652 ((-3 (-2 (|:| |bas| |#1|) (|:| -2775 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2652 ((-3 (-2 (|:| |bas| |#1|) (|:| -2775 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1408 ((-112) |#1| |#1|)) (-15 -1812 (|#1| |#1| |#4|)) (-15 -3274 (|#1| |#1| |#4|)) (-15 -4339 (|#4| |#1|)) (-15 -4048 ((-3 |#1| "failed") (-639 |#5|))) (-15 -4054 ((-639 |#5|) |#1|)) (-15 -4066 (|#1| (-639 |#5|))) (-15 -1955 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1955 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3556 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1955 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) (-1200 |#2| |#3| |#4| |#5|) (-554) (-788) (-845) (-1058 |#2| |#3| |#4|)) (T -1199)) +NIL +(-10 -8 (-15 -3730 ((-766) |#1|)) (-15 -1353 (|#1| |#1| |#5|)) (-15 -3556 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3694 ((-112) |#4| |#1|)) (-15 -4089 ((-639 |#4|) |#1|)) (-15 -1434 ((-3 |#1| "failed") |#1|)) (-15 -1504 ((-3 |#5| "failed") |#1|)) (-15 -1421 ((-3 |#5| "failed") |#1|)) (-15 -3595 (|#5| |#5| |#1|)) (-15 -3277 (|#1| |#1|)) (-15 -2387 (|#5| |#5| |#1|)) (-15 -1849 (|#5| |#5| |#1|)) (-15 -1532 (|#5| |#5| |#1|)) (-15 -3049 (|#5| |#5| |#1|)) (-15 -2839 ((-639 |#5|) (-639 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1955 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2890 ((-112) |#1|)) (-15 -2766 ((-112) |#1|)) (-15 -4377 ((-112) |#1|)) (-15 -4252 ((-112) |#1| (-1 (-112) |#5| (-639 |#5|)))) (-15 -2890 ((-112) |#5| |#1|)) (-15 -2766 ((-112) |#5| |#1|)) (-15 -4377 ((-112) |#5| |#1|)) (-15 -4091 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2573 ((-112) |#1|)) (-15 -2573 ((-112) |#5| |#1|)) (-15 -2267 ((-2 (|:| -1450 (-639 |#5|)) (|:| -3316 (-639 |#5|))) |#1|)) (-15 -3598 ((-766) |#1|)) (-15 -3576 ((-639 |#5|) |#1|)) (-15 -2652 ((-3 (-2 (|:| |bas| |#1|) (|:| -2775 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2652 ((-3 (-2 (|:| |bas| |#1|) (|:| -2775 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1408 ((-112) |#1| |#1|)) (-15 -1812 (|#1| |#1| |#4|)) (-15 -3274 (|#1| |#1| |#4|)) (-15 -4339 (|#4| |#1|)) (-15 -4048 ((-3 |#1| "failed") (-639 |#5|))) (-15 -4054 ((-639 |#5|) |#1|)) (-15 -4066 (|#1| (-639 |#5|))) (-15 -1955 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1955 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3556 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1955 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4054 ((-857) |#1|)) (-15 -1731 ((-112) |#1| |#1|))) +((-4041 (((-112) $ $) 7)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |#4|)))) (-639 |#4|)) 85)) (-2304 (((-639 $) (-639 |#4|)) 86)) (-1402 (((-639 |#3|) $) 33)) (-4170 (((-112) $) 26)) (-4274 (((-112) $) 17 (|has| |#1| (-554)))) (-4377 (((-112) |#4| $) 101) (((-112) $) 97)) (-3049 ((|#4| |#4| $) 92)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) 27)) (-4336 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4402))) (((-3 |#4| "failed") $ |#3|) 79)) (-1800 (($) 45 T CONST)) (-2207 (((-112) $) 22 (|has| |#1| (-554)))) (-1920 (((-112) $ $) 24 (|has| |#1| (-554)))) (-3852 (((-112) $ $) 23 (|has| |#1| (-554)))) (-2539 (((-112) $) 25 (|has| |#1| (-554)))) (-2839 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3884 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3961 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-2387 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-4091 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3595 ((|#4| |#4| $) 87)) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4402))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2267 (((-2 (|:| -1450 (-639 |#4|)) (|:| -3316 (-639 |#4|))) $) 105)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4402)))) (-2573 (((-112) |#4| $) 104) (((-112) $) 103)) (-4339 ((|#3| $) 34)) (-3292 (((-112) $ (-766)) 43)) (-1912 (((-639 |#4|) $) 53 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3754 (((-639 |#3|) $) 32)) (-2071 (((-112) |#3| $) 31)) (-3289 (((-112) $ (-766)) 42)) (-2913 (((-1150) $) 9)) (-1504 (((-3 |#4| "failed") $) 83)) (-3576 (((-639 |#4|) $) 107)) (-2890 (((-112) |#4| $) 99) (((-112) $) 95)) (-1849 ((|#4| |#4| $) 90)) (-1408 (((-112) $ $) 110)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2766 (((-112) |#4| $) 100) (((-112) $) 96)) (-1532 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3310 (((-3 $ "failed") $ |#4|) 78)) (-1353 (($ $ |#4|) 77)) (-1763 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) 38)) (-2974 (((-112) $) 41)) (-4307 (($) 40)) (-3598 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4402)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4402)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) 60)) (-1812 (($ $ |#3|) 28)) (-3274 (($ $ |#3|) 30)) (-3277 (($ $) 88)) (-1568 (($ $ |#3|) 29)) (-4054 (((-857) $) 11) (((-639 |#4|) $) 37)) (-3730 (((-766) $) 76 (|has| |#3| (-367)))) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4252 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-1744 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4402)))) (-4089 (((-639 |#3|) $) 81)) (-3694 (((-112) |#3| $) 80)) (-1731 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4402))))) +(((-1200 |#1| |#2| |#3| |#4|) (-139) (-554) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -1200)) +((-1408 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-2652 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2775 (-639 *8)))) (-5 *3 (-639 *8)) (-4 *1 (-1200 *5 *6 *7 *8)))) (-2652 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) (-4 *8 (-845)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2775 (-639 *9)))) (-5 *3 (-639 *9)) (-4 *1 (-1200 *6 *7 *8 *9)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *6)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-766)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-2 (|:| -1450 (-639 *6)) (|:| -3316 (-639 *6)))))) (-2573 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-4091 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1200 *5 *6 *7 *3)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)))) (-4377 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-2766 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-2890 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-4252 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-639 *7))) (-4 *1 (-1200 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-1955 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1200 *5 *6 *7 *2)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *2 (-1058 *5 *6 *7)))) (-2839 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-639 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1200 *5 *6 *7 *8)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)))) (-3049 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1532 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1849 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-2387 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-3277 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-1058 *2 *3 *4)))) (-3595 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1200 *4 *5 *6 *7)))) (-2560 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-639 (-2 (|:| -1450 *1) (|:| -3316 (-639 *7))))) (-5 *3 (-639 *7)) (-4 *1 (-1200 *4 *5 *6 *7)))) (-1421 (*1 *2 *1) (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1504 (*1 *2 *1) (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1434 (*1 *1 *1) (|partial| -12 (-4 *1 (-1200 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-1058 *2 *3 *4)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *3 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-112)))) (-3556 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1200 *4 *5 *3 *2)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *3 (-845)) (-4 *2 (-1058 *4 *5 *3)))) (-3310 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1353 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-766))))) +(-13 (-971 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4402) (-6 -4403) (-15 -1408 ((-112) $ $)) (-15 -2652 ((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |t#4|))) "failed") (-639 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2652 ((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |t#4|))) "failed") (-639 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3576 ((-639 |t#4|) $)) (-15 -3598 ((-766) $)) (-15 -2267 ((-2 (|:| -1450 (-639 |t#4|)) (|:| -3316 (-639 |t#4|))) $)) (-15 -2573 ((-112) |t#4| $)) (-15 -2573 ((-112) $)) (-15 -4091 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4377 ((-112) |t#4| $)) (-15 -2766 ((-112) |t#4| $)) (-15 -2890 ((-112) |t#4| $)) (-15 -4252 ((-112) $ (-1 (-112) |t#4| (-639 |t#4|)))) (-15 -4377 ((-112) $)) (-15 -2766 ((-112) $)) (-15 -2890 ((-112) $)) (-15 -1955 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2839 ((-639 |t#4|) (-639 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3049 (|t#4| |t#4| $)) (-15 -1532 (|t#4| |t#4| $)) (-15 -1849 (|t#4| |t#4| $)) (-15 -2387 (|t#4| |t#4| $)) (-15 -3277 ($ $)) (-15 -3595 (|t#4| |t#4| $)) (-15 -2304 ((-639 $) (-639 |t#4|))) (-15 -2560 ((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |t#4|)))) (-639 |t#4|))) (-15 -1421 ((-3 |t#4| "failed") $)) (-15 -1504 ((-3 |t#4| "failed") $)) (-15 -1434 ((-3 $ "failed") $)) (-15 -4089 ((-639 |t#3|) $)) (-15 -3694 ((-112) |t#3| $)) (-15 -3556 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3310 ((-3 $ "failed") $ |t#4|)) (-15 -1353 ($ $ |t#4|)) (IF (|has| |t#3| (-367)) (-15 -3730 ((-766) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1207) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-1168)) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2988 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4207 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1454 (((-947 |#1|) $ (-766)) 16) (((-947 |#1|) $ (-766) (-766)) NIL)) (-1756 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-766) $ (-1168)) NIL) (((-766) $ (-1168) (-766)) NIL)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3536 (((-112) $) NIL)) (-1378 (($ $ (-639 (-1168)) (-639 (-530 (-1168)))) NIL) (($ $ (-1168) (-530 (-1168))) NIL) (($ |#1| (-530 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-2667 (($ $ (-1168)) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-2345 (($ (-1 $) (-1168) |#1|) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1353 (($ $ (-766)) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (($ $ (-1168) $) NIL) (($ $ (-639 (-1168)) (-639 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL)) (-4029 (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-3598 (((-530 (-1168)) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-1168)) NIL) (($ (-947 |#1|)) NIL)) (-3906 ((|#1| $ (-530 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (((-947 |#1|) $ (-766)) NIL)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1566 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3114 (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1201 |#1|) (-13 (-735 |#1| (-1168)) (-10 -8 (-15 -3906 ((-947 |#1|) $ (-766))) (-15 -4054 ($ (-1168))) (-15 -4054 ($ (-947 |#1|))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $ (-1168) |#1|)) (-15 -2345 ($ (-1 $) (-1168) |#1|))) |%noBranch|))) (-1044)) (T -1201)) +((-3906 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-947 *4)) (-5 *1 (-1201 *4)) (-4 *4 (-1044)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1201 *3)) (-4 *3 (-1044)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-1044)) (-5 *1 (-1201 *3)))) (-2667 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *1 (-1201 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)))) (-2345 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1201 *4))) (-5 *3 (-1168)) (-5 *1 (-1201 *4)) (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044))))) +(-13 (-735 |#1| (-1168)) (-10 -8 (-15 -3906 ((-947 |#1|) $ (-766))) (-15 -4054 ($ (-1168))) (-15 -4054 ($ (-947 |#1|))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $ (-1168) |#1|)) (-15 -2345 ($ (-1 $) (-1168) |#1|))) |%noBranch|))) +((-3867 (($ |#1| (-639 (-639 (-938 (-224)))) (-112)) 18)) (-1374 (((-112) $ (-112)) 17)) (-1862 (((-112) $) 16)) (-1840 (((-639 (-639 (-938 (-224)))) $) 13)) (-3153 ((|#1| $) 8)) (-1623 (((-112) $) 15))) +(((-1202 |#1|) (-10 -8 (-15 -3153 (|#1| $)) (-15 -1840 ((-639 (-639 (-938 (-224)))) $)) (-15 -1623 ((-112) $)) (-15 -1862 ((-112) $)) (-15 -1374 ((-112) $ (-112))) (-15 -3867 ($ |#1| (-639 (-639 (-938 (-224)))) (-112)))) (-969)) (T -1202)) +((-3867 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-112)) (-5 *1 (-1202 *2)) (-4 *2 (-969)))) (-1374 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-1202 *3)) (-4 *3 (-969)))) (-3153 (*1 *2 *1) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-969))))) +(-10 -8 (-15 -3153 (|#1| $)) (-15 -1840 ((-639 (-639 (-938 (-224)))) $)) (-15 -1623 ((-112) $)) (-15 -1862 ((-112) $)) (-15 -1374 ((-112) $ (-112))) (-15 -3867 ($ |#1| (-639 (-639 (-938 (-224)))) (-112)))) +((-3901 (((-938 (-224)) (-938 (-224))) 25)) (-1460 (((-938 (-224)) (-224) (-224) (-224) (-224)) 10)) (-1354 (((-639 (-938 (-224))) (-938 (-224)) (-938 (-224)) (-938 (-224)) (-224) (-639 (-639 (-224)))) 35)) (-4177 (((-224) (-938 (-224)) (-938 (-224))) 21)) (-1386 (((-938 (-224)) (-938 (-224)) (-938 (-224))) 22)) (-1620 (((-639 (-639 (-224))) (-562)) 31)) (-1848 (((-938 (-224)) (-938 (-224)) (-938 (-224))) 20)) (-1835 (((-938 (-224)) (-938 (-224)) (-938 (-224))) 19)) (* (((-938 (-224)) (-224) (-938 (-224))) 18))) +(((-1203) (-10 -7 (-15 -1460 ((-938 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-938 (-224)) (-224) (-938 (-224)))) (-15 -1835 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -1848 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -4177 ((-224) (-938 (-224)) (-938 (-224)))) (-15 -1386 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -3901 ((-938 (-224)) (-938 (-224)))) (-15 -1620 ((-639 (-639 (-224))) (-562))) (-15 -1354 ((-639 (-938 (-224))) (-938 (-224)) (-938 (-224)) (-938 (-224)) (-224) (-639 (-639 (-224))))))) (T -1203)) +((-1354 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-639 (-639 (-224)))) (-5 *4 (-224)) (-5 *2 (-639 (-938 *4))) (-5 *1 (-1203)) (-5 *3 (-938 *4)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-562)) (-5 *2 (-639 (-639 (-224)))) (-5 *1 (-1203)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) (-1386 (*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) (-4177 (*1 *2 *3 *3) (-12 (-5 *3 (-938 (-224))) (-5 *2 (-224)) (-5 *1 (-1203)))) (-1848 (*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) (-1835 (*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-938 (-224))) (-5 *3 (-224)) (-5 *1 (-1203)))) (-1460 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)) (-5 *3 (-224))))) +(-10 -7 (-15 -1460 ((-938 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-938 (-224)) (-224) (-938 (-224)))) (-15 -1835 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -1848 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -4177 ((-224) (-938 (-224)) (-938 (-224)))) (-15 -1386 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -3901 ((-938 (-224)) (-938 (-224)))) (-15 -1620 ((-639 (-639 (-224))) (-562))) (-15 -1354 ((-639 (-938 (-224))) (-938 (-224)) (-938 (-224)) (-938 (-224)) (-224) (-639 (-639 (-224)))))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3556 ((|#1| $ (-766)) 13)) (-3641 (((-766) $) 12)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-4054 (((-953 |#1|) $) 10) (($ (-953 |#1|)) 9) (((-857) $) 23 (|has| |#1| (-609 (-857))))) (-1731 (((-112) $ $) 16 (|has| |#1| (-1092))))) +(((-1204 |#1|) (-13 (-489 (-953 |#1|)) (-10 -8 (-15 -3556 (|#1| $ (-766))) (-15 -3641 ((-766) $)) (IF (|has| |#1| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) (-1207)) (T -1204)) +((-3556 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-1204 *2)) (-4 *2 (-1207)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1204 *3)) (-4 *3 (-1207))))) +(-13 (-489 (-953 |#1|)) (-10 -8 (-15 -3556 (|#1| $ (-766))) (-15 -3641 ((-766) $)) (IF (|has| |#1| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) +((-3283 (((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)) (-562)) 80)) (-2008 (((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|))) 74)) (-1696 (((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|))) 59))) +(((-1205 |#1|) (-10 -7 (-15 -2008 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)))) (-15 -1696 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)))) (-15 -3283 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)) (-562)))) (-348)) (T -1205)) +((-3283 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-4 *5 (-348)) (-5 *2 (-417 (-1164 (-1164 *5)))) (-5 *1 (-1205 *5)) (-5 *3 (-1164 (-1164 *5))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1164 (-1164 *4)))) (-5 *1 (-1205 *4)) (-5 *3 (-1164 (-1164 *4))))) (-2008 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1164 (-1164 *4)))) (-5 *1 (-1205 *4)) (-5 *3 (-1164 (-1164 *4)))))) +(-10 -7 (-15 -2008 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)))) (-15 -1696 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)))) (-15 -3283 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)) (-562)))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 9) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-1206) (-1075)) (T -1206)) +NIL +(-1075) +NIL +(((-1207) (-139)) (T -1207)) +NIL +(-13 (-10 -7 (-6 -1370))) +((-4139 (((-112)) 14)) (-1931 (((-1261) (-639 |#1|) (-639 |#1|)) 18) (((-1261) (-639 |#1|)) 19)) (-3292 (((-112) |#1| |#1|) 31 (|has| |#1| (-845)))) (-3289 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-3623 ((|#1| (-639 |#1|)) 32 (|has| |#1| (-845))) ((|#1| (-639 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-1717 (((-2 (|:| -2010 (-639 |#1|)) (|:| -3712 (-639 |#1|)))) 16))) +(((-1208 |#1|) (-10 -7 (-15 -1931 ((-1261) (-639 |#1|))) (-15 -1931 ((-1261) (-639 |#1|) (-639 |#1|))) (-15 -1717 ((-2 (|:| -2010 (-639 |#1|)) (|:| -3712 (-639 |#1|))))) (-15 -3289 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3289 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3623 (|#1| (-639 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4139 ((-112))) (IF (|has| |#1| (-845)) (PROGN (-15 -3623 (|#1| (-639 |#1|))) (-15 -3292 ((-112) |#1| |#1|))) |%noBranch|)) (-1092)) (T -1208)) +((-3292 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-845)) (-4 *3 (-1092)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-845)) (-5 *1 (-1208 *2)))) (-4139 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1092)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1208 *2)) (-4 *2 (-1092)))) (-3289 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1092)) (-5 *2 (-112)) (-5 *1 (-1208 *3)))) (-3289 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1092)))) (-1717 (*1 *2) (-12 (-5 *2 (-2 (|:| -2010 (-639 *3)) (|:| -3712 (-639 *3)))) (-5 *1 (-1208 *3)) (-4 *3 (-1092)))) (-1931 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-5 *2 (-1261)) (-5 *1 (-1208 *4)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-5 *2 (-1261)) (-5 *1 (-1208 *4))))) +(-10 -7 (-15 -1931 ((-1261) (-639 |#1|))) (-15 -1931 ((-1261) (-639 |#1|) (-639 |#1|))) (-15 -1717 ((-2 (|:| -2010 (-639 |#1|)) (|:| -3712 (-639 |#1|))))) (-15 -3289 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3289 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3623 (|#1| (-639 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4139 ((-112))) (IF (|has| |#1| (-845)) (PROGN (-15 -3623 (|#1| (-639 |#1|))) (-15 -3292 ((-112) |#1| |#1|))) |%noBranch|)) +((-1841 (((-1261) (-639 (-1168)) (-639 (-1168))) 13) (((-1261) (-639 (-1168))) 11)) (-3053 (((-1261)) 14)) (-1500 (((-2 (|:| -3712 (-639 (-1168))) (|:| -2010 (-639 (-1168))))) 18))) +(((-1209) (-10 -7 (-15 -1841 ((-1261) (-639 (-1168)))) (-15 -1841 ((-1261) (-639 (-1168)) (-639 (-1168)))) (-15 -1500 ((-2 (|:| -3712 (-639 (-1168))) (|:| -2010 (-639 (-1168)))))) (-15 -3053 ((-1261))))) (T -1209)) +((-3053 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1209)))) (-1500 (*1 *2) (-12 (-5 *2 (-2 (|:| -3712 (-639 (-1168))) (|:| -2010 (-639 (-1168))))) (-5 *1 (-1209)))) (-1841 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1209)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1209))))) +(-10 -7 (-15 -1841 ((-1261) (-639 (-1168)))) (-15 -1841 ((-1261) (-639 (-1168)) (-639 (-1168)))) (-15 -1500 ((-2 (|:| -3712 (-639 (-1168))) (|:| -2010 (-639 (-1168)))))) (-15 -3053 ((-1261)))) +((-2798 (($ $) 17)) (-2717 (((-112) $) 24))) +(((-1210 |#1|) (-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -2717 ((-112) |#1|))) (-1211)) (T -1210)) +NIL +(-10 -8 (-15 -2798 (|#1| |#1|)) (-15 -2717 ((-112) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 52)) (-2921 (((-417 $) $) 53)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-2717 (((-112) $) 54)) (-1957 (((-112) $) 31)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 51)) (-1762 (((-3 $ "failed") $ $) 43)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) +(((-1211) (-139)) (T -1211)) +((-2717 (*1 *2 *1) (-12 (-4 *1 (-1211)) (-5 *2 (-112)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1211)))) (-2798 (*1 *1 *1) (-4 *1 (-1211))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1211))))) +(-13 (-451) (-10 -8 (-15 -2717 ((-112) $)) (-15 -2921 ((-417 $) $)) (-15 -2798 ($ $)) (-15 -1635 ((-417 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1800 (($) NIL)) (-1448 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-1999 (((-916) $) NIL)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-3010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL))) +(((-1212) (-13 (-839) (-10 -8 (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($))))) (T -1212)) +((-2998 (*1 *1 *1 *1) (-5 *1 (-1212))) (-3010 (*1 *1 *1 *1) (-5 *1 (-1212))) (-1800 (*1 *1) (-5 *1 (-1212)))) +(-13 (-839) (-10 -8 (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($)))) +((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1800 (($) NIL)) (-1448 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-1999 (((-916) $) NIL)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-3010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL))) +(((-1213) (-13 (-839) (-10 -8 (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($))))) (T -1213)) +((-2998 (*1 *1 *1 *1) (-5 *1 (-1213))) (-3010 (*1 *1 *1 *1) (-5 *1 (-1213))) (-1800 (*1 *1) (-5 *1 (-1213)))) +(-13 (-839) (-10 -8 (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($)))) +((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1800 (($) NIL)) (-1448 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-1999 (((-916) $) NIL)) (-2913 (((-1150) $) NIL)) (-2466 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) NIL)) (-3010 (($ $ $) NIL)) (-2998 (($ $ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1759 (((-112) $ $) NIL))) +(((-1214) (-13 (-839) (-10 -8 (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($))))) (T -1214)) +((-2998 (*1 *1 *1 *1) (-5 *1 (-1214))) (-3010 (*1 *1 *1 *1) (-5 *1 (-1214))) (-1800 (*1 *1) (-5 *1 (-1214)))) +(-13 (-839) (-10 -8 (-15 -2998 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -1800 ($)))) +((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-4152 (((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)) 23))) +(((-1215 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4152 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) (-1044) (-1044) (-1168) (-1168) |#1| |#2|) (T -1215)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-14 *7 (-1168)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1168))))) +(-10 -7 (-15 -4152 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1402 (((-639 (-1074)) $) 77)) (-2444 (((-1168) $) 106)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2796 (($ $) 55 (|has| |#1| (-554)))) (-4370 (((-112) $) 57 (|has| |#1| (-554)))) (-2557 (($ $ (-562)) 101) (($ $ (-562) (-562)) 100)) (-1938 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 108)) (-2988 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 165 (|has| |#1| (-362)))) (-2921 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-2569 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4207 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 176)) (-3014 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) 17 T CONST)) (-1811 (($ $ $) 160 (|has| |#1| (-362)))) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-1493 (((-406 (-947 |#1|)) $ (-562)) 174 (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) 173 (|has| |#1| (-554)))) (-1787 (($ $ $) 159 (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 154 (|has| |#1| (-362)))) (-2717 (((-112) $) 167 (|has| |#1| (-362)))) (-1756 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-562) $) 103) (((-562) $ (-562)) 102)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) 104)) (-4222 (($ (-1 |#1| (-562)) $) 175)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 163 (|has| |#1| (-362)))) (-3536 (((-112) $) 65)) (-1378 (($ |#1| (-562)) 64) (($ $ (-1074) (-562)) 79) (($ $ (-639 (-1074)) (-639 (-562))) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-4365 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-1564 (($ (-639 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-2913 (((-1150) $) 9)) (-1525 (($ $) 168 (|has| |#1| (-362)))) (-2667 (($ $) 172 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 171 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 153 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1635 (((-417 $) $) 164 (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 161 (|has| |#1| (-362)))) (-1353 (($ $ (-562)) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 155 (|has| |#1| (-362)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-562)))))) (-1577 (((-766) $) 157 (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) 107) (($ $ $) 84 (|has| (-562) (-1104)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 158 (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| (-562) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (-3598 (((-562) $) 67)) (-3023 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) 75)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554)))) (-3906 ((|#1| $ (-562)) 62)) (-2805 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| (-562) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) +(((-1216 |#1|) (-139) (-1044)) (T -1216)) +((-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) (-4 *3 (-1044)) (-4 *1 (-1216 *3)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-562))) (-4 *1 (-1216 *3)) (-4 *3 (-1044)))) (-1493 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1216 *4)) (-4 *4 (-1044)) (-4 *4 (-554)) (-5 *2 (-406 (-947 *4))))) (-1493 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1216 *4)) (-4 *4 (-1044)) (-4 *4 (-554)) (-5 *2 (-406 (-947 *4))))) (-2667 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) (-2667 (*1 *1 *1 *2) (-4037 (-12 (-5 *2 (-1168)) (-4 *1 (-1216 *3)) (-4 *3 (-1044)) (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) (-4 *3 (-38 (-406 (-562)))))) (-12 (-5 *2 (-1168)) (-4 *1 (-1216 *3)) (-4 *3 (-1044)) (-12 (|has| *3 (-15 -1402 ((-639 *2) *3))) (|has| *3 (-15 -2667 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562))))))))) +(-13 (-1234 |t#1| (-562)) (-10 -8 (-15 -1503 ($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |t#1|))))) (-15 -4222 ($ (-1 |t#1| (-562)) $)) (IF (|has| |t#1| (-554)) (PROGN (-15 -1493 ((-406 (-947 |t#1|)) $ (-562))) (-15 -1493 ((-406 (-947 |t#1|)) $ (-562) (-562)))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $)) (IF (|has| |t#1| (-15 -2667 (|t#1| |t#1| (-1168)))) (IF (|has| |t#1| (-15 -1402 ((-639 (-1168)) |t#1|))) (-15 -2667 ($ $ (-1168))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1192)) (IF (|has| |t#1| (-954)) (IF (|has| |t#1| (-29 (-562))) (-15 -2667 ($ $ (-1168))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-997)) (-6 (-1192))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-562)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-562) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 $ $) |has| (-562) (-1104)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-451) |has| |#1| (-362)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-642 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| #0# (-1074)) . T) ((-915) |has| |#1| (-362)) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1050 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1211) |has| |#1| (-362)) ((-1234 |#1| #0#) . T)) +((-1952 (((-112) $) 12)) (-4048 (((-3 |#3| "failed") $) 17) (((-3 (-1168) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL)) (-3961 ((|#3| $) 14) (((-1168) $) NIL) (((-406 (-562)) $) NIL) (((-562) $) NIL))) +(((-1217 |#1| |#2| |#3|) (-10 -8 (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3961 ((-1168) |#1|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3961 (|#3| |#1|)) (-15 -1952 ((-112) |#1|))) (-1218 |#2| |#3|) (-1044) (-1247 |#2|)) (T -1217)) +NIL +(-10 -8 (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3961 ((-1168) |#1|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3961 (|#3| |#1|)) (-15 -1952 ((-112) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-4246 ((|#2| $) 231 (-2246 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1402 (((-639 (-1074)) $) 77)) (-2444 (((-1168) $) 106)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2796 (($ $) 55 (|has| |#1| (-554)))) (-4370 (((-112) $) 57 (|has| |#1| (-554)))) (-2557 (($ $ (-562)) 101) (($ $ (-562) (-562)) 100)) (-1938 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 108)) (-4226 ((|#2| $) 267)) (-3006 (((-3 |#2| "failed") $) 263)) (-1469 ((|#2| $) 264)) (-2988 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) 19)) (-3026 (((-417 (-1164 $)) (-1164 $)) 240 (-2246 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-2798 (($ $) 165 (|has| |#1| (-362)))) (-2921 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 237 (-2246 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-2569 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4207 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-2277 (((-562) $) 249 (-2246 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 176)) (-3014 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#2| "failed") $) 270) (((-3 (-562) "failed") $) 260 (-2246 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-406 (-562)) "failed") $) 258 (-2246 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-1168) "failed") $) 242 (-2246 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362))))) (-3961 ((|#2| $) 271) (((-562) $) 259 (-2246 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-406 (-562)) $) 257 (-2246 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-1168) $) 241 (-2246 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362))))) (-2724 (($ $) 266) (($ (-562) $) 265)) (-1811 (($ $ $) 160 (|has| |#1| (-362)))) (-1601 (($ $) 63)) (-2406 (((-683 |#2|) (-683 $)) 221 (|has| |#1| (-362))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 220 (|has| |#1| (-362))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 219 (-2246 (|has| |#2| (-635 (-562))) (|has| |#1| (-362)))) (((-683 (-562)) (-683 $)) 218 (-2246 (|has| |#2| (-635 (-562))) (|has| |#1| (-362))))) (-3668 (((-3 $ "failed") $) 33)) (-1493 (((-406 (-947 |#1|)) $ (-562)) 174 (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) 173 (|has| |#1| (-554)))) (-1448 (($) 233 (-2246 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-1787 (($ $ $) 159 (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 154 (|has| |#1| (-362)))) (-2717 (((-112) $) 167 (|has| |#1| (-362)))) (-3519 (((-112) $) 247 (-2246 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-1756 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 225 (-2246 (|has| |#2| (-881 (-378))) (|has| |#1| (-362)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 224 (-2246 (|has| |#2| (-881 (-562))) (|has| |#1| (-362))))) (-1900 (((-562) $) 103) (((-562) $ (-562)) 102)) (-1957 (((-112) $) 31)) (-3425 (($ $) 229 (|has| |#1| (-362)))) (-4065 ((|#2| $) 227 (|has| |#1| (-362)))) (-1891 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3699 (((-3 $ "failed") $) 261 (-2246 (|has| |#2| (-1143)) (|has| |#1| (-362))))) (-3392 (((-112) $) 248 (-2246 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-3374 (($ $ (-916)) 104)) (-4222 (($ (-1 |#1| (-562)) $) 175)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 163 (|has| |#1| (-362)))) (-3536 (((-112) $) 65)) (-1378 (($ |#1| (-562)) 64) (($ $ (-1074) (-562)) 79) (($ $ (-639 (-1074)) (-639 (-562))) 78)) (-1551 (($ $ $) 251 (-2246 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-2993 (($ $ $) 252 (-2246 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-4152 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-362)))) (-4365 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-1564 (($ (-639 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-1485 (($ (-562) |#2|) 268)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 168 (|has| |#1| (-362)))) (-2667 (($ $) 172 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 171 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-3729 (($) 262 (-2246 (|has| |#2| (-1143)) (|has| |#1| (-362))) CONST)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 153 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-2736 (($ $) 232 (-2246 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-4014 ((|#2| $) 235 (-2246 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-3986 (((-417 (-1164 $)) (-1164 $)) 238 (-2246 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-3480 (((-417 (-1164 $)) (-1164 $)) 239 (-2246 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-1635 (((-417 $) $) 164 (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 161 (|has| |#1| (-362)))) (-1353 (($ $ (-562)) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 155 (|has| |#1| (-362)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-562))))) (($ $ (-1168) |#2|) 212 (-2246 (|has| |#2| (-513 (-1168) |#2|)) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 |#2|)) 211 (-2246 (|has| |#2| (-513 (-1168) |#2|)) (|has| |#1| (-362)))) (($ $ (-639 (-293 |#2|))) 210 (-2246 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) 209 (-2246 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) 208 (-2246 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-639 |#2|) (-639 |#2|)) 207 (-2246 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-1577 (((-766) $) 157 (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) 107) (($ $ $) 84 (|has| (-562) (-1104))) (($ $ |#2|) 206 (-2246 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 158 (|has| |#1| (-362)))) (-4029 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-766)) 216 (|has| |#1| (-362))) (($ $ (-766)) 87 (-4037 (-2246 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 85 (-4037 (-2246 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) 92 (-4037 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-1168) (-766)) 91 (-4037 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-639 (-1168))) 90 (-4037 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-1168)) 89 (-4037 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))))) (-3658 (($ $) 230 (|has| |#1| (-362)))) (-4076 ((|#2| $) 228 (|has| |#1| (-362)))) (-3598 (((-562) $) 67)) (-3023 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-4208 (((-224) $) 246 (-2246 (|has| |#2| (-1017)) (|has| |#1| (-362)))) (((-378) $) 245 (-2246 (|has| |#2| (-1017)) (|has| |#1| (-362)))) (((-535) $) 244 (-2246 (|has| |#2| (-610 (-535))) (|has| |#1| (-362)))) (((-887 (-378)) $) 223 (-2246 (|has| |#2| (-610 (-887 (-378)))) (|has| |#1| (-362)))) (((-887 (-562)) $) 222 (-2246 (|has| |#2| (-610 (-887 (-562)))) (|has| |#1| (-362))))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 236 (-2246 (-2246 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#1| (-362))))) (-2256 (($ $) 75)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 269) (($ (-1168)) 243 (-2246 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362)))) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554)))) (-3906 ((|#1| $ (-562)) 62)) (-2805 (((-3 $ "failed") $) 51 (-4037 (-2246 (-4037 (|has| |#2| (-144)) (-2246 (|has| $ (-144)) (|has| |#2| (-904)))) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2579 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-2604 ((|#2| $) 234 (-2246 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-3526 (($ $) 250 (-2246 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-766)) 214 (|has| |#1| (-362))) (($ $ (-766)) 88 (-4037 (-2246 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 86 (-4037 (-2246 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) 96 (-4037 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-1168) (-766)) 95 (-4037 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-639 (-1168))) 94 (-4037 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-1168)) 93 (-4037 (-2246 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))))) (-1798 (((-112) $ $) 254 (-2246 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1772 (((-112) $ $) 255 (-2246 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 253 (-2246 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1759 (((-112) $ $) 256 (-2246 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362))) (($ |#2| |#2|) 226 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-362))) (($ |#2| $) 204 (|has| |#1| (-362))) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) +(((-1218 |#1| |#2|) (-139) (-1044) (-1247 |t#1|)) (T -1218)) +((-3598 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1247 *3)) (-5 *2 (-562)))) (-1485 (*1 *1 *2 *3) (-12 (-5 *2 (-562)) (-4 *4 (-1044)) (-4 *1 (-1218 *4 *3)) (-4 *3 (-1247 *4)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3)))) (-2724 (*1 *1 *1) (-12 (-4 *1 (-1218 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1247 *2)))) (-2724 (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-4 *1 (-1218 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1247 *3)))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3)))) (-3006 (*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3))))) +(-13 (-1216 |t#1|) (-1033 |t#2|) (-612 |t#2|) (-10 -8 (-15 -1485 ($ (-562) |t#2|)) (-15 -3598 ((-562) $)) (-15 -4226 (|t#2| $)) (-15 -2724 ($ $)) (-15 -2724 ($ (-562) $)) (-15 -1469 (|t#2| $)) (-15 -3006 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-362)) (-6 (-987 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-562)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 |#2|) |has| |#1| (-362)) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-362)) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-146) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-612 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 #2=(-1168)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-1168)))) ((-612 |#1|) |has| |#1| (-171)) ((-612 |#2|) . T) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-610 (-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) ((-610 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) ((-610 (-535)) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-887 (-562))))) ((-230 |#2|) |has| |#1| (-362)) ((-232) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 |#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) ((-285 $ $) |has| (-562) (-1104)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-362) |has| |#1| (-362)) ((-337 |#2|) |has| |#1| (-362)) ((-376 |#2|) |has| |#1| (-362)) ((-399 |#2|) |has| |#1| (-362)) ((-451) |has| |#1| (-362)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-513 (-1168) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-513 (-1168) |#2|))) ((-513 |#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-642 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-642 |#1|) . T) ((-642 |#2|) |has| |#1| (-362)) ((-642 $) . T) ((-635 (-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-635 (-562)))) ((-635 |#2|) |has| |#1| (-362)) ((-712 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-712 |#1|) |has| |#1| (-171)) ((-712 |#2|) |has| |#1| (-362)) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-721) . T) ((-786) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-787) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-789) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-790) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-815) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-843) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-845) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-845))) (-12 (|has| |#1| (-362)) (|has| |#2| (-815)))) ((-895 (-1168)) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-895 (-1168)))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) ((-881 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-881 (-378)))) ((-881 (-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-881 (-562)))) ((-879 |#2|) |has| |#1| (-362)) ((-904) -12 (|has| |#1| (-362)) (|has| |#2| (-904))) ((-968 |#1| #0# (-1074)) . T) ((-915) |has| |#1| (-362)) ((-987 |#2|) |has| |#1| (-362)) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1017) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) ((-1033 (-406 (-562))) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-562)))) ((-1033 (-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-562)))) ((-1033 #2#) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-1168)))) ((-1033 |#2|) . T) ((-1050 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-1050 |#1|) . T) ((-1050 |#2|) |has| |#1| (-362)) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) -12 (|has| |#1| (-362)) (|has| |#2| (-1143))) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1207) |has| |#1| (-362)) ((-1211) |has| |#1| (-362)) ((-1216 |#1|) . T) ((-1234 |#1| #0#) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 70)) (-4246 ((|#2| $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) 88)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2557 (($ $ (-562)) 97) (($ $ (-562) (-562)) 99)) (-1938 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 47)) (-4226 ((|#2| $) 11)) (-3006 (((-3 |#2| "failed") $) 30)) (-1469 ((|#2| $) 31)) (-2988 (($ $) 192 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 168 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-2798 (($ $) NIL (|has| |#1| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4207 (($ $) 188 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 164 (|has| |#1| (-38 (-406 (-562)))))) (-2277 (((-562) $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 57)) (-3014 (($ $) 196 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 172 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) 144) (((-3 (-562) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-1168) "failed") $) NIL (-12 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362))))) (-3961 ((|#2| $) 143) (((-562) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-406 (-562)) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-1168) $) NIL (-12 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362))))) (-2724 (($ $) 61) (($ (-562) $) 24)) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) NIL)) (-2406 (((-683 |#2|) (-683 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#1| (-362)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#1| (-362))))) (-3668 (((-3 $ "failed") $) 77)) (-1493 (((-406 (-947 |#1|)) $ (-562)) 112 (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) 114 (|has| |#1| (-554)))) (-1448 (($) NIL (-12 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2717 (((-112) $) NIL (|has| |#1| (-362)))) (-3519 (((-112) $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-1756 (((-112) $) 64)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#2| (-881 (-378))) (|has| |#1| (-362)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| |#2| (-881 (-562))) (|has| |#1| (-362))))) (-1900 (((-562) $) 93) (((-562) $ (-562)) 95)) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL (|has| |#1| (-362)))) (-4065 ((|#2| $) 151 (|has| |#1| (-362)))) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3699 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1143)) (|has| |#1| (-362))))) (-3392 (((-112) $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-3374 (($ $ (-916)) 136)) (-4222 (($ (-1 |#1| (-562)) $) 132)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-562)) 19) (($ $ (-1074) (-562)) NIL) (($ $ (-639 (-1074)) (-639 (-562))) NIL)) (-1551 (($ $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-2993 (($ $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-4152 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-362)))) (-4365 (($ $) 162 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1485 (($ (-562) |#2|) 10)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 145 (|has| |#1| (-362)))) (-2667 (($ $) 214 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 219 (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192)))))) (-3729 (($) NIL (-12 (|has| |#2| (-1143)) (|has| |#1| (-362))) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2736 (($ $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-4014 ((|#2| $) NIL (-12 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ (-562)) 126)) (-1762 (((-3 $ "failed") $ $) 116 (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) 160 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-562))))) (($ $ (-1168) |#2|) NIL (-12 (|has| |#2| (-513 (-1168) |#2|)) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 |#2|)) NIL (-12 (|has| |#2| (-513 (-1168) |#2|)) (|has| |#1| (-362)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) 91) (($ $ $) 79 (|has| (-562) (-1104))) (($ $ |#2|) NIL (-12 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#1| (-362))) (($ $ (-766)) NIL (-4037 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 137 (-4037 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) 140 (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-3658 (($ $) NIL (|has| |#1| (-362)))) (-4076 ((|#2| $) 152 (|has| |#1| (-362)))) (-3598 (((-562) $) 12)) (-3023 (($ $) 198 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 174 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 194 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 170 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 190 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 166 (|has| |#1| (-38 (-406 (-562)))))) (-4208 (((-224) $) NIL (-12 (|has| |#2| (-1017)) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| |#2| (-1017)) (|has| |#1| (-362)))) (((-535) $) NIL (-12 (|has| |#2| (-610 (-535))) (|has| |#1| (-362)))) (((-887 (-378)) $) NIL (-12 (|has| |#2| (-610 (-887 (-378)))) (|has| |#1| (-362)))) (((-887 (-562)) $) NIL (-12 (|has| |#2| (-610 (-887 (-562)))) (|has| |#1| (-362))))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904)) (|has| |#1| (-362))))) (-2256 (($ $) 124)) (-4054 (((-857) $) 244) (($ (-562)) 23) (($ |#1|) 21 (|has| |#1| (-171))) (($ |#2|) 20) (($ (-1168)) NIL (-12 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362)))) (($ (-406 (-562))) 155 (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-3906 ((|#1| $ (-562)) 74)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904)) (|has| |#1| (-362))) (-12 (|has| |#2| (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2579 (((-766)) 142)) (-2328 ((|#1| $) 90)) (-2604 ((|#2| $) NIL (-12 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-3055 (($ $) 204 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 180 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 200 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 176 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 208 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 184 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) 210 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 186 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 206 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 182 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 202 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 178 (|has| |#1| (-38 (-406 (-562)))))) (-3526 (($ $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-2286 (($) 13 T CONST)) (-2294 (($) 17 T CONST)) (-3114 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#1| (-362))) (($ $ (-766)) NIL (-4037 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) NIL (-4037 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-1798 (((-112) $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1772 (((-112) $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1731 (((-112) $ $) 63)) (-1785 (((-112) $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1759 (((-112) $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362))) (($ |#2| |#2|) 150 (|has| |#1| (-362)))) (-1848 (($ $) 213) (($ $ $) 68)) (-1835 (($ $ $) 66)) (** (($ $ (-916)) NIL) (($ $ (-766)) 73) (($ $ (-562)) 146 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-362))) (($ |#2| $) 147 (|has| |#1| (-362))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-1219 |#1| |#2|) (-1218 |#1| |#2|) (-1044) (-1247 |#1|)) (T -1219)) +NIL +(-1218 |#1| |#2|) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-4246 (((-1248 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) 10)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2796 (($ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-4370 (((-112) $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-2557 (($ $ (-562)) NIL) (($ $ (-562) (-562)) NIL)) (-1938 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) NIL)) (-4226 (((-1248 |#1| |#2| |#3|) $) NIL)) (-3006 (((-3 (-1248 |#1| |#2| |#3|) "failed") $) NIL)) (-1469 (((-1248 |#1| |#2| |#3|) $) NIL)) (-2988 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-2798 (($ $) NIL (|has| |#1| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4207 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2277 (((-562) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-1248 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-562) "failed") $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))))) (-3961 (((-1248 |#1| |#2| |#3|) $) NIL) (((-1168) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (((-406 (-562)) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362)))) (((-562) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))))) (-2724 (($ $) NIL) (($ (-562) $) NIL)) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) NIL)) (-2406 (((-683 (-1248 |#1| |#2| |#3|)) (-683 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1545 (-683 (-1248 |#1| |#2| |#3|))) (|:| |vec| (-1256 (-1248 |#1| |#2| |#3|)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-635 (-562))) (|has| |#1| (-362)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-635 (-562))) (|has| |#1| (-362))))) (-3668 (((-3 $ "failed") $) NIL)) (-1493 (((-406 (-947 |#1|)) $ (-562)) NIL (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) NIL (|has| |#1| (-554)))) (-1448 (($) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2717 (((-112) $) NIL (|has| |#1| (-362)))) (-3519 (((-112) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-1756 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-881 (-378))) (|has| |#1| (-362)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-881 (-562))) (|has| |#1| (-362))))) (-1900 (((-562) $) NIL) (((-562) $ (-562)) NIL)) (-1957 (((-112) $) NIL)) (-3425 (($ $) NIL (|has| |#1| (-362)))) (-4065 (((-1248 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3699 (((-3 $ "failed") $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1143)) (|has| |#1| (-362))))) (-3392 (((-112) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-3374 (($ $ (-916)) NIL)) (-4222 (($ (-1 |#1| (-562)) $) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-562)) 17) (($ $ (-1074) (-562)) NIL) (($ $ (-639 (-1074)) (-639 (-562))) NIL)) (-1551 (($ $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-2993 (($ $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4365 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1485 (($ (-562) (-1248 |#1| |#2| |#3|)) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-2667 (($ $) 25 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 26 (|has| |#1| (-38 (-406 (-562)))))) (-3729 (($) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1143)) (|has| |#1| (-362))) CONST)) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2736 (($ $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-4014 (((-1248 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ (-562)) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-562))))) (($ $ (-1168) (-1248 |#1| |#2| |#3|)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-513 (-1168) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 (-1248 |#1| |#2| |#3|))) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-513 (-1168) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-293 (-1248 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1248 |#1| |#2| |#3|))) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-1248 |#1| |#2| |#3|)) (-639 (-1248 |#1| |#2| |#3|))) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) NIL) (($ $ $) NIL (|has| (-562) (-1104))) (($ $ (-1248 |#1| |#2| |#3|)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-285 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) (-766)) NIL (|has| |#1| (-362))) (($ $ (-1252 |#2|)) 24) (($ $ (-766)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 23 (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-3658 (($ $) NIL (|has| |#1| (-362)))) (-4076 (((-1248 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-3598 (((-562) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4208 (((-535) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-610 (-535))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1017)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1017)) (|has| |#1| (-362)))) (((-887 (-378)) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-610 (-887 (-378)))) (|has| |#1| (-362)))) (((-887 (-562)) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-610 (-887 (-562)))) (|has| |#1| (-362))))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-2256 (($ $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1248 |#1| |#2| |#3|)) NIL) (($ (-1252 |#2|)) 22) (($ (-1168)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (($ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554)))) (($ (-406 (-562))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-562))))))) (-3906 ((|#1| $ (-562)) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-2579 (((-766)) NIL)) (-2328 ((|#1| $) 11)) (-2604 (((-1248 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3526 (($ $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-2286 (($) 19 T CONST)) (-2294 (($) 15 T CONST)) (-3114 (($ $ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) (-766)) NIL (|has| |#1| (-362))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-1798 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1772 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1759 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362))) (($ (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 20)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1248 |#1| |#2| |#3|)) NIL (|has| |#1| (-362))) (($ (-1248 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-1220 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1248 |#1| |#2| |#3|)) (-10 -8 (-15 -4054 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1220)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) +(-13 (-1218 |#1| (-1248 |#1| |#2| |#3|)) (-10 -8 (-15 -4054 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) +((-2832 (((-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))) |#1| (-112)) 12)) (-3696 (((-417 |#1|) |#1|) 22)) (-1635 (((-417 |#1|) |#1|) 21))) +(((-1221 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3696 ((-417 |#1|) |#1|)) (-15 -2832 ((-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))) |#1| (-112)))) (-1232 (-562))) (T -1221)) +((-2832 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| *3) (|:| -2762 (-562))))))) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562))))) (-3696 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562)))))) +(-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3696 ((-417 |#1|) |#1|)) (-15 -2832 ((-2 (|:| |contp| (-562)) (|:| -1510 (-639 (-2 (|:| |irr| |#1|) (|:| -2762 (-562)))))) |#1| (-112)))) +((-4152 (((-1148 |#2|) (-1 |#2| |#1|) (-1223 |#1|)) 23 (|has| |#1| (-843))) (((-1223 |#2|) (-1 |#2| |#1|) (-1223 |#1|)) 17))) +(((-1222 |#1| |#2|) (-10 -7 (-15 -4152 ((-1223 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) (IF (|has| |#1| (-843)) (-15 -4152 ((-1148 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) |%noBranch|)) (-1207) (-1207)) (T -1222)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-843)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1148 *6)) (-5 *1 (-1222 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1223 *6)) (-5 *1 (-1222 *5 *6))))) +(-10 -7 (-15 -4152 ((-1223 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) (IF (|has| |#1| (-843)) (-15 -4152 ((-1148 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) |%noBranch|)) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2669 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4152 (((-1148 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-843)))) (-2010 ((|#1| $) 14)) (-1751 ((|#1| $) 10)) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1766 (((-562) $) 18)) (-3712 ((|#1| $) 17)) (-2089 ((|#1| $) 11)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3482 (((-112) $) 16)) (-3525 (((-1148 |#1|) $) 38 (|has| |#1| (-843))) (((-1148 |#1|) (-639 $)) 37 (|has| |#1| (-843)))) (-4208 (($ |#1|) 25)) (-4054 (($ (-1086 |#1|)) 24) (((-857) $) 34 (|has| |#1| (-1092)))) (-3864 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1483 (($ $ (-562)) 13)) (-1731 (((-112) $ $) 27 (|has| |#1| (-1092))))) +(((-1223 |#1|) (-13 (-1085 |#1|) (-10 -8 (-15 -3864 ($ |#1|)) (-15 -2669 ($ |#1|)) (-15 -4054 ($ (-1086 |#1|))) (-15 -3482 ((-112) $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-1087 |#1| (-1148 |#1|))) |%noBranch|))) (-1207)) (T -1223)) +((-3864 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207)))) (-2669 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-1207)) (-5 *1 (-1223 *3)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1207))))) +(-13 (-1085 |#1|) (-10 -8 (-15 -3864 ($ |#1|)) (-15 -2669 ($ |#1|)) (-15 -4054 ($ (-1086 |#1|))) (-15 -3482 ((-112) $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-1087 |#1| (-1148 |#1|))) |%noBranch|))) +((-4152 (((-1229 |#3| |#4|) (-1 |#4| |#2|) (-1229 |#1| |#2|)) 15))) +(((-1224 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 ((-1229 |#3| |#4|) (-1 |#4| |#2|) (-1229 |#1| |#2|)))) (-1168) (-1044) (-1168) (-1044)) (T -1224)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1229 *5 *6)) (-14 *5 (-1168)) (-4 *6 (-1044)) (-4 *8 (-1044)) (-5 *2 (-1229 *7 *8)) (-5 *1 (-1224 *5 *6 *7 *8)) (-14 *7 (-1168))))) +(-10 -7 (-15 -4152 ((-1229 |#3| |#4|) (-1 |#4| |#2|) (-1229 |#1| |#2|)))) +((-4096 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1917 ((|#1| |#3|) 13)) (-1471 ((|#3| |#3|) 19))) +(((-1225 |#1| |#2| |#3|) (-10 -7 (-15 -1917 (|#1| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-554) (-987 |#1|) (-1232 |#2|)) (T -1225)) +((-4096 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1225 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *4 (-987 *3)) (-5 *1 (-1225 *3 *4 *2)) (-4 *2 (-1232 *4)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-1225 *2 *4 *3)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -1917 (|#1| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1803 (((-3 |#2| "failed") |#2| (-766) |#1|) 29)) (-2339 (((-3 |#2| "failed") |#2| (-766)) 30)) (-3242 (((-3 (-2 (|:| -1588 |#2|) (|:| -1602 |#2|)) "failed") |#2|) 42)) (-2600 (((-639 |#2|) |#2|) 44)) (-1660 (((-3 |#2| "failed") |#2| |#2|) 39))) +(((-1226 |#1| |#2|) (-10 -7 (-15 -2339 ((-3 |#2| "failed") |#2| (-766))) (-15 -1803 ((-3 |#2| "failed") |#2| (-766) |#1|)) (-15 -1660 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3242 ((-3 (-2 (|:| -1588 |#2|) (|:| -1602 |#2|)) "failed") |#2|)) (-15 -2600 ((-639 |#2|) |#2|))) (-13 (-554) (-146)) (-1232 |#1|)) (T -1226)) +((-2600 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-639 *3)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-1232 *4)))) (-3242 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-2 (|:| -1588 *3) (|:| -1602 *3))) (-5 *1 (-1226 *4 *3)) (-4 *3 (-1232 *4)))) (-1660 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-1232 *3)))) (-1803 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-766)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-1232 *4)))) (-2339 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-766)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-1232 *4))))) +(-10 -7 (-15 -2339 ((-3 |#2| "failed") |#2| (-766))) (-15 -1803 ((-3 |#2| "failed") |#2| (-766) |#1|)) (-15 -1660 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3242 ((-3 (-2 (|:| -1588 |#2|) (|:| -1602 |#2|)) "failed") |#2|)) (-15 -2600 ((-639 |#2|) |#2|))) +((-2022 (((-3 (-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) "failed") |#2| |#2|) 31))) +(((-1227 |#1| |#2|) (-10 -7 (-15 -2022 ((-3 (-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) "failed") |#2| |#2|))) (-554) (-1232 |#1|)) (T -1227)) +((-2022 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-1227 *4 *3)) (-4 *3 (-1232 *4))))) +(-10 -7 (-15 -2022 ((-3 (-2 (|:| -2097 |#2|) (|:| -2264 |#2|)) "failed") |#2| |#2|))) +((-1559 ((|#2| |#2| |#2|) 19)) (-2064 ((|#2| |#2| |#2|) 30)) (-1384 ((|#2| |#2| |#2| (-766) (-766)) 36))) +(((-1228 |#1| |#2|) (-10 -7 (-15 -1559 (|#2| |#2| |#2|)) (-15 -2064 (|#2| |#2| |#2|)) (-15 -1384 (|#2| |#2| |#2| (-766) (-766)))) (-1044) (-1232 |#1|)) (T -1228)) +((-1384 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *1 (-1228 *4 *2)) (-4 *2 (-1232 *4)))) (-2064 (*1 *2 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1232 *3)))) (-1559 (*1 *2 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1232 *3))))) +(-10 -7 (-15 -1559 (|#2| |#2| |#2|)) (-15 -2064 (|#2| |#2| |#2|)) (-15 -1384 (|#2| |#2| |#2| (-766) (-766)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-2844 (((-1256 |#2|) $ (-766)) NIL)) (-1402 (((-639 (-1074)) $) NIL)) (-2427 (($ (-1164 |#2|)) NIL)) (-1599 (((-1164 $) $ (-1074)) NIL) (((-1164 |#2|) $) NIL)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-2796 (($ $) NIL (|has| |#2| (-554)))) (-4370 (((-112) $) NIL (|has| |#2| (-554)))) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-1074))) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-3258 (($ $ $) NIL (|has| |#2| (-554)))) (-3026 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-2798 (($ $) NIL (|has| |#2| (-451)))) (-2921 (((-417 $) $) NIL (|has| |#2| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-2569 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2897 (($ $ (-766)) NIL)) (-3028 (($ $ (-766)) NIL)) (-4157 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-451)))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-1074) "failed") $) NIL)) (-3961 ((|#2| $) NIL) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-1074) $) NIL)) (-2835 (($ $ $ (-1074)) NIL (|has| |#2| (-171))) ((|#2| $ $) NIL (|has| |#2| (-171)))) (-1811 (($ $ $) NIL (|has| |#2| (-362)))) (-1601 (($ $) NIL)) (-2406 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#2| (-362)))) (-4267 (($ $ $) NIL)) (-2375 (($ $ $) NIL (|has| |#2| (-554)))) (-2622 (((-2 (|:| -4221 |#2|) (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#2| (-554)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#2| (-362)))) (-1498 (($ $) NIL (|has| |#2| (-451))) (($ $ (-1074)) NIL (|has| |#2| (-451)))) (-1586 (((-639 $) $) NIL)) (-2717 (((-112) $) NIL (|has| |#2| (-904)))) (-3122 (($ $ |#2| (-766) $) NIL)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1074) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1074) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-1900 (((-766) $ $) NIL (|has| |#2| (-554)))) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-3699 (((-3 $ "failed") $) NIL (|has| |#2| (-1143)))) (-1390 (($ (-1164 |#2|) (-1074)) NIL) (($ (-1164 $) (-1074)) NIL)) (-3374 (($ $ (-766)) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#2| (-362)))) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-1378 (($ |#2| (-766)) 17) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-1074)) NIL) (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL)) (-2076 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2836 (($ (-1 (-766) (-766)) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-4298 (((-1164 |#2|) $) NIL)) (-3372 (((-3 (-1074) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-2913 (((-1150) $) NIL)) (-3594 (((-2 (|:| -2097 $) (|:| -2264 $)) $ (-766)) NIL)) (-2042 (((-3 (-639 $) "failed") $) NIL)) (-1546 (((-3 (-639 $) "failed") $) NIL)) (-1628 (((-3 (-2 (|:| |var| (-1074)) (|:| -1960 (-766))) "failed") $) NIL)) (-2667 (($ $) NIL (|has| |#2| (-38 (-406 (-562)))))) (-3729 (($) NIL (|has| |#2| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#2| $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3348 (($ $ (-766) |#2| $) NIL)) (-3986 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#2| (-362)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#2| (-362)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#2|) NIL) (($ $ (-639 (-1074)) (-639 |#2|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-639 (-1074)) (-639 $)) NIL)) (-1577 (((-766) $) NIL (|has| |#2| (-362)))) (-2343 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#2| (-554))) ((|#2| (-406 $) |#2|) NIL (|has| |#2| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#2| (-554)))) (-1530 (((-3 $ "failed") $ (-766)) NIL)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#2| (-362)))) (-2455 (($ $ (-1074)) NIL (|has| |#2| (-171))) ((|#2| $) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3598 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1074) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-3900 ((|#2| $) NIL (|has| |#2| (-451))) (($ $ (-1074)) NIL (|has| |#2| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-3586 (((-3 $ "failed") $ $) NIL (|has| |#2| (-554))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#2| (-554)))) (-4054 (((-857) $) 13) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-1074)) NIL) (($ (-1252 |#1|)) 19) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#2| (-554)))) (-4358 (((-639 |#2|) $) NIL)) (-3906 ((|#2| $ (-766)) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2805 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-2922 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2286 (($) NIL T CONST)) (-2294 (($) 14 T CONST)) (-3114 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1731 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1229 |#1| |#2|) (-13 (-1232 |#2|) (-612 (-1252 |#1|)) (-10 -8 (-15 -3348 ($ $ (-766) |#2| $)))) (-1168) (-1044)) (T -1229)) +((-3348 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1229 *4 *3)) (-14 *4 (-1168)) (-4 *3 (-1044))))) +(-13 (-1232 |#2|) (-612 (-1252 |#1|)) (-10 -8 (-15 -3348 ($ $ (-766) |#2| $)))) +((-4152 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1230 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|))) (-1044) (-1232 |#1|) (-1044) (-1232 |#3|)) (T -1230)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-4 *2 (-1232 *6)) (-5 *1 (-1230 *5 *4 *6 *2)) (-4 *4 (-1232 *5))))) +(-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|))) +((-2844 (((-1256 |#2|) $ (-766)) 114)) (-1402 (((-639 (-1074)) $) 15)) (-2427 (($ (-1164 |#2|)) 67)) (-1986 (((-766) $) NIL) (((-766) $ (-639 (-1074))) 18)) (-3026 (((-417 (-1164 $)) (-1164 $)) 184)) (-2798 (($ $) 174)) (-2921 (((-417 $) $) 172)) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 82)) (-2897 (($ $ (-766)) 71)) (-3028 (($ $ (-766)) 73)) (-4157 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-4048 (((-3 |#2| "failed") $) 117) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL)) (-3961 ((|#2| $) 115) (((-406 (-562)) $) NIL) (((-562) $) NIL) (((-1074) $) NIL)) (-2375 (($ $ $) 151)) (-2622 (((-2 (|:| -4221 |#2|) (|:| -2097 $) (|:| -2264 $)) $ $) 153)) (-1900 (((-766) $ $) 169)) (-3699 (((-3 $ "failed") $) 123)) (-1378 (($ |#2| (-766)) NIL) (($ $ (-1074) (-766)) 47) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2076 (((-766) $) NIL) (((-766) $ (-1074)) 42) (((-639 (-766)) $ (-639 (-1074))) 43)) (-4298 (((-1164 |#2|) $) 59)) (-3372 (((-3 (-1074) "failed") $) 40)) (-3594 (((-2 (|:| -2097 $) (|:| -2264 $)) $ (-766)) 70)) (-2667 (($ $) 196)) (-3729 (($) 119)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 181)) (-3986 (((-417 (-1164 $)) (-1164 $)) 88)) (-3480 (((-417 (-1164 $)) (-1164 $)) 86)) (-1635 (((-417 $) $) 107)) (-1433 (($ $ (-639 (-293 $))) 39) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#2|) 31) (($ $ (-639 (-1074)) (-639 |#2|)) 28) (($ $ (-1074) $) 25) (($ $ (-639 (-1074)) (-639 $)) 23)) (-1577 (((-766) $) 187)) (-2343 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) 147) ((|#2| (-406 $) |#2|) 186) (((-406 $) $ (-406 $)) 168)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 190)) (-4029 (($ $ (-1074)) 140) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) 138) (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3598 (((-766) $) NIL) (((-766) $ (-1074)) 16) (((-639 (-766)) $ (-639 (-1074))) 20)) (-3900 ((|#2| $) NIL) (($ $ (-1074)) 125)) (-3586 (((-3 $ "failed") $ $) 161) (((-3 (-406 $) "failed") (-406 $) $) 157)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-1074)) 51) (($ (-406 (-562))) NIL) (($ $) NIL))) +(((-1231 |#1| |#2|) (-10 -8 (-15 -4054 (|#1| |#1|)) (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -3729 (|#1|)) (-15 -3699 ((-3 |#1| "failed") |#1|)) (-15 -2343 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1577 ((-766) |#1|)) (-15 -2080 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2667 (|#1| |#1|)) (-15 -2343 (|#2| (-406 |#1|) |#2|)) (-15 -4157 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2622 ((-2 (|:| -4221 |#2|) (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2375 (|#1| |#1| |#1|)) (-15 -3586 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -3586 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1900 ((-766) |#1| |#1|)) (-15 -2343 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3028 (|#1| |#1| (-766))) (-15 -2897 (|#1| |#1| (-766))) (-15 -3594 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| (-766))) (-15 -2427 (|#1| (-1164 |#2|))) (-15 -4298 ((-1164 |#2|) |#1|)) (-15 -2844 ((-1256 |#2|) |#1| (-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| |#1|)) (-15 -2343 (|#2| |#1| |#2|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3026 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3480 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3986 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -4150 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -3900 (|#1| |#1| (-1074))) (-15 -1402 ((-639 (-1074)) |#1|)) (-15 -1986 ((-766) |#1| (-639 (-1074)))) (-15 -1986 ((-766) |#1|)) (-15 -1378 (|#1| |#1| (-639 (-1074)) (-639 (-766)))) (-15 -1378 (|#1| |#1| (-1074) (-766))) (-15 -2076 ((-639 (-766)) |#1| (-639 (-1074)))) (-15 -2076 ((-766) |#1| (-1074))) (-15 -3372 ((-3 (-1074) "failed") |#1|)) (-15 -3598 ((-639 (-766)) |#1| (-639 (-1074)))) (-15 -3598 ((-766) |#1| (-1074))) (-15 -4054 (|#1| (-1074))) (-15 -4048 ((-3 (-1074) "failed") |#1|)) (-15 -3961 ((-1074) |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1074)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-1074) |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1074)) (-639 |#2|))) (-15 -1433 (|#1| |#1| (-1074) |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3598 ((-766) |#1|)) (-15 -1378 (|#1| |#2| (-766))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -2076 ((-766) |#1|)) (-15 -3900 (|#2| |#1|)) (-15 -4029 (|#1| |#1| (-639 (-1074)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1074) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1074)))) (-15 -4029 (|#1| |#1| (-1074))) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) (-1232 |#2|) (-1044)) (T -1231)) +NIL +(-10 -8 (-15 -4054 (|#1| |#1|)) (-15 -2741 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -2921 ((-417 |#1|) |#1|)) (-15 -2798 (|#1| |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -3729 (|#1|)) (-15 -3699 ((-3 |#1| "failed") |#1|)) (-15 -2343 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -1577 ((-766) |#1|)) (-15 -2080 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2667 (|#1| |#1|)) (-15 -2343 (|#2| (-406 |#1|) |#2|)) (-15 -4157 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2622 ((-2 (|:| -4221 |#2|) (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| |#1|)) (-15 -2375 (|#1| |#1| |#1|)) (-15 -3586 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -3586 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1900 ((-766) |#1| |#1|)) (-15 -2343 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3028 (|#1| |#1| (-766))) (-15 -2897 (|#1| |#1| (-766))) (-15 -3594 ((-2 (|:| -2097 |#1|) (|:| -2264 |#1|)) |#1| (-766))) (-15 -2427 (|#1| (-1164 |#2|))) (-15 -4298 ((-1164 |#2|) |#1|)) (-15 -2844 ((-1256 |#2|) |#1| (-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| |#1|)) (-15 -2343 (|#2| |#1| |#2|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3026 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3480 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3986 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -4150 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -3900 (|#1| |#1| (-1074))) (-15 -1402 ((-639 (-1074)) |#1|)) (-15 -1986 ((-766) |#1| (-639 (-1074)))) (-15 -1986 ((-766) |#1|)) (-15 -1378 (|#1| |#1| (-639 (-1074)) (-639 (-766)))) (-15 -1378 (|#1| |#1| (-1074) (-766))) (-15 -2076 ((-639 (-766)) |#1| (-639 (-1074)))) (-15 -2076 ((-766) |#1| (-1074))) (-15 -3372 ((-3 (-1074) "failed") |#1|)) (-15 -3598 ((-639 (-766)) |#1| (-639 (-1074)))) (-15 -3598 ((-766) |#1| (-1074))) (-15 -4054 (|#1| (-1074))) (-15 -4048 ((-3 (-1074) "failed") |#1|)) (-15 -3961 ((-1074) |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1074)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-1074) |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1074)) (-639 |#2|))) (-15 -1433 (|#1| |#1| (-1074) |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3598 ((-766) |#1|)) (-15 -1378 (|#1| |#2| (-766))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3961 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3961 ((-406 (-562)) |#1|)) (-15 -3961 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4054 (|#1| |#2|)) (-15 -2076 ((-766) |#1|)) (-15 -3900 (|#2| |#1|)) (-15 -4029 (|#1| |#1| (-639 (-1074)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1074) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1074)))) (-15 -4029 (|#1| |#1| (-1074))) (-15 -4054 (|#1| (-562))) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-2844 (((-1256 |#1|) $ (-766)) 238)) (-1402 (((-639 (-1074)) $) 110)) (-2427 (($ (-1164 |#1|)) 236)) (-1599 (((-1164 $) $ (-1074)) 125) (((-1164 |#1|) $) 124)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-2796 (($ $) 88 (|has| |#1| (-554)))) (-4370 (((-112) $) 90 (|has| |#1| (-554)))) (-1986 (((-766) $) 112) (((-766) $ (-639 (-1074))) 111)) (-3214 (((-3 $ "failed") $ $) 19)) (-3258 (($ $ $) 223 (|has| |#1| (-554)))) (-3026 (((-417 (-1164 $)) (-1164 $)) 100 (|has| |#1| (-904)))) (-2798 (($ $) 98 (|has| |#1| (-451)))) (-2921 (((-417 $) $) 97 (|has| |#1| (-451)))) (-4150 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 103 (|has| |#1| (-904)))) (-2569 (((-112) $ $) 208 (|has| |#1| (-362)))) (-2897 (($ $ (-766)) 231)) (-3028 (($ $ (-766)) 230)) (-4157 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-451)))) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-562)) "failed") $) 161 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 159 (|has| |#1| (-1033 (-562)))) (((-3 (-1074) "failed") $) 136)) (-3961 ((|#1| $) 163) (((-406 (-562)) $) 162 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 160 (|has| |#1| (-1033 (-562)))) (((-1074) $) 137)) (-2835 (($ $ $ (-1074)) 108 (|has| |#1| (-171))) ((|#1| $ $) 226 (|has| |#1| (-171)))) (-1811 (($ $ $) 212 (|has| |#1| (-362)))) (-1601 (($ $) 154)) (-2406 (((-683 (-562)) (-683 $)) 134 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 133 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1545 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 132) (((-683 |#1|) (-683 $)) 131)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 211 (|has| |#1| (-362)))) (-4267 (($ $ $) 229)) (-2375 (($ $ $) 220 (|has| |#1| (-554)))) (-2622 (((-2 (|:| -4221 |#1|) (|:| -2097 $) (|:| -2264 $)) $ $) 219 (|has| |#1| (-554)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 206 (|has| |#1| (-362)))) (-1498 (($ $) 176 (|has| |#1| (-451))) (($ $ (-1074)) 105 (|has| |#1| (-451)))) (-1586 (((-639 $) $) 109)) (-2717 (((-112) $) 96 (|has| |#1| (-904)))) (-3122 (($ $ |#1| (-766) $) 172)) (-2533 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84 (-12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 83 (-12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1900 (((-766) $ $) 224 (|has| |#1| (-554)))) (-1957 (((-112) $) 31)) (-1694 (((-766) $) 169)) (-3699 (((-3 $ "failed") $) 204 (|has| |#1| (-1143)))) (-1390 (($ (-1164 |#1|) (-1074)) 117) (($ (-1164 $) (-1074)) 116)) (-3374 (($ $ (-766)) 235)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 215 (|has| |#1| (-362)))) (-1889 (((-639 $) $) 126)) (-3536 (((-112) $) 152)) (-1378 (($ |#1| (-766)) 153) (($ $ (-1074) (-766)) 119) (($ $ (-639 (-1074)) (-639 (-766))) 118)) (-2623 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $ (-1074)) 120) (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 233)) (-2076 (((-766) $) 170) (((-766) $ (-1074)) 122) (((-639 (-766)) $ (-639 (-1074))) 121)) (-1551 (($ $ $) 79 (|has| |#1| (-845)))) (-2993 (($ $ $) 78 (|has| |#1| (-845)))) (-2836 (($ (-1 (-766) (-766)) $) 171)) (-4152 (($ (-1 |#1| |#1|) $) 151)) (-4298 (((-1164 |#1|) $) 237)) (-3372 (((-3 (-1074) "failed") $) 123)) (-1560 (($ $) 149)) (-1573 ((|#1| $) 148)) (-1564 (($ (-639 $)) 94 (|has| |#1| (-451))) (($ $ $) 93 (|has| |#1| (-451)))) (-2913 (((-1150) $) 9)) (-3594 (((-2 (|:| -2097 $) (|:| -2264 $)) $ (-766)) 232)) (-2042 (((-3 (-639 $) "failed") $) 114)) (-1546 (((-3 (-639 $) "failed") $) 115)) (-1628 (((-3 (-2 (|:| |var| (-1074)) (|:| -1960 (-766))) "failed") $) 113)) (-2667 (($ $) 216 (|has| |#1| (-38 (-406 (-562)))))) (-3729 (($) 203 (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 166)) (-1547 ((|#1| $) 167)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 95 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) 92 (|has| |#1| (-451))) (($ $ $) 91 (|has| |#1| (-451)))) (-3986 (((-417 (-1164 $)) (-1164 $)) 102 (|has| |#1| (-904)))) (-3480 (((-417 (-1164 $)) (-1164 $)) 101 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 99 (|has| |#1| (-904)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 213 (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 207 (|has| |#1| (-362)))) (-1433 (($ $ (-639 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-639 $) (-639 $)) 142) (($ $ (-1074) |#1|) 141) (($ $ (-639 (-1074)) (-639 |#1|)) 140) (($ $ (-1074) $) 139) (($ $ (-639 (-1074)) (-639 $)) 138)) (-1577 (((-766) $) 209 (|has| |#1| (-362)))) (-2343 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-406 $) (-406 $) (-406 $)) 225 (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) 217 (|has| |#1| (-362))) (((-406 $) $ (-406 $)) 205 (|has| |#1| (-554)))) (-1530 (((-3 $ "failed") $ (-766)) 234)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 210 (|has| |#1| (-362)))) (-2455 (($ $ (-1074)) 107 (|has| |#1| (-171))) ((|#1| $) 227 (|has| |#1| (-171)))) (-4029 (($ $ (-1074)) 42) (($ $ (-639 (-1074))) 41) (($ $ (-1074) (-766)) 40) (($ $ (-639 (-1074)) (-639 (-766))) 39) (($ $ (-766)) 253) (($ $) 251) (($ $ (-1168)) 250 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 249 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 248 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 247 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3598 (((-766) $) 150) (((-766) $ (-1074)) 130) (((-639 (-766)) $ (-639 (-1074))) 129)) (-4208 (((-887 (-378)) $) 82 (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) 81 (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) 80 (-12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-3900 ((|#1| $) 175 (|has| |#1| (-451))) (($ $ (-1074)) 106 (|has| |#1| (-451)))) (-1289 (((-3 (-1256 $) "failed") (-683 $)) 104 (-2246 (|has| $ (-144)) (|has| |#1| (-904))))) (-3586 (((-3 $ "failed") $ $) 222 (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) 221 (|has| |#1| (-554)))) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 165) (($ (-1074)) 135) (($ (-406 (-562))) 72 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562)))))) (($ $) 85 (|has| |#1| (-554)))) (-4358 (((-639 |#1|) $) 168)) (-3906 ((|#1| $ (-766)) 155) (($ $ (-1074) (-766)) 128) (($ $ (-639 (-1074)) (-639 (-766))) 127)) (-2805 (((-3 $ "failed") $) 73 (-4037 (-2246 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-2579 (((-766)) 28)) (-3548 (($ $ $ (-766)) 173 (|has| |#1| (-171)))) (-2922 (((-112) $ $) 89 (|has| |#1| (-554)))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-1074)) 38) (($ $ (-639 (-1074))) 37) (($ $ (-1074) (-766)) 36) (($ $ (-639 (-1074)) (-639 (-766))) 35) (($ $ (-766)) 254) (($ $) 252) (($ $ (-1168)) 246 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 245 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 244 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 243 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1798 (((-112) $ $) 76 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 75 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 6)) (-1785 (((-112) $ $) 77 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 74 (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 157 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1232 |#1|) (-139) (-1044)) (T -1232)) +((-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-1232 *4)) (-4 *4 (-1044)) (-5 *2 (-1256 *4)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-5 *2 (-1164 *3)))) (-2427 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1044)) (-4 *1 (-1232 *3)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-1530 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-2623 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-1232 *3)))) (-3594 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-1232 *4)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)))) (-4029 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-2455 (*1 *2 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-171)))) (-2835 (*1 *2 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-171)))) (-2343 (*1 *2 *2 *2) (-12 (-5 *2 (-406 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-4 *3 (-554)))) (-1900 (*1 *2 *1 *1) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-4 *3 (-554)) (-5 *2 (-766)))) (-3258 (*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) (-3586 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) (-3586 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-4 *3 (-554)))) (-2375 (*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) (-2622 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -4221 *3) (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-1232 *3)))) (-4157 (*1 *2 *1 *1) (-12 (-4 *3 (-451)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1232 *3)))) (-2343 (*1 *2 *3 *2) (-12 (-5 *3 (-406 *1)) (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-2667 (*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562))))))) +(-13 (-944 |t#1| (-766) (-1074)) (-285 |t#1| |t#1|) (-285 $ $) (-232) (-230 |t#1|) (-10 -8 (-15 -2844 ((-1256 |t#1|) $ (-766))) (-15 -4298 ((-1164 |t#1|) $)) (-15 -2427 ($ (-1164 |t#1|))) (-15 -3374 ($ $ (-766))) (-15 -1530 ((-3 $ "failed") $ (-766))) (-15 -2623 ((-2 (|:| -2097 $) (|:| -2264 $)) $ $)) (-15 -3594 ((-2 (|:| -2097 $) (|:| -2264 $)) $ (-766))) (-15 -2897 ($ $ (-766))) (-15 -3028 ($ $ (-766))) (-15 -4267 ($ $ $)) (-15 -4029 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1143)) (-6 (-1143)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -2455 (|t#1| $)) (-15 -2835 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-285 (-406 $) (-406 $))) (-15 -2343 ((-406 $) (-406 $) (-406 $))) (-15 -1900 ((-766) $ $)) (-15 -3258 ($ $ $)) (-15 -3586 ((-3 $ "failed") $ $)) (-15 -3586 ((-3 (-406 $) "failed") (-406 $) $)) (-15 -2375 ($ $ $)) (-15 -2622 ((-2 (|:| -4221 |t#1|) (|:| -2097 $) (|:| -2264 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-451)) (-15 -4157 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-306)) (-6 -4398) (-15 -2343 (|t#1| (-406 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-562)))) (-15 -2667 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-766)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 #2=(-1074)) . T) ((-612 |#1|) . T) ((-612 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-610 (-535)) -12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562))))) ((-230 |#1|) . T) ((-232) . T) ((-285 (-406 $) (-406 $)) |has| |#1| (-554)) ((-285 |#1| |#1|) . T) ((-285 $ $) . T) ((-289) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 $) . T) ((-325 |#1| #0#) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-904)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-513 #2# |#1|) . T) ((-513 #2# $) . T) ((-513 $ $) . T) ((-554) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-642 #1#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #1#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 #2#) . T) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-881 (-378)) -12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378)))) ((-881 (-562)) -12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))) ((-944 |#1| #0# #2#) . T) ((-904) |has| |#1| (-904)) ((-915) |has| |#1| (-362)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 #2#) . T) ((-1033 |#1|) . T) ((-1050 #1#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-1143)) ((-1211) |has| |#1| (-904))) +((-1402 (((-639 (-1074)) $) 28)) (-1601 (($ $) 25)) (-1378 (($ |#2| |#3|) NIL) (($ $ (-1074) |#3|) 22) (($ $ (-639 (-1074)) (-639 |#3|)) 21)) (-1560 (($ $) 14)) (-1573 ((|#2| $) 12)) (-3598 ((|#3| $) 10))) +(((-1233 |#1| |#2| |#3|) (-10 -8 (-15 -1402 ((-639 (-1074)) |#1|)) (-15 -1378 (|#1| |#1| (-639 (-1074)) (-639 |#3|))) (-15 -1378 (|#1| |#1| (-1074) |#3|)) (-15 -1601 (|#1| |#1|)) (-15 -1378 (|#1| |#2| |#3|)) (-15 -3598 (|#3| |#1|)) (-15 -1560 (|#1| |#1|)) (-15 -1573 (|#2| |#1|))) (-1234 |#2| |#3|) (-1044) (-787)) (T -1233)) +NIL +(-10 -8 (-15 -1402 ((-639 (-1074)) |#1|)) (-15 -1378 (|#1| |#1| (-639 (-1074)) (-639 |#3|))) (-15 -1378 (|#1| |#1| (-1074) |#3|)) (-15 -1601 (|#1| |#1|)) (-15 -1378 (|#1| |#2| |#3|)) (-15 -3598 (|#3| |#1|)) (-15 -1560 (|#1| |#1|)) (-15 -1573 (|#2| |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1402 (((-639 (-1074)) $) 77)) (-2444 (((-1168) $) 106)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2796 (($ $) 55 (|has| |#1| (-554)))) (-4370 (((-112) $) 57 (|has| |#1| (-554)))) (-2557 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-1938 (((-1148 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-1756 (((-112) $) 76)) (-1900 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-1957 (((-112) $) 31)) (-3374 (($ $ (-916)) 104)) (-3536 (((-112) $) 65)) (-1378 (($ |#1| |#2|) 64) (($ $ (-1074) |#2|) 79) (($ $ (-639 (-1074)) (-639 |#2|)) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1353 (($ $ |#2|) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2343 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3598 ((|#2| $) 67)) (-2256 (($ $) 75)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3906 ((|#1| $ |#2|) 62)) (-2805 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-2922 (((-112) $ $) 56 (|has| |#1| (-554)))) (-1406 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) +(((-1234 |#1| |#2|) (-139) (-1044) (-787)) (T -1234)) +((-1938 (*1 *2 *1) (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-1148 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2343 (*1 *2 *1 *3) (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-1168)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-1900 (*1 *2 *1 *2) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-2557 (*1 *1 *1 *2) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-2557 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-1406 (*1 *2 *1 *3) (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4054 (*2 (-1168)))) (-4 *2 (-1044)))) (-1353 (*1 *1 *1 *2) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-1433 (*1 *2 *1 *3) (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1148 *3))))) +(-13 (-968 |t#1| |t#2| (-1074)) (-10 -8 (-15 -1938 ((-1148 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2343 (|t#1| $ |t#2|)) (-15 -2444 ((-1168) $)) (-15 -2328 (|t#1| $)) (-15 -3374 ($ $ (-916))) (-15 -1900 (|t#2| $)) (-15 -1900 (|t#2| $ |t#2|)) (-15 -2557 ($ $ |t#2|)) (-15 -2557 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4054 (|t#1| (-1168)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1406 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1353 ($ $ |t#2|)) (IF (|has| |t#2| (-1104)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-232)) (IF (|has| |t#1| (-895 (-1168))) (-6 (-895 (-1168))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1433 ((-1148 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-285 $ $) |has| |#2| (-1104)) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| |#2| (-1074)) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-2798 ((|#2| |#2|) 12)) (-2921 (((-417 |#2|) |#2|) 14)) (-1555 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562)))) 30))) +(((-1235 |#1| |#2|) (-10 -7 (-15 -2921 ((-417 |#2|) |#2|)) (-15 -2798 (|#2| |#2|)) (-15 -1555 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562)))))) (-554) (-13 (-1232 |#1|) (-554) (-10 -8 (-15 -1606 ($ $ $))))) (T -1235)) +((-1555 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-562)))) (-4 *4 (-13 (-1232 *3) (-554) (-10 -8 (-15 -1606 ($ $ $))))) (-4 *3 (-554)) (-5 *1 (-1235 *3 *4)))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-1235 *3 *2)) (-4 *2 (-13 (-1232 *3) (-554) (-10 -8 (-15 -1606 ($ $ $))))))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-417 *3)) (-5 *1 (-1235 *4 *3)) (-4 *3 (-13 (-1232 *4) (-554) (-10 -8 (-15 -1606 ($ $ $)))))))) +(-10 -7 (-15 -2921 ((-417 |#2|) |#2|)) (-15 -2798 (|#2| |#2|)) (-15 -1555 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562)))))) +((-4152 (((-1241 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1241 |#1| |#3| |#5|)) 24))) +(((-1236 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4152 ((-1241 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1241 |#1| |#3| |#5|)))) (-1044) (-1044) (-1168) (-1168) |#1| |#2|) (T -1236)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5 *7 *9)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-14 *7 (-1168)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1241 *6 *8 *10)) (-5 *1 (-1236 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1168))))) +(-10 -7 (-15 -4152 ((-1241 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1241 |#1| |#3| |#5|)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1402 (((-639 (-1074)) $) 77)) (-2444 (((-1168) $) 106)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2796 (($ $) 55 (|has| |#1| (-554)))) (-4370 (((-112) $) 57 (|has| |#1| (-554)))) (-2557 (($ $ (-406 (-562))) 101) (($ $ (-406 (-562)) (-406 (-562))) 100)) (-1938 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) 108)) (-2988 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 165 (|has| |#1| (-362)))) (-2921 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-2569 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4207 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) 174)) (-3014 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) 17 T CONST)) (-1811 (($ $ $) 160 (|has| |#1| (-362)))) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 159 (|has| |#1| (-362)))) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 154 (|has| |#1| (-362)))) (-2717 (((-112) $) 167 (|has| |#1| (-362)))) (-1756 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-406 (-562)) $) 103) (((-406 (-562)) $ (-406 (-562))) 102)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) 104) (($ $ (-406 (-562))) 173)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 163 (|has| |#1| (-362)))) (-3536 (((-112) $) 65)) (-1378 (($ |#1| (-406 (-562))) 64) (($ $ (-1074) (-406 (-562))) 79) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-4365 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-1564 (($ (-639 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-2913 (((-1150) $) 9)) (-1525 (($ $) 168 (|has| |#1| (-362)))) (-2667 (($ $) 172 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 171 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 153 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1635 (((-417 $) $) 164 (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 161 (|has| |#1| (-362)))) (-1353 (($ $ (-406 (-562))) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 155 (|has| |#1| (-362)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-1577 (((-766) $) 157 (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) 107) (($ $ $) 84 (|has| (-406 (-562)) (-1104)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 158 (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-3598 (((-406 (-562)) $) 67)) (-3023 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) 75)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554)))) (-3906 ((|#1| $ (-406 (-562))) 62)) (-2805 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) +(((-1237 |#1|) (-139) (-1044)) (T -1237)) +((-1503 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| *4)))) (-4 *4 (-1044)) (-4 *1 (-1237 *4)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-4 *1 (-1237 *3)) (-4 *3 (-1044)))) (-2667 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) (-2667 (*1 *1 *1 *2) (-4037 (-12 (-5 *2 (-1168)) (-4 *1 (-1237 *3)) (-4 *3 (-1044)) (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) (-4 *3 (-38 (-406 (-562)))))) (-12 (-5 *2 (-1168)) (-4 *1 (-1237 *3)) (-4 *3 (-1044)) (-12 (|has| *3 (-15 -1402 ((-639 *2) *3))) (|has| *3 (-15 -2667 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562))))))))) +(-13 (-1234 |t#1| (-406 (-562))) (-10 -8 (-15 -1503 ($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |t#1|))))) (-15 -3374 ($ $ (-406 (-562)))) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $)) (IF (|has| |t#1| (-15 -2667 (|t#1| |t#1| (-1168)))) (IF (|has| |t#1| (-15 -1402 ((-639 (-1168)) |t#1|))) (-15 -2667 ($ $ (-1168))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1192)) (IF (|has| |t#1| (-954)) (IF (|has| |t#1| (-29 (-562))) (-15 -2667 ($ $ (-1168))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-997)) (-6 (-1192))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-562))) . T) ((-25) . T) ((-38 #1=(-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 $ $) |has| (-406 (-562)) (-1104)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-451) |has| |#1| (-362)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-642 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| #0# (-1074)) . T) ((-915) |has| |#1| (-362)) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1050 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1211) |has| |#1| (-362)) ((-1234 |#1| #0#) . T)) +((-1952 (((-112) $) 12)) (-4048 (((-3 |#3| "failed") $) 17)) (-3961 ((|#3| $) 14))) +(((-1238 |#1| |#2| |#3|) (-10 -8 (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3961 (|#3| |#1|)) (-15 -1952 ((-112) |#1|))) (-1239 |#2| |#3|) (-1044) (-1216 |#2|)) (T -1238)) +NIL +(-10 -8 (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3961 (|#3| |#1|)) (-15 -1952 ((-112) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1402 (((-639 (-1074)) $) 77)) (-2444 (((-1168) $) 106)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2796 (($ $) 55 (|has| |#1| (-554)))) (-4370 (((-112) $) 57 (|has| |#1| (-554)))) (-2557 (($ $ (-406 (-562))) 101) (($ $ (-406 (-562)) (-406 (-562))) 100)) (-1938 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) 108)) (-2988 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 165 (|has| |#1| (-362)))) (-2921 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-2569 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4207 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) 174)) (-3014 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#2| "failed") $) 185)) (-3961 ((|#2| $) 186)) (-1811 (($ $ $) 160 (|has| |#1| (-362)))) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-3952 (((-406 (-562)) $) 182)) (-1787 (($ $ $) 159 (|has| |#1| (-362)))) (-1499 (($ (-406 (-562)) |#2|) 183)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 154 (|has| |#1| (-362)))) (-2717 (((-112) $) 167 (|has| |#1| (-362)))) (-1756 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-406 (-562)) $) 103) (((-406 (-562)) $ (-406 (-562))) 102)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) 104) (($ $ (-406 (-562))) 173)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 163 (|has| |#1| (-362)))) (-3536 (((-112) $) 65)) (-1378 (($ |#1| (-406 (-562))) 64) (($ $ (-1074) (-406 (-562))) 79) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-4365 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-1564 (($ (-639 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-4098 ((|#2| $) 181)) (-2287 (((-3 |#2| "failed") $) 179)) (-1485 ((|#2| $) 180)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 168 (|has| |#1| (-362)))) (-2667 (($ $) 172 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 171 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 153 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1635 (((-417 $) $) 164 (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 161 (|has| |#1| (-362)))) (-1353 (($ $ (-406 (-562))) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 155 (|has| |#1| (-362)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-1577 (((-766) $) 157 (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) 107) (($ $ $) 84 (|has| (-406 (-562)) (-1104)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 158 (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-3598 (((-406 (-562)) $) 67)) (-3023 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) 75)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 184) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554)))) (-3906 ((|#1| $ (-406 (-562))) 62)) (-2805 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) +(((-1239 |#1| |#2|) (-139) (-1044) (-1216 |t#1|)) (T -1239)) +((-3598 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1216 *3)) (-5 *2 (-406 (-562))))) (-1499 (*1 *1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-4 *4 (-1044)) (-4 *1 (-1239 *4 *3)) (-4 *3 (-1216 *4)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1216 *3)) (-5 *2 (-406 (-562))))) (-4098 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3)))) (-2287 (*1 *2 *1) (|partial| -12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3))))) +(-13 (-1237 |t#1|) (-1033 |t#2|) (-612 |t#2|) (-10 -8 (-15 -1499 ($ (-406 (-562)) |t#2|)) (-15 -3952 ((-406 (-562)) $)) (-15 -4098 (|t#2| $)) (-15 -3598 ((-406 (-562)) $)) (-15 -1485 (|t#2| $)) (-15 -2287 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-562))) . T) ((-25) . T) ((-38 #1=(-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 |#2|) . T) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 $ $) |has| (-406 (-562)) (-1104)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-451) |has| |#1| (-362)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-642 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| #0# (-1074)) . T) ((-915) |has| |#1| (-362)) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1033 |#2|) . T) ((-1050 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1211) |has| |#1| (-362)) ((-1234 |#1| #0#) . T) ((-1237 |#1|) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) 96)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2557 (($ $ (-406 (-562))) 106) (($ $ (-406 (-562)) (-406 (-562))) 108)) (-1938 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) 51)) (-2988 (($ $) 180 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 156 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| |#1| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4207 (($ $) 176 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 152 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) 61)) (-3014 (($ $) 184 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 160 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL)) (-3961 ((|#2| $) NIL)) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) 79)) (-3952 (((-406 (-562)) $) 13)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-1499 (($ (-406 (-562)) |#2|) 11)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2717 (((-112) $) NIL (|has| |#1| (-362)))) (-1756 (((-112) $) 68)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-406 (-562)) $) 103) (((-406 (-562)) $ (-406 (-562))) 104)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) 120) (($ $ (-406 (-562))) 118)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-406 (-562))) 31) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 115)) (-4365 (($ $) 150 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4098 ((|#2| $) 12)) (-2287 (((-3 |#2| "failed") $) 41)) (-1485 ((|#2| $) 42)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) 93 (|has| |#1| (-362)))) (-2667 (($ $) 135 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 140 (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192)))))) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ (-406 (-562))) 112)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) 100) (($ $ $) 86 (|has| (-406 (-562)) (-1104)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) 127 (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-3598 (((-406 (-562)) $) 16)) (-3023 (($ $) 186 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 162 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 182 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 158 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 178 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 154 (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) 110)) (-4054 (((-857) $) NIL) (($ (-562)) 35) (($ |#1|) 27 (|has| |#1| (-171))) (($ |#2|) 32) (($ (-406 (-562))) 128 (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-3906 ((|#1| $ (-406 (-562))) 99)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) 117)) (-2328 ((|#1| $) 98)) (-3055 (($ $) 192 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 168 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 188 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 164 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 196 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 172 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) 198 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 174 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 194 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 170 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 190 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 166 (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 21 T CONST)) (-2294 (($) 17 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1731 (((-112) $ $) 66)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 92 (|has| |#1| (-362)))) (-1848 (($ $) 131) (($ $ $) 72)) (-1835 (($ $ $) 70)) (** (($ $ (-916)) NIL) (($ $ (-766)) 76) (($ $ (-562)) 145 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 146 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-1240 |#1| |#2|) (-1239 |#1| |#2|) (-1044) (-1216 |#1|)) (T -1240)) +NIL +(-1239 |#1| |#2|) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) 11)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-2557 (($ $ (-406 (-562))) NIL) (($ $ (-406 (-562)) (-406 (-562))) NIL)) (-1938 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) NIL)) (-2988 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $) NIL (|has| |#1| (-362)))) (-2921 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2569 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4207 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-1220 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1248 |#1| |#2| |#3|) "failed") $) 22)) (-3961 (((-1220 |#1| |#2| |#3|) $) NIL) (((-1248 |#1| |#2| |#3|) $) NIL)) (-1811 (($ $ $) NIL (|has| |#1| (-362)))) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-3952 (((-406 (-562)) $) 57)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-1499 (($ (-406 (-562)) (-1220 |#1| |#2| |#3|)) NIL)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2717 (((-112) $) NIL (|has| |#1| (-362)))) (-1756 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-406 (-562)) $) NIL) (((-406 (-562)) $ (-406 (-562))) NIL)) (-1957 (((-112) $) NIL)) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) NIL) (($ $ (-406 (-562))) NIL)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-406 (-562))) 30) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4365 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-4098 (((-1220 |#1| |#2| |#3|) $) 60)) (-2287 (((-3 (-1220 |#1| |#2| |#3|) "failed") $) NIL)) (-1485 (((-1220 |#1| |#2| |#3|) $) NIL)) (-2913 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-2667 (($ $) 39 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 40 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-4102 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ (-406 (-562))) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3870 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-1577 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) NIL) (($ $ $) NIL (|has| (-406 (-562)) (-1104)))) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $ (-1252 |#2|)) 38)) (-3598 (((-406 (-562)) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) NIL)) (-4054 (((-857) $) 88) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1220 |#1| |#2| |#3|)) 16) (($ (-1248 |#1| |#2| |#3|)) 17) (($ (-1252 |#2|)) 36) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-3906 ((|#1| $ (-406 (-562))) NIL)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-2328 ((|#1| $) 12)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 32 T CONST)) (-2294 (($) 26 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 34)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-1241 |#1| |#2| |#3|) (-13 (-1239 |#1| (-1220 |#1| |#2| |#3|)) (-1033 (-1248 |#1| |#2| |#3|)) (-612 (-1252 |#2|)) (-10 -8 (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1241)) +((-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1241 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1241 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) +(-13 (-1239 |#1| (-1220 |#1| |#2| |#3|)) (-1033 (-1248 |#1| |#2| |#3|)) (-612 (-1252 |#2|)) (-10 -8 (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 34)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL)) (-2796 (($ $) NIL)) (-4370 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| (-1241 |#2| |#3| |#4|) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-1241 |#2| |#3| |#4|) (-1033 (-406 (-562))))) (((-3 (-1241 |#2| |#3| |#4|) "failed") $) 20)) (-3961 (((-562) $) NIL (|has| (-1241 |#2| |#3| |#4|) (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| (-1241 |#2| |#3| |#4|) (-1033 (-406 (-562))))) (((-1241 |#2| |#3| |#4|) $) NIL)) (-1601 (($ $) 35)) (-3668 (((-3 $ "failed") $) 25)) (-1498 (($ $) NIL (|has| (-1241 |#2| |#3| |#4|) (-451)))) (-3122 (($ $ (-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|) $) NIL)) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) 11)) (-3536 (((-112) $) NIL)) (-1378 (($ (-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) 23)) (-2076 (((-318 |#2| |#3| |#4|) $) NIL)) (-2836 (($ (-1 (-318 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) $) NIL)) (-4152 (($ (-1 (-1241 |#2| |#3| |#4|) (-1241 |#2| |#3| |#4|)) $) NIL)) (-2332 (((-3 (-838 |#2|) "failed") $) 74)) (-1560 (($ $) NIL)) (-1573 (((-1241 |#2| |#3| |#4|) $) 18)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 (((-1241 |#2| |#3| |#4|) $) NIL)) (-1762 (((-3 $ "failed") $ (-1241 |#2| |#3| |#4|)) NIL (|has| (-1241 |#2| |#3| |#4|) (-554))) (((-3 $ "failed") $ $) NIL)) (-3600 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1241 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#2|)))))) (|:| |%type| (-1150))) "failed") $) 57)) (-3598 (((-318 |#2| |#3| |#4|) $) 14)) (-3900 (((-1241 |#2| |#3| |#4|) $) NIL (|has| (-1241 |#2| |#3| |#4|) (-451)))) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ (-1241 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL (-4037 (|has| (-1241 |#2| |#3| |#4|) (-38 (-406 (-562)))) (|has| (-1241 |#2| |#3| |#4|) (-1033 (-406 (-562))))))) (-4358 (((-639 (-1241 |#2| |#3| |#4|)) $) NIL)) (-3906 (((-1241 |#2| |#3| |#4|) $ (-318 |#2| |#3| |#4|)) NIL)) (-2805 (((-3 $ "failed") $) NIL (|has| (-1241 |#2| |#3| |#4|) (-144)))) (-2579 (((-766)) NIL)) (-3548 (($ $ $ (-766)) NIL (|has| (-1241 |#2| |#3| |#4|) (-171)))) (-2922 (((-112) $ $) NIL)) (-2286 (($) 62 T CONST)) (-2294 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ (-1241 |#2| |#3| |#4|)) NIL (|has| (-1241 |#2| |#3| |#4|) (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-1241 |#2| |#3| |#4|)) NIL) (($ (-1241 |#2| |#3| |#4|) $) NIL) (($ (-406 (-562)) $) NIL (|has| (-1241 |#2| |#3| |#4|) (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| (-1241 |#2| |#3| |#4|) (-38 (-406 (-562))))))) +(((-1242 |#1| |#2| |#3| |#4|) (-13 (-325 (-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-554) (-10 -8 (-15 -2332 ((-3 (-838 |#2|) "failed") $)) (-15 -3600 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1241 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#2|)))))) (|:| |%type| (-1150))) "failed") $)))) (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451)) (-13 (-27) (-1192) (-429 |#1|)) (-1168) |#2|) (T -1242)) +((-2332 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) (-5 *2 (-838 *4)) (-5 *1 (-1242 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) (-14 *6 *4))) (-3600 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1241 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6)) (|:| |%expTerms| (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| *4)))))) (|:| |%type| (-1150)))) (-5 *1 (-1242 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) (-14 *6 *4)))) +(-13 (-325 (-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-554) (-10 -8 (-15 -2332 ((-3 (-838 |#2|) "failed") $)) (-15 -3600 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1241 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#2|)))))) (|:| |%type| (-1150))) "failed") $)))) +((-2534 ((|#2| $) 28)) (-2359 ((|#2| $) 18)) (-3121 (($ $) 35)) (-2254 (($ $ (-562)) 63)) (-4336 (((-112) $ (-766)) 32)) (-1512 ((|#2| $ |#2|) 60)) (-3950 ((|#2| $ |#2|) 58)) (-4200 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-2917 (($ $ (-639 $)) 59)) (-2350 ((|#2| $) 17)) (-1434 (($ $) NIL) (($ $ (-766)) 41)) (-2720 (((-639 $) $) 25)) (-4379 (((-112) $ $) 49)) (-3292 (((-112) $ (-766)) 31)) (-3289 (((-112) $ (-766)) 30)) (-3449 (((-112) $) 27)) (-1504 ((|#2| $) 23) (($ $ (-766)) 45)) (-2343 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2424 (((-112) $) 21)) (-2613 (($ $) 38)) (-4327 (($ $) 64)) (-2296 (((-766) $) 40)) (-3913 (($ $) 39)) (-2767 (($ $ $) 57) (($ |#2| $) NIL)) (-2906 (((-639 $) $) 26)) (-1731 (((-112) $ $) 47)) (-3492 (((-766) $) 34))) +(((-1243 |#1| |#2|) (-10 -8 (-15 -2254 (|#1| |#1| (-562))) (-15 -4200 (|#2| |#1| "last" |#2|)) (-15 -3950 (|#2| |#1| |#2|)) (-15 -4200 (|#1| |#1| "rest" |#1|)) (-15 -4200 (|#2| |#1| "first" |#2|)) (-15 -4327 (|#1| |#1|)) (-15 -2613 (|#1| |#1|)) (-15 -2296 ((-766) |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -2359 (|#2| |#1|)) (-15 -2350 (|#2| |#1|)) (-15 -3121 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "last")) (-15 -1504 (|#2| |#1|)) (-15 -1434 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| "rest")) (-15 -1434 (|#1| |#1|)) (-15 -2343 (|#2| |#1| "first")) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -1512 (|#2| |#1| |#2|)) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -2917 (|#1| |#1| (-639 |#1|))) (-15 -4379 ((-112) |#1| |#1|)) (-15 -2424 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -2534 (|#2| |#1|)) (-15 -3449 ((-112) |#1|)) (-15 -2720 ((-639 |#1|) |#1|)) (-15 -2906 ((-639 |#1|) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4336 ((-112) |#1| (-766))) (-15 -3292 ((-112) |#1| (-766))) (-15 -3289 ((-112) |#1| (-766)))) (-1244 |#2|) (-1207)) (T -1243)) +NIL +(-10 -8 (-15 -2254 (|#1| |#1| (-562))) (-15 -4200 (|#2| |#1| "last" |#2|)) (-15 -3950 (|#2| |#1| |#2|)) (-15 -4200 (|#1| |#1| "rest" |#1|)) (-15 -4200 (|#2| |#1| "first" |#2|)) (-15 -4327 (|#1| |#1|)) (-15 -2613 (|#1| |#1|)) (-15 -2296 ((-766) |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -2359 (|#2| |#1|)) (-15 -2350 (|#2| |#1|)) (-15 -3121 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "last")) (-15 -1504 (|#2| |#1|)) (-15 -1434 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| "rest")) (-15 -1434 (|#1| |#1|)) (-15 -2343 (|#2| |#1| "first")) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -1512 (|#2| |#1| |#2|)) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -2917 (|#1| |#1| (-639 |#1|))) (-15 -4379 ((-112) |#1| |#1|)) (-15 -2424 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -2534 (|#2| |#1|)) (-15 -3449 ((-112) |#1|)) (-15 -2720 ((-639 |#1|) |#1|)) (-15 -2906 ((-639 |#1|) |#1|)) (-15 -1731 ((-112) |#1| |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4336 ((-112) |#1| (-766))) (-15 -3292 ((-112) |#1| (-766))) (-15 -3289 ((-112) |#1| (-766)))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2534 ((|#1| $) 48)) (-2359 ((|#1| $) 65)) (-3121 (($ $) 67)) (-2254 (($ $ (-562)) 52 (|has| $ (-6 -4403)))) (-4336 (((-112) $ (-766)) 8)) (-1512 ((|#1| $ |#1|) 39 (|has| $ (-6 -4403)))) (-3012 (($ $ $) 56 (|has| $ (-6 -4403)))) (-3950 ((|#1| $ |#1|) 54 (|has| $ (-6 -4403)))) (-2687 ((|#1| $ |#1|) 58 (|has| $ (-6 -4403)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4403))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4403))) (($ $ "rest" $) 55 (|has| $ (-6 -4403))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4403)))) (-2917 (($ $ (-639 $)) 41 (|has| $ (-6 -4403)))) (-2350 ((|#1| $) 66)) (-1800 (($) 7 T CONST)) (-1434 (($ $) 73) (($ $ (-766)) 71)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2720 (((-639 $) $) 50)) (-4379 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-3292 (((-112) $ (-766)) 9)) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3289 (((-112) $ (-766)) 10)) (-4007 (((-639 |#1|) $) 45)) (-3449 (((-112) $) 49)) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 70) (($ $ (-766)) 68)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 76) (($ $ (-766)) 74)) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2568 (((-562) $ $) 44)) (-2424 (((-112) $) 46)) (-2613 (($ $) 62)) (-4327 (($ $) 59 (|has| $ (-6 -4403)))) (-2296 (((-766) $) 63)) (-3913 (($ $) 64)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-4220 (($ $) 13)) (-4142 (($ $ $) 61 (|has| $ (-6 -4403))) (($ $ |#1|) 60 (|has| $ (-6 -4403)))) (-2767 (($ $ $) 78) (($ |#1| $) 77)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2906 (((-639 $) $) 51)) (-4055 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-1244 |#1|) (-139) (-1207)) (T -1244)) +((-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2767 (*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-1421 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-1434 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-3121 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-3913 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) (-2613 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-4142 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-4142 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-4327 (*1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2687 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-3012 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-4200 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4403)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-3950 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2254 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (|has| *1 (-6 -4403)) (-4 *1 (-1244 *3)) (-4 *3 (-1207))))) +(-13 (-1005 |t#1|) (-10 -8 (-15 -2767 ($ $ $)) (-15 -2767 ($ |t#1| $)) (-15 -1421 (|t#1| $)) (-15 -2343 (|t#1| $ "first")) (-15 -1421 ($ $ (-766))) (-15 -1434 ($ $)) (-15 -2343 ($ $ "rest")) (-15 -1434 ($ $ (-766))) (-15 -1504 (|t#1| $)) (-15 -2343 (|t#1| $ "last")) (-15 -1504 ($ $ (-766))) (-15 -3121 ($ $)) (-15 -2350 (|t#1| $)) (-15 -2359 (|t#1| $)) (-15 -3913 ($ $)) (-15 -2296 ((-766) $)) (-15 -2613 ($ $)) (IF (|has| $ (-6 -4403)) (PROGN (-15 -4142 ($ $ $)) (-15 -4142 ($ $ |t#1|)) (-15 -4327 ($ $)) (-15 -2687 (|t#1| $ |t#1|)) (-15 -4200 (|t#1| $ "first" |t#1|)) (-15 -3012 ($ $ $)) (-15 -4200 ($ $ "rest" $)) (-15 -3950 (|t#1| $ |t#1|)) (-15 -4200 (|t#1| $ "last" |t#1|)) (-15 -2254 ($ $ (-562)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-4152 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1245 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#2| |#1|) |#3|))) (-1044) (-1044) (-1247 |#1|) (-1247 |#2|)) (T -1245)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-4 *2 (-1247 *6)) (-5 *1 (-1245 *5 *6 *4 *2)) (-4 *4 (-1247 *5))))) +(-10 -7 (-15 -4152 (|#4| (-1 |#2| |#1|) |#3|))) +((-1952 (((-112) $) 15)) (-2988 (($ $) 91)) (-4097 (($ $) 67)) (-4207 (($ $) 87)) (-4074 (($ $) 63)) (-3014 (($ $) 95)) (-4119 (($ $) 71)) (-4365 (($ $) 61)) (-3430 (($ $) 59)) (-3023 (($ $) 97)) (-4130 (($ $) 73)) (-3001 (($ $) 93)) (-4108 (($ $) 69)) (-2978 (($ $) 89)) (-4087 (($ $) 65)) (-4054 (((-857) $) 47) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3055 (($ $) 103)) (-4165 (($ $) 79)) (-3033 (($ $) 99)) (-4138 (($ $) 75)) (-3078 (($ $) 107)) (-4182 (($ $) 83)) (-1566 (($ $) 109)) (-4195 (($ $) 85)) (-3066 (($ $) 105)) (-4174 (($ $) 81)) (-3044 (($ $) 101)) (-4151 (($ $) 77)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-406 (-562))) 57))) +(((-1246 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -4097 (|#1| |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4108 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4174 (|#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -4182 (|#1| |#1|)) (-15 -4138 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -3001 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -4207 (|#1| |#1|)) (-15 -2988 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -4365 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916))) (-15 -1952 ((-112) |#1|)) (-15 -4054 ((-857) |#1|))) (-1247 |#2|) (-1044)) (T -1246)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -4097 (|#1| |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4108 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4174 (|#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -4182 (|#1| |#1|)) (-15 -4138 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2978 (|#1| |#1|)) (-15 -3001 (|#1| |#1|)) (-15 -3023 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -4207 (|#1| |#1|)) (-15 -2988 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -4365 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4054 (|#1| |#2|)) (-15 -4054 (|#1| |#1|)) (-15 -4054 (|#1| (-406 (-562)))) (-15 -4054 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916))) (-15 -1952 ((-112) |#1|)) (-15 -4054 ((-857) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1402 (((-639 (-1074)) $) 77)) (-2444 (((-1168) $) 106)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-2796 (($ $) 55 (|has| |#1| (-554)))) (-4370 (((-112) $) 57 (|has| |#1| (-554)))) (-2557 (($ $ (-766)) 101) (($ $ (-766) (-766)) 100)) (-1938 (((-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|))) $) 108)) (-2988 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) 19)) (-1643 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-4207 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|)))) 158) (($ (-1148 |#1|)) 156)) (-3014 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) 17 T CONST)) (-1601 (($ $) 63)) (-3668 (((-3 $ "failed") $) 33)) (-2834 (($ $) 155)) (-1454 (((-947 |#1|) $ (-766)) 153) (((-947 |#1|) $ (-766) (-766)) 152)) (-1756 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-766) $) 103) (((-766) $ (-766)) 102)) (-1957 (((-112) $) 31)) (-1891 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3374 (($ $ (-916)) 104)) (-4222 (($ (-1 |#1| (-562)) $) 154)) (-3536 (((-112) $) 65)) (-1378 (($ |#1| (-766)) 64) (($ $ (-1074) (-766)) 79) (($ $ (-639 (-1074)) (-639 (-766))) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-4365 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-2913 (((-1150) $) 9)) (-2667 (($ $) 150 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 149 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-1709 (((-1112) $) 10)) (-1353 (($ $ (-766)) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-766)))))) (-2343 ((|#1| $ (-766)) 107) (($ $ $) 84 (|has| (-766) (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (-3598 (((-766) $) 67)) (-3023 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) 75)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-4358 (((-1148 |#1|) $) 157)) (-3906 ((|#1| $ (-766)) 62)) (-2805 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-2579 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3055 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-766)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-766)))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ |#1|) 151 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) +(((-1247 |#1|) (-139) (-1044)) (T -1247)) +((-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 (-2 (|:| |k| (-766)) (|:| |c| *3)))) (-4 *3 (-1044)) (-4 *1 (-1247 *3)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1044)) (-5 *2 (-1148 *3)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-4 *1 (-1247 *3)))) (-2834 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-562))) (-4 *1 (-1247 *3)) (-4 *3 (-1044)))) (-1454 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-1247 *4)) (-4 *4 (-1044)) (-5 *2 (-947 *4)))) (-1454 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-4 *1 (-1247 *4)) (-4 *4 (-1044)) (-5 *2 (-947 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-2667 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) (-2667 (*1 *1 *1 *2) (-4037 (-12 (-5 *2 (-1168)) (-4 *1 (-1247 *3)) (-4 *3 (-1044)) (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) (-4 *3 (-38 (-406 (-562)))))) (-12 (-5 *2 (-1168)) (-4 *1 (-1247 *3)) (-4 *3 (-1044)) (-12 (|has| *3 (-15 -1402 ((-639 *2) *3))) (|has| *3 (-15 -2667 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562))))))))) +(-13 (-1234 |t#1| (-766)) (-10 -8 (-15 -1503 ($ (-1148 (-2 (|:| |k| (-766)) (|:| |c| |t#1|))))) (-15 -4358 ((-1148 |t#1|) $)) (-15 -1503 ($ (-1148 |t#1|))) (-15 -2834 ($ $)) (-15 -4222 ($ (-1 |t#1| (-562)) $)) (-15 -1454 ((-947 |t#1|) $ (-766))) (-15 -1454 ((-947 |t#1|) $ (-766) (-766))) (IF (|has| |t#1| (-362)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -2667 ($ $)) (IF (|has| |t#1| (-15 -2667 (|t#1| |t#1| (-1168)))) (IF (|has| |t#1| (-15 -1402 ((-639 (-1168)) |t#1|))) (-15 -2667 ($ $ (-1168))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1192)) (IF (|has| |t#1| (-954)) (IF (|has| |t#1| (-29 (-562))) (-15 -2667 ($ $ (-1168))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-997)) (-6 (-1192))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-766)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-766) |#1|))) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 $ $) |has| (-766) (-1104)) ((-289) |has| |#1| (-554)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-554) |has| |#1| (-554)) ((-642 #1#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| #0# (-1074)) . T) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1050 #1#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1234 |#1| #0#) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-1402 (((-639 (-1074)) $) NIL)) (-2444 (((-1168) $) 86)) (-2004 (((-1229 |#2| |#1|) $ (-766)) 73)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-2796 (($ $) NIL (|has| |#1| (-554)))) (-4370 (((-112) $) 136 (|has| |#1| (-554)))) (-2557 (($ $ (-766)) 121) (($ $ (-766) (-766)) 123)) (-1938 (((-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|))) $) 42)) (-2988 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4097 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3214 (((-3 $ "failed") $ $) NIL)) (-1643 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4207 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|)))) 53) (($ (-1148 |#1|)) NIL)) (-3014 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4119 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1800 (($) NIL T CONST)) (-2970 (($ $) 127)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-2834 (($ $) 134)) (-1454 (((-947 |#1|) $ (-766)) 63) (((-947 |#1|) $ (-766) (-766)) 65)) (-1756 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1900 (((-766) $) NIL) (((-766) $ (-766)) NIL)) (-1957 (((-112) $) NIL)) (-2009 (($ $) 111)) (-1891 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4325 (($ (-562) (-562) $) 129)) (-3374 (($ $ (-916)) 133)) (-4222 (($ (-1 |#1| (-562)) $) 105)) (-3536 (((-112) $) NIL)) (-1378 (($ |#1| (-766)) 15) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 93)) (-4365 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1650 (($ $) 109)) (-1638 (($ $) 107)) (-2584 (($ (-562) (-562) $) 131)) (-2667 (($ $) 144 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 150 (-4037 (-12 (|has| |#1| (-15 -2667 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1402 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-2863 (($ $ (-562) (-562)) 115)) (-1353 (($ $ (-766)) 117)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1574 (($ $) 113)) (-1433 (((-1148 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-766)))))) (-2343 ((|#1| $ (-766)) 90) (($ $ $) 125 (|has| (-766) (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) 102 (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $ (-1252 |#2|)) 98)) (-3598 (((-766) $) NIL)) (-3023 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3001 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2978 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2256 (($ $) 119)) (-4054 (((-857) $) NIL) (($ (-562)) 24) (($ (-406 (-562))) 142 (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 23 (|has| |#1| (-171))) (($ (-1229 |#2| |#1|)) 79) (($ (-1252 |#2|)) 20)) (-4358 (((-1148 |#1|) $) NIL)) (-3906 ((|#1| $ (-766)) 89)) (-2805 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-2579 (((-766)) NIL)) (-2328 ((|#1| $) 87)) (-3055 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2922 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4138 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3078 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-766)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-766)))) (|has| |#1| (-15 -4054 (|#1| (-1168))))))) (-1566 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3066 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4174 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3044 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2286 (($) 17 T CONST)) (-2294 (($) 13 T CONST)) (-3114 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (-1731 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) 101)) (-1835 (($ $ $) 18)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ |#1|) 139 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) +(((-1248 |#1| |#2| |#3|) (-13 (-1247 |#1|) (-10 -8 (-15 -4054 ($ (-1229 |#2| |#1|))) (-15 -2004 ((-1229 |#2| |#1|) $ (-766))) (-15 -4054 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (-15 -1638 ($ $)) (-15 -1650 ($ $)) (-15 -2009 ($ $)) (-15 -1574 ($ $)) (-15 -2863 ($ $ (-562) (-562))) (-15 -2970 ($ $)) (-15 -4325 ($ (-562) (-562) $)) (-15 -2584 ($ (-562) (-562) $)) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1248)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-1229 *4 *3)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-1248 *3 *4 *5)))) (-2004 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1229 *5 *4)) (-5 *1 (-1248 *4 *5 *6)) (-4 *4 (-1044)) (-14 *5 (-1168)) (-14 *6 *4))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-1638 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-1650 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-2009 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-2863 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3))) (-2970 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-4325 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3))) (-2584 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) +(-13 (-1247 |#1|) (-10 -8 (-15 -4054 ($ (-1229 |#2| |#1|))) (-15 -2004 ((-1229 |#2| |#1|) $ (-766))) (-15 -4054 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (-15 -1638 ($ $)) (-15 -1650 ($ $)) (-15 -2009 ($ $)) (-15 -1574 ($ $)) (-15 -2863 ($ $ (-562) (-562))) (-15 -2970 ($ $)) (-15 -4325 ($ (-562) (-562) $)) (-15 -2584 ($ (-562) (-562) $)) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -2667 ($ $ (-1252 |#2|))) |%noBranch|))) +((-2356 (((-1 (-1148 |#1|) (-639 (-1148 |#1|))) (-1 |#2| (-639 |#2|))) 24)) (-2704 (((-1 (-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4143 (((-1 (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2|)) 13)) (-3024 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2485 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3768 ((|#2| (-1 |#2| (-639 |#2|)) (-639 |#1|)) 54)) (-3424 (((-639 |#2|) (-639 |#1|) (-639 (-1 |#2| (-639 |#2|)))) 61)) (-3917 ((|#2| |#2| |#2|) 43))) +(((-1249 |#1| |#2|) (-10 -7 (-15 -4143 ((-1 (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2|))) (-15 -2704 ((-1 (-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2356 ((-1 (-1148 |#1|) (-639 (-1148 |#1|))) (-1 |#2| (-639 |#2|)))) (-15 -3917 (|#2| |#2| |#2|)) (-15 -2485 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3024 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3768 (|#2| (-1 |#2| (-639 |#2|)) (-639 |#1|))) (-15 -3424 ((-639 |#2|) (-639 |#1|) (-639 (-1 |#2| (-639 |#2|)))))) (-38 (-406 (-562))) (-1247 |#1|)) (T -1249)) +((-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 (-1 *6 (-639 *6)))) (-4 *5 (-38 (-406 (-562)))) (-4 *6 (-1247 *5)) (-5 *2 (-639 *6)) (-5 *1 (-1249 *5 *6)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-639 *2))) (-5 *4 (-639 *5)) (-4 *5 (-38 (-406 (-562)))) (-4 *2 (-1247 *5)) (-5 *1 (-1249 *5 *2)))) (-3024 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1247 *4)) (-5 *1 (-1249 *4 *2)) (-4 *4 (-38 (-406 (-562)))))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1247 *4)) (-5 *1 (-1249 *4 *2)) (-4 *4 (-38 (-406 (-562)))))) (-3917 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1249 *3 *2)) (-4 *2 (-1247 *3)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-639 *5))) (-4 *5 (-1247 *4)) (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-1 (-1148 *4) (-639 (-1148 *4)))) (-5 *1 (-1249 *4 *5)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1247 *4)) (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-1 (-1148 *4) (-1148 *4) (-1148 *4))) (-5 *1 (-1249 *4 *5)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1247 *4)) (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-1 (-1148 *4) (-1148 *4))) (-5 *1 (-1249 *4 *5))))) +(-10 -7 (-15 -4143 ((-1 (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2|))) (-15 -2704 ((-1 (-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2356 ((-1 (-1148 |#1|) (-639 (-1148 |#1|))) (-1 |#2| (-639 |#2|)))) (-15 -3917 (|#2| |#2| |#2|)) (-15 -2485 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3024 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3768 (|#2| (-1 |#2| (-639 |#2|)) (-639 |#1|))) (-15 -3424 ((-639 |#2|) (-639 |#1|) (-639 (-1 |#2| (-639 |#2|)))))) +((-1403 ((|#2| |#4| (-766)) 30)) (-2013 ((|#4| |#2|) 25)) (-3256 ((|#4| (-406 |#2|)) 52 (|has| |#1| (-554)))) (-2986 (((-1 |#4| (-639 |#4|)) |#3|) 46))) +(((-1250 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2013 (|#4| |#2|)) (-15 -1403 (|#2| |#4| (-766))) (-15 -2986 ((-1 |#4| (-639 |#4|)) |#3|)) (IF (|has| |#1| (-554)) (-15 -3256 (|#4| (-406 |#2|))) |%noBranch|)) (-1044) (-1232 |#1|) (-650 |#2|) (-1247 |#1|)) (T -1250)) +((-3256 (*1 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-554)) (-4 *4 (-1044)) (-4 *2 (-1247 *4)) (-5 *1 (-1250 *4 *5 *6 *2)) (-4 *6 (-650 *5)))) (-2986 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-1232 *4)) (-5 *2 (-1 *6 (-639 *6))) (-5 *1 (-1250 *4 *5 *3 *6)) (-4 *3 (-650 *5)) (-4 *6 (-1247 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-1044)) (-4 *2 (-1232 *5)) (-5 *1 (-1250 *5 *2 *6 *3)) (-4 *6 (-650 *2)) (-4 *3 (-1247 *5)))) (-2013 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *3 (-1232 *4)) (-4 *2 (-1247 *4)) (-5 *1 (-1250 *4 *3 *5 *2)) (-4 *5 (-650 *3))))) +(-10 -7 (-15 -2013 (|#4| |#2|)) (-15 -1403 (|#2| |#4| (-766))) (-15 -2986 ((-1 |#4| (-639 |#4|)) |#3|)) (IF (|has| |#1| (-554)) (-15 -3256 (|#4| (-406 |#2|))) |%noBranch|)) +NIL +(((-1251) (-139)) (T -1251)) +NIL +(-13 (-10 -7 (-6 -1370))) +((-4041 (((-112) $ $) NIL)) (-2444 (((-1168)) 12)) (-2913 (((-1150) $) 17)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 11) (((-1168) $) 8)) (-1731 (((-112) $ $) 14))) +(((-1252 |#1|) (-13 (-1092) (-609 (-1168)) (-10 -8 (-15 -4054 ((-1168) $)) (-15 -2444 ((-1168))))) (-1168)) (T -1252)) +((-4054 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1252 *3)) (-14 *3 *2))) (-2444 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1252 *3)) (-14 *3 *2)))) +(-13 (-1092) (-609 (-1168)) (-10 -8 (-15 -4054 ((-1168) $)) (-15 -2444 ((-1168))))) +((-2911 (($ (-766)) 18)) (-2841 (((-683 |#2|) $ $) 40)) (-3076 ((|#2| $) 48)) (-3641 ((|#2| $) 47)) (-4177 ((|#2| $ $) 35)) (-1386 (($ $ $) 44)) (-1848 (($ $) 22) (($ $ $) 28)) (-1835 (($ $ $) 15)) (* (($ (-562) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1253 |#1| |#2|) (-10 -8 (-15 -3076 (|#2| |#1|)) (-15 -3641 (|#2| |#1|)) (-15 -1386 (|#1| |#1| |#1|)) (-15 -2841 ((-683 |#2|) |#1| |#1|)) (-15 -4177 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -2911 (|#1| (-766))) (-15 -1835 (|#1| |#1| |#1|))) (-1254 |#2|) (-1207)) (T -1253)) +NIL +(-10 -8 (-15 -3076 (|#2| |#1|)) (-15 -3641 (|#2| |#1|)) (-15 -1386 (|#1| |#1| |#1|)) (-15 -2841 ((-683 |#2|) |#1| |#1|)) (-15 -4177 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -2911 (|#1| (-766))) (-15 -1835 (|#1| |#1| |#1|))) +((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2911 (($ (-766)) 112 (|has| |#1| (-23)))) (-3052 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4403))) (($ $) 88 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4403))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4402)))) (-1800 (($) 7 T CONST)) (-2447 (($ $) 90 (|has| $ (-6 -4403)))) (-2677 (($ $) 100)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) 51)) (-4264 (((-562) (-1 (-112) |#1|) $) 97) (((-562) |#1| $) 96 (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) 95 (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4402)))) (-2841 (((-683 |#1|) $ $) 105 (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) 69)) (-3292 (((-112) $ (-766)) 9)) (-4197 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-3874 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3076 ((|#1| $) 102 (-12 (|has| |#1| (-1044)) (|has| |#1| (-997))))) (-3289 (((-112) $ (-766)) 10)) (-3641 ((|#1| $) 103 (-12 (|has| |#1| (-1044)) (|has| |#1| (-997))))) (-2913 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-2093 (((-639 (-562)) $) 46)) (-1570 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2716 (($ $ |#1|) 41 (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) 14)) (-3521 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) 48)) (-2974 (((-112) $) 11)) (-4307 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-4177 ((|#1| $ $) 106 (|has| |#1| (-1044)))) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1386 (($ $ $) 104 (|has| |#1| (-1044)))) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4402))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4402))))) (-1853 (($ $ $ (-562)) 91 (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4054 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) 84 (|has| |#1| (-845)))) (-1772 (((-112) $ $) 83 (|has| |#1| (-845)))) (-1731 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 85 (|has| |#1| (-845)))) (-1759 (((-112) $ $) 82 (|has| |#1| (-845)))) (-1848 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1835 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-562) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-721))) (($ $ |#1|) 107 (|has| |#1| (-721)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4402))))) +(((-1254 |#1|) (-139) (-1207)) (T -1254)) +((-1835 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-25)))) (-2911 (*1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1254 *3)) (-4 *3 (-23)) (-4 *3 (-1207)))) (-1848 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-21)))) (-1848 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-4 *1 (-1254 *3)) (-4 *3 (-1207)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) (-4177 (*1 *2 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-1044)))) (-2841 (*1 *2 *1 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-1207)) (-4 *3 (-1044)) (-5 *2 (-683 *3)))) (-1386 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-1044)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-997)) (-4 *2 (-1044)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-997)) (-4 *2 (-1044))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1835 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2911 ($ (-766))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1848 ($ $)) (-15 -1848 ($ $ $)) (-15 * ($ (-562) $))) |%noBranch|) (IF (|has| |t#1| (-721)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1044)) (PROGN (-15 -4177 (|t#1| $ $)) (-15 -2841 ((-683 |t#1|) $ $)) (-15 -1386 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-997)) (IF (|has| |t#1| (-1044)) (PROGN (-15 -3641 (|t#1| $)) (-15 -3076 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-372 |#1|) . T) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-19 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1207) . T)) +((-2578 (((-1256 |#2|) (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|) 13)) (-1955 ((|#2| (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|) 15)) (-4152 (((-3 (-1256 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1256 |#1|)) 28) (((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|)) 18))) +(((-1255 |#1| |#2|) (-10 -7 (-15 -2578 ((-1256 |#2|) (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -1955 (|#2| (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -4152 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (-15 -4152 ((-3 (-1256 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1256 |#1|)))) (-1207) (-1207)) (T -1255)) +((-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6)))) (-1955 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-1255 *5 *2)))) (-2578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1256 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-1256 *5)) (-5 *1 (-1255 *6 *5))))) +(-10 -7 (-15 -2578 ((-1256 |#2|) (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -1955 (|#2| (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -4152 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (-15 -4152 ((-3 (-1256 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1256 |#1|)))) +((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2911 (($ (-766)) NIL (|has| |#1| (-23)))) (-4004 (($ (-639 |#1|)) 9)) (-3052 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4403)))) (-1399 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3381 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4403))) (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-4336 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1800 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4403)))) (-2677 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1955 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4402))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4402)))) (-1505 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4403)))) (-1420 ((|#1| $ (-562)) NIL)) (-4264 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) 15 (|has| $ (-6 -4402)))) (-2841 (((-683 |#1|) $ $) NIL (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) NIL)) (-3292 (((-112) $ (-766)) NIL)) (-4197 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-1610 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-1912 (((-639 |#1|) $) NIL (|has| $ (-6 -4402)))) (-1669 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-3874 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1490 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3076 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-3289 (((-112) $ (-766)) NIL)) (-3641 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-2913 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3297 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-2093 (((-639 (-562)) $) NIL)) (-1570 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-3251 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2716 (($ $ |#1|) NIL (|has| $ (-6 -4403)))) (-1763 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-3336 (((-112) $ $) NIL)) (-3521 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-2411 (((-639 |#1|) $) NIL)) (-2974 (((-112) $) NIL)) (-4307 (($) NIL)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-4177 ((|#1| $ $) NIL (|has| |#1| (-1044)))) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1386 (($ $ $) NIL (|has| |#1| (-1044)))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#1| (-1092))))) (-1853 (($ $ $ (-562)) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 19 (|has| |#1| (-610 (-535))))) (-4066 (($ (-639 |#1|)) 8)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4054 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-1744 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4402)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1772 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1759 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1848 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1835 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-562) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-721))) (($ $ |#1|) NIL (|has| |#1| (-721)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1256 |#1|) (-13 (-1254 |#1|) (-10 -8 (-15 -4004 ($ (-639 |#1|))))) (-1207)) (T -1256)) +((-4004 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1256 *3))))) +(-13 (-1254 |#1|) (-10 -8 (-15 -4004 ($ (-639 |#1|))))) +((-4041 (((-112) $ $) NIL)) (-2672 (((-1150) $ (-1150)) 92) (((-1150) $ (-1150) (-1150)) 90) (((-1150) $ (-1150) (-639 (-1150))) 89)) (-2325 (($) 59)) (-4216 (((-1261) $ (-467) (-916)) 45)) (-3426 (((-1261) $ (-916) (-1150)) 75) (((-1261) $ (-916) (-869)) 76)) (-3817 (((-1261) $ (-916) (-378) (-378)) 48)) (-3563 (((-1261) $ (-1150)) 71)) (-1722 (((-1261) $ (-916) (-1150)) 80)) (-3878 (((-1261) $ (-916) (-378) (-378)) 49)) (-4301 (((-1261) $ (-916) (-916)) 46)) (-2651 (((-1261) $) 72)) (-3082 (((-1261) $ (-916) (-1150)) 79)) (-3099 (((-1261) $ (-467) (-916)) 31)) (-2865 (((-1261) $ (-916) (-1150)) 78)) (-3567 (((-639 (-262)) $) 23) (($ $ (-639 (-262))) 24)) (-3068 (((-1261) $ (-766) (-766)) 43)) (-3639 (($ $) 60) (($ (-467) (-639 (-262))) 61)) (-2913 (((-1150) $) NIL)) (-2320 (((-562) $) 38)) (-1709 (((-1112) $) NIL)) (-2789 (((-1256 (-3 (-467) "undefined")) $) 37)) (-1843 (((-1256 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2865 (-562)) (|:| -1464 (-562)) (|:| |spline| (-562)) (|:| -2503 (-562)) (|:| |axesColor| (-869)) (|:| -3426 (-562)) (|:| |unitsColor| (-869)) (|:| |showing| (-562)))) $) 36)) (-4161 (((-1261) $ (-916) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-869) (-562) (-869) (-562)) 70)) (-4185 (((-639 (-938 (-224))) $) NIL)) (-1489 (((-467) $ (-916)) 33)) (-2563 (((-1261) $ (-766) (-766) (-916) (-916)) 40)) (-4190 (((-1261) $ (-1150)) 81)) (-1464 (((-1261) $ (-916) (-1150)) 77)) (-4054 (((-857) $) 87)) (-1450 (((-1261) $) 82)) (-2503 (((-1261) $ (-916) (-1150)) 73) (((-1261) $ (-916) (-869)) 74)) (-1731 (((-112) $ $) NIL))) +(((-1257) (-13 (-1092) (-10 -8 (-15 -4185 ((-639 (-938 (-224))) $)) (-15 -2325 ($)) (-15 -3639 ($ $)) (-15 -3567 ((-639 (-262)) $)) (-15 -3567 ($ $ (-639 (-262)))) (-15 -3639 ($ (-467) (-639 (-262)))) (-15 -4161 ((-1261) $ (-916) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-869) (-562) (-869) (-562))) (-15 -1843 ((-1256 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2865 (-562)) (|:| -1464 (-562)) (|:| |spline| (-562)) (|:| -2503 (-562)) (|:| |axesColor| (-869)) (|:| -3426 (-562)) (|:| |unitsColor| (-869)) (|:| |showing| (-562)))) $)) (-15 -2789 ((-1256 (-3 (-467) "undefined")) $)) (-15 -3563 ((-1261) $ (-1150))) (-15 -3099 ((-1261) $ (-467) (-916))) (-15 -1489 ((-467) $ (-916))) (-15 -2503 ((-1261) $ (-916) (-1150))) (-15 -2503 ((-1261) $ (-916) (-869))) (-15 -3426 ((-1261) $ (-916) (-1150))) (-15 -3426 ((-1261) $ (-916) (-869))) (-15 -2865 ((-1261) $ (-916) (-1150))) (-15 -3082 ((-1261) $ (-916) (-1150))) (-15 -1464 ((-1261) $ (-916) (-1150))) (-15 -4190 ((-1261) $ (-1150))) (-15 -1450 ((-1261) $)) (-15 -2563 ((-1261) $ (-766) (-766) (-916) (-916))) (-15 -3878 ((-1261) $ (-916) (-378) (-378))) (-15 -3817 ((-1261) $ (-916) (-378) (-378))) (-15 -1722 ((-1261) $ (-916) (-1150))) (-15 -3068 ((-1261) $ (-766) (-766))) (-15 -4216 ((-1261) $ (-467) (-916))) (-15 -4301 ((-1261) $ (-916) (-916))) (-15 -2672 ((-1150) $ (-1150))) (-15 -2672 ((-1150) $ (-1150) (-1150))) (-15 -2672 ((-1150) $ (-1150) (-639 (-1150)))) (-15 -2651 ((-1261) $)) (-15 -2320 ((-562) $)) (-15 -4054 ((-857) $))))) (T -1257)) +((-4054 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1257)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-639 (-938 (-224)))) (-5 *1 (-1257)))) (-2325 (*1 *1) (-5 *1 (-1257))) (-3639 (*1 *1 *1) (-5 *1 (-1257))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1257)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1257)))) (-3639 (*1 *1 *2 *3) (-12 (-5 *2 (-467)) (-5 *3 (-639 (-262))) (-5 *1 (-1257)))) (-4161 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-916)) (-5 *4 (-224)) (-5 *5 (-562)) (-5 *6 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-1256 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2865 (-562)) (|:| -1464 (-562)) (|:| |spline| (-562)) (|:| -2503 (-562)) (|:| |axesColor| (-869)) (|:| -3426 (-562)) (|:| |unitsColor| (-869)) (|:| |showing| (-562))))) (-5 *1 (-1257)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1256 (-3 (-467) "undefined"))) (-5 *1 (-1257)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3099 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-467)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-916)) (-5 *2 (-467)) (-5 *1 (-1257)))) (-2503 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2503 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3426 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3426 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2865 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3082 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1464 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2563 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-766)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3878 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-916)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3817 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-916)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1722 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3068 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-4216 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-467)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-4301 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2672 (*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1257)))) (-2672 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1257)))) (-2672 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-1257)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1257))))) +(-13 (-1092) (-10 -8 (-15 -4185 ((-639 (-938 (-224))) $)) (-15 -2325 ($)) (-15 -3639 ($ $)) (-15 -3567 ((-639 (-262)) $)) (-15 -3567 ($ $ (-639 (-262)))) (-15 -3639 ($ (-467) (-639 (-262)))) (-15 -4161 ((-1261) $ (-916) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-869) (-562) (-869) (-562))) (-15 -1843 ((-1256 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2865 (-562)) (|:| -1464 (-562)) (|:| |spline| (-562)) (|:| -2503 (-562)) (|:| |axesColor| (-869)) (|:| -3426 (-562)) (|:| |unitsColor| (-869)) (|:| |showing| (-562)))) $)) (-15 -2789 ((-1256 (-3 (-467) "undefined")) $)) (-15 -3563 ((-1261) $ (-1150))) (-15 -3099 ((-1261) $ (-467) (-916))) (-15 -1489 ((-467) $ (-916))) (-15 -2503 ((-1261) $ (-916) (-1150))) (-15 -2503 ((-1261) $ (-916) (-869))) (-15 -3426 ((-1261) $ (-916) (-1150))) (-15 -3426 ((-1261) $ (-916) (-869))) (-15 -2865 ((-1261) $ (-916) (-1150))) (-15 -3082 ((-1261) $ (-916) (-1150))) (-15 -1464 ((-1261) $ (-916) (-1150))) (-15 -4190 ((-1261) $ (-1150))) (-15 -1450 ((-1261) $)) (-15 -2563 ((-1261) $ (-766) (-766) (-916) (-916))) (-15 -3878 ((-1261) $ (-916) (-378) (-378))) (-15 -3817 ((-1261) $ (-916) (-378) (-378))) (-15 -1722 ((-1261) $ (-916) (-1150))) (-15 -3068 ((-1261) $ (-766) (-766))) (-15 -4216 ((-1261) $ (-467) (-916))) (-15 -4301 ((-1261) $ (-916) (-916))) (-15 -2672 ((-1150) $ (-1150))) (-15 -2672 ((-1150) $ (-1150) (-1150))) (-15 -2672 ((-1150) $ (-1150) (-639 (-1150)))) (-15 -2651 ((-1261) $)) (-15 -2320 ((-562) $)) (-15 -4054 ((-857) $)))) +((-4041 (((-112) $ $) NIL)) (-1537 (((-1261) $ (-378)) 142) (((-1261) $ (-378) (-378) (-378)) 143)) (-2672 (((-1150) $ (-1150)) 150) (((-1150) $ (-1150) (-1150)) 148) (((-1150) $ (-1150) (-639 (-1150))) 147)) (-2395 (($) 50)) (-3891 (((-1261) $ (-378) (-378) (-378) (-378) (-378)) 118) (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $) 116) (((-1261) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 117) (((-1261) $ (-562) (-562) (-378) (-378) (-378)) 119) (((-1261) $ (-378) (-378)) 120) (((-1261) $ (-378) (-378) (-378)) 127)) (-2476 (((-378)) 99) (((-378) (-378)) 100)) (-2748 (((-378)) 94) (((-378) (-378)) 96)) (-3158 (((-378)) 97) (((-378) (-378)) 98)) (-3875 (((-378)) 103) (((-378) (-378)) 104)) (-4314 (((-378)) 101) (((-378) (-378)) 102)) (-3817 (((-1261) $ (-378) (-378)) 144)) (-3563 (((-1261) $ (-1150)) 128)) (-3110 (((-1125 (-224)) $) 51) (($ $ (-1125 (-224))) 52)) (-2212 (((-1261) $ (-1150)) 156)) (-4224 (((-1261) $ (-1150)) 157)) (-2987 (((-1261) $ (-378) (-378)) 126) (((-1261) $ (-562) (-562)) 141)) (-4301 (((-1261) $ (-916) (-916)) 134)) (-2651 (((-1261) $) 114)) (-3792 (((-1261) $ (-1150)) 155)) (-4219 (((-1261) $ (-1150)) 111)) (-3567 (((-639 (-262)) $) 53) (($ $ (-639 (-262))) 54)) (-3068 (((-1261) $ (-766) (-766)) 133)) (-1754 (((-1261) $ (-766) (-938 (-224))) 162)) (-2800 (($ $) 56) (($ (-1125 (-224)) (-1150)) 57) (($ (-1125 (-224)) (-639 (-262))) 58)) (-2184 (((-1261) $ (-378) (-378) (-378)) 108)) (-2913 (((-1150) $) NIL)) (-2320 (((-562) $) 105)) (-1633 (((-1261) $ (-378)) 145)) (-3341 (((-1261) $ (-378)) 160)) (-1709 (((-1112) $) NIL)) (-2124 (((-1261) $ (-378)) 159)) (-2664 (((-1261) $ (-1150)) 113)) (-2563 (((-1261) $ (-766) (-766) (-916) (-916)) 132)) (-3899 (((-1261) $ (-1150)) 110)) (-4190 (((-1261) $ (-1150)) 112)) (-2946 (((-1261) $ (-156) (-156)) 131)) (-4054 (((-857) $) 139)) (-1450 (((-1261) $) 115)) (-1423 (((-1261) $ (-1150)) 158)) (-2503 (((-1261) $ (-1150)) 109)) (-1731 (((-112) $ $) NIL))) +(((-1258) (-13 (-1092) (-10 -8 (-15 -2748 ((-378))) (-15 -2748 ((-378) (-378))) (-15 -3158 ((-378))) (-15 -3158 ((-378) (-378))) (-15 -2476 ((-378))) (-15 -2476 ((-378) (-378))) (-15 -4314 ((-378))) (-15 -4314 ((-378) (-378))) (-15 -3875 ((-378))) (-15 -3875 ((-378) (-378))) (-15 -2395 ($)) (-15 -2800 ($ $)) (-15 -2800 ($ (-1125 (-224)) (-1150))) (-15 -2800 ($ (-1125 (-224)) (-639 (-262)))) (-15 -3110 ((-1125 (-224)) $)) (-15 -3110 ($ $ (-1125 (-224)))) (-15 -1754 ((-1261) $ (-766) (-938 (-224)))) (-15 -3567 ((-639 (-262)) $)) (-15 -3567 ($ $ (-639 (-262)))) (-15 -3068 ((-1261) $ (-766) (-766))) (-15 -4301 ((-1261) $ (-916) (-916))) (-15 -3563 ((-1261) $ (-1150))) (-15 -2563 ((-1261) $ (-766) (-766) (-916) (-916))) (-15 -3891 ((-1261) $ (-378) (-378) (-378) (-378) (-378))) (-15 -3891 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -3891 ((-1261) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3891 ((-1261) $ (-562) (-562) (-378) (-378) (-378))) (-15 -3891 ((-1261) $ (-378) (-378))) (-15 -3891 ((-1261) $ (-378) (-378) (-378))) (-15 -4190 ((-1261) $ (-1150))) (-15 -2503 ((-1261) $ (-1150))) (-15 -3899 ((-1261) $ (-1150))) (-15 -4219 ((-1261) $ (-1150))) (-15 -2664 ((-1261) $ (-1150))) (-15 -2987 ((-1261) $ (-378) (-378))) (-15 -2987 ((-1261) $ (-562) (-562))) (-15 -1537 ((-1261) $ (-378))) (-15 -1537 ((-1261) $ (-378) (-378) (-378))) (-15 -3817 ((-1261) $ (-378) (-378))) (-15 -3792 ((-1261) $ (-1150))) (-15 -2124 ((-1261) $ (-378))) (-15 -3341 ((-1261) $ (-378))) (-15 -2212 ((-1261) $ (-1150))) (-15 -4224 ((-1261) $ (-1150))) (-15 -1423 ((-1261) $ (-1150))) (-15 -2184 ((-1261) $ (-378) (-378) (-378))) (-15 -1633 ((-1261) $ (-378))) (-15 -2651 ((-1261) $)) (-15 -2946 ((-1261) $ (-156) (-156))) (-15 -2672 ((-1150) $ (-1150))) (-15 -2672 ((-1150) $ (-1150) (-1150))) (-15 -2672 ((-1150) $ (-1150) (-639 (-1150)))) (-15 -1450 ((-1261) $)) (-15 -2320 ((-562) $))))) (T -1258)) +((-2748 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-2748 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-3158 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-3158 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-2476 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-2476 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-4314 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-4314 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-3875 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-2395 (*1 *1) (-5 *1 (-1258))) (-2800 (*1 *1 *1) (-5 *1 (-1258))) (-2800 (*1 *1 *2 *3) (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-1150)) (-5 *1 (-1258)))) (-2800 (*1 *1 *2 *3) (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-639 (-262))) (-5 *1 (-1258)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1258)))) (-3110 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1258)))) (-1754 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1258)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1258)))) (-3068 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-4301 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2563 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-766)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3891 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-1258)))) (-3891 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3891 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-562)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3891 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3891 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2503 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3899 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-4219 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2664 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2987 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2987 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1537 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1537 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3792 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2124 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-4224 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1423 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2184 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1633 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2946 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2672 (*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1258)))) (-2672 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1258)))) (-2672 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-1258)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1258))))) +(-13 (-1092) (-10 -8 (-15 -2748 ((-378))) (-15 -2748 ((-378) (-378))) (-15 -3158 ((-378))) (-15 -3158 ((-378) (-378))) (-15 -2476 ((-378))) (-15 -2476 ((-378) (-378))) (-15 -4314 ((-378))) (-15 -4314 ((-378) (-378))) (-15 -3875 ((-378))) (-15 -3875 ((-378) (-378))) (-15 -2395 ($)) (-15 -2800 ($ $)) (-15 -2800 ($ (-1125 (-224)) (-1150))) (-15 -2800 ($ (-1125 (-224)) (-639 (-262)))) (-15 -3110 ((-1125 (-224)) $)) (-15 -3110 ($ $ (-1125 (-224)))) (-15 -1754 ((-1261) $ (-766) (-938 (-224)))) (-15 -3567 ((-639 (-262)) $)) (-15 -3567 ($ $ (-639 (-262)))) (-15 -3068 ((-1261) $ (-766) (-766))) (-15 -4301 ((-1261) $ (-916) (-916))) (-15 -3563 ((-1261) $ (-1150))) (-15 -2563 ((-1261) $ (-766) (-766) (-916) (-916))) (-15 -3891 ((-1261) $ (-378) (-378) (-378) (-378) (-378))) (-15 -3891 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -3891 ((-1261) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3891 ((-1261) $ (-562) (-562) (-378) (-378) (-378))) (-15 -3891 ((-1261) $ (-378) (-378))) (-15 -3891 ((-1261) $ (-378) (-378) (-378))) (-15 -4190 ((-1261) $ (-1150))) (-15 -2503 ((-1261) $ (-1150))) (-15 -3899 ((-1261) $ (-1150))) (-15 -4219 ((-1261) $ (-1150))) (-15 -2664 ((-1261) $ (-1150))) (-15 -2987 ((-1261) $ (-378) (-378))) (-15 -2987 ((-1261) $ (-562) (-562))) (-15 -1537 ((-1261) $ (-378))) (-15 -1537 ((-1261) $ (-378) (-378) (-378))) (-15 -3817 ((-1261) $ (-378) (-378))) (-15 -3792 ((-1261) $ (-1150))) (-15 -2124 ((-1261) $ (-378))) (-15 -3341 ((-1261) $ (-378))) (-15 -2212 ((-1261) $ (-1150))) (-15 -4224 ((-1261) $ (-1150))) (-15 -1423 ((-1261) $ (-1150))) (-15 -2184 ((-1261) $ (-378) (-378) (-378))) (-15 -1633 ((-1261) $ (-378))) (-15 -2651 ((-1261) $)) (-15 -2946 ((-1261) $ (-156) (-156))) (-15 -2672 ((-1150) $ (-1150))) (-15 -2672 ((-1150) $ (-1150) (-1150))) (-15 -2672 ((-1150) $ (-1150) (-639 (-1150)))) (-15 -1450 ((-1261) $)) (-15 -2320 ((-562) $)))) +((-1526 (((-639 (-1150)) (-639 (-1150))) 94) (((-639 (-1150))) 90)) (-1973 (((-639 (-1150))) 88)) (-2928 (((-639 (-916)) (-639 (-916))) 63) (((-639 (-916))) 60)) (-3379 (((-639 (-766)) (-639 (-766))) 57) (((-639 (-766))) 53)) (-2829 (((-1261)) 65)) (-1937 (((-916) (-916)) 81) (((-916)) 80)) (-1724 (((-916) (-916)) 79) (((-916)) 78)) (-3664 (((-869) (-869)) 75) (((-869)) 74)) (-2067 (((-224)) 85) (((-224) (-378)) 87)) (-2272 (((-916)) 82) (((-916) (-916)) 83)) (-3643 (((-916) (-916)) 77) (((-916)) 76)) (-1362 (((-869) (-869)) 69) (((-869)) 67)) (-3195 (((-869) (-869)) 71) (((-869)) 70)) (-1831 (((-869) (-869)) 73) (((-869)) 72))) +(((-1259) (-10 -7 (-15 -1362 ((-869))) (-15 -1362 ((-869) (-869))) (-15 -3195 ((-869))) (-15 -3195 ((-869) (-869))) (-15 -1831 ((-869))) (-15 -1831 ((-869) (-869))) (-15 -3664 ((-869))) (-15 -3664 ((-869) (-869))) (-15 -3643 ((-916))) (-15 -3643 ((-916) (-916))) (-15 -3379 ((-639 (-766)))) (-15 -3379 ((-639 (-766)) (-639 (-766)))) (-15 -2928 ((-639 (-916)))) (-15 -2928 ((-639 (-916)) (-639 (-916)))) (-15 -2829 ((-1261))) (-15 -1526 ((-639 (-1150)))) (-15 -1526 ((-639 (-1150)) (-639 (-1150)))) (-15 -1973 ((-639 (-1150)))) (-15 -1724 ((-916))) (-15 -1937 ((-916))) (-15 -1724 ((-916) (-916))) (-15 -1937 ((-916) (-916))) (-15 -2272 ((-916) (-916))) (-15 -2272 ((-916))) (-15 -2067 ((-224) (-378))) (-15 -2067 ((-224))))) (T -1259)) +((-2067 (*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1259)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1259)))) (-2272 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-2272 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-1937 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-1724 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-1937 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-1724 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-1973 (*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259)))) (-1526 (*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259)))) (-1526 (*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259)))) (-2829 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1259)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1259)))) (-2928 (*1 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1259)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1259)))) (-3379 (*1 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1259)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-3643 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-3664 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-3664 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-1831 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-3195 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-1362 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-1362 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) +(-10 -7 (-15 -1362 ((-869))) (-15 -1362 ((-869) (-869))) (-15 -3195 ((-869))) (-15 -3195 ((-869) (-869))) (-15 -1831 ((-869))) (-15 -1831 ((-869) (-869))) (-15 -3664 ((-869))) (-15 -3664 ((-869) (-869))) (-15 -3643 ((-916))) (-15 -3643 ((-916) (-916))) (-15 -3379 ((-639 (-766)))) (-15 -3379 ((-639 (-766)) (-639 (-766)))) (-15 -2928 ((-639 (-916)))) (-15 -2928 ((-639 (-916)) (-639 (-916)))) (-15 -2829 ((-1261))) (-15 -1526 ((-639 (-1150)))) (-15 -1526 ((-639 (-1150)) (-639 (-1150)))) (-15 -1973 ((-639 (-1150)))) (-15 -1724 ((-916))) (-15 -1937 ((-916))) (-15 -1724 ((-916) (-916))) (-15 -1937 ((-916) (-916))) (-15 -2272 ((-916) (-916))) (-15 -2272 ((-916))) (-15 -2067 ((-224) (-378))) (-15 -2067 ((-224)))) +((-2548 (((-467) (-639 (-639 (-938 (-224)))) (-639 (-262))) 21) (((-467) (-639 (-639 (-938 (-224))))) 20) (((-467) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262))) 19)) (-4081 (((-1257) (-639 (-639 (-938 (-224)))) (-639 (-262))) 27) (((-1257) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262))) 26)) (-4054 (((-1257) (-467)) 38))) +(((-1260) (-10 -7 (-15 -2548 ((-467) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262)))) (-15 -2548 ((-467) (-639 (-639 (-938 (-224)))))) (-15 -2548 ((-467) (-639 (-639 (-938 (-224)))) (-639 (-262)))) (-15 -4081 ((-1257) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262)))) (-15 -4081 ((-1257) (-639 (-639 (-938 (-224)))) (-639 (-262)))) (-15 -4054 ((-1257) (-467))))) (T -1260)) +((-4054 (*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *2 (-1257)) (-5 *1 (-1260)))) (-4081 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-1260)))) (-4081 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-869)) (-5 *5 (-916)) (-5 *6 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-1260)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-639 (-262))) (-5 *2 (-467)) (-5 *1 (-1260)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-467)) (-5 *1 (-1260)))) (-2548 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-869)) (-5 *5 (-916)) (-5 *6 (-639 (-262))) (-5 *2 (-467)) (-5 *1 (-1260))))) +(-10 -7 (-15 -2548 ((-467) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262)))) (-15 -2548 ((-467) (-639 (-639 (-938 (-224)))))) (-15 -2548 ((-467) (-639 (-639 (-938 (-224)))) (-639 (-262)))) (-15 -4081 ((-1257) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262)))) (-15 -4081 ((-1257) (-639 (-639 (-938 (-224)))) (-639 (-262)))) (-15 -4054 ((-1257) (-467)))) +((-2650 (($) 7)) (-4054 (((-857) $) 10))) +(((-1261) (-13 (-609 (-857)) (-10 -8 (-15 -2650 ($))))) (T -1261)) +((-2650 (*1 *1) (-5 *1 (-1261)))) +(-13 (-609 (-857)) (-10 -8 (-15 -2650 ($)))) +((-1859 (($ $ |#2|) 10))) +(((-1262 |#1| |#2|) (-10 -8 (-15 -1859 (|#1| |#1| |#2|))) (-1263 |#2|) (-362)) (T -1262)) +NIL +(-10 -8 (-15 -1859 (|#1| |#1| |#2|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-3627 (((-133)) 28)) (-4054 (((-857) $) 11)) (-2286 (($) 18 T CONST)) (-1731 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 29)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1263 |#1|) (-139) (-362)) (T -1263)) +((-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-362)))) (-3627 (*1 *2) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-362)) (-5 *2 (-133))))) +(-13 (-712 |t#1|) (-10 -8 (-15 -1859 ($ $ |t#1|)) (-15 -3627 ((-133))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-1050 |#1|) . T) ((-1092) . T)) +((-3301 (((-639 (-1201 |#1|)) (-1168) (-1201 |#1|)) 74)) (-2857 (((-1148 (-1148 (-947 |#1|))) (-1168) (-1148 (-947 |#1|))) 53)) (-2989 (((-1 (-1148 (-1201 |#1|)) (-1148 (-1201 |#1|))) (-766) (-1201 |#1|) (-1148 (-1201 |#1|))) 64)) (-4315 (((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766)) 55)) (-1603 (((-1 (-1164 (-947 |#1|)) (-947 |#1|)) (-1168)) 29)) (-2965 (((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766)) 54))) +(((-1264 |#1|) (-10 -7 (-15 -4315 ((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766))) (-15 -2965 ((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766))) (-15 -2857 ((-1148 (-1148 (-947 |#1|))) (-1168) (-1148 (-947 |#1|)))) (-15 -1603 ((-1 (-1164 (-947 |#1|)) (-947 |#1|)) (-1168))) (-15 -3301 ((-639 (-1201 |#1|)) (-1168) (-1201 |#1|))) (-15 -2989 ((-1 (-1148 (-1201 |#1|)) (-1148 (-1201 |#1|))) (-766) (-1201 |#1|) (-1148 (-1201 |#1|))))) (-362)) (T -1264)) +((-2989 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-766)) (-4 *6 (-362)) (-5 *4 (-1201 *6)) (-5 *2 (-1 (-1148 *4) (-1148 *4))) (-5 *1 (-1264 *6)) (-5 *5 (-1148 *4)))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-4 *5 (-362)) (-5 *2 (-639 (-1201 *5))) (-5 *1 (-1264 *5)) (-5 *4 (-1201 *5)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1 (-1164 (-947 *4)) (-947 *4))) (-5 *1 (-1264 *4)) (-4 *4 (-362)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-4 *5 (-362)) (-5 *2 (-1148 (-1148 (-947 *5)))) (-5 *1 (-1264 *5)) (-5 *4 (-1148 (-947 *5))))) (-2965 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-1148 (-947 *4)) (-1148 (-947 *4)))) (-5 *1 (-1264 *4)) (-4 *4 (-362)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-1148 (-947 *4)) (-1148 (-947 *4)))) (-5 *1 (-1264 *4)) (-4 *4 (-362))))) +(-10 -7 (-15 -4315 ((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766))) (-15 -2965 ((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766))) (-15 -2857 ((-1148 (-1148 (-947 |#1|))) (-1168) (-1148 (-947 |#1|)))) (-15 -1603 ((-1 (-1164 (-947 |#1|)) (-947 |#1|)) (-1168))) (-15 -3301 ((-639 (-1201 |#1|)) (-1168) (-1201 |#1|))) (-15 -2989 ((-1 (-1148 (-1201 |#1|)) (-1148 (-1201 |#1|))) (-766) (-1201 |#1|) (-1148 (-1201 |#1|))))) +((-2438 (((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|) 75)) (-3826 (((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) 74))) +(((-1265 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3826 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))))) (-15 -2438 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|))) (-348) (-1232 |#1|) (-1232 |#2|) (-408 |#2| |#3|)) (T -1265)) +((-2438 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) (-5 *2 (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-1265 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))) (-3826 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -3928 (-683 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-683 *4)))) (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5))))) +(-10 -7 (-15 -3826 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))))) (-15 -2438 ((-2 (|:| -3928 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|))) +((-4041 (((-112) $ $) NIL)) (-2275 (((-1127) $) 11)) (-3868 (((-1127) $) 9)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-1266) (-13 (-1075) (-10 -8 (-15 -3868 ((-1127) $)) (-15 -2275 ((-1127) $))))) (T -1266)) +((-3868 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1266)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1266))))) +(-13 (-1075) (-10 -8 (-15 -3868 ((-1127) $)) (-15 -2275 ((-1127) $)))) +((-4041 (((-112) $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3317 (((-1127) $) 9)) (-4054 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1731 (((-112) $ $) NIL))) +(((-1267) (-13 (-1075) (-10 -8 (-15 -3317 ((-1127) $))))) (T -1267)) +((-3317 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1267))))) +(-13 (-1075) (-10 -8 (-15 -3317 ((-1127) $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 42)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) NIL)) (-1957 (((-112) $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4054 (((-857) $) 63) (($ (-562)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-171)))) (-2579 (((-766)) NIL)) (-2464 (((-1261) (-766)) 16)) (-2286 (($) 27 T CONST)) (-2294 (($) 66 T CONST)) (-1731 (((-112) $ $) 68)) (-1859 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1848 (($ $) 70) (($ $ $) NIL)) (-1835 (($ $ $) 46)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) +(((-1268 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1044) (-489 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1859 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2464 ((-1261) (-766))))) (-1044) (-845) (-788) (-944 |#1| |#3| |#2|) (-639 |#2|) (-639 (-766)) (-766)) (T -1268)) +((-1859 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1044)) (-4 *3 (-845)) (-4 *4 (-788)) (-14 *6 (-639 *3)) (-5 *1 (-1268 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-944 *2 *4 *3)) (-14 *7 (-639 (-766))) (-14 *8 (-766)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) (-14 *8 (-639 *5)) (-5 *2 (-1261)) (-5 *1 (-1268 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-944 *4 *6 *5)) (-14 *9 (-639 *3)) (-14 *10 *3)))) +(-13 (-1044) (-489 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1859 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2464 ((-1261) (-766))))) +((-4041 (((-112) $ $) NIL)) (-2560 (((-639 (-2 (|:| -1450 $) (|:| -3316 (-639 |#4|)))) (-639 |#4|)) NIL)) (-2304 (((-639 $) (-639 |#4|)) 89)) (-1402 (((-639 |#3|) $) NIL)) (-4170 (((-112) $) NIL)) (-4274 (((-112) $) NIL (|has| |#1| (-554)))) (-4377 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3049 ((|#4| |#4| $) NIL)) (-1395 (((-2 (|:| |under| $) (|:| -4014 $) (|:| |upper| $)) $ |#3|) NIL)) (-4336 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1800 (($) NIL T CONST)) (-2207 (((-112) $) NIL (|has| |#1| (-554)))) (-1920 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3852 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2539 (((-112) $) NIL (|has| |#1| (-554)))) (-2839 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3884 (((-639 |#4|) (-639 |#4|) $) 25 (|has| |#1| (-554)))) (-2540 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) NIL)) (-3961 (($ (-639 |#4|)) NIL)) (-1434 (((-3 $ "failed") $) 71)) (-2387 ((|#4| |#4| $) 76)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-2264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-4091 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3595 ((|#4| |#4| $) NIL)) (-1955 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4402))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4402))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2267 (((-2 (|:| -1450 (-639 |#4|)) (|:| -3316 (-639 |#4|))) $) NIL)) (-1720 (((-639 |#4|) $) NIL (|has| $ (-6 -4402)))) (-2573 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4339 ((|#3| $) 77)) (-3292 (((-112) $ (-766)) NIL)) (-1912 (((-639 |#4|) $) 29 (|has| $ (-6 -4402)))) (-1669 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092))))) (-3018 (((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-639 |#4|)) 35)) (-1490 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4403)))) (-4152 (($ (-1 |#4| |#4|) $) NIL)) (-3754 (((-639 |#3|) $) NIL)) (-2071 (((-112) |#3| $) NIL)) (-3289 (((-112) $ (-766)) NIL)) (-2913 (((-1150) $) NIL)) (-1504 (((-3 |#4| "failed") $) NIL)) (-3576 (((-639 |#4|) $) 51)) (-2890 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1849 ((|#4| |#4| $) 75)) (-1408 (((-112) $ $) 86)) (-3725 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-2766 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1532 ((|#4| |#4| $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 |#4| "failed") $) 70)) (-3251 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3310 (((-3 $ "failed") $ |#4|) NIL)) (-1353 (($ $ |#4|) NIL)) (-1763 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-3336 (((-112) $ $) NIL)) (-2974 (((-112) $) 68)) (-4307 (($) 43)) (-3598 (((-766) $) NIL)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4402)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535))))) (-4066 (($ (-639 |#4|)) NIL)) (-1812 (($ $ |#3|) NIL)) (-3274 (($ $ |#3|) NIL)) (-3277 (($ $) NIL)) (-1568 (($ $ |#3|) NIL)) (-4054 (((-857) $) NIL) (((-639 |#4|) $) 58)) (-3730 (((-766) $) NIL (|has| |#3| (-367)))) (-1352 (((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 41) (((-3 $ "failed") (-639 |#4|)) 42)) (-2799 (((-639 $) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 66) (((-639 $) (-639 |#4|)) 67)) (-2652 (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2775 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4252 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) NIL)) (-1744 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4402)))) (-4089 (((-639 |#3|) $) NIL)) (-3694 (((-112) |#3| $) NIL)) (-1731 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4402))))) +(((-1269 |#1| |#2| |#3| |#4|) (-13 (-1200 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3018 ((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3018 ((-3 $ "failed") (-639 |#4|))) (-15 -1352 ((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1352 ((-3 $ "failed") (-639 |#4|))) (-15 -2799 ((-639 $) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2799 ((-639 $) (-639 |#4|))))) (-554) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -1269)) +((-3018 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1269 *5 *6 *7 *8)))) (-3018 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1269 *3 *4 *5 *6)))) (-1352 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1269 *5 *6 *7 *8)))) (-1352 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1269 *3 *4 *5 *6)))) (-2799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) (-4 *8 (-845)) (-5 *2 (-639 (-1269 *6 *7 *8 *9))) (-5 *1 (-1269 *6 *7 *8 *9)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-1269 *4 *5 *6 *7))) (-5 *1 (-1269 *4 *5 *6 *7))))) +(-13 (-1200 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3018 ((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3018 ((-3 $ "failed") (-639 |#4|))) (-15 -1352 ((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1352 ((-3 $ "failed") (-639 |#4|))) (-15 -2799 ((-639 $) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2799 ((-639 $) (-639 |#4|))))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-3214 (((-3 $ "failed") $ $) 19)) (-1800 (($) 17 T CONST)) (-3668 (((-3 $ "failed") $) 33)) (-1957 (((-112) $) 31)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 39)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) +(((-1270 |#1|) (-139) (-1044)) (T -1270)) +NIL +(-13 (-1044) (-111 |t#1| |t#1|) (-612 |t#1|) (-10 -7 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) |has| |#1| (-171)) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) +((-4041 (((-112) $ $) 59)) (-1952 (((-112) $) NIL)) (-2852 (((-639 |#1|) $) 45)) (-1881 (($ $ (-766)) 39)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2261 (($ $ (-766)) 18 (|has| |#2| (-171))) (($ $ $) 19 (|has| |#2| (-171)))) (-1800 (($) NIL T CONST)) (-2415 (($ $ $) 62) (($ $ (-814 |#1|)) 48) (($ $ |#1|) 52)) (-4048 (((-3 (-814 |#1|) "failed") $) NIL)) (-3961 (((-814 |#1|) $) NIL)) (-1601 (($ $) 32)) (-3668 (((-3 $ "failed") $) NIL)) (-3120 (((-112) $) NIL)) (-3451 (($ $) NIL)) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-3045 (($ (-814 |#1|) |#2|) 31)) (-3818 (($ $) 33)) (-3830 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) 12)) (-2581 (((-814 |#1|) $) NIL)) (-4241 (((-814 |#1|) $) 34)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-2221 (($ $ $) 61) (($ $ (-814 |#1|)) 50) (($ $ |#1|) 54)) (-1468 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1560 (((-814 |#1|) $) 28)) (-1573 ((|#2| $) 30)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3598 (((-766) $) 36)) (-3989 (((-112) $) 40)) (-1497 ((|#2| $) NIL)) (-4054 (((-857) $) NIL) (($ (-814 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-562)) NIL)) (-4358 (((-639 |#2|) $) NIL)) (-3906 ((|#2| $ (-814 |#1|)) NIL)) (-4221 ((|#2| $ $) 64) ((|#2| $ (-814 |#1|)) NIL)) (-2579 (((-766)) NIL)) (-2286 (($) 13 T CONST)) (-2294 (($) 15 T CONST)) (-2516 (((-639 (-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1731 (((-112) $ $) 38)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 22)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-814 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1271 |#1| |#2|) (-13 (-381 |#2| (-814 |#1|)) (-1277 |#1| |#2|)) (-845) (-1044)) (T -1271)) +NIL +(-13 (-381 |#2| (-814 |#1|)) (-1277 |#1| |#2|)) +((-4365 ((|#3| |#3| (-766)) 23)) (-3430 ((|#3| |#3| (-766)) 27)) (-2814 ((|#3| |#3| |#3| (-766)) 28))) +(((-1272 |#1| |#2| |#3|) (-10 -7 (-15 -3430 (|#3| |#3| (-766))) (-15 -4365 (|#3| |#3| (-766))) (-15 -2814 (|#3| |#3| |#3| (-766)))) (-13 (-1044) (-712 (-406 (-562)))) (-845) (-1277 |#2| |#1|)) (T -1272)) +((-2814 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4)))) (-4365 (*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4)))) (-3430 (*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4))))) +(-10 -7 (-15 -3430 (|#3| |#3| (-766))) (-15 -4365 (|#3| |#3| (-766))) (-15 -2814 (|#3| |#3| |#3| (-766)))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-2852 (((-639 |#1|) $) 41)) (-3214 (((-3 $ "failed") $ $) 19)) (-2261 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-766)) 43 (|has| |#2| (-171)))) (-1800 (($) 17 T CONST)) (-2415 (($ $ |#1|) 55) (($ $ (-814 |#1|)) 54) (($ $ $) 53)) (-4048 (((-3 (-814 |#1|) "failed") $) 65)) (-3961 (((-814 |#1|) $) 66)) (-3668 (((-3 $ "failed") $) 33)) (-3120 (((-112) $) 46)) (-3451 (($ $) 45)) (-1957 (((-112) $) 31)) (-3536 (((-112) $) 51)) (-3045 (($ (-814 |#1|) |#2|) 52)) (-3818 (($ $) 50)) (-3830 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) 61)) (-2581 (((-814 |#1|) $) 62)) (-4152 (($ (-1 |#2| |#2|) $) 42)) (-2221 (($ $ |#1|) 58) (($ $ (-814 |#1|)) 57) (($ $ $) 56)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-3989 (((-112) $) 48)) (-1497 ((|#2| $) 47)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#2|) 69) (($ (-814 |#1|)) 64) (($ |#1|) 49)) (-4221 ((|#2| $ (-814 |#1|)) 60) ((|#2| $ $) 59)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1273 |#1| |#2|) (-139) (-845) (-1044)) (T -1273)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-814 *3)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-2 (|:| |k| (-814 *3)) (|:| |c| *4))))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-814 *4)) (-4 *1 (-1273 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1044)))) (-4221 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) (-2221 (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-2221 (*1 *1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)))) (-2221 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-2415 (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-2415 (*1 *1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)))) (-2415 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-3045 (*1 *1 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-845)) (-4 *1 (-1273 *4 *3)) (-4 *3 (-1044)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-112)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-4054 (*1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-112)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-112)))) (-3451 (*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-2261 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)) (-4 *3 (-171)))) (-2261 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-4 *4 (-171)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)))) (-2852 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-639 *3))))) +(-13 (-1044) (-1270 |t#2|) (-1033 (-814 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2581 ((-814 |t#1|) $)) (-15 -3830 ((-2 (|:| |k| (-814 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4221 (|t#2| $ (-814 |t#1|))) (-15 -4221 (|t#2| $ $)) (-15 -2221 ($ $ |t#1|)) (-15 -2221 ($ $ (-814 |t#1|))) (-15 -2221 ($ $ $)) (-15 -2415 ($ $ |t#1|)) (-15 -2415 ($ $ (-814 |t#1|))) (-15 -2415 ($ $ $)) (-15 -3045 ($ (-814 |t#1|) |t#2|)) (-15 -3536 ((-112) $)) (-15 -3818 ($ $)) (-15 -4054 ($ |t#1|)) (-15 -3989 ((-112) $)) (-15 -1497 (|t#2| $)) (-15 -3120 ((-112) $)) (-15 -3451 ($ $)) (IF (|has| |t#2| (-171)) (PROGN (-15 -2261 ($ $ $)) (-15 -2261 ($ $ (-766)))) |%noBranch|) (-15 -4152 ($ (-1 |t#2| |t#2|) $)) (-15 -2852 ((-639 |t#1|) $)) (IF (|has| |t#2| (-6 -4395)) (-6 -4395) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 #0=(-814 |#1|)) . T) ((-612 |#2|) . T) ((-609 (-857)) . T) ((-642 |#2|) . T) ((-642 $) . T) ((-712 |#2|) |has| |#2| (-171)) ((-721) . T) ((-1033 #0#) . T) ((-1050 |#2|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1270 |#2|) . T)) +((-2024 (((-112) $) 14)) (-3694 (((-112) $) 13)) (-4374 (($ $) 18) (($ $ (-766)) 19))) +(((-1274 |#1| |#2|) (-10 -8 (-15 -4374 (|#1| |#1| (-766))) (-15 -4374 (|#1| |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -3694 ((-112) |#1|))) (-1275 |#2|) (-362)) (T -1274)) +NIL +(-10 -8 (-15 -4374 (|#1| |#1| (-766))) (-15 -4374 (|#1| |#1|)) (-15 -2024 ((-112) |#1|)) (-15 -3694 ((-112) |#1|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-1445 (((-2 (|:| -3931 $) (|:| -4389 $) (|:| |associate| $)) $) 42)) (-2796 (($ $) 41)) (-4370 (((-112) $) 39)) (-2024 (((-112) $) 95)) (-3285 (((-766)) 91)) (-3214 (((-3 $ "failed") $ $) 19)) (-2798 (($ $) 74)) (-2921 (((-417 $) $) 73)) (-2569 (((-112) $ $) 60)) (-1800 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 102)) (-3961 ((|#1| $) 103)) (-1811 (($ $ $) 56)) (-3668 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2527 (((-2 (|:| -4221 (-639 $)) (|:| -3148 $)) (-639 $)) 52)) (-3589 (($ $ (-766)) 88 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2717 (((-112) $) 72)) (-1900 (((-828 (-916)) $) 85 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1957 (((-112) $) 31)) (-1312 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-2913 (((-1150) $) 9)) (-1525 (($ $) 71)) (-3113 (((-112) $) 94)) (-1709 (((-1112) $) 10)) (-2741 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 75)) (-4121 (((-828 (-916))) 92)) (-4102 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3148 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-3870 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1577 (((-766) $) 59)) (-2080 (((-2 (|:| -2097 $) (|:| -2264 $)) $ $) 58)) (-3362 (((-3 (-766) "failed") $ $) 86 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3627 (((-133)) 100)) (-3598 (((-828 (-916)) $) 93)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ |#1|) 101)) (-2805 (((-3 $ "failed") $) 84 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-2579 (((-766)) 28)) (-2922 (((-112) $ $) 40)) (-3694 (((-112) $) 96)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-4374 (($ $) 90 (|has| |#1| (-367))) (($ $ (-766)) 89 (|has| |#1| (-367)))) (-1731 (((-112) $ $) 6)) (-1859 (($ $ $) 66) (($ $ |#1|) 99)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +(((-1275 |#1|) (-139) (-362)) (T -1275)) +((-3694 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-828 (-916))))) (-4121 (*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-828 (-916))))) (-3285 (*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-766)))) (-4374 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-362)) (-4 *2 (-367)))) (-4374 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-4 *3 (-367))))) +(-13 (-362) (-1033 |t#1|) (-1263 |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-401)) |%noBranch|) (-15 -3694 ((-112) $)) (-15 -2024 ((-112) $)) (-15 -3113 ((-112) $)) (-15 -3598 ((-828 (-916)) $)) (-15 -4121 ((-828 (-916)))) (-15 -3285 ((-766))) (IF (|has| |t#1| (-367)) (PROGN (-6 (-401)) (-15 -4374 ($ $)) (-15 -4374 ($ $ (-766)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) -4037 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 |#1|) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1033 |#1|) . T) ((-1050 #0#) . T) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T) ((-1263 |#1|) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-2852 (((-639 |#1|) $) 85)) (-1881 (($ $ (-766)) 88)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2261 (($ $ $) NIL (|has| |#2| (-171))) (($ $ (-766)) NIL (|has| |#2| (-171)))) (-1800 (($) NIL T CONST)) (-2415 (($ $ |#1|) NIL) (($ $ (-814 |#1|)) NIL) (($ $ $) NIL)) (-4048 (((-3 (-814 |#1|) "failed") $) NIL) (((-3 (-888 |#1|) "failed") $) NIL)) (-3961 (((-814 |#1|) $) NIL) (((-888 |#1|) $) NIL)) (-1601 (($ $) 87)) (-3668 (((-3 $ "failed") $) NIL)) (-3120 (((-112) $) 76)) (-3451 (($ $) 80)) (-1397 (($ $ $ (-766)) 89)) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-3045 (($ (-814 |#1|) |#2|) NIL) (($ (-888 |#1|) |#2|) 25)) (-3818 (($ $) 102)) (-3830 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2581 (((-814 |#1|) $) NIL)) (-4241 (((-814 |#1|) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-2221 (($ $ |#1|) NIL) (($ $ (-814 |#1|)) NIL) (($ $ $) NIL)) (-4365 (($ $ (-766)) 96 (|has| |#2| (-712 (-406 (-562)))))) (-1468 (((-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1560 (((-888 |#1|) $) 69)) (-1573 ((|#2| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3430 (($ $ (-766)) 93 (|has| |#2| (-712 (-406 (-562)))))) (-3598 (((-766) $) 86)) (-3989 (((-112) $) 70)) (-1497 ((|#2| $) 74)) (-4054 (((-857) $) 56) (($ (-562)) NIL) (($ |#2|) 50) (($ (-814 |#1|)) NIL) (($ |#1|) 58) (($ (-888 |#1|)) NIL) (($ (-658 |#1| |#2|)) 42) (((-1271 |#1| |#2|) $) 63) (((-1280 |#1| |#2|) $) 68)) (-4358 (((-639 |#2|) $) NIL)) (-3906 ((|#2| $ (-888 |#1|)) NIL)) (-4221 ((|#2| $ (-814 |#1|)) NIL) ((|#2| $ $) NIL)) (-2579 (((-766)) NIL)) (-2286 (($) 21 T CONST)) (-2294 (($) 24 T CONST)) (-2516 (((-639 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3134 (((-3 (-658 |#1| |#2|) "failed") $) 101)) (-1731 (((-112) $ $) 64)) (-1848 (($ $) 95) (($ $ $) 94)) (-1835 (($ $ $) 20)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-888 |#1|)) NIL))) +(((-1276 |#1| |#2|) (-13 (-1277 |#1| |#2|) (-381 |#2| (-888 |#1|)) (-10 -8 (-15 -4054 ($ (-658 |#1| |#2|))) (-15 -4054 ((-1271 |#1| |#2|) $)) (-15 -4054 ((-1280 |#1| |#2|) $)) (-15 -3134 ((-3 (-658 |#1| |#2|) "failed") $)) (-15 -1397 ($ $ $ (-766))) (IF (|has| |#2| (-712 (-406 (-562)))) (PROGN (-15 -3430 ($ $ (-766))) (-15 -4365 ($ $ (-766)))) |%noBranch|))) (-845) (-171)) (T -1276)) +((-4054 (*1 *1 *2) (-12 (-5 *2 (-658 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *1 (-1276 *3 *4)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-3134 (*1 *2 *1) (|partial| -12 (-5 *2 (-658 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-1397 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) (-4 *4 (-712 (-406 (-562)))) (-4 *3 (-845)) (-4 *4 (-171)))) (-4365 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) (-4 *4 (-712 (-406 (-562)))) (-4 *3 (-845)) (-4 *4 (-171))))) +(-13 (-1277 |#1| |#2|) (-381 |#2| (-888 |#1|)) (-10 -8 (-15 -4054 ($ (-658 |#1| |#2|))) (-15 -4054 ((-1271 |#1| |#2|) $)) (-15 -4054 ((-1280 |#1| |#2|) $)) (-15 -3134 ((-3 (-658 |#1| |#2|) "failed") $)) (-15 -1397 ($ $ $ (-766))) (IF (|has| |#2| (-712 (-406 (-562)))) (PROGN (-15 -3430 ($ $ (-766))) (-15 -4365 ($ $ (-766)))) |%noBranch|))) +((-4041 (((-112) $ $) 7)) (-1952 (((-112) $) 16)) (-2852 (((-639 |#1|) $) 41)) (-1881 (($ $ (-766)) 74)) (-3214 (((-3 $ "failed") $ $) 19)) (-2261 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-766)) 43 (|has| |#2| (-171)))) (-1800 (($) 17 T CONST)) (-2415 (($ $ |#1|) 55) (($ $ (-814 |#1|)) 54) (($ $ $) 53)) (-4048 (((-3 (-814 |#1|) "failed") $) 65)) (-3961 (((-814 |#1|) $) 66)) (-3668 (((-3 $ "failed") $) 33)) (-3120 (((-112) $) 46)) (-3451 (($ $) 45)) (-1957 (((-112) $) 31)) (-3536 (((-112) $) 51)) (-3045 (($ (-814 |#1|) |#2|) 52)) (-3818 (($ $) 50)) (-3830 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) 61)) (-2581 (((-814 |#1|) $) 62)) (-4241 (((-814 |#1|) $) 76)) (-4152 (($ (-1 |#2| |#2|) $) 42)) (-2221 (($ $ |#1|) 58) (($ $ (-814 |#1|)) 57) (($ $ $) 56)) (-2913 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-3598 (((-766) $) 75)) (-3989 (((-112) $) 48)) (-1497 ((|#2| $) 47)) (-4054 (((-857) $) 11) (($ (-562)) 29) (($ |#2|) 69) (($ (-814 |#1|)) 64) (($ |#1|) 49)) (-4221 ((|#2| $ (-814 |#1|)) 60) ((|#2| $ $) 59)) (-2579 (((-766)) 28)) (-2286 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1731 (((-112) $ $) 6)) (-1848 (($ $) 22) (($ $ $) 21)) (-1835 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1277 |#1| |#2|) (-139) (-845) (-1044)) (T -1277)) +((-4241 (*1 *2 *1) (-12 (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-814 *3)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-766)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044))))) +(-13 (-1273 |t#1| |t#2|) (-10 -8 (-15 -4241 ((-814 |t#1|) $)) (-15 -3598 ((-766) $)) (-15 -1881 ($ $ (-766))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 #0=(-814 |#1|)) . T) ((-612 |#2|) . T) ((-609 (-857)) . T) ((-642 |#2|) . T) ((-642 $) . T) ((-712 |#2|) |has| |#2| (-171)) ((-721) . T) ((-1033 #0#) . T) ((-1050 |#2|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1270 |#2|) . T) ((-1273 |#1| |#2|) . T)) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-2852 (((-639 (-1168)) $) NIL)) (-3468 (($ (-1271 (-1168) |#1|)) NIL)) (-1881 (($ $ (-766)) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2261 (($ $ $) NIL (|has| |#1| (-171))) (($ $ (-766)) NIL (|has| |#1| (-171)))) (-1800 (($) NIL T CONST)) (-2415 (($ $ (-1168)) NIL) (($ $ (-814 (-1168))) NIL) (($ $ $) NIL)) (-4048 (((-3 (-814 (-1168)) "failed") $) NIL)) (-3961 (((-814 (-1168)) $) NIL)) (-3668 (((-3 $ "failed") $) NIL)) (-3120 (((-112) $) NIL)) (-3451 (($ $) NIL)) (-1957 (((-112) $) NIL)) (-3536 (((-112) $) NIL)) (-3045 (($ (-814 (-1168)) |#1|) NIL)) (-3818 (($ $) NIL)) (-3830 (((-2 (|:| |k| (-814 (-1168))) (|:| |c| |#1|)) $) NIL)) (-2581 (((-814 (-1168)) $) NIL)) (-4241 (((-814 (-1168)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2221 (($ $ (-1168)) NIL) (($ $ (-814 (-1168))) NIL) (($ $ $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3525 (((-1271 (-1168) |#1|) $) NIL)) (-3598 (((-766) $) NIL)) (-3989 (((-112) $) NIL)) (-1497 ((|#1| $) NIL)) (-4054 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-814 (-1168))) NIL) (($ (-1168)) NIL)) (-4221 ((|#1| $ (-814 (-1168))) NIL) ((|#1| $ $) NIL)) (-2579 (((-766)) NIL)) (-2286 (($) NIL T CONST)) (-3821 (((-639 (-2 (|:| |k| (-1168)) (|:| |c| $))) $) NIL)) (-2294 (($) NIL T CONST)) (-1731 (((-112) $ $) NIL)) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1168) $) NIL))) +(((-1278 |#1|) (-13 (-1277 (-1168) |#1|) (-10 -8 (-15 -3525 ((-1271 (-1168) |#1|) $)) (-15 -3468 ($ (-1271 (-1168) |#1|))) (-15 -3821 ((-639 (-2 (|:| |k| (-1168)) (|:| |c| $))) $)))) (-1044)) (T -1278)) +((-3525 (*1 *2 *1) (-12 (-5 *2 (-1271 (-1168) *3)) (-5 *1 (-1278 *3)) (-4 *3 (-1044)))) (-3468 (*1 *1 *2) (-12 (-5 *2 (-1271 (-1168) *3)) (-4 *3 (-1044)) (-5 *1 (-1278 *3)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |k| (-1168)) (|:| |c| (-1278 *3))))) (-5 *1 (-1278 *3)) (-4 *3 (-1044))))) +(-13 (-1277 (-1168) |#1|) (-10 -8 (-15 -3525 ((-1271 (-1168) |#1|) $)) (-15 -3468 ($ (-1271 (-1168) |#1|))) (-15 -3821 ((-639 (-2 (|:| |k| (-1168)) (|:| |c| $))) $)))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) NIL)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1800 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL)) (-3961 ((|#2| $) NIL)) (-1601 (($ $) NIL)) (-3668 (((-3 $ "failed") $) 35)) (-3120 (((-112) $) 30)) (-3451 (($ $) 31)) (-1957 (((-112) $) NIL)) (-1694 (((-766) $) NIL)) (-1889 (((-639 $) $) NIL)) (-3536 (((-112) $) NIL)) (-3045 (($ |#2| |#1|) NIL)) (-2581 ((|#2| $) 19)) (-4241 ((|#2| $) 16)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1468 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1560 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3989 (((-112) $) 27)) (-1497 ((|#1| $) 28)) (-4054 (((-857) $) 54) (($ (-562)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-4358 (((-639 |#1|) $) NIL)) (-3906 ((|#1| $ |#2|) NIL)) (-4221 ((|#1| $ |#2|) 24)) (-2579 (((-766)) 14)) (-2286 (($) 25 T CONST)) (-2294 (($) 11 T CONST)) (-2516 (((-639 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1731 (((-112) $ $) 26)) (-1859 (($ $ |#1|) 56 (|has| |#1| (-362)))) (-1848 (($ $) NIL) (($ $ $) NIL)) (-1835 (($ $ $) 43)) (** (($ $ (-916)) NIL) (($ $ (-766)) 45)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3492 (((-766) $) 15))) +(((-1279 |#1| |#2|) (-13 (-1044) (-1270 |#1|) (-381 |#1| |#2|) (-612 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3492 ((-766) $)) (-15 -4241 (|#2| $)) (-15 -2581 (|#2| $)) (-15 -1601 ($ $)) (-15 -4221 (|#1| $ |#2|)) (-15 -3989 ((-112) $)) (-15 -1497 (|#1| $)) (-15 -3120 ((-112) $)) (-15 -3451 ($ $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1859 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4395)) (-6 -4395) |%noBranch|) (IF (|has| |#1| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|))) (-1044) (-841)) (T -1279)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841)))) (-1601 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-841)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-841)))) (-4241 (*1 *2 *1) (-12 (-4 *2 (-841)) (-5 *1 (-1279 *3 *2)) (-4 *3 (-1044)))) (-2581 (*1 *2 *1) (-12 (-4 *2 (-841)) (-5 *1 (-1279 *3 *2)) (-4 *3 (-1044)))) (-4221 (*1 *2 *1 *3) (-12 (-4 *2 (-1044)) (-5 *1 (-1279 *2 *3)) (-4 *3 (-841)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-841)))) (-1497 (*1 *2 *1) (-12 (-4 *2 (-1044)) (-5 *1 (-1279 *2 *3)) (-4 *3 (-841)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-841)))) (-3451 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841)))) (-1859 (*1 *1 *1 *2) (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1044)) (-4 *3 (-841))))) +(-13 (-1044) (-1270 |#1|) (-381 |#1| |#2|) (-612 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3492 ((-766) $)) (-15 -4241 (|#2| $)) (-15 -2581 (|#2| $)) (-15 -1601 ($ $)) (-15 -4221 (|#1| $ |#2|)) (-15 -3989 ((-112) $)) (-15 -1497 (|#1| $)) (-15 -3120 ((-112) $)) (-15 -3451 ($ $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1859 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4395)) (-6 -4395) |%noBranch|) (IF (|has| |#1| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|))) +((-4041 (((-112) $ $) 26)) (-1952 (((-112) $) NIL)) (-2852 (((-639 |#1|) $) 120)) (-3468 (($ (-1271 |#1| |#2|)) 44)) (-1881 (($ $ (-766)) 32)) (-3214 (((-3 $ "failed") $ $) NIL)) (-2261 (($ $ $) 48 (|has| |#2| (-171))) (($ $ (-766)) 46 (|has| |#2| (-171)))) (-1800 (($) NIL T CONST)) (-2415 (($ $ |#1|) 102) (($ $ (-814 |#1|)) 103) (($ $ $) 25)) (-4048 (((-3 (-814 |#1|) "failed") $) NIL)) (-3961 (((-814 |#1|) $) NIL)) (-3668 (((-3 $ "failed") $) 110)) (-3120 (((-112) $) 105)) (-3451 (($ $) 106)) (-1957 (((-112) $) NIL)) (-3536 (((-112) $) NIL)) (-3045 (($ (-814 |#1|) |#2|) 19)) (-3818 (($ $) NIL)) (-3830 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2581 (((-814 |#1|) $) 111)) (-4241 (((-814 |#1|) $) 114)) (-4152 (($ (-1 |#2| |#2|) $) 119)) (-2221 (($ $ |#1|) 100) (($ $ (-814 |#1|)) 101) (($ $ $) 56)) (-2913 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3525 (((-1271 |#1| |#2|) $) 84)) (-3598 (((-766) $) 117)) (-3989 (((-112) $) 70)) (-1497 ((|#2| $) 28)) (-4054 (((-857) $) 63) (($ (-562)) 77) (($ |#2|) 74) (($ (-814 |#1|)) 17) (($ |#1|) 73)) (-4221 ((|#2| $ (-814 |#1|)) 104) ((|#2| $ $) 27)) (-2579 (((-766)) 108)) (-2286 (($) 14 T CONST)) (-3821 (((-639 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2294 (($) 29 T CONST)) (-1731 (((-112) $ $) 13)) (-1848 (($ $) 88) (($ $ $) 91)) (-1835 (($ $ $) 55)) (** (($ $ (-916)) NIL) (($ $ (-766)) 49)) (* (($ (-916) $) NIL) (($ (-766) $) 47) (($ (-562) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1280 |#1| |#2|) (-13 (-1277 |#1| |#2|) (-10 -8 (-15 -3525 ((-1271 |#1| |#2|) $)) (-15 -3468 ($ (-1271 |#1| |#2|))) (-15 -3821 ((-639 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-845) (-1044)) (T -1280)) +((-3525 (*1 *2 *1) (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)))) (-3468 (*1 *1 *2) (-12 (-5 *2 (-1271 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *1 (-1280 *3 *4)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |k| *3) (|:| |c| (-1280 *3 *4))))) (-5 *1 (-1280 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044))))) +(-13 (-1277 |#1| |#2|) (-10 -8 (-15 -3525 ((-1271 |#1| |#2|) $)) (-15 -3468 ($ (-1271 |#1| |#2|))) (-15 -3821 ((-639 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3172 (((-639 (-1148 |#1|)) (-1 (-639 (-1148 |#1|)) (-639 (-1148 |#1|))) (-562)) 15) (((-1148 |#1|) (-1 (-1148 |#1|) (-1148 |#1|))) 11))) +(((-1281 |#1|) (-10 -7 (-15 -3172 ((-1148 |#1|) (-1 (-1148 |#1|) (-1148 |#1|)))) (-15 -3172 ((-639 (-1148 |#1|)) (-1 (-639 (-1148 |#1|)) (-639 (-1148 |#1|))) (-562)))) (-1207)) (T -1281)) +((-3172 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-639 (-1148 *5)) (-639 (-1148 *5)))) (-5 *4 (-562)) (-5 *2 (-639 (-1148 *5))) (-5 *1 (-1281 *5)) (-4 *5 (-1207)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-1 (-1148 *4) (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1281 *4)) (-4 *4 (-1207))))) +(-10 -7 (-15 -3172 ((-1148 |#1|) (-1 (-1148 |#1|) (-1148 |#1|)))) (-15 -3172 ((-639 (-1148 |#1|)) (-1 (-639 (-1148 |#1|)) (-639 (-1148 |#1|))) (-562)))) +((-2289 (((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|))) 147) (((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112)) 146) (((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112)) 145) (((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112) (-112)) 144) (((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-1041 |#1| |#2|)) 129)) (-2565 (((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|))) 71) (((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112)) 70) (((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112) (-112)) 69)) (-2921 (((-639 (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))) (-1041 |#1| |#2|)) 60)) (-3580 (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|))) 114) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112)) 113) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112)) 112) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112) (-112)) 111) (((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|)) 106)) (-3252 (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|))) 119) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112)) 118) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112)) 117) (((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|)) 116)) (-4208 (((-639 (-775 |#1| (-859 |#3|))) (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))) 97) (((-1164 (-1019 (-406 |#1|))) (-1164 |#1|)) 88) (((-947 (-1019 (-406 |#1|))) (-775 |#1| (-859 |#3|))) 95) (((-947 (-1019 (-406 |#1|))) (-947 |#1|)) 93) (((-775 |#1| (-859 |#3|)) (-775 |#1| (-859 |#2|))) 32))) +(((-1282 |#1| |#2| |#3|) (-10 -7 (-15 -2565 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112) (-112))) (-15 -2565 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112))) (-15 -2565 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-1041 |#1| |#2|))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112) (-112))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112) (-112))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)))) (-15 -3252 ((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|))) (-15 -3252 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -3252 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112))) (-15 -3252 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)))) (-15 -2921 ((-639 (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))) (-1041 |#1| |#2|))) (-15 -4208 ((-775 |#1| (-859 |#3|)) (-775 |#1| (-859 |#2|)))) (-15 -4208 ((-947 (-1019 (-406 |#1|))) (-947 |#1|))) (-15 -4208 ((-947 (-1019 (-406 |#1|))) (-775 |#1| (-859 |#3|)))) (-15 -4208 ((-1164 (-1019 (-406 |#1|))) (-1164 |#1|))) (-15 -4208 ((-639 (-775 |#1| (-859 |#3|))) (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))))) (-13 (-843) (-306) (-146) (-1017)) (-639 (-1168)) (-639 (-1168))) (T -1282)) +((-4208 (*1 *2 *3) (-12 (-5 *3 (-1138 *4 (-530 (-859 *6)) (-859 *6) (-775 *4 (-859 *6)))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-775 *4 (-859 *6)))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-1164 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-775 *4 (-859 *6))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *6 (-639 (-1168))) (-5 *2 (-947 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-947 *4)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-947 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-775 *4 (-859 *5))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-775 *4 (-859 *6))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-1138 *4 (-530 (-859 *6)) (-859 *6) (-775 *4 (-859 *6))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-3252 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-3252 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-3580 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-3580 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-2289 (*1 *2 *3) (-12 (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-2 (|:| -1646 (-1164 *4)) (|:| -3593 (-639 (-947 *4)))))) (-5 *1 (-1282 *4 *5 *6)) (-5 *3 (-639 (-947 *4))) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-2289 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-2289 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-2289 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-2 (|:| -1646 (-1164 *4)) (|:| -3593 (-639 (-947 *4)))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-1041 *4 *5))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-2565 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168)))))) +(-10 -7 (-15 -2565 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112) (-112))) (-15 -2565 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112))) (-15 -2565 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-1041 |#1| |#2|))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112) (-112))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112))) (-15 -2289 ((-639 (-2 (|:| -1646 (-1164 |#1|)) (|:| -3593 (-639 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112) (-112))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112))) (-15 -3580 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)))) (-15 -3252 ((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|))) (-15 -3252 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -3252 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112))) (-15 -3252 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)))) (-15 -2921 ((-639 (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))) (-1041 |#1| |#2|))) (-15 -4208 ((-775 |#1| (-859 |#3|)) (-775 |#1| (-859 |#2|)))) (-15 -4208 ((-947 (-1019 (-406 |#1|))) (-947 |#1|))) (-15 -4208 ((-947 (-1019 (-406 |#1|))) (-775 |#1| (-859 |#3|)))) (-15 -4208 ((-1164 (-1019 (-406 |#1|))) (-1164 |#1|))) (-15 -4208 ((-639 (-775 |#1| (-859 |#3|))) (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))))) +((-2756 (((-3 (-1256 (-406 (-562))) "failed") (-1256 |#1|) |#1|) 21)) (-4262 (((-112) (-1256 |#1|)) 12)) (-3742 (((-3 (-1256 (-562)) "failed") (-1256 |#1|)) 16))) +(((-1283 |#1|) (-10 -7 (-15 -4262 ((-112) (-1256 |#1|))) (-15 -3742 ((-3 (-1256 (-562)) "failed") (-1256 |#1|))) (-15 -2756 ((-3 (-1256 (-406 (-562))) "failed") (-1256 |#1|) |#1|))) (-635 (-562))) (T -1283)) +((-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) (-5 *2 (-1256 (-406 (-562)))) (-5 *1 (-1283 *4)))) (-3742 (*1 *2 *3) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) (-5 *2 (-1256 (-562))) (-5 *1 (-1283 *4)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) (-5 *2 (-112)) (-5 *1 (-1283 *4))))) +(-10 -7 (-15 -4262 ((-112) (-1256 |#1|))) (-15 -3742 ((-3 (-1256 (-562)) "failed") (-1256 |#1|))) (-15 -2756 ((-3 (-1256 (-406 (-562))) "failed") (-1256 |#1|) |#1|))) +((-4041 (((-112) $ $) NIL)) (-1952 (((-112) $) 11)) (-3214 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766)) 8)) (-1800 (($) NIL T CONST)) (-3668 (((-3 $ "failed") $) 43)) (-1448 (($) 36)) (-1957 (((-112) $) NIL)) (-3699 (((-3 $ "failed") $) 29)) (-1999 (((-916) $) 15)) (-2913 (((-1150) $) NIL)) (-3729 (($) 25 T CONST)) (-2466 (($ (-916)) 37)) (-1709 (((-1112) $) NIL)) (-4208 (((-562) $) 13)) (-4054 (((-857) $) 22) (($ (-562)) 19)) (-2579 (((-766)) 9)) (-2286 (($) 23 T CONST)) (-2294 (($) 24 T CONST)) (-1731 (((-112) $ $) 27)) (-1848 (($ $) 38) (($ $ $) 35)) (-1835 (($ $ $) 26)) (** (($ $ (-916)) NIL) (($ $ (-766)) 40)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 32) (($ $ $) 31))) +(((-1284 |#1|) (-13 (-171) (-367) (-610 (-562)) (-1143)) (-916)) (T -1284)) +NIL +(-13 (-171) (-367) (-610 (-562)) (-1143)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3194525 3194530 3194535 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3194510 3194515 3194520 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3194495 3194500 3194505 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3194480 3194485 3194490 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1284 3193656 3194355 3194432 "ZMOD" 3194437 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1283 3192766 3192930 3193139 "ZLINDEP" 3193488 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1282 3182070 3183834 3185806 "ZDSOLVE" 3190896 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1281 3181316 3181457 3181646 "YSTREAM" 3181916 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1280 3179127 3180617 3180821 "XRPOLY" 3181159 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1279 3175715 3176998 3177573 "XPR" 3178599 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1278 3173471 3175046 3175250 "XPOLY" 3175546 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1277 3171262 3172596 3172651 "XPOLYC" 3172939 NIL XPOLYC (NIL T T) -9 NIL 3173052 NIL) (-1276 3167680 3169779 3170167 "XPBWPOLY" 3170920 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1275 3163591 3165843 3165885 "XF" 3166506 NIL XF (NIL T) -9 NIL 3166906 NIL) (-1274 3163212 3163300 3163469 "XF-" 3163474 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1273 3158546 3159801 3159856 "XFALG" 3162028 NIL XFALG (NIL T T) -9 NIL 3162817 NIL) (-1272 3157679 3157783 3157988 "XEXPPKG" 3158438 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1271 3155823 3157529 3157625 "XDPOLY" 3157630 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1270 3154768 3155334 3155377 "XALG" 3155382 NIL XALG (NIL T) -9 NIL 3155493 NIL) (-1269 3148237 3152745 3153239 "WUTSET" 3154360 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1268 3146528 3147289 3147612 "WP" 3148048 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1267 3146157 3146350 3146420 "WHILEAST" 3146480 T WHILEAST (NIL) -8 NIL NIL NIL) (-1266 3145656 3145874 3145968 "WHEREAST" 3146085 T WHEREAST (NIL) -8 NIL NIL NIL) (-1265 3144542 3144740 3145035 "WFFINTBS" 3145453 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1264 3142446 3142873 3143335 "WEIER" 3144114 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1263 3141593 3142017 3142059 "VSPACE" 3142195 NIL VSPACE (NIL T) -9 NIL 3142269 NIL) (-1262 3141431 3141458 3141549 "VSPACE-" 3141554 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1261 3141239 3141282 3141350 "VOID" 3141385 T VOID (NIL) -8 NIL NIL NIL) (-1260 3139375 3139734 3140140 "VIEW" 3140855 T VIEW (NIL) -7 NIL NIL NIL) (-1259 3135800 3136438 3137175 "VIEWDEF" 3138660 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1258 3125136 3127348 3129521 "VIEW3D" 3133649 T VIEW3D (NIL) -8 NIL NIL NIL) (-1257 3117418 3119047 3120626 "VIEW2D" 3123579 T VIEW2D (NIL) -8 NIL NIL NIL) (-1256 3112822 3117188 3117280 "VECTOR" 3117361 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1255 3111399 3111658 3111976 "VECTOR2" 3112552 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1254 3104926 3109183 3109226 "VECTCAT" 3110219 NIL VECTCAT (NIL T) -9 NIL 3110805 NIL) (-1253 3103940 3104194 3104584 "VECTCAT-" 3104589 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1252 3103421 3103591 3103711 "VARIABLE" 3103855 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1251 3103354 3103359 3103389 "UTYPE" 3103394 T UTYPE (NIL) -9 NIL NIL NIL) (-1250 3102184 3102338 3102600 "UTSODETL" 3103180 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1249 3099624 3100084 3100608 "UTSODE" 3101725 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1248 3091500 3097250 3097739 "UTS" 3099193 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1247 3082743 3088067 3088110 "UTSCAT" 3089222 NIL UTSCAT (NIL T) -9 NIL 3089979 NIL) (-1246 3080098 3080813 3081802 "UTSCAT-" 3081807 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1245 3079725 3079768 3079901 "UTS2" 3080049 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1244 3073998 3076563 3076606 "URAGG" 3078676 NIL URAGG (NIL T) -9 NIL 3079399 NIL) (-1243 3070937 3071800 3072923 "URAGG-" 3072928 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1242 3066661 3069551 3070023 "UPXSSING" 3070601 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1241 3058763 3065908 3066181 "UPXS" 3066446 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1240 3051876 3058667 3058739 "UPXSCONS" 3058744 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1239 3042121 3048871 3048933 "UPXSCCA" 3049507 NIL UPXSCCA (NIL T T) -9 NIL 3049740 NIL) (-1238 3041759 3041844 3042018 "UPXSCCA-" 3042023 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1237 3031857 3038380 3038423 "UPXSCAT" 3039071 NIL UPXSCAT (NIL T) -9 NIL 3039679 NIL) (-1236 3031287 3031366 3031545 "UPXS2" 3031772 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1235 3029941 3030194 3030545 "UPSQFREE" 3031030 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1234 3023729 3026743 3026798 "UPSCAT" 3027959 NIL UPSCAT (NIL T T) -9 NIL 3028733 NIL) (-1233 3022933 3023140 3023467 "UPSCAT-" 3023472 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1232 3008783 3016781 3016824 "UPOLYC" 3018925 NIL UPOLYC (NIL T) -9 NIL 3020146 NIL) (-1231 3000112 3002537 3005684 "UPOLYC-" 3005689 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1230 2999739 2999782 2999915 "UPOLYC2" 3000063 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1229 2991313 2999422 2999551 "UP" 2999658 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1228 2990652 2990759 2990923 "UPMP" 2991202 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1227 2990205 2990286 2990425 "UPDIVP" 2990565 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1226 2988773 2989022 2989338 "UPDECOMP" 2989954 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1225 2988008 2988120 2988305 "UPCDEN" 2988657 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1224 2987527 2987596 2987745 "UP2" 2987933 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1223 2986044 2986731 2987008 "UNISEG" 2987285 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1222 2985259 2985386 2985591 "UNISEG2" 2985887 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1221 2984319 2984499 2984725 "UNIFACT" 2985075 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1220 2968286 2983496 2983747 "ULS" 2984126 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1219 2956326 2968190 2968262 "ULSCONS" 2968267 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1218 2938942 2950884 2950946 "ULSCCAT" 2951584 NIL ULSCCAT (NIL T T) -9 NIL 2951872 NIL) (-1217 2937992 2938237 2938625 "ULSCCAT-" 2938630 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1216 2927867 2934304 2934347 "ULSCAT" 2935210 NIL ULSCAT (NIL T) -9 NIL 2935940 NIL) (-1215 2927297 2927376 2927555 "ULS2" 2927782 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1214 2926434 2926909 2927010 "UINT8" 2927121 T UINT8 (NIL) -8 NIL NIL 2927200) (-1213 2925570 2926045 2926146 "UINT32" 2926257 T UINT32 (NIL) -8 NIL NIL 2926336) (-1212 2924706 2925181 2925282 "UINT16" 2925393 T UINT16 (NIL) -8 NIL NIL 2925472) (-1211 2923109 2924032 2924062 "UFD" 2924274 T UFD (NIL) -9 NIL 2924388 NIL) (-1210 2922903 2922949 2923044 "UFD-" 2923049 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1209 2921985 2922168 2922384 "UDVO" 2922709 T UDVO (NIL) -7 NIL NIL NIL) (-1208 2919801 2920210 2920681 "UDPO" 2921549 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1207 2919734 2919739 2919769 "TYPE" 2919774 T TYPE (NIL) -9 NIL NIL NIL) (-1206 2919521 2919689 2919720 "TYPEAST" 2919725 T TYPEAST (NIL) -8 NIL NIL NIL) (-1205 2918492 2918694 2918934 "TWOFACT" 2919315 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1204 2917564 2917901 2918136 "TUPLE" 2918292 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1203 2915255 2915774 2916313 "TUBETOOL" 2917047 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1202 2914104 2914309 2914550 "TUBE" 2915048 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1201 2908868 2913076 2913359 "TS" 2913856 NIL TS (NIL T) -8 NIL NIL NIL) (-1200 2897535 2901627 2901724 "TSETCAT" 2906993 NIL TSETCAT (NIL T T T T) -9 NIL 2908524 NIL) (-1199 2892270 2893867 2895758 "TSETCAT-" 2895763 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1198 2886533 2887379 2888321 "TRMANIP" 2891406 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1197 2885974 2886037 2886200 "TRIMAT" 2886465 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1196 2883770 2884007 2884371 "TRIGMNIP" 2885723 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1195 2883290 2883403 2883433 "TRIGCAT" 2883646 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1194 2882959 2883038 2883179 "TRIGCAT-" 2883184 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1193 2879856 2881817 2882098 "TREE" 2882713 NIL TREE (NIL T) -8 NIL NIL NIL) (-1192 2879130 2879658 2879688 "TRANFUN" 2879723 T TRANFUN (NIL) -9 NIL 2879789 NIL) (-1191 2878409 2878600 2878880 "TRANFUN-" 2878885 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1190 2878213 2878245 2878306 "TOPSP" 2878370 T TOPSP (NIL) -7 NIL NIL NIL) (-1189 2877561 2877676 2877830 "TOOLSIGN" 2878094 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1188 2876222 2876738 2876977 "TEXTFILE" 2877344 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1187 2874161 2874675 2875104 "TEX" 2875815 T TEX (NIL) -8 NIL NIL NIL) (-1186 2873942 2873973 2874045 "TEX1" 2874124 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1185 2873590 2873653 2873743 "TEMUTL" 2873874 T TEMUTL (NIL) -7 NIL NIL NIL) (-1184 2871744 2872024 2872349 "TBCMPPK" 2873313 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1183 2863632 2869904 2869960 "TBAGG" 2870360 NIL TBAGG (NIL T T) -9 NIL 2870571 NIL) (-1182 2858702 2860190 2861944 "TBAGG-" 2861949 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1181 2858086 2858193 2858338 "TANEXP" 2858591 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1180 2851587 2857943 2858036 "TABLE" 2858041 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1179 2850999 2851098 2851236 "TABLEAU" 2851484 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1178 2845607 2846827 2848075 "TABLBUMP" 2849785 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1177 2845035 2845135 2845263 "SYSTEM" 2845501 T SYSTEM (NIL) -7 NIL NIL NIL) (-1176 2841498 2842193 2842976 "SYSSOLP" 2844286 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1175 2840555 2841022 2841135 "SYSNNI" 2841321 NIL SYSNNI (NIL NIL) -8 NIL NIL 2841400) (-1174 2840008 2840413 2840455 "SYSINT" 2840460 NIL SYSINT (NIL NIL) -8 NIL NIL 2840468) (-1173 2836342 2837269 2837985 "SYNTAX" 2839314 T SYNTAX (NIL) -8 NIL NIL NIL) (-1172 2833500 2834102 2834734 "SYMTAB" 2835732 T SYMTAB (NIL) -8 NIL NIL NIL) (-1171 2828749 2829651 2830634 "SYMS" 2832539 T SYMS (NIL) -8 NIL NIL NIL) (-1170 2826021 2828207 2828437 "SYMPOLY" 2828554 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1169 2825538 2825613 2825736 "SYMFUNC" 2825933 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1168 2821590 2822850 2823663 "SYMBOL" 2824747 T SYMBOL (NIL) -8 NIL NIL NIL) (-1167 2815129 2816818 2818538 "SWITCH" 2819892 T SWITCH (NIL) -8 NIL NIL NIL) (-1166 2808399 2813950 2814253 "SUTS" 2814884 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2800500 2807646 2807919 "SUPXS" 2808184 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1164 2792030 2800118 2800244 "SUP" 2800409 NIL SUP (NIL T) -8 NIL NIL NIL) (-1163 2791189 2791316 2791533 "SUPFRACF" 2791898 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1162 2790810 2790869 2790982 "SUP2" 2791124 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1161 2789223 2789497 2789860 "SUMRF" 2790509 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1160 2788537 2788603 2788802 "SUMFS" 2789144 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1159 2772544 2787714 2787965 "SULS" 2788344 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1158 2772173 2772366 2772436 "SUCHTAST" 2772496 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1157 2771495 2771698 2771838 "SUCH" 2772081 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1156 2765389 2766401 2767360 "SUBSPACE" 2770583 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1155 2764819 2764909 2765073 "SUBRESP" 2765277 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1154 2758188 2759484 2760795 "STTF" 2763555 NIL STTF (NIL T) -7 NIL NIL NIL) (-1153 2752361 2753481 2754628 "STTFNC" 2757088 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1152 2743676 2745543 2747337 "STTAYLOR" 2750602 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1151 2736920 2743540 2743623 "STRTBL" 2743628 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1150 2732311 2736875 2736906 "STRING" 2736911 T STRING (NIL) -8 NIL NIL NIL) (-1149 2727199 2731684 2731714 "STRICAT" 2731773 T STRICAT (NIL) -9 NIL 2731835 NIL) (-1148 2720009 2724818 2725429 "STREAM" 2726623 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1147 2719519 2719596 2719740 "STREAM3" 2719926 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1146 2718501 2718684 2718919 "STREAM2" 2719332 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1145 2718189 2718241 2718334 "STREAM1" 2718443 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1144 2717205 2717386 2717617 "STINPROD" 2718005 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1143 2716783 2716967 2716997 "STEP" 2717077 T STEP (NIL) -9 NIL 2717155 NIL) (-1142 2710326 2716682 2716759 "STBL" 2716764 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1141 2705500 2709547 2709590 "STAGG" 2709743 NIL STAGG (NIL T) -9 NIL 2709832 NIL) (-1140 2703202 2703804 2704676 "STAGG-" 2704681 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1139 2701397 2702972 2703064 "STACK" 2703145 NIL STACK (NIL T) -8 NIL NIL NIL) (-1138 2694122 2699538 2699994 "SREGSET" 2701027 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1137 2686548 2687916 2689429 "SRDCMPK" 2692728 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1136 2679515 2683988 2684018 "SRAGG" 2685321 T SRAGG (NIL) -9 NIL 2685929 NIL) (-1135 2678532 2678787 2679166 "SRAGG-" 2679171 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1134 2673027 2677479 2677900 "SQMATRIX" 2678158 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1133 2666776 2669745 2670472 "SPLTREE" 2672372 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1132 2662766 2663432 2664078 "SPLNODE" 2666202 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1131 2661813 2662046 2662076 "SPFCAT" 2662520 T SPFCAT (NIL) -9 NIL NIL NIL) (-1130 2660550 2660760 2661024 "SPECOUT" 2661571 T SPECOUT (NIL) -7 NIL NIL NIL) (-1129 2652202 2653946 2653976 "SPADXPT" 2658368 T SPADXPT (NIL) -9 NIL 2660402 NIL) (-1128 2651963 2652003 2652072 "SPADPRSR" 2652155 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1127 2650146 2651918 2651949 "SPADAST" 2651954 T SPADAST (NIL) -8 NIL NIL NIL) (-1126 2642117 2643864 2643907 "SPACEC" 2648280 NIL SPACEC (NIL T) -9 NIL 2650096 NIL) (-1125 2640288 2642049 2642098 "SPACE3" 2642103 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1124 2639040 2639211 2639502 "SORTPAK" 2640093 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1123 2637090 2637393 2637812 "SOLVETRA" 2638704 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1122 2636101 2636323 2636597 "SOLVESER" 2636863 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1121 2631321 2632202 2633204 "SOLVERAD" 2635153 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1120 2627136 2627745 2628474 "SOLVEFOR" 2630688 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1119 2621433 2626485 2626582 "SNTSCAT" 2626587 NIL SNTSCAT (NIL T T T T) -9 NIL 2626657 NIL) (-1118 2615576 2619756 2620147 "SMTS" 2621123 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1117 2610027 2615464 2615541 "SMP" 2615546 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1116 2608186 2608487 2608885 "SMITH" 2609724 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1115 2601081 2605237 2605340 "SMATCAT" 2606691 NIL SMATCAT (NIL NIL T T T) -9 NIL 2607241 NIL) (-1114 2598021 2598844 2600022 "SMATCAT-" 2600027 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1113 2595734 2597257 2597300 "SKAGG" 2597561 NIL SKAGG (NIL T) -9 NIL 2597696 NIL) (-1112 2592076 2595150 2595345 "SINT" 2595532 T SINT (NIL) -8 NIL NIL 2595705) (-1111 2591848 2591886 2591952 "SIMPAN" 2592032 T SIMPAN (NIL) -7 NIL NIL NIL) (-1110 2591155 2591383 2591523 "SIG" 2591730 T SIG (NIL) -8 NIL NIL NIL) (-1109 2589993 2590214 2590489 "SIGNRF" 2590914 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1108 2588798 2588949 2589240 "SIGNEF" 2589822 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1107 2588131 2588381 2588505 "SIGAST" 2588696 T SIGAST (NIL) -8 NIL NIL NIL) (-1106 2585821 2586275 2586781 "SHP" 2587672 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1105 2579727 2585722 2585798 "SHDP" 2585803 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1104 2579326 2579492 2579522 "SGROUP" 2579615 T SGROUP (NIL) -9 NIL 2579677 NIL) (-1103 2579184 2579210 2579283 "SGROUP-" 2579288 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1102 2576020 2576717 2577440 "SGCF" 2578483 T SGCF (NIL) -7 NIL NIL NIL) (-1101 2570415 2575467 2575564 "SFRTCAT" 2575569 NIL SFRTCAT (NIL T T T T) -9 NIL 2575608 NIL) (-1100 2563839 2564854 2565990 "SFRGCD" 2569398 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1099 2556967 2558038 2559224 "SFQCMPK" 2562772 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1098 2556589 2556678 2556788 "SFORT" 2556908 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1097 2555734 2556429 2556550 "SEXOF" 2556555 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1096 2554868 2555615 2555683 "SEX" 2555688 T SEX (NIL) -8 NIL NIL NIL) (-1095 2550407 2551096 2551191 "SEXCAT" 2554128 NIL SEXCAT (NIL T T T T T) -9 NIL 2554706 NIL) (-1094 2547587 2550341 2550389 "SET" 2550394 NIL SET (NIL T) -8 NIL NIL NIL) (-1093 2545838 2546300 2546605 "SETMN" 2547328 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1092 2545444 2545570 2545600 "SETCAT" 2545717 T SETCAT (NIL) -9 NIL 2545802 NIL) (-1091 2545224 2545276 2545375 "SETCAT-" 2545380 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1090 2541611 2543685 2543728 "SETAGG" 2544598 NIL SETAGG (NIL T) -9 NIL 2544938 NIL) (-1089 2541069 2541185 2541422 "SETAGG-" 2541427 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1088 2540539 2540765 2540866 "SEQAST" 2540990 T SEQAST (NIL) -8 NIL NIL NIL) (-1087 2539738 2540032 2540093 "SEGXCAT" 2540379 NIL SEGXCAT (NIL T T) -9 NIL 2540499 NIL) (-1086 2538794 2539404 2539586 "SEG" 2539591 NIL SEG (NIL T) -8 NIL NIL NIL) (-1085 2537773 2537987 2538030 "SEGCAT" 2538552 NIL SEGCAT (NIL T) -9 NIL 2538773 NIL) (-1084 2536822 2537152 2537352 "SEGBIND" 2537608 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1083 2536443 2536502 2536615 "SEGBIND2" 2536757 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1082 2536044 2536244 2536321 "SEGAST" 2536388 T SEGAST (NIL) -8 NIL NIL NIL) (-1081 2535263 2535389 2535593 "SEG2" 2535888 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1080 2534700 2535198 2535245 "SDVAR" 2535250 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1079 2526990 2534470 2534600 "SDPOL" 2534605 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1078 2525583 2525849 2526168 "SCPKG" 2526705 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1077 2524719 2524899 2525099 "SCOPE" 2525405 T SCOPE (NIL) -8 NIL NIL NIL) (-1076 2523940 2524073 2524252 "SCACHE" 2524574 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1075 2523612 2523772 2523802 "SASTCAT" 2523807 T SASTCAT (NIL) -9 NIL 2523820 NIL) (-1074 2523126 2523447 2523523 "SAOS" 2523558 T SAOS (NIL) -8 NIL NIL NIL) (-1073 2522691 2522726 2522899 "SAERFFC" 2523085 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1072 2516665 2522588 2522668 "SAE" 2522673 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1071 2516258 2516293 2516452 "SAEFACT" 2516624 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1070 2514579 2514893 2515294 "RURPK" 2515924 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1069 2513215 2513494 2513806 "RULESET" 2514413 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1068 2510402 2510905 2511370 "RULE" 2512896 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1067 2510041 2510196 2510279 "RULECOLD" 2510354 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1066 2509539 2509758 2509852 "RSTRCAST" 2509969 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1065 2504388 2505182 2506102 "RSETGCD" 2508738 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1064 2493645 2498697 2498794 "RSETCAT" 2502913 NIL RSETCAT (NIL T T T T) -9 NIL 2504010 NIL) (-1063 2491572 2492111 2492935 "RSETCAT-" 2492940 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1062 2483959 2485334 2486854 "RSDCMPK" 2490171 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1061 2481964 2482405 2482479 "RRCC" 2483565 NIL RRCC (NIL T T) -9 NIL 2483909 NIL) (-1060 2481315 2481489 2481768 "RRCC-" 2481773 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1059 2480785 2481011 2481112 "RPTAST" 2481236 T RPTAST (NIL) -8 NIL NIL NIL) (-1058 2454791 2464378 2464445 "RPOLCAT" 2475109 NIL RPOLCAT (NIL T T T) -9 NIL 2478268 NIL) (-1057 2446291 2448629 2451751 "RPOLCAT-" 2451756 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1056 2437338 2444502 2444984 "ROUTINE" 2445831 T ROUTINE (NIL) -8 NIL NIL NIL) (-1055 2434171 2436964 2437104 "ROMAN" 2437220 T ROMAN (NIL) -8 NIL NIL NIL) (-1054 2432446 2433031 2433291 "ROIRC" 2433976 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1053 2428839 2431082 2431112 "RNS" 2431416 T RNS (NIL) -9 NIL 2431689 NIL) (-1052 2427348 2427731 2428265 "RNS-" 2428340 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1051 2426797 2427179 2427209 "RNG" 2427214 T RNG (NIL) -9 NIL 2427235 NIL) (-1050 2426189 2426551 2426594 "RMODULE" 2426656 NIL RMODULE (NIL T) -9 NIL 2426698 NIL) (-1049 2425025 2425119 2425455 "RMCAT2" 2426090 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1048 2421902 2424371 2424668 "RMATRIX" 2424787 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1047 2414844 2417078 2417193 "RMATCAT" 2420552 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2421534 NIL) (-1046 2414219 2414366 2414673 "RMATCAT-" 2414678 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1045 2413786 2413861 2413989 "RINTERP" 2414138 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1044 2412919 2413439 2413469 "RING" 2413525 T RING (NIL) -9 NIL 2413611 NIL) (-1043 2412711 2412755 2412852 "RING-" 2412857 NIL RING- (NIL T) -8 NIL NIL NIL) (-1042 2411552 2411789 2412047 "RIDIST" 2412475 T RIDIST (NIL) -7 NIL NIL NIL) (-1041 2402868 2411020 2411226 "RGCHAIN" 2411400 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1040 2402244 2402624 2402665 "RGBCSPC" 2402723 NIL RGBCSPC (NIL T) -9 NIL 2402775 NIL) (-1039 2401428 2401783 2401824 "RGBCMDL" 2402056 NIL RGBCMDL (NIL T) -9 NIL 2402170 NIL) (-1038 2398422 2399036 2399706 "RF" 2400792 NIL RF (NIL T) -7 NIL NIL NIL) (-1037 2398068 2398131 2398234 "RFFACTOR" 2398353 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1036 2397793 2397828 2397925 "RFFACT" 2398027 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1035 2395910 2396274 2396656 "RFDIST" 2397433 T RFDIST (NIL) -7 NIL NIL NIL) (-1034 2395363 2395455 2395618 "RETSOL" 2395812 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1033 2394999 2395079 2395122 "RETRACT" 2395255 NIL RETRACT (NIL T) -9 NIL 2395342 NIL) (-1032 2394848 2394873 2394960 "RETRACT-" 2394965 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1031 2394477 2394670 2394740 "RETAST" 2394800 T RETAST (NIL) -8 NIL NIL NIL) (-1030 2387331 2394130 2394257 "RESULT" 2394372 T RESULT (NIL) -8 NIL NIL NIL) (-1029 2385957 2386600 2386799 "RESRING" 2387234 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1028 2385593 2385642 2385740 "RESLATC" 2385894 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1027 2385299 2385333 2385440 "REPSQ" 2385552 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1026 2382721 2383301 2383903 "REP" 2384719 T REP (NIL) -7 NIL NIL NIL) (-1025 2382419 2382453 2382564 "REPDB" 2382680 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1024 2376329 2377708 2378931 "REP2" 2381231 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1023 2372706 2373387 2374195 "REP1" 2375556 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1022 2365432 2370847 2371303 "REGSET" 2372336 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1021 2364245 2364580 2364830 "REF" 2365217 NIL REF (NIL T) -8 NIL NIL NIL) (-1020 2363622 2363725 2363892 "REDORDER" 2364129 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1019 2359627 2362835 2363062 "RECLOS" 2363450 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1018 2358679 2358860 2359075 "REALSOLV" 2359434 T REALSOLV (NIL) -7 NIL NIL NIL) (-1017 2358525 2358566 2358596 "REAL" 2358601 T REAL (NIL) -9 NIL 2358636 NIL) (-1016 2355008 2355810 2356694 "REAL0Q" 2357690 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1015 2350609 2351597 2352658 "REAL0" 2353989 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1014 2350107 2350326 2350420 "RDUCEAST" 2350537 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1013 2349512 2349584 2349791 "RDIV" 2350029 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1012 2348580 2348754 2348967 "RDIST" 2349334 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1011 2347177 2347464 2347836 "RDETRS" 2348288 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1010 2344989 2345443 2345981 "RDETR" 2346719 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1009 2343600 2343878 2344282 "RDEEFS" 2344705 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1008 2342095 2342401 2342833 "RDEEF" 2343288 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1007 2336356 2339231 2339261 "RCFIELD" 2340556 T RCFIELD (NIL) -9 NIL 2341286 NIL) (-1006 2334420 2334924 2335620 "RCFIELD-" 2335695 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1005 2330736 2332521 2332564 "RCAGG" 2333648 NIL RCAGG (NIL T) -9 NIL 2334113 NIL) (-1004 2330364 2330458 2330621 "RCAGG-" 2330626 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1003 2329699 2329811 2329976 "RATRET" 2330248 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1002 2329252 2329319 2329440 "RATFACT" 2329627 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1001 2328560 2328680 2328832 "RANDSRC" 2329122 T RANDSRC (NIL) -7 NIL NIL NIL) (-1000 2328294 2328338 2328411 "RADUTIL" 2328509 T RADUTIL (NIL) -7 NIL NIL NIL) (-999 2321456 2327136 2327444 "RADIX" 2328018 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-998 2313113 2321300 2321428 "RADFF" 2321433 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-997 2312765 2312840 2312868 "RADCAT" 2313025 T RADCAT (NIL) -9 NIL NIL NIL) (-996 2312550 2312598 2312695 "RADCAT-" 2312700 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-995 2310701 2312325 2312414 "QUEUE" 2312494 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-994 2307277 2310638 2310683 "QUAT" 2310688 NIL QUAT (NIL T) -8 NIL NIL NIL) (-993 2306915 2306958 2307085 "QUATCT2" 2307228 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-992 2300662 2303964 2304004 "QUATCAT" 2304784 NIL QUATCAT (NIL T) -9 NIL 2305550 NIL) (-991 2296806 2297843 2299230 "QUATCAT-" 2299324 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-990 2294326 2295890 2295931 "QUAGG" 2296306 NIL QUAGG (NIL T) -9 NIL 2296481 NIL) (-989 2293958 2294151 2294219 "QQUTAST" 2294278 T QQUTAST (NIL) -8 NIL NIL NIL) (-988 2292883 2293356 2293528 "QFORM" 2293830 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-987 2284095 2289300 2289340 "QFCAT" 2289998 NIL QFCAT (NIL T) -9 NIL 2290999 NIL) (-986 2279667 2280868 2282459 "QFCAT-" 2282553 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-985 2279305 2279348 2279475 "QFCAT2" 2279618 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-984 2278765 2278875 2279005 "QEQUAT" 2279195 T QEQUAT (NIL) -8 NIL NIL NIL) (-983 2271913 2272984 2274168 "QCMPACK" 2277698 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-982 2269489 2269910 2270338 "QALGSET" 2271568 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-981 2268734 2268908 2269140 "QALGSET2" 2269309 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-980 2267425 2267648 2267965 "PWFFINTB" 2268507 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-979 2265607 2265775 2266129 "PUSHVAR" 2267239 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-978 2261525 2262579 2262620 "PTRANFN" 2264504 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-977 2259927 2260218 2260540 "PTPACK" 2261236 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-976 2259559 2259616 2259725 "PTFUNC2" 2259864 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-975 2254086 2258431 2258472 "PTCAT" 2258768 NIL PTCAT (NIL T) -9 NIL 2258921 NIL) (-974 2253744 2253779 2253903 "PSQFR" 2254045 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-973 2252339 2252637 2252971 "PSEUDLIN" 2253442 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-972 2239109 2241473 2243797 "PSETPK" 2250099 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-971 2232153 2234867 2234963 "PSETCAT" 2237984 NIL PSETCAT (NIL T T T T) -9 NIL 2238798 NIL) (-970 2229989 2230623 2231444 "PSETCAT-" 2231449 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-969 2229338 2229503 2229531 "PSCURVE" 2229799 T PSCURVE (NIL) -9 NIL 2229966 NIL) (-968 2225694 2227176 2227241 "PSCAT" 2228085 NIL PSCAT (NIL T T T) -9 NIL 2228325 NIL) (-967 2224757 2224973 2225373 "PSCAT-" 2225378 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-966 2223489 2224122 2224327 "PRTITION" 2224572 T PRTITION (NIL) -8 NIL NIL NIL) (-965 2222991 2223210 2223302 "PRTDAST" 2223417 T PRTDAST (NIL) -8 NIL NIL NIL) (-964 2212089 2214295 2216483 "PRS" 2220853 NIL PRS (NIL T T) -7 NIL NIL NIL) (-963 2209947 2211439 2211479 "PRQAGG" 2211662 NIL PRQAGG (NIL T) -9 NIL 2211764 NIL) (-962 2209333 2209562 2209590 "PROPLOG" 2209775 T PROPLOG (NIL) -9 NIL 2209897 NIL) (-961 2206503 2207147 2207611 "PROPFRML" 2208901 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-960 2205963 2206073 2206203 "PROPERTY" 2206393 T PROPERTY (NIL) -8 NIL NIL NIL) (-959 2200048 2204129 2204949 "PRODUCT" 2205189 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-958 2197361 2199506 2199740 "PR" 2199859 NIL PR (NIL T T) -8 NIL NIL NIL) (-957 2197157 2197189 2197248 "PRINT" 2197322 T PRINT (NIL) -7 NIL NIL NIL) (-956 2196497 2196614 2196766 "PRIMES" 2197037 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-955 2194562 2194963 2195429 "PRIMELT" 2196076 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-954 2194291 2194340 2194368 "PRIMCAT" 2194492 T PRIMCAT (NIL) -9 NIL NIL NIL) (-953 2190452 2194229 2194274 "PRIMARR" 2194279 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-952 2189459 2189637 2189865 "PRIMARR2" 2190270 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-951 2189102 2189158 2189269 "PREASSOC" 2189397 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-950 2188577 2188710 2188738 "PPCURVE" 2188943 T PPCURVE (NIL) -9 NIL 2189079 NIL) (-949 2188199 2188372 2188455 "PORTNUM" 2188514 T PORTNUM (NIL) -8 NIL NIL NIL) (-948 2185558 2185957 2186549 "POLYROOT" 2187780 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-947 2179503 2185162 2185322 "POLY" 2185431 NIL POLY (NIL T) -8 NIL NIL NIL) (-946 2178886 2178944 2179178 "POLYLIFT" 2179439 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-945 2175161 2175610 2176239 "POLYCATQ" 2178431 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-944 2161978 2167336 2167401 "POLYCAT" 2170915 NIL POLYCAT (NIL T T T) -9 NIL 2172843 NIL) (-943 2155428 2157289 2159673 "POLYCAT-" 2159678 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-942 2155015 2155083 2155203 "POLY2UP" 2155354 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-941 2154647 2154704 2154813 "POLY2" 2154952 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-940 2153332 2153571 2153847 "POLUTIL" 2154421 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-939 2151687 2151964 2152295 "POLTOPOL" 2153054 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-938 2147205 2151623 2151669 "POINT" 2151674 NIL POINT (NIL T) -8 NIL NIL NIL) (-937 2145392 2145749 2146124 "PNTHEORY" 2146850 T PNTHEORY (NIL) -7 NIL NIL NIL) (-936 2143811 2144108 2144520 "PMTOOLS" 2145090 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-935 2143404 2143482 2143599 "PMSYM" 2143727 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-934 2142914 2142983 2143157 "PMQFCAT" 2143329 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-933 2142269 2142379 2142535 "PMPRED" 2142791 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-932 2141665 2141751 2141912 "PMPREDFS" 2142170 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-931 2140308 2140516 2140901 "PMPLCAT" 2141427 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-930 2139840 2139919 2140071 "PMLSAGG" 2140223 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-929 2139315 2139391 2139572 "PMKERNEL" 2139758 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-928 2138932 2139007 2139120 "PMINS" 2139234 NIL PMINS (NIL T) -7 NIL NIL NIL) (-927 2138360 2138429 2138645 "PMFS" 2138857 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-926 2137588 2137706 2137911 "PMDOWN" 2138237 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-925 2136751 2136910 2137092 "PMASS" 2137426 T PMASS (NIL) -7 NIL NIL NIL) (-924 2136025 2136136 2136299 "PMASSFS" 2136637 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-923 2135680 2135748 2135842 "PLOTTOOL" 2135951 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-922 2130302 2131491 2132639 "PLOT" 2134552 T PLOT (NIL) -8 NIL NIL NIL) (-921 2126116 2127150 2128071 "PLOT3D" 2129401 T PLOT3D (NIL) -8 NIL NIL NIL) (-920 2125028 2125205 2125440 "PLOT1" 2125920 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-919 2100422 2105094 2109945 "PLEQN" 2120294 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-918 2099740 2099862 2100042 "PINTERP" 2100287 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-917 2099433 2099480 2099583 "PINTERPA" 2099687 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-916 2098681 2099202 2099289 "PI" 2099329 T PI (NIL) -8 NIL NIL 2099396) (-915 2097078 2098019 2098047 "PID" 2098229 T PID (NIL) -9 NIL 2098363 NIL) (-914 2096803 2096840 2096928 "PICOERCE" 2097035 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-913 2096123 2096262 2096438 "PGROEB" 2096659 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-912 2091710 2092524 2093429 "PGE" 2095238 T PGE (NIL) -7 NIL NIL NIL) (-911 2089834 2090080 2090446 "PGCD" 2091427 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-910 2089172 2089275 2089436 "PFRPAC" 2089718 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-909 2085852 2087720 2088073 "PFR" 2088851 NIL PFR (NIL T) -8 NIL NIL NIL) (-908 2084241 2084485 2084810 "PFOTOOLS" 2085599 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-907 2082774 2083013 2083364 "PFOQ" 2083998 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-906 2081247 2081459 2081822 "PFO" 2082558 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-905 2077835 2081136 2081205 "PF" 2081210 NIL PF (NIL NIL) -8 NIL NIL NIL) (-904 2075269 2076506 2076534 "PFECAT" 2077119 T PFECAT (NIL) -9 NIL 2077503 NIL) (-903 2074714 2074868 2075082 "PFECAT-" 2075087 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-902 2073318 2073569 2073870 "PFBRU" 2074463 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-901 2071185 2071536 2071968 "PFBR" 2072969 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-900 2067101 2068561 2069237 "PERM" 2070542 NIL PERM (NIL T) -8 NIL NIL NIL) (-899 2062367 2063308 2064178 "PERMGRP" 2066264 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-898 2060499 2061430 2061471 "PERMCAT" 2061917 NIL PERMCAT (NIL T) -9 NIL 2062222 NIL) (-897 2060152 2060193 2060317 "PERMAN" 2060452 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-896 2057688 2059817 2059939 "PENDTREE" 2060063 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-895 2055781 2056515 2056556 "PDRING" 2057213 NIL PDRING (NIL T) -9 NIL 2057499 NIL) (-894 2054884 2055102 2055464 "PDRING-" 2055469 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-893 2052126 2052877 2053545 "PDEPROB" 2054236 T PDEPROB (NIL) -8 NIL NIL NIL) (-892 2049673 2050175 2050730 "PDEPACK" 2051591 T PDEPACK (NIL) -7 NIL NIL NIL) (-891 2048585 2048775 2049026 "PDECOMP" 2049472 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-890 2046190 2047007 2047035 "PDECAT" 2047822 T PDECAT (NIL) -9 NIL 2048535 NIL) (-889 2045941 2045974 2046064 "PCOMP" 2046151 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-888 2044146 2044742 2045039 "PBWLB" 2045670 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-887 2036651 2038219 2039557 "PATTERN" 2042829 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-886 2036283 2036340 2036449 "PATTERN2" 2036588 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-885 2034040 2034428 2034885 "PATTERN1" 2035872 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-884 2031435 2031989 2032470 "PATRES" 2033605 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-883 2030999 2031066 2031198 "PATRES2" 2031362 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-882 2028882 2029287 2029694 "PATMATCH" 2030666 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-881 2028418 2028601 2028642 "PATMAB" 2028749 NIL PATMAB (NIL T) -9 NIL 2028832 NIL) (-880 2026963 2027272 2027530 "PATLRES" 2028223 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-879 2026509 2026632 2026673 "PATAB" 2026678 NIL PATAB (NIL T) -9 NIL 2026850 NIL) (-878 2023990 2024522 2025095 "PARTPERM" 2025956 T PARTPERM (NIL) -7 NIL NIL NIL) (-877 2023611 2023674 2023776 "PARSURF" 2023921 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-876 2023243 2023300 2023409 "PARSU2" 2023548 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-875 2023007 2023047 2023114 "PARSER" 2023196 T PARSER (NIL) -7 NIL NIL NIL) (-874 2022628 2022691 2022793 "PARSCURV" 2022938 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-873 2022260 2022317 2022426 "PARSC2" 2022565 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-872 2021899 2021957 2022054 "PARPCURV" 2022196 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-871 2021531 2021588 2021697 "PARPC2" 2021836 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-870 2021051 2021137 2021256 "PAN2EXPR" 2021432 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-869 2019857 2020172 2020400 "PALETTE" 2020843 T PALETTE (NIL) -8 NIL NIL NIL) (-868 2018325 2018862 2019222 "PAIR" 2019543 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-867 2012231 2017584 2017778 "PADICRC" 2018180 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-866 2005495 2011577 2011761 "PADICRAT" 2012079 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-865 2003845 2005432 2005477 "PADIC" 2005482 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-864 2001055 2002585 2002625 "PADICCT" 2003206 NIL PADICCT (NIL NIL) -9 NIL 2003488 NIL) (-863 2000012 2000212 2000480 "PADEPAC" 2000842 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-862 1999224 1999357 1999563 "PADE" 1999874 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-861 1997646 1998432 1998712 "OWP" 1999028 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-860 1997166 1997352 1997449 "OVERSET" 1997569 T OVERSET (NIL) -8 NIL NIL NIL) (-859 1996239 1996771 1996943 "OVAR" 1997034 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-858 1995503 1995624 1995785 "OUT" 1996098 T OUT (NIL) -7 NIL NIL NIL) (-857 1984410 1986612 1988812 "OUTFORM" 1993323 T OUTFORM (NIL) -8 NIL NIL NIL) (-856 1983746 1984007 1984134 "OUTBFILE" 1984303 T OUTBFILE (NIL) -8 NIL NIL NIL) (-855 1983053 1983218 1983246 "OUTBCON" 1983564 T OUTBCON (NIL) -9 NIL 1983730 NIL) (-854 1982654 1982766 1982923 "OUTBCON-" 1982928 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-853 1982062 1982383 1982472 "OSI" 1982585 T OSI (NIL) -8 NIL NIL NIL) (-852 1981618 1981930 1981958 "OSGROUP" 1981963 T OSGROUP (NIL) -9 NIL 1981985 NIL) (-851 1980363 1980590 1980875 "ORTHPOL" 1981365 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-850 1977949 1980198 1980319 "OREUP" 1980324 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-849 1975387 1977640 1977767 "ORESUP" 1977891 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-848 1972915 1973415 1973976 "OREPCTO" 1974876 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-847 1966739 1968906 1968947 "OREPCAT" 1971295 NIL OREPCAT (NIL T) -9 NIL 1972399 NIL) (-846 1963886 1964668 1965726 "OREPCAT-" 1965731 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-845 1963063 1963335 1963363 "ORDSET" 1963672 T ORDSET (NIL) -9 NIL 1963836 NIL) (-844 1962582 1962704 1962897 "ORDSET-" 1962902 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-843 1961216 1961973 1962001 "ORDRING" 1962203 T ORDRING (NIL) -9 NIL 1962328 NIL) (-842 1960861 1960955 1961099 "ORDRING-" 1961104 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-841 1960267 1960704 1960732 "ORDMON" 1960737 T ORDMON (NIL) -9 NIL 1960758 NIL) (-840 1959429 1959576 1959771 "ORDFUNS" 1960116 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-839 1958793 1959186 1959214 "ORDFIN" 1959279 T ORDFIN (NIL) -9 NIL 1959353 NIL) (-838 1955385 1957379 1957788 "ORDCOMP" 1958417 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-837 1954651 1954778 1954964 "ORDCOMP2" 1955245 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-836 1951259 1952142 1952956 "OPTPROB" 1953857 T OPTPROB (NIL) -8 NIL NIL NIL) (-835 1948061 1948700 1949404 "OPTPACK" 1950575 T OPTPACK (NIL) -7 NIL NIL NIL) (-834 1945774 1946514 1946542 "OPTCAT" 1947361 T OPTCAT (NIL) -9 NIL 1948011 NIL) (-833 1945217 1945451 1945556 "OPSIG" 1945689 T OPSIG (NIL) -8 NIL NIL NIL) (-832 1944985 1945024 1945090 "OPQUERY" 1945171 T OPQUERY (NIL) -7 NIL NIL NIL) (-831 1942151 1943296 1943800 "OP" 1944514 NIL OP (NIL T) -8 NIL NIL NIL) (-830 1941686 1941857 1941898 "OPERCAT" 1942033 NIL OPERCAT (NIL T) -9 NIL 1942101 NIL) (-829 1941532 1941559 1941645 "OPERCAT-" 1941650 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-828 1938377 1940329 1940698 "ONECOMP" 1941196 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-827 1937682 1937797 1937971 "ONECOMP2" 1938249 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-826 1937101 1937207 1937337 "OMSERVER" 1937572 T OMSERVER (NIL) -7 NIL NIL NIL) (-825 1933989 1936541 1936581 "OMSAGG" 1936642 NIL OMSAGG (NIL T) -9 NIL 1936706 NIL) (-824 1932612 1932875 1933157 "OMPKG" 1933727 T OMPKG (NIL) -7 NIL NIL NIL) (-823 1932042 1932145 1932173 "OM" 1932472 T OM (NIL) -9 NIL NIL NIL) (-822 1930624 1931591 1931760 "OMLO" 1931923 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-821 1929549 1929696 1929923 "OMEXPR" 1930450 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-820 1928867 1929095 1929231 "OMERR" 1929433 T OMERR (NIL) -8 NIL NIL NIL) (-819 1928045 1928288 1928448 "OMERRK" 1928727 T OMERRK (NIL) -8 NIL NIL NIL) (-818 1927523 1927722 1927830 "OMENC" 1927957 T OMENC (NIL) -8 NIL NIL NIL) (-817 1921418 1922603 1923774 "OMDEV" 1926372 T OMDEV (NIL) -8 NIL NIL NIL) (-816 1920487 1920658 1920852 "OMCONN" 1921244 T OMCONN (NIL) -8 NIL NIL NIL) (-815 1919108 1920050 1920078 "OINTDOM" 1920083 T OINTDOM (NIL) -9 NIL 1920104 NIL) (-814 1914914 1916098 1916814 "OFMONOID" 1918424 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-813 1914352 1914851 1914896 "ODVAR" 1914901 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-812 1911810 1914097 1914252 "ODR" 1914257 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-811 1904154 1911586 1911712 "ODPOL" 1911717 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-810 1898030 1904026 1904131 "ODP" 1904136 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-809 1896796 1897011 1897286 "ODETOOLS" 1897804 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-808 1893765 1894421 1895137 "ODESYS" 1896129 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-807 1888647 1889555 1890580 "ODERTRIC" 1892840 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-806 1888073 1888155 1888349 "ODERED" 1888559 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-805 1884961 1885509 1886186 "ODERAT" 1887496 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-804 1881921 1882385 1882982 "ODEPRRIC" 1884490 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-803 1879891 1880460 1880946 "ODEPROB" 1881455 T ODEPROB (NIL) -8 NIL NIL NIL) (-802 1876413 1876896 1877543 "ODEPRIM" 1879370 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-801 1875662 1875764 1876024 "ODEPAL" 1876305 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-800 1871824 1872615 1873479 "ODEPACK" 1874818 T ODEPACK (NIL) -7 NIL NIL NIL) (-799 1870857 1870964 1871193 "ODEINT" 1871713 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-798 1864958 1866383 1867830 "ODEIFTBL" 1869430 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-797 1860293 1861079 1862038 "ODEEF" 1864117 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-796 1859628 1859717 1859947 "ODECONST" 1860198 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-795 1857779 1858414 1858442 "ODECAT" 1859047 T ODECAT (NIL) -9 NIL 1859578 NIL) (-794 1854686 1857491 1857610 "OCT" 1857692 NIL OCT (NIL T) -8 NIL NIL NIL) (-793 1854324 1854367 1854494 "OCTCT2" 1854637 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-792 1849098 1851498 1851538 "OC" 1852635 NIL OC (NIL T) -9 NIL 1853493 NIL) (-791 1846325 1847073 1848063 "OC-" 1848157 NIL OC- (NIL T T) -8 NIL NIL NIL) (-790 1845703 1846145 1846173 "OCAMON" 1846178 T OCAMON (NIL) -9 NIL 1846199 NIL) (-789 1845260 1845575 1845603 "OASGP" 1845608 T OASGP (NIL) -9 NIL 1845628 NIL) (-788 1844547 1845010 1845038 "OAMONS" 1845078 T OAMONS (NIL) -9 NIL 1845121 NIL) (-787 1843987 1844394 1844422 "OAMON" 1844427 T OAMON (NIL) -9 NIL 1844447 NIL) (-786 1843291 1843783 1843811 "OAGROUP" 1843816 T OAGROUP (NIL) -9 NIL 1843836 NIL) (-785 1842981 1843031 1843119 "NUMTUBE" 1843235 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-784 1836554 1838072 1839608 "NUMQUAD" 1841465 T NUMQUAD (NIL) -7 NIL NIL NIL) (-783 1832310 1833298 1834323 "NUMODE" 1835549 T NUMODE (NIL) -7 NIL NIL NIL) (-782 1829691 1830545 1830573 "NUMINT" 1831496 T NUMINT (NIL) -9 NIL 1832260 NIL) (-781 1828639 1828836 1829054 "NUMFMT" 1829493 T NUMFMT (NIL) -7 NIL NIL NIL) (-780 1814998 1817943 1820475 "NUMERIC" 1826146 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-779 1809395 1814447 1814542 "NTSCAT" 1814547 NIL NTSCAT (NIL T T T T) -9 NIL 1814586 NIL) (-778 1808589 1808754 1808947 "NTPOLFN" 1809234 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-777 1796429 1805414 1806226 "NSUP" 1807810 NIL NSUP (NIL T) -8 NIL NIL NIL) (-776 1796061 1796118 1796227 "NSUP2" 1796366 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-775 1786058 1795835 1795968 "NSMP" 1795973 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-774 1784490 1784791 1785148 "NREP" 1785746 NIL NREP (NIL T) -7 NIL NIL NIL) (-773 1783081 1783333 1783691 "NPCOEF" 1784233 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-772 1782147 1782262 1782478 "NORMRETR" 1782962 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-771 1780188 1780478 1780887 "NORMPK" 1781855 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-770 1779873 1779901 1780025 "NORMMA" 1780154 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-769 1779700 1779830 1779859 "NONE" 1779864 T NONE (NIL) -8 NIL NIL NIL) (-768 1779489 1779518 1779587 "NONE1" 1779664 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-767 1778972 1779034 1779220 "NODE1" 1779421 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-766 1777243 1778066 1778321 "NNI" 1778668 T NNI (NIL) -8 NIL NIL 1778903) (-765 1775663 1775976 1776340 "NLINSOL" 1776911 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-764 1771931 1772899 1773798 "NIPROB" 1774784 T NIPROB (NIL) -8 NIL NIL NIL) (-763 1770688 1770922 1771224 "NFINTBAS" 1771693 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-762 1769862 1770338 1770379 "NETCLT" 1770551 NIL NETCLT (NIL T) -9 NIL 1770633 NIL) (-761 1768570 1768801 1769082 "NCODIV" 1769630 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-760 1768332 1768369 1768444 "NCNTFRAC" 1768527 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-759 1766512 1766876 1767296 "NCEP" 1767957 NIL NCEP (NIL T) -7 NIL NIL NIL) (-758 1765423 1766162 1766190 "NASRING" 1766300 T NASRING (NIL) -9 NIL 1766374 NIL) (-757 1765218 1765262 1765356 "NASRING-" 1765361 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-756 1764371 1764870 1764898 "NARNG" 1765015 T NARNG (NIL) -9 NIL 1765106 NIL) (-755 1764063 1764130 1764264 "NARNG-" 1764269 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-754 1762942 1763149 1763384 "NAGSP" 1763848 T NAGSP (NIL) -7 NIL NIL NIL) (-753 1754214 1755898 1757571 "NAGS" 1761289 T NAGS (NIL) -7 NIL NIL NIL) (-752 1752762 1753070 1753401 "NAGF07" 1753903 T NAGF07 (NIL) -7 NIL NIL NIL) (-751 1747300 1748591 1749898 "NAGF04" 1751475 T NAGF04 (NIL) -7 NIL NIL NIL) (-750 1740268 1741882 1743515 "NAGF02" 1745687 T NAGF02 (NIL) -7 NIL NIL NIL) (-749 1735492 1736592 1737709 "NAGF01" 1739171 T NAGF01 (NIL) -7 NIL NIL NIL) (-748 1729120 1730686 1732271 "NAGE04" 1733927 T NAGE04 (NIL) -7 NIL NIL NIL) (-747 1720289 1722410 1724540 "NAGE02" 1727010 T NAGE02 (NIL) -7 NIL NIL NIL) (-746 1716242 1717189 1718153 "NAGE01" 1719345 T NAGE01 (NIL) -7 NIL NIL NIL) (-745 1714037 1714571 1715129 "NAGD03" 1715704 T NAGD03 (NIL) -7 NIL NIL NIL) (-744 1705787 1707715 1709669 "NAGD02" 1712103 T NAGD02 (NIL) -7 NIL NIL NIL) (-743 1699598 1701023 1702463 "NAGD01" 1704367 T NAGD01 (NIL) -7 NIL NIL NIL) (-742 1695807 1696629 1697466 "NAGC06" 1698781 T NAGC06 (NIL) -7 NIL NIL NIL) (-741 1694272 1694604 1694960 "NAGC05" 1695471 T NAGC05 (NIL) -7 NIL NIL NIL) (-740 1693648 1693767 1693911 "NAGC02" 1694148 T NAGC02 (NIL) -7 NIL NIL NIL) (-739 1692708 1693265 1693305 "NAALG" 1693384 NIL NAALG (NIL T) -9 NIL 1693445 NIL) (-738 1692543 1692572 1692662 "NAALG-" 1692667 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-737 1686493 1687601 1688788 "MULTSQFR" 1691439 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-736 1685812 1685887 1686071 "MULTFACT" 1686405 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-735 1678905 1682775 1682828 "MTSCAT" 1683898 NIL MTSCAT (NIL T T) -9 NIL 1684412 NIL) (-734 1678617 1678671 1678763 "MTHING" 1678845 NIL MTHING (NIL T) -7 NIL NIL NIL) (-733 1678409 1678442 1678502 "MSYSCMD" 1678577 T MSYSCMD (NIL) -7 NIL NIL NIL) (-732 1674521 1677164 1677484 "MSET" 1678122 NIL MSET (NIL T) -8 NIL NIL NIL) (-731 1671616 1674082 1674123 "MSETAGG" 1674128 NIL MSETAGG (NIL T) -9 NIL 1674162 NIL) (-730 1667499 1668995 1669740 "MRING" 1670916 NIL MRING (NIL T T) -8 NIL NIL NIL) (-729 1667065 1667132 1667263 "MRF2" 1667426 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-728 1666683 1666718 1666862 "MRATFAC" 1667024 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-727 1664295 1664590 1665021 "MPRFF" 1666388 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-726 1658355 1664149 1664246 "MPOLY" 1664251 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-725 1657845 1657880 1658088 "MPCPF" 1658314 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-724 1657359 1657402 1657586 "MPC3" 1657796 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-723 1656554 1656635 1656856 "MPC2" 1657274 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-722 1654855 1655192 1655582 "MONOTOOL" 1656214 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-721 1654106 1654397 1654425 "MONOID" 1654644 T MONOID (NIL) -9 NIL 1654791 NIL) (-720 1653652 1653771 1653952 "MONOID-" 1653957 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-719 1644511 1650419 1650478 "MONOGEN" 1651152 NIL MONOGEN (NIL T T) -9 NIL 1651608 NIL) (-718 1641729 1642464 1643464 "MONOGEN-" 1643583 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-717 1640588 1641008 1641036 "MONADWU" 1641428 T MONADWU (NIL) -9 NIL 1641666 NIL) (-716 1639960 1640119 1640367 "MONADWU-" 1640372 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-715 1639345 1639563 1639591 "MONAD" 1639798 T MONAD (NIL) -9 NIL 1639910 NIL) (-714 1639030 1639108 1639240 "MONAD-" 1639245 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-713 1637346 1637943 1638222 "MOEBIUS" 1638783 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-712 1636738 1637116 1637156 "MODULE" 1637161 NIL MODULE (NIL T) -9 NIL 1637187 NIL) (-711 1636306 1636402 1636592 "MODULE-" 1636597 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-710 1634021 1634670 1634997 "MODRING" 1636130 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-709 1631007 1632126 1632647 "MODOP" 1633550 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-708 1629622 1630074 1630351 "MODMONOM" 1630870 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-707 1619429 1627913 1628327 "MODMON" 1629259 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-706 1616620 1618273 1618549 "MODFIELD" 1619304 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-705 1615624 1615901 1616091 "MMLFORM" 1616450 T MMLFORM (NIL) -8 NIL NIL NIL) (-704 1615150 1615193 1615372 "MMAP" 1615575 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-703 1613367 1614100 1614141 "MLO" 1614564 NIL MLO (NIL T) -9 NIL 1614806 NIL) (-702 1610734 1611249 1611851 "MLIFT" 1612848 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-701 1610125 1610209 1610363 "MKUCFUNC" 1610645 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-700 1609724 1609794 1609917 "MKRECORD" 1610048 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-699 1608772 1608933 1609161 "MKFUNC" 1609535 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-698 1608160 1608264 1608420 "MKFLCFN" 1608655 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-697 1607703 1608070 1608129 "MKCHSET" 1608134 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-696 1606980 1607082 1607267 "MKBCFUNC" 1607596 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-695 1603722 1606534 1606670 "MINT" 1606864 T MINT (NIL) -8 NIL NIL NIL) (-694 1602534 1602777 1603054 "MHROWRED" 1603477 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-693 1597960 1601069 1601474 "MFLOAT" 1602149 T MFLOAT (NIL) -8 NIL NIL NIL) (-692 1597317 1597393 1597564 "MFINFACT" 1597872 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-691 1593632 1594480 1595364 "MESH" 1596453 T MESH (NIL) -7 NIL NIL NIL) (-690 1592022 1592334 1592687 "MDDFACT" 1593319 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-689 1588864 1591181 1591222 "MDAGG" 1591477 NIL MDAGG (NIL T) -9 NIL 1591620 NIL) (-688 1578642 1588157 1588364 "MCMPLX" 1588677 T MCMPLX (NIL) -8 NIL NIL NIL) (-687 1577783 1577929 1578129 "MCDEN" 1578491 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-686 1575673 1575943 1576323 "MCALCFN" 1577513 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-685 1574598 1574838 1575071 "MAYBE" 1575479 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-684 1572210 1572733 1573295 "MATSTOR" 1574069 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-683 1568216 1571582 1571830 "MATRIX" 1571995 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-682 1563985 1564689 1565425 "MATLIN" 1567573 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-681 1554139 1557277 1557354 "MATCAT" 1562234 NIL MATCAT (NIL T T T) -9 NIL 1563651 NIL) (-680 1550503 1551516 1552872 "MATCAT-" 1552877 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-679 1549097 1549250 1549583 "MATCAT2" 1550338 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-678 1547209 1547533 1547917 "MAPPKG3" 1548772 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-677 1546190 1546363 1546585 "MAPPKG2" 1547033 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-676 1544689 1544973 1545300 "MAPPKG1" 1545896 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-675 1543795 1544095 1544272 "MAPPAST" 1544532 T MAPPAST (NIL) -8 NIL NIL NIL) (-674 1543406 1543464 1543587 "MAPHACK3" 1543731 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-673 1542998 1543059 1543173 "MAPHACK2" 1543338 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-672 1542436 1542539 1542681 "MAPHACK1" 1542889 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-671 1540542 1541136 1541440 "MAGMA" 1542164 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-670 1540048 1540266 1540357 "MACROAST" 1540471 T MACROAST (NIL) -8 NIL NIL NIL) (-669 1536515 1538287 1538748 "M3D" 1539620 NIL M3D (NIL T) -8 NIL NIL NIL) (-668 1530669 1534884 1534925 "LZSTAGG" 1535707 NIL LZSTAGG (NIL T) -9 NIL 1536002 NIL) (-667 1526643 1527800 1529257 "LZSTAGG-" 1529262 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-666 1523757 1524534 1525021 "LWORD" 1526188 NIL LWORD (NIL T) -8 NIL NIL NIL) (-665 1523360 1523561 1523636 "LSTAST" 1523702 T LSTAST (NIL) -8 NIL NIL NIL) (-664 1516561 1523131 1523265 "LSQM" 1523270 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-663 1515785 1515924 1516152 "LSPP" 1516416 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-662 1513597 1513898 1514354 "LSMP" 1515474 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-661 1510376 1511050 1511780 "LSMP1" 1512899 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-660 1504301 1509543 1509584 "LSAGG" 1509646 NIL LSAGG (NIL T) -9 NIL 1509724 NIL) (-659 1500996 1501920 1503133 "LSAGG-" 1503138 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-658 1498622 1500140 1500389 "LPOLY" 1500791 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-657 1498204 1498289 1498412 "LPEFRAC" 1498531 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-656 1496551 1497298 1497551 "LO" 1498036 NIL LO (NIL T T T) -8 NIL NIL NIL) (-655 1496203 1496315 1496343 "LOGIC" 1496454 T LOGIC (NIL) -9 NIL 1496535 NIL) (-654 1496065 1496088 1496159 "LOGIC-" 1496164 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-653 1495258 1495398 1495591 "LODOOPS" 1495921 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-652 1492716 1495174 1495240 "LODO" 1495245 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-651 1491254 1491489 1491842 "LODOF" 1492463 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-650 1487610 1490007 1490048 "LODOCAT" 1490486 NIL LODOCAT (NIL T) -9 NIL 1490697 NIL) (-649 1487343 1487401 1487528 "LODOCAT-" 1487533 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-648 1484698 1487184 1487302 "LODO2" 1487307 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-647 1482168 1484635 1484680 "LODO1" 1484685 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-646 1481028 1481193 1481505 "LODEEF" 1481991 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-645 1476314 1479158 1479199 "LNAGG" 1480146 NIL LNAGG (NIL T) -9 NIL 1480590 NIL) (-644 1475461 1475675 1476017 "LNAGG-" 1476022 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-643 1471624 1472386 1473025 "LMOPS" 1474876 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-642 1471019 1471381 1471422 "LMODULE" 1471483 NIL LMODULE (NIL T) -9 NIL 1471525 NIL) (-641 1468265 1470664 1470787 "LMDICT" 1470929 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-640 1467991 1468173 1468233 "LITERAL" 1468238 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-639 1461218 1466937 1467235 "LIST" 1467726 NIL LIST (NIL T) -8 NIL NIL NIL) (-638 1460743 1460817 1460956 "LIST3" 1461138 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-637 1459750 1459928 1460156 "LIST2" 1460561 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-636 1457884 1458196 1458595 "LIST2MAP" 1459397 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-635 1456614 1457250 1457291 "LINEXP" 1457546 NIL LINEXP (NIL T) -9 NIL 1457695 NIL) (-634 1455261 1455521 1455818 "LINDEP" 1456366 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-633 1452028 1452747 1453524 "LIMITRF" 1454516 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-632 1450304 1450599 1451015 "LIMITPS" 1451723 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-631 1444759 1449815 1450043 "LIE" 1450125 NIL LIE (NIL T T) -8 NIL NIL NIL) (-630 1443808 1444251 1444291 "LIECAT" 1444431 NIL LIECAT (NIL T) -9 NIL 1444582 NIL) (-629 1443649 1443676 1443764 "LIECAT-" 1443769 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-628 1436261 1443098 1443263 "LIB" 1443504 T LIB (NIL) -8 NIL NIL NIL) (-627 1431898 1432779 1433714 "LGROBP" 1435378 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-626 1429764 1430038 1430400 "LF" 1431619 NIL LF (NIL T T) -7 NIL NIL NIL) (-625 1428604 1429296 1429324 "LFCAT" 1429531 T LFCAT (NIL) -9 NIL 1429670 NIL) (-624 1425508 1426136 1426824 "LEXTRIPK" 1427968 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-623 1422279 1423078 1423581 "LEXP" 1425088 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-622 1421782 1422000 1422092 "LETAST" 1422207 T LETAST (NIL) -8 NIL NIL NIL) (-621 1420180 1420493 1420894 "LEADCDET" 1421464 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-620 1419370 1419444 1419673 "LAZM3PK" 1420101 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-619 1414325 1417447 1417985 "LAUPOL" 1418882 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-618 1413890 1413934 1414102 "LAPLACE" 1414275 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-617 1411864 1412991 1413242 "LA" 1413723 NIL LA (NIL T T T) -8 NIL NIL NIL) (-616 1410945 1411495 1411536 "LALG" 1411598 NIL LALG (NIL T) -9 NIL 1411657 NIL) (-615 1410659 1410718 1410854 "LALG-" 1410859 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-614 1410494 1410518 1410559 "KVTFROM" 1410621 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-613 1409297 1409711 1409940 "KTVLOGIC" 1410285 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-612 1409132 1409156 1409197 "KRCFROM" 1409259 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-611 1408036 1408223 1408522 "KOVACIC" 1408932 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-610 1407871 1407895 1407936 "KONVERT" 1407998 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-609 1407706 1407730 1407771 "KOERCE" 1407833 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-608 1405440 1406200 1406593 "KERNEL" 1407345 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-607 1404942 1405023 1405153 "KERNEL2" 1405354 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-606 1398793 1403481 1403535 "KDAGG" 1403912 NIL KDAGG (NIL T T) -9 NIL 1404118 NIL) (-605 1398322 1398446 1398651 "KDAGG-" 1398656 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-604 1391497 1397983 1398138 "KAFILE" 1398200 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-603 1385952 1391008 1391236 "JORDAN" 1391318 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-602 1385358 1385601 1385722 "JOINAST" 1385851 T JOINAST (NIL) -8 NIL NIL NIL) (-601 1385204 1385263 1385318 "JAVACODE" 1385323 T JAVACODE (NIL) -8 NIL NIL NIL) (-600 1381503 1383409 1383463 "IXAGG" 1384392 NIL IXAGG (NIL T T) -9 NIL 1384851 NIL) (-599 1380422 1380728 1381147 "IXAGG-" 1381152 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-598 1376002 1380344 1380403 "IVECTOR" 1380408 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-597 1374768 1375005 1375271 "ITUPLE" 1375769 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-596 1373204 1373381 1373687 "ITRIGMNP" 1374590 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-595 1371949 1372153 1372436 "ITFUN3" 1372980 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-594 1371581 1371638 1371747 "ITFUN2" 1371886 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-593 1369418 1370443 1370742 "ITAYLOR" 1371315 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-592 1358401 1363555 1364718 "ISUPS" 1368288 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-591 1357505 1357645 1357881 "ISUMP" 1358248 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-590 1352769 1357306 1357385 "ISTRING" 1357458 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-589 1352272 1352490 1352582 "ISAST" 1352697 T ISAST (NIL) -8 NIL NIL NIL) (-588 1351482 1351563 1351779 "IRURPK" 1352186 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-587 1350418 1350619 1350859 "IRSN" 1351262 T IRSN (NIL) -7 NIL NIL NIL) (-586 1348447 1348802 1349238 "IRRF2F" 1350056 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-585 1348194 1348232 1348308 "IRREDFFX" 1348403 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-584 1346809 1347068 1347367 "IROOT" 1347927 NIL IROOT (NIL T) -7 NIL NIL NIL) (-583 1343441 1344493 1345185 "IR" 1346149 NIL IR (NIL T) -8 NIL NIL NIL) (-582 1341054 1341549 1342115 "IR2" 1342919 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-581 1340126 1340239 1340460 "IR2F" 1340937 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-580 1339917 1339951 1340011 "IPRNTPK" 1340086 T IPRNTPK (NIL) -7 NIL NIL NIL) (-579 1336536 1339806 1339875 "IPF" 1339880 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-578 1334899 1336461 1336518 "IPADIC" 1336523 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-577 1334239 1334459 1334589 "IP4ADDR" 1334789 T IP4ADDR (NIL) -8 NIL NIL NIL) (-576 1333739 1333943 1334053 "IOMODE" 1334149 T IOMODE (NIL) -8 NIL NIL NIL) (-575 1332812 1333336 1333463 "IOBFILE" 1333632 T IOBFILE (NIL) -8 NIL NIL NIL) (-574 1332300 1332716 1332744 "IOBCON" 1332749 T IOBCON (NIL) -9 NIL 1332770 NIL) (-573 1331797 1331855 1332045 "INVLAPLA" 1332236 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-572 1321446 1323799 1326185 "INTTR" 1329461 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-571 1317790 1318532 1319396 "INTTOOLS" 1320631 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-570 1317376 1317467 1317584 "INTSLPE" 1317693 T INTSLPE (NIL) -7 NIL NIL NIL) (-569 1315371 1317299 1317358 "INTRVL" 1317363 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-568 1312973 1313485 1314060 "INTRF" 1314856 NIL INTRF (NIL T) -7 NIL NIL NIL) (-567 1312384 1312481 1312623 "INTRET" 1312871 NIL INTRET (NIL T) -7 NIL NIL NIL) (-566 1310381 1310770 1311240 "INTRAT" 1311992 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-565 1307609 1308192 1308818 "INTPM" 1309866 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-564 1304312 1304911 1305656 "INTPAF" 1306995 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-563 1299491 1300453 1301504 "INTPACK" 1303281 T INTPACK (NIL) -7 NIL NIL NIL) (-562 1296403 1299220 1299347 "INT" 1299384 T INT (NIL) -8 NIL NIL NIL) (-561 1295655 1295807 1296015 "INTHERTR" 1296245 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-560 1295094 1295174 1295362 "INTHERAL" 1295569 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-559 1292940 1293383 1293840 "INTHEORY" 1294657 T INTHEORY (NIL) -7 NIL NIL NIL) (-558 1284248 1285869 1287648 "INTG0" 1291292 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-557 1264821 1269611 1274421 "INTFTBL" 1279458 T INTFTBL (NIL) -8 NIL NIL NIL) (-556 1264070 1264208 1264381 "INTFACT" 1264680 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-555 1261455 1261901 1262465 "INTEF" 1263624 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-554 1259922 1260627 1260655 "INTDOM" 1260956 T INTDOM (NIL) -9 NIL 1261163 NIL) (-553 1259291 1259465 1259707 "INTDOM-" 1259712 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-552 1255786 1257675 1257729 "INTCAT" 1258528 NIL INTCAT (NIL T) -9 NIL 1258848 NIL) (-551 1255259 1255361 1255489 "INTBIT" 1255678 T INTBIT (NIL) -7 NIL NIL NIL) (-550 1253930 1254084 1254398 "INTALG" 1255104 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-549 1253387 1253477 1253647 "INTAF" 1253834 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-548 1246841 1253197 1253337 "INTABL" 1253342 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-547 1246301 1246714 1246742 "INT8" 1246747 T INT8 (NIL) -8 NIL NIL 1246755) (-546 1245760 1246173 1246201 "INT32" 1246206 T INT32 (NIL) -8 NIL NIL 1246214) (-545 1245219 1245632 1245660 "INT16" 1245665 T INT16 (NIL) -8 NIL NIL 1245673) (-544 1240234 1242908 1242936 "INS" 1243870 T INS (NIL) -9 NIL 1244535 NIL) (-543 1237474 1238245 1239219 "INS-" 1239292 NIL INS- (NIL T) -8 NIL NIL NIL) (-542 1236249 1236476 1236774 "INPSIGN" 1237227 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-541 1235367 1235484 1235681 "INPRODPF" 1236129 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-540 1234261 1234378 1234615 "INPRODFF" 1235247 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-539 1233261 1233413 1233673 "INNMFACT" 1234097 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-538 1232458 1232555 1232743 "INMODGCD" 1233160 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-537 1230967 1231211 1231535 "INFSP" 1232203 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-536 1230151 1230268 1230451 "INFPROD0" 1230847 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-535 1227033 1228216 1228731 "INFORM" 1229644 T INFORM (NIL) -8 NIL NIL NIL) (-534 1226643 1226703 1226801 "INFORM1" 1226968 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-533 1226166 1226255 1226369 "INFINITY" 1226549 T INFINITY (NIL) -7 NIL NIL NIL) (-532 1225342 1225886 1225987 "INETCLTS" 1226085 T INETCLTS (NIL) -8 NIL NIL NIL) (-531 1223959 1224208 1224529 "INEP" 1225090 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-530 1223235 1223856 1223921 "INDE" 1223926 NIL INDE (NIL T) -8 NIL NIL NIL) (-529 1222799 1222867 1222984 "INCRMAPS" 1223162 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-528 1221617 1222068 1222274 "INBFILE" 1222613 T INBFILE (NIL) -8 NIL NIL NIL) (-527 1216928 1217853 1218797 "INBFF" 1220705 NIL INBFF (NIL T) -7 NIL NIL NIL) (-526 1215836 1216105 1216133 "INBCON" 1216646 T INBCON (NIL) -9 NIL 1216912 NIL) (-525 1215088 1215311 1215587 "INBCON-" 1215592 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-524 1214590 1214809 1214901 "INAST" 1215016 T INAST (NIL) -8 NIL NIL NIL) (-523 1214044 1214269 1214375 "IMPTAST" 1214504 T IMPTAST (NIL) -8 NIL NIL NIL) (-522 1210538 1213888 1213992 "IMATRIX" 1213997 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-521 1209250 1209373 1209688 "IMATQF" 1210394 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-520 1207470 1207697 1208034 "IMATLIN" 1209006 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-519 1202096 1207394 1207452 "ILIST" 1207457 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-518 1200049 1201956 1202069 "IIARRAY2" 1202074 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-517 1195482 1199960 1200024 "IFF" 1200029 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-516 1194856 1195099 1195215 "IFAST" 1195386 T IFAST (NIL) -8 NIL NIL NIL) (-515 1189899 1194148 1194336 "IFARRAY" 1194713 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-514 1189106 1189803 1189876 "IFAMON" 1189881 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-513 1188690 1188755 1188809 "IEVALAB" 1189016 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-512 1188365 1188433 1188593 "IEVALAB-" 1188598 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-511 1188023 1188279 1188342 "IDPO" 1188347 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-510 1187300 1187912 1187987 "IDPOAMS" 1187992 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-509 1186634 1187189 1187264 "IDPOAM" 1187269 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-508 1185719 1185969 1186022 "IDPC" 1186435 NIL IDPC (NIL T T) -9 NIL 1186584 NIL) (-507 1185215 1185611 1185684 "IDPAM" 1185689 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-506 1184618 1185107 1185180 "IDPAG" 1185185 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-505 1184386 1184533 1184583 "IDENT" 1184588 T IDENT (NIL) -8 NIL NIL NIL) (-504 1180641 1181489 1182384 "IDECOMP" 1183543 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-503 1173515 1174564 1175611 "IDEAL" 1179677 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-502 1172679 1172791 1172990 "ICDEN" 1173399 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-501 1171778 1172159 1172306 "ICARD" 1172552 T ICARD (NIL) -8 NIL NIL NIL) (-500 1169838 1170151 1170556 "IBPTOOLS" 1171455 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-499 1165472 1169458 1169571 "IBITS" 1169757 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-498 1162195 1162771 1163466 "IBATOOL" 1164889 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-497 1159975 1160436 1160969 "IBACHIN" 1161730 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-496 1157852 1159821 1159924 "IARRAY2" 1159929 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-495 1154005 1157778 1157835 "IARRAY1" 1157840 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-494 1147999 1152417 1152898 "IAN" 1153544 T IAN (NIL) -8 NIL NIL NIL) (-493 1147510 1147567 1147740 "IALGFACT" 1147936 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-492 1147038 1147151 1147179 "HYPCAT" 1147386 T HYPCAT (NIL) -9 NIL NIL NIL) (-491 1146576 1146693 1146879 "HYPCAT-" 1146884 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-490 1146198 1146371 1146454 "HOSTNAME" 1146513 T HOSTNAME (NIL) -8 NIL NIL NIL) (-489 1146043 1146080 1146121 "HOMOTOP" 1146126 NIL HOMOTOP (NIL T) -9 NIL 1146159 NIL) (-488 1142722 1144053 1144094 "HOAGG" 1145075 NIL HOAGG (NIL T) -9 NIL 1145754 NIL) (-487 1141316 1141715 1142241 "HOAGG-" 1142246 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-486 1135358 1140913 1141061 "HEXADEC" 1141188 T HEXADEC (NIL) -8 NIL NIL NIL) (-485 1134106 1134328 1134591 "HEUGCD" 1135135 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-484 1133209 1133943 1134073 "HELLFDIV" 1134078 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-483 1131437 1132986 1133074 "HEAP" 1133153 NIL HEAP (NIL T) -8 NIL NIL NIL) (-482 1130728 1130989 1131123 "HEADAST" 1131323 T HEADAST (NIL) -8 NIL NIL NIL) (-481 1124648 1130643 1130705 "HDP" 1130710 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-480 1118399 1124283 1124435 "HDMP" 1124549 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-479 1117724 1117863 1118027 "HB" 1118255 T HB (NIL) -7 NIL NIL NIL) (-478 1111221 1117570 1117674 "HASHTBL" 1117679 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-477 1110724 1110942 1111034 "HASAST" 1111149 T HASAST (NIL) -8 NIL NIL NIL) (-476 1108536 1110346 1110528 "HACKPI" 1110562 T HACKPI (NIL) -8 NIL NIL NIL) (-475 1104231 1108389 1108502 "GTSET" 1108507 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-474 1097757 1104109 1104207 "GSTBL" 1104212 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-473 1090070 1096788 1097053 "GSERIES" 1097548 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-472 1089237 1089628 1089656 "GROUP" 1089859 T GROUP (NIL) -9 NIL 1089993 NIL) (-471 1088603 1088762 1089013 "GROUP-" 1089018 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-470 1086972 1087291 1087678 "GROEBSOL" 1088280 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-469 1085912 1086174 1086225 "GRMOD" 1086754 NIL GRMOD (NIL T T) -9 NIL 1086922 NIL) (-468 1085680 1085716 1085844 "GRMOD-" 1085849 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-467 1081006 1082034 1083034 "GRIMAGE" 1084700 T GRIMAGE (NIL) -8 NIL NIL NIL) (-466 1079473 1079733 1080057 "GRDEF" 1080702 T GRDEF (NIL) -7 NIL NIL NIL) (-465 1078917 1079033 1079174 "GRAY" 1079352 T GRAY (NIL) -7 NIL NIL NIL) (-464 1078130 1078510 1078561 "GRALG" 1078714 NIL GRALG (NIL T T) -9 NIL 1078807 NIL) (-463 1077791 1077864 1078027 "GRALG-" 1078032 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-462 1074595 1077376 1077554 "GPOLSET" 1077698 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-461 1073949 1074006 1074264 "GOSPER" 1074532 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-460 1069708 1070387 1070913 "GMODPOL" 1073648 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-459 1068713 1068897 1069135 "GHENSEL" 1069520 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-458 1062764 1063607 1064634 "GENUPS" 1067797 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-457 1062461 1062512 1062601 "GENUFACT" 1062707 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-456 1061873 1061950 1062115 "GENPGCD" 1062379 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-455 1061347 1061382 1061595 "GENMFACT" 1061832 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-454 1059915 1060170 1060477 "GENEEZ" 1061090 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-453 1053828 1059526 1059688 "GDMP" 1059838 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-452 1043205 1047599 1048705 "GCNAALG" 1052811 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-451 1041632 1042460 1042488 "GCDDOM" 1042743 T GCDDOM (NIL) -9 NIL 1042900 NIL) (-450 1041102 1041229 1041444 "GCDDOM-" 1041449 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-449 1039774 1039959 1040263 "GB" 1040881 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-448 1028394 1030720 1033112 "GBINTERN" 1037465 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-447 1026231 1026523 1026944 "GBF" 1028069 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-446 1025012 1025177 1025444 "GBEUCLID" 1026047 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-445 1024361 1024486 1024635 "GAUSSFAC" 1024883 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-444 1022728 1023030 1023344 "GALUTIL" 1024080 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-443 1021036 1021310 1021634 "GALPOLYU" 1022455 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-442 1018401 1018691 1019098 "GALFACTU" 1020733 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-441 1010207 1011706 1013314 "GALFACT" 1016833 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-440 1007595 1008253 1008281 "FVFUN" 1009437 T FVFUN (NIL) -9 NIL 1010157 NIL) (-439 1006861 1007043 1007071 "FVC" 1007362 T FVC (NIL) -9 NIL 1007545 NIL) (-438 1006531 1006686 1006754 "FUNDESC" 1006813 T FUNDESC (NIL) -8 NIL NIL NIL) (-437 1006173 1006328 1006409 "FUNCTION" 1006483 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-436 1003944 1004495 1004961 "FT" 1005727 T FT (NIL) -8 NIL NIL NIL) (-435 1002762 1003245 1003448 "FTEM" 1003761 T FTEM (NIL) -8 NIL NIL NIL) (-434 1001018 1001307 1001711 "FSUPFACT" 1002453 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-433 999415 999704 1000036 "FST" 1000706 T FST (NIL) -8 NIL NIL NIL) (-432 998586 998692 998887 "FSRED" 999297 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-431 997265 997520 997874 "FSPRMELT" 998301 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-430 994350 994788 995287 "FSPECF" 996828 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-429 976410 984853 984893 "FS" 988741 NIL FS (NIL T) -9 NIL 991030 NIL) (-428 965060 968050 972106 "FS-" 972403 NIL FS- (NIL T T) -8 NIL NIL NIL) (-427 964574 964628 964805 "FSINT" 965001 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-426 962901 963567 963870 "FSERIES" 964353 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-425 961915 962031 962262 "FSCINT" 962781 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-424 958149 960859 960900 "FSAGG" 961270 NIL FSAGG (NIL T) -9 NIL 961529 NIL) (-423 955911 956512 957308 "FSAGG-" 957403 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-422 954953 955096 955323 "FSAGG2" 955764 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-421 952608 952887 953441 "FS2UPS" 954671 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-420 952190 952233 952388 "FS2" 952559 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-419 951047 951218 951527 "FS2EXPXP" 952015 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-418 950473 950588 950740 "FRUTIL" 950927 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-417 941928 945968 947326 "FR" 949147 NIL FR (NIL T) -8 NIL NIL NIL) (-416 937003 939646 939686 "FRNAALG" 941082 NIL FRNAALG (NIL T) -9 NIL 941689 NIL) (-415 932681 933752 935027 "FRNAALG-" 935777 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-414 932319 932362 932489 "FRNAAF2" 932632 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-413 930726 931173 931468 "FRMOD" 932131 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-412 928505 929109 929426 "FRIDEAL" 930517 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-411 927700 927787 928076 "FRIDEAL2" 928412 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-410 926833 927247 927288 "FRETRCT" 927293 NIL FRETRCT (NIL T) -9 NIL 927469 NIL) (-409 925945 926176 926527 "FRETRCT-" 926532 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-408 923157 924333 924392 "FRAMALG" 925274 NIL FRAMALG (NIL T T) -9 NIL 925566 NIL) (-407 921291 921746 922376 "FRAMALG-" 922599 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-406 915249 920766 921042 "FRAC" 921047 NIL FRAC (NIL T) -8 NIL NIL NIL) (-405 914885 914942 915049 "FRAC2" 915186 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-404 914521 914578 914685 "FR2" 914822 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-403 909194 912046 912074 "FPS" 913193 T FPS (NIL) -9 NIL 913750 NIL) (-402 908643 908752 908916 "FPS-" 909062 NIL FPS- (NIL T) -8 NIL NIL NIL) (-401 906097 907732 907760 "FPC" 907985 T FPC (NIL) -9 NIL 908127 NIL) (-400 905890 905930 906027 "FPC-" 906032 NIL FPC- (NIL T) -8 NIL NIL NIL) (-399 904768 905378 905419 "FPATMAB" 905424 NIL FPATMAB (NIL T) -9 NIL 905576 NIL) (-398 902468 902944 903370 "FPARFRAC" 904405 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-397 897862 898360 899042 "FORTRAN" 901900 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-396 895578 896078 896617 "FORT" 897343 T FORT (NIL) -7 NIL NIL NIL) (-395 893254 893816 893844 "FORTFN" 894904 T FORTFN (NIL) -9 NIL 895528 NIL) (-394 893018 893068 893096 "FORTCAT" 893155 T FORTCAT (NIL) -9 NIL 893217 NIL) (-393 891151 891634 892024 "FORMULA" 892648 T FORMULA (NIL) -8 NIL NIL NIL) (-392 890939 890969 891038 "FORMULA1" 891115 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-391 890462 890514 890687 "FORDER" 890881 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-390 889558 889722 889915 "FOP" 890289 T FOP (NIL) -7 NIL NIL NIL) (-389 888166 888838 889012 "FNLA" 889440 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-388 886921 887310 887338 "FNCAT" 887798 T FNCAT (NIL) -9 NIL 888058 NIL) (-387 886487 886880 886908 "FNAME" 886913 T FNAME (NIL) -8 NIL NIL NIL) (-386 885150 886079 886107 "FMTC" 886112 T FMTC (NIL) -9 NIL 886148 NIL) (-385 881512 882673 883302 "FMONOID" 884554 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-384 880731 881254 881403 "FM" 881408 NIL FM (NIL T T) -8 NIL NIL NIL) (-383 878155 878801 878829 "FMFUN" 879973 T FMFUN (NIL) -9 NIL 880681 NIL) (-382 877424 877605 877633 "FMC" 877923 T FMC (NIL) -9 NIL 878105 NIL) (-381 874618 875452 875506 "FMCAT" 876701 NIL FMCAT (NIL T T) -9 NIL 877196 NIL) (-380 873511 874384 874484 "FM1" 874563 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-379 871285 871701 872195 "FLOATRP" 873062 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-378 864909 869014 869635 "FLOAT" 870684 T FLOAT (NIL) -8 NIL NIL NIL) (-377 862347 862847 863425 "FLOATCP" 864376 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-376 861156 861960 862001 "FLINEXP" 862006 NIL FLINEXP (NIL T) -9 NIL 862099 NIL) (-375 860310 860545 860873 "FLINEXP-" 860878 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-374 859386 859530 859754 "FLASORT" 860162 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-373 856603 857445 857497 "FLALG" 858724 NIL FLALG (NIL T T) -9 NIL 859191 NIL) (-372 850387 854089 854130 "FLAGG" 855392 NIL FLAGG (NIL T) -9 NIL 856044 NIL) (-371 849113 849452 849942 "FLAGG-" 849947 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-370 848155 848298 848525 "FLAGG2" 848966 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 845130 846104 846163 "FINRALG" 847291 NIL FINRALG (NIL T T) -9 NIL 847799 NIL) (-368 844290 844519 844858 "FINRALG-" 844863 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-367 843696 843909 843937 "FINITE" 844133 T FINITE (NIL) -9 NIL 844240 NIL) (-366 836154 838315 838355 "FINAALG" 842022 NIL FINAALG (NIL T) -9 NIL 843475 NIL) (-365 831495 832536 833680 "FINAALG-" 835059 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-364 830890 831250 831353 "FILE" 831425 NIL FILE (NIL T) -8 NIL NIL NIL) (-363 829574 829886 829940 "FILECAT" 830624 NIL FILECAT (NIL T T) -9 NIL 830840 NIL) (-362 827442 828936 828964 "FIELD" 829004 T FIELD (NIL) -9 NIL 829084 NIL) (-361 826062 826447 826958 "FIELD-" 826963 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-360 823940 824697 825044 "FGROUP" 825748 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-359 823030 823194 823414 "FGLMICPK" 823772 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-358 818897 822955 823012 "FFX" 823017 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-357 818498 818559 818694 "FFSLPE" 818830 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-356 814491 815270 816066 "FFPOLY" 817734 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-355 813995 814031 814240 "FFPOLY2" 814449 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-354 809881 813914 813977 "FFP" 813982 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-353 805314 809792 809856 "FF" 809861 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 800475 804657 804847 "FFNBX" 805168 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-351 795449 799610 799868 "FFNBP" 800329 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-350 790117 794733 794944 "FFNB" 795282 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-349 788949 789147 789462 "FFINTBAS" 789914 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-348 785177 787356 787384 "FFIELDC" 788004 T FFIELDC (NIL) -9 NIL 788380 NIL) (-347 783840 784210 784707 "FFIELDC-" 784712 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-346 783410 783455 783579 "FFHOM" 783782 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-345 781108 781592 782109 "FFF" 782925 NIL FFF (NIL T) -7 NIL NIL NIL) (-344 776761 780850 780951 "FFCGX" 781051 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-343 772428 776493 776600 "FFCGP" 776704 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-342 767646 772155 772263 "FFCG" 772364 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-341 749479 758517 758603 "FFCAT" 763768 NIL FFCAT (NIL T T T) -9 NIL 765219 NIL) (-340 744677 745724 747038 "FFCAT-" 748268 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-339 744088 744131 744366 "FFCAT2" 744628 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-338 733300 737060 738280 "FEXPR" 742940 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-337 732300 732735 732776 "FEVALAB" 732860 NIL FEVALAB (NIL T) -9 NIL 733121 NIL) (-336 731459 731669 732007 "FEVALAB-" 732012 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-335 730052 730842 731045 "FDIV" 731358 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-334 727118 727833 727948 "FDIVCAT" 729516 NIL FDIVCAT (NIL T T T T) -9 NIL 729953 NIL) (-333 726880 726907 727077 "FDIVCAT-" 727082 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-332 726100 726187 726464 "FDIV2" 726787 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-331 724786 725045 725334 "FCPAK1" 725831 T FCPAK1 (NIL) -7 NIL NIL NIL) (-330 723914 724286 724427 "FCOMP" 724677 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-329 707651 711064 714602 "FC" 720396 T FC (NIL) -8 NIL NIL NIL) (-328 700230 704215 704255 "FAXF" 706057 NIL FAXF (NIL T) -9 NIL 706749 NIL) (-327 697509 698164 698989 "FAXF-" 699454 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-326 692609 696885 697061 "FARRAY" 697366 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-325 687862 689894 689947 "FAMR" 690970 NIL FAMR (NIL T T) -9 NIL 691430 NIL) (-324 686752 687054 687489 "FAMR-" 687494 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-323 685948 686674 686727 "FAMONOID" 686732 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-322 683760 684444 684497 "FAMONC" 685438 NIL FAMONC (NIL T T) -9 NIL 685824 NIL) (-321 682452 683514 683651 "FAGROUP" 683656 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-320 680247 680566 680969 "FACUTIL" 682133 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-319 679346 679531 679753 "FACTFUNC" 680057 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-318 671751 678597 678809 "EXPUPXS" 679202 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-317 669234 669774 670360 "EXPRTUBE" 671185 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-316 665428 666020 666757 "EXPRODE" 668573 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-315 650802 664083 664511 "EXPR" 665032 NIL EXPR (NIL T) -8 NIL NIL NIL) (-314 645209 645796 646609 "EXPR2UPS" 650100 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-313 644845 644902 645009 "EXPR2" 645146 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-312 636250 643977 644274 "EXPEXPAN" 644682 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-311 636077 636207 636236 "EXIT" 636241 T EXIT (NIL) -8 NIL NIL NIL) (-310 635584 635801 635892 "EXITAST" 636006 T EXITAST (NIL) -8 NIL NIL NIL) (-309 635211 635273 635386 "EVALCYC" 635516 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-308 634752 634870 634911 "EVALAB" 635081 NIL EVALAB (NIL T) -9 NIL 635185 NIL) (-307 634233 634355 634576 "EVALAB-" 634581 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-306 631701 632969 632997 "EUCDOM" 633552 T EUCDOM (NIL) -9 NIL 633902 NIL) (-305 630106 630548 631138 "EUCDOM-" 631143 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-304 617646 620404 623154 "ESTOOLS" 627376 T ESTOOLS (NIL) -7 NIL NIL NIL) (-303 617278 617335 617444 "ESTOOLS2" 617583 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-302 617029 617071 617151 "ESTOOLS1" 617230 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-301 610934 612662 612690 "ES" 615458 T ES (NIL) -9 NIL 616867 NIL) (-300 605882 607168 608985 "ES-" 609149 NIL ES- (NIL T) -8 NIL NIL NIL) (-299 602257 603017 603797 "ESCONT" 605122 T ESCONT (NIL) -7 NIL NIL NIL) (-298 602002 602034 602116 "ESCONT1" 602219 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-297 601677 601727 601827 "ES2" 601946 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-296 601307 601365 601474 "ES1" 601613 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-295 600523 600652 600828 "ERROR" 601151 T ERROR (NIL) -7 NIL NIL NIL) (-294 594026 600382 600473 "EQTBL" 600478 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-293 586583 589340 590789 "EQ" 592610 NIL -3311 (NIL T) -8 NIL NIL NIL) (-292 586215 586272 586381 "EQ2" 586520 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-291 581507 582553 583646 "EP" 585154 NIL EP (NIL T) -7 NIL NIL NIL) (-290 580089 580390 580707 "ENV" 581210 T ENV (NIL) -8 NIL NIL NIL) (-289 579268 579788 579816 "ENTIRER" 579821 T ENTIRER (NIL) -9 NIL 579867 NIL) (-288 575770 577223 577593 "EMR" 579067 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-287 574914 575099 575153 "ELTAGG" 575533 NIL ELTAGG (NIL T T) -9 NIL 575744 NIL) (-286 574633 574695 574836 "ELTAGG-" 574841 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-285 574422 574451 574505 "ELTAB" 574589 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-284 573548 573694 573893 "ELFUTS" 574273 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-283 573290 573346 573374 "ELEMFUN" 573479 T ELEMFUN (NIL) -9 NIL NIL NIL) (-282 573160 573181 573249 "ELEMFUN-" 573254 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-281 568051 571260 571301 "ELAGG" 572241 NIL ELAGG (NIL T) -9 NIL 572704 NIL) (-280 566336 566770 567433 "ELAGG-" 567438 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-279 564993 565273 565568 "ELABEXPR" 566061 T ELABEXPR (NIL) -8 NIL NIL NIL) (-278 557859 559660 560487 "EFUPXS" 564269 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-277 551309 553110 553920 "EFULS" 557135 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-276 548731 549089 549568 "EFSTRUC" 550941 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-275 537803 539368 540928 "EF" 547246 NIL EF (NIL T T) -7 NIL NIL NIL) (-274 536904 537288 537437 "EAB" 537674 T EAB (NIL) -8 NIL NIL NIL) (-273 536113 536863 536891 "E04UCFA" 536896 T E04UCFA (NIL) -8 NIL NIL NIL) (-272 535322 536072 536100 "E04NAFA" 536105 T E04NAFA (NIL) -8 NIL NIL NIL) (-271 534531 535281 535309 "E04MBFA" 535314 T E04MBFA (NIL) -8 NIL NIL NIL) (-270 533740 534490 534518 "E04JAFA" 534523 T E04JAFA (NIL) -8 NIL NIL NIL) (-269 532951 533699 533727 "E04GCFA" 533732 T E04GCFA (NIL) -8 NIL NIL NIL) (-268 532162 532910 532938 "E04FDFA" 532943 T E04FDFA (NIL) -8 NIL NIL NIL) (-267 531371 532121 532149 "E04DGFA" 532154 T E04DGFA (NIL) -8 NIL NIL NIL) (-266 525549 526896 528260 "E04AGNT" 530027 T E04AGNT (NIL) -7 NIL NIL NIL) (-265 524255 524735 524775 "DVARCAT" 525250 NIL DVARCAT (NIL T) -9 NIL 525449 NIL) (-264 523459 523671 523985 "DVARCAT-" 523990 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-263 516359 523258 523387 "DSMP" 523392 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-262 511169 512304 513372 "DROPT" 515311 T DROPT (NIL) -8 NIL NIL NIL) (-261 510834 510893 510991 "DROPT1" 511104 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-260 505949 507075 508212 "DROPT0" 509717 T DROPT0 (NIL) -7 NIL NIL NIL) (-259 504294 504619 505005 "DRAWPT" 505583 T DRAWPT (NIL) -7 NIL NIL NIL) (-258 498881 499804 500883 "DRAW" 503268 NIL DRAW (NIL T) -7 NIL NIL NIL) (-257 498514 498567 498685 "DRAWHACK" 498822 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-256 497245 497514 497805 "DRAWCX" 498243 T DRAWCX (NIL) -7 NIL NIL NIL) (-255 496761 496829 496980 "DRAWCURV" 497171 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-254 487232 489191 491306 "DRAWCFUN" 494666 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-253 484045 485927 485968 "DQAGG" 486597 NIL DQAGG (NIL T) -9 NIL 486870 NIL) (-252 472324 479023 479106 "DPOLCAT" 480958 NIL DPOLCAT (NIL T T T T) -9 NIL 481503 NIL) (-251 467163 468509 470467 "DPOLCAT-" 470472 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-250 460318 467024 467122 "DPMO" 467127 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-249 453376 460098 460265 "DPMM" 460270 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-248 453040 453295 453343 "DOMCTOR" 453348 T DOMCTOR (NIL) -8 NIL NIL NIL) (-247 452335 452562 452699 "DOMAIN" 452923 T DOMAIN (NIL) -8 NIL NIL NIL) (-246 446086 451970 452122 "DMP" 452236 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-245 445686 445742 445886 "DLP" 446024 NIL DLP (NIL T) -7 NIL NIL NIL) (-244 439556 445013 445203 "DLIST" 445528 NIL DLIST (NIL T) -8 NIL NIL NIL) (-243 436400 438409 438450 "DLAGG" 439000 NIL DLAGG (NIL T) -9 NIL 439230 NIL) (-242 435213 435843 435871 "DIVRING" 435963 T DIVRING (NIL) -9 NIL 436046 NIL) (-241 434450 434640 434940 "DIVRING-" 434945 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-240 432552 432909 433315 "DISPLAY" 434064 T DISPLAY (NIL) -7 NIL NIL NIL) (-239 426494 432466 432529 "DIRPROD" 432534 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-238 425342 425545 425810 "DIRPROD2" 426287 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-237 414605 420557 420610 "DIRPCAT" 421020 NIL DIRPCAT (NIL NIL T) -9 NIL 421860 NIL) (-236 411931 412573 413454 "DIRPCAT-" 413791 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-235 411218 411378 411564 "DIOSP" 411765 T DIOSP (NIL) -7 NIL NIL NIL) (-234 407920 410130 410171 "DIOPS" 410605 NIL DIOPS (NIL T) -9 NIL 410834 NIL) (-233 407469 407583 407774 "DIOPS-" 407779 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-232 406361 406955 406983 "DIFRING" 407170 T DIFRING (NIL) -9 NIL 407280 NIL) (-231 406007 406084 406236 "DIFRING-" 406241 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-230 403812 405050 405091 "DIFEXT" 405454 NIL DIFEXT (NIL T) -9 NIL 405748 NIL) (-229 402097 402525 403191 "DIFEXT-" 403196 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-228 399419 401629 401670 "DIAGG" 401675 NIL DIAGG (NIL T) -9 NIL 401695 NIL) (-227 398803 398960 399212 "DIAGG-" 399217 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-226 394268 397762 398039 "DHMATRIX" 398572 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-225 389880 390789 391799 "DFSFUN" 393278 T DFSFUN (NIL) -7 NIL NIL NIL) (-224 384996 388811 389123 "DFLOAT" 389588 T DFLOAT (NIL) -8 NIL NIL NIL) (-223 383224 383505 383901 "DFINTTLS" 384704 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-222 380289 381245 381645 "DERHAM" 382890 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-221 378138 380064 380153 "DEQUEUE" 380233 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-220 377353 377486 377682 "DEGRED" 378000 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-219 373748 374493 375346 "DEFINTRF" 376581 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-218 371275 371744 372343 "DEFINTEF" 373267 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-217 370652 370895 371010 "DEFAST" 371180 T DEFAST (NIL) -8 NIL NIL NIL) (-216 364694 370249 370397 "DECIMAL" 370524 T DECIMAL (NIL) -8 NIL NIL NIL) (-215 362206 362664 363170 "DDFACT" 364238 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-214 361802 361845 361996 "DBLRESP" 362157 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-213 359701 360035 360395 "DBASE" 361569 NIL DBASE (NIL T) -8 NIL NIL NIL) (-212 358970 359181 359327 "DATAARY" 359600 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-211 358103 358929 358957 "D03FAFA" 358962 T D03FAFA (NIL) -8 NIL NIL NIL) (-210 357237 358062 358090 "D03EEFA" 358095 T D03EEFA (NIL) -8 NIL NIL NIL) (-209 355187 355653 356142 "D03AGNT" 356768 T D03AGNT (NIL) -7 NIL NIL NIL) (-208 354503 355146 355174 "D02EJFA" 355179 T D02EJFA (NIL) -8 NIL NIL NIL) (-207 353819 354462 354490 "D02CJFA" 354495 T D02CJFA (NIL) -8 NIL NIL NIL) (-206 353135 353778 353806 "D02BHFA" 353811 T D02BHFA (NIL) -8 NIL NIL NIL) (-205 352451 353094 353122 "D02BBFA" 353127 T D02BBFA (NIL) -8 NIL NIL NIL) (-204 345649 347237 348843 "D02AGNT" 350865 T D02AGNT (NIL) -7 NIL NIL NIL) (-203 343418 343940 344486 "D01WGTS" 345123 T D01WGTS (NIL) -7 NIL NIL NIL) (-202 342513 343377 343405 "D01TRNS" 343410 T D01TRNS (NIL) -8 NIL NIL NIL) (-201 341608 342472 342500 "D01GBFA" 342505 T D01GBFA (NIL) -8 NIL NIL NIL) (-200 340703 341567 341595 "D01FCFA" 341600 T D01FCFA (NIL) -8 NIL NIL NIL) (-199 339798 340662 340690 "D01ASFA" 340695 T D01ASFA (NIL) -8 NIL NIL NIL) (-198 338893 339757 339785 "D01AQFA" 339790 T D01AQFA (NIL) -8 NIL NIL NIL) (-197 337988 338852 338880 "D01APFA" 338885 T D01APFA (NIL) -8 NIL NIL NIL) (-196 337083 337947 337975 "D01ANFA" 337980 T D01ANFA (NIL) -8 NIL NIL NIL) (-195 336178 337042 337070 "D01AMFA" 337075 T D01AMFA (NIL) -8 NIL NIL NIL) (-194 335273 336137 336165 "D01ALFA" 336170 T D01ALFA (NIL) -8 NIL NIL NIL) (-193 334368 335232 335260 "D01AKFA" 335265 T D01AKFA (NIL) -8 NIL NIL NIL) (-192 333463 334327 334355 "D01AJFA" 334360 T D01AJFA (NIL) -8 NIL NIL NIL) (-191 326760 328311 329872 "D01AGNT" 331922 T D01AGNT (NIL) -7 NIL NIL NIL) (-190 326097 326225 326377 "CYCLOTOM" 326628 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-189 322832 323545 324272 "CYCLES" 325390 T CYCLES (NIL) -7 NIL NIL NIL) (-188 322144 322278 322449 "CVMP" 322693 NIL CVMP (NIL T) -7 NIL NIL NIL) (-187 319915 320173 320549 "CTRIGMNP" 321872 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-186 319438 319706 319780 "CTOR" 319861 T CTOR (NIL) -8 NIL NIL NIL) (-185 318974 319169 319270 "CTORKIND" 319357 T CTORKIND (NIL) -8 NIL NIL NIL) (-184 318445 318673 318701 "CTORCAT" 318821 T CTORCAT (NIL) -9 NIL 318904 NIL) (-183 318140 318220 318346 "CTORCAT-" 318351 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-182 317656 317843 317941 "CTORCALL" 318062 T CTORCALL (NIL) -8 NIL NIL NIL) (-181 317030 317129 317282 "CSTTOOLS" 317553 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-180 312829 313486 314244 "CRFP" 316342 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-179 312331 312550 312642 "CRCEAST" 312757 T CRCEAST (NIL) -8 NIL NIL NIL) (-178 311378 311563 311791 "CRAPACK" 312135 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-177 310762 310863 311067 "CPMATCH" 311254 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-176 310487 310515 310621 "CPIMA" 310728 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-175 306851 307523 308241 "COORDSYS" 309822 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-174 306235 306364 306514 "CONTOUR" 306721 T CONTOUR (NIL) -8 NIL NIL NIL) (-173 302161 304238 304730 "CONTFRAC" 305775 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-172 302041 302062 302090 "CONDUIT" 302127 T CONDUIT (NIL) -9 NIL NIL NIL) (-171 301214 301734 301762 "COMRING" 301767 T COMRING (NIL) -9 NIL 301819 NIL) (-170 300295 300572 300756 "COMPPROP" 301050 T COMPPROP (NIL) -8 NIL NIL NIL) (-169 299956 299991 300119 "COMPLPAT" 300254 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-168 290013 299765 299874 "COMPLEX" 299879 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-167 289649 289706 289813 "COMPLEX2" 289950 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-166 289367 289402 289500 "COMPFACT" 289608 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-165 273540 283760 283800 "COMPCAT" 284804 NIL COMPCAT (NIL T) -9 NIL 286189 NIL) (-164 263056 265979 269606 "COMPCAT-" 269962 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-163 262785 262813 262916 "COMMUPC" 263022 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-162 262580 262613 262672 "COMMONOP" 262746 T COMMONOP (NIL) -7 NIL NIL NIL) (-161 262163 262331 262418 "COMM" 262513 T COMM (NIL) -8 NIL NIL NIL) (-160 261767 261967 262042 "COMMAAST" 262108 T COMMAAST (NIL) -8 NIL NIL NIL) (-159 261016 261210 261238 "COMBOPC" 261576 T COMBOPC (NIL) -9 NIL 261751 NIL) (-158 259912 260122 260364 "COMBINAT" 260806 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-157 256110 256683 257323 "COMBF" 259334 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-156 254896 255226 255461 "COLOR" 255895 T COLOR (NIL) -8 NIL NIL NIL) (-155 254399 254617 254709 "COLONAST" 254824 T COLONAST (NIL) -8 NIL NIL NIL) (-154 254039 254086 254211 "CMPLXRT" 254346 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-153 253514 253739 253838 "CLLCTAST" 253960 T CLLCTAST (NIL) -8 NIL NIL NIL) (-152 249016 250044 251124 "CLIP" 252454 T CLIP (NIL) -7 NIL NIL NIL) (-151 247398 248122 248361 "CLIF" 248843 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-150 243620 245544 245585 "CLAGG" 246514 NIL CLAGG (NIL T) -9 NIL 247050 NIL) (-149 242042 242499 243082 "CLAGG-" 243087 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-148 241586 241671 241811 "CINTSLPE" 241951 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-147 239087 239558 240106 "CHVAR" 241114 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-146 238330 238850 238878 "CHARZ" 238883 T CHARZ (NIL) -9 NIL 238898 NIL) (-145 238084 238124 238202 "CHARPOL" 238284 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-144 237211 237764 237792 "CHARNZ" 237839 T CHARNZ (NIL) -9 NIL 237895 NIL) (-143 235200 235901 236236 "CHAR" 236896 T CHAR (NIL) -8 NIL NIL NIL) (-142 234926 234987 235015 "CFCAT" 235126 T CFCAT (NIL) -9 NIL NIL NIL) (-141 234171 234282 234464 "CDEN" 234810 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-140 230163 233324 233604 "CCLASS" 233911 T CCLASS (NIL) -8 NIL NIL NIL) (-139 229470 229613 229776 "CATEGORY" 230020 T -10 (NIL) -8 NIL NIL NIL) (-138 229134 229389 229437 "CATCTOR" 229442 T CATCTOR (NIL) -8 NIL NIL NIL) (-137 228608 228834 228933 "CATAST" 229055 T CATAST (NIL) -8 NIL NIL NIL) (-136 228111 228329 228421 "CASEAST" 228536 T CASEAST (NIL) -8 NIL NIL NIL) (-135 223163 224140 224893 "CARTEN" 227414 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 222271 222419 222640 "CARTEN2" 223010 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-133 220613 221421 221678 "CARD" 222034 T CARD (NIL) -8 NIL NIL NIL) (-132 220216 220417 220492 "CAPSLAST" 220558 T CAPSLAST (NIL) -8 NIL NIL NIL) (-131 219588 219916 219944 "CACHSET" 220076 T CACHSET (NIL) -9 NIL 220153 NIL) (-130 219084 219380 219408 "CABMON" 219458 T CABMON (NIL) -9 NIL 219514 NIL) (-129 218107 218630 218766 "BYTE" 218929 T BYTE (NIL) -8 NIL NIL 219045) (-128 213516 217575 217738 "BYTEBUF" 217964 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211073 213208 213315 "BTREE" 213442 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208571 210721 210843 "BTOURN" 210983 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205988 208041 208082 "BTCAT" 208150 NIL BTCAT (NIL T) -9 NIL 208227 NIL) (-124 205655 205735 205884 "BTCAT-" 205889 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200947 204798 204826 "BTAGG" 205048 T BTAGG (NIL) -9 NIL 205209 NIL) (-122 200437 200562 200768 "BTAGG-" 200773 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197481 199715 199930 "BSTREE" 200254 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196619 196745 196929 "BRILL" 197337 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193318 195345 195386 "BRAGG" 196035 NIL BRAGG (NIL T) -9 NIL 196293 NIL) (-118 191847 192253 192808 "BRAGG-" 192813 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185111 191193 191377 "BPADICRT" 191695 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183461 185048 185093 "BPADIC" 185098 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183159 183189 183303 "BOUNDZRO" 183425 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178674 179765 180632 "BOP" 182312 T BOP (NIL) -8 NIL NIL NIL) (-113 176295 176739 177259 "BOP1" 178187 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 174997 175719 175912 "BOOLEAN" 176122 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174359 174737 174791 "BMODULE" 174796 NIL BMODULE (NIL T T) -9 NIL 174861 NIL) (-110 170189 174157 174230 "BITS" 174306 T BITS (NIL) -8 NIL NIL NIL) (-109 169601 169723 169865 "BINDING" 170067 T BINDING (NIL) -8 NIL NIL NIL) (-108 163646 169200 169347 "BINARY" 169474 T BINARY (NIL) -8 NIL NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339 NIL) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155196 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154630 154706 154858 "BALFACT" 155107 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153513 154045 154231 "AUTOMOR" 154475 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153239 153244 153270 "ATTREG" 153275 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151518 151936 152288 "ATTRBUT" 152905 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151153 151346 151412 "ATTRAST" 151470 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150689 150802 150828 "ATRIG" 151029 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150498 150539 150626 "ATRIG-" 150631 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150169 150329 150355 "ASTCAT" 150360 T ASTCAT (NIL) -9 NIL 150390 NIL) (-92 149896 149955 150074 "ASTCAT-" 150079 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148093 149672 149760 "ASTACK" 149839 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146598 146895 147260 "ASSOCEQ" 147775 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145630 146257 146381 "ASP9" 146505 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145394 145578 145617 "ASP8" 145622 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144263 144999 145141 "ASP80" 145283 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143162 143898 144030 "ASP7" 144162 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142116 142839 142957 "ASP78" 143075 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141085 141796 141913 "ASP77" 142030 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 139997 140723 140854 "ASP74" 140985 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138897 139632 139764 "ASP73" 139896 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138001 138723 138823 "ASP6" 138828 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136949 137678 137796 "ASP55" 137914 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135899 136623 136742 "ASP50" 136861 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134987 135600 135710 "ASP4" 135820 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134075 134688 134798 "ASP49" 134908 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132860 133614 133782 "ASP42" 133964 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131637 132393 132563 "ASP41" 132747 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130587 131314 131432 "ASP35" 131550 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130352 130535 130574 "ASP34" 130579 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130089 130156 130232 "ASP33" 130307 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128984 129724 129856 "ASP31" 129988 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128749 128932 128971 "ASP30" 128976 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128484 128553 128629 "ASP29" 128704 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128249 128432 128471 "ASP28" 128476 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128014 128197 128236 "ASP27" 128241 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127098 127712 127823 "ASP24" 127934 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126175 126900 127012 "ASP20" 127017 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125263 125876 125986 "ASP1" 126096 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124207 124937 125056 "ASP19" 125175 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 123944 124011 124087 "ASP12" 124162 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122796 123543 123687 "ASP10" 123831 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120695 122640 122731 "ARRAY2" 122736 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116511 120343 120457 "ARRAY1" 120612 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115543 115716 115937 "ARRAY12" 116334 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109902 111773 111848 "ARR2CAT" 114478 NIL ARR2CAT (NIL T T T) -9 NIL 115236 NIL) (-56 107336 108080 109034 "ARR2CAT-" 109039 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106930 107163 107242 "ARITY" 107275 T ARITY (NIL) -8 NIL NIL NIL) (-54 105678 105830 106136 "APPRULE" 106766 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105329 105377 105496 "APPLYORE" 105624 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104303 104594 104789 "ANY" 105152 T ANY (NIL) -8 NIL NIL NIL) (-51 103581 103704 103861 "ANY1" 104177 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101146 102018 102345 "ANTISYM" 103305 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100661 100850 100947 "ANON" 101067 T ANON (NIL) -8 NIL NIL NIL) (-48 94793 99200 99654 "AN" 100225 T AN (NIL) -8 NIL NIL NIL) (-47 91049 92403 92454 "AMR" 93202 NIL AMR (NIL T T) -9 NIL 93802 NIL) (-46 90161 90382 90745 "AMR-" 90750 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74711 90078 90139 "ALIST" 90144 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71548 74305 74474 "ALGSC" 74629 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68104 68658 69265 "ALGPKG" 70988 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67381 67482 67666 "ALGMFACT" 67990 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63120 63805 64460 "ALGMANIP" 66904 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54526 62746 62896 "ALGFF" 63053 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53722 53853 54032 "ALGFACT" 54384 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52787 53353 53391 "ALGEBRA" 53396 NIL ALGEBRA (NIL T) -9 NIL 53437 NIL) (-37 52505 52564 52696 "ALGEBRA-" 52701 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856 NIL) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283 NIL) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332 NIL) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 365fa152..59a15a90 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,16481 +1,18364 @@ -(727353 . 3442118609) +(735570 . 3442535949) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) + (|:| |abserr| (-224)) (|:| |relerr| (-224)))) + (-5 *2 (-378)) (-5 *1 (-204))))) +(((*1 *2) + (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-1164 *4)) + (-5 *1 (-527 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) + (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-613)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-503 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) + (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) + (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) + (-4 *1 (-1064 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *2) + (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1232 *4)) + (-5 *1 (-772 *3 *4 *5 *2 *6)) (-4 *2 (-1232 *5)) (-14 *6 (-916)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) + ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-362)) (-4 *2 (-367))))) +(((*1 *2 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-766)) + (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) - (-5 *2 (-1253 (-406 (-544)))) (-5 *1 (-1281 *4))))) + (-12 (-5 *4 (-639 (-639 *8))) (-5 *3 (-639 *8)) + (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) + (-4 *7 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-417 *3)) (-4 *3 (-554)) (-5 *1 (-418 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-966))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-608 *1)) (-4 *1 (-301))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) + (-4 *6 (-13 (-554) (-1033 *5))) (-4 *5 (-554)) + (-5 *2 (-639 (-639 (-293 (-406 (-947 *6)))))) (-5 *1 (-1034 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) (-4 *1 (-283))) + ((*1 *2 *3) + (-12 (-5 *3 (-417 *4)) (-4 *4 (-554)) + (-5 *2 (-639 (-2 (|:| -4221 (-766)) (|:| |logand| *4)))) + (-5 *1 (-319 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *2 *1) + (-12 (-5 *2 (-658 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) + (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) + (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) + (-4 *4 (-712 (-406 (-562)))) (-4 *3 (-845)) (-4 *4 (-171))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-479))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) + (-5 *2 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) + (-5 *1 (-345 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-900 *3))) (-4 *3 (-1092)) (-5 *1 (-899 *3))))) +(((*1 *1 *1) (-4 *1 (-625))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) +(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-143))))) +(((*1 *2 *1) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) + (-5 *2 (-639 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) + (-5 *2 (-639 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1148 *3)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 *3)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-721)))) + ((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-639 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1044)) (-5 *2 (-1148 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) - (-5 *2 (-1253 (-544))) (-5 *1 (-1281 *4))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 (-639 (-224))) (-5 *1 (-203))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) + (-5 *2 (-683 *4)))) + ((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-683 *4)) (-5 *1 (-415 *3 *4)) + (-4 *3 (-416 *4)))) + ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) + ((*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1092))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1092)) (-4 *6 (-1092)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-678 *4 *5 *6)) (-4 *5 (-1092))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-406 (-947 (-562))))) + (-5 *2 (-639 (-639 (-293 (-947 *4))))) (-5 *1 (-379 *4)) + (-4 *4 (-13 (-843) (-362))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-293 (-406 (-947 (-562)))))) + (-5 *2 (-639 (-639 (-293 (-947 *4))))) (-5 *1 (-379 *4)) + (-4 *4 (-13 (-843) (-362))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-947 (-562)))) (-5 *2 (-639 (-293 (-947 *4)))) + (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-293 (-406 (-947 (-562))))) + (-5 *2 (-639 (-293 (-947 *4)))) (-5 *1 (-379 *4)) + (-4 *4 (-13 (-843) (-362))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1168)) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-4 *4 (-13 (-29 *6) (-1192) (-954))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3928 (-639 *4)))) + (-5 *1 (-646 *6 *4 *3)) (-4 *3 (-650 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 *2)) + (-4 *2 (-13 (-29 *6) (-1192) (-954))) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *1 (-646 *6 *2 *3)) (-4 *3 (-650 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-683 *5)) (-4 *5 (-362)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1256 *5) "failed")) + (|:| -3928 (-639 (-1256 *5))))) + (-5 *1 (-661 *5)) (-5 *4 (-1256 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-639 *5))) (-4 *5 (-362)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1256 *5) "failed")) + (|:| -3928 (-639 (-1256 *5))))) + (-5 *1 (-661 *5)) (-5 *4 (-1256 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-683 *5)) (-4 *5 (-362)) + (-5 *2 + (-639 + (-2 (|:| |particular| (-3 (-1256 *5) "failed")) + (|:| -3928 (-639 (-1256 *5)))))) + (-5 *1 (-661 *5)) (-5 *4 (-639 (-1256 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-639 *5))) (-4 *5 (-362)) + (-5 *2 + (-639 + (-2 (|:| |particular| (-3 (-1256 *5) "failed")) + (|:| -3928 (-639 (-1256 *5)))))) + (-5 *1 (-661 *5)) (-5 *4 (-639 (-1256 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4403)))) + (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) + (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4403)))) + (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4403)))) + (-5 *2 + (-639 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3928 (-639 *7))))) + (-5 *1 (-662 *5 *6 *7 *3)) (-5 *4 (-639 *7)) + (-4 *3 (-681 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) + (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-765 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-554)) + (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-765 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1168)) + (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *1 (-767 *5 *2)) (-4 *2 (-13 (-29 *5) (-1192) (-954))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-683 *7)) (-5 *5 (-1168)) + (-4 *7 (-13 (-29 *6) (-1192) (-954))) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 + (-2 (|:| |particular| (-1256 *7)) (|:| -3928 (-639 (-1256 *7))))) + (-5 *1 (-797 *6 *7)) (-5 *4 (-1256 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-683 *6)) (-5 *4 (-1168)) + (-4 *6 (-13 (-29 *5) (-1192) (-954))) + (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 (-639 (-1256 *6))) (-5 *1 (-797 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-639 (-293 *7))) (-5 *4 (-639 (-114))) + (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 + (-2 (|:| |particular| (-1256 *7)) (|:| -3928 (-639 (-1256 *7))))) + (-5 *1 (-797 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-639 *7)) (-5 *4 (-639 (-114))) + (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 + (-2 (|:| |particular| (-1256 *7)) (|:| -3928 (-639 (-1256 *7))))) + (-5 *1 (-797 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1168)) + (-4 *7 (-13 (-29 *6) (-1192) (-954))) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -3928 (-639 *7))) *7 "failed")) + (-5 *1 (-797 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-1168)) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -3928 (-639 *3))) *3 "failed")) + (-5 *1 (-797 *6 *3)) (-4 *3 (-13 (-29 *6) (-1192) (-954))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-639 *2)) + (-4 *2 (-13 (-29 *6) (-1192) (-954))) (-5 *1 (-797 *6 *2)) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-639 *2)) + (-4 *2 (-13 (-29 *6) (-1192) (-954))) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *1 (-797 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1030)) (-5 *1 (-800)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-803)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-800)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) + (-5 *2 (-1030)) (-5 *1 (-800)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) + (-5 *2 (-1030)) (-5 *1 (-800)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) + (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) + (-5 *2 (-1030)) (-5 *1 (-800)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) + (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) + (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -3928 (-639 *6))) "failed") + *7 *6)) + (-4 *6 (-362)) (-4 *7 (-650 *6)) + (-5 *2 (-2 (|:| |particular| (-1256 *6)) (|:| -3928 (-683 *6)))) + (-5 *1 (-808 *6 *7)) (-5 *3 (-683 *6)) (-5 *4 (-1256 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1030)) (-5 *1 (-892)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-893)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-892)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-766)) (-5 *6 (-639 (-639 (-315 *3)))) (-5 *7 (-1150)) + (-5 *8 (-224)) (-5 *5 (-639 (-315 (-378)))) (-5 *3 (-378)) + (-5 *2 (-1030)) (-5 *1 (-892)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-766)) (-5 *6 (-639 (-639 (-315 *3)))) (-5 *7 (-1150)) + (-5 *5 (-639 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1030)) + (-5 *1 (-892)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *2 (-639 (-378))) + (-5 *1 (-1018)) (-5 *4 (-378)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-947 (-562))) (-5 *2 (-639 (-378))) (-5 *1 (-1018)) + (-5 *4 (-378)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1123 *4)) + (-5 *3 (-315 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1123 *4)) + (-5 *3 (-293 (-315 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) + (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1123 *5)) + (-5 *3 (-293 (-315 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) + (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1123 *5)) + (-5 *3 (-315 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-1168))) + (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1123 *5)) + (-5 *3 (-639 (-293 (-315 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) + (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) + (-5 *1 (-1176 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-1168))) (-4 *5 (-554)) + (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-1176 *5)) + (-5 *3 (-639 (-293 (-406 (-947 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-406 (-947 *4)))) (-4 *4 (-554)) + (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-1176 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) + (-5 *1 (-1176 *4)) (-5 *3 (-639 (-293 (-406 (-947 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) (-4 *5 (-554)) + (-5 *2 (-639 (-293 (-406 (-947 *5))))) (-5 *1 (-1176 *5)) + (-5 *3 (-406 (-947 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) (-4 *5 (-554)) + (-5 *2 (-639 (-293 (-406 (-947 *5))))) (-5 *1 (-1176 *5)) + (-5 *3 (-293 (-406 (-947 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *4))))) + (-5 *1 (-1176 *4)) (-5 *3 (-406 (-947 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *4))))) + (-5 *1 (-1176 *4)) (-5 *3 (-293 (-406 (-947 *4))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-1058 *4 *5 *6)) (-4 *4 (-554)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *2))))) +(((*1 *1) (-5 *1 (-1074)))) +(((*1 *2) + (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-904)) + (-5 *1 (-456 *3 *4 *2 *5)) (-4 *5 (-944 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-904)) + (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-904)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1232 *2))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) + (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) + (-5 *1 (-1167))))) +(((*1 *2 *1) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1124 *4 *2)) + (-4 *2 (-13 (-600 (-562) *4) (-10 -7 (-6 -4402) (-6 -4403)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-845)) (-4 *3 (-1207)) (-5 *1 (-1124 *3 *2)) + (-4 *2 (-13 (-600 (-562) *3) (-10 -7 (-6 -4402) (-6 -4403))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1253 *4)) (-4 *4 (-634 (-544))) (-5 *2 (-112)) - (-5 *1 (-1281 *4))))) + (-12 (-5 *3 (-480 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) + (-5 *2 (-947 *5)) (-5 *1 (-939 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-857))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-683 *7)) (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) + (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-5 *1 (-919 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-1058 *3 *4 *2)) (-4 *2 (-845)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-609 *2) (-171))) (-5 *2 (-883 *4)) (-5 *1 (-169 *4 *5 *3)) - (-4 *4 (-1091)) (-4 *3 (-165 *5)))) + (-12 (-14 *4 (-639 (-1168))) (-4 *5 (-451)) + (-5 *2 + (-2 (|:| |glbase| (-639 (-246 *4 *5))) (|:| |glval| (-639 (-562))))) + (-5 *1 (-627 *4 *5)) (-5 *3 (-639 (-246 *4 *5)))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) + (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) + (-5 *1 (-1167))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207))))) +(((*1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1164 (-562))) (-5 *3 (-562)) (-4 *1 (-864 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) + (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-639 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1) (-5 *1 (-628)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-766)) (-4 *5 (-1044)) (-5 *2 (-562)) + (-5 *1 (-442 *5 *3 *6)) (-4 *3 (-1232 *5)) + (-4 *6 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))))) ((*1 *2 *3) - (-12 (-5 *3 (-635 (-1079 (-836 (-377))))) - (-5 *2 (-635 (-1079 (-836 (-224))))) (-5 *1 (-302)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-392)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-409 *3 *4)) - (-4 *4 (-1229 *3)))) + (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) + (-4 *3 (-1232 *4)) + (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-799 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1192) (-954)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-562)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-536 *4 *2)) + (-4 *2 (-1247 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-562)) (-4 *4 (-13 (-362) (-367) (-610 *3))) + (-4 *5 (-1232 *4)) (-4 *6 (-719 *4 *5)) (-5 *1 (-540 *4 *5 *6 *2)) + (-4 *2 (-1247 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-562)) (-4 *4 (-13 (-362) (-367) (-610 *3))) + (-5 *1 (-541 *4 *2)) (-4 *2 (-1247 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-13 (-554) (-146))) + (-5 *1 (-1144 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-589)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-622)))) ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) - (-5 *2 (-1253 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-417 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3)))) + (-12 (-4 *3 (-1092)) + (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) + (-5 *1 (-1068 *3 *4 *2)) + (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1092)) (-5 *1 (-1157 *3 *2)) (-4 *3 (-1092))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *4 (-639 (-1168))) + (-5 *2 (-683 (-315 (-224)))) (-5 *1 (-204)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1092)) (-4 *6 (-895 *5)) (-5 *2 (-683 *6)) + (-5 *1 (-686 *5 *6 *3 *4)) (-4 *3 (-372 *6)) + (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4402))))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) + (-5 *1 (-1152 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) + (-14 *4 (-1168)) (-14 *5 *3)))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) + (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) + (-5 *1 (-1167))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-909 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) + (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-910 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-417 (-947 *6))) (-5 *5 (-1168)) (-5 *3 (-947 *6)) + (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-910 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) + (-246 *4 (-406 (-562))))) + (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) + (-5 *1 (-504 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-5 *2 + (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (|:| |success| (-112)))) + (-5 *1 (-784)) (-5 *5 (-562))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-243 *2)) (-4 *2 (-1207))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-639 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) + (-4 *8 (-845)) (-5 *1 (-972 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-639 (-683 (-562)))) + (-5 *1 (-1102))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-589)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-622)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1092)) + (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) + (-5 *1 (-1068 *3 *4 *2)) + (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1092)) (-5 *1 (-1157 *2 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-1 (-1148 (-947 *4)) (-1148 (-947 *4)))) + (-5 *1 (-1264 *4)) (-4 *4 (-362))))) +(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) + ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) + (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) + (-5 *1 (-1167))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) + (-5 *7 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1092)) + (-4 *6 (-1092)) (-4 *2 (-1092)) (-5 *1 (-674 *5 *6 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1033 *4)) (-4 *3 (-306)) + (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *6 (-408 *4 *5)) + (-14 *7 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1256 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-987 *3)) + (-4 *5 (-1232 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) + (-5 *2 (-639 (-224))) (-5 *1 (-304))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-290))) + ((*1 *1) (-5 *1 (-857))) + ((*1 *1) + (-12 (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) + (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1077))) + ((*1 *1) + (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) + (-4 *3 (-13 (-1092) (-34))))) + ((*1 *1) (-5 *1 (-1171))) ((*1 *1) (-5 *1 (-1172)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-451)) (-4 *4 (-815)) + (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-562)) (-5 *1 (-315 *3)) (-4 *3 (-554)) (-4 *3 (-845))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-293 (-406 (-947 *5)))) (-5 *4 (-1168)) + (-4 *5 (-13 (-306) (-845) (-146))) + (-5 *2 (-1157 (-639 (-315 *5)) (-639 (-293 (-315 *5))))) + (-5 *1 (-1121 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) + (-4 *5 (-13 (-306) (-845) (-146))) + (-5 *2 (-1157 (-639 (-315 *5)) (-639 (-293 (-315 *5))))) + (-5 *1 (-1121 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-639 (-315 (-224)))) (-5 *1 (-266))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-845)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-845)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-281 *2)) (-4 *2 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-404 *1)) (-4 *1 (-420 *3)) (-4 *3 (-554)) (-4 *3 (-844)))) + (-12 + (-5 *2 + (-2 + (|:| -2320 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (|:| -2694 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1148 (-224))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1590 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-557)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-689 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -2320 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) + (|:| |abserr| (-224)) (|:| |relerr| (-224)))) + (|:| -2694 + (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) + (|:| |expense| (-378)) (|:| |accuracy| (-378)) + (|:| |intermediateResults| (-378)))))) + (-5 *1 (-798)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092))))) +(((*1 *1) (-5 *1 (-1077)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-5 *2 (-1164 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-554) (-845))) (-5 *2 (-168 *5)) + (-5 *1 (-596 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-997) (-1192))) + (-4 *3 (-13 (-429 (-168 *4)) (-997) (-1192)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1168)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-703 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1044))))) +(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-766)) (-4 *5 (-554)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-843))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1510 (-417 *3)))) + (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-1256 *5)) (-4 *5 (-306)) + (-4 *5 (-1044)) (-5 *2 (-683 *5)) (-5 *1 (-1024 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) + (-4 *4 (-13 (-845) (-554)))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *5 (-1232 *4)) (-5 *2 (-1164 (-406 *5))) (-5 *1 (-611 *4 *5)) + (-5 *3 (-406 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) + (-4 *5 (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562))))) + (-5 *2 (-1164 (-406 *6))) (-5 *1 (-611 *5 *6)) (-5 *3 (-406 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 (-315 (-224)))) + (-5 *2 + (-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) + (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562)))) + (-5 *1 (-304))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-562)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-766)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-788)) (-4 *4 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-845)) + (-5 *1 (-448 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) + (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-610 (-887 (-562)))) + (-4 *5 (-881 (-562))) + (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-565 *5 *3)) (-4 *3 (-625)) + (-4 *3 (-13 (-27) (-1192) (-429 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1168)) (-5 *4 (-838 *2)) (-4 *2 (-1131)) + (-4 *2 (-13 (-27) (-1192) (-429 *5))) + (-4 *5 (-610 (-887 (-562)))) (-4 *5 (-881 (-562))) + (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) + (-5 *1 (-565 *5 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1030)) (-5 *3 (-1168)) (-5 *1 (-266))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-114))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-557))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262))))) +(((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-523))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-639 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-788)) (-4 *3 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) + (-5 *1 (-448 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) + (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-535))) (-5 *1 (-535))))) +(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1131)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-766)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-372 *3)) (-4 *3 (-1207)) + (-4 *3 (-1092)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) + (-5 *2 (-562)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) + (-5 *2 (-562)))) + ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-528)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-562)) (-5 *3 (-140)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-562))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-143)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) (-5 *2 (-112)) + (-5 *1 (-1283 *4))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-639 + (-639 + (-3 (|:| -3254 (-1168)) + (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))))) + (-5 *1 (-1172))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-554)) (-4 *4 (-845)) + (-5 *1 (-571 *4 *2)) (-4 *2 (-429 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) + (-5 *2 (-1030)) (-5 *1 (-743))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) + (-5 *2 (-1030)) (-5 *1 (-741))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-639 (-1164 *4))) (-5 *3 (-1164 *4)) + (-4 *4 (-904)) (-5 *1 (-657 *4))))) +(((*1 *1) + (-12 (-4 *3 (-1092)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1092)) + (-4 *4 (-660 *3)))) + ((*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-639 *7))) (-4 *1 (-1200 *4 *5 *6 *7)) + (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1044)) (-5 *2 (-1256 *3)) (-5 *1 (-707 *3 *4)) + (-4 *4 (-1232 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) + (-14 *4 (-562))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-766)) (-5 *5 (-639 *3)) (-4 *3 (-306)) (-4 *6 (-845)) + (-4 *7 (-788)) (-5 *2 (-112)) (-5 *1 (-621 *6 *7 *3 *8)) + (-4 *8 (-944 *3 *7 *6))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-224)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-224)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-378)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-378))))) +(((*1 *2 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857))))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-562)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1150)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-505)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-589)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-477)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1158)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-622)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1088)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1082)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1066)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-965)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-179)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1031)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-310)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-665)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-153)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-524)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1267)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1059)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-516)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-675)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1107)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-132)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1266)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-670)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-217)))) + ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) + ((*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306)))) + ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) + ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-562))))) +(((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-752))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1256 (-1168))) (-5 *3 (-1256 (-452 *4 *5 *6 *7))) + (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-916)) + (-14 *6 (-639 (-1168))) (-14 *7 (-1256 (-683 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-452 *4 *5 *6 *7))) + (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-916)) + (-14 *6 (-639 *2)) (-14 *7 (-1256 (-683 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-461 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-533)))) - ((*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) + (-12 (-5 *2 (-1256 (-452 *3 *4 *5 *6))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) + (-14 *6 (-1256 (-683 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) - (-4 *5 (-609 (-1166))) (-4 *4 (-787)) (-4 *5 (-844)))) + (-12 (-5 *2 (-1256 (-1168))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) + (-14 *6 (-1256 (-683 *3))))) ((*1 *1 *2) - (-3936 - (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) - (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) - (-4 *5 (-609 (-1166)))) - (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) - (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844))))) + (-12 (-5 *2 (-1168)) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) + (-14 *4 (-916)) (-14 *5 (-639 *2)) (-14 *6 (-1256 (-683 *3))))) + ((*1 *1) + (-12 (-5 *1 (-452 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-916)) + (-14 *4 (-639 (-1168))) (-14 *5 (-1256 (-683 *2)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) + (-5 *2 (-814 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-841)) (-5 *1 (-1279 *3 *2)) (-4 *3 (-1044))))) +(((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *2 (-639 (-168 *4))) + (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843)))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) + ((*1 *1 *1) (|partial| -4 *1 (-717)))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-639 (-938 *4))) (-4 *1 (-1126 *4)) (-4 *4 (-1044)) + (-5 *2 (-766))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-916)) (-4 *1 (-403)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-403)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *2 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092))))) +(((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1092)) (-5 *2 (-766))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-639 (-1068 *4 *5 *2))) (-4 *4 (-1092)) + (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) + (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-639 (-1068 *5 *6 *2))) (-5 *4 (-916)) (-4 *5 (-1092)) + (-4 *6 (-13 (-1044) (-881 *5) (-845) (-610 (-887 *5)))) + (-4 *2 (-13 (-429 *6) (-881 *5) (-610 (-887 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-1193 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-766)) (-5 *1 (-225)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-168 (-224))) (-5 *3 (-766)) (-5 *1 (-225)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1131)))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) + ((*1 *2 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-128))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1495 *8))) + (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1495 *8))) + (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *8))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) + (-5 *2 (-1030)) (-5 *1 (-749))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-562))) (-4 *3 (-1044)) (-5 *1 (-592 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-562))) (-4 *1 (-1216 *3)) (-4 *3 (-1044)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-562))) (-4 *1 (-1247 *3)) (-4 *3 (-1044))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1280 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-845)) + (-4 *2 (-171)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-814 *4)) (-4 *1 (-1273 *4 *2)) (-4 *4 (-845)) + (-4 *2 (-1044)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1044)) (-5 *1 (-1279 *2 *3)) (-4 *3 (-841))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-170))) ((*1 *1 *1) (-4 *1 (-544))) + ((*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) + (-4 *3 (-13 (-1092) (-34)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) + ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-562)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-467)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-639 *3)) (-5 *1 (-956 *3)) (-4 *3 (-544))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))) + (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-643 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -1602 *6) (|:| |sol?| (-112))) (-562) + *6)) + (-4 *6 (-362)) (-4 *7 (-1232 *6)) + (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) + (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-639 (-766))) + (-5 *1 (-899 *4))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-610 *2) (-171))) (-5 *2 (-887 *4)) + (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1092)) (-4 *3 (-165 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-1086 (-838 (-378))))) + (-5 *2 (-639 (-1086 (-838 (-224))))) (-5 *1 (-304)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-393)))) ((*1 *1 *2) - (-12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) - (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) - (-5 *1 (-1060 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) - (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1099 *4 *5 *6 *7)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1148)) - (-5 *1 (-1135 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1171)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-1184)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-544)) (-5 *1 (-1184)))) - ((*1 *2 *3) - (-12 (-5 *3 (-774 *4 (-858 *5))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-14 *5 (-635 (-1166))) (-5 *2 (-774 *4 (-858 *6))) (-5 *1 (-1280 *4 *5 *6)) - (-14 *6 (-635 (-1166))))) - ((*1 *2 *3) - (-12 (-5 *3 (-939 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-939 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) - (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) - ((*1 *2 *3) - (-12 (-5 *3 (-774 *4 (-858 *6))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-14 *6 (-635 (-1166))) (-5 *2 (-939 (-1017 (-406 *4)))) - (-5 *1 (-1280 *4 *5 *6)) (-14 *5 (-635 (-1166))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1160 *4)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-1160 (-1017 (-406 *4)))) (-5 *1 (-1280 *4 *5 *6)) - (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6)))) - (-4 *4 (-13 (-842) (-306) (-146) (-1013))) (-14 *6 (-635 (-1166))) - (-5 *2 (-635 (-774 *4 (-858 *6)))) (-5 *1 (-1280 *4 *5 *6)) - (-14 *5 (-635 (-1166)))))) -(((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543)))) - ((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3)) - (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-943 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-4 *7 (-943 *6 *4 *5)) - (-5 *2 (-404 (-1160 *7))) (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) + (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) + (-4 *4 (-1232 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-450)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-404 *1)) (-4 *1 (-943 *3 *4 *5)))) + (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) + (-5 *2 (-1256 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-554)) + (-4 *3 (-845)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-462 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-535)))) + ((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) + (-12 (-4 *3 (-171)) (-4 *1 (-719 *3 *2)) (-4 *2 (-1232 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + ((*1 *1 *2) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) + (-4 *5 (-610 (-1168))) (-4 *4 (-788)) (-4 *5 (-845)))) + ((*1 *1 *2) + (-4037 + (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) + (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) + (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) + (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) + ((*1 *1 *2) + (-12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) + (-4 *4 (-788)) (-4 *5 (-845)))) ((*1 *2 *3) - (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-450)) (-5 *2 (-404 *3)) - (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4)))) + (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1495 *8))) + (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1150)) + (-5 *1 (-1062 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-943 *6 *4 *5)) - (-5 *2 (-404 (-1160 (-406 *7)))) (-5 *1 (-1162 *4 *5 *6 *7)) - (-5 *3 (-1160 (-406 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-404 *1)) (-4 *1 (-1209)))) + (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1495 *8))) + (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1150)) + (-5 *1 (-1137 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-1187)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-1187)))) ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-1233 *4 *3)) - (-4 *3 (-13 (-1229 *4) (-554) (-10 -8 (-15 -3545 ($ $ $))))))) + (-12 (-5 *3 (-775 *4 (-859 *5))) + (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) + (-5 *2 (-775 *4 (-859 *6))) (-5 *1 (-1282 *4 *5 *6)) + (-14 *6 (-639 (-1168))))) ((*1 *2 *3) - (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-14 *5 (-635 (-1166))) - (-5 *2 (-635 (-1136 *4 (-529 (-858 *6)) (-858 *6) (-774 *4 (-858 *6))))) - (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) - (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) - (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) - (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) - (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-635 (-1166))) - (-5 *2 (-635 (-635 (-377)))) (-5 *1 (-1016)) (-5 *5 (-377)))) + (-12 (-5 *3 (-947 *4)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-947 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) + (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) ((*1 *2 *3) - (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-14 *5 (-635 (-1166))) (-5 *2 (-635 (-635 (-1017 (-406 *4))))) - (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) - (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) + (-12 (-5 *3 (-775 *4 (-859 *6))) + (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *6 (-639 (-1168))) + (-5 *2 (-947 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) + (-14 *5 (-639 (-1168))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-1164 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) + (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1138 *4 (-530 (-859 *6)) (-859 *6) (-775 *4 (-859 *6)))) + (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *6 (-639 (-1168))) + (-5 *2 (-639 (-775 *4 (-859 *6)))) (-5 *1 (-1282 *4 *5 *6)) + (-14 *5 (-639 (-1168)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *1 *1) (-4 *1 (-492))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562))))) +(((*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-766)) (-5 *1 (-587))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) + (-5 *2 (-1164 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) + (-5 *2 (-1164 *3))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4404 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) + (-4 *2 (-1044)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) + (-4 *4 (-681 *2 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) + (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4403)) (-4 *1 (-119 *3)) + (-4 *3 (-1207)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4403)) (-4 *1 (-119 *3)) + (-4 *3 (-1207)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) + (-4 *2 (-1207)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1168)) (-5 *1 (-628)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1223 (-562))) (|has| *1 (-6 -4403)) (-4 *1 (-645 *2)) + (-4 *2 (-1207)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-639 (-562))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4403)) (-4 *1 (-1005 *2)) + (-4 *2 (-1207)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) + (-4 *2 (-1207)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4403)) (-4 *1 (-1244 *3)) + (-4 *3 (-1207)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) + (-4 *2 (-1207))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) - (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-635 (-1017 (-406 *5))))) (-5 *1 (-1280 *5 *6 *7)) - (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-635 (-1017 (-406 *4))))) (-5 *1 (-1280 *4 *5 *6)) - (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1039 *4 *5)) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-14 *5 (-635 (-1166))) - (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4)))))) - (-5 *1 (-1280 *4 *5 *6)) (-14 *6 (-635 (-1166))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) - (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))) - (-14 *7 (-635 (-1166))))) + (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) - (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))) - (-14 *7 (-635 (-1166))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) - (-5 *1 (-1280 *5 *6 *7)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))) - (-14 *7 (-635 (-1166))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4)))))) - (-5 *1 (-1280 *4 *5 *6)) (-5 *3 (-635 (-939 *4))) (-14 *5 (-635 (-1166))) - (-14 *6 (-635 (-1166)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *5 *6))) - (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-842) (-306) (-146) (-1013))) (-5 *2 (-635 (-1039 *5 *6))) - (-5 *1 (-1280 *5 *6 *7)) (-14 *6 (-635 (-1166))) (-14 *7 (-635 (-1166))))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-842) (-306) (-146) (-1013))) - (-5 *2 (-635 (-1039 *4 *5))) (-5 *1 (-1280 *4 *5 *6)) - (-14 *5 (-635 (-1166))) (-14 *6 (-635 (-1166)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1143 *4) (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1279 *4)) - (-4 *4 (-1204)))) + (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-874 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) + (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) + (-5 *1 (-258 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-635 (-1143 *5)) (-635 (-1143 *5)))) (-5 *4 (-544)) - (-5 *2 (-635 (-1143 *5))) (-5 *1 (-1279 *5)) (-4 *5 (-1204))))) + (-12 (-5 *3 (-874 *5)) (-5 *4 (-1084 (-378))) + (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) + (-5 *1 (-258 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) + (-5 *2 (-1125 (-224))) (-5 *1 (-258 *3)) + (-4 *3 (-13 (-610 (-535)) (-1092))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *3)) + (-4 *3 (-13 (-610 (-535)) (-1092))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-877 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) + (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) + (-5 *1 (-258 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-877 *5)) (-5 *4 (-1084 (-378))) + (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) + (-5 *1 (-258 *5))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-112)) + (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1030)) (-5 *1 (-751))))) +(((*1 *2 *1) + (-12 (-4 *1 (-600 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1092)) + (-4 *2 (-845))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-1058 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1211)) + (-4 *6 (-1232 (-406 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-341 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-912)) (-4 *6 (-13 (-554) (-844))) (-5 *2 (-635 (-313 *6))) - (-5 *1 (-220 *5 *6)) (-5 *3 (-313 *6)) (-4 *5 (-1042)))) - ((*1 *2 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554)))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 *5)) (-4 *5 (-13 (-29 *4) (-1190))) - (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-635 *5)) - (-5 *1 (-582 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 (-406 (-939 *4)))) - (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) - (-5 *2 (-635 (-313 *4))) (-5 *1 (-585 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1139 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) - (-4 *2 (-1139 *4)))) + (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1495 *9)))) + (-5 *4 (-766)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-1261)) + (-5 *1 (-1062 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1495 *9)))) + (-5 *4 (-766)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-1261)) + (-5 *1 (-1137 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) + (-5 *2 (-639 (-639 (-639 (-766)))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-168 (-224)))) (-5 *2 (-1030)) + (-5 *1 (-751))))) +(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-938 (-224)))) (-5 *1 (-1257))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-143)))) + ((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-143))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150)) (-5 *2 (-562)) (-5 *1 (-1189 *4)) + (-4 *4 (-1044))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1269 (-1166) *3)) (-5 *1 (-1275 *3)) (-4 *3 (-1042)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) - (-4 *4 (-1042))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1269 (-1166) *3)) (-4 *3 (-1042)) (-5 *1 (-1275 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) - (-5 *1 (-1278 *3 *4))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) + (-4 *2 (-1232 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1150)) (-5 *1 (-304))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) +(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-1044)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) + ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-938 (-224))) (-5 *2 (-224)) (-5 *1 (-1203)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-1044))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1232 *5)) + (-4 *5 (-13 (-27) (-429 *4))) + (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) + (-4 *7 (-1232 (-406 *6))) (-5 *1 (-550 *4 *5 *6 *7 *2)) + (-4 *2 (-341 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-1185))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1092)) + (-4 *2 (-130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-766))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-608 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))) + (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-276 *4 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) +(((*1 *1) (-5 *1 (-140)))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-608 *4)) (-5 *6 (-1164 *4)) + (-4 *4 (-13 (-429 *7) (-27) (-1192))) + (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) + (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-608 *4)) (-5 *6 (-406 (-1164 *4))) + (-4 *4 (-13 (-429 *7) (-27) (-1192))) + (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) + (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-224))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *1 *1 *1) (-5 *1 (-378))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-562)) + (-14 *6 (-766)) (-4 *7 (-171)) (-4 *8 (-171)) + (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *9)) (-4 *9 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) + (-4 *8 (-1044)) (-4 *2 (-944 *9 *7 *5)) + (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) + (-4 *4 (-944 *8 *6 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 (-1148 (-224))) (-5 *1 (-191)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-224))) (-5 *4 (-639 (-1168))) + (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *4 (-639 (-1168))) + (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-916)) (-5 *4 (-224)) (-5 *5 (-562)) (-5 *6 (-869)) + (-5 *2 (-1261)) (-5 *1 (-1257))))) +(((*1 *1 *1) + (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) + (-14 *3 (-639 (-1168)))))) (((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |k| (-1166)) (|:| |c| (-1275 *3))))) - (-5 *1 (-1275 *3)) (-4 *3 (-1042)))) + (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) + (-5 *2 (-1256 *6)) (-5 *1 (-335 *3 *4 *5 *6)) + (-4 *6 (-341 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-1164 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *4 (-608 $)) $)) + (-15 -4076 ((-1117 *4 (-608 $)) $)) + (-15 -4054 ($ (-1117 *4 (-608 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-362)) (-4 *4 (-554)) (-4 *5 (-1232 *4)) + (-5 *2 (-2 (|:| -2401 (-619 *4 *5)) (|:| -3937 (-406 *5)))) + (-5 *1 (-619 *4 *5)) (-5 *3 (-406 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |k| *3) (|:| |c| (-1278 *3 *4))))) - (-5 *1 (-1278 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-544)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-765)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-912)))) + (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) + (-14 *3 (-916)) (-4 *4 (-1044)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-451)) (-4 *3 (-1044)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1232 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1076 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-562) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1076 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1257)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1257)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) + (-5 *2 (-1258)) (-5 *1 (-254)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-293 *7)) (-5 *4 (-1168)) (-5 *5 (-639 (-262))) + (-4 *7 (-429 *6)) (-4 *6 (-13 (-554) (-845) (-1033 (-562)))) + (-5 *2 (-1257)) (-5 *1 (-255 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1257)) + (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1257)) (-5 *1 (-258 *3)) + (-4 *3 (-13 (-610 (-535)) (-1092))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-872 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) + (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1257)) + (-5 *1 (-258 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-872 *5)) (-5 *4 (-1084 (-378))) + (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1257)) + (-5 *1 (-258 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-874 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) + (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) + (-5 *1 (-258 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-874 *5)) (-5 *4 (-1084 (-378))) + (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) + (-5 *1 (-258 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) + (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1258)) (-5 *1 (-258 *3)) + (-4 *3 (-13 (-610 (-535)) (-1092))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-877 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) + (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) + (-5 *1 (-258 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-877 *5)) (-5 *4 (-1084 (-378))) + (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) + (-5 *1 (-258 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1257)) (-5 *1 (-259)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-639 (-224))) (-5 *4 (-639 (-262))) (-5 *2 (-1257)) + (-5 *1 (-259)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *2 (-1257)) (-5 *1 (-259)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *4 (-639 (-262))) + (-5 *2 (-1257)) (-5 *1 (-259)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1258)) (-5 *1 (-259)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-639 (-224))) (-5 *4 (-639 (-262))) (-5 *2 (-1258)) + (-5 *1 (-259))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-562)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-766)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-916)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) + (-4 *4 (-171)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-156)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-156)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190))) (-5 *1 (-226 *3)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1102)) (-4 *2 (-1204)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1102)) (-4 *2 (-1204)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1091)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) + (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192))) + (-5 *1 (-226 *3)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-4364 *3) (-765))) + (-12 (-5 *1 (-293 *2)) (-4 *2 (-1104)) (-4 *2 (-1207)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-293 *2)) (-4 *2 (-1104)) (-4 *2 (-1207)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-845)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1092)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) + (-4 *6 (-237 (-3492 *3) (-766))) (-14 *7 - (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6)) - (-2 (|:| -2535 *5) (|:| -2536 *6)))) - (-5 *1 (-459 *3 *4 *5 *6 *7 *2)) (-4 *5 (-844)) - (-4 *2 (-943 *4 *6 (-858 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *6)) + (-2 (|:| -2466 *5) (|:| -1960 *6)))) + (-5 *1 (-460 *3 *4 *5 *6 *7 *2)) (-4 *5 (-845)) + (-4 *2 (-944 *4 *6 (-859 *3))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) - (-4 *5 (-943 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-533))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1042)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-1049)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) - (-4 *7 (-1091)) (-5 *2 (-1 *7 *5)) (-5 *1 (-677 *5 *6 *7)))) + (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) + (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-535))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1044)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1044)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1051)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1092)) + (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-678 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-679 *3 *2 *4)) (-4 *3 (-1042)) (-4 *2 (-371 *3)) - (-4 *4 (-371 *3)))) + (-12 (-4 *1 (-681 *3 *2 *4)) (-4 *3 (-1044)) (-4 *2 (-372 *3)) + (-4 *4 (-372 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-679 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *2 (-371 *3)))) + (-12 (-4 *1 (-681 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) + (-4 *2 (-372 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)))) + (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)))) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)))) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-714))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-715))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-554)) - (-5 *1 (-962 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-1049)))) - ((*1 *1 *1 *1) (-4 *1 (-1102))) + (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-554)) + (-5 *1 (-964 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1051)))) + ((*1 *1 *1 *1) (-4 *1 (-1104))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *2 (-237 *3 *4)) + (-12 (-4 *1 (-1115 *3 *4 *2 *5)) (-4 *4 (-1044)) (-4 *2 (-237 *3 *4)) (-4 *5 (-237 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) + (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) - (-4 *2 (-943 *3 (-529 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-936 (-224))) (-5 *3 (-224)) (-5 *1 (-1201)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-720)))) + (-12 (-4 *3 (-1044)) (-4 *4 (-845)) (-5 *1 (-1118 *3 *4 *2)) + (-4 *2 (-944 *3 (-530 *4) *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-938 (-224))) (-5 *3 (-224)) (-5 *1 (-1203)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-544)) (-4 *1 (-1252 *3)) (-4 *3 (-1204)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166))))) - ((*1 *1 *1) - (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) - (-14 *3 (-635 (-1166))))) - ((*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1091)))) - ((*1 *1 *1) - (-12 (-14 *2 (-635 (-1166))) (-4 *3 (-171)) (-4 *5 (-237 (-4364 *2) (-765))) - (-14 *6 - (-1 (-112) (-2 (|:| -2535 *4) (|:| -2536 *5)) - (-2 (|:| -2535 *4) (|:| -2536 *5)))) - (-5 *1 (-459 *2 *3 *4 *5 *6 *7)) (-4 *4 (-844)) - (-4 *7 (-943 *3 *5 (-858 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-844)))) - ((*1 *1 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) - ((*1 *1 *1) - (-12 (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1042)) (-4 *3 (-720)))) - ((*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) + (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-562)) (-4 *1 (-1254 *3)) (-4 *3 (-1207)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) - ((*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840))))) + (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841))))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-787)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-635 (-1166))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-639 (-1168))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) - (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) - (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) - (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-544)) - (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-134 *5 *6 *8)) - (-5 *1 (-135 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-562)) + (-14 *6 (-766)) (-4 *7 (-171)) (-4 *8 (-171)) + (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-171)) (-4 *6 (-171)) - (-5 *2 (-167 *6)) (-5 *1 (-168 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171)) + (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-313 *3) (-313 *3))) (-4 *3 (-13 (-1042) (-844))) - (-5 *1 (-222 *3 *4)) (-14 *4 (-635 (-1166))))) + (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1044) (-845))) + (-5 *1 (-222 *3 *4)) (-14 *4 (-639 (-1168))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-238 *5 *6)) (-14 *5 (-765)) (-4 *6 (-1204)) - (-4 *7 (-1204)) (-5 *2 (-238 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-292 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-766)) + (-4 *6 (-1207)) (-4 *7 (-1207)) (-5 *2 (-239 *5 *7)) + (-5 *1 (-238 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-292 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-292 *6)) (-5 *1 (-293 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-606 *1)) (-4 *1 (-297)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-293 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1148)) (-5 *5 (-606 *6)) (-4 *6 (-297)) - (-4 *2 (-1204)) (-5 *1 (-298 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1150)) (-5 *5 (-608 *6)) + (-4 *6 (-301)) (-4 *2 (-1207)) (-5 *1 (-296 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-606 *5)) (-4 *5 (-297)) (-4 *2 (-297)) - (-5 *1 (-299 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-608 *5)) (-4 *5 (-301)) + (-4 *2 (-301)) (-5 *1 (-297 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-608 *1)) (-4 *1 (-301)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-682 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) - (-5 *2 (-682 *6)) (-5 *1 (-304 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-683 *5)) (-4 *5 (-1044)) + (-4 *6 (-1044)) (-5 *2 (-683 *6)) (-5 *1 (-303 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-313 *5)) (-4 *5 (-844)) (-4 *6 (-844)) - (-5 *2 (-313 *6)) (-5 *1 (-314 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-845)) + (-4 *6 (-845)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-332 *5 *6 *7 *8)) (-4 *5 (-362)) - (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) - (-4 *9 (-362)) (-4 *10 (-1229 *9)) (-4 *11 (-1229 (-406 *10))) - (-5 *2 (-332 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362)) + (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) + (-4 *9 (-362)) (-4 *10 (-1232 *9)) (-4 *11 (-1232 (-406 *10))) + (-5 *2 (-335 *9 *10 *11 *12)) + (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-341 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1091)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1092)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1209)) (-4 *8 (-1209)) (-4 *6 (-1229 *5)) - (-4 *7 (-1229 (-406 *6))) (-4 *9 (-1229 *8)) (-4 *2 (-341 *8 *9 *10)) - (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7)) - (-4 *10 (-1229 (-406 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1211)) (-4 *8 (-1211)) + (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *9 (-1232 *8)) + (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1232 (-406 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *2 (-371 *6)) - (-5 *1 (-372 *5 *4 *6 *2)) (-4 *4 (-371 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) + (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) - (-4 *4 (-1091)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-554)) (-5 *1 (-404 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-1092)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-404 *5)) (-4 *5 (-554)) (-4 *6 (-554)) - (-5 *2 (-404 *6)) (-5 *1 (-405 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-554)) + (-4 *6 (-554)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-554)) (-4 *6 (-554)) - (-5 *2 (-406 *6)) (-5 *1 (-407 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-554)) + (-4 *6 (-554)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) - (-4 *6 (-984 *5)) (-4 *7 (-1229 *6)) (-4 *8 (-13 (-409 *6 *7) (-1031 *6))) - (-4 *9 (-306)) (-4 *10 (-984 *9)) (-4 *11 (-1229 *10)) - (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-413 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-409 *10 *11) (-1031 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-417 *6)) - (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))) + (-4 *6 (-987 *5)) (-4 *7 (-1232 *6)) + (-4 *8 (-13 (-408 *6 *7) (-1033 *6))) (-4 *9 (-306)) + (-4 *10 (-987 *9)) (-4 *11 (-1232 *10)) + (-5 *2 (-412 *9 *10 *11 *12)) + (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-408 *10 *11) (-1033 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) + (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-554)) (-5 *1 (-417 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1042) (-844))) - (-4 *6 (-13 (-1042) (-844))) (-4 *2 (-420 *6)) (-5 *1 (-421 *5 *4 *6 *2)) - (-4 *4 (-420 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1044) (-845))) + (-4 *6 (-13 (-1044) (-845))) (-4 *2 (-429 *6)) + (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-425 *6)) - (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-425 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3)) (-4 *3 (-1204)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) + (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-507 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-844)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-488 *3)) (-4 *3 (-1207)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-508 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-845)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-362)) (-4 *6 (-362)) - (-5 *2 (-580 *6)) (-5 *1 (-581 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-362)) + (-4 *6 (-362)) (-5 *2 (-583 *6)) (-5 *1 (-582 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2290 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362)) - (-4 *6 (-362)) (-5 *2 (-2 (|:| -2290 *6) (|:| |coeff| *6))) - (-5 *1 (-581 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -3860 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-362)) (-4 *6 (-362)) + (-5 *2 (-2 (|:| -3860 *6) (|:| |coeff| *6))) + (-5 *1 (-582 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362)) - (-4 *2 (-362)) (-5 *1 (-581 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-582 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-362)) (-4 *6 (-362)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-581 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-596 *6)) (-5 *1 (-593 *5 *6)))) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-362)) (-4 *6 (-362)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-582 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-597 *6)) (-5 *1 (-594 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-596 *7)) - (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-596 *8)) - (-5 *1 (-594 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-597 *7)) + (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-597 *8)) + (-5 *1 (-595 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-596 *7)) - (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8)) - (-5 *1 (-594 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1148 *6)) (-5 *5 (-597 *7)) + (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) + (-5 *1 (-595 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-596 *6)) (-5 *5 (-1143 *7)) - (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8)) - (-5 *1 (-594 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-1148 *7)) + (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) + (-5 *1 (-595 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-635 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-635 *6)) (-5 *1 (-636 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-639 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-639 *6)) (-5 *1 (-637 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-635 *6)) (-5 *5 (-635 *7)) - (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-635 *8)) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-639 *6)) (-5 *5 (-639 *7)) + (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-639 *8)) (-5 *1 (-638 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-371 *5)) - (-4 *7 (-371 *5)) (-4 *2 (-679 *8 *9 *10)) - (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-679 *5 *6 *7)) - (-4 *9 (-371 *8)) (-4 *10 (-371 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1042)) - (-4 *8 (-1042)) (-4 *6 (-371 *5)) (-4 *7 (-371 *5)) (-4 *2 (-679 *8 *9 *10)) - (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-679 *5 *6 *7)) - (-4 *9 (-371 *8)) (-4 *10 (-371 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-554)) (-4 *7 (-554)) (-4 *6 (-1229 *5)) - (-4 *2 (-1229 (-406 *8))) (-5 *1 (-703 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1229 (-406 *6))) (-4 *8 (-1229 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1042)) (-4 *9 (-1042)) (-4 *5 (-844)) - (-4 *6 (-787)) (-4 *2 (-943 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-787)) (-4 *4 (-943 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-844)) (-4 *6 (-844)) (-4 *7 (-787)) - (-4 *9 (-1042)) (-4 *2 (-943 *9 *8 *6)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-787)) (-4 *4 (-943 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-729 *5 *7)) (-4 *5 (-1042)) (-4 *6 (-1042)) - (-4 *7 (-720)) (-5 *2 (-729 *6 *7)) (-5 *1 (-728 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1044)) (-4 *8 (-1044)) + (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10)) + (-5 *1 (-679 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7)) + (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1044)) + (-4 *8 (-1044)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) + (-4 *2 (-681 *8 *9 *10)) (-5 *1 (-679 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-681 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-554)) (-4 *7 (-554)) + (-4 *6 (-1232 *5)) (-4 *2 (-1232 (-406 *8))) + (-5 *1 (-704 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1232 (-406 *6))) + (-4 *8 (-1232 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1044)) (-4 *9 (-1044)) + (-4 *5 (-845)) (-4 *6 (-788)) (-4 *2 (-944 *9 *7 *5)) + (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) + (-4 *4 (-944 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-845)) (-4 *6 (-845)) (-4 *7 (-788)) + (-4 *9 (-1044)) (-4 *2 (-944 *9 *8 *6)) + (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-788)) + (-4 *4 (-944 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-730 *5 *7)) (-4 *5 (-1044)) + (-4 *6 (-1044)) (-4 *7 (-721)) (-5 *2 (-730 *6 *7)) + (-5 *1 (-729 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-729 *3 *4)) (-4 *4 (-720)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-730 *3 *4)) + (-4 *4 (-721)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) - (-5 *2 (-775 *6)) (-5 *1 (-776 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1044)) + (-4 *6 (-1044)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-790 *6)) - (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-790 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) + (-4 *2 (-792 *6)) (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-792 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) - (-5 *2 (-826 *6)) (-5 *1 (-827 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1092)) + (-4 *6 (-1092)) (-5 *2 (-828 *6)) (-5 *1 (-827 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-826 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1091)) - (-4 *6 (-1091)) (-5 *1 (-827 *5 *6)))) + (-12 (-5 *2 (-828 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *1 (-827 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) - (-5 *2 (-836 *6)) (-5 *1 (-837 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1092)) + (-4 *6 (-1092)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-836 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-836 *5)) (-4 *5 (-1091)) - (-4 *6 (-1091)) (-5 *1 (-837 *5 *6)))) + (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *1 (-837 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-870 *6)) (-5 *1 (-869 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-881 *5 *6)) (-4 *5 (-1091)) (-4 *6 (-1091)) - (-4 *7 (-1091)) (-5 *2 (-881 *5 *7)) (-5 *1 (-882 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-884 *5 *6)) (-4 *5 (-1092)) + (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-884 *5 *7)) + (-5 *1 (-883 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) - (-5 *2 (-883 *6)) (-5 *1 (-885 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) + (-4 *6 (-1092)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) - (-5 *2 (-939 *6)) (-5 *1 (-940 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-947 *5)) (-4 *5 (-1044)) + (-4 *6 (-1044)) (-5 *2 (-947 *6)) (-5 *1 (-941 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-844)) (-4 *8 (-1042)) - (-4 *6 (-787)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-845)) + (-4 *8 (-1044)) (-4 *6 (-788)) (-4 *2 - (-13 (-1091) - (-10 -8 (-15 -4246 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-765)))))) - (-5 *1 (-945 *6 *7 *8 *5 *2)) (-4 *5 (-943 *8 *6 *7)))) + (-13 (-1092) + (-10 -8 (-15 -1835 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766)))))) + (-5 *1 (-946 *6 *7 *8 *5 *2)) (-4 *5 (-944 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-951 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-951 *6)) (-5 *1 (-952 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-953 *6)) (-5 *1 (-952 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) - (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-938 *5)) (-4 *5 (-1044)) + (-4 *6 (-1044)) (-5 *2 (-938 *6)) (-5 *1 (-976 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-939 *4))) (-4 *4 (-1042)) (-4 *2 (-943 (-939 *4) *5 *6)) - (-4 *5 (-787)) + (-12 (-5 *3 (-1 *2 (-947 *4))) (-4 *4 (-1044)) + (-4 *2 (-944 (-947 *4) *5 *6)) (-4 *5 (-788)) (-4 *6 - (-13 (-844) - (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166)))))) - (-5 *1 (-977 *4 *5 *6 *2)))) + (-13 (-845) + (-10 -8 (-15 -4208 ((-1168) $)) + (-15 -2444 ((-3 $ "failed") (-1168)))))) + (-5 *1 (-979 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-4 *2 (-984 *6)) - (-5 *1 (-985 *5 *6 *4 *2)) (-4 *4 (-984 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-554)) (-4 *6 (-554)) + (-4 *2 (-987 *6)) (-5 *1 (-985 *5 *6 *4 *2)) (-4 *4 (-987 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-991 *6)) - (-5 *1 (-992 *4 *5 *2 *6)) (-4 *4 (-991 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) + (-4 *2 (-992 *6)) (-5 *1 (-993 *4 *5 *2 *6)) (-4 *4 (-992 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) + (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1042)) (-4 *10 (-1042)) (-14 *5 (-765)) - (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) - (-4 *2 (-1045 *5 *6 *10 *11 *12)) - (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) + (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1044)) (-4 *10 (-1044)) + (-14 *5 (-766)) (-14 *6 (-766)) (-4 *8 (-237 *6 *7)) + (-4 *9 (-237 *5 *7)) (-4 *2 (-1047 *5 *6 *10 *11 *12)) + (-5 *1 (-1049 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1047 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) (-4 *12 (-237 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-1079 *6)) (-5 *1 (-1080 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-1086 *6)) (-5 *1 (-1081 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-842)) (-4 *5 (-1204)) - (-4 *6 (-1204)) (-5 *2 (-635 *6)) (-5 *1 (-1080 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-843)) + (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-639 *6)) + (-5 *1 (-1081 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-1082 *6)) (-5 *1 (-1083 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-1084 *6)) (-5 *1 (-1083 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-842)) - (-4 *2 (-1139 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1087 *4 *2)) (-4 *4 (-843)) + (-4 *2 (-1141 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-1143 *6)) (-5 *1 (-1145 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1143 *6)) (-5 *5 (-1143 *7)) - (-4 *6 (-1204)) (-4 *7 (-1204)) (-4 *8 (-1204)) (-5 *2 (-1143 *8)) - (-5 *1 (-1146 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1148 *6)) (-5 *5 (-1148 *7)) + (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) + (-5 *1 (-1147 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) - (-5 *2 (-1160 *6)) (-5 *1 (-1161 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1044)) + (-4 *6 (-1044)) (-5 *2 (-1164 *6)) (-5 *1 (-1162 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-1091)) - (-4 *4 (-1091)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1213 *5 *7 *9)) (-4 *5 (-1042)) - (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1213 *6 *8 *10)) (-5 *1 (-1214 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1166)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1044)) + (-4 *6 (-1044)) (-14 *7 (-1168)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1168)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-1220 *6)) (-5 *1 (-1221 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-1223 *6)) (-5 *1 (-1222 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5)) (-4 *5 (-842)) (-4 *5 (-1204)) - (-4 *6 (-1204)) (-5 *2 (-1143 *6)) (-5 *1 (-1221 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-843)) + (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1148 *6)) + (-5 *1 (-1222 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1222 *5 *6)) (-14 *5 (-1166)) - (-4 *6 (-1042)) (-4 *8 (-1042)) (-5 *2 (-1222 *7 *8)) - (-5 *1 (-1223 *5 *6 *7 *8)) (-14 *7 (-1166)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1229 *5 *6)) (-14 *5 (-1168)) + (-4 *6 (-1044)) (-4 *8 (-1044)) (-5 *2 (-1229 *7 *8)) + (-5 *1 (-1224 *5 *6 *7 *8)) (-14 *7 (-1168)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1229 *6)) - (-5 *1 (-1230 *5 *4 *6 *2)) (-4 *4 (-1229 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) + (-4 *2 (-1232 *6)) (-5 *1 (-1230 *5 *4 *6 *2)) (-4 *4 (-1232 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1234 *5 *7 *9)) (-4 *5 (-1042)) - (-4 *6 (-1042)) (-14 *7 (-1166)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1234 *6 *8 *10)) (-5 *1 (-1235 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1166)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5 *7 *9)) (-4 *5 (-1044)) + (-4 *6 (-1044)) (-14 *7 (-1168)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1241 *6 *8 *10)) (-5 *1 (-1236 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1168)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1042)) (-4 *6 (-1042)) (-4 *2 (-1246 *6)) - (-5 *1 (-1244 *5 *6 *4 *2)) (-4 *4 (-1246 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) + (-4 *2 (-1247 *6)) (-5 *1 (-1245 *5 *6 *4 *2)) (-4 *4 (-1247 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *6 (-1204)) - (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) + (-4 *6 (-1207)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1253 *5)) - (-4 *5 (-1204)) (-4 *6 (-1204)) (-5 *2 (-1253 *6)) (-5 *1 (-1254 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1256 *5)) + (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1256 *6)) + (-5 *1 (-1255 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) - (-4 *4 (-1042)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-1044)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-1277 *3 *4)) - (-4 *4 (-840))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-34)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-129)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-544)))) - ((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-813 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-840)) (-5 *1 (-1277 *3 *2)) (-4 *3 (-1042))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1278 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-844)) - (-4 *2 (-171)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-813 *4)) (-4 *1 (-1273 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1042)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1091)) (-5 *2 (-1 *5 *4)) (-5 *1 (-676 *4 *5)) - (-4 *4 (-1091)))) - ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) - ((*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1042)))) - ((*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-1277 *2 *3)) (-4 *3 (-840))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-1279 *3 *4)) + (-4 *4 (-841))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-639 (-1164 *5))) (-5 *3 (-1164 *5)) + (-4 *5 (-165 *4)) (-4 *4 (-544)) (-5 *1 (-148 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-639 *3)) (-4 *3 (-1232 *5)) + (-4 *5 (-1232 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-639 (-1164 (-562)))) (-5 *3 (-1164 (-562))) + (-5 *1 (-570)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-639 (-1164 *1))) (-5 *3 (-1164 *1)) + (-4 *1 (-904))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-916)) + (-5 *2 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) + (-5 *1 (-345 *4)) (-4 *4 (-348))))) (((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-840))))) -(((*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) - ((*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-840))))) + (-12 (-5 *2 (-639 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) + (-14 *4 (-766)) (-4 *5 (-171))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-362)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-224)))) - ((*1 *1 *1 *1) - (-3936 (-12 (-5 *1 (-292 *2)) (-4 *2 (-362)) (-4 *2 (-1204))) - (-12 (-5 *1 (-292 *2)) (-4 *2 (-471)) (-4 *2 (-1204))))) - ((*1 *1 *1 *1) (-4 *1 (-362))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-377)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1115 *3 (-606 *1))) (-4 *3 (-554)) (-4 *3 (-844)) - (-4 *1 (-420 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-471))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-533))) + (|partial| -12 (-5 *2 (-916)) (-5 *1 (-1093 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-921)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-171)) (-5 *1 (-614 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-720) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-171)) (-5 *1 (-614 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-720) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)) (-4 *2 (-362)))) + (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-921)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-922)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-171)) (-5 *1 (-645 *2 *4 *3)) (-4 *2 (-711 *4)) - (-4 *3 (|SubsetCategory| (-720) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-171)) (-5 *1 (-645 *3 *4 *2)) (-4 *3 (-711 *4)) - (-4 *2 (|SubsetCategory| (-720) *4)))) + (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-922))))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-378)) (-5 *1 (-1035))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1247 *4)) + (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-1 (-1148 *4) (-1148 *4))) + (-5 *1 (-1249 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-243 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)) (-4 *2 (-362)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-859 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1042)) - (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-765))) (-14 *5 (-765)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) (-4 *5 (-237 *4 *2)) - (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-362)))) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 *1)) (-4 *1 (-301)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-114)) (-5 *3 (-639 *5)) (-5 *4 (-766)) (-4 *5 (-845)) + (-5 *1 (-608 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1092))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) + (-5 *2 (-639 (-947 *4))))) + ((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-639 (-947 *4))) (-5 *1 (-415 *3 *4)) + (-4 *3 (-416 *4)))) + ((*1 *2) + (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-639 (-947 *3))))) + ((*1 *2) + (-12 (-5 *2 (-639 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1256 (-452 *4 *5 *6 *7))) (-5 *2 (-639 (-947 *4))) + (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *4 (-171)) + (-14 *5 (-916)) (-14 *6 (-639 (-1168))) (-14 *7 (-1256 (-683 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-845)) (-4 *5 (-904)) (-4 *6 (-788)) + (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-417 (-1164 *8))) + (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-1164 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) + (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3)))) + ((*1 *1 *1) (-4 *1 (-1195)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-406 (-947 *5)) (-1157 (-1168) (-947 *5)))) + (-4 *5 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *5))))) + (-5 *1 (-291 *5)) (-5 *4 (-683 (-406 (-947 *5))))))) +(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) + (-5 *2 (-639 (-406 (-562)))) (-5 *1 (-1015 *4)) + (-4 *4 (-1232 (-562)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) + (-5 *2 (-1030)) (-5 *1 (-743))))) +(((*1 *2) + (-12 (-4 *4 (-362)) (-5 *2 (-916)) (-5 *1 (-327 *3 *4)) + (-4 *3 (-328 *4)))) + ((*1 *2) + (-12 (-4 *4 (-362)) (-5 *2 (-828 (-916))) (-5 *1 (-327 *3 *4)) + (-4 *3 (-328 *4)))) + ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-916)))) + ((*1 *2) + (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-828 (-916)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-451)) (-4 *3 (-845)) + (-4 *4 (-788)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-562))) (-5 *1 (-1111)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3)))) + ((*1 *1 *1) (-4 *1 (-1195)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-608 *4)) (-4 *4 (-845)) (-4 *2 (-845)) + (-5 *1 (-607 *2 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1256 (-562))) (-5 *3 (-562)) (-5 *1 (-1102)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1256 (-562))) (-5 *3 (-639 (-562))) (-5 *4 (-562)) + (-5 *1 (-1102))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-828 (-562))) (-5 *1 (-533)))) + ((*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1092))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3)))) + ((*1 *1 *1) (-4 *1 (-1195)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1124 *4 *2)) + (-4 *2 (-13 (-600 (-562) *4) (-10 -7 (-6 -4402) (-6 -4403)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-845)) (-4 *3 (-1207)) (-5 *1 (-1124 *3 *2)) + (-4 *2 (-13 (-600 (-562) *3) (-10 -7 (-6 -4402) (-6 -4403))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-14 *4 (-639 (-1168))) (-14 *5 (-766)) + (-5 *2 + (-639 + (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) + (-246 *4 (-406 (-562)))))) + (-5 *1 (-504 *4 *5)) + (-5 *3 + (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) + (-246 *4 (-406 (-562)))))))) +(((*1 *1 *1) (-4 *1 (-1053)))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-306)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3148 *1))) + (-4 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1188))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) + (-4 *3 (-13 (-845) (-554))))) + ((*1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *1) (-5 *1 (-476))) ((*1 *1) (-4 *1 (-1192)))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-766)) (-4 *6 (-1092)) (-4 *7 (-895 *6)) + (-5 *2 (-683 *7)) (-5 *1 (-686 *6 *7 *3 *4)) (-4 *3 (-372 *7)) + (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4402))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3)))) + ((*1 *1 *1) (-4 *1 (-1195)))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) + (-4 *3 (-372 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-502 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-683 *5)) (-4 *5 (-987 *4)) (-4 *4 (-554)) + (-5 *2 (-2 (|:| |num| (-683 *4)) (|:| |den| *4))) + (-5 *1 (-687 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) + (-4 *6 (-1232 *5)) + (-5 *2 (-2 (|:| -3342 *7) (|:| |rh| (-639 (-406 *6))))) + (-5 *1 (-802 *5 *6 *7 *3)) (-5 *4 (-639 (-406 *6))) + (-4 *7 (-650 *6)) (-4 *3 (-650 (-406 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1225 *4 *5 *3)) + (-4 *3 (-1232 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-639 *5) *6)) + (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) + (-5 *2 (-639 (-2 (|:| -1497 *5) (|:| -3342 *3)))) + (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-650 *6)) + (-4 *7 (-650 (-406 *6)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-824)) (-5 *3 (-1150))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-844)) (-4 *4 (-787)) - (-14 *6 (-635 *3)) (-5 *1 (-1266 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-943 *2 *4 *3)) (-14 *7 (-635 (-765))) (-14 *8 (-765)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1277 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1042)) (-4 *3 (-840))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1200 *5 *6 *7 *3)) + (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-406 (-1164 (-315 *3)))) (-4 *3 (-13 (-554) (-845))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-562)))) ((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) - (-14 *4 (-635 (-1166))))) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3)))) + ((*1 *1 *1) (-4 *1 (-1195)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-639 *7)) (-5 *3 (-112)) (-4 *7 (-1058 *4 *5 *6)) + (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *1 (-972 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-179)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-675)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-965)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1066)))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1110))))) +(((*1 *1 *1) (-4 *1 (-625))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) + (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-583 *3)) (-5 *1 (-425 *5 *3)) + (-4 *3 (-13 (-1192) (-29 *5)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-869)) + (-5 *5 (-916)) (-5 *6 (-639 (-262))) (-5 *2 (-1257)) + (-5 *1 (-1260)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-639 (-262))) + (-5 *2 (-1257)) (-5 *1 (-1260))))) +(((*1 *1 *1) (-5 *1 (-1056)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-639 (-639 (-562)))) (-5 *1 (-966)) + (-5 *3 (-639 (-562)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))))) + (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *5)) + (-4 *5 (-1232 (-406 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-5 *2 (-544)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) - (-14 *4 (-635 (-1166))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) - (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-274)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1160 *8)) (-5 *4 (-635 *6)) (-4 *6 (-844)) - (-4 *8 (-943 *7 *5 *6)) (-4 *5 (-787)) (-4 *7 (-1042)) (-5 *2 (-635 (-765))) - (-5 *1 (-320 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-912)))) + (-12 (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) (-4 *2 (-306)) + (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1033 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) + (-12 (-4 *3 (-554)) (-4 *3 (-845)) (-5 *2 (-1117 *3 (-608 *1))) + (-4 *1 (-429 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) ((*1 *2 *1) - (-12 (-4 *3 (-554)) (-5 *2 (-544)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-635 (-765))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) - (-5 *2 (-765)))) + (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-721) *4)) + (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *2 (-786)))) + (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-721) *4)) + (-5 *1 (-656 *3 *4 *2)) (-4 *3 (-712 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *3 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) + (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-944 *4 *3 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3)))) + ((*1 *1 *1) (-4 *1 (-1195)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) + (-5 *2 (-639 *4)) (-5 *1 (-1106 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) + (-4 *3 (-13 (-362) (-146) (-1033 (-562)))) (-5 *1 (-566 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-693)) (-5 *1 (-304))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) + (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) + (-5 *1 (-1121 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-13 (-306) (-845) (-146))) + (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1121 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-293 (-406 (-947 *5)))) (-5 *4 (-1168)) + (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) + (-5 *1 (-1121 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-293 (-406 (-947 *4)))) + (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) + (-5 *1 (-1121 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) + (-4 *5 (-13 (-306) (-845) (-146))) + (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-406 (-947 *4)))) + (-4 *4 (-13 (-306) (-845) (-146))) + (-5 *2 (-639 (-639 (-293 (-315 *4))))) (-5 *1 (-1121 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-293 (-406 (-947 *5))))) (-5 *4 (-639 (-1168))) + (-4 *5 (-13 (-306) (-845) (-146))) + (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-293 (-406 (-947 *4))))) + (-4 *4 (-13 (-306) (-845) (-146))) + (-5 *2 (-639 (-639 (-293 (-315 *4))))) (-5 *1 (-1121 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-279)))) ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-765)))) + (-12 (-5 *2 (-3 (-562) (-224) (-1168) (-1150) (-1173))) + (-5 *1 (-1173))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-1256 *5))) (-5 *4 (-562)) (-5 *2 (-1256 *5)) + (-5 *1 (-1024 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-150 *3)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-639 (-2 (|:| -1960 (-766)) (|:| -2328 *4) (|:| |num| *4)))) + (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-112)) (-5 *1 (-436)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-5 *3 (-639 (-1168))) (-5 *4 (-112)) (-5 *1 (-436)))) ((*1 *2 *1) - (-12 (-4 *1 (-1217 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1246 *3)) - (-5 *2 (-544)))) + (-12 (-5 *2 (-1148 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) + (-4 *4 (-171)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) + (-4 *4 (-171)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) + (-4 *4 (-171)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-639 (-639 *3)))) (-4 *3 (-1092)) + (-5 *1 (-669 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-708 *2 *3 *4)) (-4 *2 (-845)) (-4 *3 (-1092)) + (-14 *4 + (-1 (-112) (-2 (|:| -2466 *2) (|:| -1960 *3)) + (-2 (|:| -2466 *2) (|:| -1960 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-505)) (-5 *3 (-1110)) (-5 *1 (-833)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 *4)))) + (-4 *4 (-1092)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 *5)) (-4 *5 (-13 (-1092) (-34))) + (-5 *2 (-639 (-1132 *3 *5))) (-5 *1 (-1132 *3 *5)) + (-4 *3 (-13 (-1092) (-34))))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-2 (|:| |val| *4) (|:| -1495 *5)))) + (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) + (-5 *2 (-639 (-1132 *4 *5))) (-5 *1 (-1132 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1495 *4))) + (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) + (-5 *1 (-1132 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) + (-4 *3 (-13 (-1092) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) + (-4 *3 (-13 (-1092) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-639 *3)) (-4 *3 (-13 (-1092) (-34))) + (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-639 (-1132 *2 *3))) (-4 *2 (-13 (-1092) (-34))) + (-4 *3 (-13 (-1092) (-34))) (-5 *1 (-1133 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-639 (-1133 *2 *3))) (-5 *1 (-1133 *2 *3)) + (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) + (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1215 *3)) - (-5 *2 (-406 (-544))))) - ((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-826 (-912))))) + (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) + (-5 *2 (-1256 *6)) (-5 *1 (-412 *3 *4 *5 *6)) + (-4 *6 (-13 (-408 *4 *5) (-1033 *4))))) ((*1 *2 *1) - (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-765))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042))))) + (-12 (-4 *3 (-1044)) (-4 *3 (-845)) (-5 *2 (-1117 *3 (-608 *1))) + (-4 *1 (-429 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) + ((*1 *2 *1) + (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-617 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-721) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-171)) (-4 *2 (-712 *3)) (-5 *1 (-656 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-721) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554))))) +(((*1 *2) + (-12 (-4 *3 (-1044)) (-5 *2 (-953 (-707 *3 *4))) (-5 *1 (-707 *3 *4)) + (-4 *4 (-1232 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-562)))) + (-5 *1 (-304))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-240))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-433)) + (-5 *2 + (-639 + (-3 (|:| -3254 (-1168)) + (|:| -2177 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) + (-5 *1 (-1172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-817))))) +(((*1 *1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-669 *3)) (-4 *3 (-1044)) + (-4 *3 (-1092))))) +(((*1 *1 *1) (-4 *1 (-625))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) + (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-14 *6 (-1253 (-682 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))))) - ((*1 *1 *2) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1204)))) + (-12 (-5 *2 (-1256 *3)) (-4 *3 (-362)) (-14 *6 (-1256 (-683 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))))) + ((*1 *1 *2) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-338 (-3929 'X) (-3929) (-692))) (-5 *1 (-61 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066 'JINT 'X 'ELAM) (-4066) (-693)))) + (-5 *1 (-61 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929 'JINT 'X 'ELAM) (-3929) (-692)))) - (-5 *1 (-62 *3)) (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066) (-4066 'XC) (-693)))) + (-5 *1 (-63 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 'XC) (-692)))) (-5 *1 (-64 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-338 (-4066 'X) (-4066) (-693))) (-5 *1 (-64 *3)) + (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-338 (-3929) (-3929 'XC) (-692))) (-5 *1 (-66 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-338 (-4066) (-4066 'XC) (-693))) (-5 *1 (-66 *3)) + (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929 'X) (-3929 '-4371) (-692)))) (-5 *1 (-71 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066 'X) (-4066 '-3172) (-693)))) + (-5 *1 (-71 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 'X) (-692)))) (-5 *1 (-74 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066) (-4066 'X) (-693)))) + (-5 *1 (-74 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-338 (-3929) (-3929 'X) (-692))) (-5 *1 (-75 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066 'X 'EPS) (-4066 '-3172) (-693)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1168)) (-14 *4 (-1168)) + (-14 *5 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929 'X 'EPS) (-3929 '-4371) (-692)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066 'EPS) (-4066 'YA 'YB) (-693)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1168)) (-14 *4 (-1168)) + (-14 *5 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929 'EPS) (-3929 'YA 'YB) (-692)))) - (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1166)) (-14 *4 (-1166)) (-14 *5 (-1166)))) + (-12 (-5 *2 (-338 (-4066) (-4066 'X) (-693))) (-5 *1 (-77 *3)) + (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-338 (-3929) (-3929 'X) (-692))) (-5 *1 (-78 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-338 (-4066) (-4066 'X) (-693))) (-5 *1 (-78 *3)) + (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 'XC) (-692)))) (-5 *1 (-79 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066) (-4066 'XC) (-693)))) + (-5 *1 (-79 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929) (-3929 'X) (-692)))) (-5 *1 (-80 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066) (-4066 'X) (-693)))) + (-5 *1 (-80 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929 'X) (-3929 '-4371) (-692)))) (-5 *1 (-82 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066 'X '-3172) (-4066) (-693)))) + (-5 *1 (-82 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929 'X '-4371) (-3929) (-692)))) (-5 *1 (-83 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-683 (-338 (-4066 'X '-3172) (-4066) (-693)))) + (-5 *1 (-83 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-682 (-338 (-3929 'X '-4371) (-3929) (-692)))) (-5 *1 (-84 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-683 (-338 (-4066 'X) (-4066) (-693)))) (-5 *1 (-84 *3)) + (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-682 (-338 (-3929 'X) (-3929) (-692)))) (-5 *1 (-85 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066 'X) (-4066) (-693)))) + (-5 *1 (-85 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-338 (-3929 'X) (-3929) (-692)))) (-5 *1 (-86 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-1256 (-338 (-4066 'X) (-4066 '-3172) (-693)))) + (-5 *1 (-86 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-682 (-338 (-3929 'XL 'XR 'ELAM) (-3929) (-692)))) - (-5 *1 (-88 *3)) (-14 *3 (-1166)))) + (-12 (-5 *2 (-683 (-338 (-4066 'XL 'XR 'ELAM) (-4066) (-693)))) + (-5 *1 (-87 *3)) (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-338 (-3929 'X) (-3929 '-4371) (-692))) (-5 *1 (-89 *3)) - (-14 *3 (-1166)))) + (-12 (-5 *2 (-338 (-4066 'X) (-4066 '-3172) (-693))) (-5 *1 (-89 *3)) + (-14 *3 (-1168)))) ((*1 *1 *2) - (-12 (-5 *2 (-635 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) - (-14 *4 (-765)) (-4 *5 (-171)))) + (-12 (-5 *2 (-639 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-562)) (-14 *4 (-766)) (-4 *5 (-171)))) ((*1 *1 *2) - (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) - (-14 *4 (-765)))) + (-12 (-5 *2 (-639 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-562)) (-14 *4 (-766)))) ((*1 *1 *2) - (-12 (-5 *2 (-1132 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)))) + (-12 (-5 *2 (-1134 *4 *5)) (-14 *4 (-766)) (-4 *5 (-171)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)))) ((*1 *1 *2) - (-12 (-5 *2 (-238 *4 *5)) (-14 *4 (-765)) (-4 *5 (-171)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)))) + (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-766)) (-4 *5 (-171)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)))) ((*1 *2 *3) - (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171)) - (-5 *2 (-1253 (-682 (-406 (-939 *4))))) (-5 *1 (-188 *4)))) + (-12 (-5 *3 (-1256 (-683 *4))) (-4 *4 (-171)) + (-5 *2 (-1256 (-683 (-406 (-947 *4))))) (-5 *1 (-188 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1082 (-313 *4))) (-4 *4 (-13 (-844) (-554) (-609 (-377)))) - (-5 *2 (-1082 (-377))) (-5 *1 (-258 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-274)))) + (-12 (-5 *3 (-1084 (-315 *4))) + (-4 *4 (-13 (-845) (-554) (-610 (-378)))) (-5 *2 (-1084 (-378))) + (-5 *1 (-257 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-274)))) ((*1 *2 *1) - (-12 (-4 *2 (-1229 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171)) - (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-12 (-4 *2 (-1232 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1234 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) - (-14 *5 (-1166)) (-14 *6 *4) - (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) + (-12 (-5 *2 (-1241 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) + (-14 *5 (-1168)) (-14 *6 *4) + (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) (-5 *1 (-312 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-313 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) - (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) + (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5)) + (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *2 (-328 *4)) (-5 *1 (-347 *3 *4 *2)) + (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2)) (-4 *3 (-328 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *2 (-328 *4)) (-5 *1 (-347 *2 *4 *3)) + (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3)) (-4 *3 (-328 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) - (-5 *2 (-1278 *3 *4)))) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) + (-5 *2 (-1280 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) - (-5 *2 (-1269 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) + (-5 *2 (-1271 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-382)))) ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-682 (-692))) (-4 *1 (-382)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) - (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-384)))) - ((*1 *2 *3) (-12 (-5 *2 (-392)) (-5 *1 (-393 *3)) (-4 *3 (-1091)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-382)))) + ((*1 *1 *2) (-12 (-5 *2 (-683 (-693))) (-4 *1 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) - (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-396)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) + (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-383)))) + ((*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1092)))) ((*1 *1 *2) - (-12 (-5 *2 (-292 (-313 (-167 (-377))))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1166)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) - (-14 *5 (-635 (-1166))) (-14 *6 (-1170)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) + (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-395)))) ((*1 *1 *2) - (-12 (-5 *2 (-292 (-313 (-377)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-292 (-313 (-544)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-313 (-167 (-377)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-293 (-315 (-562)))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-313 (-377))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-313 (-544))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-292 (-313 (-687)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-315 (-562))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-292 (-313 (-692)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-293 (-315 (-688)))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-292 (-313 (-694)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-293 (-315 (-693)))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-313 (-687))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-293 (-315 (-695)))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-313 (-692))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-315 (-688))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-313 (-694))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-315 (-693))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) - (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-315 (-695))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-635 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) + (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) + (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1166)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-14 *5 (-635 (-1166))) - (-14 *6 (-1170)))) + (-12 (-5 *2 (-639 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) + (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-406 (-939 (-406 *3)))) (-4 *3 (-554)) (-4 *3 (-844)) - (-4 *1 (-420 *3)))) + (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) + (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-939 (-406 *3))) (-4 *3 (-554)) (-4 *3 (-844)) - (-4 *1 (-420 *3)))) + (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-845) (-21))) + (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))))) ((*1 *1 *2) - (-12 (-5 *2 (-406 *3)) (-4 *3 (-554)) (-4 *3 (-844)) (-4 *1 (-420 *3)))) + (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-562))))) + (-4 *3 (-13 (-845) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-1115 *3 (-606 *1))) (-4 *3 (-1042)) (-4 *3 (-844)) - (-4 *1 (-420 *3)))) + (-12 (-5 *2 (-406 (-947 (-406 *3)))) (-4 *3 (-554)) (-4 *3 (-845)) + (-4 *1 (-429 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-844) (-21))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-13 (-171) (-38 (-406 (-544))))))) + (-12 (-5 *2 (-947 (-406 *3))) (-4 *3 (-554)) (-4 *3 (-845)) + (-4 *1 (-429 *3)))) ((*1 *1 *2) - (-12 (-5 *1 (-428 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-544))))) - (-4 *3 (-13 (-844) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-433)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-435)))) + (-12 (-5 *2 (-406 *3)) (-4 *3 (-554)) (-4 *3 (-845)) + (-4 *1 (-429 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) - (-4 *1 (-438)))) - ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-438)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-438)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 (-692))) (-4 *1 (-438)))) + (-12 (-5 *2 (-1117 *3 (-608 *1))) (-4 *3 (-1044)) (-4 *3 (-845)) + (-4 *1 (-429 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-433)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1170)) (|:| -1758 (-635 (-329))))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-439)))) ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-4 *1 (-439)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-439)))) + ((*1 *1 *2) (-12 (-5 *2 (-1256 (-693))) (-4 *1 (-439)))) ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-406 (-939 *3)))) (-4 *3 (-171)) - (-14 *6 (-1253 (-682 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-14 *4 (-912)) - (-14 *5 (-635 (-1166))))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466)))) - ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-466)))) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) + (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-440)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1256 (-406 (-947 *3)))) (-4 *3 (-171)) + (-14 *6 (-1256 (-683 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-14 *4 (-916)) (-14 *5 (-639 (-1168))))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) + ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-467)))) ((*1 *1 *2) - (-12 (-5 *2 (-1234 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) - (-5 *1 (-472 *3 *4 *5)))) + (-12 (-5 *2 (-1241 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) + (-14 *5 *3) (-5 *1 (-473 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493)))) - ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-500)))) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-501)))) ((*1 *1 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-522)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-601)))) - ((*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-602 *3 *2)) (-4 *2 (-738 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1042)))) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-523)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-602)))) + ((*1 *1 *2) + (-12 (-4 *3 (-171)) (-5 *1 (-603 *3 *2)) (-4 *2 (-739 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1044)))) ((*1 *2 *1) - (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) - (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) + (-12 (-5 *2 (-1276 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) + (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) ((*1 *2 *1) - (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) - (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) - ((*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-628 *3 *2)) (-4 *2 (-738 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-670 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) + (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) + (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) + ((*1 *1 *2) + (-12 (-4 *3 (-171)) (-5 *1 (-631 *3 *2)) (-4 *2 (-739 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-671 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) ((*1 *2 *1) - (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-5 *1 (-668 *3)) (-4 *3 (-1091)))) + (-12 (-5 *2 (-953 (-953 (-953 *3)))) (-5 *1 (-669 *3)) + (-4 *3 (-1092)))) ((*1 *1 *2) - (-12 (-5 *2 (-951 (-951 (-951 *3)))) (-4 *3 (-1091)) (-5 *1 (-668 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) - ((*1 *1 *2) (-12 (-5 *2 (-1105)) (-5 *1 (-674)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1091)))) + (-12 (-5 *2 (-953 (-953 (-953 *3)))) (-4 *3 (-1092)) + (-5 *1 (-669 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) + ((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-675)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1092)))) ((*1 *1 *2) - (-12 (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *2)) (-4 *4 (-371 *3)) - (-4 *2 (-371 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-687)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-694))) (-5 *1 (-687)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-692))) (-5 *1 (-687)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-544))) (-5 *1 (-687)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-377))) (-5 *1 (-687)))) - ((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-692)))) - ((*1 *2 *1) (-12 (-5 *2 (-377)) (-5 *1 (-692)))) - ((*1 *2 *3) (-12 (-5 *3 (-313 (-544))) (-5 *2 (-313 (-694))) (-5 *1 (-694)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704)))) + (-12 (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *2)) (-4 *4 (-372 *3)) + (-4 *2 (-372 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-688)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 (-695))) (-5 *1 (-688)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 (-693))) (-5 *1 (-688)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 (-562))) (-5 *1 (-688)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-688)))) + ((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-693)))) + ((*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-693)))) + ((*1 *2 *3) + (-12 (-5 *3 (-315 (-562))) (-5 *2 (-315 (-695))) (-5 *1 (-695)))) + ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) ((*1 *2 *1) - (-12 (-4 *2 (-171)) (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-171)) (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-171)) (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-171)) (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-635 (-2 (|:| -4361 *3) (|:| -4345 *4)))) (-4 *3 (-1042)) - (-4 *4 (-720)) (-5 *1 (-729 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-757)))) + (-12 (-5 *2 (-639 (-2 (|:| -4221 *3) (|:| -3045 *4)))) + (-4 *3 (-1044)) (-4 *4 (-721)) (-5 *1 (-730 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-758)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| - (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) + (-2 (|:| |fn| (-315 (-224))) + (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) - (-5 *1 (-763)))) + (-5 *1 (-764)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *1 (-763)))) + (-2 (|:| |fn| (-315 (-224))) + (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *1 (-764)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *1 (-763)))) - ((*1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-768 *3)) (-4 *3 (-1204)))) + (-5 *1 (-764)))) + ((*1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-768 *3)) (-4 *3 (-1207)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *1 (-802)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-820)))) + (-5 *1 (-803)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-819)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) - (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) - (|:| |ub| (-635 (-836 (-224)))))) + (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) + (|:| |lb| (-639 (-838 (-224)))) + (|:| |cf| (-639 (-315 (-224)))) + (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| - (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) - (-5 *1 (-835)))) + (-2 (|:| |lfn| (-639 (-315 (-224)))) + (|:| -3729 (-639 (-224))))))) + (-5 *1 (-836)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) - (-5 *1 (-835)))) + (-12 + (-5 *2 + (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) + (-5 *1 (-836)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) - (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) - (|:| |ub| (-635 (-836 (-224)))))) - (-5 *1 (-835)))) - ((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-852)))) - ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) - ((*1 *2 *3) (-12 (-5 *3 (-939 (-48))) (-5 *2 (-313 (-544))) (-5 *1 (-868)))) + (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) + (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) + (|:| |ub| (-639 (-838 (-224)))))) + (-5 *1 (-836)))) + ((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-853)))) + ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) ((*1 *2 *3) - (-12 (-5 *3 (-406 (-939 (-48)))) (-5 *2 (-313 (-544))) (-5 *1 (-868)))) - ((*1 *1 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) + (-12 (-5 *3 (-947 (-48))) (-5 *2 (-315 (-562))) (-5 *1 (-870)))) + ((*1 *2 *3) + (-12 (-5 *3 (-406 (-947 (-48)))) (-5 *2 (-315 (-562))) + (-5 *1 (-870)))) + ((*1 *1 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-635 (-313 (-224)))) + (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| - (-635 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) - (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) - (|:| |dFinish| (-682 (-224)))))) - (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) + (-639 + (-2 (|:| |start| (-224)) (|:| |finish| (-224)) + (|:| |grid| (-766)) (|:| |boundaryType| (-562)) + (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) + (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) - (-5 *1 (-891)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1091)) (-5 *1 (-898 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) - ((*1 *1 *2) (-12 (-5 *2 (-406 (-404 *3))) (-4 *3 (-306)) (-5 *1 (-907 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306)))) - ((*1 *2 *3) - (-12 (-5 *3 (-475)) (-5 *2 (-313 *4)) (-5 *1 (-913 *4)) - (-4 *4 (-13 (-844) (-554))))) - ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) - ((*1 *1 *2) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960)))) - ((*1 *2 *3) (-12 (-5 *2 (-1259)) (-5 *1 (-1026 *3)) (-4 *3 (-1204)))) - ((*1 *2 *3) (-12 (-5 *3 (-310)) (-5 *1 (-1026 *2)) (-4 *2 (-1204)))) + (-5 *1 (-893)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-900 *3))) (-4 *3 (-1092)) (-5 *1 (-899 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-943 *3 *4 *5)) (-14 *6 (-635 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-1033 *3)) (-4 *3 (-554)))) + (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-909 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) + ((*1 *2 *3) + (-12 (-5 *3 (-476)) (-5 *2 (-315 *4)) (-5 *1 (-914 *4)) + (-4 *4 (-13 (-845) (-554))))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) + ((*1 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962)))) + ((*1 *2 *3) (-12 (-5 *2 (-1261)) (-5 *1 (-1028 *3)) (-4 *3 (-1207)))) + ((*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1028 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *2 (-944 *3 *4 *5)) + (-14 *6 (-639 *2)))) + ((*1 *2 *3) + (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-1038 *3)) (-4 *3 (-554)))) ((*1 *1 *2) - (-12 (-4 *3 (-1042)) (-4 *4 (-844)) (-5 *1 (-1116 *3 *4 *2)) - (-4 *2 (-943 *3 (-529 *4) *4)))) + (-12 (-4 *3 (-1044)) (-4 *4 (-845)) (-5 *1 (-1118 *3 *4 *2)) + (-4 *2 (-944 *3 (-530 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1042)) (-4 *2 (-844)) (-5 *1 (-1116 *3 *2 *4)) - (-4 *4 (-943 *3 (-529 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1134)))) - ((*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) + (-12 (-4 *3 (-1044)) (-4 *2 (-845)) (-5 *1 (-1118 *3 *2 *4)) + (-4 *4 (-944 *3 (-530 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-857)))) + ((*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1136)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044)))) ((*1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1222 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) - (-5 *1 (-1164 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1165)))) - ((*1 *2 *1) (-12 (-5 *2 (-1177 (-1166) (-435))) (-5 *1 (-1170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1178 *3)) (-4 *3 (-1091)))) - ((*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-1185 *3)) (-4 *3 (-1091)))) - ((*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1042)) (-5 *1 (-1197 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1197 *3)) (-4 *3 (-1042)))) + (-12 (-5 *2 (-1229 *4 *3)) (-4 *3 (-1044)) (-14 *4 (-1168)) + (-14 *5 *3) (-5 *1 (-1166 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1167)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180 (-1168) (-436))) (-5 *1 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1179 *3)) (-4 *3 (-1092)))) + ((*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-1186 *3)) (-4 *3 (-1092)))) ((*1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1079 *3)) (-4 *3 (-1204)) (-5 *1 (-1220 *3)))) + (-12 (-5 *2 (-947 *3)) (-4 *3 (-1044)) (-5 *1 (-1201 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1201 *3)) (-4 *3 (-1044)))) ((*1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1222 *4 *3)) (-4 *3 (-1042)) (-14 *4 (-1166)) (-14 *5 *3) - (-5 *1 (-1243 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1256)) (-5 *1 (-1255)))) - ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1256)))) - ((*1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) + (-12 (-5 *2 (-1086 *3)) (-4 *3 (-1207)) (-5 *1 (-1223 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1229 *4 *3)) (-4 *3 (-1044)) (-14 *4 (-1168)) + (-14 *5 *3) (-5 *1 (-1248 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1252 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1257)))) + ((*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *2 (-1257)) (-5 *1 (-1260)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) ((*1 *2 *1) - (-12 (-5 *2 (-1278 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) + (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) ((*1 *2 *1) - (-12 (-5 *2 (-1269 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) + (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) - (-5 *1 (-1274 *3 *4))))) + (-12 (-5 *2 (-658 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) + (-5 *1 (-1276 *3 *4))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1030)) + (-5 *1 (-741))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) + (-14 *4 (-766)) (-4 *5 (-171))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) + (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) + (-5 *1 (-1167))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-97))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-947 (-378))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-406 (-947 (-378)))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-947 (-562))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-406 (-947 (-562)))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-315 (-562))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-338 *3 *4 *5)) + (-14 *3 (-639 *2)) (-14 *4 (-639 *2)) (-4 *5 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386)) + (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-683 (-406 (-947 (-562))))) (-4 *1 (-383)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-683 (-406 (-947 (-378))))) (-4 *1 (-383)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-683 (-947 (-562)))) (-4 *1 (-383)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-683 (-947 (-378)))) (-4 *1 (-383)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-683 (-315 (-562)))) (-4 *1 (-383)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-683 (-315 (-378)))) (-4 *1 (-383)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-406 (-947 (-562)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-406 (-947 (-378)))) (-4 *1 (-395)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-562))) (-4 *1 (-395)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-378))) (-4 *1 (-395)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-562))) (-4 *1 (-395)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1256 (-406 (-947 (-562))))) (-4 *1 (-440)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1256 (-406 (-947 (-378))))) (-4 *1 (-440)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1256 (-947 (-562)))) (-4 *1 (-440)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1256 (-947 (-378)))) (-4 *1 (-440)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1256 (-315 (-562)))) (-4 *1 (-440)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1256 (-315 (-378)))) (-4 *1 (-440)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1232 *5)) + (-5 *2 (-1164 (-1164 *4))) (-5 *1 (-772 *4 *5 *6 *3 *7)) + (-4 *3 (-1232 *6)) (-14 *7 (-916)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) + (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *1 (-971 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1033 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) + (|partial| -4037 + (-12 (-5 *2 (-947 *3)) + (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) + (-2236 (-4 *3 (-38 (-562)))) (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) + (-4 *5 (-845))) + (-12 (-5 *2 (-947 *3)) + (-12 (-2236 (-4 *3 (-544))) (-2236 (-4 *3 (-38 (-406 (-562))))) + (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) + (-4 *5 (-845))) + (-12 (-5 *2 (-947 *3)) + (-12 (-2236 (-4 *3 (-987 (-562)))) (-4 *3 (-38 (-406 (-562)))) + (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) + (-4 *5 (-845))))) + ((*1 *1 *2) + (|partial| -4037 + (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) + (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) + (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) + (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) + (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) + (|:| -3355 *6))) + (-5 *1 (-1010 *5 *6)) (-5 *3 (-406 *6))))) +(((*1 *1) (-5 *1 (-818)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-1 *6 *5)) (-5 *1 (-701 *4 *5 *6)) + (-4 *4 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1269 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) - (-5 *1 (-657 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-657 *3 *4)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) - (-4 *4 (-171))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)) - (-4 *2 (-420 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1082 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554))) - (-5 *1 (-157 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171))))) + (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1044) (-845))) + (-5 *1 (-222 *3 *4)) (-14 *4 (-639 (-1168)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) (((*1 *1 *2) - (-12 (-5 *2 (-635 (-544))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) - (-14 *4 (-635 (-1166))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *1) (-4 *1 (-283))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 *3 *4)) (-4 *3 (-844)) - (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-5 *1 (-622 *3 *4 *5)) - (-14 *5 (-912)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844)) - (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4)))) + (|partial| -12 (-5 *2 (-814 *3)) (-4 *3 (-845)) (-5 *1 (-666 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-168 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) + (-5 *1 (-753))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-480 *4 *5))) (-14 *4 (-639 (-1168))) + (-4 *5 (-451)) (-5 *2 (-639 (-246 *4 *5))) (-5 *1 (-627 *4 *5))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) + (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) + (-5 *1 (-1167))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-602))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-551))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-5 *5 (-639 (-639 *8))) + (-4 *7 (-845)) (-4 *8 (-306)) (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) + (-5 *2 + (-2 (|:| |upol| (-1164 *8)) (|:| |Lval| (-639 *8)) + (|:| |Lfact| + (-639 (-2 (|:| -1635 (-1164 *8)) (|:| -1960 (-562))))) + (|:| |ctpol| *8))) + (-5 *1 (-737 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-562)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-766)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-788)) (-4 *4 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-845)) + (-5 *1 (-448 *5 *6 *7 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-572 *5 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-4 *1 (-373 *3 *4)) + (-4 *4 (-171))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *1 (-230 *4)) + (-4 *4 (-1044)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-544)))) - (-4 *3 (-844)) (-4 *4 (-171))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *1) (-4 *1 (-283))) - ((*1 *2 *3) - (-12 (-5 *3 (-404 *4)) (-4 *4 (-554)) - (-5 *2 (-635 (-2 (|:| -4361 (-765)) (|:| |logand| *4)))) (-5 *1 (-319 *4)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-766)))) + ((*1 *1 *1) (-4 *1 (-232))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-265 *3)) (-4 *3 (-845)))) + ((*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) + (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) + (-4 *4 (-1232 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *2 *1) - (-12 (-5 *2 (-657 *3 *4)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) - (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844)) - (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4)))) + (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) + (-4 *3 (-1232 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-1274 *3 *4)) (-4 *4 (-711 (-406 (-544)))) - (-4 *3 (-844)) (-4 *4 (-171))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) - (-5 *2 (-2 (|:| |k| (-813 *3)) (|:| |c| *4)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) - (-4 *4 (-171)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-362)) (-4 *2 (-895 *3)) (-5 *1 (-583 *2)) + (-5 *3 (-1168)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-583 *2)) (-4 *2 (-362)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 (-766))) (-4 *1 (-895 *4)) + (-4 *4 (-1092)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-895 *2)) (-4 *2 (-1092)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-813 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1278 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) - (-4 *4 (-171)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)))) + (-12 (-5 *2 (-639 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1092)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1092)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-813 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1091)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-544)) (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042)))) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1165 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1241 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) + (-4 *3 (-1044)) (-14 *5 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-4 *2 (-1092)) + (-5 *1 (-884 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) + (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) + (-5 *2 (-2 (|:| -3670 *3) (|:| |nconst| *3))) (-5 *1 (-565 *5 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) +(((*1 *1 *1) (-5 *1 (-1167))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) + (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) + (-5 *1 (-1167))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150)) (-5 *2 (-213 (-501))) (-5 *1 (-832))))) +(((*1 *1 *1) (-4 *1 (-625))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-675)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1110))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1044)) + (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) + (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1211)) + (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1232 (-406 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-171)) + (-4 *1 (-366 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-813 *4)) (-4 *4 (-844)) (-4 *1 (-1273 *4 *3)) (-4 *3 (-1042))))) + (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-171)) + (-4 *1 (-369 *4 *5)) (-4 *5 (-1232 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) + (-4 *4 (-1232 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) + (|:| |lb| (-639 (-838 (-224)))) + (|:| |cf| (-639 (-315 (-224)))) + (|:| |ub| (-639 (-838 (-224)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-639 (-315 (-224)))) + (|:| -3729 (-639 (-224))))))) + (-5 *2 (-639 (-1150))) (-5 *1 (-266))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-451)) (-4 *4 (-845)) + (-5 *1 (-571 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-544)))) + ((*1 *1 *1) (-4 *1 (-1053)))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) + (-5 *1 (-1065 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) + (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) + ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) + ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) +(((*1 *2 *3) + (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-505)) (-5 *3 (-1110)) (-5 *1 (-1107))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042)))) + (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-639 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-845))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *2 (-112)) + (-5 *1 (-262))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1256 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3)) (-4 *3 (-1092)) + (-4 *3 (-1207))))) +(((*1 *2 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-562)) + (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-639 (-315 (-224)))) (-5 *1 (-266))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4402)) (-4 *1 (-234 *3)) + (-4 *3 (-1092)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4402)) (-4 *1 (-234 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-562)) (-4 *4 (-1092)) + (-5 *1 (-732 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-5 *1 (-732 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) + (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) + (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-916)) (-4 *5 (-554)) (-5 *2 (-683 *5)) + (-5 *1 (-951 *5 *3)) (-4 *3 (-650 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-562)) (-5 *1 (-378))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-639 (-608 *2))) (-5 *4 (-639 (-1168))) + (-4 *2 (-13 (-429 (-168 *5)) (-997) (-1192))) + (-4 *5 (-13 (-554) (-845))) (-5 *1 (-596 *5 *6 *2)) + (-4 *6 (-13 (-429 *5) (-997) (-1192)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1164 *7)) (-4 *5 (-1044)) + (-4 *7 (-1044)) (-4 *2 (-1232 *5)) (-5 *1 (-500 *5 *2 *6 *7)) + (-4 *6 (-1232 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1044)) (-4 *7 (-1044)) + (-4 *4 (-1232 *5)) (-5 *2 (-1164 *7)) (-5 *1 (-500 *5 *4 *6 *7)) + (-4 *6 (-1232 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-962)))) +(((*1 *2 *3) + (-12 (-4 *4 (-845)) + (-5 *2 + (-2 (|:| |f1| (-639 *4)) (|:| |f2| (-639 (-639 (-639 *4)))) + (|:| |f3| (-639 (-639 *4))) (|:| |f4| (-639 (-639 (-639 *4)))))) + (-5 *1 (-1178 *4)) (-5 *3 (-639 (-639 (-639 *4))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1102))))) +(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-824))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-416 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) ((*1 *2 *1) - (-12 (-4 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) + (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-841))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-845)) (-5 *4 (-639 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-639 *4)))) + (-5 *1 (-1178 *6)) (-5 *5 (-639 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-683 (-406 (-947 (-562))))) + (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026)) + (-5 *3 (-315 (-562)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-348)) (-5 *3 (-562)) (-5 *2 (-1180 (-916) (-766)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-240)) (-5 *3 (-1150)))) + ((*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1232 *5)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) + (-5 *1 (-805 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-647 (-406 *6))) (-4 *6 (-1232 *5)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-5 *2 (-2 (|:| -3928 (-639 (-406 *6))) (|:| -1545 (-683 *5)))) + (-5 *1 (-805 *5 *6)) (-5 *4 (-639 (-406 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1232 *5)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) + (-5 *1 (-805 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-648 *6 (-406 *6))) (-4 *6 (-1232 *5)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-5 *2 (-2 (|:| -3928 (-639 (-406 *6))) (|:| -1545 (-683 *5)))) + (-5 *1 (-805 *5 *6)) (-5 *4 (-639 (-406 *6)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) + (-5 *2 (-112)) (-5 *1 (-982 *3 *4 *5 *6)) + (-4 *6 (-944 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) - ((*1 *1 *1) - (-12 (-5 *1 (-622 *2 *3 *4)) (-4 *2 (-844)) - (-4 *3 (-13 (-171) (-711 (-406 (-544))))) (-14 *4 (-912)))) - ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) - (-4 *4 (-171)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-844)) (-4 *3 (-1042)) (-4 *3 (-171))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) + (-4 *4 (-13 (-1092) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) +(((*1 *1) (-5 *1 (-224))) ((*1 *1) (-5 *1 (-378)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-114)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1150)) (-4 *4 (-845)) (-5 *1 (-924 *4 *2)) + (-4 *2 (-429 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-1150)) (-5 *2 (-315 (-562))) + (-5 *1 (-925))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *3 (-639 (-562))) + (-5 *1 (-878))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-5 *2 + (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (|:| |success| (-112)))) + (-5 *1 (-784)) (-5 *5 (-562))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) + (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-752))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *6)) (-5 *4 (-1168)) (-4 *6 (-429 *5)) + (-4 *5 (-845)) (-5 *2 (-639 (-608 *6))) (-5 *1 (-571 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) + (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4)))))) +(((*1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1092)) (-4 *3 (-895 *5)) (-5 *2 (-1256 *3)) + (-5 *1 (-686 *5 *3 *6 *4)) (-4 *6 (-372 *3)) + (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4402))))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) + (-5 *2 (-1030)) (-5 *1 (-751))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-639 + (-2 + (|:| -2320 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (|:| -2694 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1148 (-224))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1590 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-557))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-855)) (-5 *2 (-685 (-129))) (-5 *3 (-129))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-765)) (-5 *2 (-635 (-1166))) (-5 *1 (-209)) (-5 *3 (-1166)))) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-311)) (-5 *1 (-295)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-313 (-224))) (-5 *4 (-765)) (-5 *2 (-635 (-1166))) - (-5 *1 (-266)))) + (-12 (-5 *4 (-639 (-1150))) (-5 *3 (-1150)) (-5 *2 (-311)) + (-5 *1 (-295))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 (-2 (|:| |val| (-639 *6)) (|:| -1495 *7)))) + (-4 *6 (-1058 *3 *4 *5)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-983 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-639 (-2 (|:| |val| (-639 *6)) (|:| -1495 *7)))) + (-4 *6 (-1058 *3 *4 *5)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1099 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) + (-12 (-5 *2 (-947 (-378))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (-12 (-5 *2 (-406 (-947 (-378)))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (-12 (-5 *2 (-947 (-562))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (-12 (-5 *2 (-406 (-947 (-562)))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (-12 (-5 *2 (-315 (-562))) (-5 *1 (-338 *3 *4 *5)) + (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 *2)) + (-14 *4 (-639 *2)) (-4 *5 (-386)))) + ((*1 *1 *2) + (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) + (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))))) + ((*1 *1 *2) (-12 (-5 *2 (-683 (-406 (-947 (-562))))) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-683 (-406 (-947 (-378))))) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-683 (-947 (-562)))) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-683 (-947 (-378)))) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-683 (-315 (-562)))) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-683 (-315 (-378)))) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-562)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-378)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-947 (-378))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 (-562))))) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 (-378))))) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-1256 (-947 (-562)))) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-1256 (-947 (-378)))) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-1256 (-315 (-562)))) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-1256 (-315 (-378)))) (-4 *1 (-440)))) ((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-844)) (-4 *4 (-171)) (-5 *2 (-635 *3)))) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (|:| |mdnia| + (-2 (|:| |fn| (-315 (-224))) + (|:| -1590 (-639 (-1086 (-838 (-224))))) + (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) + (-5 *1 (-764)))) ((*1 *2 *1) - (-12 (-5 *2 (-635 *3)) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) - (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) + (|:| |abserr| (-224)) (|:| |relerr| (-224)))) + (-5 *1 (-803)))) ((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-844)) (-4 *4 (-1042)) (-5 *2 (-635 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1199 *4 *5 *3 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *3 (-844)) - (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-912)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) - ((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-826 (-912))) (-5 *1 (-327 *3 *4)) - (-4 *3 (-328 *4)))) - ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-912)))) - ((*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-826 (-912)))))) -(((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) - ((*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-5 *2 (-765))))) -(((*1 *2 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-328 *3)) (-4 *5 (-1229 *4)) - (-5 *1 (-771 *3 *4 *5 *2 *6)) (-4 *2 (-1229 *5)) (-14 *6 (-912)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-1272 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) - ((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-362)) (-4 *2 (-367))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-13 (-1042) (-711 (-406 (-544))))) (-4 *5 (-844)) - (-5 *1 (-1270 *4 *5 *2)) (-4 *2 (-1276 *5 *4))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) - (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) - (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) - (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1267 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) - (-4 *7 (-844)) (-5 *1 (-1267 *5 *6 *7 *8))))) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) + (|:| |lb| (-639 (-838 (-224)))) + (|:| |cf| (-639 (-315 (-224)))) + (|:| |ub| (-639 (-838 (-224)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-639 (-315 (-224)))) + (|:| -3729 (-639 (-224))))))) + (-5 *1 (-836)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-639 (-315 (-224)))) + (|:| |constraints| + (-639 + (-2 (|:| |start| (-224)) (|:| |finish| (-224)) + (|:| |grid| (-766)) (|:| |boundaryType| (-562)) + (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) + (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) + (|:| |tol| (-224)))) + (-5 *1 (-893)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *1 (-971 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) + (-4037 + (-12 (-5 *2 (-947 *3)) + (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) + (-2236 (-4 *3 (-38 (-562)))) (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) + (-4 *5 (-845))) + (-12 (-5 *2 (-947 *3)) + (-12 (-2236 (-4 *3 (-544))) (-2236 (-4 *3 (-38 (-406 (-562))))) + (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) + (-4 *5 (-845))) + (-12 (-5 *2 (-947 *3)) + (-12 (-2236 (-4 *3 (-987 (-562)))) (-4 *3 (-38 (-406 (-562)))) + (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) + (-4 *5 (-845))))) + ((*1 *1 *2) + (-4037 + (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) + (-12 (-2236 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) + (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) + (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) + (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) + ((*1 *1 *2) + (-12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) + (-4 *4 (-788)) (-4 *5 (-845))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) + (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-406 (-562))) + (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-635 (-1267 *4 *5 *6 *7))) - (-5 *1 (-1267 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844)) - (-5 *2 (-635 (-1267 *6 *7 *8 *9))) (-5 *1 (-1267 *6 *7 *8 *9))))) + (-12 (-5 *3 (-639 (-2 (|:| -1635 (-1164 *6)) (|:| -1960 (-562))))) + (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-562)) + (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-859 *4 *5 *6 *7)) - (-4 *4 (-1042)) (-14 *5 (-635 (-1166))) (-14 *6 (-635 *3)) (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) - (-14 *8 (-635 *5)) (-5 *2 (-1259)) (-5 *1 (-1266 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-943 *4 *6 *5)) (-14 *9 (-635 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1091) (-34))) (-5 *1 (-1130 *3 *2)) - (-4 *3 (-13 (-1091) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1265))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1264))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) - (-4 *4 (-1229 *3)) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *5 (-1232 *4)) (-5 *2 (-639 (-647 (-406 *5)))) + (-5 *1 (-651 *4 *5)) (-5 *3 (-647 (-406 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1092)) (-4 *4 (-1092)) + (-4 *6 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-678 *5 *4 *6))))) +(((*1 *2) + (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1216 *3)) + (-5 *2 (-406 (-562)))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-224)) (-5 *2 - (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) - (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-544)) (-4 *4 (-1229 *3)) + (-2 (|:| |brans| (-639 (-639 (-938 *4)))) + (|:| |xValues| (-1086 *4)) (|:| |yValues| (-1086 *4)))) + (-5 *1 (-152)) (-5 *3 (-639 (-639 (-938 *4))))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1207))))) +(((*1 *1 *1) (-4 *1 (-172))) + ((*1 *1 *1) + (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-693))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-618 *4 *2)) (-4 *2 (-13 (-1192) (-954) (-29 *4)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1223 (-562)))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1207))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-126 *3))))) +(((*1 *2) + (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) + (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-972 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-362) (-146))) + (-5 *2 (-639 (-2 (|:| -1960 (-766)) (|:| -2328 *4) (|:| |num| *4)))) + (-5 *1 (-398 *3 *4)) (-4 *4 (-1232 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-639 (-114)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) + (-4 *4 (-348))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 *3)) (-4 *3 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) + (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-983 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 *3)) (-4 *3 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) + (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1099 *5 *6 *7 *8 *3))))) +(((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-683 *8)) (-4 *8 (-944 *5 *7 *6)) + (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) + (-4 *7 (-788)) (-5 *2 - (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) - (-5 *1 (-762 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3)) + (-639 + (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) + (|:| |wcond| (-639 (-947 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *5)))))))))) + (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-639 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-683 *8)) (-5 *4 (-639 (-1168))) (-4 *8 (-944 *5 *7 *6)) + (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) + (-4 *7 (-788)) (-5 *2 - (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) - (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-718 *3 *5)))) + (-639 + (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) + (|:| |wcond| (-639 (-947 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *5)))))))))) + (-5 *1 (-919 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 *3)) + (-12 (-5 *3 (-683 *7)) (-4 *7 (-944 *4 *6 *5)) + (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-5 *2 - (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) - (-5 *1 (-1263 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5))))) -(((*1 *2) - (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) - (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) - (-4 *4 (-1229 *3)) + (-639 + (-2 (|:| |eqzro| (-639 *7)) (|:| |neqzro| (-639 *7)) + (|:| |wcond| (-639 (-947 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *4)))))))))) + (-5 *1 (-919 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-683 *9)) (-5 *5 (-916)) (-4 *9 (-944 *6 *8 *7)) + (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) + (-4 *8 (-788)) (-5 *2 - (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) - (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1229 (-544))) + (-639 + (-2 (|:| |eqzro| (-639 *9)) (|:| |neqzro| (-639 *9)) + (|:| |wcond| (-639 (-947 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *6)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *6)))))))))) + (-5 *1 (-919 *6 *7 *8 *9)) (-5 *4 (-639 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 (-1168))) (-5 *5 (-916)) + (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) + (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 - (-2 (|:| -2162 (-682 (-544))) (|:| |basisDen| (-544)) - (|:| |basisInv| (-682 (-544))))) - (-5 *1 (-762 *3 *4)) (-4 *4 (-409 (-544) *3)))) - ((*1 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4)) + (-639 + (-2 (|:| |eqzro| (-639 *9)) (|:| |neqzro| (-639 *9)) + (|:| |wcond| (-639 (-947 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *6)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *6)))))))))) + (-5 *1 (-919 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-683 *8)) (-5 *4 (-916)) (-4 *8 (-944 *5 *7 *6)) + (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) + (-4 *7 (-788)) (-5 *2 - (-2 (|:| -2162 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) - (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-718 *4 *5)))) + (-639 + (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) + (|:| |wcond| (-639 (-947 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *5)))))))))) + (-5 *1 (-919 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 *9)) (-5 *5 (-1150)) + (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) + (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) + (-5 *1 (-919 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 (-1168))) (-5 *5 (-1150)) + (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) + (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) + (-5 *1 (-919 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-683 *8)) (-5 *4 (-1150)) (-4 *8 (-944 *5 *7 *6)) + (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) + (-4 *7 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-683 *10)) (-5 *4 (-639 *10)) (-5 *5 (-916)) + (-5 *6 (-1150)) (-4 *10 (-944 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) + (-4 *8 (-13 (-845) (-610 (-1168)))) (-4 *9 (-788)) (-5 *2 (-562)) + (-5 *1 (-919 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-683 *10)) (-5 *4 (-639 (-1168))) (-5 *5 (-916)) + (-5 *6 (-1150)) (-4 *10 (-944 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) + (-4 *8 (-13 (-845) (-610 (-1168)))) (-4 *9 (-788)) (-5 *2 (-562)) + (-5 *1 (-919 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-683 *9)) (-5 *4 (-916)) (-5 *5 (-1150)) + (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) + (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) + (-5 *1 (-919 *6 *7 *8 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-262)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) + ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554))))) +(((*1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1030)) + (-5 *1 (-744))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1256 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306)) + (-4 *3 (-554)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-916)) (-4 *4 (-362)) (-5 *2 (-1256 *1)) + (-4 *1 (-328 *4)))) + ((*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1256 *1)) (-4 *1 (-328 *3)))) ((*1 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 *4)) - (-5 *2 - (-2 (|:| -2162 (-682 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-682 *4)))) - (-5 *1 (-1263 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-765)) (-4 *6 (-362)) (-5 *4 (-1197 *6)) - (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1262 *6)) (-5 *5 (-1143 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-635 (-1197 *5))) - (-5 *1 (-1262 *5)) (-5 *4 (-1197 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-5 *2 (-1 (-1160 (-939 *4)) (-939 *4))) - (-5 *1 (-1262 *4)) (-4 *4 (-362))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-4 *5 (-362)) (-5 *2 (-1143 (-1143 (-939 *5)))) - (-5 *1 (-1262 *5)) (-5 *4 (-1143 (-939 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1143 (-939 *4)) (-1143 (-939 *4)))) - (-5 *1 (-1262 *4)) (-4 *4 (-362))))) + (-12 (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *1)) + (-4 *1 (-408 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) + (-5 *2 (-1256 *6)) (-5 *1 (-412 *3 *4 *5 *6)) + (-4 *6 (-13 (-408 *4 *5) (-1033 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) + (-5 *2 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)) + (-4 *6 (-408 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1256 *1)) (-4 *1 (-416 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1256 (-1256 *4))) (-5 *1 (-527 *4)) + (-4 *4 (-348))))) +(((*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1092))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *3 (-1044)) + (-5 *1 (-1152 *3))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-406 (-947 *6)) (-1157 (-1168) (-947 *6)))) + (-5 *5 (-766)) (-4 *6 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *6))))) + (-5 *1 (-291 *6)) (-5 *4 (-683 (-406 (-947 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-406 (-947 *5)) (-1157 (-1168) (-947 *5)))) + (|:| |eigmult| (-766)) (|:| |eigvec| (-639 *4)))) + (-4 *5 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *5))))) + (-5 *1 (-291 *5)) (-5 *4 (-683 (-406 (-947 *5))))))) +(((*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-534 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-535))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1150)) (-5 *4 (-168 (-224))) (-5 *5 (-562)) + (-5 *2 (-1030)) (-5 *1 (-753))))) (((*1 *2 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-1 (-1143 (-939 *4)) (-1143 (-939 *4)))) - (-5 *1 (-1262 *4)) (-4 *4 (-362))))) -(((*1 *2) - (-12 (-14 *4 (-765)) (-4 *5 (-1204)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5)) - (-4 *3 (-237 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) - ((*1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-171)))) + (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) + (-5 *2 (-766)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-766)))) + ((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) + (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-682 *4 *5 *6 *3)) + (-4 *3 (-681 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-544)) - (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) + (-5 *2 (-766))))) +(((*1 *1) (-5 *1 (-576)))) +(((*1 *1) (-5 *1 (-1056)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1249 *3 *2)) + (-4 *2 (-1247 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-562)) (-4 *4 (-1232 (-406 *3))) (-5 *2 (-916)) + (-5 *1 (-908 *4 *5)) (-4 *5 (-1232 (-406 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-243 *2)) (-4 *2 (-1207))))) +(((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-535))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-290))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-5 *1 (-436))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-224) (-224) (-224))) + (-5 *4 (-1 (-224) (-224) (-224) (-224))) + (-5 *2 (-1 (-938 (-224)) (-224) (-224))) (-5 *1 (-691))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1044)) (-5 *1 (-50 *2 *3)) (-14 *3 (-639 (-1168))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) - (-5 *2 (-544)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1042)) (-5 *2 (-912)))) - ((*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-362)) (-5 *2 (-133))))) -(((*1 *1) (-5 *1 (-1259)))) -(((*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-224)) (-5 *1 (-1258)))) - ((*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1258))))) -(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) - ((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258))))) -(((*1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258)))) - ((*1 *2 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1258))))) -(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) - ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))) -(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) - ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))) -(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) - ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))) -(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) - ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))) -(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257)))) - ((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1257))))) -(((*1 *1) (-5 *1 (-1257)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-635 (-260))) (-5 *1 (-1257)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1148)) (-5 *1 (-1257)))) - ((*1 *1 *1) (-5 *1 (-1257)))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-1154 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1257)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1257))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-765)) (-5 *3 (-936 *4)) (-4 *1 (-1124 *4)) (-4 *4 (-1042)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-765)) (-5 *4 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1256)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1256)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1257)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-260))) (-5 *1 (-1257))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-260)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-765)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-765)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1257))))) + (-12 (-5 *3 (-639 (-916))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) + (-14 *4 (-916)) (-14 *5 (-988 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) + (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-130)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1044)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *2 (-554)) (-5 *1 (-619 *2 *4)) + (-4 *4 (-1232 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-703 *2)) (-4 *2 (-1044)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1044)) (-5 *1 (-730 *2 *3)) (-4 *3 (-721)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 *5)) (-5 *3 (-639 (-766))) (-4 *1 (-735 *4 *5)) + (-4 *4 (-1044)) (-4 *5 (-845)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *2)) (-4 *4 (-1044)) + (-4 *2 (-845)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-847 *2)) (-4 *2 (-1044)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 (-766))) (-4 *1 (-944 *4 *5 *6)) + (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-944 *4 *5 *2)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *2 (-845)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-4 *2 (-944 *4 (-530 *5) *5)) + (-5 *1 (-1118 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-845)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-947 *4)) (-5 *1 (-1201 *4)) + (-4 *4 (-1044))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-639 (-112))) (-5 *5 (-683 (-224))) + (-5 *6 (-683 (-562))) (-5 *7 (-224)) (-5 *3 (-562)) (-5 *2 (-1030)) + (-5 *1 (-749))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-168 (-224)))) (-5 *2 (-1030)) + (-5 *1 (-749))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) + (|:| |expense| (-378)) (|:| |accuracy| (-378)) + (|:| |intermediateResults| (-378)))) + (-5 *2 (-1030)) (-5 *1 (-304))))) (((*1 *1 *2) + (-12 (-5 *2 (-916)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1044)) + (-4 *4 (-1207)))) + ((*1 *1 *2) + (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) + (-4 *5 (-237 (-3492 *3) (-766))) + (-14 *6 + (-1 (-112) (-2 (|:| -2466 *2) (|:| -1960 *5)) + (-2 (|:| -2466 *2) (|:| -1960 *5)))) + (-5 *1 (-460 *3 *4 *2 *5 *6 *7)) (-4 *2 (-845)) + (-4 *7 (-944 *4 *5 (-859 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203))))) +(((*1 *2 *1) + (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)) + (-4 *2 (-451)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-1232 (-562))) (-5 *2 (-639 (-562))) + (-5 *1 (-485 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-451)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)) (-4 *3 (-451))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 + (-2 (|:| |solns| (-639 *5)) + (|:| |maps| (-639 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1120 *3 *5)) (-4 *3 (-1232 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-683 *2)) (-5 *4 (-766)) + (-4 *2 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-4 *5 (-1232 *2)) (-5 *1 (-498 *2 *5 *6)) (-4 *6 (-408 *2 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) + (-5 *2 (-1164 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) + (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) - (-5 *1 (-260)))) - ((*1 *2 *3 *2) + (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) + (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) - (-5 *3 (-635 (-260))) (-5 *1 (-261)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) + (-5 *1 (-262)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-544)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) + (-12 (-5 *3 (-562)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) + (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) - (-5 *2 (-1259)) (-5 *1 (-1257)))) + (-5 *2 (-1261)) (-5 *1 (-1258)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -4254 (-224)) + (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -3878 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) - (-5 *1 (-1257)))) + (-5 *1 (-1258)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) + (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1030)) (-5 *3 (-1168)) (-5 *1 (-191))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) + (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) + (-14 *6 (-1168)) (-14 *7 *3)))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-562)) (-5 *5 (-112)) (-5 *6 (-683 (-224))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-554)) + (-4 *7 (-944 *3 *5 *6)) + (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *8) (|:| |radicand| *8))) + (-5 *1 (-948 *5 *6 *3 *7 *8)) (-5 *4 (-766)) + (-4 *8 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $)))))))) +(((*1 *1 *1) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-665)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) + (-14 *4 (-916))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-639 *6)) (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) + (-4 *3 (-554))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857))))) +(((*1 *2 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-742))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1092) (-34))) + (-5 *2 (-112)) (-5 *1 (-1132 *4 *5)) (-4 *4 (-13 (-1092) (-34)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-293 (-828 *3))) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-828 *3)) (-5 *1 (-632 *5 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-293 (-828 (-947 *5)))) (-4 *5 (-451)) + (-5 *2 (-828 (-406 (-947 *5)))) (-5 *1 (-633 *5)) + (-5 *3 (-406 (-947 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-293 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) + (-4 *5 (-451)) (-5 *2 (-828 *3)) (-5 *1 (-633 *5))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) + ((*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1256)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1256)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-1257)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1257)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1257))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1257))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-466)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1256)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1257))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-936 (-224)))) (-5 *1 (-1256))))) -(((*1 *1) (-5 *1 (-1256)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-635 (-260))) (-5 *1 (-1256)))) - ((*1 *1 *1) (-5 *1 (-1256)))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-912)) (-5 *4 (-224)) (-5 *5 (-544)) (-5 *6 (-867)) - (-5 *2 (-1259)) (-5 *1 (-1256))))) + (-12 (-5 *3 (-916)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1257))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1086 (-224))) + (-5 *2 (-1258)) (-5 *1 (-256))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1241 *3 *4 *5)) (-4 *3 (-13 (-362) (-845))) + (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378))))) +(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) + ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-1253 - (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) - (|:| |deltaY| (-224)) (|:| -4257 (-544)) (|:| -4255 (-544)) - (|:| |spline| (-544)) (|:| -4286 (-544)) (|:| |axesColor| (-867)) - (|:| -4258 (-544)) (|:| |unitsColor| (-867)) (|:| |showing| (-544))))) - (-5 *1 (-1256))))) -(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) - ((*1 *2 *1) (-12 (-5 *2 (-1253 (-3 (-466) "undefined"))) (-5 *1 (-1256))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-466)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-912)) (-5 *2 (-466)) (-5 *1 (-1256))))) + (-12 (-4 *1 (-600 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1092)) + (-4 *2 (-845))))) +(((*1 *2) + (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-342 *3 *4)) (-14 *3 (-916)) + (-14 *4 (-916)))) + ((*1 *2) + (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348)) + (-14 *4 (-1164 *3)))) + ((*1 *2) + (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348)) + (-14 *4 (-916))))) +(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) +(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-639 *1)) (-4 *1 (-915))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1207)) (-5 *1 (-181 *3 *2)) + (-4 *2 (-668 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1266))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-224)) (-5 *5 (-562)) (-5 *2 (-1202 *3)) + (-5 *1 (-785 *3)) (-4 *3 (-969)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-112)) + (-5 *1 (-1202 *2)) (-4 *2 (-969))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-766)) (-4 *4 (-554)) (-5 *1 (-964 *4 *2)) + (-4 *2 (-1232 *4))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-639 (-960))) (-5 *1 (-290))))) +(((*1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-635 (-377))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-466)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-466)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-1256)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) - ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-377)) (-5 *2 (-1259)) (-5 *1 (-1256))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1256))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-466)) (-5 *4 (-912)) (-5 *2 (-1259)) (-5 *1 (-1256))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-912)) - (-5 *6 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-1255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-635 (-260))) - (-5 *2 (-1256)) (-5 *1 (-1255))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-867)) (-5 *5 (-912)) - (-5 *6 (-635 (-260))) (-5 *2 (-466)) (-5 *1 (-1255)))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) + (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4403))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-362))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-562))) (-5 *4 (-900 (-562))) + (-5 *2 (-683 (-562))) (-5 *1 (-587)))) ((*1 *2 *3) - (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-466)) (-5 *1 (-1255)))) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-639 (-683 (-562)))) + (-5 *1 (-587)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-635 (-260))) (-5 *2 (-466)) - (-5 *1 (-1255))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) - (-5 *1 (-59 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1091)) (|has| *1 (-6 -4400)) - (-4 *1 (-150 *2)) (-4 *2 (-1204)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) - (-4 *2 (-1204)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) - (-4 *2 (-1204)))) + (-12 (-5 *3 (-639 (-562))) (-5 *4 (-639 (-900 (-562)))) + (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-587))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-845)) + (-5 *2 (-2 (|:| -4221 (-562)) (|:| |var| (-608 *1)))) + (-4 *1 (-429 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2 *3) (-12 (-5 *3 (-966)) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *2) + (-12 (-5 *2 (-683 (-905 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) + (-14 *4 (-916)))) + ((*1 *2) + (-12 (-5 *2 (-683 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) + (-14 *4 + (-3 (-1164 *3) + (-1256 (-639 (-2 (|:| -2534 *3) (|:| -2466 (-1112))))))))) + ((*1 *2) + (-12 (-5 *2 (-683 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) + (-14 *4 (-916))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-639 (-683 *4))) (-5 *2 (-683 *4)) (-4 *4 (-1044)) + (-5 *1 (-1024 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-639 + (-2 (|:| -2173 (-766)) + (|:| |eqns| + (-639 + (-2 (|:| |det| *7) (|:| |rows| (-639 (-562))) + (|:| |cols| (-639 (-562)))))) + (|:| |fgb| (-639 *7))))) + (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) + (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-766)) + (-5 *1 (-919 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-156))) + ((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-156))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1092)) (-5 *1 (-959 *3 *2)) (-4 *3 (-1092))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-191)))) ((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-5 *2 (-2 (|:| -2154 (-1160 *4)) (|:| |deg| (-912)))) - (-5 *1 (-220 *4 *5)) (-5 *3 (-1160 *4)) (-4 *5 (-13 (-554) (-844))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-238 *5 *6)) (-14 *5 (-765)) - (-4 *6 (-1204)) (-4 *2 (-1204)) (-5 *1 (-239 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1229 *4)) - (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-313 *2)) (-4 *2 (-554)) (-4 *2 (-844)))) + (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-299)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *6 (-610 (-1168))) + (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *2 (-1157 (-639 (-947 *4)) (-639 (-293 (-947 *4))))) + (-5 *1 (-503 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) + (-5 *1 (-331))))) +(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-766)) (-4 *5 (-362)) (-5 *2 (-173 *6)) + (-5 *1 (-862 *5 *4 *6)) (-4 *4 (-1247 *5)) (-4 *6 (-1232 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 *2))) + (-5 *2 (-887 *3)) (-5 *1 (-1068 *3 *4 *5)) + (-4 *5 (-13 (-429 *4) (-881 *3) (-610 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) + (-5 *2 + (-3 (|:| |overq| (-1164 (-406 (-562)))) + (|:| |overan| (-1164 (-48))) (|:| -4253 (-112)))) + (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-161))) + ((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-161))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-535))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *6 (-224)) + (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-746))))) +(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) + (-4 *4 (-13 (-845) (-554)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) + (-5 *2 (-2 (|:| |k| (-814 *3)) (|:| |c| *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-683 *4)) (-4 *5 (-650 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) +(((*1 *2) + (-12 (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) + (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-4 *4 (-1232 *3)) + (-5 *2 + (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-683 *3)))) + (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1232 (-562))) + (-5 *2 + (-2 (|:| -3928 (-683 (-562))) (|:| |basisDen| (-562)) + (|:| |basisInv| (-683 (-562))))) + (-5 *1 (-763 *3 *4)) (-4 *4 (-408 (-562) *3)))) + ((*1 *2) + (-12 (-4 *3 (-348)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) + (-5 *2 + (-2 (|:| -3928 (-683 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-683 *4)))) + (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-719 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-348)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) + (-5 *2 + (-2 (|:| -3928 (-683 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-683 *4)))) + (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2) + (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| |k| (-1168)) (|:| |c| (-1278 *3))))) + (-5 *1 (-1278 *3)) (-4 *3 (-1044)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| |k| *3) (|:| |c| (-1280 *3 *4))))) + (-5 *1 (-1280 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-751))))) +(((*1 *1 *1) (-5 *1 (-224))) + ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1) (-4 *1 (-1131))) ((*1 *1 *1 *1) (-4 *1 (-1131)))) +(((*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) ((*1 *1 *1) - (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1229 *2)) - (-4 *4 (-1229 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1204)) (-4 *2 (-1204)) - (-5 *1 (-372 *5 *4 *2 *6)) (-4 *4 (-371 *5)) (-4 *6 (-371 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1091)) (-4 *2 (-1091)) - (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) - ((*1 *1 *1) (-5 *1 (-493))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-635 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) - (-5 *1 (-636 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1042)) (-4 *2 (-1042)) (-4 *6 (-371 *5)) - (-4 *7 (-371 *5)) (-4 *8 (-371 *2)) (-4 *9 (-371 *2)) - (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-679 *5 *6 *7)) - (-4 *10 (-679 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-362)) - (-4 *3 (-171)) (-4 *1 (-718 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-718 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-951 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) - (-5 *1 (-952 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *2 (-943 *3 *4 *5)) (-14 *6 (-635 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1042)) (-4 *2 (-1042)) (-14 *5 (-765)) - (-14 *6 (-765)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) - (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) - (-5 *1 (-1047 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1045 *5 *6 *7 *8 *9)) (-4 *12 (-1045 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1143 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) - (-5 *1 (-1145 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1199 *5 *6 *7 *2)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) - (-4 *2 (-1056 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1253 *5)) (-4 *5 (-1204)) (-4 *2 (-1204)) - (-5 *1 (-1254 *5 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) - (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-238 *6 *7)) (-14 *6 (-765)) - (-4 *7 (-1204)) (-4 *5 (-1204)) (-5 *2 (-238 *6 *5)) - (-5 *1 (-239 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1204)) (-4 *5 (-1204)) (-4 *2 (-371 *5)) - (-5 *1 (-372 *6 *4 *5 *2)) (-4 *4 (-371 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1091)) (-4 *5 (-1091)) (-4 *2 (-425 *5)) - (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-635 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) - (-5 *2 (-635 *5)) (-5 *1 (-636 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-951 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) - (-5 *2 (-951 *5)) (-5 *1 (-952 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1143 *6)) (-4 *6 (-1204)) (-4 *3 (-1204)) - (-5 *2 (-1143 *3)) (-5 *1 (-1145 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1253 *6)) (-4 *6 (-1204)) (-4 *5 (-1204)) - (-5 *2 (-1253 *5)) (-5 *1 (-1254 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1253 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-156))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-213 *2)) - (-4 *2 - (-13 (-844) - (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) - (-15 -2115 ((-1259) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-25)) (-4 *2 (-1204)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-25)) (-4 *2 (-1204)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-130)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) - (-4 *5 (-943 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-533))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-25))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-1252 *3)) (-4 *3 (-23)) (-4 *3 (-1204))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-213 *2)) - (-4 *2 - (-13 (-844) - (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) - (-15 -2115 ((-1259) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-845)) + (-4 *3 (-13 (-171) (-712 (-406 (-562))))) (-14 *4 (-916)))) + ((*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) ((*1 *1 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)))) + (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *2 (-1030)) (-5 *1 (-746))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1092))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) + (-5 *1 (-467))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -1602 *7) (|:| |sol?| (-112))) + (-562) *7)) + (-5 *6 (-639 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1232 *7)) + (-5 *3 (-406 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-572 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) + (-5 *1 (-448 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *1) (-5 *1 (-140)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-639 (-562))) + (|:| |cols| (-639 (-562))))) + (-5 *4 (-683 *12)) (-5 *5 (-639 (-406 (-947 *9)))) + (-5 *6 (-639 (-639 *12))) (-5 *7 (-766)) (-5 *8 (-562)) + (-4 *9 (-13 (-306) (-146))) (-4 *12 (-944 *9 *11 *10)) + (-4 *10 (-13 (-845) (-610 (-1168)))) (-4 *11 (-788)) + (-5 *2 + (-2 (|:| |eqzro| (-639 *12)) (|:| |neqzro| (-639 *12)) + (|:| |wcond| (-639 (-947 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *9)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *9))))))))) + (-5 *1 (-919 *9 *10 *11 *12))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-960))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1150) (-769))) (-5 *1 (-114))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092))))) +(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1150)) (-5 *1 (-304))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1033 (-562))) (-4 *1 (-301)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-562)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-843) (-362))) (-5 *2 (-112)) (-5 *1 (-1054 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-683 *2)) (-5 *4 (-562)) + (-4 *2 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-4 *5 (-1232 *2)) (-5 *1 (-498 *2 *5 *6)) (-4 *6 (-408 *2 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *4 *2 *5)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) + (-4 *2 (-237 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) + (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1207)) + (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *6 *2 *7)) (-4 *6 (-1044)) + (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *6)) + (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1092) (-34))) + (-4 *4 (-13 (-1092) (-34)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)))) - ((*1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1204)) (-4 *2 (-1042)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-224)) (-5 *1 (-1201)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-1042))))) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-766)) (-4 *5 (-171)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-766)) (-4 *5 (-171)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) + (-246 *4 (-406 (-562))))) + (-5 *3 (-639 (-859 *4))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) + (-5 *1 (-504 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-4 *1 (-301)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *6)) (-4 *5 (-1092)) + (-4 *6 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-636 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-4 *5 (-1092)) + (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 *5)) (-4 *6 (-1092)) + (-4 *5 (-1207)) (-5 *2 (-1 *5 *6)) (-5 *1 (-636 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-4 *5 (-1092)) + (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-639 *5)) (-5 *4 (-639 *6)) + (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *1 (-636 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1092)) (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-143)) (-5 *2 (-766))))) +(((*1 *2 *2) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *3 (-128)) (-5 *2 (-766))))) +(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1204)) (-4 *3 (-1042)) (-5 *2 (-682 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1042)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-1042))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) - (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) - ((*1 *1 *1) (-4 *1 (-543))) - ((*1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-912)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1202 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-995)) (-4 *2 (-1042))))) + (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1150)) (-5 *1 (-781))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1112)) (-4 *4 (-348)) + (-5 *1 (-527 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925))))) (((*1 *2 *1) - (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1204)) (-4 *2 (-995)) (-4 *2 (-1042))))) -(((*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-858 *3)) (-14 *3 (-635 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-959 *3)) (-4 *3 (-960)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-982)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1082 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-1166)))) - ((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1250 *3)) (-14 *3 *2)))) + (-12 (-5 *2 (-639 *4)) (-5 *1 (-1133 *3 *4)) + (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-1170 (-406 (-562)))) + (-5 *1 (-189))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-1033 (-406 *2)))) (-5 *2 (-562)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1 *1) (-5 *1 (-1056)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) (((*1 *2 *3) - (-12 (-5 *3 (-406 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-554)) (-4 *4 (-1042)) - (-4 *2 (-1246 *4)) (-5 *1 (-1248 *4 *5 *6 *2)) (-4 *6 (-651 *5))))) + (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362)) + (-5 *1 (-520 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) + (|has| *2 (-6 (-4404 "*"))) (-4 *2 (-1044)))) + ((*1 *2 *3) + (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) + (-5 *1 (-682 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) + (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4404 "*"))) (-4 *2 (-1044))))) (((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *5 (-1229 *4)) (-5 *2 (-1 *6 (-635 *6))) - (-5 *1 (-1248 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1246 *4))))) + (-12 (-5 *3 (-1164 *6)) (-4 *6 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-1164 *7)) (-5 *1 (-320 *4 *5 *6 *7)) + (-4 *7 (-944 *6 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-639 *2))) (-5 *4 (-639 *5)) + (-4 *5 (-38 (-406 (-562)))) (-4 *2 (-1247 *5)) + (-5 *1 (-1249 *5 *2))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-112)) (-5 *5 (-683 (-224))) + (-5 *2 (-1030)) (-5 *1 (-750))))) +(((*1 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-798))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-4 *2 (-1229 *5)) - (-5 *1 (-1248 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1246 *5))))) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *3 (-1229 *4)) (-4 *2 (-1246 *4)) - (-5 *1 (-1248 *4 *3 *5 *2)) (-4 *5 (-651 *3))))) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-843)) (-4 *4 (-362)) (-5 *2 (-766)) + (-5 *1 (-940 *4 *5)) (-4 *5 (-1232 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 (-1 *6 (-635 *6)))) - (-4 *5 (-38 (-406 (-544)))) (-4 *6 (-1246 *5)) (-5 *2 (-635 *6)) - (-5 *1 (-1247 *5 *6))))) + (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) + (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-315 *5))) + (-5 *1 (-1121 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) + (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-315 *5)))) + (-5 *1 (-1121 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *3 (-1044)) + (-5 *1 (-1152 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-329))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1044))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-639 (-639 *4))) (-5 *2 (-639 *4)) (-4 *4 (-306)) + (-5 *1 (-178 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 *8)) + (-5 *4 + (-639 + (-2 (|:| -3928 (-683 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-683 *7))))) + (-5 *5 (-766)) (-4 *8 (-1232 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-348)) + (-5 *2 + (-2 (|:| -3928 (-683 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-683 *7)))) + (-5 *1 (-497 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-766)) (-5 *1 (-1093 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-673 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) +(((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1256 (-693))) (-5 *1 (-304))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-635 *2))) (-5 *4 (-635 *5)) (-4 *5 (-38 (-406 (-544)))) - (-4 *2 (-1246 *5)) (-5 *1 (-1247 *5 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-1247 *4 *2)) - (-4 *4 (-38 (-406 (-544))))))) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1246 *4)) (-5 *1 (-1247 *4 *2)) - (-4 *4 (-38 (-406 (-544))))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1246 *3))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) + (-4 *6 (-13 (-27) (-429 *5))) + (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-4 *8 (-1232 (-406 *7))) + (-5 *2 (-583 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) + (-4 *3 (-341 *6 *7 *8))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-635 *5))) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544)))) - (-5 *2 (-1 (-1143 *4) (-635 (-1143 *4)))) (-5 *1 (-1247 *4 *5))))) + (-12 (-4 *1 (-795)) + (-5 *3 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) + (|:| |abserr| (-224)) (|:| |relerr| (-224)))) + (-5 *2 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-52))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) +(((*1 *1) + (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544)))) - (-5 *2 (-1 (-1143 *4) (-1143 *4) (-1143 *4))) (-5 *1 (-1247 *4 *5))))) + (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) + (-5 *2 (-1256 (-562))) (-5 *1 (-1283 *4))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *2 (-1092)) (-4 *3 (-1092)) + (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092))))) +(((*1 *2) + (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) + (-5 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) + (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-5 *2 + (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (|:| |success| (-112)))) + (-5 *1 (-784)) (-5 *5 (-562))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-845)) + (-4 *5 (-788)) (-4 *2 (-265 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1246 *4)) (-4 *4 (-38 (-406 (-544)))) - (-5 *2 (-1 (-1143 *4) (-1143 *4))) (-5 *1 (-1247 *4 *5))))) + (-12 (-4 *4 (-845)) (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4)) + (-5 *3 (-639 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1256 (-1256 (-562)))) (-5 *3 (-916)) (-5 *1 (-465))))) +(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-406 (-544))) - (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) - (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-292 *3)) (-5 *5 (-406 (-544))) - (-4 *3 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-544))) (-5 *4 (-292 *6)) - (-4 *6 (-13 (-27) (-1190) (-420 *5))) - (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-544))) - (-4 *7 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-544))) - (-4 *3 (-13 (-27) (-1190) (-420 *7))) - (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-406 (-544)))) (-5 *4 (-292 *8)) - (-5 *5 (-1220 (-406 (-544)))) (-5 *6 (-406 (-544))) - (-4 *8 (-13 (-27) (-1190) (-420 *7))) - (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-406 (-544)))) - (-5 *7 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *8))) - (-4 *8 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-4 *3 (-1042)) - (-5 *1 (-591 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-592 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-4 *3 (-1042)) - (-4 *1 (-1215 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-765)) (-5 *3 (-1143 (-2 (|:| |k| (-406 (-544))) (|:| |c| *4)))) - (-4 *4 (-1042)) (-4 *1 (-1236 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-4 *1 (-1246 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1143 (-2 (|:| |k| (-765)) (|:| |c| *3)))) (-4 *3 (-1042)) - (-4 *1 (-1246 *3))))) + (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304))))) (((*1 *2 *1) - (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-635 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) - ((*1 *2 *1) - (-12 (-5 *2 (-635 *3)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720)))) - ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-635 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1246 *3)) (-4 *3 (-1042)) (-5 *2 (-1143 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-544))) (-4 *3 (-1042)) (-5 *1 (-591 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-544))) (-4 *1 (-1215 *3)) (-4 *3 (-1042)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-544))) (-4 *1 (-1246 *3)) (-4 *3 (-1042))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) - (-5 *2 (-939 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *5)) (-4 *4 (-1042)) (-4 *5 (-844)) - (-5 *2 (-939 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-765)) (-4 *1 (-1246 *4)) (-4 *4 (-1042)) (-5 *2 (-939 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-4 *1 (-1246 *4)) (-4 *4 (-1042)) (-5 *2 (-939 *4))))) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *5 (-367)) + (-5 *2 (-766))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)))) + ((*1 *1) (-4 *1 (-1143)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *2 (-1092)) (-4 *3 (-1092)) + (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-900 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-971 *4 *5 *6 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-869)) (-5 *3 (-639 (-262))) (-5 *1 (-260))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) + (-4 *3 (-13 (-1092) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1092))))) +(((*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-1181 *2)) (-4 *2 (-362))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-406 (-544))) (-4 *4 (-1031 (-544))) (-4 *4 (-13 (-844) (-554))) - (-5 *1 (-32 *4 *2)) (-4 *2 (-420 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-133))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-224))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-544)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-406 (-544))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1246 *4)) - (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1217 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-406 (-544))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1215 *4)) - (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1238 *4 *5)) (-4 *6 (-976 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-283))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-360 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *1) (-5 *1 (-377))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-385 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-1102)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-544)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1253 *4)) (-5 *3 (-544)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-533)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-533)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *4 (-1091)) (-5 *1 (-675 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-4 *3 (-362)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)))) + (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) + (-4 *2 (-429 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-544)) (-4 *3 (-1042)) (-5 *1 (-708 *3 *4)) (-4 *4 (-641 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *5)) - (-4 *5 (-641 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-765)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-813 *2)) (-4 *2 (-844)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-828 *3)) (-4 *3 (-1042)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-544)) (-5 *1 (-828 *4)) (-4 *4 (-1042)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-406 (-544))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-912)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-544)) (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *4 (-1042)) - (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) + (-12 (-5 *3 (-1084 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) + (-5 *1 (-157 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-159)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168))))) +(((*1 *1 *2) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1168))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *2 *3) + (-12 (-5 *3 (-683 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204))))) +(((*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1092) (-1033 *5))) + (-4 *5 (-881 *4)) (-4 *4 (-1092)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-926 *4 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-639 (-505))) (-5 *2 (-505)) (-5 *1 (-482))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-639 (-1164 (-562)))) (-5 *1 (-190)) (-5 *3 (-562))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1082 (-836 *3))) (-4 *3 (-13 (-1190) (-953) (-29 *5))) - (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 - (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) - (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) - (-5 *1 (-218 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1082 (-836 *3))) (-5 *5 (-1148)) - (-4 *3 (-13 (-1190) (-953) (-29 *6))) - (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 - (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| #1#) - (|:| |pole| #2#))) - (-5 *1 (-218 *6 *3)))) + (-12 (-5 *3 (-816)) (-5 *4 (-52)) (-5 *2 (-1261)) (-5 *1 (-826))))) +(((*1 *2) + (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) +(((*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-486))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-362)) (-5 *1 (-891 *2 *3)) + (-4 *2 (-1232 *3))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))) +(((*1 *1 *1) (|partial| -4 *1 (-1143)))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-444 *3)) (-4 *3 (-1044))))) +(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) + ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) +(((*1 *2 *3) + (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) + (-4 *3 (-1232 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1082 (-836 (-313 *5)))) - (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 - (-3 (|:| |f1| (-836 (-313 *5))) (|:| |f2| (-635 (-836 (-313 *5)))) - (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) - (-5 *1 (-219 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-406 (-939 *6))) (-5 *4 (-1082 (-836 (-313 *6)))) - (-5 *5 (-1148)) - (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 - (-3 (|:| |f1| (-836 (-313 *6))) (|:| |f2| (-635 (-836 (-313 *6)))) - (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-219 *6)))) + (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) + (-4 *3 (-1232 (-562))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1082 (-836 (-406 (-939 *5))))) (-5 *3 (-406 (-939 *5))) - (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 - (-3 (|:| |f1| (-836 (-313 *5))) (|:| |f2| (-635 (-836 (-313 *5)))) - (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-219 *5)))) + (-12 (-5 *4 (-639 (-766))) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) + (-4 *3 (-1232 (-562))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1082 (-836 (-406 (-939 *6))))) (-5 *5 (-1148)) - (-5 *3 (-406 (-939 *6))) - (-4 *6 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) + (-12 (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *2 (-417 *3)) + (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) + (-4 *3 (-1232 (-562))))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1002 *3)) + (-4 *3 (-1232 (-406 (-562)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-721)) (-4 *2 (-1207))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1200 *4 *5 *3 *6)) (-4 *4 (-554)) (-4 *5 (-788)) + (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1214)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1131)))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-639 *11)) (-5 *5 (-639 (-1164 *9))) + (-5 *6 (-639 *9)) (-5 *7 (-639 *12)) (-5 *8 (-639 (-766))) + (-4 *11 (-845)) (-4 *9 (-306)) (-4 *12 (-944 *9 *10 *11)) + (-4 *10 (-788)) (-5 *2 (-639 (-1164 *12))) + (-5 *1 (-702 *10 *11 *9 *12)) (-5 *3 (-1164 *12))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(((*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-216))))) +(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) + (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5))))) +(((*1 *2) + (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) + (-5 *2 (-766)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-766))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-417 *3)) (-4 *3 (-554))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) + (-5 *7 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1150)) (-5 *1 (-984)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1086 *4)) (-4 *4 (-1207)) + (-5 *1 (-1084 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-639 *3)) (-4 *3 (-944 *5 *6 *7)) (-4 *5 (-451)) + (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-448 *5 *6 *7 *3))))) +(((*1 *1) (-5 *1 (-818)))) +(((*1 *1 *1) + (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1044)) (-4 *3 (-845)) + (-4 *4 (-265 *3)) (-4 *5 (-788))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-1172)) (-5 *1 (-1171))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-639 *10)) (-5 *5 (-112)) (-4 *10 (-1064 *6 *7 *8 *9)) + (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *9 (-1058 *6 *7 *8)) (-5 *2 - (-3 (|:| |f1| (-836 (-313 *6))) (|:| |f2| (-635 (-836 (-313 *6)))) - (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-219 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) - (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-3 *3 (-635 *3))) (-5 *1 (-429 *5 *3)) - (-4 *3 (-13 (-1190) (-953) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377)) - (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562)))) - ((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1028)) (-5 *1 (-562)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377)) - (-5 *2 (-1028)) (-5 *1 (-562)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *5 (-377)) - (-5 *2 (-1028)) (-5 *1 (-562)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-1079 (-836 (-377)))) (-5 *2 (-1028)) - (-5 *1 (-562)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) - (-5 *2 (-1028)) (-5 *1 (-562)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) - (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) + (-639 + (-2 (|:| -3342 (-639 *9)) (|:| -1495 *10) (|:| |ineq| (-639 *9))))) + (-5 *1 (-983 *6 *7 *8 *9 *10)) (-5 *3 (-639 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) - (-5 *5 (-377)) (-5 *2 (-1028)) (-5 *1 (-562)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-1079 (-836 (-377))))) - (-5 *5 (-377)) (-5 *6 (-1054)) (-5 *2 (-1028)) (-5 *1 (-562)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-313 (-377))) (-5 *4 (-1082 (-836 (-377)))) - (-5 *5 (-1148)) (-5 *2 (-1028)) (-5 *1 (-562)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-313 (-377))) (-5 *4 (-1082 (-836 (-377)))) - (-5 *5 (-1166)) (-5 *2 (-1028)) (-5 *1 (-562)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) - (-5 *2 (-580 (-406 *5))) (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) - (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) - (-5 *2 (-3 (-313 *5) (-635 (-313 *5)))) (-5 *1 (-585 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-844)) - (-4 *3 (-38 (-406 (-544)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1166)) (-5 *1 (-939 *3)) (-4 *3 (-38 (-406 (-544)))) - (-4 *3 (-1042)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-4 *2 (-844)) - (-5 *1 (-1116 *3 *2 *4)) (-4 *4 (-943 *3 (-529 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) - (-5 *1 (-1150 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *1 (-1197 *3)) (-4 *3 (-38 (-406 (-544)))) - (-4 *3 (-1042)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3936 - (-12 (-5 *2 (-1166)) (-4 *1 (-1215 *3)) (-4 *3 (-1042)) - (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190)) - (-4 *3 (-38 (-406 (-544)))))) - (-12 (-5 *2 (-1166)) (-4 *1 (-1215 *3)) (-4 *3 (-1042)) - (-12 (|has| *3 (-15 -3467 ((-635 *2) *3))) - (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1215 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1234 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3936 - (-12 (-5 *2 (-1166)) (-4 *1 (-1236 *3)) (-4 *3 (-1042)) - (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190)) - (-4 *3 (-38 (-406 (-544)))))) - (-12 (-5 *2 (-1166)) (-4 *1 (-1236 *3)) (-4 *3 (-1042)) - (-12 (|has| *3 (-15 -3467 ((-635 *2) *3))) - (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3936 - (-12 (-5 *2 (-1166)) (-4 *1 (-1246 *3)) (-4 *3 (-1042)) - (-12 (-4 *3 (-29 (-544))) (-4 *3 (-953)) (-4 *3 (-1190)) - (-4 *3 (-38 (-406 (-544)))))) - (-12 (-5 *2 (-1166)) (-4 *1 (-1246 *3)) (-4 *3 (-1042)) - (-12 (|has| *3 (-15 -3467 ((-635 *2) *3))) - (|has| *3 (-15 -4219 (*3 *3 *2))) (-4 *3 (-38 (-406 (-544)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1042)) (-4 *2 (-38 (-406 (-544))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-1222 *5 *4)) (-5 *1 (-1164 *4 *5 *6)) - (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-1222 *5 *4)) (-5 *1 (-1243 *4 *5 *6)) - (-4 *4 (-1042)) (-14 *5 (-1166)) (-14 *6 *4)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765)))) - ((*1 *1 *1) (-4 *1 (-232))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-265 *3)) (-4 *3 (-844)))) - ((*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-844)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) - (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) - (-4 *4 (-1229 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-472 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-362)) (-4 *2 (-893 *3)) (-5 *1 (-580 *2)) (-5 *3 (-1166)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-580 *2)) (-4 *2 (-362)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-765))) (-4 *1 (-893 *4)) - (-4 *4 (-1091)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1091)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1157 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1163 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1164 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1213 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1234 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1250 *4)) (-14 *4 (-1166)) (-5 *1 (-1243 *3 *4 *5)) - (-4 *3 (-1042)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) + (-12 (-5 *4 (-639 *10)) (-5 *5 (-112)) (-4 *10 (-1064 *6 *7 *8 *9)) + (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *9 (-1058 *6 *7 *8)) + (-5 *2 + (-639 + (-2 (|:| -3342 (-639 *9)) (|:| -1495 *10) (|:| |ineq| (-639 *9))))) + (-5 *1 (-1099 *6 *7 *8 *9 *10)) (-5 *3 (-639 *9))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-562)) (-4 *3 (-171)) (-4 *5 (-372 *3)) + (-4 *6 (-372 *3)) (-5 *1 (-682 *3 *5 *6 *2)) + (-4 *2 (-681 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-677 *4 *3)) (-4 *4 (-1092)) + (-4 *3 (-1092))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1044)) (-5 *1 (-707 *3 *2)) (-4 *2 (-1232 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-916)) (-4 *3 (-362)) + (-14 *4 (-988 *2 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) + (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) - (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) + (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) ((*1 *1 *1) - (-12 (-5 *1 (-1243 *2 *3 *4)) (-4 *2 (-1042)) (-14 *3 (-1166)) (-14 *4 *2)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) - (-14 *5 *3)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-1042)) (-5 *1 (-1150 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-544)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-1166)) - (-14 *5 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-302)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-1028))) (-5 *2 (-1028)) (-5 *1 (-302)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1 *1) (-5 *1 (-1054))) - ((*1 *2 *3) - (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1144 *4)) - (-4 *4 (-1204)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) + (|partial| -12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) + ((*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) + ((*1 *1 *1) (|partial| -4 *1 (-717))) + ((*1 *1 *1) (|partial| -4 *1 (-721))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-13 (-843) (-362))) + (-4 *2 (-1232 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1116 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-777 *3)) (|:| |polden| *3) (|:| -3761 (-766)))) + (-5 *1 (-777 *3)) (-4 *3 (-1044)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3761 (-766)))) + (-4 *1 (-1058 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) + ((*1 *1 *1 *1) (-4 *1 (-472))) + ((*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) + ((*1 *2 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-878)))) + ((*1 *1 *1) (-5 *1 (-966))) + ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) +(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) +(((*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-683 *11)) (-5 *4 (-639 (-406 (-947 *8)))) + (-5 *5 (-766)) (-5 *6 (-1150)) (-4 *8 (-13 (-306) (-146))) + (-4 *11 (-944 *8 *10 *9)) (-4 *9 (-13 (-845) (-610 (-1168)))) + (-4 *10 (-788)) + (-5 *2 + (-2 + (|:| |rgl| + (-639 + (-2 (|:| |eqzro| (-639 *11)) (|:| |neqzro| (-639 *11)) + (|:| |wcond| (-639 (-947 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *8)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *8)))))))))) + (|:| |rgsz| (-562)))) + (-5 *1 (-919 *8 *9 *10 *11)) (-5 *7 (-562))))) +(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1212)))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705))))) +(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) + ((*1 *1 *1 *1) (-4 *1 (-788)))) +(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-554)))) + ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) + (-5 *1 (-743))))) +(((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1256 *1)) (-4 *1 (-366 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-599 *3 *2)) (-4 *3 (-1091)) (-4 *3 (-844)) (-4 *2 (-1204)))) - ((*1 *2 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) - ((*1 *2 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) - ((*1 *2 *1) (-12 (-4 *2 (-1204)) (-5 *1 (-866 *2 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-886 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) - (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2)) - (-4 *5 (-371 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-371 *2)) - (-4 *5 (-371 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-635 (-544))) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 (-544)) (-14 *5 (-765)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-765)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-765)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-765)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *2 (-171)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-765)))) + (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) + (-4 *3 (-1232 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) ((*1 *2 *1) - (-12 (-4 *2 (-171)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-544)) (-14 *4 (-765)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1166)) (-5 *2 (-244 (-1148))) (-5 *1 (-213 *4)) - (-4 *4 - (-13 (-844) - (-10 -8 (-15 -4206 ((-1148) $ *3)) (-15 -4024 ((-1259) $)) - (-15 -2115 ((-1259) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-982)) (-5 *1 (-213 *3)) - (-4 *3 - (-13 (-844) - (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 ((-1259) $)) - (-15 -2115 ((-1259) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-765)) (-5 *1 (-244 *4)) (-4 *4 (-844)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-844)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-844)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1229 *3)) - (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 *1)) (-4 *1 (-297)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2)) - (-4 *4 (-1229 (-406 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-417 *2)) (-4 *2 (-171)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1148)) (-5 *1 (-500)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-51)) (-5 *1 (-627)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-635 (-544))) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) - (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-635 (-883 *4))) (-5 *1 (-883 *4)) - (-4 *4 (-1091)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1091)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-895 *4)) (-5 *1 (-898 *4)) (-4 *4 (-1091)))) + (-12 + (-5 *2 + (-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) + (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) + (|:| |args| (-639 (-857))))) + (-5 *1 (-1168))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-639 *5) *6)) + (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) + (-5 *2 (-639 (-2 (|:| |poly| *6) (|:| -3342 *3)))) + (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-650 *6)) + (-4 *7 (-650 (-406 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-639 *5) *6)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *6 (-1232 *5)) + (-5 *2 (-639 (-2 (|:| |poly| *6) (|:| -3342 (-648 *6 (-406 *6)))))) + (-5 *1 (-807 *5 *6)) (-5 *3 (-648 *6 (-406 *6)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-739 *3)) (-4 *3 (-171))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-766)) (-4 *6 (-1092)) (-4 *3 (-895 *6)) + (-5 *2 (-683 *3)) (-5 *1 (-686 *6 *3 *7 *4)) (-4 *7 (-372 *3)) + (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4402))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2835 *4))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-818)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1168)) (-4 *1 (-27)) + (-5 *2 (-639 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-238 *4 *2)) (-14 *4 (-912)) (-4 *2 (-362)) - (-5 *1 (-986 *4 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1003 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *2 (-1042)) - (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) - (-4 *7 (-237 *4 *2)) (-4 *2 (-1042)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-912)) (-4 *4 (-1091)) - (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) - (-5 *1 (-1065 *4 *5 *2)) - (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-912)) (-4 *4 (-1091)) - (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) - (-5 *1 (-1067 *4 *5 *2)) - (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-544))) (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) - (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-544)) (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) - (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)))) - ((*1 *1 *1 *1) (-4 *1 (-1134))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-406 *1)) (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1199 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-787)) - (-4 *4 (-844)) (-4 *5 (-1056 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1086)))) + (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-639 *1)) + (-4 *1 (-29 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) - (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1242 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) - ((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *2 (-1204)) (-5 *1 (-866 *3 *2)) (-4 *3 (-1204)))) - ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1204)) (-5 *2 (-765))))) -(((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2)) - (-4 *5 (-371 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4401)) (-4 *1 (-119 *3)) - (-4 *3 (-1204)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4401)) (-4 *1 (-119 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4401)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) - (-4 *2 (-1204)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1166)) (-5 *1 (-627)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1220 (-544))) (|has| *1 (-6 -4401)) (-4 *1 (-644 *2)) - (-4 *2 (-1204)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-635 (-544))) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) - (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4401)) (-4 *1 (-1003 *2)) - (-4 *2 (-1204)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) - (-4 *2 (-1204)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *3)) - (-4 *3 (-1204)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) - (-4 *2 (-1204))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1143 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1242 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-544)) (|has| *1 (-6 -4401)) (-4 *1 (-1242 *3)) - (-4 *3 (-1204))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) - (-5 *2 (-836 *4)) (-5 *1 (-312 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *2 *3) + (-12 (-5 *3 (-916)) + (-5 *2 + (-3 (-1164 *4) + (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112))))))) + (-5 *1 (-345 *4)) (-4 *4 (-348))))) +(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) + (-4 *3 (-13 (-429 *6) (-27) (-1192))) + (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1092))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1044)) + (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) + (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) + ((*1 *1 *1) (-4 *1 (-544))) + ((*1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-4 *1 (-990 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1204 *3)) (-4 *3 (-1207)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) - (-5 *2 (-836 *4)) (-5 *1 (-1240 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1190) (-420 *3))) (-14 *5 (-1166)) (-14 *6 *4)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-844) (-1031 (-544)) (-634 (-544)) (-450))) + (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-997)) + (-4 *2 (-1044))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) + (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-467)) (-5 *3 (-639 (-262))) (-5 *1 (-1257)))) + ((*1 *1 *1) (-5 *1 (-1257)))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-529 *3)) (-4 *3 (-13 (-721) (-25)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) + (-5 *1 (-751))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-4 *7 (-944 *4 *6 *5)) (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1234 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6)) - (|:| |%expTerms| (-635 (-2 (|:| |k| (-406 (-544))) (|:| |c| *4)))))) - (|:| |%type| (-1148)))) - (-5 *1 (-1240 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1190) (-420 *3))) - (-14 *5 (-1166)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-406 (-544))) - (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) - (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-292 *3)) (-5 *5 (-406 (-544))) - (-4 *3 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-406 (-544)))) (-5 *4 (-292 *8)) - (-5 *5 (-1220 (-406 (-544)))) (-5 *6 (-406 (-544))) - (-4 *8 (-13 (-27) (-1190) (-420 *7))) - (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-406 (-544)))) - (-5 *7 (-406 (-544))) (-4 *3 (-13 (-27) (-1190) (-420 *8))) - (-4 *8 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-406 (-544))) (-4 *4 (-1042)) (-4 *1 (-1238 *4 *3)) - (-4 *3 (-1215 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1215 *3)) - (-5 *2 (-406 (-544)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3))))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-639 *7)) (|:| |n0| (-639 *7)))) + (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) + (-4 *3 (-13 (-845) (-554)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-1179 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) + (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) + (-4 *3 (-13 (-362) (-1192) (-997)))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-766)) (-5 *1 (-669 *2)) (-4 *2 (-1092))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) +(((*1 *2) + (-12 (-14 *4 (-766)) (-4 *5 (-1207)) (-5 *2 (-133)) + (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) + (-4 *3 (-328 *4)))) + ((*1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-171)))) + ((*1 *2 *1) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-562)) + (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) + (-5 *2 (-562)) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-975 *3)) (-4 *3 (-1044)) (-5 *2 (-916)))) + ((*1 *2) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-362)) (-5 *2 (-133))))) +(((*1 *1 *1 *1) (-4 *1 (-756)))) +(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1208 *2)) + (-4 *2 (-1092)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-544)) (-4 *5 (-13 (-450) (-844) (-1031 *4) (-634 *4))) - (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) - (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-450) (-844) (-1031 *5) (-634 *5))) (-5 *5 (-544)) - (-5 *2 (-51)) (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-544))) - (-4 *7 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-544))) - (-4 *3 (-13 (-27) (-1190) (-420 *7))) - (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-544)) (-4 *4 (-1042)) (-4 *1 (-1217 *4 *3)) - (-4 *3 (-1246 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3))))) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-845)) + (-5 *1 (-1208 *2))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1215 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-912)) (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-1236 *3)) (-4 *3 (-1042))))) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) + (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1056)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1054 (-1019 *4) (-1164 (-1019 *4)))) (-5 *3 (-857)) + (-5 *1 (-1019 *4)) (-4 *4 (-13 (-843) (-362) (-1017)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-766)) (-5 *4 (-562)) (-5 *1 (-444 *2)) (-4 *2 (-1044))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1030)) (-5 *1 (-743))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-700 *3 *4)) (-4 *3 (-1207)) (-4 *4 (-1207))))) +(((*1 *2) (-12 (-5 *2 (-838 (-562))) (-5 *1 (-533)))) + ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1092))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) + (-5 *2 (-1030)) (-5 *1 (-751))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-639 *5)) (-4 *5 (-1232 *3)) (-4 *3 (-306)) + (-5 *2 (-112)) (-5 *1 (-454 *3 *5))))) (((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-544)))) - (-4 *4 (-13 (-1229 *3) (-554) (-10 -8 (-15 -3545 ($ $ $))))) (-4 *3 (-554)) - (-5 *1 (-1233 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-943 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-450)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) - (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *1)))) - (-4 *1 (-1062 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1209))) - ((*1 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-1229 *3) (-554) (-10 -8 (-15 -3545 ($ $ $)))))))) + (-5 *5 + (-2 (|:| |done| (-639 *11)) + (|:| |todo| (-639 (-2 (|:| |val| *3) (|:| -1495 *11)))))) + (-5 *6 (-766)) + (-5 *2 (-639 (-2 (|:| |val| (-639 *10)) (|:| -1495 *11)))) + (-5 *3 (-639 *10)) (-5 *4 (-639 *11)) (-4 *10 (-1058 *7 *8 *9)) + (-4 *11 (-1064 *7 *8 *9 *10)) (-4 *7 (-451)) (-4 *8 (-788)) + (-4 *9 (-845)) (-5 *1 (-1062 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-639 *11)) + (|:| |todo| (-639 (-2 (|:| |val| *3) (|:| -1495 *11)))))) + (-5 *6 (-766)) + (-5 *2 (-639 (-2 (|:| |val| (-639 *10)) (|:| -1495 *11)))) + (-5 *3 (-639 *10)) (-5 *4 (-639 *11)) (-4 *10 (-1058 *7 *8 *9)) + (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-451)) (-4 *8 (-788)) + (-4 *9 (-845)) (-5 *1 (-1137 *7 *8 *9 *10 *11))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) + (-4 *3 (-13 (-362) (-1192) (-997)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-562)) (-5 *4 (-417 *2)) (-4 *2 (-944 *7 *5 *6)) + (-5 *1 (-737 *5 *6 *7 *2)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-306))))) +(((*1 *2 *2) + (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) + (-15 -4076 ((-1117 *3 (-608 $)) $)) + (-15 -4054 ($ (-1117 *3 (-608 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) + (-15 -4076 ((-1117 *3 (-608 $)) $)) + (-15 -4054 ($ (-1117 *3 (-608 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-639 *2)) + (-4 *2 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *4 (-608 $)) $)) + (-15 -4076 ((-1117 *4 (-608 $)) $)) + (-15 -4054 ($ (-1117 *4 (-608 $))))))) + (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-639 (-608 *2))) + (-4 *2 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *4 (-608 $)) $)) + (-15 -4076 ((-1117 *4 (-608 $)) $)) + (-15 -4054 ($ (-1117 *4 (-608 $))))))) + (-4 *4 (-554)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1094 *3)) (-5 *1 (-900 *3)) (-4 *3 (-367)) + (-4 *3 (-1092))))) +(((*1 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-639 (-683 *6))) (-5 *4 (-112)) (-5 *5 (-562)) + (-5 *2 (-683 *6)) (-5 *1 (-1024 *6)) (-4 *6 (-362)) (-4 *6 (-1044)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-639 (-683 *4))) (-5 *2 (-683 *4)) (-5 *1 (-1024 *4)) + (-4 *4 (-362)) (-4 *4 (-1044)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-562)) (-5 *2 (-683 *5)) + (-5 *1 (-1024 *5)) (-4 *5 (-362)) (-4 *5 (-1044))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-766)) (-5 *1 (-584 *2)) (-4 *2 (-544)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3241 *3) (|:| -1960 (-766)))) (-5 *1 (-584 *3)) + (-4 *3 (-544))))) +(((*1 *2) (-12 (-5 *2 (-838 (-562))) (-5 *1 (-533)))) + ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1092))))) (((*1 *2 *1) - (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)) - (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))))) + (-12 (-4 *3 (-232)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) + (-4 *6 (-788)) (-5 *2 (-1 *1 (-766))) (-4 *1 (-252 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) + (-5 *2 (-1 *1 (-766))) (-4 *1 (-252 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-265 *2)) (-4 *2 (-845))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *3) + (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1086 (-838 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) + (-5 *1 (-304)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) + (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1241 *4 *5 *6)) + (|:| |%expon| (-318 *4 *5 *6)) + (|:| |%expTerms| + (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| *4)))))) + (|:| |%type| (-1150)))) + (-5 *1 (-1242 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) + (-14 *5 (-1168)) (-14 *6 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) ((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| -4361 *3) (|:| -4345 *4)))) (-5 *1 (-729 *3 *4)) - (-4 *3 (-1042)) (-4 *4 (-720)))) + (-12 (-5 *2 (-766)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) + (-14 *4 (-639 (-1168))))) ((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) - (-5 *2 (-1143 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-240)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-635 (-1148))) (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *1 (-240)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) - ((*1 *2 *1) (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042))))) -(((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) - (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) + (-12 (-5 *2 (-562)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) + (-14 *4 (-639 (-1168))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) - (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-912)))) - ((*1 *2 *3) - (-12 (-5 *3 (-332 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) - (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) - (-5 *2 (-765)) (-5 *1 (-391 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-826 (-912))))) - ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) + (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) + (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-274)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1164 *8)) (-5 *4 (-639 *6)) (-4 *6 (-845)) + (-4 *8 (-944 *7 *5 *6)) (-4 *5 (-788)) (-4 *7 (-1044)) + (-5 *2 (-639 (-766))) (-5 *1 (-320 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-916)))) ((*1 *2 *1) - (-12 (-4 *3 (-554)) (-5 *2 (-544)) (-5 *1 (-618 *3 *4)) (-4 *4 (-1229 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)))) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) + (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-469 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-554)) (-5 *2 (-562)) (-5 *1 (-619 *3 *4)) + (-4 *4 (-1232 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-734 *4 *3)) (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) - (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) - (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-765)) - (-5 *1 (-904 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) - (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4))) - (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-765)) (-5 *1 (-905 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-332 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) - (-4 *7 (-1229 *6)) (-4 *4 (-1229 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) - (-4 *9 (-13 (-367) (-362))) (-5 *2 (-765)) (-5 *1 (-1011 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-4 *3 (-554)) (-5 *2 (-765)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) - ((*1 *2 *1) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))) -(((*1 *1 *1) (-4 *1 (-1051))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-406 (-544))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-544)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) + (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-766))))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-406 (-544))) (-5 *1 (-864 *4)) (-14 *4 *3) (-5 *3 (-544)))) + (-12 (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) + (-4 *3 (-845)) (-5 *2 (-766)))) + ((*1 *2 *1) + (-12 (-4 *1 (-968 *3 *2 *4)) (-4 *3 (-1044)) (-4 *4 (-845)) + (-4 *2 (-787)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-766)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1247 *3)) + (-5 *2 (-562)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1216 *3)) + (-5 *2 (-406 (-562))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-828 (-916))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) + (-5 *2 (-766))))) +(((*1 *2 *3) + (-12 (-4 *4 (-348)) (-5 *2 (-953 (-1164 *4))) (-5 *1 (-356 *4)) + (-5 *3 (-1164 *4))))) +(((*1 *1 *1) (-5 *1 (-857))) + ((*1 *2 *1) + (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) + ((*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1168))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-4 *4 (-1044)) + (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-1232 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *1 (-262)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) + (-5 *2 (-683 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1256 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) + (-5 *2 (-683 *4)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-406 (-544))) (-5 *1 (-865 *4 *5)) (-5 *3 (-544)) - (-4 *5 (-863 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-406 (-544))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2)))) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) + (-5 *2 (-1256 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) + (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1232 *2 *3)) (-4 *3 (-786)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -4353 (*2 (-1166)))) (-4 *2 (-1042))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-667 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-734 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-844)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1042)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) - (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) - (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *2 (-1056 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-406 *5)) (-4 *4 (-1209)) (-4 *5 (-1229 *4)) - (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1229 *3)))) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) + (-4 *5 (-1232 *4)) (-5 *2 (-1256 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1168 (-406 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-189)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-682 (-313 (-224)))) (-5 *3 (-635 (-1166))) - (-5 *4 (-1253 (-313 (-224)))) (-5 *1 (-204)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-292 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1091)) - (-4 *3 (-1204)) (-5 *1 (-292 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-308 *2)) (-4 *2 (-1091)) (-4 *2 (-1204)) (-5 *1 (-292 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-1 *1 (-635 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-1 *1 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-292 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1091)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-292 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1091)))) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171)) + (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) + (-5 *2 (-1256 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171)) + (-5 *2 (-683 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-544))) (-5 *4 (-1168 (-406 (-544)))) (-5 *1 (-309 *2)) - (-4 *2 (-38 (-406 (-544)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-844)) - (-4 *5 (-171)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-844)) (-4 *3 (-171)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 *1)) (-4 *1 (-420 *5)) - (-4 *5 (-844)) (-4 *5 (-1042)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *4 (-1 *1 (-635 *1))) - (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-765))) - (-5 *4 (-635 (-1 *1 (-635 *1)))) (-4 *1 (-420 *5)) (-4 *5 (-844)) - (-4 *5 (-1042)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-635 (-765))) (-5 *4 (-635 (-1 *1 *1))) - (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-1042)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-635 (-113))) (-5 *3 (-635 *1)) (-5 *4 (-1166)) - (-4 *1 (-420 *5)) (-4 *5 (-844)) (-4 *5 (-609 (-533))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1166)) (-4 *1 (-420 *4)) (-4 *4 (-844)) - (-4 *4 (-609 (-533))))) - ((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-609 (-533))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-1166))) (-4 *1 (-420 *3)) (-4 *3 (-844)) - (-4 *3 (-609 (-533))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)) (-4 *3 (-609 (-533))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1204)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 *5)) (-4 *1 (-512 *4 *5)) (-4 *4 (-1091)) - (-4 *5 (-1204)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-826 *3)) (-4 *3 (-362)) (-5 *1 (-712 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1091)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-406 (-939 *4))) (-5 *3 (-1166)) (-4 *4 (-554)) - (-5 *1 (-1033 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-635 (-1166))) (-5 *4 (-635 (-406 (-939 *5)))) - (-5 *2 (-406 (-939 *5))) (-4 *5 (-554)) (-5 *1 (-1033 *5)))) + (-12 (-5 *4 (-639 (-683 *5))) (-5 *3 (-683 *5)) (-4 *5 (-362)) + (-5 *2 (-1256 *5)) (-5 *1 (-1078 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1044)) (-4 *3 (-845)) + (-4 *4 (-265 *3)) (-4 *5 (-788))))) +(((*1 *1 *2) + (-12 (-5 *2 (-916)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-362)) (-14 *5 (-988 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-2 (|:| -1635 *4) (|:| -3598 (-562))))) + (-4 *4 (-1232 (-562))) (-5 *2 (-732 (-766))) (-5 *1 (-441 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-417 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1044)) + (-5 *2 (-732 (-766))) (-5 *1 (-443 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-766)))) + ((*1 *1 *1) (-4 *1 (-401)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) + (-4 *3 (-1232 *4)) (-5 *1 (-804 *4 *3 *2 *5)) (-4 *2 (-650 *3)) + (-4 *5 (-650 (-406 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-406 *5)) + (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) + (-5 *1 (-804 *4 *5 *2 *6)) (-4 *2 (-650 *5)) (-4 *6 (-650 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)) + (-4 *3 (-554)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) + (-4 *2 (-681 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-788)) + (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *5 (-554)) + (-5 *1 (-727 *4 *3 *5 *2)) (-4 *2 (-944 (-406 (-947 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-292 (-406 (-939 *4)))) (-5 *2 (-406 (-939 *4))) (-4 *4 (-554)) - (-5 *1 (-1033 *4)))) + (-12 (-4 *4 (-1044)) (-4 *5 (-788)) + (-4 *3 + (-13 (-845) + (-10 -8 (-15 -4208 ((-1168) $)) + (-15 -2444 ((-3 $ "failed") (-1168)))))) + (-5 *1 (-979 *4 *5 *3 *2)) (-4 *2 (-944 (-947 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-635 (-292 (-406 (-939 *4))))) (-5 *2 (-406 (-939 *4))) - (-4 *4 (-554)) (-5 *1 (-1033 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1232 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1143 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-4 *1 (-1229 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1229 *3)) (-4 *3 (-1042)) (-5 *2 (-1160 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-1042)) (-4 *1 (-1229 *3))))) + (-12 (-5 *3 (-639 *6)) + (-4 *6 + (-13 (-845) + (-10 -8 (-15 -4208 ((-1168) $)) + (-15 -2444 ((-3 $ "failed") (-1168)))))) + (-4 *4 (-1044)) (-4 *5 (-788)) (-5 *1 (-979 *4 *5 *6 *2)) + (-4 *2 (-944 (-947 *4) *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) - (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-943 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1042)) (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) - (-4 *1 (-1229 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-1042)) - (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1229 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1229 *3)) (-4 *3 (-1042))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042))))) -(((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) + (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-329))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-639 (-1168))) + (-5 *2 (-639 (-639 (-378)))) (-5 *1 (-1018)) (-5 *5 (-378)))) ((*1 *2 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1229 *2)) - (-4 *2 (-171)))) - ((*1 *2) - (-12 (-4 *4 (-1229 *2)) (-4 *2 (-171)) (-5 *1 (-408 *3 *2 *4)) - (-4 *3 (-409 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) - ((*1 *2) - (-12 (-4 *3 (-1229 *2)) (-5 *2 (-544)) (-5 *1 (-762 *3 *4)) - (-4 *4 (-409 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) - (-4 *3 (-171)))) - ((*1 *2 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) - (-4 *3 (-171)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-171))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1229 *3)) (-4 *3 (-1042)) - (-4 *3 (-554)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1042)) (-4 *2 (-554))))) + (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) + (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-947 *4))) + (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) + (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-451)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *2 (-639 *3)) (-5 *1 (-972 *4 *5 *6 *3)) + (-4 *3 (-1058 *4 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -4361 *4) (|:| -2124 *3) (|:| -3285 *3))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-1056 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1042)) - (-5 *2 (-2 (|:| -4361 *3) (|:| -2124 *1) (|:| -3285 *1))) - (-4 *1 (-1229 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-362)) (-4 *4 (-554)) (-4 *5 (-1229 *4)) - (-5 *2 (-2 (|:| -1912 (-618 *4 *5)) (|:| -1911 (-406 *5)))) - (-5 *1 (-618 *4 *5)) (-5 *3 (-406 *5)))) + (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) + (-5 *2 (-562)) (-5 *1 (-1106 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-592 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1044))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-683 *3)))) + (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-742))))) +(((*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) + (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-940 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1257)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1257)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1258)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1258))))) +(((*1 *1) (-5 *1 (-143))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-262))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1094 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) ((*1 *2 *1) - (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) - (-4 *4 (-1042)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-450)) (-4 *3 (-1042)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1229 *3))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-1227 *4 *2)) - (-4 *2 (-1229 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1229 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1229 *3))))) + (-12 (-5 *2 (-1094 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-234 *3)))) + ((*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1092))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1150)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-262)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-782)) (-5 *2 (-1030)) + (-5 *3 + (-2 (|:| |fn| (-315 (-224))) + (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-782)) (-5 *2 (-1030)) + (-5 *3 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224))))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) - (-5 *1 (-1226 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-635 *3)) (-5 *1 (-1225 *4 *3)) - (-4 *3 (-1229 *4))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-554) (-146))) - (-5 *2 (-2 (|:| -3523 *3) (|:| -3522 *3))) (-5 *1 (-1225 *4 *3)) - (-4 *3 (-1229 *4))))) + (-12 (-4 *4 (-451)) (-4 *4 (-554)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1732 *4))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) + ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) + ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) + (-5 *2 (-1030)) (-5 *1 (-752))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1225 *3 *2)) - (-4 *2 (-1229 *3))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-554) (-146))) - (-5 *1 (-1225 *4 *2)) (-4 *2 (-1229 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-765)) (-4 *4 (-13 (-554) (-146))) - (-5 *1 (-1225 *4 *2)) (-4 *2 (-1229 *4))))) + (-12 (-5 *2 (-766)) + (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4402)) (-4 *1 (-150 *3)) + (-4 *3 (-1207)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1200 *4 *5 *3 *2)) (-4 *4 (-554)) + (-4 *5 (-788)) (-4 *3 (-845)) (-4 *2 (-1058 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-5 *1 (-1204 *2)) (-4 *2 (-1207))))) +(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-551))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-639 (-1256 *4))) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) + (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) + (-5 *2 (-639 (-1256 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) + (-4 *4 (-13 (-1092) (-34)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) - (-4 *3 (-371 *5)))) + (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-997) (-1192))) + (-4 *4 (-13 (-554) (-845))) + (-4 *2 (-13 (-429 (-168 *4)) (-997) (-1192))) + (-5 *1 (-596 *4 *5 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1207)) (-5 *1 (-181 *3 *2)) (-4 *2 (-668 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-787)) (-4 *3 (-171))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-59 *3)) (-4 *3 (-1207)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-59 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *3 (-639 (-262))) + (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-467)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-467))))) +(((*1 *2 *3) + (-12 (-5 *3 (-562)) (|has| *1 (-6 -4393)) (-4 *1 (-403)) + (-5 *2 (-916))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-221 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-253 *3)))) + ((*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-1 (-112) *8))) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) + (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-938 *4)) (-4 *4 (-1044)) (-5 *1 (-1156 *3 *4)) + (-14 *3 (-916))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-639 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-562))))) + (-4 *2 (-554)) (-5 *1 (-417 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-501 *4 *5 *6 *3)) - (-4 *6 (-371 *4)) (-4 *3 (-371 *5)))) + (-12 + (-5 *3 + (-2 (|:| |contp| (-562)) + (|:| -1510 (-639 (-2 (|:| |irr| *4) (|:| -2762 (-562))))))) + (-4 *4 (-1232 (-562))) (-5 *2 (-417 *4)) (-5 *1 (-441 *4))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224)) + (-5 *2 (-1030)) (-5 *1 (-744))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) + (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) + (-5 *1 (-624 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) + ((*1 *2 *1) + (-12 (-4 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-619 *3 *4)) + (-4 *4 (-1232 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-721)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) + (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) + ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1092))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) + (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1010 *4 *5)) (-5 *3 (-406 *5))))) +(((*1 *1) (-4 *1 (-348))) ((*1 *2 *3) - (-12 (-5 *3 (-682 *5)) (-4 *5 (-984 *4)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |num| (-682 *4)) (|:| |den| *4))) (-5 *1 (-686 *4 *5)))) + (-12 (-5 *3 (-639 *5)) (-4 *5 (-429 *4)) + (-4 *4 (-13 (-554) (-845) (-146))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-639 (-1164 *5))) + (|:| |prim| (-1164 *5)))) + (-5 *1 (-431 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-554) (-845) (-146))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1164 *3)) + (|:| |pol2| (-1164 *3)) (|:| |prim| (-1164 *3)))) + (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-947 *5)) (-5 *4 (-1168)) (-4 *5 (-13 (-362) (-146))) + (-5 *2 + (-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) + (|:| |prim| (-1164 *5)))) + (-5 *1 (-955 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) - (-5 *2 (-2 (|:| -3667 *7) (|:| |rh| (-635 (-406 *6))))) - (-5 *1 (-801 *5 *6 *7 *3)) (-5 *4 (-635 (-406 *6))) (-4 *7 (-651 *6)) - (-4 *3 (-651 (-406 *6))))) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) + (-4 *5 (-13 (-362) (-146))) + (-5 *2 + (-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 *5))) + (|:| |prim| (-1164 *5)))) + (-5 *1 (-955 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-5 *5 (-1168)) + (-4 *6 (-13 (-362) (-146))) + (-5 *2 + (-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 *6))) + (|:| |prim| (-1164 *6)))) + (-5 *1 (-955 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-554)) (-5 *2 (-417 *4)) + (-5 *1 (-418 *4)))) + ((*1 *1 *1) (-5 *1 (-921))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) + ((*1 *1 *1) (-5 *1 (-922))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) + (-5 *4 (-406 (-562))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) + (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) + (-5 *4 (-406 (-562))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) + (-4 *3 (-1232 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))) + (-4 *2 (-13 (-845) (-21)))))) +(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) + ((*1 *1 *1) (-4 *1 (-843))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) + ((*1 *1 *1) (-4 *1 (-1053))) ((*1 *1 *1) (-4 *1 (-1131)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-916)) (-4 *6 (-13 (-554) (-845))) + (-5 *2 (-639 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6)) + (-4 *5 (-1044)))) + ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554)))) ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1224 *4 *5 *3)) - (-4 *3 (-1229 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-554)) (-4 *4 (-984 *3)) (-5 *1 (-141 *3 *4 *2)) - (-4 *2 (-371 *4)))) + (-12 (-5 *3 (-583 *5)) (-4 *5 (-13 (-29 *4) (-1192))) + (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) + (-5 *2 (-639 *5)) (-5 *1 (-581 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-984 *4)) (-4 *2 (-371 *4)) - (-5 *1 (-501 *4 *5 *2 *3)) (-4 *3 (-371 *5)))) + (-12 (-5 *3 (-583 (-406 (-947 *4)))) + (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) + (-5 *2 (-639 (-315 *4))) (-5 *1 (-586 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-843)) (-4 *2 (-1141 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-682 *5)) (-4 *5 (-984 *4)) (-4 *4 (-554)) (-5 *2 (-682 *4)) - (-5 *1 (-686 *4 *5)))) + (-12 (-5 *3 (-639 *1)) (-4 *1 (-1087 *4 *2)) (-4 *4 (-843)) + (-4 *2 (-1141 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-554)) (-4 *4 (-984 *3)) (-5 *1 (-1224 *3 *4 *2)) - (-4 *2 (-1229 *4))))) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1271 (-1168) *3)) (-5 *1 (-1278 *3)) (-4 *3 (-1044)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-1044))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554))))) +(((*1 *2 *1) + (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-5 *2 (-1150))))) +(((*1 *2 *2) + (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) + (-5 *1 (-175 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4402)) (-4 *1 (-600 *4 *3)) (-4 *4 (-1092)) + (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1164 *7)) (-5 *3 (-562)) (-4 *7 (-944 *6 *4 *5)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) + (-5 *1 (-320 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) + (-4 *3 (-1232 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1232 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-706 *3 *2 *4 *5 *6)) (-4 *3 (-171)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1232 *3)) (-5 *1 (-707 *3 *2)) (-4 *3 (-1044)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-710 *3 *2 *4 *5 *6)) (-4 *3 (-171)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562))))) (((*1 *2 *3) - (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-141 *2 *4 *3)) - (-4 *3 (-371 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-501 *2 *4 *5 *3)) - (-4 *5 (-371 *2)) (-4 *3 (-371 *4)))) + (-12 (-5 *3 (-1094 *4)) (-4 *4 (-1092)) (-5 *2 (-1 *4)) + (-5 *1 (-1012 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378)))) ((*1 *2 *3) - (-12 (-5 *3 (-682 *4)) (-4 *4 (-984 *2)) (-4 *2 (-554)) - (-5 *1 (-686 *2 *4)))) + (-12 (-5 *3 (-1086 (-562))) (-5 *2 (-1 (-562))) (-5 *1 (-1042))))) +(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-639 *8))) (-5 *3 (-639 *8)) + (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) + (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-112)) + (-5 *1 (-919 *5 *6 *7 *8))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-529 *3)) (-4 *3 (-13 (-721) (-25)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-103 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-52))))) +(((*1 *2 *3) + (-12 (-4 *1 (-834)) + (-5 *3 + (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) + (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) + (|:| |ub| (-639 (-838 (-224)))))) + (-5 *2 (-1030)))) ((*1 *2 *3) - (-12 (-4 *4 (-984 *2)) (-4 *2 (-554)) (-5 *1 (-1224 *2 *4 *3)) - (-4 *3 (-1229 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-775 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-949 *3 *2)) (-4 *2 (-130)) (-4 *3 (-554)) (-4 *3 (-1042)) - (-4 *2 (-786)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1160 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-964)) (-4 *2 (-130)) (-5 *1 (-1168 *3)) (-4 *3 (-554)) - (-4 *3 (-1042)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-1222 *4 *3)) (-14 *4 (-1166)) (-4 *3 (-1042))))) -(((*1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-1079 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1204)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1204))))) + (-12 (-4 *1 (-834)) + (-5 *3 + (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) + (-5 *2 (-1030))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-696 *4 *5 *6 *7)) + (-4 *4 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) + (-4 *7 (-1207))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-721)) (-4 *2 (-1207))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) + (-5 *2 (-1030)) (-5 *1 (-742))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1132 *3 *2)) (-4 *3 (-13 (-1092) (-34))) + (-4 *2 (-13 (-1092) (-34)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1168)) + (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-4 *4 (-13 (-29 *6) (-1192) (-954))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3928 (-639 *4)))) + (-5 *1 (-796 *6 *4 *3)) (-4 *3 (-650 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *4 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-306)) + (-5 *2 (-766)) (-5 *1 (-454 *5 *3))))) +(((*1 *1) (-5 *1 (-156)))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-820))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) + (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) + (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) + (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) + (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) + (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) + (-4 *2 (-681 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-683 *2)) (-4 *2 (-362)) (-4 *2 (-1044)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1115 *2 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) + ((*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-1178 *3))))) +(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4402)) (-4 *1 (-34)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-128)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-562)))) + ((*1 *2 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-841))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) + (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 - (-2 (|:| |contp| (-544)) - (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) - (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) + (-5 *1 (-204))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1 *4 (-562))) (-4 *4 (-1044)) + (-5 *1 (-1152 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |contp| (-544)) - (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) - (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544)))))) + (-639 + (-2 + (|:| -2320 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) + (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) + (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (|:| -2694 + (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) + (|:| |expense| (-378)) (|:| |accuracy| (-378)) + (|:| |intermediateResults| (-378))))))) + (-5 *1 (-798))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) + (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) + (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-1196 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-215 *4 *3)) - (-4 *3 (-1229 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) - (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-765))) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) - (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) - (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) - (-4 *3 (-1229 (-544))))) - ((*1 *2 *3) - (-12 (-5 *2 (-404 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-544)))))) - ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-48))) (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1229 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-404 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-943 (-48) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-48))) (-4 *5 (-844)) (-4 *6 (-787)) - (-4 *7 (-943 (-48) *6 *5)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1160 *7)))) + (-12 (-4 *4 (-845)) (-5 *2 (-1179 (-639 *4))) (-5 *1 (-1178 *4)) + (-5 *3 (-639 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) + (-4 *3 (-1092))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-766)) (-4 *4 (-362)) (-5 *1 (-891 *2 *4)) + (-4 *2 (-1232 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1207))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) + (-4 *3 (-1092))))) +(((*1 *2 *3) + (-12 (-5 *2 (-417 (-1164 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1164 *1)) + (-4 *4 (-451)) (-4 *4 (-554)) (-4 *4 (-845)))) ((*1 *2 *3) - (-12 (-4 *4 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-166 *4 *3)) - (-4 *3 (-1229 (-167 *4))))) + (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-608 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) + (-4 *2 (-13 (-429 *5) (-27) (-1192))) + (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1092))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) + (-5 *4 (-639 (-916))) (-5 *5 (-639 (-262))) (-5 *1 (-467)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) + (-5 *4 (-639 (-916))) (-5 *1 (-467)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) + ((*1 *1 *1) (-5 *1 (-467)))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1150)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1150)) (-5 *1 (-97))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2641 (-562)) (|:| -1510 (-639 *3)))) + (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1256 (-1256 (-562)))) (-5 *1 (-465))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) + (-5 *2 (-1164 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1168)) + (|:| |arrayIndex| (-639 (-947 (-562)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1167)) (|:| |thenClause| (-329)) + (|:| |elseClause| (-329)))) + (|:| |returnBranch| + (-2 (|:| -2974 (-112)) + (|:| -2534 + (-2 (|:| |ints2Floats?| (-112)) (|:| -2404 (-857)))))) + (|:| |blockBranch| (-639 (-329))) + (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) + (|:| |forBranch| + (-2 (|:| -1590 (-1084 (-947 (-562)))) + (|:| |span| (-947 (-562))) (|:| -3265 (-329)))) + (|:| |labelBranch| (-1112)) + (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 (-329)))) + (|:| |commonBranch| + (-2 (|:| -3254 (-1168)) (|:| |contents| (-639 (-1168))))) + (|:| |printBranch| (-639 (-857))))) + (-5 *1 (-329))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) + (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) + (-5 *2 (-1030)) (-5 *1 (-749))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) + (-4 *3 (-1232 *4)) + (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1271 (-1168) *3)) (-4 *3 (-1044)) (-5 *1 (-1278 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1271 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) + (-5 *1 (-1280 *3 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-766)) (-5 *6 (-112)) (-4 *7 (-451)) (-4 *8 (-788)) + (-4 *9 (-845)) (-4 *3 (-1058 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1062 *7 *8 *9 *3 *4)) (-4 *4 (-1064 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) - (-4 *3 (-1229 (-167 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) - (-4 *3 (-1229 (-167 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-404 *3)) (-5 *1 (-215 *4 *3)) - (-4 *3 (-1229 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) - (-4 *3 (-1229 (-544))))) + (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *3 (-1058 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-765))) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) - (-4 *3 (-1229 (-544))))) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-766)) (-5 *6 (-112)) (-4 *7 (-451)) (-4 *8 (-788)) + (-4 *9 (-845)) (-4 *3 (-1058 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1137 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-635 (-765))) (-5 *5 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) - (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-765)) (-5 *2 (-404 *3)) (-5 *1 (-440 *3)) - (-4 *3 (-1229 (-544))))) - ((*1 *2 *3) - (-12 (-5 *2 (-404 (-167 (-544)))) (-5 *1 (-444)) (-5 *3 (-167 (-544))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-844) - (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166)))))) - (-4 *5 (-787)) (-4 *7 (-554)) (-5 *2 (-404 *3)) - (-5 *1 (-454 *4 *5 *6 *7 *3)) (-4 *6 (-554)) (-4 *3 (-943 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-306)) (-5 *2 (-404 (-1160 *4))) (-5 *1 (-456 *4)) - (-5 *3 (-1160 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) - (-4 *7 (-13 (-362) (-146) (-718 *5 *6))) (-5 *2 (-404 *3)) - (-5 *1 (-492 *5 *6 *7 *3)) (-4 *3 (-1229 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-404 (-1160 *7)) (-1160 *7))) (-4 *7 (-13 (-306) (-146))) - (-4 *5 (-844)) (-4 *6 (-787)) (-5 *2 (-404 *3)) (-5 *1 (-538 *5 *6 *7 *3)) - (-4 *3 (-943 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-404 (-1160 *7)) (-1160 *7))) (-4 *7 (-13 (-306) (-146))) - (-4 *5 (-844)) (-4 *6 (-787)) (-4 *8 (-943 *7 *6 *5)) - (-5 *2 (-404 (-1160 *8))) (-5 *1 (-538 *5 *6 *7 *8)) (-5 *3 (-1160 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543)))) + (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *3 (-1058 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1137 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-635 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *6 (-1229 *5)) (-5 *2 (-635 (-648 (-406 *6)))) (-5 *1 (-652 *5 *6)) - (-5 *3 (-648 (-406 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *5 (-1229 *4)) (-5 *2 (-635 (-648 (-406 *5)))) (-5 *1 (-652 *4 *5)) - (-5 *3 (-648 (-406 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-635 (-665 *4))) - (-5 *1 (-665 *4)))) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1096)) (-5 *3 (-769)) (-5 *1 (-52))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-535))) (-5 *1 (-535))))) +(((*1 *1) (-5 *1 (-576))) + ((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-858)))) + ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-858)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-544)) (-5 *2 (-635 *3)) (-5 *1 (-689 *3)) (-4 *3 (-1229 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-349)) (-5 *2 (-404 *3)) - (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-349)) (-4 *7 (-943 *6 *5 *4)) - (-5 *2 (-404 (-1160 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-787)) - (-4 *5 - (-13 (-844) - (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ "failed") (-1166)))))) - (-4 *6 (-306)) (-5 *2 (-404 *3)) (-5 *1 (-724 *4 *5 *6 *3)) - (-4 *3 (-943 (-939 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) - (-4 *6 (-554)) (-5 *2 (-404 *3)) (-5 *1 (-726 *4 *5 *6 *3)) - (-4 *3 (-943 (-406 (-939 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-13 (-306) (-146))) - (-5 *2 (-404 *3)) (-5 *1 (-727 *4 *5 *6 *3)) - (-4 *3 (-943 (-406 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) - (-5 *2 (-404 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-943 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-844)) (-4 *5 (-787)) (-4 *6 (-13 (-306) (-146))) - (-4 *7 (-943 *6 *5 *4)) (-5 *2 (-404 (-1160 *7))) (-5 *1 (-735 *4 *5 *6 *7)) - (-5 *3 (-1160 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-404 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1229 (-406 (-544)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-404 *3)) (-5 *1 (-1035 *3)) - (-4 *3 (-1229 (-406 (-939 (-544))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1229 (-406 (-544)))) - (-4 *5 (-13 (-362) (-146) (-718 (-406 (-544)) *4))) (-5 *2 (-404 *3)) - (-5 *1 (-1070 *4 *5 *3)) (-4 *3 (-1229 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1229 (-406 (-939 (-544))))) - (-4 *5 (-13 (-362) (-146) (-718 (-406 (-939 (-544))) *4))) (-5 *2 (-404 *3)) - (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1229 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-450)) (-4 *7 (-943 *6 *4 *5)) - (-5 *2 (-404 (-1160 (-406 *7)))) (-5 *1 (-1162 *4 *5 *6 *7)) - (-5 *3 (-1160 (-406 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-404 *1)) (-4 *1 (-1209)))) - ((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-1219 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-544)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-864 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-14 *2 (-544)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-544)) (-14 *3 *2) (-5 *1 (-865 *3 *4)) (-4 *4 (-863 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-544)) (-5 *1 (-865 *2 *3)) (-4 *3 (-863 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-544)) (-4 *1 (-1217 *3 *4)) (-4 *3 (-1042)) - (-4 *4 (-1246 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1217 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-1246 *2))))) + (-12 (-5 *3 (-1150)) (-5 *4 (-857)) (-5 *2 (-1261)) (-5 *1 (-858)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1148 *4)) + (-4 *4 (-1092)) (-4 *4 (-1207))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-51)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1190) (-420 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-765)) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-51)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) - (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-292 *3)) (-5 *5 (-765)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-544))) (-5 *4 (-292 *6)) - (-4 *6 (-13 (-27) (-1190) (-420 *5))) - (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-544))) (-5 *4 (-292 *7)) (-5 *5 (-1220 (-765))) - (-4 *7 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1166)) (-5 *5 (-292 *3)) (-5 *6 (-1220 (-765))) - (-4 *3 (-13 (-27) (-1190) (-420 *7))) - (-4 *7 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-51)) - (-5 *1 (-457 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3))))) + (-12 (-4 *4 (-348)) + (-5 *2 (-639 (-2 (|:| |deg| (-766)) (|:| -2754 *3)))) + (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1132 *4 *5)) (-4 *4 (-13 (-1092) (-34))) + (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-417 (-1164 (-562)))) (-5 *1 (-190)) (-5 *3 (-562))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1217 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1246 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-1215 *4)) (-4 *4 (-1042)) (-4 *4 (-554)) - (-5 *2 (-406 (-939 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-1215 *4)) (-4 *4 (-1042)) (-4 *4 (-554)) - (-5 *2 (-406 (-939 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-128))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912)))) - ((*1 *1 *1 *1) (-5 *1 (-1210))) ((*1 *1 *1 *1) (-5 *1 (-1211))) - ((*1 *1 *1 *1) (-5 *1 (-1212)))) -(((*1 *1 *1 *1) (-5 *1 (-128))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912)))) - ((*1 *1 *1 *1) (-5 *1 (-1210))) ((*1 *1 *1 *1) (-5 *1 (-1211))) - ((*1 *1 *1 *1) (-5 *1 (-1212)))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-128))) - ((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) - ((*1 *1) (-4 *1 (-720))) ((*1 *1) (-5 *1 (-1166))) - ((*1 *1) (-12 (-5 *1 (-1173 *2)) (-14 *2 (-912)))) ((*1 *1) (-5 *1 (-1210))) - ((*1 *1) (-5 *1 (-1211))) ((*1 *1) (-5 *1 (-1212)))) -(((*1 *2 *3) (-12 (-5 *3 (-167 (-544))) (-5 *2 (-112)) (-5 *1 (-444)))) - ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| |preimage| (-639 *3)) (|:| |image| (-639 *3)))) + (-5 *1 (-900 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) + (-5 *2 + (-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) + (|:| |singularities| (-1148 (-224))))) + (-5 *1 (-105))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) + (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-972 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-639 *7)) (-5 *3 (-112)) (-4 *7 (-1058 *4 *5 *6)) + (-4 *4 (-451)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *1 (-972 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-639 (-1164 *13))) (-5 *3 (-1164 *13)) + (-5 *4 (-639 *12)) (-5 *5 (-639 *10)) (-5 *6 (-639 *13)) + (-5 *7 (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| *13))))) + (-5 *8 (-639 (-766))) (-5 *9 (-1256 (-639 (-1164 *10)))) + (-4 *12 (-845)) (-4 *10 (-306)) (-4 *13 (-944 *10 *11 *12)) + (-4 *11 (-788)) (-5 *1 (-702 *11 *12 *10 *13))))) +(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-685 (-186))) (-5 *1 (-186))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-639 (-639 (-639 *4)))) (-5 *3 (-639 *4)) (-4 *4 (-845)) + (-5 *1 (-1178 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 *1)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1044)) (-5 *1 (-683 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 *4)) (-4 *4 (-1044)) (-4 *1 (-1115 *3 *4 *5 *6)) + (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-734 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1256 *4)) (-5 *3 (-562)) (-4 *4 (-348)) + (-5 *1 (-527 *4))))) +(((*1 *2 *3) (-12 (-5 *3 - (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) - (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) - (-5 *1 (-503 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-955 *3)) (-4 *3 (-543)))) - ((*1 *2 *1) (-12 (-4 *1 (-1209)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1207))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3629 (-635 (-1166))) (|:| -3630 (-635 (-1166))))) - (-5 *1 (-1207))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1207))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-844)) (-4 *3 (-1091))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1206 *2)) - (-4 *2 (-1091)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-844)) (-5 *1 (-1206 *2))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1091)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1091)) (-5 *2 (-112)) - (-5 *1 (-1206 *3))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3630 (-635 *3)) (|:| -3629 (-635 *3)))) - (-5 *1 (-1206 *3)) (-4 *3 (-1091))))) + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 (-112)) (-5 *1 (-299))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-38 (-406 (-562)))) + (-4 *2 (-171))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) + (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-5 *2 (-1259)) (-5 *1 (-1206 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-5 *2 (-1259)) (-5 *1 (-1206 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-544)) (-4 *5 (-349)) (-5 *2 (-404 (-1160 (-1160 *5)))) - (-5 *1 (-1203 *5)) (-5 *3 (-1160 (-1160 *5)))))) + (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) + (-4 *3 (-13 (-362) (-1192) (-997))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 (-406 *2))) + (-4 *2 (-1232 *4)) (-5 *1 (-340 *3 *4 *2 *5)) + (-4 *3 (-341 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1211)) + (-4 *4 (-1232 (-406 *2))) (-4 *2 (-1232 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1092)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1092))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-224) (-224) (-224))) + (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) + (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) + (-5 *1 (-691)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-224))) + (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-1 (-938 (-224)) (-224) (-224))) + (-5 *4 (-1086 (-224))) (-5 *5 (-639 (-262))) (-5 *1 (-691))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-404 (-1160 (-1160 *4)))) (-5 *1 (-1203 *4)) - (-5 *3 (-1160 (-1160 *4)))))) + (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-1152 *4)) (-4 *4 (-1044)) + (-5 *3 (-562))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-404 (-1160 (-1160 *4)))) (-5 *1 (-1203 *4)) - (-5 *3 (-1160 (-1160 *4)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *3)) - (-4 *3 (-1204)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1204)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1199 *4 *5 *3 *2)) (-4 *4 (-554)) (-4 *5 (-787)) - (-4 *3 (-844)) (-4 *2 (-1056 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-1202 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-635 (-635 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 (-936 *4))) - (-5 *1 (-1201)) (-5 *3 (-936 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-1201))))) + (-12 (-5 *3 (-683 *2)) (-4 *4 (-1232 *2)) + (-4 *2 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-5 *1 (-498 *2 *4 *5)) (-4 *5 (-408 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) + (-4 *5 (-237 *3 *2)) (-4 *2 (-1044))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *3) + (-12 (-5 *3 (-838 (-378))) (-5 *2 (-838 (-224))) (-5 *1 (-304))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-182))))) +(((*1 *2 *2) + (-12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) + (-4 *2 (-681 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-912)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1042)) (-4 *4 (-1204)))) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) + (-14 *4 (-639 (-1168))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) (-4 *1 (-283))) + ((*1 *1 *1) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) ((*1 *1 *2) - (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-4364 *3) (-765))) - (-14 *6 - (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *5)) - (-2 (|:| -2535 *2) (|:| -2536 *5)))) - (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) (-4 *2 (-844)) - (-4 *7 (-943 *4 *5 (-858 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *2 (-1259)) (-5 *1 (-466)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1042)) (-4 *1 (-973 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-936 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-936 (-224))) (-5 *1 (-1201)) (-5 *3 (-224))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-224)) (-5 *5 (-544)) (-5 *2 (-1200 *3)) (-5 *1 (-784 *3)) - (-4 *3 (-967)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *4 (-112)) (-5 *1 (-1200 *2)) - (-4 *2 (-967))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-967))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-1200 *3)) (-4 *3 (-967))))) -(((*1 *2 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-967))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) (-4 *8 (-844)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3728 (-635 *9)))) (-5 *3 (-635 *9)) - (-4 *1 (-1199 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1056 *5 *6 *7)) - (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3728 (-635 *8)))) (-5 *3 (-635 *8)) - (-4 *1 (-1199 *5 *6 *7 *8))))) + (-12 (-5 *2 (-658 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-5 *1 (-623 *3 *4 *5)) + (-14 *5 (-916)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) + (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) + (-4 *4 (-712 (-406 (-562)))) (-4 *3 (-845)) (-4 *4 (-171))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) + ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1171))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-191)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-475 *4 *5 *6 *7)) (|:| -2775 (-639 *7)))) + (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-639 (-378))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-467)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-467)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) +(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-1044)))) + ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 (-1 *6 (-639 *6)))) + (-4 *5 (-38 (-406 (-562)))) (-4 *6 (-1247 *5)) (-5 *2 (-639 *6)) + (-5 *1 (-1249 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-329))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-639 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) + (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-588 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-562)) (-4 *5 (-362)) + (-4 *5 (-1044)) (-5 *2 (-112)) (-5 *1 (-1024 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-683 *4))) (-4 *4 (-362)) (-4 *4 (-1044)) + (-5 *2 (-112)) (-5 *1 (-1024 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-683 *5)) (-4 *5 (-1044)) (-5 *1 (-1048 *3 *4 *5)) + (-14 *3 (-766)) (-14 *4 (-766))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) (((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *6))))) + (-12 + (-5 *2 + (-639 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-562))))) + (-5 *1 (-417 *3)) (-4 *3 (-554)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-766)) (-4 *3 (-348)) (-4 *5 (-1232 *3)) + (-5 *2 (-639 (-1164 *3))) (-5 *1 (-497 *3 *5 *6)) + (-4 *6 (-1232 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1232 *4)) (-5 *1 (-802 *4 *2 *3 *5)) + (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) + (-4 *5 (-650 (-406 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1232 *4)) (-5 *1 (-802 *4 *2 *5 *3)) + (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-650 *2)) + (-4 *3 (-650 (-406 *2)))))) +(((*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1044))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1076 *3)) (-4 *3 (-131))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) + ((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-766)) (-4 *2 (-554)) (-5 *1 (-964 *2 *4)) + (-4 *4 (-1232 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-1164 (-947 *4))) (-5 *1 (-415 *3 *4)) + (-4 *3 (-416 *4)))) + ((*1 *2) + (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) + (-5 *2 (-1164 (-947 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1) (-5 *1 (-185)))) (((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) - (-5 *2 (-2 (|:| -4268 (-635 *6)) (|:| -1846 (-635 *6))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) + (-4 *3 (-962))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) + ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1) (-4 *1 (-1131)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-698 *3)) + (-4 *3 (-610 (-535))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1168)) (-5 *2 (-1 (-224) (-224) (-224))) + (-5 *1 (-698 *3)) (-4 *3 (-610 (-535)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-5 *2 + (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (|:| |success| (-112)))) + (-5 *1 (-784)) (-5 *5 (-562))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-562)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1033 *4)) (-4 *3 (-13 (-845) (-554)))))) +(((*1 *1) (-5 *1 (-185)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1199 *5 *6 *7 *3)) (-4 *5 (-554)) - (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) (-5 *2 (-112))))) + (|partial| -12 (-5 *3 (-1150)) (-5 *2 (-769)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1096)) (-5 *1 (-960))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) (((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *1)) (-4 *1 (-1056 *4 *5 *6)) (-4 *4 (-1042)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1199 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-635 *7))) (-4 *1 (-1199 *4 *5 *6 *7)) - (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-112))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) - (-4 *1 (-1199 *5 *6 *7 *8)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) - (-4 *8 (-1056 *5 *6 *7))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *2 (-1056 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *2 (-1056 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *2 (-1056 *3 *4 *5))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *2 (-1056 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1199 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *5 (-1056 *2 *3 *4))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *2 (-1056 *3 *4 *5))))) + (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) + (-4 *3 (-1232 *4)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 *10)) - (-5 *1 (-619 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1062 *5 *6 *7 *8)) - (-4 *10 (-1099 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) - (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-623 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) - (-14 *6 (-635 (-1166))) - (-5 *2 (-635 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) - (-5 *1 (-623 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8))) - (-5 *1 (-1020 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8))) - (-5 *1 (-1020 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) - (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-1039 *5 *6)))) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-4 *7 (-845)) + (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) (-4 *8 (-306)) + (-5 *2 (-639 (-766))) (-5 *1 (-737 *6 *7 *8 *9)) (-5 *5 (-766))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) + (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-972 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) + (-4 *3 (-13 (-429 *4) (-997)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) + (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 *1)) - (-4 *1 (-1062 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8))) - (-5 *1 (-1136 *5 *6 *7 *8)))) + (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) + (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-639 (-766))) + (-5 *1 (-899 *4))))) +(((*1 *1) (-5 *1 (-185)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *8 (-1058 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-639 *8)) + (|:| |towers| (-639 (-1022 *5 *6 *7 *8))))) + (-5 *1 (-1022 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8))) - (-5 *1 (-1136 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1199 *4 *5 *6 *7))))) + (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *8 (-1058 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-639 *8)) + (|:| |towers| (-639 (-1138 *5 *6 *7 *8))))) + (-5 *1 (-1138 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-635 (-2 (|:| -4268 *1) (|:| -1846 (-635 *7))))) (-5 *3 (-635 *7)) - (-4 *1 (-1199 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5))))) + (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) + (-4 *3 (-13 (-362) (-1192) (-997)))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-372 *2)) (-4 *2 (-1207)) + (-4 *2 (-845)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4403)) + (-4 *1 (-372 *3)) (-4 *3 (-1207))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3))))) +(((*1 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1259))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) + (-4 *3 (-13 (-362) (-1192) (-997)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-1033 (-562))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-683 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-171)) (-4 *2 (-1232 *4)) (-5 *1 (-176 *4 *2 *3)) + (-4 *3 (-719 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-683 (-406 (-947 *5)))) (-5 *4 (-1168)) + (-5 *2 (-947 *5)) (-5 *1 (-291 *5)) (-4 *5 (-451)))) + ((*1 *2 *3) + (-12 (-5 *3 (-683 (-406 (-947 *4)))) (-5 *2 (-947 *4)) + (-5 *1 (-291 *4)) (-4 *4 (-451)))) + ((*1 *2 *1) + (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-683 (-168 (-406 (-562))))) + (-5 *2 (-947 (-168 (-406 (-562))))) (-5 *1 (-759 *4)) + (-4 *4 (-13 (-362) (-843))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *4 (-1168)) + (-5 *2 (-947 (-168 (-406 (-562))))) (-5 *1 (-759 *5)) + (-4 *5 (-13 (-362) (-843))))) + ((*1 *2 *3) + (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-947 (-406 (-562)))) + (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *4 (-1168)) + (-5 *2 (-947 (-406 (-562)))) (-5 *1 (-774 *5)) + (-4 *5 (-13 (-362) (-843)))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1199 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-787)) - (-4 *5 (-844)) (-4 *2 (-1056 *3 *4 *5))))) + (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-916)) (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-787)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-406 (-562))) (-4 *1 (-1237 *3)) (-4 *3 (-1044))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-765))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1166))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-635 (-912))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) - (-14 *4 (-912)) (-14 *5 (-986 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-313 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) - (-14 *4 (-635 (-1166))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-130)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1042)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *2 (-554)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-720)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-765))) (-4 *1 (-734 *4 *5)) - (-4 *4 (-1042)) (-4 *5 (-844)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-765))) (-4 *1 (-943 *4 *5 *6)) - (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-765)) (-4 *1 (-943 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) - (-4 *2 (-844)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-4 *2 (-943 *4 (-529 *5) *5)) (-5 *1 (-1116 *4 *5 *2)) - (-4 *4 (-1042)) (-4 *5 (-844)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-939 *4)) (-5 *1 (-1197 *4)) (-4 *4 (-1042))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1116 *4 *3 *5))) (-4 *4 (-38 (-406 (-544)))) - (-4 *4 (-1042)) (-4 *3 (-844)) (-5 *1 (-1116 *4 *3 *5)) - (-4 *5 (-943 *4 (-529 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1197 *4))) (-5 *3 (-1166)) (-5 *1 (-1197 *4)) - (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042))))) -(((*1 *2 *2) - (-12 (-4 *3 (-609 (-883 *3))) (-4 *3 (-879 *3)) (-4 *3 (-13 (-844) (-450))) - (-5 *1 (-1196 *3 *2)) (-4 *2 (-609 (-883 *3))) (-4 *2 (-879 *3)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) + (|partial| -12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-788)) (-4 *5 (-1044)) (-4 *6 (-944 *5 *4 *2)) + (-4 *2 (-845)) (-5 *1 (-945 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *6)) (-15 -4065 (*6 $)) + (-15 -4076 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) + (-5 *2 (-1168)) (-5 *1 (-1038 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-562)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044))))) +(((*1 *2) + (-12 (-5 *2 (-1256 (-1093 *3 *4))) (-5 *1 (-1093 *3 *4)) + (-14 *3 (-916)) (-14 *4 (-916))))) +(((*1 *2 *3) + (-12 (-5 *3 (-562)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *2 (-1261)) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1112)) (-5 *2 (-1261)) (-5 *1 (-826))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-306)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-446 *4 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4393)) (-4 *1 (-403)))) + ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1092)) (-4 *2 (-895 *5)) (-5 *1 (-686 *5 *2 *3 *4)) + (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4402))))))) +(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-916)) (-5 *1 (-441 *2)) + (-4 *2 (-1232 (-562))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-916)) (-5 *4 (-766)) (-5 *1 (-441 *2)) + (-4 *2 (-1232 (-562))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *1 (-441 *2)) + (-4 *2 (-1232 (-562))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *5 (-766)) + (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *5 (-766)) + (-5 *6 (-112)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-417 *2)) (-4 *2 (-1232 *5)) + (-5 *1 (-443 *5 *2)) (-4 *5 (-1044))))) +(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-766)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-766))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) + (-4 *2 (-429 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-170)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) + ((*1 *1 *1 *1) (-4 *1 (-544))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) + ((*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-766))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-1 (-639 *5) *6)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *6 (-1232 *5)) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-647 (-406 *7))) (-5 *4 (-1 (-639 *6) *7)) + (-5 *5 (-1 (-417 *7) *7)) + (-4 *6 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *7 (-1232 *6)) (-5 *2 (-639 (-406 *7))) (-5 *1 (-807 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-1 (-639 *5) *6)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *6 (-1232 *5)) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-648 *7 (-406 *7))) (-5 *4 (-1 (-639 *6) *7)) + (-5 *5 (-1 (-417 *7) *7)) + (-4 *6 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *7 (-1232 *6)) (-5 *2 (-639 (-406 *7))) (-5 *1 (-807 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-647 (-406 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-5 *2 (-639 (-406 *5))) (-5 *1 (-807 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) + (-4 *6 (-1232 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-648 *5 (-406 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-5 *2 (-639 (-406 *5))) (-5 *1 (-807 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) + (-4 *6 (-1232 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-766)) (-4 *2 (-1092)) + (-5 *1 (-672 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-105))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1131)))) +(((*1 *2 *1) + (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) + (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-777 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-958 *3 *2)) (-4 *2 (-130)) (-4 *3 (-554)) + (-4 *3 (-1044)) (-4 *2 (-787)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-1164 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-966)) (-4 *2 (-130)) (-5 *1 (-1170 *3)) (-4 *3 (-554)) + (-4 *3 (-1044)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-1229 *4 *3)) (-14 *4 (-1168)) + (-4 *3 (-1044))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) + (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) + (-5 *1 (-983 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) + (-5 *1 (-1099 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-362)) (-4 *5 (-554)) + (-5 *2 + (-2 (|:| |minor| (-639 (-916))) (|:| -3342 *3) + (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-916)) (-4 *3 (-650 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-130))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-5 *2 + (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (|:| |success| (-112)))) + (-5 *1 (-784)) (-5 *5 (-562))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-450)) (-4 *3 (-844)) - (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) (-4 *5 (-943 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-313 (-544))) (-5 *1 (-1109)))) + (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) + (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -1602 *6) (|:| |sol?| (-112))) (-562) + *6)) + (-4 *6 (-362)) (-4 *7 (-1232 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) + (-2 (|:| -3860 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) + (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) +(((*1 *2) + (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-450))) (-5 *1 (-1196 *3 *2)) - (-4 *2 (-13 (-420 *3) (-1190)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-554)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) + (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) + (-4 *2 + (-13 (-401) + (-10 -7 (-15 -4054 (*2 *4)) (-15 -1999 ((-916) *2)) + (-15 -3928 ((-1256 *2) (-916))) (-15 -4374 (*2 *2))))) + (-5 *1 (-355 *2 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-5 *5 (-639 *8)) + (-4 *7 (-845)) (-4 *8 (-1044)) (-4 *9 (-944 *8 *6 *7)) + (-4 *6 (-788)) (-5 *2 (-1164 *8)) (-5 *1 (-320 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1112)) (-5 *2 (-112)) (-5 *1 (-816))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *3 (-554))))) +(((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-949))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-310)))) + ((*1 *2 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4393)) (-4 *1 (-403)))) + ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) + ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) + ((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) + (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) + (-5 *1 (-783)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) + (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) + (-5 *1 (-783))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-995 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-940 *4 *3)) + (-4 *3 (-1232 *4))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-554)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *1 (-1195 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) + (|partial| -12 (-5 *3 (-1168)) + (-4 *4 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-555 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-167 (-313 *4))) - (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) + (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-5 *2 (-406 (-947 *4))) (-5 *1 (-919 *4 *5 *6 *3)) + (-4 *3 (-944 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-683 *7)) (-4 *7 (-944 *4 *6 *5)) + (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-5 *2 (-683 (-406 (-947 *4)))) + (-5 *1 (-919 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-167 *3)) (-5 *1 (-1194 *4 *3)) - (-4 *3 (-13 (-27) (-1190) (-420 *4)))))) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) + (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-5 *2 (-639 (-406 (-947 *4)))) + (-5 *1 (-919 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-112)) - (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) + (-12 (-5 *3 (-947 (-562))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-112)) - (-5 *1 (-1194 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) + (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) + ((*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-1007)) (-5 *2 (-639 *1)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-313 *4)) - (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) + (-12 (-5 *3 (-1164 (-562))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-313 *4)) - (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 (-167 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2)) - (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2)) - (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) - (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)))) (-5 *1 (-187 *3 *2)) - (-4 *2 (-13 (-27) (-1190) (-420 (-167 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) - (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 (-167 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-1194 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-1194 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) (-4 *1 (-1193)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) (-4 *1 (-1193)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) (-4 *1 (-1193)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) (-4 *1 (-1193)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) (-4 *1 (-1193)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) (-4 *1 (-1193)))) -(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-1191 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-635 (-1191 *2))) (-5 *1 (-1191 *2)) (-4 *2 (-1091))))) -(((*1 *1 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-1091))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 (-1191 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1091))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2)) - (-4 *3 (-13 (-844) (-554))))) - ((*1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *1) (-5 *1 (-475))) ((*1 *1) (-4 *1 (-1190)))) -(((*1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-1188))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148)) (-5 *2 (-544)) (-5 *1 (-1187 *4)) (-4 *4 (-1042))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-1187 *3)) (-4 *3 (-1042))))) -(((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-544)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) - (-5 *2 (-544)))) + (-12 (-5 *3 (-1164 (-406 (-562)))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) - (-5 *2 (-544)) (-5 *1 (-1107 *4 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-836 *3)) - (-4 *3 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544)) - (-5 *1 (-1107 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-1148)) - (-4 *6 (-13 (-554) (-844) (-1031 *2) (-634 *2) (-450))) (-5 *2 (-544)) - (-5 *1 (-1107 *6 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *6))))) + (-12 (-5 *3 (-1164 *1)) (-4 *1 (-1007)) (-5 *2 (-639 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-450)) (-5 *2 (-544)) - (-5 *1 (-1108 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-836 (-406 (-939 *6)))) - (-5 *3 (-406 (-939 *6))) (-4 *6 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-406 (-939 *6))) (-5 *4 (-1166)) (-5 *5 (-1148)) - (-4 *6 (-450)) (-5 *2 (-544)) (-5 *1 (-1108 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-544)) (-5 *1 (-1187 *3)) (-4 *3 (-1042))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1186))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-363 *2)) (-4 *2 (-1091)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1148)) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-857))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-635 (-857)))) (-5 *1 (-113)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-857) (-635 (-857)))) (-5 *1 (-113)))) + (-12 (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-639 *1)) + (-4 *1 (-1061 *4 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516)))) ((*1 *2 *1) - (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3)) - (-4 *3 - (-13 (-844) - (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $)) - (-15 -2115 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-392)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-392)))) - ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500)))) - ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-704)))) - ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-765)) (-4 *3 (-1204)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)))) - ((*1 *1) (-5 *1 (-170))) - ((*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1091)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388)))) - ((*1 *1) (-5 *1 (-392))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) - ((*1 *1) - (-12 (-4 *3 (-1091)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1091)) - (-4 *4 (-659 *3)))) - ((*1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) - ((*1 *1 *2) (-12 (-5 *1 (-1132 *3 *2)) (-14 *3 (-765)) (-4 *2 (-1042)))) - ((*1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042)))) - ((*1 *1 *1) (-5 *1 (-1166))) ((*1 *1) (-5 *1 (-1166))) - ((*1 *1) (-5 *1 (-1184)))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1184))))) -(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1183))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-1183))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-844)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-281 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -4267 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| -2226 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1143 (-224))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1589 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-557)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-765)) (-4 *1 (-688 *2)) (-4 *2 (-1091)))) + (-12 (-4 *2 (-13 (-1092) (-34))) (-5 *1 (-1132 *3 *2)) + (-4 *3 (-13 (-1092) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1267))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1150)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1092)) + (-4 *4 (-1092)))) ((*1 *1 *2) + (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-2 - (|:| -4267 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (|:| -2226 - (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) - (|:| |expense| (-377)) (|:| |accuracy| (-377)) - (|:| |intermediateResults| (-377)))))) - (-5 *1 (-797)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) + (-3 (|:| I (-315 (-562))) (|:| -3197 (-315 (-378))) + (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) + (-5 *1 (-1167))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1091)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1091))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) -(((*1 *2) - (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) -(((*1 *2) - (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-538 *4 *2 *5 *6)) + (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-766)))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-112)) + (-5 *2 (-1030)) (-5 *1 (-740))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))) + (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) + (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1168)) + (-4 *5 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) (-5 *1 (-555 *5 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) (-4 *5 (-362)) (-5 *2 (-639 (-1201 *5))) + (-5 *1 (-1264 *5)) (-5 *4 (-1201 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1091)) - (-4 *5 (-1091))))) + (-12 (-4 *3 (-1232 (-406 (-562)))) + (-5 *2 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562)))) + (-5 *1 (-908 *3 *4)) (-4 *4 (-1232 (-406 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *3)) + (-4 *3 (-1232 (-406 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) + (-5 *1 (-743))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-645 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-766)) (-4 *5 (-451)) (-4 *5 (-845)) + (-4 *5 (-1033 (-562))) (-4 *5 (-554)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-429 *5)) + (-4 *2 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *5 (-608 $)) $)) + (-15 -4076 ((-1117 *5 (-608 $)) $)) + (-15 -4054 ($ (-1117 *5 (-608 $)))))))))) +(((*1 *1 *1) (-4 *1 (-655)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-683 *8)) (-4 *8 (-944 *5 *7 *6)) + (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) + (-4 *7 (-788)) + (-5 *2 + (-639 + (-2 (|:| -2173 (-766)) + (|:| |eqns| + (-639 + (-2 (|:| |det| *8) (|:| |rows| (-639 (-562))) + (|:| |cols| (-639 (-562)))))) + (|:| |fgb| (-639 *8))))) + (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-766))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-4 *6 (-451)) + (-5 *2 (-639 (-639 *7))) (-5 *1 (-537 *6 *7 *5)) (-4 *7 (-362)) + (-4 *5 (-13 (-362) (-843)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-845)) + (-4 *3 (-1092))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1182 *4 *5)) (-4 *4 (-1091)) - (-4 *5 (-1091))))) + (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2835 *4))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *1) (-5 *1 (-329)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1092)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1092)) (-5 *2 (-112)) + (-5 *1 (-1208 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-639 + (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 *3)) + (|:| |logand| (-1164 *3))))) + (-5 *1 (-583 *3)) (-4 *3 (-362))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-584 *2)) (-4 *2 (-544))))) (((*1 *2) - (-12 (-5 *2 (-1259)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) -(((*1 *1 *2) - (-12 (-5 *2 (-635 (-2 (|:| -4267 *3) (|:| -2226 *4)))) (-4 *3 (-1091)) - (-4 *4 (-1091)) (-4 *1 (-1181 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-1179 *2)) (-4 *2 (-362))))) + (-12 (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-327 *3 *4)) + (-4 *3 (-328 *4)))) + ((*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-766))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-406 (-562))) (-4 *4 (-1033 (-562))) + (-4 *4 (-13 (-845) (-554))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-133))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-224))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-562)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-406 (-562))) (-4 *4 (-362)) (-4 *4 (-38 *3)) + (-4 *5 (-1247 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1218 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-406 (-562))) (-4 *4 (-362)) (-4 *4 (-38 *3)) + (-4 *5 (-1216 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1239 *4 *5)) + (-4 *6 (-978 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-283))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-360 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *1) (-5 *1 (-378))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-429 *3)) (-4 *3 (-845)) (-4 *3 (-1104)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-472)) (-5 *2 (-562)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1256 *4)) (-5 *3 (-562)) (-4 *4 (-348)) + (-5 *1 (-527 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-535)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-535)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *4 (-1092)) + (-5 *1 (-676 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-683 *4)) (-5 *3 (-766)) (-4 *4 (-1044)) + (-5 *1 (-684 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-562)) (-4 *3 (-1044)) (-5 *1 (-709 *3 *4)) + (-4 *4 (-642 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-562)) (-4 *4 (-1044)) + (-5 *1 (-709 *4 *5)) (-4 *5 (-642 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-766)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-814 *2)) (-4 *2 (-845)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-831 *3)) (-4 *3 (-1044)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-562)) (-5 *1 (-831 *4)) (-4 *4 (-1044)))) + ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-406 (-562))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-916)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *4 (-1044)) + (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-912)) (-5 *2 (-1160 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-362))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-1179 *2)) (-4 *2 (-362))))) -(((*1 *2 *1) - (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-635 (-635 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-635 (-635 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-635 *3))) (-5 *1 (-1178 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-1178 *3))))) + (-12 (-5 *4 (-562)) (-4 *5 (-348)) (-5 *2 (-417 (-1164 (-1164 *5)))) + (-5 *1 (-1205 *5)) (-5 *3 (-1164 (-1164 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-898 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1148 *3))) (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) + (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044))))) +(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) + ((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) + ((*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4393)) (-4 *1 (-403)))) + ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) + ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-1148 (-562)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-554)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) + (-5 *1 (-1197 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-639 (-406 *7))) + (-4 *7 (-1232 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *6 *7))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1200 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *5 (-1058 *2 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1606 *3))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-844)) - (-5 *2 - (-2 (|:| |f1| (-635 *4)) (|:| |f2| (-635 (-635 (-635 *4)))) - (|:| |f3| (-635 (-635 *4))) (|:| |f4| (-635 (-635 (-635 *4)))))) - (-5 *1 (-1176 *4)) (-5 *3 (-635 (-635 (-635 *4))))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-844)) (-5 *3 (-635 *6)) (-5 *5 (-635 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-635 *5)) (|:| |f3| *5) (|:| |f4| (-635 *5)))) - (-5 *1 (-1176 *6)) (-5 *4 (-635 *5))))) + (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-5 *2 (-639 *3)) (-5 *1 (-919 *4 *5 *6 *3)) + (-4 *3 (-944 *4 *6 *5))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2835 *3) (|:| |coef2| (-777 *3)))) + (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1232 *5)) + (-5 *1 (-722 *5 *2)) (-4 *5 (-362))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) + (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *1 *1) (-5 *1 (-378))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) + (-4 *4 (-171))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1164 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-683 *4)) (-4 *4 (-362)) (-5 *2 (-1164 *4)) + (-5 *1 (-531 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-843)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-132)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-153)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-160)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-217)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-670)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1059)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1088))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-244 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-112)) + (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-4 *7 (-984 *4)) (-4 *2 (-679 *7 *8 *9)) - (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-679 *4 *5 *6)) - (-4 *8 (-371 *7)) (-4 *9 (-371 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)) (-4 *2 (-362)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-682 *2)) (-4 *2 (-362)) (-4 *2 (-1042)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *3 (-1042)) - (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) - ((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-1176 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-844)) (-5 *2 (-635 (-635 *4))) (-5 *1 (-1176 *4)) - (-5 *3 (-635 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-844)) (-5 *1 (-1176 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-844)) (-5 *2 (-1178 (-635 *4))) (-5 *1 (-1176 *4)) - (-5 *3 (-635 *4))))) + (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-112)) (-5 *1 (-1196 *4 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207))))) +(((*1 *1 *1 *1) (-4 *1 (-142))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) + ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042)) + (-5 *3 (-562))))) +(((*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-396))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) + (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-844)) (-5 *2 (-635 (-635 (-635 *4)))) (-5 *1 (-1176 *4)) - (-5 *3 (-635 (-635 *4)))))) + (-12 (-5 *3 (-406 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-554)) + (-4 *4 (-1044)) (-4 *2 (-1247 *4)) (-5 *1 (-1250 *4 *5 *6 *2)) + (-4 *6 (-650 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178 (-635 *4))) (-4 *4 (-844)) (-5 *2 (-635 (-635 *4))) - (-5 *1 (-1176 *4))))) + (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1092)))) + ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-437 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-482)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-960)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1067 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-1107)))) + ((*1 *1 *1) (-5 *1 (-1168)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-639 *7)) (-5 *3 (-562)) (-4 *7 (-944 *4 *5 *6)) + (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *1 (-448 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) - (-5 *1 (-1176 *4)) (-4 *4 (-844))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-635 (-635 (-635 *4)))) (-5 *2 (-635 (-635 *4))) (-4 *4 (-844)) - (-5 *1 (-1176 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-635 *4)) (-4 *4 (-844)) - (-5 *1 (-1176 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-635 *5)) (-4 *5 (-844)) (-5 *1 (-1176 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-844)) (-5 *4 (-635 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-635 *4)))) - (-5 *1 (-1176 *6)) (-5 *5 (-635 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-1175))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) - (-5 *2 (-635 (-635 (-939 *5)))) (-5 *1 (-1174 *5))))) + (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) + (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-947 *4))) + (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) + (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) + (-4 *2 (-1207))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-406 (-939 (-544))))) - (-5 *2 (-635 (-635 (-292 (-939 *4))))) (-5 *1 (-379 *4)) - (-4 *4 (-13 (-842) (-362))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-292 (-406 (-939 (-544)))))) - (-5 *2 (-635 (-635 (-292 (-939 *4))))) (-5 *1 (-379 *4)) - (-4 *4 (-13 (-842) (-362))))) + (-12 (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-362)) + (-5 *2 (-112)) (-5 *1 (-661 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 (-544)))) (-5 *2 (-635 (-292 (-939 *4)))) - (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-292 (-406 (-939 (-544))))) (-5 *2 (-635 (-292 (-939 *4)))) - (-5 *1 (-379 *4)) (-4 *4 (-13 (-842) (-362))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1166)) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-4 *4 (-13 (-29 *6) (-1190) (-953))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2162 (-635 *4)))) - (-5 *1 (-646 *6 *4 *3)) (-4 *3 (-651 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 *2)) - (-4 *2 (-13 (-29 *6) (-1190) (-953))) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *1 (-646 *6 *2 *3)) (-4 *3 (-651 *2)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) - (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4)))) - (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) - (-4 *7 (-13 (-371 *5) (-10 -7 (-6 -4401)))) - (-5 *2 (-635 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2162 (-635 *7))))) - (-5 *1 (-660 *5 *6 *7 *3)) (-5 *4 (-635 *7)) (-4 *3 (-679 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) + (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4403)))) + (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-5 *2 (-112)) + (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) + (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3342 (-639 *9)) (|:| -1495 *4) (|:| |ineq| (-639 *9)))) + (-5 *1 (-983 *6 *7 *8 *9 *4)) (-5 *3 (-639 *9)) + (-4 *4 (-1064 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) + (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3342 (-639 *9)) (|:| -1495 *4) (|:| |ineq| (-639 *9)))) + (-5 *1 (-1099 *6 *7 *8 *9 *4)) (-5 *3 (-639 *9)) + (-4 *4 (-1064 *6 *7 *8 *9))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1021 (-838 (-562)))) + (-5 *3 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *4)))) (-4 *4 (-1044)) + (-5 *1 (-592 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1168))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-554) (-146))) + (-5 *2 (-2 (|:| -1588 *3) (|:| -1602 *3))) (-5 *1 (-1226 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) ((*1 *1) (-4 *1 (-544))) + ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) + (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) + (-5 *2 (-562)) (-5 *1 (-1106 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) + (-5 *2 (-1030)) (-5 *1 (-752))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-1261)) + (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3))))) +(((*1 *2) + (-12 (-4 *1 (-348)) + (-5 *2 (-639 (-2 (|:| -1635 (-562)) (|:| -1960 (-562)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-938 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 - (-2 (|:| |particular| (-3 (-1253 *5) #2="failed")) - (|:| -2162 (-635 (-1253 *5))))) - (-5 *1 (-661 *5)) (-5 *4 (-1253 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) + (-2 (|:| -2865 (-766)) (|:| |curves| (-766)) + (|:| |polygons| (-766)) (|:| |constructs| (-766))))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *2 *3) + (-12 (-4 *4 (-451)) (-5 *2 - (-2 (|:| |particular| (-3 (-1253 *5) #2#)) (|:| -2162 (-635 (-1253 *5))))) - (-5 *1 (-661 *5)) (-5 *4 (-1253 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *5)) (-4 *5 (-362)) + (-639 + (-2 (|:| |eigval| (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4)))) + (|:| |eigmult| (-766)) + (|:| |eigvec| (-639 (-683 (-406 (-947 *4)))))))) + (-5 *1 (-291 *4)) (-5 *3 (-683 (-406 (-947 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) + (-5 *2 (-1030)) (-5 *1 (-745))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-256))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-119 *2)) (-4 *2 (-1207))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-562))) (-4 *3 (-1044)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-99 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *3 (-1058 *6 *7 *8)) (-5 *2 - (-635 - (-2 (|:| |particular| (-3 (-1253 *5) #2#)) - (|:| -2162 (-635 (-1253 *5)))))) - (-5 *1 (-661 *5)) (-5 *4 (-635 (-1253 *5))))) + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-635 *5))) (-4 *5 (-362)) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 - (-635 - (-2 (|:| |particular| (-3 (-1253 *5) #2#)) - (|:| -2162 (-635 (-1253 *5)))))) - (-5 *1 (-661 *5)) (-5 *4 (-635 (-1253 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) - (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-764 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-554)) - (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-764 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1166)) - (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *1 (-766 *5 *2)) (-4 *2 (-13 (-29 *5) (-1190) (-953))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-682 *7)) (-5 *5 (-1166)) - (-4 *7 (-13 (-29 *6) (-1190) (-953))) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7))))) - (-5 *1 (-796 *6 *7)) (-5 *4 (-1253 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-682 *6)) (-5 *4 (-1166)) - (-4 *6 (-13 (-29 *5) (-1190) (-953))) - (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-635 (-1253 *6))) (-5 *1 (-796 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-635 (-292 *7))) (-5 *4 (-635 (-113))) (-5 *5 (-1166)) - (-4 *7 (-13 (-29 *6) (-1190) (-953))) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7))))) - (-5 *1 (-796 *6 *7)))) + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-113))) (-5 *5 (-1166)) - (-4 *7 (-13 (-29 *6) (-1190) (-953))) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-2 (|:| |particular| (-1253 *7)) (|:| -2162 (-635 (-1253 *7))))) - (-5 *1 (-796 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-292 *7)) (-5 *4 (-113)) (-5 *5 (-1166)) - (-4 *7 (-13 (-29 *6) (-1190) (-953))) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2162 (-635 *7))) *7 #3="failed")) - (-5 *1 (-796 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-1166)) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2162 (-635 *3))) *3 #3#)) - (-5 *1 (-796 *6 *3)) (-4 *3 (-13 (-29 *6) (-1190) (-953))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-292 *2)) (-5 *4 (-113)) (-5 *5 (-635 *2)) - (-4 *2 (-13 (-29 *6) (-1190) (-953))) (-5 *1 (-796 *6 *2)) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-292 *2)) (-5 *5 (-635 *2)) - (-4 *2 (-13 (-29 *6) (-1190) (-953))) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *1 (-796 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1028)) (-5 *1 (-799)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-802)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-799)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4)) - (-5 *2 (-1028)) (-5 *1 (-799)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4)) - (-5 *2 (-1028)) (-5 *1 (-799)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377))) - (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1253 (-313 (-377)))) (-5 *4 (-377)) (-5 *5 (-635 *4)) - (-5 *2 (-1028)) (-5 *1 (-799)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377))) - (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1253 (-313 *4))) (-5 *5 (-635 (-377))) (-5 *6 (-313 (-377))) - (-5 *4 (-377)) (-5 *2 (-1028)) (-5 *1 (-799)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2162 (-635 *6))) "failed") *7 *6)) - (-4 *6 (-362)) (-4 *7 (-651 *6)) - (-5 *2 (-2 (|:| |particular| (-1253 *6)) (|:| -2162 (-682 *6)))) - (-5 *1 (-807 *6 *7)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-1028)) (-5 *1 (-890)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-891)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-890)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-765)) (-5 *6 (-635 (-635 (-313 *3)))) (-5 *7 (-1148)) - (-5 *8 (-224)) (-5 *5 (-635 (-313 (-377)))) (-5 *3 (-377)) (-5 *2 (-1028)) - (-5 *1 (-890)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-765)) (-5 *6 (-635 (-635 (-313 *3)))) (-5 *7 (-1148)) - (-5 *5 (-635 (-313 (-377)))) (-5 *3 (-377)) (-5 *2 (-1028)) (-5 *1 (-890)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *2 (-635 (-377))) (-5 *1 (-1016)) - (-5 *4 (-377)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-939 (-544))) (-5 *2 (-635 (-377))) (-5 *1 (-1016)) - (-5 *4 (-377)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1121 *4)) (-5 *3 (-313 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1121 *4)) - (-5 *3 (-292 (-313 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) - (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1121 *5)) - (-5 *3 (-292 (-313 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) - (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-635 (-292 (-313 *5)))) (-5 *1 (-1121 *5)) (-5 *3 (-313 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-1166))) - (-4 *5 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-635 (-635 (-292 (-313 *5))))) (-5 *1 (-1121 *5)) - (-5 *3 (-635 (-292 (-313 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) - (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-1174 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-1166))) (-4 *5 (-554)) - (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-1174 *5)) - (-5 *3 (-635 (-292 (-406 (-939 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-406 (-939 *4)))) (-4 *4 (-554)) - (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-1174 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) - (-5 *1 (-1174 *4)) (-5 *3 (-635 (-292 (-406 (-939 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *5))))) - (-5 *1 (-1174 *5)) (-5 *3 (-406 (-939 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *5))))) - (-5 *1 (-1174 *5)) (-5 *3 (-292 (-406 (-939 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *4))))) (-5 *1 (-1174 *4)) - (-5 *3 (-406 (-939 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-635 (-292 (-406 (-939 *4))))) (-5 *1 (-1174 *4)) - (-5 *3 (-292 (-406 (-939 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857))))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-544)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1148)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-504)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-588)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-476)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-136)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-621)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1086)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1081)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1064)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-963)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-179)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1029)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-311)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-664)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-153)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-523)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1265)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1057)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-515)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-674)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1106)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-132)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-1264)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-669)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-217)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127)) (-5 *2 (-522)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-1171))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1171)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-1171))) (-5 *1 (-1171))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-544) (-224) (-1166) (-1148) (-1171))) (-5 *1 (-1171))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-635 (-279))) (-5 *1 (-279)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1171))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2361)) (-5 *2 (-112)) (-5 *1 (-612)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2362)) (-5 *2 (-112)) (-5 *1 (-612)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2363)) (-5 *2 (-112)) (-5 *1 (-612)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2488)) (-5 *2 (-112)) (-5 *1 (-684 *4)) - (-4 *4 (-608 (-857))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-608 (-857))) (-5 *2 (-112)) - (-5 *1 (-684 *4)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-544))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-504))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-588))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-476))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1156))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-621))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-963))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-664))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1265))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-674))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-1264))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-669))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1127)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1148))) (-5 *2 (-112)) (-5 *1 (-1171)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)) (-5 *1 (-1171)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1171)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-544))) (-5 *2 (-112)) (-5 *1 (-1171))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-290))) ((*1 *1) (-5 *1 (-857))) - ((*1 *1) - (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) - (-4 *5 (-943 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1075))) - ((*1 *1) - (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) - (-4 *3 (-13 (-1091) (-34))))) - ((*1 *1) (-5 *1 (-1169))) ((*1 *1) (-5 *1 (-1170)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-435)) (-5 *3 (-635 (-1166))) (-5 *4 (-1166)) (-5 *1 (-1169)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1169)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-435)) (-5 *3 (-1166)) (-5 *1 (-1170)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-435)) (-5 *3 (-635 (-1166))) (-5 *1 (-1170))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-435)) (-5 *1 (-1170))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1170))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-433)) + (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *3 (-1058 *6 *7 *8)) (-5 *2 - (-635 - (-3 (|:| -3949 (-1166)) - (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544))))))))) - (-5 *1 (-1170))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1170))))) -(((*1 *2 *1) - (-12 + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1137 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 - (-635 - (-635 - (-3 (|:| -3949 (-1166)) - (|:| -3626 (-635 (-3 (|:| S (-1166)) (|:| P (-939 (-544)))))))))) - (-5 *1 (-1170))))) -(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) - ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-1170))))) + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 (-435))))) - (-5 *1 (-1170))))) -(((*1 *1) (-5 *1 (-1169)))) -(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) - ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169))))) -(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1169))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1259)) (-5 *1 (-1169)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) (-5 *2 (-1259)) - (-5 *1 (-1169)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) - (-5 *2 (-1259)) (-5 *1 (-1169)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1166)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) - (-5 *2 (-1259)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1169)))) - ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-1169))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1166)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 "void"))) - (-5 *1 (-1169))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1169)) (-5 *3 (-1166))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1166)) (-5 *2 (-1170)) (-5 *1 (-1169))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-1042)) (-5 *2 (-1253 *4)) - (-5 *1 (-1167 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-912)) (-5 *2 (-1253 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1042))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1166))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1091)))) - ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-437 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-958)))) - ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1066 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-504)) (-5 *1 (-1106)))) ((*1 *1 *1) (-5 *1 (-1166)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1166))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) + (-12 (-5 *2 (-1156 3 *3)) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) + ((*1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554))))) +(((*1 *2 *1) + (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) - (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) - (|:| |args| (-635 (-857))))) - (-5 *1 (-1166))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -2963 (-635 (-857))) (|:| -2778 (-635 (-857))) - (|:| |presup| (-635 (-857))) (|:| -2961 (-635 (-857))) - (|:| |args| (-635 (-857))))) - (-5 *1 (-1166)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-635 (-857)))) (-5 *1 (-1166))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-1166))))) -(((*1 *1 *1) (-5 *1 (-857))) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-62 *3)) (-14 *3 (-1168)))) + ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-69 *3)) (-14 *3 (-1168)))) + ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-72 *3)) (-14 *3 (-1168)))) + ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1261)))) + ((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1261)) (-5 *1 (-396)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1150)) (-5 *4 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) + ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1044)) (-4 *3 (-845)) + (-5 *2 (-2 (|:| |val| *1) (|:| -1960 (-562)))) (-4 *1 (-429 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091)))) - ((*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1166))))) -(((*1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-1166))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) - (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) - (-5 *1 (-1165))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) - (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) - (-5 *1 (-1165))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) - (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) - (-5 *1 (-1165))))) -(((*1 *1 *2 *2) - (-12 + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -1960 (-887 *3)))) + (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) + (-4 *7 (-944 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -1960 (-562)))) + (-5 *1 (-945 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) + (-15 -4076 (*7 $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *2 (-685 (-577))) (-5 *1 (-577))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1044)) (-4 *7 (-1044)) + (-4 *6 (-1232 *5)) (-5 *2 (-1164 (-1164 *7))) + (-5 *1 (-500 *5 *6 *4 *7)) (-4 *4 (-1232 *6))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304))))) +(((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-639 (-112)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1092)) (-5 *2 (-884 *3 *4)) (-5 *1 (-880 *3 *4 *5)) + (-4 *3 (-1092)) (-4 *5 (-660 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-944 *3 *5 *4)) (-5 *1 (-982 *3 *4 *5 *2)) + (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-224) (-224) (-224))) + (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) + (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) + (-5 *1 (-691))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-857)))) + ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-957))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) + (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-583 *3)) (-5 *1 (-425 *5 *3)) + (-4 *3 (-13 (-1192) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-1033 (-562)) (-146))) + (-5 *2 (-583 (-406 (-947 *5)))) (-5 *1 (-568 *5)) + (-5 *3 (-406 (-947 *5)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-554) (-845))) + (-4 *2 (-13 (-429 *4) (-997) (-1192))) (-5 *1 (-596 *4 *2 *3)) + (-4 *3 (-13 (-429 (-168 *4)) (-997) (-1192)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-855)) (-5 *2 (-685 (-547))) (-5 *3 (-547))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922)) (-5 *2 - (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) - (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) - (-5 *1 (-1165))))) -(((*1 *1 *2 *2) - (-12 + (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) + (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) + (-5 *1 (-152)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-406 (-562))) (-5 *2 - (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) - (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) - (-5 *1 (-1165))))) -(((*1 *1 *2 *2) + (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) + (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) + (-5 *1 (-152)))) + ((*1 *2 *3) (-12 (-5 *2 - (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) - (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) - (-5 *1 (-1165))))) -(((*1 *1 *2 *2) + (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) + (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) + (-5 *1 (-152)) (-5 *3 (-639 (-938 (-224)))))) + ((*1 *2 *3) (-12 (-5 *2 - (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) - (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) - (-5 *1 (-1165))))) -(((*1 *1 *1) (-5 *1 (-1165))) - ((*1 *1 *2) - (-12 + (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) + (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) + (-5 *1 (-152)) (-5 *3 (-639 (-639 (-938 (-224))))))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-1148 *7))) (-4 *6 (-845)) + (-4 *7 (-944 *5 (-530 *6) *6)) (-4 *5 (-1044)) + (-5 *2 (-1 (-1148 *7) *7)) (-5 *1 (-1118 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-390))))) +(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-639 (-480 *4 *5))) (-5 *3 (-639 (-859 *4))) + (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-470 *4 *5 *6)) + (-4 *6 (-451))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1232 *6)) + (-4 *6 (-13 (-362) (-146) (-1033 *4))) (-5 *4 (-562)) (-5 *2 - (-3 (|:| I (-313 (-544))) (|:| -3478 (-313 (-377))) - (|:| CF (-313 (-167 (-377)))) (|:| |switch| (-1165)))) - (-5 *1 (-1165))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-857) (-857) (-857))) (-5 *4 (-544)) (-5 *2 (-857)) - (-5 *1 (-642 *5 *6 *7)) (-4 *5 (-1091)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-857)) (-5 *1 (-848 *3 *4 *5)) (-4 *3 (-1042)) (-14 *4 (-99 *3)) - (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1160 *3)) (-4 *3 (-1042))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1079 *3)) (-4 *3 (-943 *7 *6 *4)) (-4 *6 (-787)) (-4 *4 (-844)) - (-4 *7 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-544)))) - (-5 *1 (-590 *6 *4 *7 *3)))) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3342 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1010 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1213)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *3 (-1058 *6 *7 *8)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-1065 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1495 *9)))) + (-5 *5 (-112)) (-4 *8 (-1058 *6 *7 *4)) (-4 *9 (-1064 *6 *7 *4 *8)) + (-4 *6 (-451)) (-4 *7 (-788)) (-4 *4 (-845)) + (-5 *2 (-639 (-2 (|:| |val| *8) (|:| -1495 *9)))) + (-5 *1 (-1065 *6 *7 *4 *8 *9))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) + ((*1 *2 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) + (-14 *4 (-562))))) +(((*1 *2 *3) + (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-562))) (-5 *1 (-304))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1256 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) + (-4 *1 (-719 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1232 *5)) + (-5 *2 (-683 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-480 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) + (-5 *2 (-246 *4 *5)) (-5 *1 (-939 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) + (-4 *3 (-13 (-845) (-554)))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1168)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-639 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3860 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1192) (-27) (-429 *8))) + (-4 *8 (-13 (-451) (-845) (-146) (-1033 *3) (-635 *3))) + (-5 *3 (-562)) (-5 *2 (-639 *4)) (-5 *1 (-1009 *8 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-128))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-551))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-1092)) + (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4))))))) +(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1261)) (-5 *1 (-390)))) + ((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-390))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1164 *1)) (-4 *1 (-1007))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1030)) (-5 *1 (-835)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-554)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-544)))) (-5 *1 (-590 *5 *4 *6 *3)) - (-4 *3 (-943 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1) (-5 *1 (-857))) + (-12 (-5 *3 (-639 (-315 (-378)))) (-5 *4 (-639 (-378))) + (-5 *2 (-1030)) (-5 *1 (-835))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1148 *4) (-1148 *4))) (-5 *2 (-1148 *4)) + (-5 *1 (-1281 *4)) (-4 *4 (-1207)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-639 (-1148 *5)) (-639 (-1148 *5)))) (-5 *4 (-562)) + (-5 *2 (-639 (-1148 *5))) (-5 *1 (-1281 *5)) (-4 *5 (-1207))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-887 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1092)) + (-4 *5 (-1207)) (-5 *1 (-885 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-1158 *4 *2)) (-4 *2 (-13 (-420 *4) (-159) (-27) (-1190))))) + (-12 (-5 *2 (-887 *4)) (-5 *3 (-639 (-1 (-112) *5))) (-4 *4 (-1092)) + (-4 *5 (-1207)) (-5 *1 (-885 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-887 *5)) (-5 *3 (-639 (-1168))) + (-5 *4 (-1 (-112) (-639 *6))) (-4 *5 (-1092)) (-4 *6 (-1207)) + (-5 *1 (-885 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-420 *4) (-159) (-27) (-1190))) - (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-1158 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) - (-5 *2 (-406 (-939 *5))) (-5 *1 (-1159 *5)) (-5 *3 (-939 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) - (-5 *2 (-3 (-406 (-939 *5)) (-313 *5))) (-5 *1 (-1159 *5)) - (-5 *3 (-406 (-939 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1082 (-939 *5))) (-5 *3 (-939 *5)) - (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-406 *3)) - (-5 *1 (-1159 *5)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1207)) (-4 *4 (-845)) + (-5 *1 (-932 *4 *2 *5)) (-4 *2 (-429 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-639 (-1 (-112) *5))) (-4 *5 (-1207)) (-4 *4 (-845)) + (-5 *1 (-932 *4 *2 *5)) (-4 *2 (-429 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1082 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) - (-4 *5 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-3 *3 (-313 *5))) - (-5 *1 (-1159 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-884 *4 *5)) (-4 *5 (-1204)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1156))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-150 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-635 (-2 (|:| -2536 (-765)) (|:| -4179 *4) (|:| |num| *4)))) - (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1="void"))) - (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-112)) (-5 *1 (-435)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 #1#))) (-5 *3 (-635 (-1166))) - (-5 *4 (-112)) (-5 *1 (-435)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-596 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-5 *1 (-657 *3 *4)) (-4 *4 (-171)))) - ((*1 *1 *2) - (-12 (-5 *2 (-635 (-635 (-635 *3)))) (-4 *3 (-1091)) (-5 *1 (-668 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-707 *2 *3 *4)) (-4 *2 (-844)) (-4 *3 (-1091)) - (-14 *4 - (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *3)) - (-2 (|:| -2535 *2) (|:| -2536 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-832)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1204)) (-4 *3 (-1204)))) - ((*1 *1 *2) - (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 *4)))) (-4 *4 (-1091)) - (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)))) + (-12 (-5 *3 (-1168)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1207)) + (-5 *2 (-315 (-562))) (-5 *1 (-933 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 *5)) (-4 *5 (-13 (-1091) (-34))) - (-5 *2 (-635 (-1130 *3 *5))) (-5 *1 (-1130 *3 *5)) - (-4 *3 (-13 (-1091) (-34))))) + (-12 (-5 *3 (-1168)) (-5 *4 (-639 (-1 (-112) *5))) (-4 *5 (-1207)) + (-5 *2 (-315 (-562))) (-5 *1 (-933 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-1 (-112) (-639 *6))) + (-4 *6 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))) (-4 *4 (-1092)) + (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) + (-5 *1 (-1068 *4 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-938 (-224)) (-224) (-224))) + (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1077))))) +(((*1 *2) + (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1207)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-608 *1))) (-5 *3 (-639 *1)) (-4 *1 (-301)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-293 *1))) (-4 *1 (-301)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1192))) + (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 (-583 *3)) (-5 *1 (-564 *5 *3 *6)) (-4 *6 (-1092))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-5 *2 + (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (|:| |success| (-112)))) + (-5 *1 (-784)) (-5 *5 (-562))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1256 (-766))) (-5 *1 (-669 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-559)) (-5 *3 (-562)))) ((*1 *2 *3) - (-12 (-5 *3 (-635 (-2 (|:| |val| *4) (|:| -1688 *5)))) - (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34))) - (-5 *2 (-635 (-1130 *4 *5))) (-5 *1 (-1130 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1688 *4))) (-4 *3 (-13 (-1091) (-34))) - (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1130 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) - (-4 *3 (-13 (-1091) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) - (-4 *3 (-13 (-1091) (-34))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-635 *3)) (-4 *3 (-13 (-1091) (-34))) (-5 *1 (-1131 *2 *3)) - (-4 *2 (-13 (-1091) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-635 (-1130 *2 *3))) (-4 *2 (-13 (-1091) (-34))) - (-4 *3 (-13 (-1091) (-34))) (-5 *1 (-1131 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-635 (-1131 *2 *3))) (-5 *1 (-1131 *2 *3)) - (-4 *2 (-13 (-1091) (-34))) (-4 *3 (-13 (-1091) (-34))))) + (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-362)) (-4 *2 (-1232 *4)) + (-5 *1 (-917 *4 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) + ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-156))) + ((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-969))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) + (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-972 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-608 *4)) (-5 *6 (-1168)) + (-4 *4 (-13 (-429 *7) (-27) (-1192))) + (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) + (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092))))) +(((*1 *2 *3) + (-12 (-4 *4 (-845)) (-5 *2 (-639 (-639 (-639 *4)))) + (-5 *1 (-1178 *4)) (-5 *3 (-639 (-639 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) + (-14 *4 (-639 (-1168))))) ((*1 *1 *2) - (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) - (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1155 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1091)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))) - (-5 *1 (-1065 *3 *4 *2)) - (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-1155 *2 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-476)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-588)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-621)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1091)) (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))) - (-5 *1 (-1065 *3 *4 *2)) - (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-1155 *3 *2)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-112)))) + (-12 (-5 *2 (-766)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) + (-14 *4 (-639 (-1168))))) + ((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) + (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362)) + (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) + (-4 *2 (-341 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-171)))) + ((*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-719 *2 *3)) (-4 *3 (-1232 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) -(((*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) -(((*1 *2 *1) (-12 (-4 *3 (-1204)) (-5 *2 (-635 *1)) (-4 *1 (-1003 *3)))) + (|partial| -12 + (-5 *2 (-2 (|:| -2431 (-114)) (|:| |arg| (-639 (-887 *3))))) + (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-639 (-887 *4))) + (-5 *1 (-887 *4)) (-4 *4 (-1092))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) +(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143))) + ((*1 *1 *1) (-4 *1 (-1136)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 (-1229 *5 *4))) + (-5 *1 (-1106 *4 *5)) (-5 *3 (-1229 *5 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-1068 *3 *4 *5))) (-4 *3 (-1092)) + (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) + (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) + (-5 *1 (-1069 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-362) (-843))) (-5 *1 (-180 *3 *2)) + (-4 *2 (-1232 (-168 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-639 (-777 *3))) (-5 *1 (-777 *3)) (-4 *3 (-554)) + (-4 *3 (-1044))))) +(((*1 *2) + (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 (-436))))) + (-5 *1 (-1172))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1271 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) + (-5 *1 (-658 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) - (-4 *4 (-1042))))) + (|partial| -12 (-5 *2 (-658 *3 *4)) (-5 *1 (-1276 *3 *4)) + (-4 *3 (-845)) (-4 *4 (-171))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-766)) (-5 *4 (-1256 *2)) (-4 *5 (-306)) + (-4 *6 (-987 *5)) (-4 *2 (-13 (-408 *6 *7) (-1033 *6))) + (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1232 *6))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-749))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-544)))) (((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) -(((*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042))))) -(((*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) - ((*1 *1 *2) - (-12 (-5 *2 (-635 (-1154 *3 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) - (-4 *4 (-1042)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042))))) + (-12 (-4 *1 (-1033 (-562))) (-4 *1 (-301)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) + (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) + (-5 *1 (-783))))) +(((*1 *2 *3) + (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) + (-5 *2 (-639 (-766))) (-5 *1 (-773 *3 *4 *5 *6 *7)) + (-4 *3 (-1232 *6)) (-4 *7 (-944 *6 *4 *5))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) + (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *2 (-765)) (-5 *1 (-1154 *4 *5)) - (-14 *4 (-912)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) - (-14 *4 (-912)) (-4 *5 (-1042)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) - (-5 *1 (-1154 *4 *5)) (-14 *4 (-912))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-936 *4)) (-4 *4 (-1042)) (-5 *1 (-1154 *3 *4)) - (-14 *3 (-912))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-936 *5)) (-5 *3 (-765)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) - (-14 *4 (-912))))) + (-12 (-5 *3 (-562)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) + (-4 *2 (-1092)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-360 *2)) (-4 *2 (-1092)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *2 (-1092)) (-5 *1 (-643 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-814 *2)) (-4 *2 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 (-562)) (-5 *1 (-203))))) +(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787))))) +(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)))) + ((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-841))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) + (-5 *1 (-743))))) +(((*1 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-445)) (-5 *3 (-562))))) +(((*1 *1) (-5 *1 (-436)))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-994 *3)) (-4 *3 (-171)) (-5 *1 (-794 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-765)) (-5 *3 (-936 *5)) (-4 *5 (-1042)) (-5 *1 (-1154 *4 *5)) - (-14 *4 (-912)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *1 (-230 *4)) + (-4 *4 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-766)))) + ((*1 *1 *1) (-4 *1 (-232))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) + (-4 *4 (-1232 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) + (-4 *3 (-1232 *2)))) + ((*1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-765))) (-5 *3 (-765)) (-5 *1 (-1154 *4 *5)) - (-14 *4 (-912)) (-4 *5 (-1042)))) + (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 (-766))) (-4 *1 (-895 *4)) + (-4 *4 (-1092)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-765))) (-5 *3 (-936 *5)) (-4 *5 (-1042)) - (-5 *1 (-1154 *4 *5)) (-14 *4 (-912))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-765))) (-5 *3 (-112)) (-5 *1 (-1154 *4 *5)) - (-14 *4 (-912)) (-4 *5 (-1042))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-765))) (-5 *3 (-170)) (-5 *1 (-1154 *4 *5)) - (-14 *4 (-912)) (-4 *5 (-1042))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-765))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) - (-4 *4 (-1042))))) -(((*1 *2 *1) - (-12 (-5 *2 (-936 *4)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) - (-4 *4 (-1042))))) -(((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) + (-12 (-5 *3 (-766)) (-4 *1 (-895 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1092)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1092))))) +(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-683 *3)) + (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-683 *3)) + (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4402)) (-4 *1 (-234 *3)) + (-4 *3 (-1092)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-1156 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1258)))) + ((*1 *2 *1) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1258))))) +(((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) + (-5 *1 (-840 *4 *5)) (-14 *4 (-766))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) + (-5 *1 (-682 *3 *4 *5 *6)) (-4 *6 (-681 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-694 *3)) + (-4 *3 (-306))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 *1)) (-4 *1 (-429 *4)) + (-4 *4 (-845)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-1019 *3)) + (-4 *3 (-13 (-843) (-362) (-1017))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) + (-4 *3 (-1232 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1061 *2 *3)) (-4 *2 (-13 (-843) (-362))) + (-4 *3 (-1232 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-639 (-639 (-639 *4)))) (-5 *2 (-639 (-639 *4))) + (-4 *4 (-845)) (-5 *1 (-1178 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-639 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) + (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-627 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3)) + (-4 *4 (-13 (-362) (-843))) (-4 *3 (-1232 *2))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-467)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257))))) +(((*1 *2) + (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) + (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) + (-5 *1 (-1099 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-535))) (-5 *2 (-1168)) (-5 *1 (-535))))) +(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1256 *4)) (-5 *3 (-766)) (-4 *4 (-348)) + (-5 *1 (-527 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) + (-5 *6 (-224)) (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) + (-14 *6 (-639 (-1168))) + (-5 *2 + (-639 (-1138 *5 (-530 (-859 *6)) (-859 *6) (-775 *5 (-859 *6))))) + (-5 *1 (-624 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 (-1256 *4))) (-4 *4 (-1044)) (-5 *2 (-683 *4)) + (-5 *1 (-1024 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-766)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1092)) (-5 *2 (-55))))) +(((*1 *1 *2) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-1193 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-639 (-1193 *2))) (-5 *1 (-1193 *2)) (-4 *2 (-1092))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) (((*1 *2 *1) - (-12 (-5 *2 (-170)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-311)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) + (-14 *4 (-639 (-1168))))) ((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) (-4 *4 (-1042))))) -(((*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-912)) (-4 *3 (-1042))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 (-936 *4))) (-5 *1 (-1154 *3 *4)) (-14 *3 (-912)) - (-4 *4 (-1042))))) -(((*1 *1 *1) - (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *2 (-450)))) - ((*1 *1 *1) - (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-1229 *2)) - (-4 *4 (-1229 (-406 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) - (-4 *3 (-450)))) - ((*1 *1 *1) - (-12 (-4 *1 (-943 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-450)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1229 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-951 *3)) (-5 *1 (-1153 *4 *3)) - (-4 *3 (-1229 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) + (-14 *4 (-639 (-1168)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-362)) (-5 *2 (-683 *4)) + (-5 *1 (-809 *4 *5)) (-4 *5 (-650 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *5)) (-5 *4 (-766)) (-4 *5 (-362)) + (-5 *2 (-683 *5)) (-5 *1 (-809 *5 *6)) (-4 *6 (-650 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-639 *7)) (-5 *5 (-639 (-639 *8))) (-4 *7 (-845)) + (-4 *8 (-306)) (-4 *6 (-788)) (-4 *9 (-944 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-639 (-2 (|:| -1635 (-1164 *9)) (|:| -1960 (-562))))))) + (-5 *1 (-737 *6 *7 *8 *9)) (-5 *3 (-1164 *9))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-997)) + (-4 *2 (-1044))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1168)) (-5 *1 (-329))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-562)) (-5 *5 (-112)) (-5 *6 (-683 (-224))) + (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) + (-4 *2 (-429 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) + ((*1 *1 *1) (-4 *1 (-159)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| |k| (-666 *3)) (|:| |c| *4)))) + (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) + (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) + (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) + (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) + (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) + (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) + (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) + (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-639 (-947 *3))) (-4 *3 (-451)) + (-5 *1 (-359 *3 *4)) (-14 *4 (-639 (-1168))))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (|partial| -12 (-5 *2 (-639 (-775 *3 (-859 *4)))) (-4 *3 (-451)) + (-14 *4 (-639 (-1168))) (-5 *1 (-624 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-482)) (-5 *1 (-217)))) + ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1) (-12 (-5 *2 (-482)) (-5 *1 (-670)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-639 (-224))) + (-5 *1 (-467))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1164 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-766)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1044)) + (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) + (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) + ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-683 (-224))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-820))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) + (-246 *4 (-406 (-562))))) + (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) + (-5 *1 (-504 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1207)) (-5 *2 (-1261))))) +(((*1 *2 *3) + (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) + (-5 *2 (-947 *5)) (-5 *1 (-939 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) + (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-639 (-608 *3))) + (|:| |vals| (-639 *3)))) + (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-639 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1092)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-639 *4))) (-4 *4 (-1092)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1092)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-639 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1092)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-642 *3)) (-4 *3 (-1044)) + (-5 *1 (-709 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-831 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-544))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1044)) + (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) + (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-916)) (-4 *5 (-1044)) + (-4 *2 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))) + (-5 *1 (-442 *5 *3 *2)) (-4 *3 (-1232 *5))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1092)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-562)) (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) + (-4 *3 (-1044)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-814 *4)) (-4 *4 (-845)) (-4 *1 (-1273 *4 *3)) + (-4 *3 (-1044))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1092) (-34))) (-4 *6 (-13 (-1092) (-34))) + (-5 *2 (-112)) (-5 *1 (-1132 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1150)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *4 (-1058 *6 *7 *8)) (-5 *2 (-1261)) + (-5 *1 (-771 *6 *7 *8 *4 *5)) (-4 *5 (-1064 *6 *7 *8 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-362))))) +(((*1 *2 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1044)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1232 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-544)) (-4 *3 (-554)))) + ((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) + ((*1 *2 *1) + (-12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1003 *3)) (-4 *3 (-1033 (-406 (-562))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *1) (-4 *1 (-491))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2) + (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-639 (-766))) (-5 *1 (-964 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *2 (-1030)) (-5 *1 (-746))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-417 (-1164 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1164 *1)) + (-4 *4 (-451)) (-4 *4 (-554)) (-4 *4 (-845)))) + ((*1 *2 *3) + (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) + (-5 *2 (-683 *4)))) + ((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-683 *4)) (-5 *1 (-415 *3 *4)) + (-4 *3 (-416 *4)))) + ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1247 *4)) (-5 *1 (-1249 *4 *2)) + (-4 *4 (-38 (-406 (-562))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *1) (-4 *1 (-491))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) (-4 *1 (-492))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1164 (-562))) (-5 *2 (-562)) (-5 *1 (-937))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-683 *8)) (-5 *4 (-766)) (-4 *8 (-944 *5 *7 *6)) + (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) + (-4 *7 (-788)) + (-5 *2 + (-639 + (-2 (|:| |det| *8) (|:| |rows| (-639 (-562))) + (|:| |cols| (-639 (-562)))))) + (-5 *1 (-919 *5 *6 *7 *8))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) + (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) + (-4 *8 (-341 *5 *6 *7)) + (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) + (-5 *2 (-2 (|:| -1900 (-766)) (|:| -1407 *8))) + (-5 *1 (-906 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) + (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) + (-4 *6 (-341 (-406 (-562)) *4 *5)) + (-5 *2 (-2 (|:| -1900 (-766)) (|:| -1407 *6))) + (-5 *1 (-907 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) + (-4 *3 (-962))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) + (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-1269 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) + (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1269 *5 *6 *7 *8))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-191))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *1) (-4 *1 (-491))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) (-4 *1 (-492))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-683 (-562))) (-5 *5 (-112)) (-5 *7 (-683 (-224))) + (-5 *3 (-562)) (-5 *6 (-224)) (-5 *2 (-1030)) (-5 *1 (-749))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-562)) (-5 *1 (-1148 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-916)) (-5 *1 (-693)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-683 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-362)) (-5 *1 (-973 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) + ((*1 *1 *1 *1) (-5 *1 (-1212))) ((*1 *1 *1 *1) (-5 *1 (-1213))) + ((*1 *1 *1 *1) (-5 *1 (-1214)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-766)) (-5 *3 (-938 *5)) (-4 *5 (-1044)) + (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-766))) (-5 *3 (-766)) (-5 *1 (-1156 *4 *5)) + (-14 *4 (-916)) (-4 *5 (-1044)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-766))) (-5 *3 (-938 *5)) (-4 *5 (-1044)) + (-5 *1 (-1156 *4 *5)) (-14 *4 (-916))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *6)))) + (-5 *4 (-1021 (-838 (-562)))) (-5 *5 (-1168)) (-5 *7 (-406 (-562))) + (-4 *6 (-1044)) (-5 *2 (-857)) (-5 *1 (-592 *6))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-887 *3)) (|:| |den| (-887 *3)))) + (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) + (-4 *2 (-1247 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-683 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) + (-5 *7 (-683 (-562))) + (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-748))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-562)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1207)) + (-4 *5 (-372 *4)) (-4 *3 (-372 *4))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1044)) + (-5 *1 (-848 *5 *2)) (-4 *2 (-847 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *1 *1) (-4 *1 (-491))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *1 *1) (-4 *1 (-492))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-746))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) + ((*1 *1 *1 *1) (-5 *1 (-1212))) ((*1 *1 *1 *1) (-5 *1 (-1213))) + ((*1 *1 *1 *1) (-5 *1 (-1214)))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-435))))) +(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-390))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *1 *1) (-4 *1 (-491))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *1) + (-12 (-4 *1 (-403)) (-2236 (|has| *1 (-6 -4393))) + (-2236 (|has| *1 (-6 -4385))))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-845)))) + ((*1 *1) (-4 *1 (-839))) ((*1 *1 *1 *1) (-4 *1 (-845))) + ((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-174))) (-5 *1 (-1077))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-766)) (-4 *6 (-362)) (-5 *4 (-1201 *6)) + (-5 *2 (-1 (-1148 *4) (-1148 *4))) (-5 *1 (-1264 *6)) + (-5 *5 (-1148 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *1 *1) (-4 *1 (-491))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-224))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *1 *1 *1) (-5 *1 (-377))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *1 *1) (-4 *1 (-492))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1044)) (-4 *5 (-1232 *4)) (-5 *2 (-1 *6 (-639 *6))) + (-5 *1 (-1250 *4 *5 *3 *6)) (-4 *3 (-650 *5)) (-4 *6 (-1247 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-451))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) + (-5 *1 (-911 *3 *4 *5 *2)) (-4 *2 (-944 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *6 *4 *5)) + (-5 *1 (-911 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-306))))) +(((*1 *1 *1) (-5 *1 (-224))) ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995))))) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *1 *1) (-5 *1 (-378))) ((*1 *1) (-5 *1 (-378)))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-838 *4)) (-5 *3 (-608 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1192) (-29 *6))) + (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-223 *6 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-544)) (-5 *1 (-158 *2))))) +(((*1 *2) + (-12 (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) + (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1211)) + (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) + (-5 *2 (-2 (|:| |num| (-683 *5)) (|:| |den| *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1246 *3)) (-5 *1 (-277 *3 *4 *2)) - (-4 *2 (-1217 *3 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *4 (-1215 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1238 *3 *4)) (-4 *5 (-976 *4)))) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *1 *1) (-4 *1 (-492))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-38 (-406 (-544)))) (-5 *1 (-1152 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-406 (-544)))) - (-5 *2 (-2 (|:| -3889 (-1143 *4)) (|:| -3890 (-1143 *4)))) - (-5 *1 (-1151 *4)) (-5 *3 (-1143 *4))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *1 *1) (-4 *1 (-864 *2)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-378)) (-5 *1 (-1056))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1021 (-838 (-562)))) (-5 *1 (-592 *3)) (-4 *3 (-1044))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-112)) + (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) + (-4 *4 (-13 (-1092) (-34)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) + (-4 *3 (-13 (-362) (-1192) (-997)))))) +(((*1 *1 *1) (-5 *1 (-1056)))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-406 (-544)))) - (-5 *2 (-2 (|:| -4045 (-1143 *4)) (|:| -4041 (-1143 *4)))) - (-5 *1 (-1151 *4)) (-5 *3 (-1143 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))) + (-12 (-4 *4 (-554)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2455 *4))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) + (-14 *4 *2)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-451) (-146))) (-5 *2 (-417 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-13 (-451) (-146))) + (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-544))) (-5 *5 (-1 (-1143 *4))) (-4 *4 (-362)) - (-4 *4 (-1042)) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-362)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1143 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1042)) - (-5 *3 (-406 (-544))) (-5 *1 (-1150 *4))))) + (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) + (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) (-5 *2 (-922)) (-5 *1 (-920 *3)) + (-4 *3 (-610 (-535))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-922)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-922))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) + (-5 *2 (-683 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4)) - (-4 *4 (-38 (-406 (-544)))) (-4 *4 (-1042))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1143 *3))) (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) - (-4 *3 (-38 (-406 (-544)))) (-4 *3 (-1042))))) + (-12 (-5 *3 (-766)) (-5 *2 (-1 (-1148 (-947 *4)) (-1148 (-947 *4)))) + (-5 *1 (-1264 *4)) (-4 *4 (-362))))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1164 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-1193 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1094 (-1094 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) +(((*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-669 *2)) (-4 *2 (-1044)) (-4 *2 (-1092))))) (((*1 *2 *3) - (-12 (-5 *3 (-1143 (-1143 *4))) (-5 *2 (-1143 *4)) (-5 *1 (-1150 *4)) - (-4 *4 (-1042))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-887 *2 *3)) (-4 *2 (-1229 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1143 *4)) (-5 *3 (-1 *4 (-544))) (-4 *4 (-1042)) - (-5 *1 (-1150 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))) + (-12 (-5 *3 (-639 (-2 (|:| -2534 *4) (|:| -1929 (-562))))) + (-4 *4 (-1092)) (-5 *2 (-1 *4)) (-5 *1 (-1012 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) - (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-953))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1042))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) - (-5 *3 (-544))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-1150 *4)) (-4 *4 (-1042)) - (-5 *3 (-544))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-912)) (-4 *3 (-362)) - (-14 *4 (-986 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) - ((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) - ((*1 *1 *1) (|partial| -4 *1 (-716))) ((*1 *1 *1) (|partial| -4 *1 (-720))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-770 *5 *6 *7 *3 *4)) - (-4 *4 (-1062 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) - (-4 *2 (-1229 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)) - (-4 *2 (-554)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-554))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)) (-4 *2 (-554)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-765))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-554)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) + (-12 (-5 *2 (-683 *4)) (-5 *3 (-916)) (-4 *4 (-1044)) + (-5 *1 (-1023 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-554)) - (-5 *1 (-962 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1045 *3 *4 *2 *5 *6)) (-4 *2 (-1042)) - (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-554)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-1042)) (-5 *1 (-1150 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-1091)) (-4 *4 (-1204)) (-5 *2 (-112)) - (-5 *1 (-1143 *4))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2974 (-765)) (|:| |period| (-765)))) - (-5 *1 (-1143 *4)) (-4 *4 (-1204)) (-5 *3 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1143 *3))) (-5 *1 (-1143 *3)) (-4 *3 (-1204))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1143 *2)) (-4 *2 (-1204))))) -(((*1 *1) (-5 *1 (-575))) - ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-853)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-853)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1148)) (-5 *4 (-857)) (-5 *2 (-1259)) (-5 *1 (-853)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-1143 *4)) (-4 *4 (-1091)) - (-4 *4 (-1204))))) -(((*1 *2 *1) - (-12 (-5 *2 (-857)) (-5 *1 (-1143 *3)) (-4 *3 (-1091)) (-4 *3 (-1204))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3)) (-4 *3 (-1091)) (-4 *3 (-1204))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-1253 (-635 (-544)))) (-5 *1 (-478)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-596 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1204)) (-5 *1 (-1143 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-544)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-535 *4 *2)) - (-4 *2 (-1246 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-544)) (-4 *4 (-13 (-362) (-367) (-609 *3))) (-4 *5 (-1229 *4)) - (-4 *6 (-718 *4 *5)) (-5 *1 (-539 *4 *5 *6 *2)) (-4 *2 (-1246 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-544)) (-4 *4 (-13 (-362) (-367) (-609 *3))) - (-5 *1 (-540 *4 *2)) (-4 *2 (-1246 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1143 *4)) (-5 *3 (-544)) (-4 *4 (-13 (-554) (-146))) - (-5 *1 (-1142 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3)) - (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2)) - (-4 *2 (-1246 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3))))) + (-12 (-5 *2 (-639 (-683 *4))) (-5 *3 (-916)) (-4 *4 (-1044)) + (-5 *1 (-1023 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) + ((*1 *1 *1) (-5 *1 (-857)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3)) - (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2)) - (-4 *2 (-1246 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) + (-14 *4 (-639 (-1168))) (-4 *5 (-386))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-1058 *3 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3860 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-362)) (-5 *1 (-572 *4 *2)) (-4 *2 (-1232 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-972 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-535 *3 *2)) (-4 *2 (-1246 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-4 *4 (-1229 *3)) - (-4 *5 (-718 *3 *4)) (-5 *1 (-539 *3 *4 *5 *2)) (-4 *2 (-1246 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-609 (-544)))) (-5 *1 (-540 *3 *2)) - (-4 *2 (-1246 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1142 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)))) - ((*1 *1) (-4 *1 (-1141)))) -(((*1 *1 *1) (|partial| -4 *1 (-1141)))) -(((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1204)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1204)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-1137 *3))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-635 (-1020 *5 *6 *7 *3))) (-5 *1 (-1020 *5 *6 *7 *3)) - (-4 *3 (-1056 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-635 *6)) (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1062 *3 *4 *5 *2)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *2 (-1056 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-635 (-1136 *5 *6 *7 *3))) (-5 *1 (-1136 *5 *6 *7 *3)) - (-4 *3 (-1056 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1020 *5 *6 *7 *8))) - (-5 *1 (-1020 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-112)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-635 (-1136 *5 *6 *7 *8))) - (-5 *1 (-1136 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) - (-4 *8 (-1056 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1020 *5 *6 *7 *8))))) - (-5 *1 (-1020 *5 *6 *7 *8)) (-5 *3 (-635 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) - (-4 *8 (-1056 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-635 *8)) (|:| |towers| (-635 (-1136 *5 *6 *7 *8))))) - (-5 *1 (-1136 *5 *6 *7 *8)) (-5 *3 (-635 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *4 (-765)) - (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259)) - (-5 *1 (-1060 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *4 (-765)) - (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-1259)) - (-5 *1 (-1135 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-635 *11)) - (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -1688 *11)))))) - (-5 *6 (-765)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -1688 *11)))) - (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1056 *7 *8 *9)) - (-4 *11 (-1062 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) - (-5 *1 (-1060 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-635 *11)) - (|:| |todo| (-635 (-2 (|:| |val| *3) (|:| -1688 *11)))))) - (-5 *6 (-765)) (-5 *2 (-635 (-2 (|:| |val| (-635 *10)) (|:| -1688 *11)))) - (-5 *3 (-635 *10)) (-5 *4 (-635 *11)) (-4 *10 (-1056 *7 *8 *9)) - (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-450)) (-4 *8 (-787)) (-4 *9 (-844)) - (-5 *1 (-1135 *7 *8 *9 *10 *11))))) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1232 (-562))) (-5 *1 (-485 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) + (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-972 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-585 *4)) + (-4 *4 (-348))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2459 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3475 (-406 *6)) (|:| |special| (-406 *6)))) - (-5 *1 (-721 *5 *6)) (-5 *3 (-406 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-889 *3 *4)) - (-4 *3 (-1229 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-765)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| -3523 *3) (|:| -3522 *3))) (-5 *1 (-889 *3 *5)) - (-4 *3 (-1229 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) - (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) - (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) - (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-635 *9)) (-5 *3 (-635 *8)) (-5 *4 (-112)) - (-4 *8 (-1056 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-5 *1 (-1135 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) - (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1062 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *3 (-1056 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-765)) (-5 *6 (-112)) (-4 *7 (-450)) (-4 *8 (-787)) - (-4 *9 (-844)) (-4 *3 (-1056 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1135 *7 *8 *9 *3 *4)) (-4 *4 (-1099 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *3 (-1056 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) + (-12 (-5 *2 (-1148 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-156)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) + ((*1 *1 *1) (-5 *1 (-1112)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3))))) + (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (|:| |success| (-112)))) + (-5 *1 (-784)) (-5 *5 (-562))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) + (-4 *5 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-583 *3)) (-5 *1 (-555 *5 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1042))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1092))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) + ((*1 *1 *1 *1) (-5 *1 (-1112)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *3 (-1056 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) + (-12 (-5 *4 (-1 (-639 *7) *7 (-1164 *7))) (-5 *5 (-1 (-417 *7) *7)) + (-4 *7 (-1232 *6)) (-4 *6 (-13 (-362) (-146) (-1033 (-406 (-562))))) + (-5 *2 (-639 (-2 (|:| |frac| (-406 *7)) (|:| -3342 *3)))) + (-5 *1 (-804 *6 *7 *3 *8)) (-4 *3 (-650 *7)) + (-4 *8 (-650 (-406 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-765)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *3 (-1056 *6 *7 *8)) + (-639 (-2 (|:| |frac| (-406 *6)) (|:| -3342 (-648 *6 (-406 *6)))))) + (-5 *1 (-807 *5 *6)) (-5 *3 (-648 *6 (-406 *6)))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-788)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) + (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-843)) (-5 *1 (-302 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-562)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-191)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-299)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-304))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-524))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1259))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1172))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) + ((*1 *1 *1 *1) (-5 *1 (-1112)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-306)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1232 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-306)) (-5 *1 (-459 *3 *2)) (-4 *2 (-1232 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-766))) + (-5 *1 (-538 *3 *2 *4 *5)) (-4 *2 (-1232 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1135 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) + (-2 (|:| -4221 *3) (|:| |gap| (-766)) (|:| -2097 (-777 *3)) + (|:| -2264 (-777 *3)))) + (-5 *1 (-777 *3)) (-4 *3 (-1044)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *3 (-1056 *6 *7 *8)) + (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -2097 *1) + (|:| -2264 *1))) + (-4 *1 (-1058 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) + (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -2097 *1) + (|:| -2264 *1))) + (-4 *1 (-1058 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-639 *5)) + (-5 *1 (-885 *4 *5)) (-4 *5 (-1207))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544)))) + ((*1 *2 *3) + (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) + (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-944 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) + (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 *7))) + (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-451)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-417 *1)) (-4 *1 (-944 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-451)) (-5 *2 (-417 *3)) + (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-451)) + (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 (-406 *7)))) + (-5 *1 (-1163 *4 *5 *6 *7)) (-5 *3 (-1164 (-406 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1211)))) + ((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-417 *3)) (-5 *1 (-1235 *4 *3)) + (-4 *3 (-13 (-1232 *4) (-554) (-10 -8 (-15 -1606 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-14 *5 (-639 (-1168))) (-5 *2 - (-2 (|:| |done| (-635 *4)) - (|:| |todo| (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))))) - (-5 *1 (-1135 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3))))) + (-639 (-1138 *4 (-530 (-859 *6)) (-859 *6) (-775 *4 (-859 *6))))) + (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-170))))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-639 *1)) (|has| *1 (-6 -4403)) (-4 *1 (-1005 *3)) + (-4 *3 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-683 *4)) (-5 *3 (-766)) (-4 *4 (-1044)) + (-5 *1 (-684 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-535)) (-5 *1 (-534 *4)) + (-4 *4 (-1207))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1150))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-766)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1254 *3)) (-4 *3 (-23)) (-4 *3 (-1207))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) + (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-639 *7) (-639 *7))) (-5 *2 (-639 *7)) + (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) + (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *7))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-528))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) - (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) - (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1164 (-947 *6))) (-4 *6 (-554)) + (-4 *2 (-944 (-406 (-947 *6)) *5 *4)) (-5 *1 (-727 *5 *4 *6 *2)) + (-4 *5 (-788)) + (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) - (-4 *9 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-765)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-836)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-835)))) + ((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1030)) (-5 *1 (-835)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-639 (-378))) (-5 *5 (-639 (-838 (-378)))) + (-5 *6 (-639 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1030)) + (-5 *1 (-835)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-378))) + (-5 *5 (-639 (-838 (-378)))) (-5 *2 (-1030)) (-5 *1 (-835)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *9)) (-4 *8 (-1056 *5 *6 *7)) - (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-765)) (-5 *1 (-1135 *5 *6 *7 *8 *9))))) -(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143))) - ((*1 *1 *1) (-4 *1 (-1134)))) -(((*1 *1 *1) (-4 *1 (-1134)))) -(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143))) - ((*1 *1 *1) (-4 *1 (-1134)))) -(((*1 *1 *1) (-4 *1 (-1134)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-544)) (-5 *2 (-112))))) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-378))) (-5 *2 (-1030)) + (-5 *1 (-835)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-315 (-378)))) (-5 *4 (-639 (-378))) + (-5 *2 (-1030)) (-5 *1 (-835))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1207)) (-5 *2 (-639 *1)) (-4 *1 (-1005 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) + (-14 *3 (-916)) (-4 *4 (-1044))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1091)) (-4 *6 (-1204)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1091)) (-4 *2 (-1204)) - (-5 *1 (-637 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 *5)) (-4 *6 (-1091)) (-4 *5 (-1204)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-4 *5 (-1091)) (-4 *2 (-1204)) - (-5 *1 (-637 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-635 *5)) (-5 *4 (-635 *6)) (-4 *5 (-1091)) - (-4 *6 (-1204)) (-5 *1 (-637 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-635 *5)) (-5 *4 (-635 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1091)) - (-4 *2 (-1204)) (-5 *1 (-637 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-765))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1134)) (-5 *3 (-143)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-1220 (-544)))))) -(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-765)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-544)) (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-544)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-371 *4)) (-4 *4 (-1204)) - (-5 *2 (-544)))) - ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-527)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-544)) (-5 *3 (-140)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-544))))) -(((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-844)))) - ((*1 *2 *2) - (-12 (-5 *2 (-580 *4)) (-4 *4 (-13 (-29 *3) (-1190))) - (-4 *3 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) - (-5 *1 (-582 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-580 (-406 (-939 *3)))) - (-4 *3 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *1 (-585 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| -3475 *3) (|:| |special| *3))) (-5 *1 (-721 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) - (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) - (-5 *3 (-635 (-682 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1253 (-1253 *5))) (-4 *5 (-362)) (-4 *5 (-1042)) - (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) - (-5 *3 (-635 (-682 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-635 *1)) (-4 *1 (-1134)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-635 *1)) (-4 *1 (-1134))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-140)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-143))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) - (-4 *5 (-171)))) - ((*1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171)))) - ((*1 *1 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1042)) (-4 *1 (-679 *3 *2 *4)) (-4 *2 (-371 *3)) - (-4 *4 (-371 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-14 *2 (-765)) (-4 *3 (-1042))))) -(((*1 *1 *2) - (-12 (-5 *2 (-682 *4)) (-4 *4 (-1042)) (-5 *1 (-1132 *3 *4)) - (-14 *3 (-765))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))) - (-4 *3 (-13 (-1091) (-34)))))) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) (((*1 *1 *1) - (-12 (-5 *1 (-1131 *2 *3)) (-4 *2 (-13 (-1091) (-34))) - (-4 *3 (-13 (-1091) (-34)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-13 (-1091) (-34))) - (-4 *4 (-13 (-1091) (-34)))))) + (-12 (-4 *2 (-306)) (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) + (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1033 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) + (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) + (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1137 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1150) (-769))) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) + (|:| |abserr| (-224)) (|:| |relerr| (-224)))) + (-5 *2 (-378)) (-5 *1 (-204))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-490))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-647 *4)) (-4 *4 (-341 *5 *6 *7)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) + (-5 *1 (-801 *5 *6 *7 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562))))) (((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) (-5 *1 (-1131 *3 *4)) - (-4 *3 (-13 (-1091) (-34))) (-4 *4 (-13 (-1091) (-34)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1130 *4 *5)) (-4 *4 (-13 (-1091) (-34))) - (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1130 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1091) (-34))) (-4 *6 (-13 (-1091) (-34))) (-5 *2 (-112)) - (-5 *1 (-1131 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)) - (-4 *2 (-1091)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-150 *3)) - (-4 *3 (-1204)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-667 *3)) (-4 *3 (-1204)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-544)) (-4 *4 (-1091)) - (-5 *1 (-730 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-730 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) - (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-234 *3)) - (-4 *3 (-1091)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4400)) (-4 *1 (-234 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-1091)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-544)) (-4 *4 (-1091)) - (-5 *1 (-730 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-730 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) - (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-1130 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1091) (-34))) (-4 *5 (-13 (-1091) (-34))) - (-5 *1 (-1131 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-635 (-1130 *3 *4))) (-4 *3 (-13 (-1091) (-34))) - (-4 *4 (-13 (-1091) (-34))) (-5 *1 (-1131 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) - (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) - (-4 *4 (-13 (-1091) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-852)))) - ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-958)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-982)))) - ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1204)))) + (-12 (-4 *3 (-1044)) (-5 *2 (-639 *1)) (-4 *1 (-1126 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-1256 (-315 (-378)))) + (-5 *1 (-304))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) + (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) + (-4 *4 (-13 (-845) (-554)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1091) (-34))) (-5 *1 (-1130 *2 *3)) - (-4 *3 (-13 (-1091) (-34)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-112)) - (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4)))) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-451))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-859 *5))) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) + (-5 *2 + (-2 (|:| |dpolys| (-639 (-246 *5 *6))) + (|:| |coords| (-639 (-562))))) + (-5 *1 (-470 *5 *6 *7)) (-5 *3 (-639 (-246 *5 *6))) (-4 *7 (-451))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-869)))) + ((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-742))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-857)))) (-5 *1 (-857)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) - (-4 *4 (-13 (-1091) (-34)))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) - ((*1 *1 *1) (-5 *1 (-170))) ((*1 *1 *1) (-4 *1 (-543))) - ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) - (-4 *3 (-13 (-1091) (-34)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) - (-4 *3 (-13 (-1091) (-34)))))) + (-12 (-5 *2 (-1134 *3 *4)) (-5 *1 (-988 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-362)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-639 *5))) (-4 *5 (-1044)) + (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) + (-4 *7 (-237 *3 *5))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1094 (-766))) (-5 *6 (-766)) + (-5 *2 + (-2 (|:| |contp| (-562)) + (|:| -1510 (-639 (-2 (|:| |irr| *3) (|:| -2762 (-562))))))) + (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) + (-4 *3 (-13 (-1092) (-34)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-766)) (-5 *1 (-559))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1130 *3 *2)) (-4 *3 (-13 (-1091) (-34))) - (-4 *2 (-13 (-1091) (-34)))))) + (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-645 *3)) (-4 *3 (-1207))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) + (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) + (-5 *1 (-783))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-13 (-1091) (-34))) - (-4 *4 (-13 (-1091) (-34)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1130 *2 *3)) (-4 *2 (-13 (-1091) (-34))) - (-4 *3 (-13 (-1091) (-34)))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1091) (-34))) (-4 *6 (-13 (-1091) (-34))) (-5 *2 (-112)) - (-5 *1 (-1130 *5 *6))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1091) (-34))) (-5 *2 (-112)) - (-5 *1 (-1130 *4 *5)) (-4 *4 (-13 (-1091) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) + (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-281 *3)) (-4 *3 (-1207))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-639 (-562))) (-5 *3 (-683 (-562))) (-5 *1 (-1102))))) +(((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-429 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-114)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1) (-4 *1 (-1129)))) -(((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *4)) + (-4 *4 (-429 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-114)) (-5 *1 (-162)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1) (-4 *1 (-1129)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1129)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1129)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1129)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1129)))) -(((*1 *1 *1) (-5 *1 (-224))) ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *4)) + (-4 *4 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301)))) + ((*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1) (-4 *1 (-1129))) ((*1 *1 *1 *1) (-4 *1 (-1129)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-765)) (-5 *1 (-225)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-167 (-224))) (-5 *3 (-765)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1129)))) -(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) + (-12 (-5 *2 (-114)) (-4 *4 (-845)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *1 *1) (-4 *1 (-1129)))) -(((*1 *1 *1 *1) (-5 *1 (-224))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034)))) - ((*1 *1 *1 *1) (-4 *1 (-1129)))) -(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *4)) + (-4 *4 (-429 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) - ((*1 *1 *1) (-4 *1 (-842))) - ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)) (-4 *2 (-1051)))) - ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1) (-4 *1 (-1129)))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-63 *3)) (-14 *3 (-1166)))) - ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-69 *3)) (-14 *3 (-1166)))) - ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-72 *3)) (-14 *3 (-1166)))) - ((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1259)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1148)) (-5 *4 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-1128)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-857))) (-5 *2 (-1259)) (-5 *1 (-1128))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-635 (-1171))) (-5 *1 (-1126))))) -(((*1 *1 *2) (-12 (-5 *2 (-1154 3 *3)) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) - ((*1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042))))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *4)) + (-4 *4 (-13 (-429 *3) (-997) (-1192))))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1014))))) +(((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) - (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) + (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3928 (-639 *1)))) + (-4 *1 (-366 *3)))) ((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-765))))) -(((*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-635 *1)) (-4 *1 (-1124 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1042)) (-5 *2 (-635 *1)) (-4 *1 (-1124 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-635 (-936 *4))) (-4 *1 (-1124 *4)) (-4 *4 (-1042)) - (-5 *2 (-765))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-936 *3))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-635 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-936 *3))) (-4 *1 (-1124 *3)) (-4 *3 (-1042))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-936 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-635 (-635 (-936 *4)))) (-5 *3 (-112)) (-4 *4 (-1042)) - (-4 *1 (-1124 *4)))) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-452 *3 *4 *5 *6)) + (|:| -3928 (-639 (-452 *3 *4 *5 *6))))) + (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-947 *5)) (-4 *5 (-1044)) (-5 *2 (-480 *4 *5)) + (-5 *1 (-939 *4 *5)) (-14 *4 (-639 (-1168)))))) +(((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-133))))) +(((*1 *2 *3) + (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) + (-5 *2 (-480 *4 *5)) (-5 *1 (-627 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-678 *4 *5 *6)) (-4 *4 (-1092))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-584 *2)) (-4 *2 (-544))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-279))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-562) (-562))) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-766) (-766))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) + (-5 *1 (-1152 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) + (-14 *4 (-1168)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 (-683 *4))) (-4 *4 (-171)) + (-5 *2 (-1256 (-683 (-947 *4)))) (-5 *1 (-188 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) + (-5 *1 (-840 *4 *5)) (-14 *4 (-766))))) +(((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-129))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-639 *6) "failed") (-562) *6 *6)) (-4 *6 (-362)) + (-4 *7 (-1232 *6)) + (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) + (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) (-4 *5 (-362)) (-5 *2 (-1148 (-1148 (-947 *5)))) + (-5 *1 (-1264 *5)) (-5 *4 (-1148 (-947 *5)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-639 *4)) (-4 *4 (-362)) (-5 *2 (-1256 *4)) + (-5 *1 (-809 *4 *3)) (-4 *3 (-650 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-747))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-1150)) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1030)) + (-5 *1 (-745))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-766)) (-5 *2 (-639 (-1168))) (-5 *1 (-209)) + (-5 *3 (-1168)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-315 (-224))) (-5 *4 (-766)) (-5 *2 (-639 (-1168))) + (-5 *1 (-266)))) + ((*1 *2 *1) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) + (-5 *2 (-639 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 *3)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) + (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) + (-5 *2 (-639 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-326 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-635 (-635 (-936 *3)))) (-4 *3 (-1042)) (-4 *1 (-1124 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-635 (-635 (-635 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) - (-4 *4 (-1042)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-635 (-635 (-936 *4)))) (-5 *3 (-112)) (-4 *1 (-1124 *4)) - (-4 *4 (-1042)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-635 (-635 (-635 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) - (-4 *1 (-1124 *5)) (-4 *5 (-1042)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-635 (-635 (-936 *5)))) (-5 *3 (-635 (-170))) (-5 *4 (-170)) - (-4 *1 (-1124 *5)) (-4 *5 (-1042))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-936 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-635 (-765)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) - (-5 *2 (-635 (-635 (-635 (-936 *3)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-635 (-170))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) (-5 *2 (-635 (-170)))))) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-515 *3 *4)) + (-14 *4 (-562))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1042)) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-845)) (-5 *2 (-639 (-658 *4 *5))) + (-5 *1 (-623 *4 *5 *6)) (-4 *5 (-13 (-171) (-712 (-406 (-562))))) + (-14 *6 (-916))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) + (-5 *2 (-1030)) (-5 *1 (-749))))) +(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-217)))) + ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-438)))) + ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-833)))) + ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1107)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-639 (-1173))) (-5 *3 (-1173)) (-5 *1 (-1110))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-1232 *4)) (-4 *4 (-1044)) + (-5 *2 (-1256 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1254 *3)) (-4 *3 (-1207)) (-4 *3 (-1044)) + (-5 *2 (-683 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-639 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1200 *5 *6 *7 *8)) (-4 *5 (-554)) + (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) + (-4 *3 (-642 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 - (-2 (|:| -4257 (-765)) (|:| |curves| (-765)) (|:| |polygons| (-765)) - (|:| |constructs| (-765))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-635 (-2 (|:| -4139 (-1160 *6)) (|:| -2536 (-544))))) - (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) - (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1042))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-1122 *4 *2)) - (-4 *2 (-13 (-599 (-544) *4) (-10 -7 (-6 -4400) (-6 -4401)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-844)) (-4 *3 (-1204)) (-5 *1 (-1122 *3 *2)) - (-4 *2 (-13 (-599 (-544) *3) (-10 -7 (-6 -4400) (-6 -4401))))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-1122 *4 *2)) - (-4 *2 (-13 (-599 (-544) *4) (-10 -7 (-6 -4400) (-6 -4401)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-844)) (-4 *3 (-1204)) (-5 *1 (-1122 *3 *2)) - (-4 *2 (-13 (-599 (-544) *3) (-10 -7 (-6 -4400) (-6 -4401))))))) + (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (|:| |success| (-112)))) + (-5 *1 (-784)) (-5 *5 (-562))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-787))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)) (-4 *3 (-171)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-171))))) +(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044))))) (((*1 *2 *3) - (-12 (-5 *3 (-1253 *4)) (-4 *4 (-1042)) (-4 *2 (-1229 *4)) - (-5 *1 (-442 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-406 (-1160 (-313 *5)))) (-5 *3 (-1253 (-313 *5))) - (-5 *4 (-544)) (-4 *5 (-13 (-554) (-844))) (-5 *1 (-1120 *5))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-406 (-1160 (-313 *3)))) (-4 *3 (-13 (-554) (-844))) - (-5 *1 (-1120 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-292 (-406 (-939 *5)))) (-5 *4 (-1166)) - (-4 *5 (-13 (-306) (-844) (-146))) - (-5 *2 (-1155 (-635 (-313 *5)) (-635 (-292 (-313 *5))))) - (-5 *1 (-1119 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) - (-4 *5 (-13 (-306) (-844) (-146))) - (-5 *2 (-1155 (-635 (-313 *5)) (-635 (-292 (-313 *5))))) - (-5 *1 (-1119 *5))))) + (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-823) (-845) (-1044))) + (-5 *2 (-1150)) (-5 *1 (-821 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) + (-4 *5 (-13 (-823) (-845) (-1044))) (-5 *2 (-1150)) + (-5 *1 (-821 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-817)) (-5 *4 (-315 *5)) + (-4 *5 (-13 (-823) (-845) (-1044))) (-5 *2 (-1261)) + (-5 *1 (-821 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-817)) (-5 *4 (-315 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-823) (-845) (-1044))) (-5 *2 (-1261)) + (-5 *1 (-821 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1150)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-112)) (-5 *2 (-1150)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *2 (-1261)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *4 (-112)) (-5 *2 (-1261))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) - (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-313 *5))) - (-5 *1 (-1119 *5)))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-562)) + (|:| -1510 (-639 (-2 (|:| |irr| *3) (|:| -2762 (-562))))))) + (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) - (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-313 *5)))) - (-5 *1 (-1119 *5))))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-562)) + (|:| -1510 (-639 (-2 (|:| |irr| *3) (|:| -2762 (-562))))))) + (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1259))))) +(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1192)))) + ((*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-608 *3)) (-4 *3 (-845))))) +(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-112)) + (-5 *2 (-1030)) (-5 *1 (-748))))) +(((*1 *2 *1) + (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-639 (-639 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-639 (-639 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-639 *3))) (-5 *1 (-1179 *3)) (-4 *3 (-1092))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1092)) (-5 *2 (-884 *3 *5)) (-5 *1 (-880 *3 *4 *5)) + (-4 *3 (-1092)) (-4 *5 (-660 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-143))) (-5 *1 (-140)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-140))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1192) (-954)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) + ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) + ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) + (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) + (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) (-5 *3 (-224)) + (-5 *2 (-1030)) (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754))))) +(((*1 *2 *3) + (-12 (-5 *3 (-814 *4)) (-4 *4 (-845)) (-5 *2 (-112)) + (-5 *1 (-666 *4))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) - (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) - (-5 *1 (-1119 *5)))) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1170 (-406 (-562)))) (-5 *2 (-406 (-562))) + (-5 *1 (-189))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-524))))) +(((*1 *1 *1) (|partial| -4 *1 (-144))) ((*1 *1 *1) (-4 *1 (-348))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-904))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) + (-4 *3 (-1232 (-168 *2)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-13 (-306) (-844) (-146))) - (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1119 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-292 (-406 (-939 *5)))) (-5 *4 (-1166)) - (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-292 (-313 *5)))) - (-5 *1 (-1119 *5)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) + (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-292 (-406 (-939 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) - (-5 *2 (-635 (-292 (-313 *4)))) (-5 *1 (-1119 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-406 (-939 *5)))) (-5 *4 (-635 (-1166))) - (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5))))) - (-5 *1 (-1119 *5)))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) + (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-997))))) ((*1 *2 *3) - (-12 (-5 *3 (-635 (-406 (-939 *4)))) (-4 *4 (-13 (-306) (-844) (-146))) - (-5 *2 (-635 (-635 (-292 (-313 *4))))) (-5 *1 (-1119 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-292 (-406 (-939 *5))))) (-5 *4 (-635 (-1166))) - (-4 *5 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *5))))) - (-5 *1 (-1119 *5)))) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301)))) + ((*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-635 (-292 (-406 (-939 *4))))) - (-4 *4 (-13 (-306) (-844) (-146))) (-5 *2 (-635 (-635 (-292 (-313 *4))))) - (-5 *1 (-1119 *4))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3))))) + (-12 (-5 *3 (-114)) (-4 *5 (-845)) (-5 *2 (-112)) + (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) + (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) + (-5 *1 (-626 *4 *5)) (-4 *5 (-13 (-429 *4) (-997) (-1192)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *2 (-635 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-1229 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *2 (-635 *3)) (-5 *1 (-1118 *4 *3)) (-4 *4 (-1229 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) + (|partial| -12 (-4 *5 (-1033 (-48))) + (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) + (-5 *2 (-417 (-1164 (-48)))) (-5 *1 (-434 *4 *5 *3)) + (-4 *3 (-1232 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-4 *3 (-13 (-27) (-1192) (-429 *6) (-10 -8 (-15 -4054 ($ *7))))) + (-4 *7 (-843)) + (-4 *8 + (-13 (-1234 *3 *7) (-362) (-1192) + (-10 -8 (-15 -4029 ($ $)) (-15 -2667 ($ $))))) (-5 *2 - (-2 (|:| |solns| (-635 *5)) - (|:| |maps| (-635 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1118 *3 *5)) (-4 *3 (-1229 *5))))) -(((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-371 *4) (-10 -7 (-6 -4401)))) - (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401)))) (-5 *1 (-660 *4 *5 *2 *3)) - (-4 *3 (-679 *4 *5 *2)))) - ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1253 *4)) (-5 *3 (-682 *4)) (-4 *4 (-362)) - (-5 *1 (-661 *4)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-635 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) - (-5 *1 (-808 *2 *3)) (-4 *3 (-651 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-544))))))) - (-5 *1 (-1118 *3 *2)) (-4 *3 (-1229 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1143 *7))) (-4 *6 (-844)) - (-4 *7 (-943 *5 (-529 *6) *6)) (-4 *5 (-1042)) (-5 *2 (-1 (-1143 *7) *7)) - (-5 *1 (-1116 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-306)) (-4 *6 (-371 *5)) (-4 *4 (-371 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4)))) - (-5 *1 (-1114 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) + (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1150)) (-4 *9 (-978 *8)) + (-14 *10 (-1168))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-639 (-262))) (-5 *1 (-1258)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-1150)) (-5 *1 (-1258)))) + ((*1 *1 *1) (-5 *1 (-1258)))) (((*1 *2 *3) - (-12 (-4 *4 (-306)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1114 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6))))) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-1269 *4 *5 *6 *7))) + (-5 *1 (-1269 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) + (-4 *7 (-788)) (-4 *8 (-845)) (-5 *2 (-639 (-1269 *6 *7 *8 *9))) + (-5 *1 (-1269 *6 *7 *8 *9))))) +(((*1 *1 *1) + (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-451)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *3 (-1058 *4 *5 *6)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *1)))) + (-4 *1 (-1064 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1211))) + ((*1 *2 *2) + (-12 (-4 *3 (-554)) (-5 *1 (-1235 *3 *2)) + (-4 *2 (-13 (-1232 *3) (-554) (-10 -8 (-15 -1606 ($ $ $)))))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-613)))) +(((*1 *1 *1) (-4 *1 (-554)))) (((*1 *2 *2) - (-12 (-4 *3 (-306)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *1 *1 *1) (-4 *1 (-142))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) + (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) + (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1137 *5 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-4 *4 (-306)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1114 *4 *5 *6 *3)) - (-4 *3 (-679 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544)))) + (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) + (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) ((*1 *2 *2) - (-12 (-4 *3 (-306)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *1 (-1114 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-765)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1042)) (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) - (-4 *5 (-237 *3 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-635 *1)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) - (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-635 *3)) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) - (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-682 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-635 *4)) (-4 *4 (-1042)) (-4 *1 (-1113 *3 *4 *5 *6)) - (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1113 *3 *4 *2 *5)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) - (-4 *2 (-237 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-912)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1253 *4)) (-5 *3 (-912)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) - (-4 *2 (-1042))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1) (-4 *1 (-1131)))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) (((*1 *2 *3) - (-12 (-5 *3 (-682 *2)) (-4 *4 (-1229 *2)) - (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) - (-5 *1 (-497 *2 *4 *5)) (-4 *5 (-409 *2 *4)))) + (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) ((*1 *2 *1) - (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) - (-4 *2 (-1042))))) + (-12 (-5 *2 (-1256 (-3 (-467) "undefined"))) (-5 *1 (-1257))))) (((*1 *2 *3) - (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-362)) - (-5 *1 (-519 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) - (|has| *2 (-6 (-4402 "*"))) (-4 *2 (-1042)))) + (-12 (-5 *3 (-639 (-480 *4 *5))) (-14 *4 (-639 (-1168))) + (-4 *5 (-451)) + (-5 *2 + (-2 (|:| |gblist| (-639 (-246 *4 *5))) + (|:| |gvlist| (-639 (-562))))) + (-5 *1 (-627 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) + (-5 *2 (-378)) (-5 *1 (-266)))) ((*1 *2 *3) - (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-171)) - (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) - (|has| *2 (-6 (-4402 "*"))) (-4 *2 (-1042))))) + (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *2 *2) + (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) + (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *3 (-371 *2)) (-4 *4 (-371 *2)) - (|has| *2 (-6 (-4402 "*"))) (-4 *2 (-1042)))) - ((*1 *2 *3) - (-12 (-4 *4 (-371 *2)) (-4 *5 (-371 *2)) (-4 *2 (-171)) - (-5 *1 (-681 *2 *4 *5 *3)) (-4 *3 (-679 *2 *4 *5)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-562)))) ((*1 *2 *1) - (-12 (-4 *1 (-1113 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) - (|has| *2 (-6 (-4402 "*"))) (-4 *2 (-1042))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1204)) (-5 *2 (-765))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1) (-4 *1 (-960))) ((*1 *1 *1) (-5 *1 (-1110)))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1110)))) -(((*1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544)))) - ((*1 *1 *1) (-5 *1 (-1110)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544)))) - ((*1 *1 *1 *1) (-5 *1 (-1110)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-498 *2)) (-14 *2 (-544)))) - ((*1 *1 *1 *1) (-5 *1 (-1110)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-504)) (-5 *3 (-1105)) (-5 *1 (-1106))))) -(((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-832)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1171))) (-5 *3 (-1171)) (-5 *1 (-1105)))) - ((*1 *2 *1) (-12 (-5 *2 (-1105)) (-5 *1 (-1106))))) -(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-179)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-674)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-963)))) - ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1064)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1105))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-674)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-1105))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) - (-5 *2 (-544)) (-5 *1 (-1104 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-450)) (-4 *4 (-814)) (-14 *5 (-1166)) - (-5 *2 (-544)) (-5 *1 (-1104 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) - (-5 *1 (-1104 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-544)) - (-5 *1 (-1104 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1222 *5 *4)) (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 *4)) - (-5 *1 (-1104 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 (-1222 *5 *4))) - (-5 *1 (-1104 *4 *5)) (-5 *3 (-1222 *5 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-814)) (-14 *5 (-1166)) (-5 *2 (-635 (-1222 *5 *4))) - (-5 *1 (-1104 *4 *5)) (-5 *3 (-1222 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-1100)) (-5 *3 (-544))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1100))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1253 (-544))) (-5 *3 (-544)) (-5 *1 (-1100)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1253 (-544))) (-5 *3 (-635 (-544))) (-5 *4 (-544)) - (-5 *1 (-1100))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *3 (-112)) (-5 *1 (-1100))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-682 (-544))) (-5 *3 (-635 (-544))) (-5 *1 (-1100))))) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562))))) +(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-838 *3)) (-4 *3 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-817))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-556 *2)) (-4 *2 (-544))))) +(((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1232 *5)) + (-5 *1 (-802 *5 *2 *3 *6)) + (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) + (-4 *3 (-650 *2)) (-4 *6 (-650 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-406 *2))) (-4 *2 (-1232 *5)) + (-5 *1 (-802 *5 *2 *3 *6)) + (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) + (-4 *6 (-650 (-406 *2)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207))))) +(((*1 *1 *1) (-5 *1 (-1056)))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2455 *4))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-898 *3)) (-4 *3 (-1092)) (-5 *2 (-1094 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1092)) (-5 *2 (-1094 (-639 *4))) (-5 *1 (-899 *4)) + (-5 *3 (-639 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1092)) (-5 *2 (-1094 (-1094 *4))) (-5 *1 (-899 *4)) + (-5 *3 (-1094 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1094 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -1602 *4) (|:| |sol?| (-112))) + (-562) *4)) + (-4 *4 (-362)) (-4 *5 (-1232 *4)) (-5 *1 (-572 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-451)) (-4 *4 (-845)) + (-4 *5 (-788)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 (-947 *3))) (-4 *3 (-451)) (-5 *1 (-359 *3 *4)) + (-14 *4 (-639 (-1168))))) + ((*1 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-449 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) + (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *1 (-449 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) + (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *1 (-449 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) + (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-639 (-775 *3 (-859 *4)))) (-4 *3 (-451)) + (-14 *4 (-639 (-1168))) (-5 *1 (-624 *3 *4))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1100))))) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-304)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-1030))) (-5 *2 (-1030)) (-5 *1 (-304)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1 *1) (-5 *1 (-1056))) + ((*1 *2 *3) + (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1145 *4)) + (-4 *4 (-1207)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))))) + ((*1 *1 *1) + (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) + (-14 *3 (-639 (-1168)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-683 (-224))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) +(((*1 *2) + (-12 (-4 *3 (-1044)) (-5 *2 (-953 (-707 *3 *4))) (-5 *1 (-707 *3 *4)) + (-4 *4 (-1232 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 (-544))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-1100))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-635 (-544))) (-5 *3 (-682 (-544))) (-5 *1 (-1100))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1100))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) - (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) - (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) - (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) - (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) - (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) + (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) + (-4 *3 (-1232 *4)) + (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1150)) (-5 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-816))))) +(((*1 *1) (-5 *1 (-143)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *2 (-766)) + (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-766))) (-5 *3 (-766)) (-5 *1 (-1156 *4 *5)) + (-14 *4 (-916)) (-4 *5 (-1044)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-766))) (-5 *3 (-938 *5)) (-4 *5 (-1044)) + (-5 *1 (-1156 *4 *5)) (-14 *4 (-916))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) - (-4 *4 (-1062 *5 *6 *7 *3))))) + (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *4 (-766)) + (-5 *2 (-683 (-224))) (-5 *1 (-266))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) - (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) - (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) - (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) - (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *5 (-112)) - (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) - (-4 *7 (-787)) (-4 *4 (-844)) - (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -1688 *9)))) - (-5 *1 (-1098 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))) - (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) + (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) + (-5 *2 (-1256 (-406 (-562)))) (-5 *1 (-1283 *4))))) +(((*1 *1 *1) (-5 *1 (-535)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1) (-5 *1 (-857)))) (((*1 *2) - (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) + (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) + (-5 *2 (-639 (-639 *4))) (-5 *1 (-340 *3 *4 *5 *6)) + (-4 *3 (-341 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7))))) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-639 (-639 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)) + (-4 *4 (-1044))))) +(((*1 *2 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-544))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) + (-4 *4 (-13 (-845) (-554)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1185))))) +(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) + ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-575)))) + ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-575))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-301)))) + ((*1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3) + (-12 (-5 *3 (-683 (-315 (-224)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) + (-5 *1 (-204))))) +(((*1 *1 *1) (-4 *1 (-1136)))) (((*1 *2) - (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *2 (-1259)) (-5 *1 (-1063 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) + (-12 (-4 *4 (-171)) (-5 *2 (-1164 (-947 *4))) (-5 *1 (-415 *3 *4)) + (-4 *3 (-416 *4)))) ((*1 *2) - (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *2 (-1259)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1063 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *9 (-1056 *6 *7 *8)) - (-5 *2 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *4) (|:| |ineq| (-635 *9)))) - (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) - (-4 *4 (-1062 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *9 (-1056 *6 *7 *8)) - (-5 *2 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *4) (|:| |ineq| (-635 *9)))) - (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-635 *9)) - (-4 *4 (-1062 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) - (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) - (-5 *2 - (-635 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *10) (|:| |ineq| (-635 *9))))) - (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-635 *10)) (-5 *5 (-112)) (-4 *10 (-1062 *6 *7 *8 *9)) - (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-1056 *6 *7 *8)) - (-5 *2 - (-635 (-2 (|:| -3667 (-635 *9)) (|:| -1688 *10) (|:| |ineq| (-635 *9))))) - (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-635 *9))))) + (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) + (-5 *2 (-1164 (-947 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-436)) (-5 *1 (-1172))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-451)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *5 (-904)) (-5 *1 (-456 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-904))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-535))))) +(((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-156)))) + ((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-182))) (-5 *1 (-139))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-216)))) + ((*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-486)))) + ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) + ((*1 *2 *1) + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) + ((*1 *1 *1) (-4 *1 (-1053)))) +(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-916)) (-5 *1 (-1027 *2)) + (-4 *2 (-13 (-1092) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-29 *4) (-1192))) + (-5 *1 (-581 *4 *2)) + (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-583 (-406 (-947 *4)))) + (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) + (-5 *2 (-315 *4)) (-5 *1 (-586 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1173)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-1173))) (-5 *1 (-1173))))) (((*1 *2 *2) - (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -1688 *7)))) - (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) - (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) + (-4 *2 (-1247 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-635 (-2 (|:| |val| (-635 *6)) (|:| -1688 *7)))) - (-4 *6 (-1056 *3 *4 *5)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) - (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-1097 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) - (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-635 *7)) (|:| -1688 *8))) - (-4 *7 (-1056 *4 *5 *6)) (-4 *8 (-1062 *4 *5 *6 *7)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) - (-5 *1 (-1097 *4 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *1 (-981 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) + (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) ((*1 *2 *2) - (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *1 (-1097 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-981 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 *3)) (-4 *3 (-1062 *5 *6 *7 *8)) (-4 *5 (-450)) - (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1097 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) - (-4 *3 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) - (-4 *3 (-1062 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *1 (-981 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) + (-4 *2 (-1247 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-635 *7)) (-4 *7 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *1 (-1097 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1062 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *2 (-1259)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *2 (-1259)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1062 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-981 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1148)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-1056 *4 *5 *6)) (-5 *2 (-1259)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) - (-4 *8 (-1062 *4 *5 *6 *7))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1166)) (-5 *3 (-433)) (-4 *5 (-844)) (-5 *1 (-1096 *5 *4)) - (-4 *4 (-420 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921))))) +(((*1 *2 *3) + (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-417 (-1164 *7))) + (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) + (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-362)) (-5 *1 (-1020 *3 *2)) (-4 *2 (-650 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3342 *3) (|:| -2431 (-639 *5)))) + (-5 *1 (-1020 *5 *3)) (-5 *4 (-639 *5)) (-4 *3 (-650 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-754))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-562)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-866 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-14 *2 (-562)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-562)) (-14 *3 *2) (-5 *1 (-867 *3 *4)) + (-4 *4 (-864 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-562)) (-5 *1 (-867 *2 *3)) (-4 *3 (-864 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-562)) (-4 *1 (-1218 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-1247 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1218 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1247 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-1031 (-544))))) + (-12 (-4 *4 (-1092)) (-5 *2 (-112)) (-5 *1 (-880 *3 *4 *5)) + (-4 *3 (-1092)) (-4 *5 (-660 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112))))) + (-12 (-5 *2 (-112)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-182))) (-5 *1 (-139))))) (((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *7 (-1091)) (-5 *2 (-112))))) + (-12 (-4 *3 (-1207)) (-5 *2 (-639 *1)) (-4 *1 (-1005 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| -4267 (-1166)) (|:| -2226 *4)))) - (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1091)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) - (-4 *7 (-1091)) (-5 *2 (-635 *1)) (-4 *1 (-1094 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-639 (-639 (-766)))) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-329)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-329))))) +(((*1 *2 *3) (-12 (-5 *3 (-168 (-562))) (-5 *2 (-112)) (-5 *1 (-445)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) + (-246 *4 (-406 (-562))))) + (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) + (-5 *1 (-504 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-544)))) + ((*1 *2 *1) (-12 (-4 *1 (-1211)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1207)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-600 *3 *2)) (-4 *3 (-1092)) + (-4 *2 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *1) (-5 *1 (-1077)))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-916)) (-5 *2 (-1164 *3)) (-5 *1 (-1181 *3)) + (-4 *3 (-362))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-972 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1232 *4)) (-5 *1 (-804 *4 *2 *3 *5)) + (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) + (-4 *5 (-650 (-406 *2)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *2 *4 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091))))) -(((*1 *2 *3) (-12 (-5 *2 (-544)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *2 *5 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-912)) (-4 *1 (-403)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-544)) (-4 *1 (-403)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-766)))) ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *2 *6)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091))))) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-766))))) (((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *5 *6 *2)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-1091)) (-4 *2 (-1091))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *2 (-1091)) (-4 *3 (-1091)) - (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1094 *2 *3 *4 *5 *6)) (-4 *2 (-1091)) (-4 *3 (-1091)) - (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-912)) (-5 *1 (-1092 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-912)) (-5 *1 (-1092 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-664)))) - ((*1 *2 *1) - (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912)) - (-14 *4 (-912))))) -(((*1 *1 *2) - (-12 (-5 *2 (-635 (-912))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912)) - (-14 *4 (-912))))) -(((*1 *2) - (-12 (-5 *2 (-1253 (-1092 *3 *4))) (-5 *1 (-1092 *3 *4)) (-14 *3 (-912)) - (-14 *4 (-912))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) - (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-898 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-912)) (-5 *2 (-112)) (-5 *1 (-1092 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-765)) (-5 *1 (-1092 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-589 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-1110))))) -(((*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-1148))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1091)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-1089 *3)))) - ((*1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-1089 *3)))) - ((*1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))) -(((*1 *1 *2) - (-12 (-5 *2 (-635 (-502 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) - (-4 *5 (-943 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) - (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) - (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1089 *3)) (-4 *3 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-635 (-606 *4))) (-4 *4 (-420 *3)) (-4 *3 (-844)) - (-5 *1 (-570 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1089 *2)) (-4 *2 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-132)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-669)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1057)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1086))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1084 *3)) (-4 *3 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-1084 *3)) (-4 *3 (-1204)) (-5 *2 (-544))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-982)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-1079 *4)) (-4 *4 (-1204)) (-5 *1 (-1082 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1081))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-260)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1253 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1253 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1229 *4)) (-5 *2 (-1253 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) - (-5 *2 (-1253 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-417 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-682 *5))) (-5 *3 (-682 *5)) (-4 *5 (-362)) - (-5 *2 (-1253 *5)) (-5 *1 (-1076 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-1253 (-682 *4))))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-1253 (-682 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-1166))) (-4 *5 (-362)) - (-5 *2 (-1253 (-682 (-406 (-939 *5))))) (-5 *1 (-1076 *5)) - (-5 *4 (-682 (-406 (-939 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-1166))) (-4 *5 (-362)) (-5 *2 (-1253 (-682 (-939 *5)))) - (-5 *1 (-1076 *5)) (-5 *4 (-682 (-939 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-682 *4))) (-4 *4 (-362)) (-5 *2 (-1253 (-682 *4))) - (-5 *1 (-1076 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-174))) (-5 *1 (-1075))))) -(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-174)))) - ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-109)) (-5 *1 (-1075))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1075))))) -(((*1 *1) (-5 *1 (-1075)))) -(((*1 *1) (-5 *1 (-1075)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-544) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1074 *2))))) -(((*1 *2) (-12 (-5 *2 (-635 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-131))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-1074 *3)) (-4 *3 (-131))))) -(((*1 *1) (-5 *1 (-1072)))) + (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) - (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-635 *3)) (-5 *1 (-587 *5 *6 *7 *8 *3)) - (-4 *3 (-1099 *5 *6 *7 *8)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) + (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-639 *3)) + (-5 *1 (-588 *5 *6 *7 *8 *3)) (-4 *3 (-1101 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) - (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) - (-5 *1 (-1068 *5 *6)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166))))) + (-5 *2 + (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) + (-5 *1 (-1070 *5 *6)) (-5 *3 (-639 (-947 *5))) + (-14 *6 (-639 (-1168))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) - (-5 *2 (-635 (-2 (|:| -1891 (-1160 *4)) (|:| -3625 (-635 (-939 *4)))))) - (-5 *1 (-1068 *4 *5)) (-5 *3 (-635 (-939 *4))) (-14 *5 (-635 (-1166))))) + (-5 *2 + (-639 (-2 (|:| -1646 (-1164 *4)) (|:| -3593 (-639 (-947 *4)))))) + (-5 *1 (-1070 *4 *5)) (-5 *3 (-639 (-947 *4))) + (-14 *5 (-639 (-1168))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) - (-5 *2 (-635 (-2 (|:| -1891 (-1160 *5)) (|:| -3625 (-635 (-939 *5)))))) - (-5 *1 (-1068 *5 *6)) (-5 *3 (-635 (-939 *5))) (-14 *6 (-635 (-1166)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-635 (-1065 *3 *4 *5))) (-4 *3 (-1091)) - (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) - (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3)))) - (-5 *1 (-1067 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) - (-5 *2 (-635 (-1065 *3 *4 *5))) (-5 *1 (-1067 *3 *4 *5)) - (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3))))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-1091)) - (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) - (-5 *1 (-1065 *4 *5 *2)) - (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) - (-5 *1 (-1065 *3 *4 *2)) - (-4 *2 (-13 (-420 *4) (-879 *3) (-609 (-883 *3))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-883 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1091)) (-4 *5 (-1204)) - (-5 *1 (-884 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-883 *4)) (-5 *3 (-635 (-1 (-112) *5))) (-4 *4 (-1091)) - (-4 *5 (-1204)) (-5 *1 (-884 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-883 *5)) (-5 *3 (-635 (-1166))) (-5 *4 (-1 (-112) (-635 *6))) - (-4 *5 (-1091)) (-4 *6 (-1204)) (-5 *1 (-884 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1204)) - (-5 *2 (-313 (-544))) (-5 *1 (-930 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-635 (-1 (-112) *5))) (-4 *5 (-1204)) - (-5 *2 (-313 (-544))) (-5 *1 (-930 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1204)) (-4 *4 (-844)) - (-5 *1 (-931 *4 *2 *5)) (-4 *2 (-420 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-635 (-1 (-112) *5))) (-4 *5 (-1204)) (-4 *4 (-844)) - (-5 *1 (-931 *4 *2 *5)) (-4 *2 (-420 *4)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-1 (-112) (-635 *6))) - (-4 *6 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))) (-4 *4 (-1091)) - (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) - (-5 *1 (-1065 *4 *5 *6))))) + (-5 *2 + (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) + (-5 *1 (-1070 *5 *6)) (-5 *3 (-639 (-947 *5))) + (-14 *6 (-639 (-1168)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) + (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) + (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-947 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1247 *4)) + (-4 *4 (-38 (-406 (-562)))) + (-5 *2 (-1 (-1148 *4) (-1148 *4) (-1148 *4))) (-5 *1 (-1249 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-362)) (-4 *3 (-1044)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3148 *1))) + (-4 *1 (-847 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 *2))) - (-5 *2 (-883 *3)) (-5 *1 (-1065 *3 *4 *5)) - (-4 *5 (-13 (-420 *4) (-879 *3) (-609 *2)))))) + (-12 (-4 *3 (-1044)) (-5 *2 (-639 *1)) (-4 *1 (-1126 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1232 *5)) + (-5 *2 (-639 *3)) (-5 *1 (-772 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6)) + (-14 *7 (-916))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1091)) (-4 *4 (-13 (-1042) (-879 *3) (-844) (-609 (-883 *3)))) - (-5 *2 (-635 (-1166))) (-5 *1 (-1065 *3 *4 *5)) - (-4 *5 (-13 (-420 *4) (-879 *3) (-609 (-883 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-179)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-311)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-963)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-987)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1029)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1064))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-766)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-766))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-451))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4)))))) +(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1148 (-224))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1590 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-557))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) + (-5 *2 (-1030)) (-5 *1 (-748))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-947 *6)) (-5 *4 (-1168)) + (-5 *5 (-838 *7)) + (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-4 *7 (-13 (-1192) (-29 *6))) (-5 *1 (-223 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1164 *6)) (-5 *4 (-838 *6)) + (-4 *6 (-13 (-1192) (-29 *5))) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-223 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) - (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)) + (-4 *6 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-678 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))) + (-4 *2 (-13 (-845) (-21)))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1232 *2)) (-4 *2 (-1211)) (-5 *1 (-147 *2 *4 *3)) + (-4 *3 (-1232 (-406 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-274))))) +(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150))))) +(((*1 *1) (-5 *1 (-329)))) +(((*1 *1 *2) + (-12 (-5 *2 (-406 (-562))) (-4 *1 (-552 *3)) + (-4 *3 (-13 (-403) (-1192))))) + ((*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-953 (-1112))) + (-5 *1 (-345 *4))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-451)) (-4 *3 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) + (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-944 *4 *3 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1211)) + (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1232 (-406 *3)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 *4)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) - (-4 *4 (-1062 *5 *6 *7 *3))))) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 (-406 *2))) + (-4 *2 (-1232 *4)) (-5 *1 (-340 *3 *4 *2 *5)) + (-4 *3 (-341 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1211)) + (-4 *4 (-1232 (-406 *2))) (-4 *2 (-1232 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) - (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) - (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) - (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *3 (-1056 *6 *7 *8)) (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) - (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1062 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 (-2 (|:| |val| (-635 *8)) (|:| -1688 *9)))) (-5 *5 (-112)) - (-4 *8 (-1056 *6 *7 *4)) (-4 *9 (-1062 *6 *7 *4 *8)) (-4 *6 (-450)) - (-4 *7 (-787)) (-4 *4 (-844)) - (-5 *2 (-635 (-2 (|:| |val| *8) (|:| -1688 *9)))) - (-5 *1 (-1063 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| (-635 *3)) (|:| -1688 *4)))) - (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1062 *3 *4 *5 *6)) (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) - (-5 *2 (-3 (-112) (-635 *1))) (-4 *1 (-1062 *4 *5 *6 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) - (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *1)))) - (-4 *1 (-1062 *4 *5 *6 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) - (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) - (-5 *2 (-3 *3 (-635 *1))) (-4 *1 (-1062 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-554)) (-4 *2 (-1042)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) - (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *1)))) - (-4 *1 (-1062 *4 *5 *6 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-635 *1)) (-5 *3 (-635 *7)) (-4 *1 (-1062 *4 *5 *6 *7)) - (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-1056 *4 *5 *6)) - (-5 *2 (-635 *1)) (-4 *1 (-1062 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) - (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) - (-5 *2 (-112))))) + (-12 (-4 *5 (-362)) + (-5 *2 (-639 (-2 (|:| C (-683 *5)) (|:| |g| (-1256 *5))))) + (-5 *1 (-973 *5)) (-5 *3 (-683 *5)) (-5 *4 (-1256 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-1257)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1257)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1257)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-1258)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1258)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1258))))) (((*1 *2 *1) - (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) - (-5 *2 (-112))))) + (-12 (-4 *1 (-689 *3)) (-4 *3 (-1092)) + (-5 *2 (-639 (-2 (|:| -2694 *3) (|:| -1723 (-766)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1164 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-842)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1059 *4 *3)) (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) - (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1031 (-544))) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-32 *3 *2)) - (-4 *2 (-420 *3)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-1160 *4)) (-5 *1 (-164 *3 *4)) - (-4 *3 (-165 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1042)) (-4 *1 (-297)))) - ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1160 *3)))) - ((*1 *2) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-13 (-842) (-362))) (-4 *2 (-1229 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-939 (-544))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) - ((*1 *2 *3) - (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) - ((*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-1005)) (-5 *2 (-635 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1160 (-544))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1160 (-406 (-544)))) (-5 *2 (-635 *1)) (-4 *1 (-1005)))) - ((*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-1005)) (-5 *2 (-635 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-842) (-362))) (-4 *3 (-1229 *4)) (-5 *2 (-635 *1)) - (-4 *1 (-1059 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-939 *1)) (-4 *1 (-27)))) + (-12 (-5 *2 (-1086 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-1207)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1084 (-838 *3))) (-4 *3 (-13 (-1192) (-954) (-29 *5))) + (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-218 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1084 (-838 *3))) (-5 *5 (-1150)) + (-4 *3 (-13 (-1192) (-954) (-29 *6))) + (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-218 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1084 (-838 (-315 *5)))) + (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-3 (|:| |f1| (-838 (-315 *5))) (|:| |f2| (-639 (-838 (-315 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-406 (-947 *6))) (-5 *4 (-1084 (-838 (-315 *6)))) + (-5 *5 (-1150)) + (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-3 (|:| |f1| (-838 (-315 *6))) (|:| |f2| (-639 (-838 (-315 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1084 (-838 (-406 (-947 *5))))) (-5 *3 (-406 (-947 *5))) + (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-3 (|:| |f1| (-838 (-315 *5))) (|:| |f2| (-639 (-838 (-315 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1084 (-838 (-406 (-947 *6))))) (-5 *5 (-1150)) + (-5 *3 (-406 (-947 *6))) + (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-3 (|:| |f1| (-838 (-315 *6))) (|:| |f2| (-639 (-838 (-315 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) + (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-3 *3 (-639 *3))) (-5 *1 (-427 *5 *3)) + (-4 *3 (-13 (-1192) (-954) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-554))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-554))))) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) + (-5 *5 (-378)) (-5 *6 (-1056)) (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) + (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) + (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1160 *2)) (-5 *4 (-1166)) (-4 *2 (-420 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-13 (-844) (-554))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1160 *1)) (-5 *3 (-912)) (-4 *1 (-1005)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1160 *1)) (-5 *3 (-912)) (-5 *4 (-857)) - (-4 *1 (-1005)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-912)) (-4 *4 (-13 (-842) (-362))) - (-4 *1 (-1059 *4 *2)) (-4 *2 (-1229 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-406 (-544))) (-5 *1 (-1017 *3)) - (-4 *3 (-13 (-842) (-362) (-1013))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1059 *2 *3)) (-4 *2 (-13 (-842) (-362))) (-4 *3 (-1229 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1125))) (-5 *1 (-1057))))) -(((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) - (-4 *5 (-1056 *3 *4 *2)) (-4 *2 (-844)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-217)))) - ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1) (-12 (-5 *2 (-481)) (-5 *1 (-669)))) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) + (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) + (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) + (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) + (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) + (-5 *5 (-378)) (-5 *6 (-1056)) (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-838 (-378)))) + (-5 *5 (-1150)) (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-838 (-378)))) + (-5 *5 (-1168)) (-5 *2 (-1030)) (-5 *1 (-563)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) + (-5 *2 (-583 (-406 *5))) (-5 *1 (-566 *4 *5)) (-5 *3 (-406 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-146)) + (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) + (-5 *2 (-3 (-315 *5) (-639 (-315 *5)))) (-5 *1 (-586 *5)))) ((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) - (-4 *1 (-1056 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) - ((*1 *2 *1) (-12 (-4 *2 (-1042)) (-5 *1 (-50 *2 *3)) (-14 *3 (-635 (-1166))))) - ((*1 *2 *1) - (-12 (-5 *2 (-313 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) - (-14 *4 (-635 (-1166))))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1091)) (-4 *2 (-1042)))) - ((*1 *2 *1) - (-12 (-14 *3 (-635 (-1166))) (-4 *5 (-237 (-4364 *3) (-765))) - (-14 *6 - (-1 (-112) (-2 (|:| -2535 *4) (|:| -2536 *5)) - (-2 (|:| -2535 *4) (|:| -2536 *5)))) - (-4 *2 (-171)) (-5 *1 (-459 *3 *2 *4 *5 *6 *7)) (-4 *4 (-844)) - (-4 *7 (-943 *2 *5 (-858 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-507 *2 *3)) (-4 *3 (-844)) (-4 *2 (-1091)))) - ((*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-702 *2)) (-4 *2 (-1042)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1042)) (-5 *1 (-729 *2 *3)) (-4 *3 (-844)) (-4 *3 (-720)))) - ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) - ((*1 *2 *1) - (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-786)) (-4 *4 (-844)) (-4 *2 (-1042)))) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-845)) + (-4 *3 (-38 (-406 (-562)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168)) (-5 *1 (-947 *3)) (-4 *3 (-38 (-406 (-562)))) + (-4 *3 (-1044)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-4 *2 (-845)) + (-5 *1 (-1118 *3 *2 *4)) (-4 *4 (-944 *3 (-530 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) + (-5 *1 (-1152 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844))))) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1165 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *1 (-1201 *3)) (-4 *3 (-38 (-406 (-562)))) + (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-4037 + (-12 (-5 *2 (-1168)) (-4 *1 (-1216 *3)) (-4 *3 (-1044)) + (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) + (-4 *3 (-38 (-406 (-562)))))) + (-12 (-5 *2 (-1168)) (-4 *1 (-1216 *3)) (-4 *3 (-1044)) + (-12 (|has| *3 (-15 -1402 ((-639 *2) *3))) + (|has| *3 (-15 -2667 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) + ((*1 *1 *1 *2) + (-4037 + (-12 (-5 *2 (-1168)) (-4 *1 (-1237 *3)) (-4 *3 (-1044)) + (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) + (-4 *3 (-38 (-406 (-562)))))) + (-12 (-5 *2 (-1168)) (-4 *1 (-1237 *3)) (-4 *3 (-1044)) + (-12 (|has| *3 (-15 -1402 ((-639 *2) *3))) + (|has| *3 (-15 -2667 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1241 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-4037 + (-12 (-5 *2 (-1168)) (-4 *1 (-1247 *3)) (-4 *3 (-1044)) + (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) + (-4 *3 (-38 (-406 (-562)))))) + (-12 (-5 *2 (-1168)) (-4 *1 (-1247 *3)) (-4 *3 (-1044)) + (-12 (|has| *3 (-15 -1402 ((-639 *2) *3))) + (|has| *3 (-15 -2667 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) + (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-562)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-417 *2)) (-4 *2 (-554))))) +(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-746))))) (((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3)) (-4 *3 (-1229 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) + (-12 (-5 *3 (-647 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-805 *4 *2)) + (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-648 *2 (-406 *2))) (-4 *2 (-1232 *4)) + (-5 *1 (-805 *4 *2)) + (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 *4)) (-4 *4 (-1044)) (-4 *2 (-1232 *4)) + (-5 *1 (-443 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-406 (-1164 (-315 *5)))) (-5 *3 (-1256 (-315 *5))) + (-5 *4 (-562)) (-4 *5 (-13 (-554) (-845))) (-5 *1 (-1122 *5))))) +(((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-966))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-562)) (-5 *1 (-240)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-562)) (-5 *1 (-240))))) (((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-819)) (-5 *3 (-639 (-1168))) (-5 *1 (-820))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) + (-4 *8 (-845)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2775 (-639 *9)))) + (-5 *3 (-639 *9)) (-4 *1 (-1200 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2775 (-639 *8)))) + (-5 *3 (-639 *8)) (-4 *1 (-1200 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *1) (-5 *1 (-1261)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) + (-5 *1 (-737 *5 *4 *6 *3)) (-4 *3 (-944 *6 *5 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-5 *2 + (-2 (|:| -2534 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (|:| |success| (-112)))) + (-5 *1 (-784)) (-5 *5 (-562))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-528))))) +(((*1 *1) (-5 *1 (-557)))) +(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))) (((*1 *2 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) - (-4 *1 (-1056 *3 *4 *5))))) + (-12 (-5 *2 (-639 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-583 *3)) (-4 *3 (-362))))) (((*1 *2 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) - (-4 *1 (-1056 *3 *4 *5))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1056 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) - (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -3285 *1))) - (-4 *1 (-1056 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -3285 *1))) - (-4 *1 (-1056 *3 *4 *5))))) -(((*1 *2 *1 *1) + (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-766))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-168 (-224)))) + (-5 *2 (-1030)) (-5 *1 (-749))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) + ((*1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-490)) (-5 *4 (-949)) (-5 *2 (-685 (-532))) + (-5 *1 (-532)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-949)) (-4 *3 (-1092)) (-5 *2 (-685 *1)) + (-4 *1 (-762 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) + (-4 *2 (-650 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-766)) (|:| -4380 *4))) (-5 *5 (-766)) + (-4 *4 (-944 *6 *7 *8)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-448 *6 *7 *8 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-256))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 *2)) + (-5 *2 (-378)) (-5 *1 (-780 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) + (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) + (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) + (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) + (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) + (-4 *5 (-845)) (-4 *5 (-610 *2)) (-5 *2 (-378)) + (-5 *1 (-780 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1164 *7)) + (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *2 (-1232 *5)) + (-5 *1 (-500 *5 *2 *6 *7)) (-4 *6 (-1232 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -4361 *3) (|:| |gap| (-765)) (|:| -2124 (-775 *3)) - (|:| -3285 (-775 *3)))) - (-5 *1 (-775 *3)) (-4 *3 (-1042)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) - (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -2124 *1) (|:| -3285 *1))) - (-4 *1 (-1056 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-2 (|:| -4361 *1) (|:| |gap| (-765)) (|:| -2124 *1) (|:| -3285 *1))) - (-4 *1 (-1056 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844))))) -(((*1 *2 *1 *1) + (-639 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-766)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-788)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *5 (-845)) + (-5 *1 (-448 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *2 *3) (-12 - (-5 *2 (-2 (|:| |polnum| (-775 *3)) (|:| |polden| *3) (|:| -3880 (-765)))) - (-5 *1 (-775 *3)) (-4 *3 (-1042)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3880 (-765)))) - (-4 *1 (-1056 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-939 (-377))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) - (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-406 (-939 (-377)))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) - (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-313 (-377))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) - (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-939 (-544))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) - (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-406 (-939 (-544)))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) - (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-313 (-544))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) - (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) - (-14 *4 (-635 *2)) (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-313 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) - (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-682 (-406 (-939 (-544))))) (-4 *1 (-384)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-682 (-406 (-939 (-377))))) (-4 *1 (-384)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-939 (-544)))) (-4 *1 (-384)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-939 (-377)))) (-4 *1 (-384)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-313 (-544)))) (-4 *1 (-384)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-682 (-313 (-377)))) (-4 *1 (-384)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-544)))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-939 (-377)))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-544))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-939 (-377))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-544))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-313 (-377))) (-4 *1 (-396)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1253 (-406 (-939 (-544))))) (-4 *1 (-439)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1253 (-406 (-939 (-377))))) (-4 *1 (-439)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-939 (-544)))) (-4 *1 (-439)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-939 (-377)))) (-4 *1 (-439)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-313 (-544)))) (-4 *1 (-439)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1253 (-313 (-377)))) (-4 *1 (-439)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-349)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5)) - (-5 *2 (-1160 (-1160 *4))) (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6)) - (-14 *7 (-912)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1031 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) - (|partial| -3936 - (-12 (-5 *2 (-939 *3)) - (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-3726 (-4 *3 (-38 (-544)))) - (-4 *5 (-609 (-1166)))) - (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) - (-12 (-5 *2 (-939 *3)) - (-12 (-3726 (-4 *3 (-543))) (-3726 (-4 *3 (-38 (-406 (-544))))) - (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) - (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) - (-12 (-5 *2 (-939 *3)) - (-12 (-3726 (-4 *3 (-984 (-544)))) (-4 *3 (-38 (-406 (-544)))) - (-4 *5 (-609 (-1166)))) - (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) - ((*1 *1 *2) - (|partial| -3936 - (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) - (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) - (-4 *5 (-609 (-1166)))) - (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) - (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) - (-12 (-5 *2 (-939 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) - (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-406 (-939 (-377)))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1031 (-377))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) - (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-313 (-377))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-377))) - (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-939 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) - (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-406 (-939 (-544)))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1031 (-544))) (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) - (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-313 (-544))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1031 (-544))) - (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1166)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 *2)) - (-14 *4 (-635 *2)) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-313 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) - (-14 *3 (-635 (-1166))) (-14 *4 (-635 (-1166))))) - ((*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-939 (-544))))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-682 (-406 (-939 (-377))))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-682 (-939 (-544)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-682 (-939 (-377)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-682 (-313 (-544)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-682 (-313 (-377)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-544)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-406 (-939 (-377)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-939 (-544))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-939 (-377))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 (-544))))) (-4 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 (-406 (-939 (-377))))) (-4 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 (-939 (-544)))) (-4 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 (-939 (-377)))) (-4 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 (-313 (-544)))) (-4 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 (-313 (-377)))) (-4 *1 (-439)))) - ((*1 *2 *1) + (-5 *2 + (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) + (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| |mdnia| - (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) - (-5 *1 (-763)))) - ((*1 *2 *1) + (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) + (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) + (-5 *4 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *1 (-802)))) - ((*1 *2 *1) + (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) + (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) (-5 *4 (-406 (-562))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-406 (-562))) + (-5 *2 (-639 (-2 (|:| -1588 *5) (|:| -1602 *5)))) (-5 *1 (-1015 *3)) + (-4 *3 (-1232 (-562))) (-5 *4 (-2 (|:| -1588 *5) (|:| -1602 *5))))) + ((*1 *2 *3) (-12 (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) - (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) - (|:| |ub| (-635 (-836 (-224)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) - (-5 *1 (-835)))) - ((*1 *2 *1) + (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-2 (|:| |pde| (-635 (-313 (-224)))) - (|:| |constraints| - (-635 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) - (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) - (|:| |dFinish| (-682 (-224)))))) - (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) - (|:| |tol| (-224)))) - (-5 *1 (-891)))) - ((*1 *1 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *1 (-969 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1204)))) - ((*1 *1 *2) - (-3936 - (-12 (-5 *2 (-939 *3)) - (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-3726 (-4 *3 (-38 (-544)))) - (-4 *5 (-609 (-1166)))) - (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) - (-12 (-5 *2 (-939 *3)) - (-12 (-3726 (-4 *3 (-543))) (-3726 (-4 *3 (-38 (-406 (-544))))) - (-4 *3 (-38 (-544))) (-4 *5 (-609 (-1166)))) - (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))) - (-12 (-5 *2 (-939 *3)) - (-12 (-3726 (-4 *3 (-984 (-544)))) (-4 *3 (-38 (-406 (-544)))) - (-4 *5 (-609 (-1166)))) - (-4 *3 (-1042)) (-4 *1 (-1056 *3 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844))))) - ((*1 *1 *2) - (-3936 - (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) - (-12 (-3726 (-4 *3 (-38 (-406 (-544))))) (-4 *3 (-38 (-544))) - (-4 *5 (-609 (-1166)))) - (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844))) - (-12 (-5 *2 (-939 (-544))) (-4 *1 (-1056 *3 *4 *5)) - (-12 (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166)))) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844))))) - ((*1 *1 *2) - (-12 (-5 *2 (-939 (-406 (-544)))) (-4 *1 (-1056 *3 *4 *5)) - (-4 *3 (-38 (-406 (-544)))) (-4 *5 (-609 (-1166))) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554))))) -(((*1 *2 *1 *1) + (-639 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562)))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))) + (-5 *4 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-406 (-562))) + (-5 *2 (-639 (-2 (|:| -1588 *4) (|:| -1602 *4)))) (-5 *1 (-1016 *3)) + (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-406 (-562))) + (-5 *2 (-639 (-2 (|:| -1588 *5) (|:| -1602 *5)))) (-5 *1 (-1016 *3)) + (-4 *3 (-1232 *5)) (-5 *4 (-2 (|:| -1588 *5) (|:| -1602 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1086 (-838 (-224)))) (-5 *1 (-304))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2) + (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| -3545 (-775 *3)) (|:| |coef1| (-775 *3)) (|:| |coef2| (-775 *3)))) - (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) + (-639 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-766)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-788)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *5 (-845)) + (-5 *1 (-448 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1256 *6)) (-5 *4 (-1256 (-562))) (-5 *5 (-562)) + (-4 *6 (-1092)) (-5 *2 (-1 *6)) (-5 *1 (-1012 *6))))) +(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) + (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-944 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-2 (|:| -3545 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1056 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef1| (-775 *3)))) - (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) + (-12 (-4 *3 (-1044)) (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) + (-4 *1 (-1232 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) + (-5 *2 (-2 (|:| -4221 *4) (|:| -2097 *3) (|:| -2264 *3))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-2 (|:| -3545 *1) (|:| |coef1| *1))) (-4 *1 (-1056 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3545 (-775 *3)) (|:| |coef2| (-775 *3)))) - (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042)))) + (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-1058 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-2 (|:| -3545 *1) (|:| |coef2| *1))) (-4 *1 (-1056 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-635 *1)) (-4 *1 (-1056 *3 *4 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) - (-4 *5 (-844)) (-4 *3 (-554))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-1056 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) - (-4 *5 (-844)) (-4 *3 (-554))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-554))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) - ((*1 *1 *1 *1) (-4 *1 (-450))) - ((*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-544))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) - (-4 *2 (-943 *5 *3 *4)))) + (-12 (-4 *3 (-554)) (-4 *3 (-1044)) + (-5 *2 (-2 (|:| -4221 *3) (|:| -2097 *1) (|:| -2264 *1))) + (-4 *1 (-1232 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1030)) + (-5 *1 (-741))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) + (-5 *2 (-639 (-639 (-639 (-938 *3)))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-620 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *2 (-1101 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1044)) (-5 *1 (-707 *3 *4)) + (-4 *4 (-1232 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) + (-4 *5 (-1232 *4)) + (-5 *2 (-2 (|:| -3860 (-406 *5)) (|:| |coeff| (-406 *5)))) + (-5 *1 (-566 *4 *5)) (-5 *3 (-406 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1055)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1055))))) +(((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-435))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-610 (-887 (-562)))) + (-4 *5 (-881 (-562))) + (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-565 *5 *3)) (-4 *3 (-625)) + (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-91 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-562)) (-5 *2 (-639 (-2 (|:| -1635 *3) (|:| -3598 *4)))) + (-5 *1 (-690 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1229 *4 *5)) (-5 *3 (-639 *5)) (-14 *4 (-1168)) + (-4 *5 (-362)) (-5 *1 (-918 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *5)) (-4 *5 (-362)) (-5 *2 (-1164 *5)) + (-5 *1 (-918 *4 *5)) (-14 *4 (-1168)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-639 *6)) (-5 *4 (-766)) (-4 *6 (-362)) + (-5 *2 (-406 (-947 *6))) (-5 *1 (-1045 *5 *6)) (-14 *5 (-1168))))) +(((*1 *2 *3) + (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-306)) + (-5 *2 (-406 (-417 (-947 *4)))) (-5 *1 (-1037 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) + ((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) ((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-544)))) + ((*1 *1 *1) (-4 *1 (-1053)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-436)) (-5 *3 (-639 (-1168))) (-5 *4 (-1168)) + (-5 *1 (-1171)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1172)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-436)) (-5 *3 (-639 (-1168))) (-5 *1 (-1172))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-190)) (-5 *3 (-562)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-171)))) ((*1 *2 *3) - (-12 (-5 *3 (-635 (-1160 *7))) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) - (-5 *2 (-1160 *7)) (-5 *1 (-909 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-912))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-450)) (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-450))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-450))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-450))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-450))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1056 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *2 (-450))))) -(((*1 *1) (-5 *1 (-1054)))) -(((*1 *1 *1) (-5 *1 (-1054)))) -(((*1 *1 *1) (-5 *1 (-1054)))) -(((*1 *1 *1) (-5 *1 (-1054)))) -(((*1 *1 *1) (-5 *1 (-1054)))) -(((*1 *1 *1) (-5 *1 (-1054)))) -(((*1 *1 *1) (-5 *1 (-1054)))) -(((*1 *1 *1) (-5 *1 (-1054)))) -(((*1 *1 *1) (-5 *1 (-1054)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-377)) (-5 *1 (-1054))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-377)) (-5 *1 (-1054))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-377)) (-5 *1 (-1054))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-1054)) (-5 *3 (-1148))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1054))))) -(((*1 *1) (-5 *1 (-1054)))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-1054))))) -(((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1053)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-1053))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-844)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1204)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) - (-4 *3 (-237 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)) (-5 *2 (-765)))) - ((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-765)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-360 *3)) (-4 *3 (-1091)))) - ((*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) - ((*1 *2) - (-12 (-4 *4 (-1091)) (-5 *2 (-765)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) - (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-765)) (-5 *1 (-717 *3 *4 *5)) - (-4 *3 (-718 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-813 *3)) (-4 *3 (-844)))) - ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2))))) + (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-639 *3)) + (-5 *1 (-1226 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-639 (-639 (-639 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-639 *5)) (-4 *5 (-845)) (-5 *1 (-1178 *5))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-746))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-112)) + (-5 *2 (-1030)) (-5 *1 (-740))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-246 *5 *6))) (-4 *6 (-451)) + (-5 *2 (-246 *5 *6)) (-14 *5 (-639 (-1168))) (-5 *1 (-627 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-240)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1261)) (-5 *1 (-240))))) +(((*1 *2 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) + (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-191)))) + ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-299)))) + ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-304))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3860 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-362)) (-4 *7 (-1232 *6)) + (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) + (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-639 (-2 (|:| -1635 (-1164 *6)) (|:| -1960 (-562))))) + (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) + (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-1092)) + (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) + (-5 *1 (-1068 *4 *5 *2)) + (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1092)) + (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) + (-5 *1 (-1068 *3 *4 *2)) + (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3))))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) + (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -2264 *1))) + (-4 *1 (-1058 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -2264 *1))) + (-4 *1 (-1058 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-404 *4) *4)) (-4 *4 (-554)) (-5 *2 (-404 *4)) - (-5 *1 (-418 *4)))) - ((*1 *1 *1) (-5 *1 (-918))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *1 *1) (-5 *1 (-920))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) - (-5 *4 (-406 (-544))) (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) - (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) - (-5 *4 (-406 (-544))) (-5 *1 (-1015 *3)) (-4 *3 (-1229 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) - (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-842) (-362))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-1229 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-842) (-362))) (-5 *2 (-112)) (-5 *1 (-1052 *4 *3)) - (-4 *3 (-1229 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-606 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1160 (-48))) (-5 *3 (-635 (-606 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1160 (-48))) (-5 *3 (-606 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) + (-14 *4 (-639 (-1168))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) - (-4 *3 (-1229 (-167 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-912)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1229 *2)) (-4 *2 (-171)))) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1207)))) ((*1 *2 *1) - (-12 (-4 *4 (-1229 *2)) (-4 *2 (-984 *3)) (-5 *1 (-412 *3 *2 *4 *5)) - (-4 *3 (-306)) (-4 *5 (-13 (-409 *2 *4) (-1031 *2))))) + (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) + (-14 *4 (-639 (-1168))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-845))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) + (-5 *1 (-1152 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) + (-14 *4 (-1168)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1188)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1188))))) +(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) + (-5 *2 (-814 *3)))) ((*1 *2 *1) - (-12 (-4 *4 (-1229 *2)) (-4 *2 (-984 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) - (-4 *3 (-306)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1253 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-912)) (-4 *5 (-1042)) - (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) - (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-606 (-493)))) (-5 *1 (-493)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-493))) (-5 *1 (-493)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1160 (-493))) (-5 *3 (-635 (-606 (-493)))) (-5 *1 (-493)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1160 (-493))) (-5 *3 (-606 (-493))) (-5 *1 (-493)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1253 *4)) (-5 *3 (-912)) (-4 *4 (-349)) (-5 *1 (-526 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-718 *4 *2)) (-4 *2 (-1229 *4)) - (-5 *1 (-769 *4 *2 *5 *3)) (-4 *3 (-1229 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171)))) - ((*1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-543)))) - ((*1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-543)))) - ((*1 *1 *1) (-4 *1 (-1051)))) -(((*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) - ((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306)))) - ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-216)))) - ((*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-485)))) - ((*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) - ((*1 *2 *1) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544)))) - ((*1 *1 *1) (-4 *1 (-1051)))) -(((*1 *1 *1) (-4 *1 (-1051)))) + (-12 (-4 *2 (-841)) (-5 *1 (-1279 *3 *2)) (-4 *3 (-1044))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) + (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-164 *3 *4)) + (-4 *3 (-165 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1204)) (-5 *2 (-765)) (-5 *1 (-236 *3 *4 *5)) - (-4 *3 (-237 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-766)) + (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-844)) (-5 *2 (-765)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) - ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-542 *3)) (-4 *3 (-543)))) - ((*1 *2) (-12 (-4 *1 (-757)) (-5 *2 (-765)))) + (-12 (-4 *4 (-845)) (-5 *2 (-766)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-543 *3)) (-4 *3 (-544)))) + ((*1 *2) (-12 (-4 *1 (-758)) (-5 *2 (-766)))) ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-789 *3 *4)) (-4 *3 (-790 *4)))) + (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-791 *3 *4)) + (-4 *3 (-792 *4)))) ((*1 *2) - (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-983 *3 *4)) (-4 *3 (-984 *4)))) + (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-986 *3 *4)) + (-4 *3 (-987 *4)))) ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-765)) (-5 *1 (-990 *3 *4)) (-4 *3 (-991 *4)))) - ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1004 *3)) (-4 *3 (-1005)))) - ((*1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-765)))) - ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1050 *3)) (-4 *3 (-1051))))) -(((*1 *1 *2) - (-12 (-5 *2 (-682 *5)) (-4 *5 (-1042)) (-5 *1 (-1046 *3 *4 *5)) - (-14 *3 (-765)) (-14 *4 (-765))))) -(((*1 *1 *2) - (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1042)) (-4 *1 (-679 *3 *4 *5)) - (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-857)))) (-5 *1 (-857)))) + (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-991 *3 *4)) + (-4 *3 (-992 *4)))) + ((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1006 *3)) (-4 *3 (-1007)))) + ((*1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-766)))) + ((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1052 *3)) (-4 *3 (-1053))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1207)) + (-4 *5 (-1207)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-766)) + (-4 *7 (-1207)) (-4 *5 (-1207)) (-5 *2 (-239 *6 *5)) + (-5 *1 (-238 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1207)) (-4 *5 (-1207)) + (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1092)) (-4 *5 (-1092)) + (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-639 *6)) (-4 *6 (-1207)) + (-4 *5 (-1207)) (-5 *2 (-639 *5)) (-5 *1 (-637 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-953 *6)) (-4 *6 (-1207)) + (-4 *5 (-1207)) (-5 *2 (-953 *5)) (-5 *1 (-952 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1148 *6)) (-4 *6 (-1207)) + (-4 *3 (-1207)) (-5 *2 (-1148 *3)) (-5 *1 (-1146 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1256 *6)) (-4 *6 (-1207)) + (-4 *5 (-1207)) (-5 *2 (-1256 *5)) (-5 *1 (-1255 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *5)) (-5 *4 (-916)) (-4 *5 (-845)) + (-5 *2 (-639 (-666 *5))) (-5 *1 (-666 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-304))))) +(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-128))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-1132 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-912)) - (-4 *4 (-362)))) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-224))) ((*1 *1 *1) (-5 *1 (-378))) + ((*1 *1) (-5 *1 (-378)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-766)) (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-562))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) + (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-972 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) + (-5 *1 (-175 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1282 *5 *6 *7)) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1282 *5 *6 *7)) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-947 *4))) + (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-5 *2 (-639 (-1041 *4 *5))) (-5 *1 (-1282 *4 *5 *6)) + (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-766)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-766)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-766)) (-4 *5 (-362)) (-5 *2 (-406 *6)) + (-5 *1 (-862 *5 *4 *6)) (-4 *4 (-1247 *5)) (-4 *6 (-1232 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-766)) (-5 *4 (-1248 *5 *6 *7)) (-4 *5 (-362)) + (-14 *6 (-1168)) (-14 *7 *5) (-5 *2 (-406 (-1229 *6 *5))) + (-5 *1 (-863 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-766)) (-5 *4 (-1248 *5 *6 *7)) (-4 *5 (-362)) + (-14 *6 (-1168)) (-14 *7 *5) (-5 *2 (-406 (-1229 *6 *5))) + (-5 *1 (-863 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-608 *3)) (-5 *5 (-1164 *3)) + (-4 *3 (-13 (-429 *6) (-27) (-1192))) + (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 (-583 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-608 *3)) (-5 *5 (-406 (-1164 *3))) + (-4 *3 (-13 (-429 *6) (-27) (-1192))) + (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 (-583 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) + (-5 *2 (-639 (-2 (|:| -1450 *1) (|:| -3316 (-639 *7))))) + (-5 *3 (-639 *7)) (-4 *1 (-1200 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1139 (-1150))) (-5 *1 (-390))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) +(((*1 *1 *1) (-4 *1 (-1053))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *4 (-1168)) + (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-299))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-4 *4 (-1207)) (-5 *2 (-112)) + (-5 *1 (-1148 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-766)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-635 (-635 *5))) (-4 *5 (-1042)) (-4 *1 (-1045 *3 *4 *5 *6 *7)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-544)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-544))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-544)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-544))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-544)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-544))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-544)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-544))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-765)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-765))))) + (-12 (-4 *2 (-1044)) (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) + (-4 *5 (-237 *3 *2))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-766)) (-4 *5 (-554)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) + (-5 *2 (-1030)) (-5 *1 (-751))))) +(((*1 *2) + (-12 + (-5 *2 + (-1256 (-639 (-2 (|:| -2534 (-905 *3)) (|:| -2466 (-1112)))))) + (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) + ((*1 *2) + (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2534 *3) (|:| -2466 (-1112)))))) + (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1164 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2534 *3) (|:| -2466 (-1112)))))) + (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *3)) + (-4 *3 (-1232 (-406 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-869)) + (-5 *5 (-916)) (-5 *6 (-639 (-262))) (-5 *2 (-467)) (-5 *1 (-1260)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-467)) + (-5 *1 (-1260)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-639 (-262))) + (-5 *2 (-467)) (-5 *1 (-1260))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) + ((*1 *1 *1) (|partial| -4 *1 (-717)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) + (-5 *1 (-983 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) + (-5 *1 (-1099 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-872 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-874 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-877 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-683 *5))) (-4 *5 (-306)) (-4 *5 (-1044)) + (-5 *2 (-1256 (-1256 *5))) (-5 *1 (-1024 *5)) (-5 *4 (-1256 *5))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-639 *6)) (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) + (-4 *3 (-554))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-765)))) + (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-406 (-947 (-168 (-562)))))) + (-5 *2 (-639 (-639 (-293 (-947 (-168 *4)))))) (-5 *1 (-377 *4)) + (-4 *4 (-13 (-362) (-843))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-293 (-406 (-947 (-168 (-562))))))) + (-5 *2 (-639 (-639 (-293 (-947 (-168 *4)))))) (-5 *1 (-377 *4)) + (-4 *4 (-13 (-362) (-843))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-947 (-168 (-562))))) + (-5 *2 (-639 (-293 (-947 (-168 *4))))) (-5 *1 (-377 *4)) + (-4 *4 (-13 (-362) (-843))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-293 (-406 (-947 (-168 (-562)))))) + (-5 *2 (-639 (-293 (-947 (-168 *4))))) (-5 *1 (-377 *4)) + (-4 *4 (-13 (-362) (-843)))))) +(((*1 *1 *1) (-4 *1 (-625))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 (-2 (|:| -2431 (-114)) (|:| |w| (-224)))) (-5 *1 (-203))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-960)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-984)))) + ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-5 *2 (-765))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-371 *2)) - (-4 *5 (-371 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-765)) (-4 *2 (-1091)) (-5 *1 (-212 *4 *2)) (-14 *4 (-912)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1204)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) - (-4 *7 (-237 *4 *2)) (-4 *2 (-1042))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1204)) (-4 *5 (-371 *4)) - (-4 *2 (-371 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *6 *2 *7)) (-4 *6 (-1042)) - (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1204)) (-4 *5 (-371 *4)) - (-4 *2 (-371 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-1045 *4 *5 *6 *7 *2)) (-4 *6 (-1042)) - (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6))))) + (-12 (-4 *2 (-13 (-1092) (-34))) (-5 *1 (-1132 *2 *3)) + (-4 *3 (-13 (-1092) (-34)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-884 *5 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) + (-4 *3 (-165 *6)) (-4 (-947 *6) (-881 *5)) + (-4 *6 (-13 (-881 *5) (-171))) (-5 *1 (-177 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-884 *4 *1)) (-5 *3 (-887 *4)) (-4 *1 (-881 *4)) + (-4 *4 (-1092)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-884 *5 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) + (-4 *6 (-13 (-1092) (-1033 *3))) (-4 *3 (-881 *5)) + (-5 *1 (-926 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) + (-4 *3 (-13 (-429 *6) (-610 *4) (-881 *5) (-1033 (-608 $)))) + (-5 *4 (-887 *5)) (-4 *6 (-13 (-554) (-845) (-881 *5))) + (-5 *1 (-927 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-884 (-562) *3)) (-5 *4 (-887 (-562))) (-4 *3 (-544)) + (-5 *1 (-928 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-884 *5 *6)) (-5 *3 (-608 *6)) (-4 *5 (-1092)) + (-4 *6 (-13 (-845) (-1033 (-608 $)) (-610 *4) (-881 *5))) + (-5 *4 (-887 *5)) (-5 *1 (-929 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-880 *5 *6 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) + (-4 *6 (-881 *5)) (-4 *3 (-660 *6)) (-5 *1 (-930 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-884 *6 *3) *8 (-887 *6) (-884 *6 *3))) + (-4 *8 (-845)) (-5 *2 (-884 *6 *3)) (-5 *4 (-887 *6)) + (-4 *6 (-1092)) (-4 *3 (-13 (-944 *9 *7 *8) (-610 *4))) + (-4 *7 (-788)) (-4 *9 (-13 (-1044) (-845) (-881 *6))) + (-5 *1 (-931 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) + (-4 *3 (-13 (-944 *8 *6 *7) (-610 *4))) (-5 *4 (-887 *5)) + (-4 *7 (-881 *5)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *8 (-13 (-1044) (-845) (-881 *5))) + (-5 *1 (-931 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) (-4 *3 (-987 *6)) + (-4 *6 (-13 (-554) (-881 *5) (-610 *4))) (-5 *4 (-887 *5)) + (-5 *1 (-934 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-884 *5 (-1168))) (-5 *3 (-1168)) (-5 *4 (-887 *5)) + (-4 *5 (-1092)) (-5 *1 (-935 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-639 (-887 *7))) (-5 *5 (-1 *9 (-639 *9))) + (-5 *6 (-1 (-884 *7 *9) *9 (-887 *7) (-884 *7 *9))) (-4 *7 (-1092)) + (-4 *9 (-13 (-1044) (-610 (-887 *7)) (-1033 *8))) + (-5 *2 (-884 *7 *9)) (-5 *3 (-639 *9)) (-4 *8 (-13 (-1044) (-845))) + (-5 *1 (-936 *7 *8 *9))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-639 (-480 *5 *6))) (-5 *4 (-859 *5)) + (-14 *5 (-639 (-1168))) (-5 *2 (-480 *5 *6)) (-5 *1 (-627 *5 *6)) + (-4 *6 (-451)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-480 *5 *6))) (-5 *4 (-859 *5)) + (-14 *5 (-639 (-1168))) (-5 *2 (-480 *5 *6)) (-5 *1 (-627 *5 *6)) + (-4 *6 (-451))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-916)) (-5 *1 (-1025 *2)) + (-4 *2 (-13 (-1092) (-10 -8 (-15 -1835 ($ $ $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-766)) (-4 *5 (-171)))) + ((*1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) + (-4 *4 (-171)))) + ((*1 *1 *1) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1044)) (-4 *1 (-681 *3 *2 *4)) (-4 *2 (-372 *3)) + (-4 *4 (-372 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1134 *2 *3)) (-14 *2 (-766)) (-4 *3 (-1044))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-112)) (-5 *5 (-683 (-168 (-224)))) + (-5 *2 (-1030)) (-5 *1 (-750))))) +(((*1 *2 *3) + (-12 (-4 *1 (-915)) (-5 *2 (-2 (|:| -4221 (-639 *1)) (|:| -3148 *1))) + (-5 *3 (-639 *1))))) +(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))) +(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-639 (-639 (-938 (-224))))))) + ((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-639 (-639 (-938 (-224)))))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1092)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1092))))) (((*1 *2 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) + (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) + (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-4 *7 (-984 *4)) - (-4 *2 (-679 *7 *8 *9)) (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-679 *4 *5 *6)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7)))) + (-12 (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) + (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) + (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) + (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)) (-4 *2 (-306)))) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)) (-4 *2 (-306)))) ((*1 *2 *2) - (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3)))) + (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) + (-4 *2 (-681 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1045 *2 *3 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-237 *3 *4)) - (-4 *6 (-237 *2 *4)) (-4 *4 (-306))))) + (-12 (-4 *1 (-1047 *2 *3 *4 *5 *6)) (-4 *4 (-1044)) + (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-639 (-608 *2))) (-5 *4 (-1168)) + (-4 *2 (-13 (-27) (-1192) (-429 *5))) + (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-276 *5 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) + (|:| |abserr| (-224)) (|:| |relerr| (-224)))) + (-5 *2 (-378)) (-5 *1 (-204))))) (((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) (-14 *4 *2) - (-4 *5 (-171)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-912)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-912)))) - ((*1 *2) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-912)))) - ((*1 *2 *3) - (-12 (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) - (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) - (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-765)) - (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-765)) - (-5 *1 (-661 *5)))) + (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) + (-5 *2 (-1256 *6)) (-5 *1 (-335 *3 *4 *5 *6)) + (-4 *6 (-341 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) + (-5 *2 (-639 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-765)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) + (-12 (-5 *2 (-639 (-2 (|:| |k| (-888 *3)) (|:| |c| *4)))) + (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) + (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-765))))) + (-12 (-5 *2 (-639 (-666 *3))) (-5 *1 (-888 *3)) (-4 *3 (-845))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) (((*1 *2 *3) - (-12 (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) (-5 *2 (-765)) - (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-765)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-5 *2 (-765)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-765))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) + (|:| |abserr| (-224)) (|:| |relerr| (-224)))) + (-5 *2 + (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) + (|:| |expense| (-378)) (|:| |accuracy| (-378)) + (|:| |intermediateResults| (-378)))) + (-5 *1 (-798))))) +(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2) + (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) + (-5 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) + (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4401)) (-4 *4 (-362)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-5 *2 (-635 *6)) (-5 *1 (-519 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4401)) (-4 *4 (-554)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-4 *7 (-984 *4)) (-4 *8 (-371 *7)) (-4 *9 (-371 *7)) (-5 *2 (-635 *6)) - (-5 *1 (-520 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-679 *4 *5 *6)) - (-4 *10 (-679 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-4 *3 (-554)) (-5 *2 (-635 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-5 *2 (-635 *6)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-679 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6 *7)) (-4 *5 (-1042)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-635 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1222 *4 *5)) (-5 *3 (-635 *5)) (-14 *4 (-1166)) (-4 *5 (-362)) - (-5 *1 (-915 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *5)) (-4 *5 (-362)) (-5 *2 (-1160 *5)) (-5 *1 (-915 *4 *5)) - (-14 *4 (-1166)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-635 *6)) (-5 *4 (-765)) (-4 *6 (-362)) (-5 *2 (-406 (-939 *6))) - (-5 *1 (-1043 *5 *6)) (-14 *5 (-1166))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-1040))))) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040))))) + (-12 (-5 *3 (-683 (-406 (-947 (-562))))) + (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040))))) -(((*1 *1 *1 *1) (-4 *1 (-142))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-544))) (-5 *1 (-1040)) - (-5 *3 (-544))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1087 *4)) (-4 *4 (-1091)) (-5 *2 (-1 *4)) (-5 *1 (-1010 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377)))) - ((*1 *2 *3) (-12 (-5 *3 (-1079 (-544))) (-5 *2 (-1 (-544))) (-5 *1 (-1040))))) -(((*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-156))) ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-156))) ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-156))) ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-404 (-939 *4)))) - (-5 *1 (-1036 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1 (-377))) (-5 *1 (-1034))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1234 *3 *4 *5)) (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) - (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-377))) (-5 *1 (-1034)) (-5 *3 (-377))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-377)) (-5 *1 (-1034))))) -(((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034))))) -(((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034))))) -(((*1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-1034))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1160 (-406 (-1160 *2)))) (-5 *4 (-606 *2)) - (-4 *2 (-13 (-420 *5) (-27) (-1190))) - (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *1 (-558 *5 *2 *6)) (-4 *6 (-1091)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1160 *1)) (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) - (-4 *5 (-787)) (-4 *3 (-844)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1160 *4)) (-4 *4 (-1042)) (-4 *1 (-943 *4 *5 *3)) - (-4 *5 (-787)) (-4 *3 (-844)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-1160 *2))) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) - (-4 *2 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))) - (-5 *1 (-944 *5 *4 *6 *7 *2)) (-4 *7 (-943 *6 *5 *4)))) + (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) + (-4 *4 (-348))))) +(((*1 *2 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) + (-4 *4 (-348))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *3 (-1058 *6 *7 *8)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1495 *9)))) + (-5 *5 (-112)) (-4 *8 (-1058 *6 *7 *4)) (-4 *9 (-1064 *6 *7 *4 *8)) + (-4 *6 (-451)) (-4 *7 (-788)) (-4 *4 (-845)) + (-5 *2 (-639 (-2 (|:| |val| *8) (|:| -1495 *9)))) + (-5 *1 (-1100 *6 *7 *4 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-766))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *2) + (-12 (-4 *3 (-610 (-887 *3))) (-4 *3 (-881 *3)) + (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-610 (-887 *3))) (-4 *2 (-881 *3)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 (-639 *6))) (-4 *6 (-944 *3 *5 *4)) + (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-845) (-610 (-1168)))) + (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-508 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-845))))) +(((*1 *2 *3) + (-12 (-5 *3 (-683 (-406 (-947 *4)))) (-4 *4 (-451)) + (-5 *2 (-639 (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4))))) + (-5 *1 (-291 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) + (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) + (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) + (-5 *1 (-331)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-1084 (-947 (-562)))) (-5 *2 (-329)) + (-5 *1 (-331)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-669 *3)) (-4 *3 (-1044)) + (-4 *3 (-1092))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1168)) + (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-573 *4 *2)) + (-4 *2 (-13 (-1192) (-954) (-1131) (-29 *4)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-639 (-608 *4))) (-4 *4 (-429 *3)) (-4 *3 (-845)) + (-5 *1 (-571 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-824))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-562)) (-4 *4 (-171)) (-4 *5 (-372 *4)) + (-4 *6 (-372 *4)) (-5 *1 (-682 *4 *5 *6 *2)) + (-4 *2 (-681 *4 *5 *6))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-916)) (-5 *1 (-1093 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1177))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-639 (-562))) (-5 *3 (-112)) (-5 *1 (-1102))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1247 *4)) (-5 *1 (-1249 *4 *2)) + (-4 *4 (-38 (-406 (-562))))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1168)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-696 *3 *5 *6 *7)) + (-4 *3 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) + (-4 *7 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-1160 (-406 (-939 *5))))) (-5 *4 (-1166)) - (-5 *2 (-406 (-939 *5))) (-5 *1 (-1033 *5)) (-4 *5 (-554))))) + (-12 (-5 *4 (-1168)) (-5 *2 (-1 *6 *5)) (-5 *1 (-701 *3 *5 *6)) + (-4 *3 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1044)) + (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) + (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1168)) + (-4 *5 (-13 (-554) (-1033 (-562)) (-146))) + (-5 *2 + (-2 (|:| -3860 (-406 (-947 *5))) (|:| |coeff| (-406 (-947 *5))))) + (-5 *1 (-568 *5)) (-5 *3 (-406 (-947 *5)))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1171))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-562))) (-5 *4 (-562)) (-5 *2 (-52)) + (-5 *1 (-1000))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-824))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1044)) (-4 *2 (-681 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) + (-4 *6 (-372 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) + ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-606 *1)) (-4 *1 (-420 *4)) (-4 *4 (-844)) (-4 *4 (-554)) - (-5 *2 (-406 (-1160 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *6) (-27) (-1190))) - (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-1160 (-406 (-1160 *3)))) (-5 *1 (-558 *6 *3 *7)) (-5 *5 (-1160 *3)) - (-4 *7 (-1091)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1250 *5)) (-14 *5 (-1166)) (-4 *6 (-1042)) - (-5 *2 (-1222 *5 (-939 *6))) (-5 *1 (-941 *5 *6)) (-5 *3 (-939 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-1160 *3)))) + (-12 (-4 *1 (-855)) (-5 *2 (-685 (-1214))) (-5 *3 (-1214))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *2) + (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) + (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-5 *2 (-1160 *1)) - (-4 *1 (-943 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *5 *4)) - (-5 *2 (-406 (-1160 *3))) (-5 *1 (-944 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1160 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))) - (-4 *7 (-943 *6 *5 *4)) (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-1042)) - (-5 *1 (-944 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-4 *5 (-554)) (-5 *2 (-406 (-1160 (-406 (-939 *5))))) - (-5 *1 (-1033 *5)) (-5 *3 (-406 (-939 *5)))))) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) - (-4 *2 (-844)))) + (-12 (-5 *2 (-170)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1171)) (-5 *3 (-1168))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-528)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-367)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) + (-4 *4 (-348)))) + ((*1 *2 *1) + (-12 (-4 *2 (-845)) (-5 *1 (-708 *2 *3 *4)) (-4 *3 (-1092)) + (-14 *4 + (-1 (-112) (-2 (|:| -2466 *2) (|:| -1960 *3)) + (-2 (|:| -2466 *2) (|:| -1960 *3))))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) + (-5 *2 (-2 (|:| -3860 (-406 *6)) (|:| |coeff| (-406 *6)))) + (-5 *1 (-572 *5 *6)) (-5 *3 (-406 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-861 *4 *5 *6 *7)) + (-4 *4 (-1044)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 *3)) + (-14 *7 *3))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-787)) (-4 *5 (-1042)) (-4 *6 (-943 *5 *4 *2)) - (-4 *2 (-844)) (-5 *1 (-944 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *6)) (-15 -3381 (*6 $)) (-15 -3380 (*6 $))))))) + (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) + (-14 *8 (-639 *5)) (-5 *2 (-1261)) + (-5 *1 (-1268 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-944 *4 *6 *5)) + (-14 *9 (-639 *3)) (-14 *10 *3)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-639 (-947 *4))) (-5 *3 (-639 (-1168))) (-4 *4 (-451)) + (-5 *1 (-913 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-52))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1056))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *1 *1) (-5 *1 (-1056)))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1171)))) + ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171))))) +(((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-1166)) - (-5 *1 (-1033 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) - (-5 *2 (-635 (-1166))) (-5 *1 (-266)))) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1232 *2)) + (-4 *2 (-171)))) + ((*1 *2) + (-12 (-4 *4 (-1232 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4)) + (-4 *3 (-408 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) + ((*1 *2) + (-12 (-4 *3 (-1232 *2)) (-5 *2 (-562)) (-5 *1 (-763 *3 *4)) + (-4 *4 (-408 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)) (-4 *3 (-171)))) ((*1 *2 *3) - (-12 (-5 *3 (-1160 *7)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1042)) (-5 *2 (-635 *5)) (-5 *1 (-320 *4 *5 *6 *7)))) + (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-171))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-153)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1059))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-562)))) ((*1 *2 *1) - (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-386)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-844)) (-5 *2 (-635 (-1166))))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562))))) +(((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) +(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-367))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-916))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-372 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1) + (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-938 *4)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) +(((*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-859 *3)) (-14 *3 (-639 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-984)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1084 *3)) (-4 *3 (-1207)))) ((*1 *2 *1) - (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-635 *5)))) + (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) + (-5 *2 (-1168)))) + ((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1252 *3)) (-14 *3 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-13 (-306) (-146))) + (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) + (-5 *2 (-639 (-406 (-947 *4)))) (-5 *1 (-919 *4 *5 *6 *7)) + (-4 *7 (-944 *4 *6 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1139 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-746))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-4 *4 (-1232 *3)) + (-5 *2 + (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-683 *3)))) + (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) (-4 *7 (-943 *6 *4 *5)) - (-5 *2 (-635 *5)) (-5 *1 (-944 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1087 (-1166))) (-5 *1 (-959 *3)) (-4 *3 (-960)))) - ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) - (-5 *2 (-635 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5)))) + (-12 (-5 *3 (-562)) (-4 *4 (-1232 *3)) + (-5 *2 + (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-683 *3)))) + (-5 *1 (-763 *4 *5)) (-4 *5 (-408 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-348)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) + (-5 *2 + (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-683 *3)))) + (-5 *1 (-980 *4 *3 *5 *6)) (-4 *6 (-719 *3 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-5 *2 (-635 (-1166))) - (-5 *1 (-1033 *4))))) + (-12 (-4 *4 (-348)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) + (-5 *2 + (-2 (|:| -3928 (-683 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-683 *3)))) + (-5 *1 (-1265 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-559)) (-5 *3 (-562))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-756)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) + (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1044)) (-5 *1 (-822 *2 *3)) (-4 *2 (-703 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) - (-4 *6 (-13 (-554) (-1031 *5))) (-4 *5 (-554)) - (-5 *2 (-635 (-635 (-292 (-406 (-939 *6)))))) (-5 *1 (-1032 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1028))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) + (-4 *6 (-13 (-27) (-429 *5))) + (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-4 *8 (-1232 (-406 *7))) + (-5 *2 (-583 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) + (-4 *3 (-341 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-676 *2)) (-4 *2 (-1092)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-639 *5) (-639 *5))) (-5 *4 (-562)) + (-5 *2 (-639 *5)) (-5 *1 (-676 *5)) (-4 *5 (-1092))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1044)) (-4 *1 (-1232 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *6)) (-4 *6 (-13 (-420 *5) (-27) (-1190))) - (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-1160 (-406 (-1160 *6)))) (-5 *1 (-558 *5 *6 *7)) (-5 *3 (-1160 *6)) - (-4 *7 (-1091)))) - ((*1 *2 *1) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) - ((*1 *2 *1) (-12 (-4 *1 (-718 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1160 *11)) (-5 *6 (-635 *10)) (-5 *7 (-635 (-765))) - (-5 *8 (-635 *11)) (-4 *10 (-844)) (-4 *11 (-306)) (-4 *9 (-787)) - (-4 *5 (-943 *11 *9 *10)) (-5 *2 (-635 (-1160 *5))) - (-5 *1 (-736 *9 *10 *11 *5)) (-5 *3 (-1160 *5)))) + (-12 + (-5 *3 + (-639 + (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) + (|:| |wcond| (-639 (-947 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *5)))))))))) + (-5 *4 (-1150)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-944 *5 *7 *6)) + (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-562)) + (-5 *1 (-919 *5 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) + (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-733))))) +(((*1 *1) (-5 *1 (-818)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))))) + (-5 *2 (-1030)) (-5 *1 (-304)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) + (-5 *2 (-1030)) (-5 *1 (-304))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-608 *5))) (-4 *4 (-845)) (-5 *2 (-608 *5)) + (-5 *1 (-571 *4 *5)) (-4 *5 (-429 *4))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1280 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-171)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-814 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-639 *5)) (-5 *4 (-562)) (-4 *5 (-843)) (-4 *5 (-362)) + (-5 *2 (-766)) (-5 *1 (-940 *5 *6)) (-4 *6 (-1232 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1150)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-766)) + (-4 *3 (-13 (-721) (-367) (-10 -7 (-15 ** (*3 *3 (-562)))))) + (-5 *1 (-245 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-639 + (-2 + (|:| -2320 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (|:| -2694 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1148 (-224))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1590 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-557)))) ((*1 *2 *1) - (-12 (-4 *2 (-943 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *2 *6)) (-4 *3 (-362)) - (-4 *4 (-787)) (-4 *5 (-844)) (-14 *6 (-635 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-912)) (-5 *1 (-1025 *2)) - (-4 *2 (-13 (-1091) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-912)) (-5 *1 (-1024 *2)) - (-4 *2 (-13 (-1091) (-10 -8 (-15 -4246 ($ $ $)))))))) + (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) + (-5 *2 (-639 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) +(((*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-577))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-483 *3))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1168)) (-5 *6 (-112)) + (-4 *7 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-4 *3 (-13 (-1192) (-954) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-218 *7 *3)) (-5 *5 (-838 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-1253 *5))) (-5 *4 (-544)) (-5 *2 (-1253 *5)) - (-5 *1 (-1023 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-544)) (-4 *6 (-362)) (-4 *6 (-367)) - (-4 *6 (-1042)) (-5 *2 (-635 (-635 (-682 *6)))) (-5 *1 (-1023 *6)) - (-5 *3 (-635 (-682 *6))))) + (-12 (-5 *3 (-683 *1)) (-5 *4 (-1256 *1)) (-4 *1 (-635 *5)) + (-4 *5 (-1044)) + (-5 *2 (-2 (|:| -1545 (-683 *5)) (|:| |vec| (-1256 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1042)) - (-5 *2 (-635 (-635 (-682 *4)))) (-5 *1 (-1023 *4)) - (-5 *3 (-635 (-682 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) - (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) - (-5 *3 (-635 (-682 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-912)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1042)) - (-5 *2 (-635 (-635 (-682 *5)))) (-5 *1 (-1023 *5)) - (-5 *3 (-635 (-682 *5)))))) + (-12 (-5 *3 (-683 *1)) (-4 *1 (-635 *4)) (-4 *4 (-1044)) + (-5 *2 (-683 *4))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-747))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *2)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-168 (-224)))) + (-5 *2 (-1030)) (-5 *1 (-749))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-608 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) (-5 *5 (-1164 *2)) + (-4 *2 (-13 (-429 *6) (-27) (-1192))) + (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1092)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-608 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) + (-5 *5 (-406 (-1164 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1192))) + (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1092))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1232 *3)) (-5 *1 (-398 *3 *2)) + (-4 *3 (-13 (-362) (-146)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-544)) (-4 *5 (-362)) (-4 *5 (-1042)) - (-5 *2 (-112)) (-5 *1 (-1023 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-682 *4))) (-4 *4 (-362)) (-4 *4 (-1042)) (-5 *2 (-112)) - (-5 *1 (-1023 *4))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-635 (-682 *6))) (-5 *4 (-112)) (-5 *5 (-544)) (-5 *2 (-682 *6)) - (-5 *1 (-1023 *6)) (-4 *6 (-362)) (-4 *6 (-1042)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-635 (-682 *4))) (-5 *2 (-682 *4)) (-5 *1 (-1023 *4)) - (-4 *4 (-362)) (-4 *4 (-1042)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-544)) (-5 *2 (-682 *5)) - (-5 *1 (-1023 *5)) (-4 *5 (-362)) (-4 *5 (-1042))))) + (-12 (-5 *3 (-406 (-562))) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-554)) (-4 *8 (-944 *7 *5 *6)) + (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *9) (|:| |radicand| *9))) + (-5 *1 (-948 *5 *6 *7 *8 *9)) (-5 *4 (-766)) + (-4 *9 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *8)) (-15 -4065 (*8 $)) (-15 -4076 (*8 $)))))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) + (-4 *2 (-1247 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) + (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) + (-4 *2 (-1247 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52)))) + (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1030)) (-5 *1 (-748))))) +(((*1 *1) (-5 *1 (-1258)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-562))) (-5 *5 (-1 (-1148 *4))) (-4 *4 (-362)) + (-4 *4 (-1044)) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1164 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) + (-4 *3 (-362))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1030))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-562)) (-5 *1 (-485 *4)) + (-4 *4 (-1232 *2))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) + (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-869)) (-5 *3 (-639 (-262))) (-5 *1 (-260))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-742))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) + (-4 *2 (-1232 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *4 (-554)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -1732 *4))) (-5 *1 (-964 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-639 + (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 *2)) + (|:| |logand| (-1164 *2))))) + (-5 *4 (-639 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-362)) (-5 *1 (-583 *2))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) + (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4403))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) + (-5 *2 (-639 (-639 (-938 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-639 (-639 (-938 *4)))) (-5 *3 (-112)) (-4 *4 (-1044)) + (-4 *1 (-1126 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-639 (-938 *3)))) (-4 *3 (-1044)) + (-4 *1 (-1126 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-639 (-639 (-639 *4)))) (-5 *3 (-112)) + (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-639 (-639 (-938 *4)))) (-5 *3 (-112)) + (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-639 (-639 (-639 *5)))) (-5 *3 (-639 (-170))) + (-5 *4 (-170)) (-4 *1 (-1126 *5)) (-4 *5 (-1044)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-639 (-639 (-938 *5)))) (-5 *3 (-639 (-170))) + (-5 *4 (-170)) (-4 *1 (-1126 *5)) (-4 *5 (-1044))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-909 *3)) (-4 *3 (-306))))) +(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) +(((*1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1092)) (-4 *2 (-895 *4)) (-5 *1 (-686 *4 *2 *5 *3)) + (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4402))))))) +(((*1 *2) + (-12 (-4 *1 (-348)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-279))) (-5 *1 (-279)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1173))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1092)) + (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) + (-5 *2 (-639 (-1168))) (-5 *1 (-1068 *3 *4 *5)) + (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3))))))) +(((*1 *1) (-5 *1 (-140)))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *6 (-224)) + (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *1) (-5 *1 (-818)))) +(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-766)) (-4 *4 (-306)) (-4 *6 (-1232 *4)) + (-5 *2 (-1256 (-639 *6))) (-5 *1 (-454 *4 *6)) (-5 *5 (-639 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1053)) (-4 *3 (-1192)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-751))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-682 *5))) (-5 *4 (-1253 *5)) (-4 *5 (-306)) - (-4 *5 (-1042)) (-5 *2 (-682 *5)) (-5 *1 (-1023 *5))))) + (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) + (-5 *1 (-331))))) +(((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150)) (-5 *2 (-639 (-1173))) (-5 *1 (-1128))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-682 *5))) (-4 *5 (-306)) (-4 *5 (-1042)) - (-5 *2 (-1253 (-1253 *5))) (-5 *1 (-1023 *5)) (-5 *4 (-1253 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-635 (-682 *4))) (-5 *2 (-682 *4)) (-4 *4 (-1042)) - (-5 *1 (-1023 *4))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1092)) (-4 *5 (-1092)) + (-5 *2 (-1 *5)) (-5 *1 (-677 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1253 (-1253 *4))) (-4 *4 (-1042)) (-5 *2 (-682 *4)) - (-5 *1 (-1023 *4))))) + (-12 (-5 *3 (-1 *5 (-639 *5))) (-4 *5 (-1247 *4)) + (-4 *4 (-38 (-406 (-562)))) + (-5 *2 (-1 (-1148 *4) (-639 (-1148 *4)))) (-5 *1 (-1249 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-895 (-544))) (-5 *4 (-544)) (-5 *2 (-682 *4)) - (-5 *1 (-1022 *5)) (-4 *5 (-1042)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-544))) (-5 *2 (-682 (-544))) (-5 *1 (-1022 *4)) - (-4 *4 (-1042)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-895 (-544)))) (-5 *4 (-544)) (-5 *2 (-635 (-682 *4))) - (-5 *1 (-1022 *5)) (-4 *5 (-1042)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-635 (-544)))) (-5 *2 (-635 (-682 (-544)))) - (-5 *1 (-1022 *4)) (-4 *4 (-1042))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) + (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) + (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) + (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-921)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-921)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-922)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-922)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-639 (-1 (-224) (-224)))) (-5 *3 (-1086 (-224))) + (-5 *1 (-922)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-639 (-1 (-224) (-224)))) (-5 *3 (-1086 (-224))) + (-5 *1 (-922)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-922)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) + (-5 *1 (-922))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *5)) (-5 *4 (-916)) (-4 *5 (-845)) + (-5 *2 (-59 (-639 (-666 *5)))) (-5 *1 (-666 *5))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1207)) (-5 *1 (-868 *3 *2)) (-4 *3 (-1207)))) + ((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) +(((*1 *1) (-5 *1 (-140)))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1118 *4 *3 *5))) (-4 *4 (-38 (-406 (-562)))) + (-4 *4 (-1044)) (-4 *3 (-845)) (-5 *1 (-1118 *4 *3 *5)) + (-4 *5 (-944 *4 (-530 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1201 *4))) (-5 *3 (-1168)) (-5 *1 (-1201 *4)) + (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) + (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) + (-4 *5 (-372 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-639 (-562))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 (-562)) (-14 *5 (-766)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-766)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-766)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-766)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-766)))) + ((*1 *2 *1) + (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-562)) + (-14 *4 (-766)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-244 (-1150))) (-5 *1 (-213 *4)) + (-4 *4 + (-13 (-845) + (-10 -8 (-15 -2343 ((-1150) $ *3)) (-15 -1479 ((-1261) $)) + (-15 -1966 ((-1261) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-984)) (-5 *1 (-213 *3)) + (-4 *3 + (-13 (-845) + (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) + (-15 -1966 ((-1261) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-766)) (-5 *1 (-244 *4)) (-4 *4 (-845)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-845)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-845)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1232 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 *1)) (-4 *1 (-301)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1211)) (-4 *3 (-1232 *2)) + (-4 *4 (-1232 (-406 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-416 *2)) (-4 *2 (-171)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1150)) (-5 *1 (-501)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-628)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-766)) (-5 *1 (-669 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-639 (-562))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-639 (-887 *4))) (-5 *1 (-887 *4)) + (-4 *4 (-1092)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) + (-4 *4 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-916)) (-4 *2 (-362)) + (-5 *1 (-988 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) (-4 *2 (-1044)) + (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) + (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1044)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-916)) (-4 *4 (-1092)) + (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) + (-5 *1 (-1068 *4 *5 *2)) + (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-916)) (-4 *4 (-1092)) + (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) + (-5 *1 (-1069 *4 *5 *2)) + (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-562))) (-4 *1 (-1095 *3 *4 *5 *6 *7)) + (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) + (-4 *7 (-1092)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) + (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)))) + ((*1 *1 *1 *1) (-4 *1 (-1136))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-406 *1)) (-4 *1 (-1232 *2)) (-4 *2 (-1044)) + (-4 *2 (-362)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-635 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-1022 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-635 (-682 *3))) (-4 *3 (-1042)) (-5 *1 (-1022 *3))))) + (-12 (-5 *2 (-406 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)) + (-4 *3 (-554)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-467))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-682 *4)) (-5 *3 (-912)) (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-635 (-682 *4))) (-5 *3 (-912)) (-4 *4 (-1042)) - (-5 *1 (-1022 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-682 (-939 *4))) (-5 *1 (-1022 *4)) - (-4 *4 (-1042))))) + (|partial| -12 (-5 *3 (-766)) (-4 *4 (-13 (-554) (-146))) + (-5 *1 (-1226 *4 *2)) (-4 *2 (-1232 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) + (-4 *3 (-1092))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-388))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-682 *4)) (-5 *3 (-912)) (|has| *4 (-6 (-4402 "*"))) - (-4 *4 (-1042)) (-5 *1 (-1022 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-635 (-682 *4))) (-5 *3 (-912)) (|has| *4 (-6 (-4402 "*"))) - (-4 *4 (-1042)) (-5 *1 (-1022 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-682 (-313 (-544))))) - (-5 *1 (-1021))))) -(((*1 *2 *2) (-12 (-5 *2 (-635 (-682 (-313 (-544))))) (-5 *1 (-1021))))) -(((*1 *2 *2) (-12 (-5 *2 (-682 (-313 (-544)))) (-5 *1 (-1021))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-682 (-406 (-939 (-544))))) - (-5 *2 (-682 (-313 (-544)))) (-5 *1 (-1021))))) + (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) + (-5 *2 (-838 *4)) (-5 *1 (-312 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) + (-5 *2 (-838 *4)) (-5 *1 (-1242 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) + (-14 *6 *4)))) +(((*1 *1) (-5 *1 (-290)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-240)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-639 (-1150))) (-5 *3 (-562)) (-5 *4 (-1150)) + (-5 *1 (-240)))) + ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044))))) (((*1 *2 *3) - (-12 (-5 *3 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-313 (-544)))) - (-5 *1 (-1021))))) + (-12 (-5 *3 (-1150)) (-5 *2 (-639 (-1173))) (-5 *1 (-875))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-682 (-406 (-939 (-544))))) (-5 *2 (-635 (-682 (-313 (-544))))) - (-5 *1 (-1021)) (-5 *3 (-313 (-544)))))) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1) (-5 *1 (-1257)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-947 (-562))) (-5 *3 (-1168)) + (-5 *4 (-1086 (-406 (-562)))) (-5 *1 (-30))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1148 *3))) (-5 *1 (-1148 *3)) (-4 *3 (-1207))))) (((*1 *2 *3) - (-12 (-5 *3 (-682 (-406 (-939 (-544))))) - (-5 *2 - (-635 - (-2 (|:| |radval| (-313 (-544))) (|:| |radmult| (-544)) - (|:| |radvect| (-635 (-682 (-313 (-544)))))))) - (-5 *1 (-1021))))) -(((*1 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1019 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1204))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1018 *3 *2)) (-4 *2 (-651 *3)))) + (|partial| -12 (-5 *3 (-947 (-168 *4))) (-4 *4 (-171)) + (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3667 *3) (|:| -2881 (-635 *5)))) - (-5 *1 (-1018 *5 *3)) (-5 *4 (-635 *5)) (-4 *3 (-651 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1052 (-1017 *4) (-1160 (-1017 *4)))) (-5 *3 (-857)) - (-5 *1 (-1017 *4)) (-4 *4 (-13 (-842) (-362) (-1013)))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1052 (-1017 *3) (-1160 (-1017 *3)))) - (-5 *1 (-1017 *3)) (-4 *3 (-13 (-842) (-362) (-1013)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) - (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))))) + (|partial| -12 (-5 *3 (-947 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-171)) + (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) + (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) - (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) - (-5 *4 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) + (|partial| -12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) + (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) + (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) - (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) (-5 *4 (-406 (-544))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *5) (|:| -3522 *5)))) - (-5 *1 (-1014 *3)) (-4 *3 (-1229 (-544))) - (-5 *4 (-2 (|:| -3523 *5) (|:| -3522 *5))))) + (|partial| -12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) + (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) - (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544)))))) + (|partial| -12 (-5 *3 (-406 (-947 (-168 *4)))) (-4 *4 (-554)) + (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) - (-5 *1 (-1015 *3)) (-4 *3 (-1229 (-406 (-544)))) - (-5 *4 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))))) + (|partial| -12 (-5 *3 (-406 (-947 (-168 *5)))) (-5 *4 (-916)) + (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) + (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) + (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *4) (|:| -3522 *4)))) - (-5 *1 (-1015 *3)) (-4 *3 (-1229 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-406 (-544))) (-5 *2 (-635 (-2 (|:| -3523 *5) (|:| -3522 *5)))) - (-5 *1 (-1015 *3)) (-4 *3 (-1229 *5)) - (-5 *4 (-2 (|:| -3523 *5) (|:| -3522 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) - (-5 *2 (-635 (-406 (-544)))) (-5 *1 (-1014 *4)) (-4 *4 (-1229 (-544)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544))))) - (-5 *2 (-406 (-544))) (-5 *1 (-1014 *4)) (-4 *4 (-1229 (-544)))))) + (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) + (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) + (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-554)) (-4 *4 (-845)) + (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-554)) + (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) + (-5 *1 (-780 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-467)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1257)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1258))))) (((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-420 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-765)) (-5 *1 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-113)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *4)) - (-4 *4 (-420 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-113)) (-5 *1 (-162)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *4)) - (-4 *4 (-13 (-420 *3) (-995))))) - ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-296 *3)) (-4 *3 (-297)))) - ((*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *4 (-844)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *4)) - (-4 *4 (-420 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) - ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *4)) - (-4 *4 (-13 (-420 *3) (-995) (-1190))))) - ((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-1012))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1253 *6)) (-5 *4 (-1253 (-544))) (-5 *5 (-544)) (-4 *6 (-1091)) - (-5 *2 (-1 *6)) (-5 *1 (-1010 *6))))) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 (-2 (|:| -3806 *4) (|:| -1605 (-544))))) (-4 *4 (-1091)) - (-5 *2 (-1 *4)) (-5 *1 (-1010 *4))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) - (-5 *2 (-635 (-406 *5))) (-5 *1 (-1009 *4 *5)) (-5 *3 (-406 *5))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6)) - (|:| |c2| (-406 *6)) (|:| -3479 *6))) - (-5 *1 (-1009 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1229 *6)) - (-4 *6 (-13 (-362) (-146) (-1031 *4))) (-5 *4 (-544)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3667 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1008 *6 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) - (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1008 *4 *5)) (-5 *3 (-406 *5))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -3479 *6))) - (-5 *1 (-1008 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1166)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-635 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1190) (-27) (-420 *8))) - (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-544)) - (-5 *2 (-635 *4)) (-5 *1 (-1007 *8 *4))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1166)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-635 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1190) (-27) (-420 *8))) - (-4 *8 (-13 (-450) (-844) (-146) (-1031 *3) (-634 *3))) (-5 *3 (-544)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3522 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1006 *8 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544)))) - ((*1 *1 *1) (-4 *1 (-995))) ((*1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-1005)))) - ((*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-4 *1 (-1005)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-912)))) - ((*1 *1 *1) (-4 *1 (-1005)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1005)) (-5 *2 (-857))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1160 *1)) (-4 *1 (-1005))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1160 *1)) (-4 *1 (-1005))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-857))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-857))))) -(((*1 *2 *1) (-12 (-4 *3 (-1204)) (-5 *2 (-635 *1)) (-4 *1 (-1003 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-635 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-5 *2 (-544))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-635 *1)) (|has| *1 (-6 -4401)) (-4 *1 (-1003 *3)) - (-4 *3 (-1204))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-1003 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) - (-5 *2 (-406 (-544))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-404 *3)) (-4 *3 (-543)) - (-4 *3 (-554)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-543)) (-5 *2 (-406 (-544))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) - (-5 *2 (-406 (-544))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-826 *3)) (-4 *3 (-543)) - (-4 *3 (-1091)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-836 *3)) (-4 *3 (-543)) - (-4 *3 (-1091)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) - (-5 *2 (-406 (-544))))) + (-12 (|has| *6 (-6 -4403)) (-4 *4 (-362)) (-4 *5 (-372 *4)) + (-4 *6 (-372 *4)) (-5 *2 (-639 *6)) (-5 *1 (-520 *4 *5 *6 *3)) + (-4 *3 (-681 *4 *5 *6)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-406 (-544))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554)))) - ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) + (-12 (|has| *9 (-6 -4403)) (-4 *4 (-554)) (-4 *5 (-372 *4)) + (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *8 (-372 *7)) + (-4 *9 (-372 *7)) (-5 *2 (-639 *6)) + (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-681 *4 *5 *6)) + (-4 *10 (-681 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) - ((*1 *2 *1) - (-12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-112)))) + (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-639 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1001 *3)) (-4 *3 (-1031 (-406 (-544))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) + (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) + (-4 *6 (-372 *4)) (-5 *2 (-639 *6)) (-5 *1 (-682 *4 *5 *6 *3)) + (-4 *3 (-681 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-406 (-544))) (-5 *1 (-404 *3)) (-4 *3 (-543)) (-4 *3 (-554)))) - ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-406 (-544))))) - ((*1 *2 *1) - (-12 (-4 *1 (-790 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) - ((*1 *2 *1) - (-12 (-5 *2 (-406 (-544))) (-5 *1 (-826 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) - ((*1 *2 *1) - (-12 (-5 *2 (-406 (-544))) (-5 *1 (-836 *3)) (-4 *3 (-543)) (-4 *3 (-1091)))) - ((*1 *2 *1) - (-12 (-4 *1 (-991 *3)) (-4 *3 (-171)) (-4 *3 (-543)) (-5 *2 (-406 (-544))))) - ((*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-1001 *3)) (-4 *3 (-1031 *2))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999))))) -(((*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-999))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999)))) - ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-999))))) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) + (-5 *2 (-639 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-544))) (-5 *4 (-544)) (-5 *2 (-51)) (-5 *1 (-998))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-997 *3)) (-14 *3 (-544))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-404 *5)) (-4 *5 (-554)) - (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *5) (|:| |radicand| (-635 *5)))) - (-5 *1 (-319 *5)) (-5 *4 (-765)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-995)) (-5 *2 (-544))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-993 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) - ((*1 *1 *1 *1) (-4 *1 (-471))) - ((*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) - ((*1 *2 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-876)))) - ((*1 *1 *1) (-5 *1 (-964))) - ((*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-991 *2)) (-4 *2 (-171))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1204))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1132 *3 *4)) (-14 *3 (-912)) (-4 *4 (-362)) - (-5 *1 (-986 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) - (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1042)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-606 *1))) - (-4 *1 (-420 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493)))) - ((*1 *2 *1) - (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-614 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-720) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-171)) (-4 *2 (-711 *3)) (-5 *1 (-645 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-720) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554))))) -(((*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-984 *2)) (-4 *4 (-1229 *3)) (-4 *2 (-306)) - (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1031 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-844)) (-5 *2 (-1115 *3 (-606 *1))) - (-4 *1 (-420 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115 (-544) (-606 (-493)))) (-5 *1 (-493)))) - ((*1 *2 *1) - (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) - (-5 *1 (-614 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-720) *4)) - (-5 *1 (-645 *3 *4 *2)) (-4 *3 (-711 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554))))) -(((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-1042)))) - ((*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554))))) -(((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844)) (-4 *2 (-554)))) - ((*1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-554))))) -(((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349)))) - ((*1 *1) (-4 *1 (-367))) - ((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) - ((*1 *1 *1) (-4 *1 (-543))) ((*1 *1) (-4 *1 (-543))) - ((*1 *1 *1) (-5 *1 (-544))) ((*1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-5 *2 (-895 *4)) (-5 *1 (-898 *4)) (-4 *4 (-1091)))) - ((*1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-543)) (-4 *2 (-554))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-979 (-406 (-544)) (-858 *3) (-238 *4 (-765)) (-246 *3 (-406 (-544))))) - (-14 *3 (-635 (-1166))) (-14 *4 (-765)) (-5 *1 (-980 *3 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-635 *3)) (-4 *3 (-943 *4 *6 *5)) (-4 *4 (-450)) (-4 *5 (-844)) - (-4 *6 (-787)) (-5 *1 (-979 *4 *5 *6 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-450)) (-4 *4 (-844)) - (-4 *5 (-787)) (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4))))) + (-12 (-5 *3 (-639 (-838 (-224)))) (-5 *4 (-224)) (-5 *2 (-639 *4)) + (-5 *1 (-266))))) (((*1 *2 *1) - (-12 (-4 *3 (-450)) (-4 *4 (-844)) (-4 *5 (-787)) (-5 *2 (-635 *6)) - (-5 *1 (-979 *3 *4 *5 *6)) (-4 *6 (-943 *3 *5 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) + (-4 *4 (-1044))))) (((*1 *2 *1) - (-12 (-4 *2 (-943 *3 *5 *4)) (-5 *1 (-979 *3 *4 *5 *2)) (-4 *3 (-450)) - (-4 *4 (-844)) (-4 *5 (-787))))) -(((*1 *1 *1) - (-12 (-4 *2 (-450)) (-4 *3 (-844)) (-4 *4 (-787)) (-5 *1 (-979 *2 *3 *4 *5)) - (-4 *5 (-943 *2 *4 *3))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1229 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-978 *4 *2 *3 *5)) - (-4 *4 (-349)) (-4 *5 (-718 *2 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) - (-4 *5 (-554)) (-5 *1 (-726 *4 *3 *5 *2)) - (-4 *2 (-943 (-406 (-939 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *5 (-787)) - (-4 *3 - (-13 (-844) - (-10 -8 (-15 -4377 ((-1166) $)) - (-15 -4238 ((-3 $ #1="failed") (-1166)))))) - (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-943 (-939 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-635 *6)) - (-4 *6 - (-13 (-844) - (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) - (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) - (-4 *2 (-943 (-939 *4) *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-787)) (-4 *3 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) - (-4 *5 (-554)) (-5 *1 (-726 *4 *3 *5 *2)) - (-4 *2 (-943 (-406 (-939 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *5 (-787)) - (-4 *3 - (-13 (-844) - (-10 -8 (-15 -4377 ((-1166) $)) - (-15 -4238 ((-3 $ #1="failed") (-1166)))))) - (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-943 (-939 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-635 *6)) - (-4 *6 - (-13 (-844) - (-10 -8 (-15 -4377 ((-1166) $)) (-15 -4238 ((-3 $ #1#) (-1166)))))) - (-4 *4 (-1042)) (-4 *5 (-787)) (-5 *1 (-977 *4 *5 *6 *2)) - (-4 *2 (-943 (-939 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-765)) (-4 *1 (-976 *2)) (-4 *2 (-1190))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-867)))) - ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-867)))) - ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-156)))) - ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1042))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) - (-5 *2 (-635 (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5))))) (-5 *1 (-971 *5)) - (-5 *3 (-682 *5)) (-5 *4 (-1253 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-912)) (-5 *1 (-692)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-682 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) - (-5 *1 (-971 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) - (-5 *2 (-2 (|:| R (-682 *6)) (|:| A (-682 *6)) (|:| |Ainv| (-682 *6)))) - (-5 *1 (-971 *6)) (-5 *3 (-682 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) - (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) - (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) - (-4 *3 (-554)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) - (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) - (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) - (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-450)) (-4 *3 (-554)) - (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-450)) - (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-450)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) - (-5 *2 (-635 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6))))) + (|partial| -12 (-5 *2 (-1054 (-1019 *3) (-1164 (-1019 *3)))) + (-5 *1 (-1019 *3)) (-4 *3 (-13 (-843) (-362) (-1017)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-635 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *1 (-970 *5 *6 *7 *8))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-635 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1056 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-787)) - (-4 *8 (-844)) (-5 *1 (-970 *6 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -3728 (-635 *7)))) - (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) + (-12 (-5 *3 (-639 (-608 *6))) (-5 *4 (-1168)) (-5 *2 (-608 *6)) + (-4 *6 (-429 *5)) (-4 *5 (-845)) (-5 *1 (-571 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-635 *7)) (-5 *3 (-112)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) - (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) - (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6))))) + (|partial| -12 (-5 *2 (-639 (-1164 *7))) (-5 *3 (-1164 *7)) + (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-904)) (-4 *5 (-788)) + (-4 *6 (-845)) (-5 *1 (-901 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-639 (-1164 *5))) (-5 *3 (-1164 *5)) + (-4 *5 (-1232 *4)) (-4 *4 (-904)) (-5 *1 (-902 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) - (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) - ((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) + (-12 (-4 *4 (-1044)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3)) + (-4 *3 (-1232 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-655)))) +(((*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-5 *1 (-329)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-688))) (-5 *1 (-329)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-695))) (-5 *1 (-329)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-693))) (-5 *1 (-329)))) + ((*1 *1) (-5 *1 (-329)))) +(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) - (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) - (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) - (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-1056 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-635 *7)) (|:| |badPols| (-635 *7)))) - (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-635 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) - (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) - (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-1 (-112) *8))) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) - (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) - (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1056 *5 *6 *7)) (-4 *5 (-554)) - (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *2 (-2 (|:| |goodPols| (-635 *8)) (|:| |badPols| (-635 *8)))) - (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-635 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-1056 *5 *6 *7)) - (-4 *5 (-554)) (-4 *6 (-787)) (-4 *7 (-844)) (-5 *2 (-112)) - (-5 *1 (-970 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-112)) (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3)) - (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-635 *3)) (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *1 (-970 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 *10)) + (-5 *1 (-620 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1064 *5 *6 *7 *8)) + (-4 *10 (-1101 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) + (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) + (-5 *1 (-624 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) + (-14 *6 (-639 (-1168))) + (-5 *2 + (-639 (-1138 *5 (-530 (-859 *6)) (-859 *6) (-775 *5 (-859 *6))))) + (-5 *1 (-624 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) + (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) + (-5 *1 (-1041 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-1064 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-1200 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1168)) (-5 *3 (-1096)) (-5 *1 (-290))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-304))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *1 *1 *1) (-4 *1 (-655)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-635 *7) (-635 *7))) (-5 *2 (-635 *7)) - (-4 *7 (-1056 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) - (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-635 *3)) - (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1056 *4 *5 *6))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) + (-4 *2 (-650 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1207)) (-5 *2 (-766))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-639 (-947 *4))) (-5 *3 (-639 (-1168))) (-4 *4 (-451)) + (-5 *1 (-913 *4))))) +(((*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-535))) ((*1 *1) (-4 *1 (-717))) + ((*1 *1) (-4 *1 (-721))) + ((*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) + ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845))))) (((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-635 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) - (-4 *6 (-1056 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) - (-4 *5 (-1056 *3 *4 *2))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) - (-4 *5 (-1056 *3 *4 *2))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) - (-4 *5 (-1056 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-371 *3)) (-4 *3 (-1204)))) - ((*1 *2 *2) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) (-4 *6 (-1056 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3515 *1) (|:| |upper| *1))) - (-4 *1 (-969 *4 *5 *3 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *3 (-1056 *4 *5 *6)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-635 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-635 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554))))) -(((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1056 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-635 (-635 (-936 (-224))))))) - ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-635 (-635 (-936 (-224)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1079 (-224))))) - ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224)))))) -(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1079 (-224))))) - ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224)))))) -(((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1079 (-224)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-1091)))) - ((*1 *2 *1) - (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *6 (-237 (-4364 *3) (-765))) - (-14 *7 - (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6)) - (-2 (|:| -2535 *5) (|:| -2536 *6)))) - (-5 *2 (-707 *5 *6 *7)) (-5 *1 (-459 *3 *4 *5 *6 *7 *8)) (-4 *5 (-844)) - (-4 *8 (-943 *4 *6 (-858 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-720)) (-4 *2 (-844)) (-5 *1 (-729 *3 *2)) (-4 *3 (-1042)))) - ((*1 *1 *1) - (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-635 (-912))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-912)) - (-4 *2 (-362)) (-14 *5 (-986 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-707 *5 *6 *7)) (-4 *5 (-844)) (-4 *6 (-237 (-4364 *4) (-765))) - (-14 *7 - (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *6)) - (-2 (|:| -2535 *5) (|:| -2536 *6)))) - (-14 *4 (-635 (-1166))) (-4 *2 (-171)) (-5 *1 (-459 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-943 *2 *6 (-858 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-844)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-544)) (-4 *2 (-554)) (-5 *1 (-618 *2 *4)) (-4 *4 (-1229 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-702 *2)) (-4 *2 (-1042)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-729 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-720)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 *5)) (-5 *3 (-635 (-765))) (-4 *1 (-734 *4 *5)) - (-4 *4 (-1042)) (-4 *5 (-844)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-765)) (-4 *1 (-734 *4 *2)) (-4 *4 (-1042)) (-4 *2 (-844)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-846 *2)) (-4 *2 (-1042)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 (-765))) (-4 *1 (-943 *4 *5 *6)) - (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *6 (-844)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-765)) (-4 *1 (-943 *4 *5 *2)) (-4 *4 (-1042)) (-4 *5 (-787)) - (-4 *2 (-844)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 *6)) (-5 *3 (-635 *5)) (-4 *1 (-966 *4 *5 *6)) - (-4 *4 (-1042)) (-4 *5 (-786)) (-4 *6 (-844)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1042)) (-4 *3 (-786)) (-4 *2 (-844))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1042)))) - ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-786)) (-4 *5 (-844)) - (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) - ((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544)))) - ((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1) (-4 *1 (-863 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-786)) (-4 *4 (-844))))) -(((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-964))))) -(((*1 *2 *3) - (-12 (-5 *2 (-635 (-635 (-544)))) (-5 *1 (-964)) (-5 *3 (-635 (-544)))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-964))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4163 *4))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4163 *4))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-765)) (-4 *3 (-554)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1229 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-765)) (-4 *2 (-554)) (-5 *1 (-962 *2 *4)) (-4 *4 (-1229 *2))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-306)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) - (-5 *1 (-385 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2124 (-765)) (|:| -3285 (-765)))) (-5 *1 (-765)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3261 *4))) (-5 *1 (-962 *4 *3)) - (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3261 *4))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-554)) (-4 *2 (-450)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1229 *2))))) + (-12 (-4 *3 (-1232 (-406 (-562)))) (-5 *1 (-908 *3 *2)) + (-4 *2 (-1232 (-406 *3)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-635 (-765))) (-5 *1 (-962 *4 *3)) - (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-962 *4 *3)) - (-4 *3 (-1229 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4164 *4))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) + (-12 (-4 *4 (-1044)) (-4 *2 (-681 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) + (-4 *6 (-372 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1044)) (-4 *4 (-1232 *3)) (-5 *1 (-163 *3 *4 *2)) + (-4 *2 (-1232 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4164 *4))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3545 *3))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3545 *3))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3545 *3))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-765)) (-4 *5 (-554)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) - (-4 *3 (-1229 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-765)) (-4 *5 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-554)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-765)) (-4 *5 (-554)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) - (-4 *3 (-1229 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-765)) (-4 *5 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-962 *5 *3)) (-4 *3 (-1229 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-554)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4163 *4))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4163 *4))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4163 *4))) - (-5 *1 (-962 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *1) - (-12 (-4 *1 (-403)) (-3726 (|has| *1 (-6 -4391))) - (-3726 (|has| *1 (-6 -4383))))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-844)))) - ((*1 *1) (-4 *1 (-838))) ((*1 *1 *1 *1) (-4 *1 (-844))) - ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-844))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-4 *1 (-960)))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-4 *1 (-960)))) -(((*1 *1 *1 *1) (-4 *1 (-960)))) -(((*1 *1 *1 *1) (-4 *1 (-960)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *1 *1) (-12 (-5 *1 (-959 *2)) (-4 *2 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) - (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) - (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) - (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1) - (-12 (-5 *2 (-866 (-959 *3) (-959 *3))) (-5 *1 (-959 *3)) (-4 *3 (-960))))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-767)) (-5 *1 (-113)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1093)) (-5 *1 (-958))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-4 *2 (-1091)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-857)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1259)) (-5 *1 (-956))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-635 *3)) (-5 *1 (-955 *3)) (-4 *3 (-543))))) -(((*1 *2 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-543))))) -(((*1 *2 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-543))))) -(((*1 *1) (-4 *1 (-349))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 *5)) (-4 *5 (-420 *4)) (-4 *4 (-13 (-554) (-844) (-146))) + (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-14 *5 (-639 (-1168))) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-635 (-1160 *5))) - (|:| |prim| (-1160 *5)))) - (-5 *1 (-431 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-554) (-844) (-146))) + (-639 (-2 (|:| -1646 (-1164 *4)) (|:| -3593 (-639 (-947 *4)))))) + (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1160 *3)) (|:| |pol2| (-1160 *3)) - (|:| |prim| (-1160 *3)))) - (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-420 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-939 *5)) (-5 *4 (-1166)) (-4 *5 (-13 (-362) (-146))) + (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) + (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 - (-2 (|:| |coef1| (-544)) (|:| |coef2| (-544)) (|:| |prim| (-1160 *5)))) - (-5 *1 (-954 *5)))) + (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) + (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) - (-4 *5 (-13 (-362) (-146))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 - (-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 *5))) - (|:| |prim| (-1160 *5)))) - (-5 *1 (-954 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-5 *5 (-1166)) - (-4 *6 (-13 (-362) (-146))) + (-639 (-2 (|:| -1646 (-1164 *5)) (|:| -3593 (-639 (-947 *5)))))) + (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) + (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 - (-2 (|:| -4361 (-635 (-544))) (|:| |poly| (-635 (-1160 *6))) - (|:| |prim| (-1160 *6)))) - (-5 *1 (-954 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1166)) (-5 *1 (-580 *2)) (-4 *2 (-1031 *3)) (-4 *2 (-362)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-362)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-624 *4 *2)) - (-4 *2 (-13 (-420 *4) (-995) (-1190))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-420 *4) (-995) (-1190))) - (-4 *4 (-13 (-844) (-554))) (-5 *1 (-624 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-1166)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-953))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-912)) (-4 *5 (-554)) (-5 *2 (-682 *5)) - (-5 *1 (-950 *5 *3)) (-4 *3 (-651 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-947))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) (-4 *3 (-943 *7 *5 *6)) - (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| (-635 *3)))) - (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-765)) - (-4 *8 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *3)) (-15 -3381 (*3 $)) (-15 -3380 (*3 $)))))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) - (-4 *8 (-943 *7 *5 *6)) - (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| *3))) - (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-765)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *8)) (-15 -3381 (*8 $)) (-15 -3380 (*8 $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-544))) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-554)) - (-4 *8 (-943 *7 *5 *6)) - (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *9) (|:| |radicand| *9))) - (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-765)) - (-4 *9 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *8)) (-15 -3381 (*8 $)) (-15 -3380 (*8 $)))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-787)) (-4 *6 (-844)) (-4 *3 (-554)) (-4 *7 (-943 *3 *5 *6)) - (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *8) (|:| |radicand| *8))) - (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-765)) - (-4 *8 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))) + (-639 (-2 (|:| -1646 (-1164 *4)) (|:| -3593 (-639 (-947 *4)))))) + (-5 *1 (-1282 *4 *5 *6)) (-5 *3 (-639 (-947 *4))) + (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168)))))) +(((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-844)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2536 (-544)))) (-4 *1 (-420 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-883 *3)) (|:| -2536 (-883 *3)))) - (-5 *1 (-883 *3)) (-4 *3 (-1091)))) + (|partial| -12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) + (-4 *2 (-1216 *3))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-535))) + ((*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *1) (-4 *1 (-348)))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *1) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) + (|has| *2 (-6 (-4404 "*"))) (-4 *2 (-1044)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) - (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2536 (-544)))) - (-5 *1 (-944 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1166)) (-4 *4 (-1042)) (-4 *4 (-844)) - (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1042)) (-4 *4 (-844)) - (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) - (-5 *2 (-2 (|:| |var| (-606 *1)) (|:| -2536 (-544)))) (-4 *1 (-420 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-883 *3)) (|:| -2536 (-765)))) - (-5 *1 (-883 *3)) (-4 *3 (-1091)))) + (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) + (-5 *1 (-682 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *2 (-2 (|:| |var| *5) (|:| -2536 (-765)))))) + (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) + (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4404 "*"))) (-4 *2 (-1044))))) +(((*1 *2 *3) + (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) + (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-944 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1092)) (-4 *5 (-1092)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-677 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-562)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) + (-4 *3 (-1232 *4)) (-5 *2 (-562)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) - (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2536 (-544)))) - (-5 *1 (-944 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-844)) (-5 *2 (-635 *1)) - (-4 *1 (-420 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) + (|partial| -12 + (-4 *4 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) + (-5 *2 (-562)) (-5 *1 (-1108 *4 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-838 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) + (-5 *2 (-562)) (-5 *1 (-1108 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-1150)) + (-4 *6 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) + (-5 *2 (-562)) (-5 *1 (-1108 *6 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *6))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) - (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-944 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) (-5 *2 (-635 *1)) - (-4 *1 (-420 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-635 *1)) (-4 *1 (-943 *3 *4 *5)))) + (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-451)) (-5 *2 (-562)) + (-5 *1 (-1109 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-838 (-406 (-947 *6)))) + (-5 *3 (-406 (-947 *6))) (-4 *6 (-451)) (-5 *2 (-562)) + (-5 *1 (-1109 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-406 (-947 *6))) (-5 *4 (-1168)) + (-5 *5 (-1150)) (-4 *6 (-451)) (-5 *2 (-562)) (-5 *1 (-1109 *6)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1042)) - (-4 *7 (-943 *6 *4 *5)) (-5 *2 (-635 *3)) (-5 *1 (-944 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-635 *1)) (-4 *1 (-383 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-635 (-729 *3 *4))) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) - (-4 *4 (-720)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) - (-4 *1 (-943 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1042)) (-4 *2 (-786)))) - ((*1 *2 *1) (-12 (-4 *1 (-702 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1042)) (-5 *2 (-765)))) + (|partial| -12 (-5 *2 (-562)) (-5 *1 (-1189 *3)) (-4 *3 (-1044))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -2797)) (-5 *2 (-112)) (-5 *1 (-613)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-635 (-765))))) + (-12 (-5 *3 (|[\|\|]| -4378)) (-5 *2 (-112)) (-5 *1 (-613)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-943 *4 *5 *3)) (-4 *4 (-1042)) (-4 *5 (-787)) (-4 *3 (-844)) - (-5 *2 (-765))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *6)) (-4 *1 (-943 *4 *5 *6)) (-4 *4 (-1042)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-765)))) - ((*1 *2 *1) - (-12 (-4 *1 (-943 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-765))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *1)) - (-4 *1 (-943 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)) (-4 *2 (-450)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-1229 (-544))) (-5 *2 (-635 (-544))) - (-5 *1 (-484 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-450)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-943 *3 *4 *2)) (-4 *3 (-1042)) (-4 *4 (-787)) (-4 *2 (-844)) - (-4 *3 (-450))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-635 *5)) (-5 *4 (-544)) (-4 *5 (-842)) (-4 *5 (-362)) - (-5 *2 (-765)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1229 *5))))) + (-12 (-5 *3 (|[\|\|]| -1615)) (-5 *2 (-112)) (-5 *1 (-613)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -1918)) (-5 *2 (-112)) (-5 *1 (-685 *4)) + (-4 *4 (-609 (-857))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-609 (-857))) (-5 *2 (-112)) + (-5 *1 (-685 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1150))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-505))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-589))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-477))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-965))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-665))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-675))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1266))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-670))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1150))) (-5 *2 (-112)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-112)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1266))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-746))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-528)))) + ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-528))))) +(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) + ((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-842)) (-4 *4 (-362)) (-5 *2 (-765)) - (-5 *1 (-938 *4 *5)) (-4 *5 (-1229 *4))))) + (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) + (-4 *4 (-348))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-746))))) +(((*1 *2 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329))))) (((*1 *2 *3) - (-12 (-4 *2 (-362)) (-4 *2 (-842)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1229 *2))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-788)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) + (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) + (-5 *2 (-2 (|:| -1450 (-639 *6)) (|:| -3316 (-639 *6))))))) +(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1112)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-971 *4 *5 *6 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) (((*1 *2 *3) - (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-938 *4 *3)) - (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-362)) (-5 *2 (-635 *3)) (-5 *1 (-938 *4 *3)) - (-4 *3 (-1229 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939 *5)) (-4 *5 (-1042)) (-5 *2 (-246 *4 *5)) - (-5 *1 (-937 *4 *5)) (-14 *4 (-635 (-1166)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) - (-5 *2 (-939 *5)) (-5 *1 (-937 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) - (-5 *2 (-939 *5)) (-5 *1 (-937 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939 *5)) (-4 *5 (-1042)) (-5 *2 (-479 *4 *5)) - (-5 *1 (-937 *4 *5)) (-14 *4 (-635 (-1166)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-479 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) - (-5 *2 (-246 *4 *5)) (-5 *1 (-937 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-1042)) - (-5 *2 (-479 *4 *5)) (-5 *1 (-937 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) - ((*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544))))) -(((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544))))) -(((*1 *2 *3) (-12 (-5 *3 (-1160 (-544))) (-5 *2 (-544)) (-5 *1 (-935))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559)))) - ((*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544))))) -(((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-190)) (-5 *3 (-544)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-171)))) - ((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) - ((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) - ((*1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *1 (-935)) (-5 *3 (-544))))) -(((*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-559)) (-5 *3 (-544)))) - ((*1 *2 *3) (-12 (-5 *2 (-1160 (-406 (-544)))) (-5 *1 (-935)) (-5 *3 (-544))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-883 *6))) - (-5 *5 (-1 (-881 *6 *8) *8 (-883 *6) (-881 *6 *8))) (-4 *6 (-1091)) - (-4 *8 (-13 (-1042) (-609 (-883 *6)) (-1031 *7))) (-5 *2 (-881 *6 *8)) - (-4 *7 (-13 (-1042) (-844))) (-5 *1 (-934 *6 *7 *8))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-881 *5 *3)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *3 (-165 *6)) - (-4 (-939 *6) (-879 *5)) (-4 *6 (-13 (-879 *5) (-171))) - (-5 *1 (-177 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-881 *4 *1)) (-5 *3 (-883 *4)) (-4 *1 (-879 *4)) - (-4 *4 (-1091)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-881 *5 *6)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) - (-4 *6 (-13 (-1091) (-1031 *3))) (-4 *3 (-879 *5)) (-5 *1 (-924 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) - (-4 *3 (-13 (-420 *6) (-609 *4) (-879 *5) (-1031 (-606 $)))) - (-5 *4 (-883 *5)) (-4 *6 (-13 (-554) (-844) (-879 *5))) - (-5 *1 (-925 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-881 (-544) *3)) (-5 *4 (-883 (-544))) (-4 *3 (-543)) - (-5 *1 (-926 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-881 *5 *6)) (-5 *3 (-606 *6)) (-4 *5 (-1091)) - (-4 *6 (-13 (-844) (-1031 (-606 $)) (-609 *4) (-879 *5))) (-5 *4 (-883 *5)) - (-5 *1 (-927 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-878 *5 *6 *3)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) - (-4 *6 (-879 *5)) (-4 *3 (-659 *6)) (-5 *1 (-928 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-881 *6 *3) *8 (-883 *6) (-881 *6 *3))) (-4 *8 (-844)) - (-5 *2 (-881 *6 *3)) (-5 *4 (-883 *6)) (-4 *6 (-1091)) - (-4 *3 (-13 (-943 *9 *7 *8) (-609 *4))) (-4 *7 (-787)) - (-4 *9 (-13 (-1042) (-844) (-879 *6))) (-5 *1 (-929 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) - (-4 *3 (-13 (-943 *8 *6 *7) (-609 *4))) (-5 *4 (-883 *5)) (-4 *7 (-879 *5)) - (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-13 (-1042) (-844) (-879 *5))) - (-5 *1 (-929 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-881 *5 *3)) (-4 *5 (-1091)) (-4 *3 (-984 *6)) - (-4 *6 (-13 (-554) (-879 *5) (-609 *4))) (-5 *4 (-883 *5)) - (-5 *1 (-932 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-881 *5 (-1166))) (-5 *3 (-1166)) (-5 *4 (-883 *5)) - (-4 *5 (-1091)) (-5 *1 (-933 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-635 (-883 *7))) (-5 *5 (-1 *9 (-635 *9))) - (-5 *6 (-1 (-881 *7 *9) *9 (-883 *7) (-881 *7 *9))) (-4 *7 (-1091)) - (-4 *9 (-13 (-1042) (-609 (-883 *7)) (-1031 *8))) (-5 *2 (-881 *7 *9)) - (-5 *3 (-635 *9)) (-4 *8 (-13 (-1042) (-844))) (-5 *1 (-934 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1091) (-1031 *5))) - (-4 *5 (-879 *4)) (-4 *4 (-1091)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-924 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) - ((*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) - ((*1 *2 *2) (-12 (-4 *3 (-844)) (-5 *1 (-923 *3 *2)) (-4 *2 (-420 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-113)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-1148)) (-5 *2 (-313 (-544))) (-5 *1 (-922)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1148)) (-4 *4 (-844)) (-5 *1 (-923 *4 *2)) (-4 *2 (-420 *4))))) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-1044)) (-4 *4 (-171)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)) + (-4 *3 (-171))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-562)) (-4 *6 (-362)) (-4 *6 (-367)) + (-4 *6 (-1044)) (-5 *2 (-639 (-639 (-683 *6)))) (-5 *1 (-1024 *6)) + (-5 *3 (-639 (-683 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1044)) + (-5 *2 (-639 (-639 (-683 *4)))) (-5 *1 (-1024 *4)) + (-5 *3 (-639 (-683 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)) + (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) + (-5 *3 (-639 (-683 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-916)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)) + (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) + (-5 *3 (-639 (-683 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97))))) +(((*1 *1 *1) + (-12 (-4 *2 (-348)) (-4 *2 (-1044)) (-5 *1 (-707 *2 *3)) + (-4 *3 (-1232 *2))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) + (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-972 *3 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) + ((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1) (-4 *1 (-864 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-787)) + (-4 *4 (-845))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *1) (-4 *1 (-962)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-562)) (|has| *1 (-6 -4403)) (-4 *1 (-1244 *3)) + (-4 *3 (-1207))))) +(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-635 (-1079 (-224)))) - (-5 *1 (-921))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) - (-5 *1 (-918)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) - (-5 *1 (-918)))) - ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) - (-5 *1 (-920)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-936 (-224)) (-224))) (-5 *3 (-1079 (-224))) - (-5 *1 (-920))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1079 (-224))) - (-5 *1 (-918)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-635 (-1 (-224) (-224)))) (-5 *3 (-1079 (-224))) - (-5 *1 (-918)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3)) - (-4 *3 (-609 (-533))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3)) - (-4 *3 (-609 (-533))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-920))))) -(((*1 *2 *1) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *2 *1) (-12 (-5 *2 (-1079 (-224))) (-5 *1 (-920))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-224)))) (-5 *1 (-920))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-920))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-920))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-918)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1079 (-224))) (-5 *1 (-918)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1166)) (-5 *5 (-1079 (-224))) (-5 *2 (-918)) (-5 *1 (-919 *3)) - (-4 *3 (-609 (-533))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-5 *2 (-918)) (-5 *1 (-919 *3)) (-4 *3 (-609 (-533)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) - ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) - ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) - ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) - ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) - ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-465)))) - ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-918))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-918))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) - (-5 *1 (-917 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-112)) - (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5))))) + (-12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-315 (-562)))) + (-5 *1 (-1026))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *3 (-554))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) + (-4 *3 (-13 (-1092) (-34)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-608 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-608 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1164 (-48))) (-5 *3 (-639 (-608 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1164 (-48))) (-5 *3 (-608 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) + (-4 *3 (-1232 (-168 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-916)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) + ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) + ((*1 *2 *1) + (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-412 *3 *2 *4 *5)) + (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1033 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) + (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4)) + (-14 *6 (-1256 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-916)) (-4 *5 (-1044)) + (-4 *2 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))) + (-5 *1 (-442 *5 *3 *2)) (-4 *3 (-1232 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-608 (-494)))) (-5 *1 (-494)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-608 (-494))) (-5 *1 (-494)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1164 (-494))) (-5 *3 (-639 (-608 (-494)))) + (-5 *1 (-494)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1164 (-494))) (-5 *3 (-608 (-494))) (-5 *1 (-494)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1256 *4)) (-5 *3 (-916)) (-4 *4 (-348)) + (-5 *1 (-527 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-719 *4 *2)) (-4 *2 (-1232 *4)) + (-5 *1 (-770 *4 *2 *5 *3)) (-4 *3 (-1232 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) + ((*1 *1 *1) (-4 *1 (-1053)))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *1) (-4 *1 (-962)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) + (-5 *1 (-1065 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) + (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) +(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-545)))))) +(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1190))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-38 (-406 (-562)))) + (-4 *2 (-171))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1) (-4 *1 (-962))) ((*1 *1 *1) (-5 *1 (-1112)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef2| (-777 *3)))) + (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-2 (|:| -1606 *1) (|:| |coef2| *1))) + (-4 *1 (-1058 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-52)) (-5 *1 (-826))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) - (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-943 *3 *5 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) - (-5 *4 (-682 *12)) (-5 *5 (-635 (-406 (-939 *9)))) (-5 *6 (-635 (-635 *12))) - (-5 *7 (-765)) (-5 *8 (-544)) (-4 *9 (-13 (-306) (-146))) - (-4 *12 (-943 *9 *11 *10)) (-4 *10 (-13 (-844) (-609 (-1166)))) - (-4 *11 (-787)) + (-12 (-5 *2 (-639 (-480 *3 *4))) (-14 *3 (-639 (-1168))) + (-4 *4 (-451)) (-5 *1 (-627 *3 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-683 *6)) (-5 *5 (-1 (-417 (-1164 *6)) (-1164 *6))) + (-4 *6 (-362)) (-5 *2 - (-2 (|:| |eqzro| (-635 *12)) (|:| |neqzro| (-635 *12)) - (|:| |wcond| (-635 (-939 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *9)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *9))))))))) - (-5 *1 (-917 *9 *10 *11 *12))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-682 *7)) (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) - (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) - (-4 *6 (-787)) (-5 *1 (-917 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *8)) (-5 *4 (-765)) (-4 *8 (-943 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) - (-4 *7 (-787)) + (-639 + (-2 (|:| |outval| *7) (|:| |outmult| (-562)) + (|:| |outvect| (-639 (-683 *7)))))) + (-5 *1 (-531 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-843)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) + (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) + (-5 *2 (-112)) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-635 - (-2 (|:| |det| *8) (|:| |rows| (-635 (-544))) - (|:| |cols| (-635 (-544)))))) - (-5 *1 (-917 *5 *6 *7 *8))))) + (-639 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-766)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-788)) (-4 *6 (-944 *4 *3 *5)) (-4 *4 (-451)) (-4 *5 (-845)) + (-5 *1 (-448 *4 *3 *5 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-362)) (-4 *3 (-1044)) + (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-847 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) + (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-848 *5 *3)) + (-4 *3 (-847 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) +(((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-635 *8))) (-5 *3 (-635 *8)) (-4 *8 (-943 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) - (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-917 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) - (-4 *6 (-787)) (-5 *2 (-635 (-635 (-544)))) (-5 *1 (-917 *4 *5 *6 *7)) - (-5 *3 (-544)) (-4 *7 (-943 *4 *6 *5))))) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-743))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1280 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-171)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-814 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-639 *3)) (-4 *3 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1044)) (-5 *2 (-1256 *3)) (-5 *1 (-707 *3 *4)) + (-4 *4 (-1232 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-635 (-635 *6))) (-4 *6 (-943 *3 *5 *4)) - (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-844) (-609 (-1166)))) - (-4 *5 (-787)) (-5 *1 (-917 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-635 - (-2 (|:| -3494 (-765)) - (|:| |eqns| - (-635 - (-2 (|:| |det| *7) (|:| |rows| (-635 (-544))) - (|:| |cols| (-635 (-544)))))) - (|:| |fgb| (-635 *7))))) - (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) - (-5 *1 (-917 *4 *5 *6 *7))))) + (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) + (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) + (-4 *2 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) + (-15 -4076 ((-1117 *3 (-608 $)) $)) + (-15 -4054 ($ (-1117 *3 (-608 $)))))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-639 (-1206))) (-5 *3 (-1206)) (-5 *1 (-675))))) (((*1 *2 *3) + (-12 (-5 *3 (-1164 *7)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *2 (-1164 *6)) + (-5 *1 (-320 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-635 - (-2 (|:| -3494 (-765)) - (|:| |eqns| - (-635 - (-2 (|:| |det| *7) (|:| |rows| (-635 (-544))) - (|:| |cols| (-635 (-544)))))) - (|:| |fgb| (-635 *7))))) - (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) (-5 *2 (-765)) - (-5 *1 (-917 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) - (-4 *6 (-787)) (-5 *2 (-635 *3)) (-5 *1 (-917 *4 *5 *6 *3)) - (-4 *3 (-943 *4 *6 *5))))) + (-5 *2 + (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) + (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) + (|:| |ub| (-639 (-838 (-224)))))) + (-5 *1 (-266))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) + (-5 *1 (-331))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1207)) + (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *6 *7 *2)) (-4 *6 (-1044)) + (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-856)))) + ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-856))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-960))) (-5 *1 (-290))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-112)) (-5 *1 (-887 *4)) + (-4 *4 (-1092))))) +(((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-639 (-1164 *11))) (-5 *3 (-1164 *11)) + (-5 *4 (-639 *10)) (-5 *5 (-639 *8)) (-5 *6 (-639 (-766))) + (-5 *7 (-1256 (-639 (-1164 *8)))) (-4 *10 (-845)) + (-4 *8 (-306)) (-4 *11 (-944 *8 *9 *10)) (-4 *9 (-788)) + (-5 *1 (-702 *9 *10 *8 *11))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-416 *4))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *1 *2) + (-12 (-5 *2 (-683 *4)) (-4 *4 (-1044)) (-5 *1 (-1134 *3 *4)) + (-14 *3 (-766))))) +(((*1 *1) (-5 *1 (-798)))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -1728 (-682 (-406 (-939 *4)))) (|:| |vec| (-635 (-406 (-939 *4)))) - (|:| -3494 (-765)) (|:| |rows| (-635 (-544))) (|:| |cols| (-635 (-544))))) - (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) - (-4 *6 (-787)) - (-5 *2 - (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *4))))))) - (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *4))))))) - (-5 *3 (-635 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-943 *4 *6 *5)) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) - (-5 *1 (-917 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) - (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) - (-5 *2 - (-635 - (-2 (|:| -3494 (-765)) - (|:| |eqns| - (-635 - (-2 (|:| |det| *8) (|:| |rows| (-635 (-544))) - (|:| |cols| (-635 (-544)))))) - (|:| |fgb| (-635 *8))))) - (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-765))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) - (-4 *6 (-787)) (-4 *7 (-943 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-635 *7)) (|:| |n0| (-635 *7)))) - (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-635 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-939 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-943 *4 *6 *5)) - (-5 *1 (-917 *4 *5 *6 *2)) (-4 *5 (-13 (-844) (-609 (-1166)))) - (-4 *6 (-787))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) - (-5 *2 (-635 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7)) - (-4 *7 (-943 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-844) (-609 (-1166)))) - (-4 *6 (-787)) (-5 *2 (-406 (-939 *4))) (-5 *1 (-917 *4 *5 *6 *3)) - (-4 *3 (-943 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-682 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) - (-5 *2 (-682 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) - (-5 *2 (-635 (-406 (-939 *4)))) (-5 *1 (-917 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-682 *11)) (-5 *4 (-635 (-406 (-939 *8)))) (-5 *5 (-765)) - (-5 *6 (-1148)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-943 *8 *10 *9)) - (-4 *9 (-13 (-844) (-609 (-1166)))) (-4 *10 (-787)) - (-5 *2 (-2 - (|:| |rgl| - (-635 - (-2 (|:| |eqzro| (-635 *11)) (|:| |neqzro| (-635 *11)) - (|:| |wcond| (-635 (-939 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *8)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *8)))))))))) - (|:| |rgsz| (-544)))) - (-5 *1 (-917 *8 *9 *10 *11)) (-5 *7 (-544))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1148 (-224))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1590 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1030)) (-5 *1 (-304))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) + (-4 *2 (-1247 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) + (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) + (-4 *2 (-1247 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) + (-5 *1 (-1144 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1030)) (-5 *1 (-748))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-751))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-635 - (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) - (|:| |wcond| (-635 (-939 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *4)))))))))) - (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-943 *4 *6 *5))))) + (-2 (|:| -1606 (-777 *3)) (|:| |coef1| (-777 *3)) + (|:| |coef2| (-777 *3)))) + (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-2 (|:| -1606 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1058 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-857))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-416 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1207)) (-5 *2 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-824))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1) (-4 *1 (-1131)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-362)) (-4 *3 (-1044)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3148 *1))) + (-4 *1 (-847 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) (((*1 *2 *3 *4) - (-12 - (-5 *3 - (-635 - (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) - (|:| |wcond| (-635 (-939 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) - (-5 *4 (-1148)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-943 *5 *7 *6)) - (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) (-5 *2 (-544)) - (-5 *1 (-917 *5 *6 *7 *8))))) + (-12 (-4 *5 (-554)) + (-5 *2 (-2 (|:| -1545 (-683 *5)) (|:| |vec| (-1256 (-639 (-916)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-916)) (-4 *3 (-650 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-845)) (-4 *5 (-788)) + (-4 *6 (-554)) (-4 *7 (-944 *6 *5 *3)) + (-5 *1 (-461 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1033 (-406 (-562))) (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) + (-15 -4076 (*7 $)))))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) + ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1168)) + (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *1 (-1171))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *8)) (-4 *8 (-943 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) - (-4 *6 (-13 (-844) (-609 (-1166)))) (-4 *7 (-787)) - (-5 *2 - (-635 - (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) - (|:| |wcond| (-635 (-939 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) - (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-635 *8)))) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) + (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *1 *1) (-5 *1 (-1056)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1082))))) +(((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-845)))) + ((*1 *2 *2) + (-12 (-5 *2 (-583 *4)) (-4 *4 (-13 (-29 *3) (-1192))) + (-4 *3 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) + (-5 *1 (-581 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-583 (-406 (-947 *3)))) + (-4 *3 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) + (-5 *1 (-586 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *8)) (-5 *4 (-635 (-1166))) (-4 *8 (-943 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) - (-4 *7 (-787)) - (-5 *2 - (-635 - (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) - (|:| |wcond| (-635 (-939 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) - (-5 *1 (-917 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-682 *7)) (-4 *7 (-943 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-844) (-609 (-1166)))) (-4 *6 (-787)) - (-5 *2 - (-635 - (-2 (|:| |eqzro| (-635 *7)) (|:| |neqzro| (-635 *7)) - (|:| |wcond| (-635 (-939 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *4)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *4)))))))))) - (-5 *1 (-917 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-682 *9)) (-5 *5 (-912)) (-4 *9 (-943 *6 *8 *7)) - (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) - (-4 *8 (-787)) - (-5 *2 - (-635 - (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) - (|:| |wcond| (-635 (-939 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *6)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *6)))))))))) - (-5 *1 (-917 *6 *7 *8 *9)) (-5 *4 (-635 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 (-1166))) (-5 *5 (-912)) - (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) - (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) - (-5 *2 - (-635 - (-2 (|:| |eqzro| (-635 *9)) (|:| |neqzro| (-635 *9)) - (|:| |wcond| (-635 (-939 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *6)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *6)))))))))) - (-5 *1 (-917 *6 *7 *8 *9)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) + (-5 *2 (-2 (|:| -2451 *3) (|:| |special| *3))) (-5 *1 (-722 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *8)) (-5 *4 (-912)) (-4 *8 (-943 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) - (-4 *7 (-787)) - (-5 *2 - (-635 - (-2 (|:| |eqzro| (-635 *8)) (|:| |neqzro| (-635 *8)) - (|:| |wcond| (-635 (-939 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1253 (-406 (-939 *5)))) - (|:| -2162 (-635 (-1253 (-406 (-939 *5)))))))))) - (-5 *1 (-917 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 *9)) (-5 *5 (-1148)) - (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) - (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544)) - (-5 *1 (-917 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-682 *9)) (-5 *4 (-635 (-1166))) (-5 *5 (-1148)) - (-4 *9 (-943 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) - (-4 *7 (-13 (-844) (-609 (-1166)))) (-4 *8 (-787)) (-5 *2 (-544)) - (-5 *1 (-917 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *8)) (-5 *4 (-1148)) (-4 *8 (-943 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-844) (-609 (-1166)))) - (-4 *7 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-682 *10)) (-5 *4 (-635 *10)) (-5 *5 (-912)) (-5 *6 (-1148)) - (-4 *10 (-943 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) - (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-544)) - (-5 *1 (-917 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-682 *10)) (-5 *4 (-635 (-1166))) (-5 *5 (-912)) (-5 *6 (-1148)) - (-4 *10 (-943 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) - (-4 *8 (-13 (-844) (-609 (-1166)))) (-4 *9 (-787)) (-5 *2 (-544)) - (-5 *1 (-917 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-682 *9)) (-5 *4 (-912)) (-5 *5 (-1148)) (-4 *9 (-943 *6 *8 *7)) - (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-844) (-609 (-1166)))) - (-4 *8 (-787)) (-5 *2 (-544)) (-5 *1 (-917 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-4 *2 (-1229 *4)) - (-5 *1 (-916 *4 *2))))) -(((*1 *2 *3) - (-12 (-4 *1 (-914)) (-5 *2 (-2 (|:| -4361 (-635 *1)) (|:| -2544 *1))) - (-5 *3 (-635 *1))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-914))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-635 (-939 *4))) (-5 *3 (-635 (-1166))) (-4 *4 (-450)) - (-5 *1 (-911 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-635 (-939 *4))) (-5 *3 (-635 (-1166))) (-4 *4 (-450)) - (-5 *1 (-911 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2) (-12 (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-912))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-898 (-544))) (-5 *1 (-910)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-898 (-544))) (-5 *1 (-910))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *2)) - (-4 *2 (-943 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *5 (-306)) (-5 *1 (-909 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *6 *4 *5)) (-5 *1 (-909 *4 *5 *6 *2)) - (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-404 *2)) (-4 *2 (-306)) (-5 *1 (-907 *2)))) + (-12 (-5 *4 (-1256 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) + (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) + (-5 *3 (-639 (-683 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-13 (-306) (-146))) - (-5 *2 (-51)) (-5 *1 (-908 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-404 (-939 *6))) (-5 *5 (-1166)) (-5 *3 (-939 *6)) - (-4 *6 (-13 (-306) (-146))) (-5 *2 (-51)) (-5 *1 (-908 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-404 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-907 *3)) (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-907 *3)) (-4 *3 (-306))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1160 *3)) (-5 *1 (-907 *3)) (-4 *3 (-306))))) -(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-306))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1229 (-406 (-544)))) (-5 *1 (-906 *3 *2)) - (-4 *2 (-1229 (-406 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *3)) - (-4 *3 (-1229 (-406 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544))))) - (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *5)) - (-4 *5 (-1229 (-406 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1229 (-406 (-544)))) - (-5 *2 (-2 (|:| |den| (-544)) (|:| |gcdnum| (-544)))) (-5 *1 (-906 *3 *4)) - (-4 *4 (-1229 (-406 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1229 (-406 *2))) (-5 *2 (-544)) (-5 *1 (-906 *4 *3)) - (-4 *3 (-1229 (-406 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-544)) (-4 *4 (-1229 (-406 *3))) (-5 *2 (-912)) - (-5 *1 (-906 *4 *5)) (-4 *5 (-1229 (-406 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) - (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) - (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) - (-5 *2 (-2 (|:| -4178 (-765)) (|:| -2518 *8))) - (-5 *1 (-904 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) - (-4 *4 (-1229 (-406 (-544)))) (-4 *5 (-1229 (-406 *4))) - (-4 *6 (-341 (-406 (-544)) *4 *5)) - (-5 *2 (-2 (|:| -4178 (-765)) (|:| -2518 *6))) (-5 *1 (-905 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-332 *5 *6 *7 *8)) (-4 *5 (-420 *4)) (-4 *6 (-1229 *5)) - (-4 *7 (-1229 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) - (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-112)) - (-5 *1 (-904 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-332 (-406 (-544)) *4 *5 *6)) (-4 *4 (-1229 (-406 (-544)))) - (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 (-406 (-544)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-905 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-450)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1160 *6)) (-4 *6 (-943 *5 *3 *4)) (-4 *3 (-787)) (-4 *4 (-844)) - (-4 *5 (-903)) (-5 *1 (-455 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-903))))) -(((*1 *2 *3) - (-12 (-5 *2 (-404 (-1160 *1))) (-5 *1 (-313 *4)) (-5 *3 (-1160 *1)) - (-4 *4 (-450)) (-4 *4 (-554)) (-4 *4 (-844)))) - ((*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-404 (-1160 *1))) (-5 *1 (-313 *4)) (-5 *3 (-1160 *1)) - (-4 *4 (-450)) (-4 *4 (-554)) (-4 *4 (-844)))) - ((*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-903)) (-5 *2 (-404 (-1160 *1))) (-5 *3 (-1160 *1))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 (-1160 *5))) (-5 *3 (-1160 *5)) (-4 *5 (-165 *4)) - (-4 *4 (-543)) (-5 *1 (-148 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-1229 *4)) - (-4 *4 (-349)) (-5 *1 (-357 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 (-1160 (-544)))) (-5 *3 (-1160 (-544))) - (-5 *1 (-569)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 (-1160 *1))) (-5 *3 (-1160 *1)) (-4 *1 (-903))))) + (-12 (-5 *4 (-1256 (-1256 *5))) (-4 *5 (-362)) (-4 *5 (-1044)) + (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) + (-5 *3 (-639 (-683 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-639 *1)) (-4 *1 (-1136)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-639 *1)) (-4 *1 (-1136))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-349)) (-5 *2 (-1253 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-682 *1)) (-4 *1 (-144)) (-4 *1 (-903)) - (-5 *2 (-1253 *1))))) -(((*1 *1 *1) (|partial| -4 *1 (-144))) ((*1 *1 *1) (-4 *1 (-349))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-903))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-844)) (-4 *5 (-903)) (-4 *6 (-787)) - (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-404 (-1160 *8))) (-5 *1 (-900 *5 *6 *7 *8)) - (-5 *4 (-1160 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5))) - (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5))))) -(((*1 *2) - (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-903)) (-5 *1 (-455 *3 *4 *2 *5)) - (-4 *5 (-943 *2 *3 *4)))) + (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) + ((*1 *2 *2) + (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) + (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-109)) (-5 *1 (-174)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-109)) (-5 *1 (-1077))))) +(((*1 *2 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) + (-14 *4 *2) (-4 *5 (-171)))) ((*1 *2) - (-12 (-4 *3 (-787)) (-4 *4 (-844)) (-4 *2 (-903)) (-5 *1 (-900 *2 *3 *4 *5)) - (-4 *5 (-943 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-903)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1229 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) - (-5 *2 (-404 (-1160 *7))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) + (-12 (-4 *4 (-171)) (-5 *2 (-916)) (-5 *1 (-164 *3 *4)) + (-4 *3 (-165 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-916)))) + ((*1 *2) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) + (-5 *2 (-916)))) ((*1 *2 *3) - (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5))) - (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-943 *4 *5 *6)) - (-5 *2 (-404 (-1160 *7))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-1160 *7)))) + (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) + (-5 *2 (-766)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-362)) + (-5 *2 (-766)) (-5 *1 (-661 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4403)))) + (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403)))) (-5 *2 (-766)) + (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-766)))) ((*1 *2 *3) - (-12 (-4 *4 (-903)) (-4 *5 (-1229 *4)) (-5 *2 (-404 (-1160 *5))) - (-5 *1 (-901 *4 *5)) (-5 *3 (-1160 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 (-1160 *7))) (-5 *3 (-1160 *7)) - (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-903)) (-4 *5 (-787)) (-4 *6 (-844)) - (-5 *1 (-900 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 (-1160 *5))) (-5 *3 (-1160 *5)) - (-4 *5 (-1229 *4)) (-4 *4 (-903)) (-5 *1 (-901 *4 *5))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-635 (-1160 *7))) (-5 *3 (-1160 *7)) - (-4 *7 (-943 *5 *6 *4)) (-4 *5 (-903)) (-4 *6 (-787)) (-4 *4 (-844)) - (-5 *1 (-900 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-635 *6)) - (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) ((*1 *1) (-4 *1 (-543))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-895 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 (-635 (-765)))) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-895 *3))) (-4 *3 (-1091)) (-5 *1 (-898 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-897 *3)) (-4 *3 (-1091)) (-5 *2 (-1087 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1091)) (-5 *2 (-1087 (-635 *4))) (-5 *1 (-898 *4)) - (-5 *3 (-635 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1091)) (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-898 *4)) - (-5 *3 (-1087 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1087 (-1087 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-635 (-765))) - (-5 *1 (-898 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-895 *4)) (-4 *4 (-1091)) (-5 *2 (-635 (-765))) - (-5 *1 (-898 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-895 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-1091)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-898 *4)) (-4 *4 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-898 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-897 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-4 *1 (-897 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1132 *4 *2)) (-14 *4 (-912)) - (-4 *2 (-13 (-1042) (-10 -7 (-6 (-4402 "*"))))) (-5 *1 (-896 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-635 *3)) (|:| |image| (-635 *3)))) - (-5 *1 (-895 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-635 *3))) (-4 *3 (-1091)) (-5 *1 (-895 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-895 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-895 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-4 *1 (-1031 (-544))) (-4 *1 (-297)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-4 *1 (-1031 (-544))) (-4 *1 (-297)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1087 *3)) (-5 *1 (-895 *3)) (-4 *3 (-367)) (-4 *3 (-1091))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-895 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1091))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-765)) (-4 *1 (-230 *4)) (-4 *4 (-1042)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-765)))) - ((*1 *1 *1) (-4 *1 (-232))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) - (-4 *4 (-1229 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1229 *2)))) - ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 *4)) (-5 *3 (-635 (-765))) (-4 *1 (-893 *4)) - (-4 *4 (-1091)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-893 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *1 (-893 *3)) (-4 *3 (-1091)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *2)) (-4 *2 (-1091))))) + (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) + (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-682 *4 *5 *6 *3)) + (-4 *3 (-681 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) + (-5 *2 (-766))))) (((*1 *2 *3) - (-12 (-5 *3 (-763)) + (-12 (-5 *3 (-764)) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) - (-5 *1 (-562)))) + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) + (-5 *1 (-563)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-763)) (-5 *4 (-1054)) + (-12 (-5 *3 (-764)) (-5 *4 (-1056)) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) - (-5 *1 (-562)))) + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) + (-5 *1 (-563)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-781)) (-5 *3 (-1054)) + (-12 (-4 *1 (-782)) (-5 *3 (-1056)) (-5 *4 - (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) + (-2 (|:| |fn| (-315 (-224))) + (|:| -1590 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) - (|:| |extra| (-1028)))))) + (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) + (|:| |extra| (-1030)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-781)) (-5 *3 (-1054)) + (-12 (-4 *1 (-782)) (-5 *3 (-1056)) (-5 *4 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)) - (|:| |extra| (-1028)))))) + (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)) + (|:| |extra| (-1030)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-794)) (-5 *3 (-1054)) + (-12 (-4 *1 (-795)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) + (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)))))) ((*1 *2 *3) - (-12 (-5 *3 (-802)) + (-12 (-5 *3 (-803)) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))))) - (-5 *1 (-799)))) + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))))) + (-5 *1 (-800)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-802)) (-5 *4 (-1054)) + (-12 (-5 *3 (-803)) (-5 *4 (-1056)) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))))) - (-5 *1 (-799)))) + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))))) + (-5 *1 (-800)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-833)) (-5 *3 (-1054)) - (-5 *4 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) - (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) + (-12 (-4 *1 (-834)) (-5 *3 (-1056)) + (-5 *4 + (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) + (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-833)) (-5 *3 (-1054)) + (-12 (-4 *1 (-834)) (-5 *3 (-1056)) (-5 *4 - (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) - (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) - (|:| |ub| (-635 (-836 (-224)))))) - (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) + (-2 (|:| |fn| (-315 (-224))) (|:| -3729 (-639 (-224))) + (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) + (|:| |ub| (-639 (-838 (-224)))))) + (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)))))) ((*1 *2 *3) - (-12 (-5 *3 (-835)) + (-12 (-5 *3 (-836)) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))))) - (-5 *1 (-834)))) + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))))) + (-5 *1 (-835)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-835)) (-5 *4 (-1054)) + (-12 (-5 *3 (-836)) (-5 *4 (-1056)) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))))) - (-5 *1 (-834)))) + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))))) + (-5 *1 (-835)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-888)) (-5 *3 (-1054)) + (-12 (-4 *1 (-890)) (-5 *3 (-1056)) (-5 *4 - (-2 (|:| |pde| (-635 (-313 (-224)))) + (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| - (-635 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) - (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) - (|:| |dFinish| (-682 (-224)))))) - (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) + (-639 + (-2 (|:| |start| (-224)) (|:| |finish| (-224)) + (|:| |grid| (-766)) (|:| |boundaryType| (-562)) + (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) + (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) - (-5 *2 (-2 (|:| -3050 (-377)) (|:| |explanations| (-1148)))))) + (-5 *2 (-2 (|:| -2172 (-378)) (|:| |explanations| (-1150)))))) ((*1 *2 *3) - (-12 (-5 *3 (-891)) + (-12 (-5 *3 (-893)) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))))) - (-5 *1 (-890)))) + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))))) + (-5 *1 (-892)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-891)) (-5 *4 (-1054)) + (-12 (-5 *3 (-893)) (-5 *4 (-1056)) (-5 *2 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))))) - (-5 *1 (-890))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-5 *1 (-889 *2 *4)) (-4 *2 (-1229 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-362)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1229 *3))))) + (-2 (|:| -2172 (-378)) (|:| -3254 (-1150)) + (|:| |explanations| (-639 (-1150))))) + (-5 *1 (-892))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-1164 *3)) + (-4 *3 (-13 (-429 *6) (-27) (-1192))) + (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) + (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-406 (-1164 *3))) + (-4 *3 (-13 (-429 *6) (-27) (-1192))) + (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) + (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150)) (-4 *4 (-13 (-306) (-146))) + (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) + (-5 *2 + (-639 + (-2 (|:| |eqzro| (-639 *7)) (|:| |neqzro| (-639 *7)) + (|:| |wcond| (-639 (-947 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *4)))))))))) + (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) + (-4 *5 (-1232 *4)) + (-5 *2 (-639 (-2 (|:| |deg| (-766)) (|:| -3342 *5)))) + (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-650 *5)) + (-4 *6 (-650 (-406 *5)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-1256 (-639 (-562)))) (-5 *1 (-479)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-293 (-838 *3))) (-4 *3 (-13 (-27) (-1192) (-429 *5))) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-3 (-838 *3) + (-2 (|:| |leftHandLimit| (-3 (-838 *3) "failed")) + (|:| |rightHandLimit| (-3 (-838 *3) "failed"))) + "failed")) + (-5 *1 (-632 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1150)) + (-4 *3 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-838 *3)) (-5 *1 (-632 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-293 (-838 (-947 *5)))) (-4 *5 (-451)) + (-5 *2 + (-3 (-838 (-406 (-947 *5))) + (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-838 (-406 (-947 *5))) "failed"))) + "failed")) + (-5 *1 (-633 *5)) (-5 *3 (-406 (-947 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-293 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) + (-4 *5 (-451)) + (-5 *2 + (-3 (-838 *3) + (-2 (|:| |leftHandLimit| (-3 (-838 *3) "failed")) + (|:| |rightHandLimit| (-3 (-838 *3) "failed"))) + "failed")) + (-5 *1 (-633 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-293 (-406 (-947 *6)))) (-5 *5 (-1150)) + (-5 *3 (-406 (-947 *6))) (-4 *6 (-451)) (-5 *2 (-838 *3)) + (-5 *1 (-633 *6))))) (((*1 *2 *3) - (-12 (-4 *1 (-888)) + (-12 (-4 *1 (-890)) (-5 *3 - (-2 (|:| |pde| (-635 (-313 (-224)))) + (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| - (-635 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) - (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) - (|:| |dFinish| (-682 (-224)))))) - (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) + (-639 + (-2 (|:| |start| (-224)) (|:| |finish| (-224)) + (|:| |grid| (-766)) (|:| |boundaryType| (-562)) + (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) + (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) - (-5 *2 (-1028))))) -(((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-533))) ((*1 *1) (-4 *1 (-716))) ((*1 *1) (-4 *1 (-720))) - ((*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091)))) - ((*1 *1) (-12 (-5 *1 (-886 *2)) (-4 *2 (-844))))) -(((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) - (-5 *2 (-635 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |k| (-886 *3)) (|:| |c| *4)))) - (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) - (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-665 *3))) (-5 *1 (-886 *3)) (-4 *3 (-844))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) - (-14 *4 (-635 (-1166))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1204)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) - (-14 *4 (-635 (-1166))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3)) (-4 *3 (-844))))) -(((*1 *2 *3) - (-12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-635 *5)) (-5 *1 (-884 *4 *5)) - (-4 *5 (-1204))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-883 *3)) (-4 *3 (-1091)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1204))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-5 *2 (-112)) - (-5 *1 (-881 *4 *5)) (-4 *5 (-1091)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3)) - (-4 *3 (-1204)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *6)) (-5 *4 (-883 *5)) (-4 *5 (-1091)) (-4 *6 (-1204)) - (-5 *2 (-112)) (-5 *1 (-884 *5 *6))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-533))) ((*1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2881 (-113)) (|:| |arg| (-635 (-883 *3))))) - (-5 *1 (-883 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-635 (-883 *4))) (-5 *1 (-883 *4)) - (-4 *4 (-1091))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-313 (-224))) (-5 *1 (-302)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-883 *3)) (|:| |den| (-883 *3)))) - (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-112)) (-5 *1 (-883 *4)) (-4 *4 (-1091))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-51)) (-5 *1 (-883 *4)) (-4 *4 (-1091))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-635 (-1166))) (|:| |pred| (-51)))) - (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-51))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) + (-5 *2 (-1030))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-639 + (-2 (|:| -2173 (-766)) + (|:| |eqns| + (-639 + (-2 (|:| |det| *7) (|:| |rows| (-639 (-562))) + (|:| |cols| (-639 (-562)))))) + (|:| |fgb| (-639 *7))))) + (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) + (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-766)) + (-5 *1 (-919 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922)) + (-5 *2 + (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) + (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) + (-5 *1 (-152)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-406 (-562))) + (-5 *2 + (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) + (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) + (-5 *1 (-152))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) (-5 *3 (-562)) + (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) + (-5 *2 (-1030)) (-5 *1 (-751))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-635 (-883 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1091)) - (-4 *5 (-659 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-881 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) -(((*1 *1) - (-12 (-4 *3 (-1091)) (-5 *1 (-878 *2 *3 *4)) (-4 *2 (-1091)) - (-4 *4 (-659 *3)))) - ((*1 *1) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-883 *4)) (-4 *4 (-1091)) (-4 *2 (-1091)) - (-5 *1 (-881 *4 *2))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-883 *4)) (-4 *4 (-1091)) (-5 *1 (-881 *4 *3)) (-4 *3 (-1091))))) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092))))) +(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(((*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-845)) (-5 *3 (-639 *6)) (-5 *5 (-639 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-639 *5)) (|:| |f3| *5) + (|:| |f4| (-639 *5)))) + (-5 *1 (-1178 *6)) (-5 *4 (-639 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-577))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1256 (-639 *3))) (-4 *4 (-306)) + (-5 *2 (-639 *3)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) + (-4 *4 (-13 (-845) (-554)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-293 (-947 (-562)))) + (-5 *2 + (-2 (|:| |varOrder| (-639 (-1168))) + (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) + (|:| |hom| (-639 (-1256 (-766)))))) + (-5 *1 (-235))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-845)) (-5 *1 (-1178 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3860 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-639 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1232 *7)) + (-5 *3 (-406 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-572 *7 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) + (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-52)) (-5 *1 (-887 *4)) + (-4 *4 (-1092))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1091)) (-4 *6 (-879 *5)) (-5 *2 (-878 *5 *6 (-635 *6))) - (-5 *1 (-880 *5 *6 *4)) (-5 *3 (-635 *6)) (-4 *4 (-609 (-883 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1091)) (-5 *2 (-635 (-292 *3))) (-5 *1 (-880 *5 *3 *4)) - (-4 *3 (-1031 (-1166))) (-4 *3 (-879 *5)) (-4 *4 (-609 (-883 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1091)) (-5 *2 (-635 (-292 (-939 *3)))) (-5 *1 (-880 *5 *3 *4)) - (-4 *3 (-1042)) (-3726 (-4 *3 (-1031 (-1166)))) (-4 *3 (-879 *5)) - (-4 *4 (-609 (-883 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1091)) (-5 *2 (-881 *5 *3)) (-5 *1 (-880 *5 *3 *4)) - (-3726 (-4 *3 (-1031 (-1166)))) (-3726 (-4 *3 (-1042))) (-4 *3 (-879 *5)) - (-4 *4 (-609 (-883 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1166)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-113)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1166)) (-5 *2 (-112)) (-5 *1 (-606 *4)) (-4 *4 (-844)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-606 *4)) (-4 *4 (-844)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1091)) (-5 *2 (-112)) (-5 *1 (-880 *5 *3 *4)) (-4 *3 (-879 *5)) - (-4 *4 (-609 (-883 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *6)) (-4 *6 (-879 *5)) (-4 *5 (-1091)) (-5 *2 (-112)) - (-5 *1 (-880 *5 *6 *4)) (-4 *4 (-609 (-883 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-881 *4 *5)) (-5 *3 (-881 *4 *6)) (-4 *4 (-1091)) - (-4 *5 (-1091)) (-4 *6 (-659 *5)) (-5 *1 (-878 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1091)) (-5 *2 (-881 *3 *4)) (-5 *1 (-878 *3 *4 *5)) - (-4 *3 (-1091)) (-4 *5 (-659 *4))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1091)) (-5 *2 (-881 *3 *5)) (-5 *1 (-878 *3 *4 *5)) - (-4 *3 (-1091)) (-4 *5 (-659 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *3 (-635 (-544))) (-5 *1 (-876))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-635 (-544)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))) - ((*1 *2 *3) (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1143 (-635 (-544)))) (-5 *1 (-876)) (-5 *3 (-544))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-870 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-872 *2)) (-4 *2 (-1204)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *1 (-875 *2)) (-4 *2 (-1204))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-635 (-1171))) (-5 *1 (-873))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867))))) -(((*1 *2 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-240)) (-5 *3 (-1148)))) - ((*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-867))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-866 *2 *3)) (-4 *2 (-1204)) (-4 *3 (-1204))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-117 *3)) (-14 *3 (-544)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-173 (-544))) (-5 *1 (-759 *3)) (-4 *3 (-403)))) - ((*1 *2 *1) - (-12 (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-864 *3)) (-14 *3 (-544)))) - ((*1 *2 *1) - (-12 (-14 *3 (-544)) (-5 *2 (-173 (-406 (-544)))) (-5 *1 (-865 *3 *4)) - (-4 *4 (-863 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) - ((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403)))) - ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) - ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-1143 (-544)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1229 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-171)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1229 *3)) (-5 *1 (-706 *3 *2)) (-4 *3 (-1042)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-709 *3 *2 *4 *5 *6)) (-4 *3 (-171)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544))))) -(((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-544))))) -(((*1 *1 *1) (-4 *1 (-863 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1160 (-544))) (-5 *3 (-544)) (-4 *1 (-863 *4))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-406 *6)) - (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1246 *5)) (-4 *6 (-1229 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1243 *5 *6 *7)) (-4 *5 (-362)) - (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1222 *6 *5))) - (-5 *1 (-861 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-765)) (-5 *4 (-1243 *5 *6 *7)) (-4 *5 (-362)) - (-14 *6 (-1166)) (-14 *7 *5) (-5 *2 (-406 (-1222 *6 *5))) - (-5 *1 (-861 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-765)) (-4 *5 (-362)) (-5 *2 (-173 *6)) - (-5 *1 (-860 *5 *4 *6)) (-4 *4 (-1246 *5)) (-4 *6 (-1229 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-857))))) -(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) - ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1204)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-765)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) - (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) - ((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-857))))) -(((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857))))) -(((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-857))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-297)))) - ((*1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) - (-5 *4 (-313 (-167 (-377)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-377))) - (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-544))) - (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-167 (-377))))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-377)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-544)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-167 (-377))))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-377)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-544)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-167 (-377)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-377))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-544))) (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-687))) - (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-692))) - (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-939 (-544)))) (-5 *4 (-313 (-694))) - (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-687)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-692)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-313 (-694)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-687)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-692)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-313 (-694)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-687))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-692))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-694))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-687))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-692))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-682 (-694))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-687))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-692))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-313 (-694))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-1148)) (-5 *1 (-329)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))) -(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-297)))) - ((*1 *1 *1) (-4 *1 (-297))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1148)) (-5 *1 (-191)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-857))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |rm| (-813 *3)))) - (-5 *1 (-813 *3)) (-4 *3 (-844)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-856)))) - ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-856))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-128))) (-5 *3 (-128))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-547))) (-5 *3 (-547))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-684 (-1212))) (-5 *3 (-1212))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *3 (-129)) (-5 *2 (-765))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-51))) (-5 *2 (-1259)) (-5 *1 (-853))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-38 (-406 (-544)))) - (-4 *2 (-171))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-765)) (-5 *1 (-850 *2)) (-4 *2 (-171))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *3 (-1042)) - (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) - (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) - (-4 *3 (-846 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) - (-5 *1 (-760 *3 *4)) (-4 *3 (-702 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *3 (-1042)) - (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1042)) - (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) - (-4 *3 (-846 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1042)) - (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1042)) - (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) - (-4 *3 (-846 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1042)) - (-5 *2 (-2 (|:| -2124 *1) (|:| -3285 *1))) (-4 *1 (-846 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1042)) - (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-847 *5 *3)) - (-4 *3 (-846 *5))))) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *7)) (-4 *7 (-845)) + (-4 *8 (-944 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1256 (-406 *8)) "failed")) + (|:| -3928 (-639 (-1256 (-406 *8)))))) + (-5 *1 (-663 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-639 (-315 (-224)))) + (|:| |constraints| + (-639 + (-2 (|:| |start| (-224)) (|:| |finish| (-224)) + (|:| |grid| (-766)) (|:| |boundaryType| (-562)) + (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) + (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) + (|:| |tol| (-224)))) + (-5 *2 (-112)) (-5 *1 (-209))))) +(((*1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *3 (-845)) (-5 *1 (-666 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-417 *4)) (-4 *4 (-554))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-947 *4)) (-4 *4 (-13 (-306) (-146))) + (-4 *2 (-944 *4 *6 *5)) (-5 *1 (-919 *4 *5 *6 *2)) + (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1134 *3 *4)) (-14 *3 (-916)) (-4 *4 (-362)) + (-5 *1 (-988 *3 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-641 *5)) (-4 *5 (-1042)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-846 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *1 (-417 *3)) (-4 *3 (-171)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1042)) (-5 *1 (-847 *2 *3)) - (-4 *3 (-846 *2))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1042)) (-5 *1 (-847 *5 *2)) - (-4 *2 (-846 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *3 (-1042)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1))) - (-4 *1 (-846 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *3 (-1042)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1))) - (-4 *1 (-846 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-760 *2 *3)) (-4 *2 (-702 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *1) - (-12 (-4 *1 (-403)) (-3726 (|has| *1 (-6 -4391))) - (-3726 (|has| *1 (-6 -4383))))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-844)))) - ((*1 *2 *1) (-12 (-4 *1 (-824 *2)) (-4 *2 (-844)))) ((*1 *1) (-4 *1 (-838))) - ((*1 *1 *1 *1) (-4 *1 (-844)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) - (-14 *4 (-765))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) - (-14 *4 (-765))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1253 *5)) (-4 *5 (-786)) (-5 *2 (-112)) (-5 *1 (-839 *4 *5)) - (-14 *4 (-765))))) -(((*1 *2) (-12 (-5 *2 (-836 (-544))) (-5 *1 (-532)))) - ((*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1091))))) -(((*1 *2) (-12 (-5 *2 (-836 (-544))) (-5 *1 (-532)))) - ((*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-826 *3)) (-4 *3 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-836 *3)) (-4 *3 (-1091))))) -(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-313 (-377)))) (-5 *4 (-635 (-377))) (-5 *2 (-1028)) - (-5 *1 (-834))))) + (-12 (-5 *3 (-1 *2 (-766) *2)) (-5 *4 (-766)) (-4 *2 (-1092)) + (-5 *1 (-672 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-766) *3)) (-4 *3 (-1092)) (-5 *1 (-676 *3))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) + ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-835)) (-5 *4 (-1054)) (-5 *2 (-1028)) (-5 *1 (-834)))) - ((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1028)) (-5 *1 (-834)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-635 (-377))) (-5 *5 (-635 (-836 (-377)))) - (-5 *6 (-635 (-313 (-377)))) (-5 *3 (-313 (-377))) (-5 *2 (-1028)) - (-5 *1 (-834)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-377))) (-5 *5 (-635 (-836 (-377)))) - (-5 *2 (-1028)) (-5 *1 (-834)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-313 (-377))) (-5 *4 (-635 (-377))) (-5 *2 (-1028)) - (-5 *1 (-834)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-313 (-377)))) (-5 *4 (-635 (-377))) (-5 *2 (-1028)) - (-5 *1 (-834))))) + (-12 (-5 *4 (-766)) (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-544))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) +(((*1 *2 *2) (-12 (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026))))) (((*1 *2 *3) - (-12 (-4 *1 (-833)) - (-5 *3 - (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) - (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) - (|:| |ub| (-635 (-836 (-224)))))) - (-5 *2 (-1028)))) - ((*1 *2 *3) - (-12 (-4 *1 (-833)) - (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) - (-5 *2 (-1028))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-213 (-500))) (-5 *1 (-831))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-765)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1091)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-681 *4 *5 *6 *3)) - (-4 *3 (-679 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042)))) - ((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042))))) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-982 (-406 (-562)) (-859 *3) (-239 *4 (-766)) + (-246 *3 (-406 (-562))))) + (-14 *3 (-639 (-1168))) (-14 *4 (-766)) (-5 *1 (-981 *3 *4))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-747))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-562)) (-4 *3 (-171)) (-4 *5 (-372 *3)) + (-4 *6 (-372 *3)) (-5 *1 (-682 *3 *5 *6 *2)) + (-4 *2 (-681 *3 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-766)) (-4 *4 (-362)) (-4 *5 (-1232 *4)) (-5 *2 (-1261)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1232 (-406 *5))) (-14 *7 *6)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-5 *2 (-639 (-639 (-562)))) + (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-562)) (-4 *7 (-944 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-417 (-1164 *7))) + (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) + (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-559)) (-5 *3 (-562))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))) +(((*1 *2) + (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) + (-5 *2 (-766)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-562) "failed") *5)) (-4 *5 (-1044)) + (-5 *2 (-562)) (-5 *1 (-542 *5 *3)) (-4 *3 (-1232 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-562) "failed") *4)) (-4 *4 (-1044)) + (-5 *2 (-562)) (-5 *1 (-542 *4 *3)) (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-562) "failed") *4)) (-4 *4 (-1044)) + (-5 *2 (-562)) (-5 *1 (-542 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-766)) (-5 *2 (-1261))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) + (-4 *3 (-13 (-1092) (-34)))))) (((*1 *2 *2) - (-12 (-4 *2 (-171)) (-4 *2 (-1042)) (-5 *1 (-708 *2 *3)) (-4 *3 (-641 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-171)) (-4 *2 (-1042))))) + (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1192) (-429 *3))) + (-14 *4 (-1168)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-4 *2 (-13 (-27) (-1192) (-429 *3) (-10 -8 (-15 -4054 ($ *4))))) + (-4 *4 (-843)) + (-4 *5 + (-13 (-1234 *2 *4) (-362) (-1192) + (-10 -8 (-15 -4029 ($ $)) (-15 -2667 ($ $))))) + (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-978 *5)) (-14 *7 (-1168))))) +(((*1 *1 *2) + (-12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146))) + (-5 *1 (-398 *3 *4))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1256 *4)) (-5 *3 (-683 *4)) (-4 *4 (-362)) + (-5 *1 (-661 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-362)) + (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4403)))) + (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4403)))) + (-5 *1 (-662 *4 *5 *2 *3)) (-4 *3 (-681 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-639 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) + (-5 *1 (-809 *2 *3)) (-4 *3 (-650 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-635 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1091)))) + (-12 (-4 *7 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) + (-4 *8 (-944 *7 *5 *6)) + (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *3) (|:| |radicand| *3))) + (-5 *1 (-948 *5 *6 *7 *8 *3)) (-5 *4 (-766)) + (-4 *3 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *8)) (-15 -4065 (*8 $)) (-15 -4076 (*8 $)))))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-766)) (-4 *5 (-348)) (-4 *6 (-1232 *5)) + (-5 *2 + (-639 + (-2 (|:| -3928 (-683 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-683 *6))))) + (-5 *1 (-497 *5 *6 *7)) + (-5 *3 + (-2 (|:| -3928 (-683 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-683 *6)))) + (-4 *7 (-1232 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-788)) + (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *5 (-554)) + (-5 *1 (-727 *4 *3 *5 *2)) (-4 *2 (-944 (-406 (-947 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-635 *4))) (-4 *4 (-1091)) - (-5 *1 (-114 *4)))) + (-12 (-4 *4 (-1044)) (-4 *5 (-788)) + (-4 *3 + (-13 (-845) + (-10 -8 (-15 -4208 ((-1168) $)) + (-15 -2444 ((-3 $ "failed") (-1168)))))) + (-5 *1 (-979 *4 *5 *3 *2)) (-4 *2 (-944 (-947 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) + (-12 (-5 *3 (-639 *6)) + (-4 *6 + (-13 (-845) + (-10 -8 (-15 -4208 ((-1168) $)) + (-15 -2444 ((-3 $ "failed") (-1168)))))) + (-4 *4 (-1044)) (-4 *5 (-788)) (-5 *1 (-979 *4 *5 *6 *2)) + (-4 *2 (-944 (-947 *4) *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-635 *4))) (-5 *1 (-114 *4)) - (-4 *4 (-1091)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) - (-5 *1 (-708 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-828 *3))))) + (-12 (-5 *3 (-639 (-2 (|:| -1635 *4) (|:| -3598 (-562))))) + (-4 *4 (-1232 (-562))) (-5 *2 (-766)) (-5 *1 (-441 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-857)) (-5 *1 (-1148 *3)) (-4 *3 (-1092)) + (-4 *3 (-1207))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) + (-5 *2 (-1030)) (-5 *1 (-742))))) +(((*1 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-641 *3)) (-4 *3 (-1042)) - (-5 *1 (-708 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-828 *3))))) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) + (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1033 (-562))) (-4 *3 (-13 (-845) (-554))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3)))) + ((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-1164 *4)) (-5 *1 (-164 *3 *4)) + (-4 *3 (-165 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1044)) (-4 *1 (-301)))) + ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1164 *3)))) + ((*1 *2) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-13 (-843) (-362))) + (-4 *2 (-1232 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) + (-4 *3 (-13 (-362) (-1192) (-997)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554))))) +(((*1 *2 *1) + (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) + (-5 *2 (-639 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-113)) (-4 *4 (-1042)) (-5 *1 (-708 *4 *2)) (-4 *2 (-641 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-828 *2)) (-4 *2 (-1042))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-360 (-113))) (-4 *2 (-1042)) (-5 *1 (-708 *2 *4)) - (-4 *4 (-641 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-360 (-113))) (-5 *1 (-828 *2)) (-4 *2 (-1042))))) -(((*1 *2) (-12 (-5 *2 (-826 (-544))) (-5 *1 (-532)))) - ((*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1091))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-1259)) (-5 *1 (-825))))) + (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-38 (-406 (-562)))) + (-4 *2 (-171))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1164 *6)) (-5 *3 (-562)) (-4 *6 (-306)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) +(((*1 *1 *1 *1) (-5 *1 (-224))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) + ((*1 *1 *1 *1) (-4 *1 (-1131)))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1030)) (-5 *1 (-748))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-816)) (-5 *4 (-51)) (-5 *2 (-1259)) (-5 *1 (-825))))) -(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-51)) (-5 *1 (-825))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-823))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-823)) (-5 *3 (-1148))))) -(((*1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-51)) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-51)) (-5 *1 (-823))))) -(((*1 *1 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-822 *2 *3)) (-4 *2 (-702 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-702 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1042))))) -(((*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1148)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-112)) (-5 *2 (-1148)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-817)) (-5 *2 (-1259)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-815)) (-5 *3 (-817)) (-5 *4 (-112)) (-5 *2 (-1259)))) - ((*1 *2 *3) - (-12 (-5 *3 (-313 *4)) (-4 *4 (-13 (-815) (-844) (-1042))) (-5 *2 (-1148)) - (-5 *1 (-821 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-313 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-815) (-844) (-1042))) - (-5 *2 (-1148)) (-5 *1 (-821 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-817)) (-5 *4 (-313 *5)) (-4 *5 (-13 (-815) (-844) (-1042))) - (-5 *2 (-1259)) (-5 *1 (-821 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-817)) (-5 *4 (-313 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-815) (-844) (-1042))) (-5 *2 (-1259)) (-5 *1 (-821 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) -(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-819))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-819))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-820)) (-5 *3 (-635 (-1166))) (-5 *1 (-819))))) -(((*1 *1) (-5 *1 (-818)))) -(((*1 *1) (-5 *1 (-818)))) -(((*1 *1) (-5 *1 (-818)))) -(((*1 *1) (-5 *1 (-818)))) -(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-817))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1148)) (|:| -3949 (-1148)))) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-817))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-818)) (-5 *1 (-817))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-818)) (-5 *1 (-817))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1110)) (-5 *2 (-112)) (-5 *1 (-816))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1148)) (-5 *4 (-1110)) (-5 *2 (-112)) (-5 *1 (-816))))) -(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816))))) -(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-816))))) -(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-816))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-844)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3)) (-4 *3 (-844)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-844))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-844))))) + (-12 (-5 *3 (-683 (-168 (-406 (-562))))) + (-5 *2 + (-639 + (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-562)) + (|:| |outvect| (-639 (-683 (-168 *4))))))) + (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843)))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-1132 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) + (-5 *1 (-1133 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-639 (-1132 *3 *4))) (-4 *3 (-13 (-1092) (-34))) + (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4))))) +(((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) (((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) - (-5 *1 (-385 *3)) (-4 *3 (-1091)))) + (-12 (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-306)))) ((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| |lm| (-813 *3)) (|:| |mm| (-813 *3)) (|:| |rm| (-813 *3)))) - (-5 *1 (-813 *3)) (-4 *3 (-844))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-360 *3)) (-4 *3 (-1091)))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) + (-5 *1 (-385 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2097 (-766)) (|:| -2264 (-766)))) + (-5 *1 (-766)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-938 (-224))) (-5 *4 (-869)) (-5 *5 (-916)) + (-5 *2 (-1261)) (-5 *1 (-467)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-5 *2 (-765)) (-5 *1 (-385 *4)) (-4 *4 (-1091)))) + (-12 (-5 *3 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-467)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *4 (-869)) (-5 *5 (-916)) + (-5 *2 (-1261)) (-5 *1 (-467))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1092)) (-4 *3 (-895 *5)) (-5 *2 (-683 *3)) + (-5 *1 (-686 *5 *3 *6 *4)) (-4 *6 (-372 *3)) + (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4402))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-1058 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *2 (-23)) (-5 *1 (-642 *4 *2 *5)) (-4 *4 (-1091)) - (-14 *5 *2))) + (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-766))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-5 *2 (-765)) (-5 *1 (-813 *4)) (-4 *4 (-844))))) + (-12 (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) + (-4 *3 (-845)) (-5 *2 (-766))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) + (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) + (-5 *1 (-691))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-971 *4 *5 *3 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) + (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1091)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-360 *2)) (-4 *2 (-1091)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-385 *2)) (-4 *2 (-1091)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *2 (-1091)) (-5 *1 (-642 *2 *4 *5)) (-4 *4 (-23)) - (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-544)) (-5 *1 (-813 *2)) (-4 *2 (-844))))) + (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1056)) (-5 *3 (-1150))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042))))) +(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1259)))) + ((*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1259))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-742))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) + (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4403))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1044)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1232 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef1| (-777 *3)))) + (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-2 (|:| -1606 *1) (|:| |coef1| *1))) + (-4 *1 (-1058 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) + (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) + (-4 *2 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) + (-15 -4076 ((-1117 *3 (-608 $)) $)) + (-15 -4054 ($ (-1117 *3 (-608 $)))))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) + (-4 *3 (-13 (-362) (-1192) (-997)))))) +(((*1 *2 *1) (-12 (-5 *2 (-966)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) + (-5 *2 (-1261)) (-5 *1 (-1171)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) + (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *2 (-1261)) + (-5 *1 (-1171)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1168)) + (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2650 "void"))) (-5 *2 (-1261)) + (-5 *1 (-1171))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-817))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-639 (-2 (|:| |totdeg| (-766)) (|:| -4380 *3)))) + (-5 *4 (-766)) (-4 *3 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) + (-4 *7 (-845)) (-5 *1 (-448 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-742))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) + (-4 *4 (-348)) (-5 *2 (-766)) (-5 *1 (-345 *4)))) + ((*1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) + (-14 *4 (-916)))) + ((*1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) + (-14 *4 + (-3 (-1164 *3) + (-1256 (-639 (-2 (|:| -2534 *3) (|:| -2466 (-1112))))))))) + ((*1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) + (-14 *4 (-916))))) +(((*1 *1) (-5 *1 (-156))) + ((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-608 *3)) (-5 *5 (-1 (-1164 *3) (-1164 *3))) + (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-845) (-554))) + (-5 *2 (-583 *3)) (-5 *1 (-549 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-109))) (-5 *1 (-174))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-766)) (-4 *4 (-554)) (-5 *1 (-964 *4 *2)) + (-4 *2 (-1232 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-916)) (-4 *5 (-306)) (-4 *3 (-1232 *5)) + (-5 *2 (-2 (|:| |plist| (-639 *3)) (|:| |modulo| *5))) + (-5 *1 (-459 *5 *3)) (-5 *4 (-639 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) (((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-544))))) (-5 *1 (-360 *3)) - (-4 *3 (-1091)))) + (|partial| -12 (-4 *3 (-1104)) (-4 *3 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-429 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-765))))) (-5 *1 (-385 *3)) - (-4 *3 (-1091)))) + (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) + (-4 *3 (-1092)))) ((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| -4139 *3) (|:| -2536 (-544))))) (-5 *1 (-404 *3)) - (-4 *3 (-554)))) - ((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 (-765))))) (-5 *1 (-813 *3)) - (-4 *3 (-844))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-1253 *4)) - (-5 *1 (-808 *4 *3)) (-4 *3 (-651 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-362)) (-5 *2 (-682 *4)) (-5 *1 (-808 *4 *5)) - (-4 *5 (-651 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *5)) (-5 *4 (-765)) (-4 *5 (-362)) (-5 *2 (-682 *5)) - (-5 *1 (-808 *5 *6)) (-4 *6 (-651 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-939 *5))) (-5 *4 (-635 (-1166))) (-4 *5 (-554)) - (-5 *2 (-635 (-635 (-292 (-406 (-939 *5)))))) (-5 *1 (-764 *5)))) + (|partial| -12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-554)) - (-5 *2 (-635 (-635 (-292 (-406 (-939 *4)))))) (-5 *1 (-764 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-682 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2162 (-635 *6))) *7 *6)) - (-4 *6 (-362)) (-4 *7 (-651 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1253 *6) "failed")) - (|:| -2162 (-635 (-1253 *6))))) - (-5 *1 (-807 *6 *7)) (-5 *4 (-1253 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) - (-5 *2 - (-2 (|:| A (-682 *5)) - (|:| |eqs| - (-635 - (-2 (|:| C (-682 *5)) (|:| |g| (-1253 *5)) (|:| -3667 *6) - (|:| |rh| *5)))))) - (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) - (-4 *6 (-651 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-651 *5)) - (-5 *2 (-2 (|:| -1728 (-682 *6)) (|:| |vec| (-1253 *5)))) - (-5 *1 (-807 *5 *6)) (-5 *3 (-682 *6)) (-5 *4 (-1253 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *6 (-1229 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-648 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) - (-5 *5 (-1 (-404 *7) *7)) - (-4 *6 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *7 (-1229 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-806 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-1 (-635 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *6 (-1229 *5)) (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *7 (-406 *7))) (-5 *4 (-1 (-635 *6) *7)) - (-5 *5 (-1 (-404 *7) *7)) - (-4 *6 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *7 (-1229 *6)) (-5 *2 (-635 (-406 *7))) (-5 *1 (-806 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-648 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-635 (-406 *5))) (-5 *1 (-806 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-27)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *5 (-406 *5))) (-4 *5 (-1229 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-635 (-406 *5))) (-5 *1 (-806 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-27)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-635 (-406 *6))) (-5 *1 (-806 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-635 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) - (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3667 *3)))) - (-5 *1 (-803 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-406 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-635 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *6 (-1229 *5)) - (-5 *2 (-635 (-2 (|:| |poly| *6) (|:| -3667 (-649 *6 (-406 *6)))))) - (-5 *1 (-806 *5 *6)) (-5 *3 (-649 *6 (-406 *6)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-635 *7) *7 (-1160 *7))) (-5 *5 (-1 (-404 *7) *7)) - (-4 *7 (-1229 *6)) (-4 *6 (-13 (-362) (-146) (-1031 (-406 (-544))))) - (-5 *2 (-635 (-2 (|:| |frac| (-406 *7)) (|:| -3667 *3)))) - (-5 *1 (-803 *6 *7 *3 *8)) (-4 *3 (-651 *7)) (-4 *8 (-651 (-406 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-635 (-2 (|:| |frac| (-406 *6)) (|:| -3667 (-649 *6 (-406 *6)))))) - (-5 *1 (-806 *5 *6)) (-5 *3 (-649 *6 (-406 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *7 (-1229 *5)) (-4 *4 (-718 *5 *7)) - (-5 *2 (-2 (|:| -1728 (-682 *6)) (|:| |vec| (-1253 *5)))) - (-5 *1 (-805 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4))))) + (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) + (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *3)) + (-5 *1 (-945 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) + (-15 -4076 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-246 *3 *4)) + (-14 *3 (-639 (-1168))) (-4 *4 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-562))) (-14 *3 (-639 (-1168))) + (-5 *1 (-453 *3 *4 *5)) (-4 *4 (-1044)) + (-4 *5 (-237 (-3492 *3) (-766))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-480 *3 *4)) + (-14 *3 (-639 (-1168))) (-4 *4 (-1044))))) (((*1 *2 *3) - (-12 (-5 *3 (-648 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2)) - (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *2 (-406 *2))) (-4 *2 (-1229 *4)) (-5 *1 (-804 *4 *2)) - (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-648 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4)))) - (-5 *1 (-804 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-648 (-406 *6))) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-2 (|:| -2162 (-635 (-406 *6))) (|:| -1728 (-682 *5)))) - (-5 *1 (-804 *5 *6)) (-5 *4 (-635 (-406 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4)))) - (-5 *1 (-804 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6 (-406 *6))) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-2 (|:| -2162 (-635 (-406 *6))) (|:| -1728 (-682 *5)))) - (-5 *1 (-804 *5 *6)) (-5 *4 (-635 (-406 *6)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-1229 *4)) - (-5 *1 (-803 *4 *3 *2 *5)) (-4 *2 (-651 *3)) (-4 *5 (-651 (-406 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) - (-4 *5 (-1229 *4)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *2 (-651 *5)) - (-4 *6 (-651 *3))))) + (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-416 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-635 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *6 (-1229 *5)) - (-5 *2 (-635 (-2 (|:| -4359 *5) (|:| -3667 *3)))) (-5 *1 (-803 *5 *6 *3 *7)) - (-4 *3 (-651 *6)) (-4 *7 (-651 (-406 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) - (-5 *2 (-635 (-2 (|:| |deg| (-765)) (|:| -3667 *5)))) - (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-406 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1229 *4)) (-5 *1 (-803 *4 *2 *3 *5)) - (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) - (-4 *5 (-651 (-406 *2)))))) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *3 *5)) - (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) - (-4 *5 (-651 (-406 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1229 *4)) (-5 *1 (-801 *4 *2 *5 *3)) - (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-651 *2)) - (-4 *3 (-651 (-406 *2)))))) + (-12 (-5 *3 (-916)) (-5 *4 (-417 *6)) (-4 *6 (-1232 *5)) + (-4 *5 (-1044)) (-5 *2 (-639 *6)) (-5 *1 (-443 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) + ((*1 *2 *2) + (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) + (-4 *4 (-348))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1092))))) +(((*1 *1 *1) (-4 *1 (-625))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-406 (-562)))) + (-5 *2 (-2 (|:| -4207 (-1148 *4)) (|:| -2978 (-1148 *4)))) + (-5 *1 (-1154 *4)) (-5 *3 (-1148 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) + ((*1 *2 *1) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *1) (-5 *1 (-467)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) + (-5 *2 (-1164 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1168)) + (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-191)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1168)) + (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) - (-5 *2 (-635 (-2 (|:| -4179 *5) (|:| -3627 *5)))) (-5 *1 (-801 *4 *5 *3 *6)) - (-4 *3 (-651 *5)) (-4 *6 (-651 (-406 *5))))) + (-12 (-5 *3 (-1086 (-838 (-378)))) (-5 *2 (-1086 (-838 (-224)))) + (-5 *1 (-304))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-554)) + (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-1227 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) + (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *3 (-1058 *4 *5 *6)) + (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *1)))) + (-4 *1 (-1064 *4 *5 *6 *3))))) +(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-754))))) +(((*1 *1) (-5 *1 (-1171)))) +(((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) + (-5 *2 + (-2 (|:| -1416 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *4 (-1229 *5)) - (-5 *2 (-635 (-2 (|:| -4179 *4) (|:| -3627 *4)))) (-5 *1 (-801 *5 *4 *3 *6)) - (-4 *3 (-651 *4)) (-4 *6 (-651 (-406 *4))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -2451 (-406 *6)) + (|:| |special| (-406 *6)))) + (-5 *1 (-722 *5 *6)) (-5 *3 (-406 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *5 (-1229 *4)) - (-5 *2 (-635 (-2 (|:| -4179 *5) (|:| -3627 *5)))) (-5 *1 (-801 *4 *5 *6 *3)) - (-4 *6 (-651 *5)) (-4 *3 (-651 (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *4 (-1229 *5)) - (-5 *2 (-635 (-2 (|:| -4179 *4) (|:| -3627 *4)))) (-5 *1 (-801 *5 *4 *6 *3)) - (-4 *6 (-651 *4)) (-4 *3 (-651 (-406 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1229 *5)) - (-5 *1 (-801 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) - (-4 *3 (-651 *2)) (-4 *6 (-651 *4)))) + (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-891 *3 *4)) + (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-766)) (-4 *5 (-362)) + (-5 *2 (-2 (|:| -1588 *3) (|:| -1602 *3))) (-5 *1 (-891 *3 *5)) + (-4 *3 (-1232 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) + (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) + (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) + (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) + (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) + (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) + (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) + (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) + (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1137 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-639 (-406 (-947 (-562))))) (-5 *4 (-639 (-1168))) + (-5 *2 (-639 (-639 *5))) (-5 *1 (-379 *5)) + (-4 *5 (-13 (-843) (-362))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-406 *2))) (-4 *2 (-1229 *5)) (-5 *1 (-801 *5 *2 *3 *6)) - (-4 *5 (-13 (-362) (-146) (-1031 (-406 (-544))))) (-4 *3 (-651 *2)) - (-4 *6 (-651 (-406 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-648 *4)) (-4 *4 (-341 *5 *6 *7)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *6 (-1229 *5)) (-4 *7 (-1229 (-406 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4)))) - (-5 *1 (-800 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166)) - (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-798 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1190) (-953)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) - (-4 *4 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-5 *1 (-798 *4 *2)) (-4 *2 (-13 (-29 *4) (-1190) (-953)))))) + (-12 (-5 *3 (-406 (-947 (-562)))) (-5 *2 (-639 *4)) (-5 *1 (-379 *4)) + (-4 *4 (-13 (-843) (-362)))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 - (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) - (|:| |expense| (-377)) (|:| |accuracy| (-377)) - (|:| |intermediateResults| (-377)))) - (-5 *1 (-797))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-635 - (-2 - (|:| -4267 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (|:| -2226 - (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) - (|:| |expense| (-377)) (|:| |accuracy| (-377)) - (|:| |intermediateResults| (-377))))))) - (-5 *1 (-797))))) + (-12 (-5 *3 (-562)) (|has| *1 (-6 -4393)) (-4 *1 (-403)) + (-5 *2 (-916))))) (((*1 *2 *1) + (-12 (-5 *2 (-639 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-554)) + (-4 *3 (-1207))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1044)) (-4 *3 (-1232 *4)) (-4 *2 (-1247 *4)) + (-5 *1 (-1250 *4 *3 *5 *2)) (-4 *5 (-650 *3))))) +(((*1 *2 *3) + (-12 (-4 *2 (-362)) (-4 *2 (-843)) (-5 *1 (-940 *2 *3)) + (-4 *3 (-1232 *2))))) +(((*1 *2 *3 *1) (-12 (-5 *2 - (-635 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224))))) - (-5 *1 (-557)))) - ((*1 *2 *1) - (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-635 *3)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-635 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224))))) - (-5 *1 (-797))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-797))))) -(((*1 *1) (-5 *1 (-797)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1166)) - (-4 *6 (-13 (-844) (-306) (-1031 (-544)) (-634 (-544)) (-146))) - (-4 *4 (-13 (-29 *6) (-1190) (-953))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2162 (-635 *4)))) - (-5 *1 (-795 *6 *4 *3)) (-4 *3 (-651 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-794)) - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-1028))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-171)) (-5 *1 (-792 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171))))) -(((*1 *1 *1) (-4 *1 (-242))) - ((*1 *1 *1) - (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *2)) - (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3936 (-12 (-5 *1 (-292 *2)) (-4 *2 (-362)) (-4 *2 (-1204))) - (-12 (-5 *1 (-292 *2)) (-4 *2 (-471)) (-4 *2 (-1204))))) - ((*1 *1 *1) (-4 *1 (-471))) - ((*1 *2 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-349)) (-5 *1 (-526 *3)))) + (-2 (|:| |cycle?| (-112)) (|:| -2178 (-766)) (|:| |period| (-766)))) + (-5 *1 (-1148 *4)) (-4 *4 (-1207)) (-5 *3 (-766))))) +(((*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-171)) (-4 *2 (-362))))) -(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) - ((*1 *1 *1 *1) (-4 *1 (-787)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) - (-5 *2 - (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) - (|:| |success| (-112)))) - (-5 *1 (-783)) (-5 *5 (-544))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) - (-5 *2 - (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) - (|:| |success| (-112)))) - (-5 *1 (-783)) (-5 *5 (-544))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) - (-5 *2 - (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) - (|:| |success| (-112)))) - (-5 *1 (-783)) (-5 *5 (-544))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) - (-5 *2 - (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) - (|:| |success| (-112)))) - (-5 *1 (-783)) (-5 *5 (-544))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) - (-5 *2 - (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) - (|:| |success| (-112)))) - (-5 *1 (-783)) (-5 *5 (-544))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) - (-5 *2 - (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) - (|:| |success| (-112)))) - (-5 *1 (-783)) (-5 *5 (-544))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) - (-5 *2 - (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) - (|:| |success| (-112)))) - (-5 *1 (-783)) (-5 *5 (-544))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) - (-5 *2 - (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) - (|:| |success| (-112)))) - (-5 *1 (-783)) (-5 *5 (-544))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-377) (-377))) (-5 *4 (-377)) - (-5 *2 - (-2 (|:| -3806 *4) (|:| -1684 *4) (|:| |totalpts| (-544)) - (|:| |success| (-112)))) - (-5 *1 (-783)) (-5 *5 (-544))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) - (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-544)) - (-5 *6 (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377)))) - (-5 *7 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) - (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-544)) - (-5 *6 (-2 (|:| |try| (-377)) (|:| |did| (-377)) (|:| -1559 (-377)))) - (-5 *7 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) (-5 *3 (-1253 (-377))) - (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) - (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) - (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-544)) (-5 *6 (-1 (-1259) (-1253 *5) (-1253 *5) (-377))) - (-5 *3 (-1253 (-377))) (-5 *5 (-377)) (-5 *2 (-1259)) (-5 *1 (-782))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-781)) (-5 *2 (-1028)) - (-5 *3 - (-2 (|:| |fn| (-313 (-224))) (|:| -1589 (-635 (-1079 (-836 (-224))))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-781)) (-5 *2 (-1028)) - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224))))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-780))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-780))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-912)) (-5 *1 (-780))))) -(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1148)) (-5 *1 (-780))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-912)) (-5 *1 (-780))))) -(((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1148)) (-5 *1 (-780))))) + (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) + (-14 *4 *2)))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-939 (-167 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-939 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-171)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-939 (-167 *4)))) (-4 *4 (-554)) - (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-406 (-939 (-167 *5)))) (-5 *4 (-912)) (-4 *5 (-554)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) - (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-313 (-167 *4))) (-4 *4 (-554)) (-4 *4 (-844)) - (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-313 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-554)) - (-4 *5 (-844)) (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) - (-5 *1 (-779 *5))))) + (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1164 (-1164 *4)))) + (-5 *1 (-1205 *4)) (-5 *3 (-1164 (-1164 *4)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) - (-5 *2 (-377)) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) - (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 *2)) - (-5 *2 (-377)) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) - (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) - (-4 *4 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) - (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5))))) + (-12 (-5 *3 (-1134 *4 *2)) (-14 *4 (-916)) + (-4 *2 (-13 (-1044) (-10 -7 (-6 (-4404 "*"))))) + (-5 *1 (-897 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-167 (-377))) (-5 *1 (-779 *3)) (-4 *3 (-609 (-377))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-912)) (-5 *2 (-167 (-377))) (-5 *1 (-779 *3)) - (-4 *3 (-609 (-377))))) - ((*1 *2 *3) - (-12 (-5 *3 (-167 *4)) (-4 *4 (-171)) (-4 *4 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-167 *5)) (-5 *4 (-912)) (-4 *5 (-171)) (-4 *5 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-939 (-167 *4))) (-4 *4 (-171)) (-4 *4 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-939 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-171)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-1044)) (-5 *2 (-1256 *4)) + (-5 *1 (-1169 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-406 (-939 (-167 *4)))) (-4 *4 (-554)) (-4 *4 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 (-167 *5)))) (-5 *4 (-912)) (-4 *5 (-554)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 (-377))) - (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-313 (-167 *4))) (-4 *4 (-554)) (-4 *4 (-844)) - (-4 *4 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-313 (-167 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) - (-4 *5 (-609 (-377))) (-5 *2 (-167 (-377))) (-5 *1 (-779 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-377)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-912)) (-5 *2 (-377)) (-5 *1 (-779 *3)) (-4 *3 (-609 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-939 *4)) (-4 *4 (-1042)) (-4 *4 (-609 *2)) (-5 *2 (-377)) - (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-939 *5)) (-5 *4 (-912)) (-4 *5 (-1042)) (-4 *5 (-609 *2)) - (-5 *2 (-377)) (-5 *1 (-779 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-406 (-939 *4))) (-4 *4 (-554)) (-4 *4 (-609 *2)) (-5 *2 (-377)) - (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-609 *2)) - (-5 *2 (-377)) (-5 *1 (-779 *5)))) + (-12 (-5 *4 (-916)) (-5 *2 (-1256 *3)) (-5 *1 (-1169 *3)) + (-4 *3 (-1044))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-639 (-1168))) (-4 *2 (-171)) + (-4 *4 (-237 (-3492 *5) (-766))) + (-14 *6 + (-1 (-112) (-2 (|:| -2466 *3) (|:| -1960 *4)) + (-2 (|:| -2466 *3) (|:| -1960 *4)))) + (-5 *1 (-460 *5 *2 *3 *4 *6 *7)) (-4 *3 (-845)) + (-4 *7 (-944 *2 *4 (-859 *5)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-1229 *5 *4)) (-5 *1 (-1166 *4 *5 *6)) + (-4 *4 (-1044)) (-14 *5 (-1168)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-5 *2 (-1229 *5 *4)) (-5 *1 (-1248 *4 *5 *6)) + (-4 *4 (-1044)) (-14 *5 (-1168)) (-14 *6 *4)))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1044))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-742))))) +(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-916)))) ((*1 *2 *3) - (-12 (-5 *3 (-313 *4)) (-4 *4 (-554)) (-4 *4 (-844)) (-4 *4 (-609 *2)) - (-5 *2 (-377)) (-5 *1 (-779 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-313 *5)) (-5 *4 (-912)) (-4 *5 (-554)) (-4 *5 (-844)) - (-4 *5 (-609 *2)) (-5 *2 (-377)) (-5 *1 (-779 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-544)))) - (-4 *2 (-171))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-765)) (-5 *1 (-777 *2)) (-4 *2 (-38 (-406 (-544)))) - (-4 *2 (-171))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1042))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-635 (-775 *3))) (-5 *1 (-775 *3)) (-4 *3 (-554)) - (-4 *3 (-1042))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 (-2 (|:| -4163 *3) (|:| |coef1| (-775 *3)) (|:| |coef2| (-775 *3)))) - (-5 *1 (-775 *3)) (-4 *3 (-554)) (-4 *3 (-1042))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef1| (-775 *3)))) (-5 *1 (-775 *3)) - (-4 *3 (-554)) (-4 *3 (-1042))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4163 *3) (|:| |coef2| (-775 *3)))) (-5 *1 (-775 *3)) - (-4 *3 (-554)) (-4 *3 (-1042))))) + (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-916)) + (-5 *1 (-527 *4))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1232 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-980 *4 *2 *3 *5)) + (-4 *4 (-348)) (-4 *5 (-719 *2 *3))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1150)) (-5 *4 (-168 (-224))) (-5 *5 (-562)) + (-5 *2 (-1030)) (-5 *1 (-753))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-682 (-406 (-544)))) - (-5 *2 - (-635 - (-2 (|:| |outval| *4) (|:| |outmult| (-544)) - (|:| |outvect| (-635 (-682 *4)))))) - (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842)))))) + (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) + (-4 *5 (-554)) (-5 *2 (-639 (-639 (-947 *5)))) (-5 *1 (-1176 *5))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-857) (-857) (-857))) (-5 *4 (-562)) (-5 *2 (-857)) + (-5 *1 (-643 *5 *6 *7)) (-4 *5 (-1092)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-857)) (-5 *1 (-849 *3 *4 *5)) (-4 *3 (-1044)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-857)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-857)))) + ((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-857)) (-5 *1 (-1164 *3)) (-4 *3 (-1044))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-639 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) + (-5 *1 (-209))))) +(((*1 *2 *1) + (-12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-639 *6)) + (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-329))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) + ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) + ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-788)) (-4 *2 (-944 *4 *5 *6)) (-5 *1 (-448 *4 *5 *6 *2)) + (-4 *4 (-451)) (-4 *6 (-845))))) +(((*1 *2 *3) + (-12 (-5 *3 (-562)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1044)) + (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-944 *2 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-766)))) + ((*1 *2 *1) + (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-766))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-635 *4)) (-5 *1 (-773 *4)) - (-4 *4 (-13 (-362) (-842)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-682 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-171)) (-4 *2 (-1229 *4)) (-5 *1 (-176 *4 *2 *3)) - (-4 *3 (-718 *4 *2)))) + (-12 (-4 *5 (-1092)) (-4 *6 (-881 *5)) (-5 *2 (-880 *5 *6 (-639 *6))) + (-5 *1 (-882 *5 *6 *4)) (-5 *3 (-639 *6)) (-4 *4 (-610 (-887 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 (-406 (-939 *5)))) (-5 *4 (-1166)) (-5 *2 (-939 *5)) - (-5 *1 (-291 *5)) (-4 *5 (-450)))) - ((*1 *2 *3) - (-12 (-5 *3 (-682 (-406 (-939 *4)))) (-5 *2 (-939 *4)) (-5 *1 (-291 *4)) - (-4 *4 (-450)))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1229 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-939 (-167 (-406 (-544))))) - (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842))))) + (-12 (-4 *5 (-1092)) (-5 *2 (-639 (-293 *3))) (-5 *1 (-882 *5 *3 *4)) + (-4 *3 (-1033 (-1168))) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *4 (-1166)) - (-5 *2 (-939 (-167 (-406 (-544))))) (-5 *1 (-758 *5)) - (-4 *5 (-13 (-362) (-842))))) - ((*1 *2 *3) - (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *2 (-939 (-406 (-544)))) - (-5 *1 (-773 *4)) (-4 *4 (-13 (-362) (-842))))) + (-12 (-4 *5 (-1092)) (-5 *2 (-639 (-293 (-947 *3)))) + (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1044)) + (-2236 (-4 *3 (-1033 (-1168)))) (-4 *3 (-881 *5)) + (-4 *4 (-610 (-887 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 (-406 (-544)))) (-5 *4 (-1166)) - (-5 *2 (-939 (-406 (-544)))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-362) (-842)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-635 (-765))) - (-5 *1 (-772 *3 *4 *5 *6 *7)) (-4 *3 (-1229 *6)) (-4 *7 (-943 *6 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1229 *9)) (-4 *7 (-787)) (-4 *8 (-844)) (-4 *9 (-306)) - (-4 *10 (-943 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-635 (-1160 *10))) - (|:| |dterm| (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-635 *6)) (|:| |nlead| (-635 *10)))) - (-5 *1 (-772 *6 *7 *8 *9 *10)) (-5 *3 (-1160 *10)) (-5 *4 (-635 *6)) - (-5 *5 (-635 *10))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *5 (-328 *4)) (-4 *6 (-1229 *5)) (-5 *2 (-635 *3)) - (-5 *1 (-771 *4 *5 *6 *3 *7)) (-4 *3 (-1229 *6)) (-14 *7 (-912))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| (-112)) (|:| -1688 *4)))) - (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1148)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-4 *4 (-1056 *6 *7 *8)) (-5 *2 (-1259)) (-5 *1 (-770 *6 *7 *8 *4 *5)) - (-4 *5 (-1062 *6 *7 *8 *4))))) + (-12 (-4 *5 (-1092)) (-5 *2 (-884 *5 *3)) (-5 *1 (-882 *5 *3 *4)) + (-2236 (-4 *3 (-1033 (-1168)))) (-2236 (-4 *3 (-1044))) + (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) + (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) + (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))))) - ((*1 *1 *1) (-5 *1 (-377))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *3 (-1056 *5 *6 *7)) - (-5 *2 (-635 (-2 (|:| |val| *3) (|:| -1688 *4)))) - (-5 *1 (-770 *5 *6 *7 *3 *4)) (-4 *4 (-1062 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *2 (-1056 *4 *5 *6)) - (-5 *1 (-770 *4 *5 *6 *2 *3)) (-4 *3 (-1062 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-377)))) - ((*1 *1 *1 *1) (-4 *1 (-543))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) - ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-765))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-489)) (-5 *4 (-947)) (-5 *2 (-684 (-531))) (-5 *1 (-531)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-947)) (-4 *3 (-1091)) (-5 *2 (-684 *1)) (-4 *1 (-761 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-682 (-167 (-406 (-544))))) - (-5 *2 - (-635 - (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-544)) - (|:| |outvect| (-635 (-682 (-167 *4))))))) - (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-682 (-167 (-406 (-544))))) (-5 *2 (-635 (-167 *4))) - (-5 *1 (-758 *4)) (-4 *4 (-13 (-362) (-842)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-755)))) -(((*1 *1 *1 *1) (-4 *1 (-471))) ((*1 *1 *1 *1) (-4 *1 (-755)))) -(((*1 *1 *1 *1) (-4 *1 (-755)))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-753))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-939 (-544)))) (-5 *1 (-435)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-224))) (-5 *2 (-1093)) (-5 *1 (-753)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-682 (-544))) (-5 *2 (-1093)) (-5 *1 (-753))))) -(((*1 *2 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753))))) -(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753))))) -(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-753))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) + (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) + (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-1196 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-766)) (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) + (-4 *2 (-1232 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *1 (-583 *2)) (-4 *2 (-1033 *3)) + (-4 *2 (-362)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-362)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-626 *4 *2)) + (-4 *2 (-13 (-429 *4) (-997) (-1192))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1084 *2)) (-4 *2 (-13 (-429 *4) (-997) (-1192))) + (-4 *4 (-13 (-845) (-554))) (-5 *1 (-626 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-1168)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-954))))) +(((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1150)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-262))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-103 *3)) (-4 *3 (-1092))))) +(((*1 *2 *1) + (-12 (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-117 *3)) (-14 *3 (-562)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1148 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-173 (-562))) (-5 *1 (-760 *3)) (-4 *3 (-403)))) + ((*1 *2 *1) + (-12 (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-866 *3)) (-14 *3 (-562)))) + ((*1 *2 *1) + (-12 (-14 *3 (-562)) (-5 *2 (-173 (-406 (-562)))) + (-5 *1 (-867 *3 *4)) (-4 *4 (-864 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-5 *1 (-485 *2)) (-4 *2 (-1232 (-562)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-416 *4))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-639 (-1164 *7))) (-5 *3 (-1164 *7)) + (-4 *7 (-944 *5 *6 *4)) (-4 *5 (-904)) (-4 *6 (-788)) + (-4 *4 (-845)) (-5 *1 (-901 *5 *6 *4 *7))))) +(((*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-639 (-938 (-224))))) + (-5 *2 (-639 (-1086 (-224)))) (-5 *1 (-923))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-909 *3)) (-4 *3 (-306))))) (((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-167 (-224))) (-5 *6 (-1148)) (-5 *4 (-224)) - (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1148)) (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *2 (-1028)) - (-5 *1 (-752))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1148)) (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *2 (-1028)) - (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-224))) (-5 *5 (-544)) (-5 *6 (-1148)) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-167 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) - (-5 *1 (-751))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) - (-5 *1 (-751))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) - (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-751))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-751))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) - (-5 *2 (-1028)) (-5 *1 (-750))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) - (-5 *2 (-1028)) (-5 *1 (-750))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1028)) - (-5 *1 (-750))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) - (-5 *2 (-1028)) (-5 *1 (-750))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) - (-5 *1 (-750))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) - (-5 *2 (-1028)) (-5 *1 (-750))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-750))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-750))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-167 (-224)))) (-5 *2 (-1028)) - (-5 *1 (-750))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-112)) (-5 *5 (-682 (-167 (-224)))) - (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-112)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) - (-5 *1 (-749))))) + (-12 (-5 *3 (-562)) (-5 *5 (-168 (-224))) (-5 *6 (-1150)) + (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) (((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) - (-5 *2 (-1028)) (-5 *1 (-749)))) + (-5 *2 (-1030)) (-5 *1 (-750)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) - (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) (-5 *4 (-224)) - (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) - (-5 *1 (-749))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-749))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-167 (-224)))) - (-5 *2 (-1028)) (-5 *1 (-748))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-167 (-224)))) - (-5 *2 (-1028)) (-5 *1 (-748))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-167 (-224)))) (-5 *2 (-1028)) - (-5 *1 (-748))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) - (-5 *1 (-748))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) - (-5 *1 (-748))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-748))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *3 (-544)) - (-5 *2 (-1028)) (-5 *1 (-748))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-635 (-112))) (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) - (-5 *7 (-224)) (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-748))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-682 (-544))) (-5 *5 (-112)) (-5 *7 (-682 (-224))) - (-5 *3 (-544)) (-5 *6 (-224)) (-5 *2 (-1028)) (-5 *1 (-748))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-635 (-112))) (-5 *7 (-682 (-224))) (-5 *8 (-682 (-544))) - (-5 *3 (-544)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1028)) - (-5 *1 (-748))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) - (-5 *1 (-747))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 - *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) - (-12 (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) - (-5 *7 (-682 (-544))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-544)) - (-5 *2 (-1028)) (-5 *1 (-747))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 - *8) - (-12 (-5 *5 (-682 (-224))) (-5 *6 (-112)) (-5 *7 (-682 (-544))) - (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-544)) - (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-747))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-112)) (-5 *2 (-1028)) - (-5 *1 (-747))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1028)) - (-5 *1 (-747))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1028)) - (-5 *1 (-747))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1028)) - (-5 *1 (-747))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-544)) (-5 *5 (-112)) (-5 *6 (-682 (-224))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-224)) - (-5 *2 (-1028)) (-5 *1 (-747))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) - (-5 *1 (-746))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1148)) (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) - (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) - (-5 *7 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *6 (-224)) - (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1148)) (-5 *5 (-682 (-224))) (-5 *6 (-224)) - (-5 *7 (-682 (-544))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) - (-5 *1 (-746))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) - (-5 *1 (-746))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) - (-5 *1 (-746))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) - (-5 *1 (-746))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) - (-5 *1 (-746))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-682 (-224))) (-5 *6 (-682 (-544))) (-5 *3 (-544)) - (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) - (-5 *1 (-746))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) - (-5 *1 (-745))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) - (-5 *1 (-745))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-682 (-224))) (-5 *5 (-682 (-544))) (-5 *6 (-224)) - (-5 *3 (-544)) (-5 *2 (-1028)) (-5 *1 (-745))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) (-5 *2 (-1028)) - (-5 *1 (-745))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-745))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 - *4) - (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) (-5 *6 (-668 (-224))) - (-5 *3 (-224)) (-5 *2 (-1028)) (-5 *1 (-744))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *5 (-1148)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1028)) - (-5 *1 (-744))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) (-5 *4 (-224)) (-5 *2 (-1028)) - (-5 *1 (-744))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-544)) (-5 *5 (-682 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 G JACOBG JACGEP)))) - (-5 *4 (-224)) (-5 *2 (-1028)) (-5 *1 (-743))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1028)) - (-5 *1 (-743)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-62 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-387)) - (-5 *2 (-1028)) (-5 *1 (-743))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-743))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1028)) - (-5 *1 (-743))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) - (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-743))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-544)) (-5 *5 (-1148)) (-5 *6 (-682 (-224))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) - (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-743))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-743))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 FCN)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-743))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1028)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-742))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1028)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) (-5 *2 (-1028)) (-5 *1 (-742))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 G)))) (-5 *2 (-1028)) - (-5 *1 (-742))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-544)) (-5 *5 (-682 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *3 (-224)) - (-5 *2 (-1028)) (-5 *1 (-742))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) - (-5 *1 (-741))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) - (-5 *1 (-741))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) - (-5 *1 (-741))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-1148)) (-5 *5 (-682 (-224))) (-5 *2 (-1028)) - (-5 *1 (-741))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *2 (-1028)) (-5 *1 (-741))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1028)) - (-5 *1 (-740))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-544)) (-5 *4 (-682 (-224))) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1028)) - (-5 *1 (-740))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-544)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 -3478)))) (-5 *2 (-1028)) - (-5 *1 (-740))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-112)) (-5 *2 (-1028)) - (-5 *1 (-739))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-682 (-224))) (-5 *4 (-544)) (-5 *5 (-112)) (-5 *2 (-1028)) - (-5 *1 (-739))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-738 *3)) (-4 *3 (-171))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1160 *6)) (-5 *3 (-544)) (-4 *6 (-306)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-4 *7 (-844)) - (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-4 *8 (-306)) (-5 *2 (-635 (-765))) - (-5 *1 (-736 *6 *7 *8 *9)) (-5 *5 (-765))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-544)) (-5 *4 (-404 *2)) (-4 *2 (-943 *7 *5 *6)) - (-5 *1 (-736 *5 *6 *7 *2)) (-4 *5 (-787)) (-4 *6 (-844)) (-4 *7 (-306))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) - (-4 *7 (-844)) (-4 *8 (-306)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) - (-5 *2 - (-2 (|:| |upol| (-1160 *8)) (|:| |Lval| (-635 *8)) - (|:| |Lfact| (-635 (-2 (|:| -4139 (-1160 *8)) (|:| -2536 (-544))))) - (|:| |ctpol| *8))) - (-5 *1 (-736 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-635 *7)) (-5 *5 (-635 (-635 *8))) (-4 *7 (-844)) (-4 *8 (-306)) - (-4 *6 (-787)) (-4 *9 (-943 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| (-635 (-2 (|:| -4139 (-1160 *9)) (|:| -2536 (-544))))))) - (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1160 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-544)) (-4 *6 (-787)) (-4 *7 (-844)) (-4 *8 (-306)) - (-4 *9 (-943 *8 *6 *7)) - (-5 *2 (-2 (|:| -2154 (-1160 *9)) (|:| |polval| (-1160 *8)))) - (-5 *1 (-736 *6 *7 *8 *9)) (-5 *3 (-1160 *9)) (-5 *4 (-1160 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-787)) (-4 *4 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3)) - (-5 *1 (-736 *5 *4 *6 *3)) (-4 *3 (-943 *6 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-2 (|:| -4139 (-1160 *6)) (|:| -2536 (-544))))) - (-4 *6 (-306)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-544)) - (-5 *1 (-736 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-306)) (-5 *2 (-404 *3)) - (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-943 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-733 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-732))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-730 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-1091)))) - ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-1091))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) - (-5 *2 (-635 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-730 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) - (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-765)))) - ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) (-5 *2 (-765)))) + (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143))))) +(((*1 *2 *3) (-12 (-5 *3 (-639 (-52))) (-5 *2 (-1261)) (-5 *1 (-858))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-213 *4)) + (-4 *4 + (-13 (-845) + (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) + (-15 -1966 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-729 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-720))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-554)) (-4 *2 (-943 *3 *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) - (-5 *3 (-406 (-939 *6))) (-4 *5 (-787)) - (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1160 (-939 *6))) (-4 *6 (-554)) - (-4 *2 (-943 (-406 (-939 *6)) *5 *4)) (-5 *1 (-726 *5 *4 *6 *2)) - (-4 *5 (-787)) (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1160 *2)) (-4 *2 (-943 (-406 (-939 *6)) *5 *4)) - (-5 *1 (-726 *5 *4 *6 *2)) (-4 *5 (-787)) - (-4 *4 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) (-4 *6 (-554))))) + (-12 (-5 *2 (-1261)) (-5 *1 (-213 *3)) + (-4 *3 + (-13 (-845) + (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) + (-15 -1966 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-501))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-787)) (-4 *5 (-13 (-844) (-10 -8 (-15 -4377 ((-1166) $))))) - (-4 *6 (-554)) (-5 *2 (-2 (|:| -2778 (-939 *6)) (|:| -2208 (-939 *6)))) - (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-943 (-406 (-939 *6)) *4 *5))))) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-1170 (-406 (-562)))) + (-5 *1 (-189))))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) + ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-544)) - (-14 *6 (-765)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-134 *5 *6 *8)) - (-5 *1 (-135 *5 *6 *7 *8)))) + (-12 (-5 *2 (-639 (-168 *4))) (-5 *1 (-154 *3 *4)) + (-4 *3 (-1232 (-168 (-562)))) (-4 *4 (-13 (-362) (-843))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-168 *4))) + (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *9)) (-4 *9 (-1042)) (-4 *5 (-844)) (-4 *6 (-787)) - (-4 *8 (-1042)) (-4 *2 (-943 *9 *7 *5)) (-5 *1 (-722 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-787)) (-4 *4 (-943 *8 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1229 *5)) - (-5 *1 (-721 *5 *2)) (-4 *5 (-362))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| -3475 (-404 *3)) (|:| |special| (-404 *3)))) - (-5 *1 (-721 *5 *3))))) + (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-168 *4))) + (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1150)) (-5 *1 (-781))))) (((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) - (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-720)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) - (-14 *4 (-635 (-1166))))) - ((*1 *1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) - (-14 *4 (-635 (-1166))))) - ((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) + (-12 (-5 *2 (-1241 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) + (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) + ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-4 *2 (-341 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-171)))) - ((*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-718 *2 *3)) (-4 *3 (-1229 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1253 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) - (-4 *1 (-718 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-912)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-765))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) - ((*1 *1 *1) (|partial| -4 *1 (-716)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) - ((*1 *1 *1) (|partial| -4 *1 (-716)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-362))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1229 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) + (-12 (-4 *2 (-1092)) (-5 *1 (-708 *3 *2 *4)) (-4 *3 (-845)) + (-14 *4 + (-1 (-112) (-2 (|:| -2466 *3) (|:| -1960 *2)) + (-2 (|:| -2466 *3) (|:| -1960 *2))))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-781))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) + (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) + (-5 *2 (-683 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) + (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-721)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) + (-5 *1 (-175 *3))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1207)) + (-4 *2 (-1207)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1092)) (|has| *1 (-6 -4402)) + (-4 *1 (-150 *2)) (-4 *2 (-1207)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4402)) (-4 *1 (-150 *2)) + (-4 *2 (-1207)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4402)) (-4 *1 (-150 *2)) + (-4 *2 (-1207)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1044)) + (-5 *2 (-2 (|:| -4380 (-1164 *4)) (|:| |deg| (-916)))) + (-5 *1 (-220 *4 *5)) (-5 *3 (-1164 *4)) (-4 *5 (-13 (-554) (-845))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-766)) + (-4 *6 (-1207)) (-4 *2 (-1207)) (-5 *1 (-238 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1232 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-554)) (-4 *2 (-845)))) + ((*1 *1 *1) + (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1232 *2)) + (-4 *4 (-1232 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1207)) (-4 *2 (-1207)) + (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1092)) (-4 *2 (-1092)) + (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2)))) + ((*1 *1 *1) (-5 *1 (-494))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-639 *5)) (-4 *5 (-1207)) + (-4 *2 (-1207)) (-5 *1 (-637 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1044)) (-4 *2 (-1044)) + (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) + (-4 *9 (-372 *2)) (-5 *1 (-679 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-681 *5 *6 *7)) (-4 *10 (-681 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-709 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) + ((*1 *1 *2) + (-12 (-4 *3 (-1044)) (-5 *1 (-707 *3 *2)) (-4 *2 (-1232 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1234 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) - (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-404 *3)) (-4 *3 (-554)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-362)) + (-4 *3 (-171)) (-4 *1 (-719 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-171)) (-4 *1 (-719 *3 *2)) (-4 *2 (-1232 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-953 *5)) (-4 *5 (-1207)) + (-4 *2 (-1207)) (-5 *1 (-952 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *2 (-944 *3 *4 *5)) + (-14 *6 (-639 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1044)) (-4 *2 (-1044)) + (-14 *5 (-766)) (-14 *6 (-766)) (-4 *8 (-237 *6 *7)) + (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) + (-5 *1 (-1049 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1047 *5 *6 *7 *8 *9)) (-4 *12 (-1047 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1148 *5)) (-4 *5 (-1207)) + (-4 *2 (-1207)) (-5 *1 (-1146 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1200 *5 *6 *7 *2)) (-4 *5 (-554)) (-4 *6 (-788)) + (-4 *7 (-845)) (-4 *2 (-1058 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) + (-4 *2 (-1207)) (-5 *1 (-1255 *5 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-1091)) (-5 *1 (-707 *3 *2 *4)) (-4 *3 (-844)) - (-14 *4 - (-1 (-112) (-2 (|:| -2535 *3) (|:| -2536 *2)) - (-2 (|:| -2535 *3) (|:| -2536 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-912)) (-4 *1 (-367)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349)))) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) + (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) + (-4 *3 (-1232 *4)) (-5 *2 (-112))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1168)) (-5 *1 (-669 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-3 (-112) (-639 *1))) + (-4 *1 (-1064 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-406 (-562)))) + (-5 *2 (-2 (|:| -4074 (-1148 *4)) (|:| -4087 (-1148 *4)))) + (-5 *1 (-1154 *4)) (-5 *3 (-1148 *4))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-818)) (-5 *1 (-817))))) +(((*1 *2) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1150)) (-5 *1 (-52))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-608 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1192))) + (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 (-1164 (-406 (-1164 *6)))) (-5 *1 (-558 *5 *6 *7)) + (-5 *3 (-1164 *6)) (-4 *7 (-1092)))) ((*1 *2 *1) - (-12 (-4 *2 (-844)) (-5 *1 (-707 *2 *3 *4)) (-4 *3 (-1091)) - (-14 *4 - (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *3)) - (-2 (|:| -2535 *2) (|:| -2536 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-706 *3 *2)) (-4 *2 (-1229 *3))))) + (-12 (-4 *2 (-1232 *3)) (-5 *1 (-707 *3 *2)) (-4 *3 (-1044)))) + ((*1 *2 *1) + (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1164 *11)) (-5 *6 (-639 *10)) + (-5 *7 (-639 (-766))) (-5 *8 (-639 *11)) (-4 *10 (-845)) + (-4 *11 (-306)) (-4 *9 (-788)) (-4 *5 (-944 *11 *9 *10)) + (-5 *2 (-639 (-1164 *5))) (-5 *1 (-737 *9 *10 *11 *5)) + (-5 *3 (-1164 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-944 *3 *4 *5)) (-5 *1 (-1029 *3 *4 *5 *2 *6)) + (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-14 *6 (-639 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-1168))) (-4 *6 (-362)) + (-5 *2 (-639 (-293 (-947 *6)))) (-5 *1 (-537 *5 *6 *7)) + (-4 *5 (-451)) (-4 *7 (-13 (-362) (-843)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-562)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-639 (-1 *4 (-639 *4)))) (-4 *4 (-1092)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1092)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-639 (-1 *4 (-639 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1092))))) (((*1 *2 *1) - (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4)) - (-4 *4 (-1229 *3))))) + (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)) + (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| -4221 *3) (|:| -3045 *4)))) + (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) + (-5 *2 (-1148 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259))))) (((*1 *1 *2) - (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1042)) (-5 *1 (-706 *3 *4)) - (-4 *4 (-1229 *3))))) + (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) + (-14 *4 (-916))))) +(((*1 *1 *1 *1) (-4 *1 (-962)))) (((*1 *2 *1) - (-12 (-4 *3 (-1042)) (-5 *2 (-1253 *3)) (-5 *1 (-706 *3 *4)) - (-4 *4 (-1229 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) - (-4 *4 (-1229 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1042)) (-5 *2 (-951 (-706 *3 *4))) (-5 *1 (-706 *3 *4)) - (-4 *4 (-1229 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-349)) (-4 *2 (-1042)) (-5 *1 (-706 *2 *3)) (-4 *3 (-1229 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1148)) (-5 *1 (-704))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-635 (-1160 *13))) (-5 *3 (-1160 *13)) - (-5 *4 (-635 *12)) (-5 *5 (-635 *10)) (-5 *6 (-635 *13)) - (-5 *7 (-635 (-635 (-2 (|:| -3462 (-765)) (|:| |pcoef| *13))))) - (-5 *8 (-635 (-765))) (-5 *9 (-1253 (-635 (-1160 *10)))) (-4 *12 (-844)) - (-4 *10 (-306)) (-4 *13 (-943 *10 *11 *12)) (-4 *11 (-787)) - (-5 *1 (-701 *11 *12 *10 *13))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-635 *11)) (-5 *5 (-635 (-1160 *9))) (-5 *6 (-635 *9)) - (-5 *7 (-635 *12)) (-5 *8 (-635 (-765))) (-4 *11 (-844)) (-4 *9 (-306)) - (-4 *12 (-943 *9 *10 *11)) (-4 *10 (-787)) (-5 *2 (-635 (-1160 *12))) - (-5 *1 (-701 *10 *11 *9 *12)) (-5 *3 (-1160 *12))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-635 (-1160 *11))) (-5 *3 (-1160 *11)) - (-5 *4 (-635 *10)) (-5 *5 (-635 *8)) (-5 *6 (-635 (-765))) - (-5 *7 (-1253 (-635 (-1160 *8)))) (-4 *10 (-844)) (-4 *8 (-306)) - (-4 *11 (-943 *8 *9 *10)) (-4 *9 (-787)) (-5 *1 (-701 *9 *10 *8 *11))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *3 *5 *6 *7)) - (-4 *3 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *7 (-1204)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *3 *5 *6)) - (-4 *3 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6)) - (-4 *4 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-699 *3 *4)) - (-4 *3 (-1204)) (-4 *4 (-1204))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-635 (-1166))) (-5 *3 (-1166)) (-5 *1 (-533)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1166)) (-5 *1 (-698 *3)) (-4 *3 (-609 (-533))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-635 (-1166))) (-5 *2 (-1166)) (-5 *1 (-698 *3)) - (-4 *3 (-609 (-533)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-697 *3)) - (-4 *3 (-609 (-533))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1166)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-697 *3)) - (-4 *3 (-609 (-533)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-554)) (-4 *3 (-845))))) +(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-107 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-695 *4 *5 *6 *7)) - (-4 *4 (-609 (-533))) (-4 *5 (-1204)) (-4 *6 (-1204)) (-4 *7 (-1204))))) -(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-694)))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-694))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-681 *3 *4 *5 *6)) - (-4 *6 (-679 *3 *4 *5)))) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-5 *2 (-1261)) + (-5 *1 (-1208 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2124 *3) (|:| -3285 *3))) (-5 *1 (-693 *3)) - (-4 *3 (-306))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-306)) (-5 *1 (-693 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-544)))) - ((*1 *2 *1) (-12 (-5 *2 (-544)) (-5 *1 (-692))))) -(((*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403)))) - ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912)))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692)))) - ((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-692))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) - ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692))))) -(((*1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692)))) - ((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-692))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) - (-5 *4 (-1 (-224) (-224) (-224) (-224))) - (-5 *2 (-1 (-936 (-224)) (-224) (-224))) (-5 *1 (-690))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) - (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) - (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) - (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) - (-5 *1 (-690))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) - (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) - (-5 *5 (-1079 (-224))) (-5 *6 (-635 (-260))) (-5 *2 (-1123 (-224))) - (-5 *1 (-690)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-224))) - (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-690)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1123 (-224))) (-5 *3 (-1 (-936 (-224)) (-224) (-224))) - (-5 *4 (-1079 (-224))) (-5 *5 (-635 (-260))) (-5 *1 (-690))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-2 (|:| |deg| (-765)) (|:| -2954 *5)))) (-4 *5 (-1229 *4)) - (-4 *4 (-349)) (-5 *2 (-635 *5)) (-5 *1 (-215 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-2 (|:| -4139 *5) (|:| -4355 (-544))))) (-5 *4 (-544)) - (-4 *5 (-1229 *4)) (-5 *2 (-635 *5)) (-5 *1 (-689 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-544)) (-5 *2 (-635 (-2 (|:| -4139 *3) (|:| -4355 *4)))) - (-5 *1 (-689 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-689 *2)) (-4 *2 (-1229 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1204)) (-4 *2 (-1091)))) - ((*1 *1 *1) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1091))))) + (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-5 *2 (-1261)) + (-5 *1 (-1208 *4))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) + (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) + ((*1 *2 *1) + (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) + (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-845)) (-5 *2 (-766))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-562)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1207)) + (-4 *3 (-372 *4)) (-4 *5 (-372 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *3)) (-4 *3 (-1091)) - (-5 *2 (-635 (-2 (|:| -2226 *3) (|:| -2097 (-765)))))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-765)) (-4 *6 (-1091)) (-4 *7 (-893 *6)) (-5 *2 (-682 *7)) - (-5 *1 (-685 *6 *7 *3 *4)) (-4 *3 (-371 *7)) - (-4 *4 (-13 (-371 *6) (-10 -7 (-6 -4400))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *4 (-635 (-1166))) - (-5 *2 (-682 (-313 (-224)))) (-5 *1 (-204)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1091)) (-4 *6 (-893 *5)) (-5 *2 (-682 *6)) - (-5 *1 (-685 *5 *6 *3 *4)) (-4 *3 (-371 *6)) - (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-765)) (-4 *6 (-1091)) (-4 *3 (-893 *6)) (-5 *2 (-682 *3)) - (-5 *1 (-685 *6 *3 *7 *4)) (-4 *7 (-371 *3)) - (-4 *4 (-13 (-371 *6) (-10 -7 (-6 -4400))))))) + (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) + (-4 *5 (-237 (-3492 *3) (-766))) + (-14 *6 + (-1 (-112) (-2 (|:| -2466 *2) (|:| -1960 *5)) + (-2 (|:| -2466 *2) (|:| -1960 *5)))) + (-4 *2 (-845)) (-5 *1 (-460 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-944 *4 *5 (-859 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) + (-5 *2 (-1030)) (-5 *1 (-751))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-857))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1091)) (-4 *3 (-893 *5)) (-5 *2 (-682 *3)) - (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-371 *3)) - (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400))))))) + (-12 (-5 *3 (-639 (-1 (-112) *8))) (-4 *8 (-1058 *5 *6 *7)) + (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) + (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) + (-5 *3 (-639 (-562)))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1030)) (-5 *1 (-744)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-387)) (-5 *2 (-1030)) (-5 *1 (-744))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-747))))) +(((*1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-141 *2 *4 *3)) + (-4 *3 (-372 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-502 *2 *4 *5 *3)) + (-4 *5 (-372 *2)) (-4 *3 (-372 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-683 *4)) (-4 *4 (-987 *2)) (-4 *2 (-554)) + (-5 *1 (-687 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-1225 *2 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1091)) (-4 *2 (-893 *4)) (-5 *1 (-685 *4 *2 *5 *3)) - (-4 *5 (-371 *2)) (-4 *3 (-13 (-371 *4) (-10 -7 (-6 -4400))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1091)) (-4 *2 (-893 *5)) (-5 *1 (-685 *5 *2 *3 *4)) - (-4 *3 (-371 *2)) (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1091)) (-4 *3 (-893 *5)) (-5 *2 (-1253 *3)) - (-5 *1 (-685 *5 *3 *6 *4)) (-4 *6 (-371 *3)) - (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4400))))))) -(((*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857)))))) -(((*1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-608 (-857)))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-682 *4)) (-5 *3 (-765)) (-4 *4 (-1042)) (-5 *1 (-683 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-1042)) (-5 *1 (-683 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *1 (-681 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-544)) (-4 *3 (-171)) (-4 *5 (-371 *3)) (-4 *6 (-371 *3)) - (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-679 *3 *5 *6))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-544)) (-4 *3 (-171)) (-4 *5 (-371 *3)) (-4 *6 (-371 *3)) - (-5 *1 (-681 *3 *5 *6 *2)) (-4 *2 (-679 *3 *5 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-544)) (-4 *4 (-171)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4)) - (-5 *1 (-681 *4 *5 *6 *2)) (-4 *2 (-679 *4 *5 *6))))) + (-12 (-5 *2 (-683 *4)) (-5 *3 (-916)) (|has| *4 (-6 (-4404 "*"))) + (-4 *4 (-1044)) (-5 *1 (-1023 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-639 (-683 *4))) (-5 *3 (-916)) + (|has| *4 (-6 (-4404 "*"))) (-4 *4 (-1044)) (-5 *1 (-1023 *4))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-608 *3)) + (-4 *3 (-13 (-429 *5) (-27) (-1192))) + (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) + (-5 *1 (-564 *5 *3 *6)) (-4 *6 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-505))) (-5 *1 (-482))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4402)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) + (-5 *2 (-639 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-732 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-639 (-438))) (-5 *1 (-860))))) +(((*1 *1 *1 *1) (-4 *1 (-472))) ((*1 *1 *1 *1) (-4 *1 (-756)))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) (((*1 *1 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-679 *2 *3 *4)) (-4 *2 (-1042)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-544)) (-4 *1 (-679 *3 *4 *5)) (-4 *3 (-1042)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-677 *4 *5 *6))))) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-677 *4 *5 *6)) (-4 *4 (-1091))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1091)) (-4 *6 (-1091)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-677 *4 *5 *6)) (-4 *5 (-1091))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-4 *6 (-1091)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1091)) (-4 *4 (-1091)) (-4 *6 (-1091)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-677 *5 *4 *6))))) + (-12 (-4 *4 (-1207)) (-5 *2 (-766)) (-5 *1 (-181 *4 *3)) + (-4 *3 (-668 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-362) (-843))) (-5 *1 (-180 *3 *2)) + (-4 *2 (-1232 (-168 *3)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-676 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1091)) (-4 *5 (-1091)) (-5 *2 (-1 *5)) - (-5 *1 (-676 *4 *5))))) + (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) + (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-168 *3)) (-5 *1 (-1196 *4 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-676 *4 *3)) (-4 *4 (-1091)) - (-4 *3 (-1091))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-765) *2)) (-5 *4 (-765)) (-4 *2 (-1091)) - (-5 *1 (-671 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-765) *3)) (-4 *3 (-1091)) (-5 *1 (-675 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1091))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-675 *2)) (-4 *2 (-1091)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-635 *5) (-635 *5))) (-5 *4 (-544)) (-5 *2 (-635 *5)) - (-5 *1 (-675 *5)) (-4 *5 (-1091))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-635 (-1205))) (-5 *3 (-1205)) (-5 *1 (-674))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1091)) (-4 *6 (-1091)) - (-4 *2 (-1091)) (-5 *1 (-673 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-672 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-765)) (-4 *2 (-1091)) (-5 *1 (-671 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-1082 (-939 (-544)))) (-5 *2 (-329)) - (-5 *1 (-331)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1091))))) -(((*1 *1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-668 *3)) (-4 *3 (-1042)) (-4 *3 (-1091))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1042)) (-4 *2 (-1091))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-765)) (-5 *1 (-668 *2)) (-4 *2 (-1091))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-668 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-1253 (-765))) (-5 *1 (-668 *3)) (-4 *3 (-1091))))) -(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-667 *3)) (-4 *3 (-1204)) (-5 *2 (-765))))) -(((*1 *2 *3) - (-12 (-5 *3 (-813 *4)) (-4 *4 (-844)) (-5 *2 (-112)) (-5 *1 (-665 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-813 *3)) (-4 *3 (-844)) (-5 *1 (-665 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *5)) (-5 *4 (-912)) (-4 *5 (-844)) - (-5 *2 (-58 (-635 (-665 *5)))) (-5 *1 (-665 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *5)) (-5 *4 (-912)) (-4 *5 (-844)) (-5 *2 (-635 (-665 *5))) - (-5 *1 (-665 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 *7)) (-4 *7 (-844)) - (-4 *8 (-943 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-787)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1253 (-406 *8)) "failed")) - (|:| -2162 (-635 (-1253 (-406 *8)))))) - (-5 *1 (-662 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-13 (-371 *5) (-10 -7 (-6 -4401)))) - (-4 *4 (-13 (-371 *5) (-10 -7 (-6 -4401)))) (-5 *2 (-112)) - (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-679 *5 *6 *4)))) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) + (-5 *2 (-1256 (-683 *4))))) + ((*1 *2) + (-12 (-4 *4 (-171)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-415 *3 *4)) + (-4 *3 (-416 *4)))) + ((*1 *2) + (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 (-683 *3))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-362)) (-5 *2 (-112)) - (-5 *1 (-661 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 (-1160 *4))) (-5 *3 (-1160 *4)) (-4 *4 (-903)) - (-5 *1 (-656 *4))))) -(((*1 *1 *1) (-4 *1 (-655)))) -(((*1 *1 *1 *1) (-4 *1 (-655)))) -(((*1 *1 *1 *1) (-4 *1 (-655)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) - (-4 *2 (-651 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-651 *3)) (-4 *3 (-1042)) (-4 *3 (-362)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-765)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-653 *5 *2)) - (-4 *2 (-651 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) - (-4 *2 (-651 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-362) (-146) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *5 (-1229 *4)) (-5 *2 (-635 (-648 (-406 *5)))) (-5 *1 (-652 *4 *5)) - (-5 *3 (-648 (-406 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1042)) (-4 *2 (-362))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-644 *3)) (-4 *3 (-1204))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-644 *3)) (-4 *3 (-1204)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-544)) (-4 *1 (-644 *2)) (-4 *2 (-1204))))) + (-12 (-5 *3 (-639 (-1168))) (-4 *5 (-362)) + (-5 *2 (-1256 (-683 (-406 (-947 *5))))) (-5 *1 (-1078 *5)) + (-5 *4 (-683 (-406 (-947 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-1168))) (-4 *5 (-362)) + (-5 *2 (-1256 (-683 (-947 *5)))) (-5 *1 (-1078 *5)) + (-5 *4 (-683 (-947 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-683 *4))) (-4 *4 (-362)) + (-5 *2 (-1256 (-683 *4))) (-5 *1 (-1078 *4))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) + (-4 *3 (-1092))))) (((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))) - (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *2) - (-12 (-5 *2 (-635 (-2 (|:| |gen| *3) (|:| -4350 *4)))) (-4 *3 (-1091)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-1204)))) - ((*1 *2 *2) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-371 *2)) (-4 *2 (-1204)))) - ((*1 *1 *1) - (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1) - (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-642 *2 *3 *4)) (-4 *2 (-1091)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-642 *3 *4 *5)) (-4 *3 (-1091)) (-4 *4 (-23)) - (-14 *5 *4)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-544) (-544))) (-5 *1 (-360 *3)) (-4 *3 (-1091)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-385 *3)) (-4 *3 (-1091)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-642 *3 *4 *5)) - (-4 *3 (-1091))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-360 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-385 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-642 *3 *4 *5)) (-4 *4 (-23)) - (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1091))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1091))))) -(((*1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-635 *3)) (-4 *3 (-1204))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-635 *2)) (-4 *2 (-1091)) (-4 *2 (-1204))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-682 *1)) (-5 *4 (-1253 *1)) (-4 *1 (-634 *5)) (-4 *5 (-1042)) - (-5 *2 (-2 (|:| -1728 (-682 *5)) (|:| |vec| (-1253 *5)))))) + (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) + (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-766)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) + (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-845)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-916)))) + ((*1 *2 *3) + (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) + (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) + (-5 *2 (-766)) (-5 *1 (-391 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-828 (-916))))) + ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) + ((*1 *2 *1) + (-12 (-4 *3 (-554)) (-5 *2 (-562)) (-5 *1 (-619 *3 *4)) + (-4 *4 (-1232 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-735 *4 *3)) (-4 *4 (-1044)) + (-4 *3 (-845)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-735 *4 *3)) (-4 *4 (-1044)) (-4 *3 (-845)) + (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) ((*1 *2 *3) - (-12 (-5 *3 (-682 *1)) (-4 *1 (-634 *4)) (-4 *4 (-1042)) (-5 *2 (-682 *4))))) + (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) + (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) + (-4 *8 (-341 *5 *6 *7)) + (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-766)) + (-5 *1 (-906 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) + (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) + (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-766)) + (-5 *1 (-907 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) + (-4 *7 (-1232 *6)) (-4 *4 (-1232 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) + (-4 *9 (-13 (-367) (-362))) (-5 *2 (-766)) + (-5 *1 (-1013 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-4 *3 (-554)) + (-5 *2 (-766)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-766))) (-5 *3 (-170)) (-5 *1 (-1156 *4 *5)) + (-14 *4 (-916)) (-4 *5 (-1044))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-4 *5 (-362)) - (-4 *5 (-554)) (-5 *2 (-1253 *5)) (-5 *1 (-633 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1253 *4)) (-4 *4 (-634 *5)) (-3726 (-4 *5 (-362))) - (-4 *5 (-554)) (-5 *2 (-1253 (-406 *5))) (-5 *1 (-633 *5 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-554)) - (-5 *2 (-1253 *4)) (-5 *1 (-633 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 *5)) (-4 *5 (-634 *4)) (-4 *4 (-554)) (-5 *2 (-112)) - (-5 *1 (-633 *4 *5))))) + (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-639 *4)) (-5 *1 (-774 *4)) + (-4 *4 (-13 (-362) (-843)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-292 (-836 *3))) (-4 *3 (-13 (-27) (-1190) (-420 *5))) - (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 - (-3 (-836 *3) - (-2 (|:| |leftHandLimit| (-3 (-836 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-836 *3) #1#))) - "failed")) - (-5 *1 (-631 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-292 *3)) (-5 *5 (-1148)) - (-4 *3 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-836 *3)) - (-5 *1 (-631 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-292 (-836 (-939 *5)))) (-4 *5 (-450)) - (-5 *2 - (-3 (-836 (-406 (-939 *5))) - (-2 (|:| |leftHandLimit| (-3 (-836 (-406 (-939 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-836 (-406 (-939 *5))) #2#))) - #3="failed")) - (-5 *1 (-632 *5)) (-5 *3 (-406 (-939 *5))))) + (|partial| -12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) + (-5 *1 (-261 *2)) (-4 *2 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-292 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-450)) + (|partial| -12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *2 (-52)) + (-5 *1 (-262))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-121 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-766)) (-4 *5 (-554)) (-5 *2 - (-3 (-836 *3) - (-2 (|:| |leftHandLimit| (-3 (-836 *3) #2#)) - (|:| |rightHandLimit| (-3 (-836 *3) #2#))) - #3#)) - (-5 *1 (-632 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-292 (-406 (-939 *6)))) (-5 *5 (-1148)) - (-5 *3 (-406 (-939 *6))) (-4 *6 (-450)) (-5 *2 (-836 *3)) - (-5 *1 (-632 *6))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-292 (-826 *3))) - (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) (-5 *2 (-826 *3)) - (-5 *1 (-631 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-292 (-826 (-939 *5)))) (-4 *5 (-450)) - (-5 *2 (-826 (-406 (-939 *5)))) (-5 *1 (-632 *5)) (-5 *3 (-406 (-939 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-292 (-406 (-939 *5)))) (-5 *3 (-406 (-939 *5))) (-4 *5 (-450)) - (-5 *2 (-826 *3)) (-5 *1 (-632 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-627))))) -(((*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1091)))) - ((*1 *1 *1) (-5 *1 (-627)))) -(((*1 *2 *3) - (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) - (-5 *2 (-479 *4 *5)) (-5 *1 (-626 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-635 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-635 (-1166))) - (-4 *5 (-450)) (-5 *1 (-626 *4 *5))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-858 *4)) (-14 *4 (-635 (-1166))) - (-4 *5 (-450)) (-5 *1 (-626 *4 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-246 *5 *6))) (-4 *6 (-450)) - (-5 *2 (-246 *5 *6)) (-14 *5 (-635 (-1166))) (-5 *1 (-626 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *1 (-260)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-936 (-224)) (-936 (-224)))) (-5 *3 (-635 (-260))) - (-5 *1 (-261)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-479 *5 *6))) (-5 *3 (-479 *5 *6)) (-14 *5 (-635 (-1166))) - (-4 *6 (-450)) (-5 *2 (-1253 *6)) (-5 *1 (-626 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 (-479 *3 *4))) (-14 *3 (-635 (-1166))) (-4 *4 (-450)) - (-5 *1 (-626 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-635 (-1166))) - (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-479 *5 *6))) (-5 *4 (-858 *5)) (-14 *5 (-635 (-1166))) - (-5 *2 (-479 *5 *6)) (-5 *1 (-626 *5 *6)) (-4 *6 (-450))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) - (-5 *2 (-635 (-246 *4 *5))) (-5 *1 (-626 *4 *5))))) -(((*1 *2 *3) - (-12 (-14 *4 (-635 (-1166))) (-4 *5 (-450)) - (-5 *2 (-2 (|:| |glbase| (-635 (-246 *4 *5))) (|:| |glval| (-635 (-544))))) - (-5 *1 (-626 *4 *5)) (-5 *3 (-635 (-246 *4 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-479 *4 *5))) (-14 *4 (-635 (-1166))) (-4 *5 (-450)) - (-5 *2 (-2 (|:| |gblist| (-635 (-246 *4 *5))) (|:| |gvlist| (-635 (-544))))) - (-5 *1 (-626 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995) (-1190))))) - ((*1 *1 *1) (-4 *1 (-625)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995) (-1190))))) - ((*1 *1 *1) (-4 *1 (-625)))) + (-12 (-5 *3 (-417 *5)) (-4 *5 (-554)) + (-5 *2 + (-2 (|:| -1960 (-766)) (|:| -4221 *5) (|:| |radicand| (-639 *5)))) + (-5 *1 (-319 *5)) (-5 *4 (-766)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-562))))) +(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-546)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-639 *1)) + (-4 *1 (-381 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-730 *3 *4))) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-721)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-944 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995) (-1190))))) - ((*1 *1 *1) (-4 *1 (-625)))) + (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-845) (-610 (-1168)))) + (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *2 (-944 *3 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-816))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995) (-1190))))) - ((*1 *1 *1) (-4 *1 (-625)))) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-306)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-446 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) + (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *1 (-446 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) + (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *1 (-446 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995) (-1190))))) - ((*1 *1 *1) (-4 *1 (-625)))) + (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) + (-5 *1 (-175 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) + (-5 *2 (-2 (|:| -4221 (-406 *5)) (|:| |poly| *3))) + (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-171)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-1044))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) + (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-639 (-766))))) + ((*1 *2 *1) + (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) + (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-639 (-766)))))) +(((*1 *2 *3) (-12 (-5 *3 (-406 (-562))) (-5 *2 (-224)) (-5 *1 (-304))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-624 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995) (-1190))))) - ((*1 *1 *1) (-4 *1 (-625)))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1211)) (-4 *5 (-1232 *3)) (-4 *6 (-1232 (-406 *5))) + (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247))))) (((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-420 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) - (-5 *1 (-157 *4 *5)) (-4 *5 (-420 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) - (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-420 *4) (-995))))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297)))) - ((*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-113)) (-5 *2 (-112)))) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) + (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-5 *2 (-112)) (-5 *1 (-919 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *5 (-844)) (-5 *2 (-112)) (-5 *1 (-419 *4 *5)) - (-4 *4 (-420 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) - (-5 *1 (-430 *4 *5)) (-4 *5 (-420 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) - (-5 *1 (-624 *4 *5)) (-4 *5 (-13 (-420 *4) (-995) (-1190)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) - (-14 *6 (-635 (-1166))) - (-5 *2 (-635 (-1136 *5 (-529 (-858 *6)) (-858 *6) (-774 *5 (-858 *6))))) - (-5 *1 (-623 *5 *6))))) + (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-306) (-146))) + (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-112)) + (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-774 *5 (-858 *6)))) (-5 *4 (-112)) (-4 *5 (-450)) - (-14 *6 (-635 (-1166))) (-5 *2 (-635 (-1039 *5 *6))) (-5 *1 (-623 *5 *6))))) + (-12 (-4 *5 (-362)) + (-5 *2 + (-2 (|:| A (-683 *5)) + (|:| |eqs| + (-639 + (-2 (|:| C (-683 *5)) (|:| |g| (-1256 *5)) (|:| -3342 *6) + (|:| |rh| *5)))))) + (-5 *1 (-808 *5 *6)) (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) + (-4 *6 (-650 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-362)) (-4 *6 (-650 *5)) + (-5 *2 (-2 (|:| -1545 (-683 *6)) (|:| |vec| (-1256 *5)))) + (-5 *1 (-808 *5 *6)) (-5 *3 (-683 *6)) (-5 *4 (-1256 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-817))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-5 *2 (-766)) (-5 *1 (-385 *4)) (-4 *4 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *2 (-23)) (-5 *1 (-643 *4 *2 *5)) + (-4 *4 (-1092)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-5 *2 (-766)) (-5 *1 (-814 *4)) (-4 *4 (-845))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-742))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1131)))) +(((*1 *2 *3) + (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1116 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-555 *6 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-683 *3)) + (-4 *3 (-13 (-306) (-10 -8 (-15 -2921 ((-417 $) $))))) + (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-960))) (-5 *1 (-109))))) (((*1 *2 *2) - (-12 (-5 *2 (-635 (-939 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) - (-14 *4 (-635 (-1166))))) - ((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-445 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-445 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1092)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1150)) (-5 *1 (-1188))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1044)) (-5 *1 (-709 *2 *4)) + (-4 *4 (-642 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-360 (-114))) (-5 *1 (-831 *2)) (-4 *2 (-1044))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) + (-4 *2 (-362)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-224)))) + ((*1 *1 *1 *1) + (-4037 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1207))) + (-12 (-5 *1 (-293 *2)) (-4 *2 (-472)) (-4 *2 (-1207))))) + ((*1 *1 *1 *1) (-4 *1 (-362))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1117 *3 (-608 *1))) (-4 *3 (-554)) (-4 *3 (-845)) + (-4 *1 (-429 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-472))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-535))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-171)) (-5 *1 (-617 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-721) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-171)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-721) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)) (-4 *2 (-362)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-171)) (-5 *1 (-656 *2 *4 *3)) (-4 *2 (-712 *4)) + (-4 *3 (|SubsetCategory| (-721) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-171)) (-5 *1 (-656 *3 *4 *2)) (-4 *3 (-712 *4)) + (-4 *2 (|SubsetCategory| (-721) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)) (-4 *2 (-362)))) + ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-861 *2 *3 *4 *5)) (-4 *2 (-362)) + (-4 *2 (-1044)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-766))) + (-14 *5 (-766)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1047 *3 *4 *2 *5 *6)) (-4 *2 (-1044)) + (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-362)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1044)) (-4 *3 (-845)) + (-4 *4 (-788)) (-14 *6 (-639 *3)) + (-5 *1 (-1268 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-944 *2 *4 *3)) + (-14 *7 (-639 (-766))) (-14 *8 (-766)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1044)) + (-4 *3 (-841))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-916)) (-5 *1 (-781))))) +(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-695)))) + ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-695))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-1152 *4)) (-4 *4 (-1044)) + (-5 *3 (-562))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) + (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) + (-5 *4 (-315 (-378))) (-5 *1 (-329)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) + (-5 *4 (-315 (-562))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-168 (-378))))) + (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-378)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-562)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-168 (-378))))) + (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-378)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-562)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-378))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-562))) (-5 *1 (-329)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) + (-5 *4 (-315 (-688))) (-5 *1 (-329)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) + (-5 *4 (-315 (-693))) (-5 *1 (-329)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) + (-5 *4 (-315 (-695))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-688)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-693)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-695)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-688)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-693)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-695)))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-688))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-693))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-695))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-688))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-693))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-695))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-688))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-693))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-695))) (-5 *1 (-329)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1150)) (-5 *1 (-329)))) + ((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2) (-12 (-5 *2 (-1139 (-1150))) (-5 *1 (-390))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-562)) (|has| *1 (-6 -4403)) (-4 *1 (-372 *3)) + (-4 *3 (-1207))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-953 *3)) (-5 *1 (-1155 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-554)) (-4 *2 (-1044)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-554)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *3 (-1058 *4 *5 *6)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *1)))) + (-4 *1 (-1064 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-129)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-213 *2)) + (-4 *2 + (-13 (-845) + (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) + (-15 -1966 ((-1261) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) - (-4 *5 (-943 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-635 (-774 *3 (-858 *4)))) (-4 *3 (-450)) - (-14 *4 (-635 (-1166))) (-5 *1 (-623 *3 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-635 (-939 *3))) (-4 *3 (-450)) (-5 *1 (-359 *3 *4)) - (-14 *4 (-635 (-1166))))) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)))) + ((*1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-635 (-774 *3 (-858 *4)))) (-4 *3 (-450)) - (-14 *4 (-635 (-1166))) (-5 *1 (-623 *3 *4))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-21))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 (-939 *4))) (-4 *4 (-450)) (-5 *2 (-112)) - (-5 *1 (-359 *4 *5)) (-14 *5 (-635 (-1166))))) + (|partial| -12 (-5 *3 (-1256 *5)) (-4 *5 (-635 *4)) (-4 *4 (-554)) + (-5 *2 (-1256 *4)) (-5 *1 (-634 *4 *5))))) +(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) ((*1 *2 *3) - (-12 (-5 *3 (-635 (-774 *4 (-858 *5)))) (-4 *4 (-450)) - (-14 *5 (-635 (-1166))) (-5 *2 (-112)) (-5 *1 (-623 *4 *5))))) + (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) + (-4 *4 (-348))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *4)) (-4 *4 (-844)) (-5 *2 (-635 (-657 *4 *5))) - (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-13 (-171) (-711 (-406 (-544))))) - (-14 *6 (-912))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |k| (-665 *3)) (|:| |c| *4)))) - (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) - (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-635 (-292 *4))) (-5 *1 (-622 *3 *4 *5)) (-4 *3 (-844)) - (-4 *4 (-13 (-171) (-711 (-406 (-544))))) (-14 *5 (-912))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2812 (-635 (-2 (|:| |irr| *10) (|:| -2530 (-544))))))) - (-5 *6 (-635 *3)) (-5 *7 (-635 *8)) (-4 *8 (-844)) (-4 *3 (-306)) - (-4 *10 (-943 *3 *9 *8)) (-4 *9 (-787)) - (-5 *2 - (-2 (|:| |polfac| (-635 *10)) (|:| |correct| *3) - (|:| |corrfact| (-635 (-1160 *3))))) - (-5 *1 (-620 *8 *9 *3 *10)) (-5 *4 (-635 (-1160 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-765)) (-5 *5 (-635 *3)) (-4 *3 (-306)) (-4 *6 (-844)) - (-4 *7 (-787)) (-5 *2 (-112)) (-5 *1 (-620 *6 *7 *3 *8)) - (-4 *8 (-943 *3 *7 *6))))) + (-12 (-5 *3 (-766)) (-5 *2 (-1164 *4)) (-5 *1 (-527 *4)) + (-4 *4 (-348))))) (((*1 *2 *2) - (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *6 (-1056 *3 *4 *5)) - (-5 *1 (-619 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1062 *3 *4 *5 *6)) - (-4 *2 (-1099 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-618 *2 *3)) (-4 *3 (-1229 *2))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1166)) - (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-617 *4 *2)) (-4 *2 (-13 (-1190) (-953) (-29 *4)))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-612)))) -(((*1 *1) (-5 *1 (-612)))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-612)))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544))))) - (-4 *5 (-1229 *4)) (-5 *2 (-1160 (-406 *5))) (-5 *1 (-610 *4 *5)) - (-5 *3 (-406 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-404 *6) *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-146) (-27) (-1031 (-544)) (-1031 (-406 (-544))))) - (-5 *2 (-1160 (-406 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-606 *4)) (-4 *4 (-844)) (-4 *2 (-844)) - (-5 *1 (-607 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-606 *4)) (-5 *1 (-607 *3 *4)) (-4 *3 (-844)) (-4 *4 (-844))))) -(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1190)))) - ((*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-844)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 *3)) (-5 *1 (-606 *3)) (-4 *3 (-844))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-635 *1)) (-4 *1 (-297)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-113)) (-5 *3 (-635 *5)) (-5 *4 (-765)) (-4 *5 (-844)) - (-5 *1 (-606 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-606 *3)) (-4 *3 (-844))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-601))))) + (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-448 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 - (-635 - (-2 - (|:| -4267 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| -2226 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1143 (-224))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1589 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-557)))) - ((*1 *2 *1) - (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-635 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1204)) (-5 *2 (-635 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4400)) (-4 *1 (-599 *4 *3)) (-4 *4 (-1091)) - (-4 *3 (-1204)) (-4 *3 (-1091)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1204)) (-4 *2 (-1091)) (-4 *2 (-844))))) -(((*1 *2 *1) - (-12 (-4 *1 (-599 *2 *3)) (-4 *3 (-1204)) (-4 *2 (-1091)) (-4 *2 (-844))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1204)) (-4 *3 (-371 *2)) - (-4 *4 (-371 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4401)) (-4 *1 (-599 *3 *2)) (-4 *3 (-1091)) - (-4 *2 (-1204))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4401)) (-4 *1 (-599 *3 *4)) (-4 *3 (-1091)) - (-4 *4 (-1204)) (-5 *2 (-1259))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-635 (-606 *2))) (-5 *4 (-635 (-1166))) - (-4 *2 (-13 (-420 (-167 *5)) (-995) (-1190))) (-4 *5 (-13 (-554) (-844))) - (-5 *1 (-595 *5 *6 *2)) (-4 *6 (-13 (-420 *5) (-995) (-1190)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-844))) (-5 *2 (-167 *5)) (-5 *1 (-595 *4 *5 *3)) - (-4 *5 (-13 (-420 *4) (-995) (-1190))) - (-4 *3 (-13 (-420 (-167 *4)) (-995) (-1190)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-844))) - (-4 *2 (-13 (-420 (-167 *4)) (-995) (-1190))) (-5 *1 (-595 *4 *3 *2)) - (-4 *3 (-13 (-420 *4) (-995) (-1190)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 *4) (-995) (-1190))) - (-5 *1 (-595 *4 *2 *3)) (-4 *3 (-13 (-420 (-167 *4)) (-995) (-1190)))))) + (-1256 + (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) + (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -2865 (-562)) + (|:| -1464 (-562)) (|:| |spline| (-562)) (|:| -2503 (-562)) + (|:| |axesColor| (-869)) (|:| -3426 (-562)) + (|:| |unitsColor| (-869)) (|:| |showing| (-562))))) + (-5 *1 (-1257))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-639 (-378))) (-5 *2 (-378)) (-5 *1 (-204))))) (((*1 *2 *3) - (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-420 *4) (-995) (-1190))) - (-4 *4 (-13 (-554) (-844))) (-4 *2 (-13 (-420 (-167 *4)) (-995) (-1190))) - (-5 *1 (-595 *4 *5 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1019 (-836 (-544)))) - (-5 *3 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *4)))) (-4 *4 (-1042)) - (-5 *1 (-591 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1019 (-836 (-544)))) (-5 *1 (-591 *3)) (-4 *3 (-1042))))) + (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1209)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1209))))) (((*1 *2 *1) - (-12 (-5 *2 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *3)))) (-5 *1 (-591 *3)) - (-4 *3 (-1042))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-1042))))) -(((*1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1042))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1143 (-2 (|:| |k| (-544)) (|:| |c| *6)))) - (-5 *4 (-1019 (-836 (-544)))) (-5 *5 (-1166)) (-5 *7 (-406 (-544))) - (-4 *6 (-1042)) (-5 *2 (-857)) (-5 *1 (-591 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-406 (-544))) (-5 *1 (-591 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) + (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-1202 *3)) + (-4 *3 (-969))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-732 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1092)))) + ((*1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1092))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1171))))) (((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-38 (-406 (-544)))) (-4 *2 (-1042))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-635 *3)) (-4 *3 (-1099 *5 *6 *7 *8)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) - (-4 *8 (-1056 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-587 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-544))) (-5 *4 (-895 (-544))) (-5 *2 (-682 (-544))) - (-5 *1 (-586)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-544))) (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-586)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-544))) (-5 *4 (-635 (-895 (-544)))) - (-5 *2 (-635 (-682 (-544)))) (-5 *1 (-586))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-544))) (-5 *2 (-765)) (-5 *1 (-586))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) - (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-427 *4 *2)) (-4 *2 (-13 (-1190) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 *5))) (-5 *4 (-1166)) (-4 *5 (-146)) - (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-313 *5)) - (-5 *1 (-585 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-580 *2)) (-4 *2 (-13 (-29 *4) (-1190))) (-5 *1 (-582 *4 *2)) - (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-580 (-406 (-939 *4)))) - (-4 *4 (-13 (-450) (-1031 (-544)) (-844) (-634 (-544)))) (-5 *2 (-313 *4)) - (-5 *1 (-585 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-584 *4)) (-4 *4 (-349))))) -(((*1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-543))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-583 *2)) (-4 *2 (-543))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-765)) (-5 *1 (-583 *2)) (-4 *2 (-543)))) + (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) + (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-156))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-213 *2)) + (-4 *2 + (-13 (-845) + (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) + (-15 -1966 ((-1261) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-130)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) + (-4 *2 (-1232 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) + (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-535))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) + (-4 *4 (-372 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-25))))) +(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3076 *3) (|:| -2536 (-765)))) (-5 *1 (-583 *3)) - (-4 *3 (-543))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-765)) (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-543))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-635 - (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 *2)) - (|:| |logand| (-1160 *2))))) - (-5 *4 (-635 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362)) - (-5 *1 (-580 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-362))))) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-635 - (-2 (|:| |scalar| (-406 (-544))) (|:| |coeff| (-1160 *3)) - (|:| |logand| (-1160 *3))))) - (-5 *1 (-580 *3)) (-4 *3 (-362))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-580 *3)) (-4 *3 (-362))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-362))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-579))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-212 4 (-128))) (-5 *1 (-576))))) -(((*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-684 (-576))) (-5 *1 (-576))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-533) (-635 (-533)))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-533) (-635 (-533)))) (-5 *1 (-113)))) - ((*1 *1) (-5 *1 (-575)))) -(((*1 *1) (-5 *1 (-575)))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-574)))) - ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-574))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1166)) - (-4 *4 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1190) (-953) (-1129) (-29 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-571 *5 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) - (-5 *2 - (-2 (|:| |ir| (-580 (-406 *6))) (|:| |specpart| (-406 *6)) - (|:| |polypart| *6))) - (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6))))) + (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-416 *4))))) +(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-618 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3522 *4) (|:| |sol?| (-112))) (-544) *4)) - (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *1 (-571 *4 *5))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2290 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-362)) (-5 *1 (-571 *4 *2)) (-4 *2 (-1229 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-635 (-406 *7))) (-4 *7 (-1229 *6)) - (-5 *3 (-406 *7)) (-4 *6 (-362)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-571 *6 *7))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| -2290 (-406 *6)) (|:| |coeff| (-406 *6)))) - (-5 *1 (-571 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3522 *7) (|:| |sol?| (-112))) (-544) *7)) - (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-571 *7 *8))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2290 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-635 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1229 *7)) (-5 *3 (-406 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-571 *7 *8))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3522 *6) (|:| |sol?| (-112))) (-544) *6)) - (-4 *6 (-362)) (-4 *7 (-1229 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) - (-2 (|:| -2290 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) - (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2290 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-362)) (-4 *7 (-1229 *6)) + (-12 (-5 *2 - (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) - (-2 (|:| -2290 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) - (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-635 *6) "failed") (-544) *6 *6)) - (-4 *6 (-362)) (-4 *7 (-1229 *6)) - (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6))) - (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3522 *6) (|:| |sol?| (-112))) (-544) *6)) - (-4 *6 (-362)) (-4 *7 (-1229 *6)) - (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6))) - (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2290 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-362)) (-4 *7 (-1229 *6)) - (-5 *2 (-2 (|:| |answer| (-580 (-406 *7))) (|:| |a0| *6))) - (-5 *1 (-571 *6 *7)) (-5 *3 (-406 *7))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-580 *3) *3 (-1166))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1166))) - (-4 *3 (-283)) (-4 *3 (-625)) (-4 *3 (-1031 *4)) (-4 *3 (-420 *7)) - (-5 *4 (-1166)) (-4 *7 (-609 (-883 (-544)))) (-4 *7 (-450)) - (-4 *7 (-879 (-544))) (-4 *7 (-844)) (-5 *2 (-580 *3)) - (-5 *1 (-570 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-450)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) - (-4 *2 (-283)) (-4 *2 (-420 *4))))) + (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *4))))))) + (-5 *3 (-639 *7)) (-4 *4 (-13 (-306) (-146))) + (-4 *7 (-944 *4 *6 *5)) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) (-5 *1 (-919 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-788)) + (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)) + (-5 *2 (-2 (|:| -3659 (-947 *6)) (|:| -1310 (-947 *6)))) + (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-944 (-406 (-947 *6)) *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) + (-4 *2 (-429 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) + (-5 *1 (-175 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *1) (-5 *1 (-436)))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4404 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) + (-4 *2 (-1044)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) + (-4 *4 (-681 *2 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-5 *3 (-1168)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-947 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-845) (-554))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-845) (-554)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-885 *4 *5)) (-4 *5 (-1207)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1158))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-554)) (-4 *4 (-844)) (-5 *1 (-570 *4 *2)) - (-4 *2 (-420 *4))))) + (|partial| -12 (-5 *2 (-406 (-947 *4))) (-5 *3 (-1168)) + (-4 *4 (-13 (-554) (-1033 (-562)) (-146))) (-5 *1 (-568 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) + (-5 *5 (-1086 (-224))) (-5 *6 (-562)) (-5 *2 (-1202 (-921))) + (-5 *1 (-317)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) + (-5 *5 (-1086 (-224))) (-5 *6 (-562)) (-5 *7 (-1150)) + (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) + (-5 *5 (-1086 (-224))) (-5 *6 (-224)) (-5 *7 (-562)) + (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) + (-5 *5 (-1086 (-224))) (-5 *6 (-224)) (-5 *7 (-562)) (-5 *8 (-1150)) + (-5 *2 (-1202 (-921))) (-5 *1 (-317))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *6)) (-5 *4 (-1166)) (-4 *6 (-420 *5)) (-4 *5 (-844)) - (-5 *2 (-635 (-606 *6))) (-5 *1 (-570 *5 *6))))) + (-12 (-5 *3 (-406 *6)) (-4 *5 (-1211)) (-4 *6 (-1232 *5)) + (-5 *2 (-2 (|:| -1960 (-766)) (|:| -4221 *3) (|:| |radicand| *6))) + (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-766)) (-4 *7 (-1232 *3))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-769)) (-5 *1 (-114))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) + (-4 *1 (-1064 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) +(((*1 *1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-899 *4)) + (-4 *4 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) +(((*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262))))) +(((*1 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1) + (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1092))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-635 (-606 *6))) (-5 *4 (-1166)) (-5 *2 (-606 *6)) - (-4 *6 (-420 *5)) (-4 *5 (-844)) (-5 *1 (-570 *5 *6))))) + (|partial| -12 (-5 *3 (-766)) (-4 *4 (-13 (-554) (-146))) + (-5 *1 (-1226 *4 *2)) (-4 *2 (-1232 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-129))) + ((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) + (-4 *4 (-171)))) + ((*1 *1) (-4 *1 (-721))) ((*1 *1) (-5 *1 (-1168))) + ((*1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) + ((*1 *1) (-5 *1 (-1212))) ((*1 *1) (-5 *1 (-1213))) + ((*1 *1) (-5 *1 (-1214)))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-857)))) (((*1 *2 *3) - (-12 (-5 *3 (-635 (-606 *5))) (-4 *4 (-844)) (-5 *2 (-606 *5)) - (-5 *1 (-570 *4 *5)) (-4 *5 (-420 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-635 (-606 *5))) (-5 *3 (-1166)) (-4 *5 (-420 *4)) - (-4 *4 (-844)) (-5 *1 (-570 *4 *5))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-1031 (-544)) (-146))) - (-5 *2 (-2 (|:| -2290 (-406 (-939 *5))) (|:| |coeff| (-406 (-939 *5))))) - (-5 *1 (-567 *5)) (-5 *3 (-406 (-939 *5)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 (-406 (-939 *6)))) - (-5 *3 (-406 (-939 *6))) (-4 *6 (-13 (-554) (-1031 (-544)) (-146))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-567 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-406 (-939 *4))) (-5 *3 (-1166)) - (-4 *4 (-13 (-554) (-1031 (-544)) (-146))) (-5 *1 (-567 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) - (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-580 *3)) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5))))) + (-12 (-5 *3 (-639 (-2 (|:| |deg| (-766)) (|:| -2754 *5)))) + (-4 *5 (-1232 *4)) (-4 *4 (-348)) (-5 *2 (-639 *5)) + (-5 *1 (-215 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-1031 (-544)) (-146))) - (-5 *2 (-580 (-406 (-939 *5)))) (-5 *1 (-567 *5)) (-5 *3 (-406 (-939 *5)))))) + (-12 (-5 *3 (-639 (-2 (|:| -1635 *5) (|:| -3598 (-562))))) + (-5 *4 (-562)) (-4 *5 (-1232 *4)) (-5 *2 (-639 *5)) + (-5 *1 (-690 *5))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1510 (-639 (-2 (|:| |irr| *10) (|:| -2762 (-562))))))) + (-5 *6 (-639 *3)) (-5 *7 (-639 *8)) (-4 *8 (-845)) (-4 *3 (-306)) + (-4 *10 (-944 *3 *9 *8)) (-4 *9 (-788)) + (-5 *2 + (-2 (|:| |polfac| (-639 *10)) (|:| |correct| *3) + (|:| |corrfact| (-639 (-1164 *3))))) + (-5 *1 (-621 *8 *9 *3 *10)) (-5 *4 (-639 (-1164 *3)))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1007)) (-5 *2 (-857))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2835 *3) (|:| |coef1| (-777 *3)))) + (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) + (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-972 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) + (-5 *2 (-1030)) (-5 *1 (-742))))) +(((*1 *1) (-5 *1 (-436)))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) + (-5 *2 (-1030)) (-5 *1 (-742))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) + (-5 *2 + (-2 (|:| |mval| (-683 *4)) (|:| |invmval| (-683 *4)) + (|:| |genIdeal| (-503 *4 *5 *6 *7)))) + (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-544)) (-5 *1 (-566 *3)) (-4 *3 (-1031 *2))))) + (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-845)) (-4 *3 (-1092))))) +(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1044)) (-5 *1 (-709 *4 *2)) + (-4 *2 (-642 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-831 *2)) (-4 *2 (-1044))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-635 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-362) (-146) (-1031 (-544)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-565 *5 *6))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1031 (-544)))) (-4 *5 (-1229 *4)) - (-5 *2 (-2 (|:| -2290 (-406 *5)) (|:| |coeff| (-406 *5)))) - (-5 *1 (-565 *4 *5)) (-5 *3 (-406 *5))))) + (|partial| -12 (-5 *4 (-639 (-406 *6))) (-5 *3 (-406 *6)) + (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-566 *5 *6))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) - (-4 *3 (-13 (-362) (-146) (-1031 (-544)))) (-5 *1 (-565 *3 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-883 (-544)))) - (-4 *5 (-879 (-544))) - (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) - (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1190) (-420 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1166)) (-5 *4 (-836 *2)) (-4 *2 (-1129)) - (-4 *2 (-13 (-27) (-1190) (-420 *5))) (-4 *5 (-609 (-883 (-544)))) - (-4 *5 (-879 (-544))) - (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) - (-5 *1 (-564 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1166)) (-4 *5 (-609 (-883 (-544)))) - (-4 *5 (-879 (-544))) - (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-564 *5 *3)) - (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-844) (-1031 (-544)) (-450) (-634 (-544)))) - (-5 *2 (-2 (|:| -2461 *3) (|:| |nconst| *3))) (-5 *1 (-564 *5 *3)) - (-4 *3 (-13 (-27) (-1190) (-420 *5)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-606 *4)) (-5 *6 (-1166)) (-4 *4 (-13 (-420 *7) (-27) (-1190))) - (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2162 (-635 *4)))) - (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1166))) - (-4 *2 (-13 (-420 *5) (-27) (-1190))) - (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1091))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) - (-4 *3 (-13 (-420 *6) (-27) (-1190))) - (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1091))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *5) (-27) (-1190))) - (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3 *6)) - (-4 *6 (-1091))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-420 *5) (-27) (-1190))) - (-4 *5 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-580 *3)) (-5 *1 (-563 *5 *3 *6)) (-4 *6 (-1091))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) - (-4 *7 (-1229 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2289 *3))) - (-5 *1 (-560 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-362)) - (-5 *2 - (-2 (|:| |answer| (-406 *6)) (|:| -2289 (-406 *6)) - (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) - (-5 *1 (-561 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-544)) (-5 *3 (-765)) (-5 *1 (-559))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559))))) -(((*1 *2 *3) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-559)) (-5 *3 (-544))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559))))) -(((*1 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-559)) (-5 *3 (-544))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-635 (-635 *4))) (-5 *2 (-635 *4)) (-4 *4 (-306)) - (-5 *1 (-178 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 *8)) - (-5 *4 - (-635 - (-2 (|:| -2162 (-682 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-682 *7))))) - (-5 *5 (-765)) (-4 *8 (-1229 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-349)) - (-5 *2 - (-2 (|:| -2162 (-682 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-682 *7)))) - (-5 *1 (-496 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-559))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-606 *4)) (-5 *6 (-1160 *4)) - (-4 *4 (-13 (-420 *7) (-27) (-1190))) - (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2162 (-635 *4)))) - (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-606 *4)) (-5 *6 (-406 (-1160 *4))) - (-4 *4 (-13 (-420 *7) (-27) (-1190))) - (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2162 (-635 *4)))) - (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1091))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-606 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1166))) (-5 *5 (-1160 *2)) - (-4 *2 (-13 (-420 *6) (-27) (-1190))) - (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1091)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1166))) - (-5 *5 (-406 (-1160 *2))) (-4 *2 (-13 (-420 *6) (-27) (-1190))) - (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1091))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-5 *6 (-1160 *3)) - (-4 *3 (-13 (-420 *7) (-27) (-1190))) - (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1091)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-635 *3)) (-5 *6 (-406 (-1160 *3))) - (-4 *3 (-13 (-420 *7) (-27) (-1190))) - (-4 *7 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1091))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-1160 *3)) - (-4 *3 (-13 (-420 *6) (-27) (-1190))) - (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) - (-4 *7 (-1091)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-606 *3)) (-5 *5 (-406 (-1160 *3))) - (-4 *3 (-13 (-420 *6) (-27) (-1190))) - (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) - (-4 *7 (-1091))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-606 *3)) (-5 *5 (-1160 *3)) - (-4 *3 (-13 (-420 *6) (-27) (-1190))) - (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-580 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-606 *3)) (-5 *5 (-406 (-1160 *3))) - (-4 *3 (-13 (-420 *6) (-27) (-1190))) - (-4 *6 (-13 (-450) (-1031 (-544)) (-844) (-146) (-634 (-544)))) - (-5 *2 (-580 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1091))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1143 (-224))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1589 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-557))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1143 (-224))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1589 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-557))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-635 - (-2 - (|:| -4267 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| -2226 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1143 (-224))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1589 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-557))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-557))))) -(((*1 *1) (-5 *1 (-557)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-556 *2)) (-4 *2 (-543))))) -(((*1 *2 *3) (-12 (-5 *2 (-404 *3)) (-5 *1 (-556 *3)) (-4 *3 (-543))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1166)) (-5 *6 (-635 (-606 *3))) (-5 *5 (-606 *3)) - (-4 *3 (-13 (-27) (-1190) (-420 *7))) - (-4 *7 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-555 *7 *3))))) + (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) + (-15 -4076 ((-1117 *3 (-608 $)) $)) + (-15 -4054 ($ (-1117 *3 (-608 $)))))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) - (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-580 *3)) (-5 *1 (-555 *5 *3)) - (-4 *3 (-13 (-27) (-1190) (-420 *5)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1166)) - (-4 *4 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-555 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1166)) (-5 *5 (-635 *3)) - (-4 *3 (-13 (-27) (-1190) (-420 *6))) - (-4 *6 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-635 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-555 *6 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1166)) - (-4 *5 (-13 (-450) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-2 (|:| -2290 *3) (|:| |coeff| *3))) (-5 *1 (-555 *5 *3)) - (-4 *3 (-13 (-27) (-1190) (-420 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1920 *1) (|:| -4387 *1) (|:| |associate| *1))) - (-4 *1 (-554))))) -(((*1 *1 *1) (-4 *1 (-554)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-406 (-544))) (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))))) - ((*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190)))))) -(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1190)))))) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1495 *4)))) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1190))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-551))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-551))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-551))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1229 *5)) - (-4 *5 (-13 (-27) (-420 *4))) (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) - (-4 *7 (-1229 (-406 *6))) (-5 *1 (-550 *4 *5 *6 *7 *2)) - (-4 *2 (-341 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-420 *5))) - (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-4 *8 (-1229 (-406 *7))) - (-5 *2 (-580 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1229 *6)) (-4 *6 (-13 (-27) (-420 *5))) - (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-4 *8 (-1229 (-406 *7))) - (-5 *2 (-580 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-606 *3)) (-5 *5 (-1 (-1160 *3) (-1160 *3))) - (-4 *3 (-13 (-27) (-420 *6))) (-4 *6 (-13 (-844) (-554))) (-5 *2 (-580 *3)) - (-5 *1 (-549 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-543)))) -(((*1 *1 *1 *1) (-4 *1 (-543)))) -(((*1 *1 *1) (-4 *1 (-543)))) -(((*1 *1 *1) (-4 *1 (-543)))) -(((*1 *1 *1) (-4 *1 (-543)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-543)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-543)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-543)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-543)))) -(((*1 *1 *1 *1) (-4 *1 (-543)))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-544) #1="failed") *5)) (-4 *5 (-1042)) - (-5 *2 (-544)) (-5 *1 (-541 *5 *3)) (-4 *3 (-1229 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-544) #1#) *4)) (-4 *4 (-1042)) (-5 *2 (-544)) - (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-544) #1#) *4)) (-4 *4 (-1042)) (-5 *2 (-544)) - (-5 *1 (-541 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1229 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-765))) - (-5 *1 (-537 *3 *2 *4 *5)) (-4 *2 (-1229 *3))))) + (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-112)) + (-5 *1 (-884 *4 *5)) (-4 *5 (-1092)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-5 *2 (-112)) + (-5 *1 (-885 *5 *3)) (-4 *3 (-1207)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) + (-4 *6 (-1207)) (-5 *2 (-112)) (-5 *1 (-885 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1168)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-845)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-845)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1092)) (-5 *2 (-112)) (-5 *1 (-882 *5 *3 *4)) + (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 *6)) (-4 *6 (-881 *5)) (-4 *5 (-1092)) + (-5 *2 (-112)) (-5 *1 (-882 *5 *6 *4)) (-4 *4 (-610 (-887 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6)) - (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765)))))) + (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) + (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-766)))) + (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-814 *3)) (|:| |rm| (-814 *3)))) + (-5 *1 (-814 *3)) (-4 *3 (-845)))) + ((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-857)))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-1229 *4)) (-5 *1 (-537 *4 *2 *5 *6)) - (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-765)))))) + (|partial| -12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) + (-4 *5 (-429 *4)) (-5 *2 (-417 (-1164 (-406 (-562))))) + (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 *6)) (-5 *4 (-635 (-1166))) (-4 *6 (-362)) - (-5 *2 (-635 (-292 (-939 *6)))) (-5 *1 (-536 *5 *6 *7)) (-4 *5 (-450)) - (-4 *7 (-13 (-362) (-842)))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-635 (-939 *6))) (-5 *4 (-635 (-1166))) (-4 *6 (-450)) - (-5 *2 (-635 (-635 *7))) (-5 *1 (-536 *6 *7 *5)) (-4 *7 (-362)) - (-4 *5 (-13 (-362) (-842)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1160 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) - (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-939 *5)) (-4 *5 (-450)) (-5 *2 (-635 *6)) - (-5 *1 (-536 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-533)))) - ((*1 *2 *3) (-12 (-5 *3 (-533)) (-5 *1 (-534 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-5 *2 (-533)) (-5 *1 (-534 *4)) (-4 *4 (-1204))))) -(((*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-533))) (-5 *1 (-533))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-533))))) -(((*1 *1 *1) (-5 *1 (-533)))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-533))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-533))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-533))) (-5 *2 (-1166)) (-5 *1 (-533))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-533))) (-5 *1 (-533))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-682 *6)) (-5 *5 (-1 (-404 (-1160 *6)) (-1160 *6))) - (-4 *6 (-362)) - (-5 *2 - (-635 - (-2 (|:| |outval| *7) (|:| |outmult| (-544)) - (|:| |outvect| (-635 (-682 *7)))))) - (-5 *1 (-530 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-842)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1160 *5)) (-4 *5 (-362)) (-5 *2 (-635 *6)) - (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-842)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-682 *4)) (-4 *4 (-362)) (-5 *2 (-1160 *4)) - (-5 *1 (-530 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-842)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25)))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1232 (-406 *2))) + (-4 *2 (-1232 *5)) (-5 *1 (-214 *5 *2 *6 *3)) + (-4 *3 (-341 *5 *2 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-451)) (-4 *4 (-815)) + (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5))))) +(((*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-916)) (-5 *1 (-781))))) +(((*1 *2 *1) (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1207)) (-5 *2 (-562))))) +(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-240))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-528 *3)) (-4 *3 (-13 (-720) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) - ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-527))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-527))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-527))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-912)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1160 *1)) - (-4 *1 (-328 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1160 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1229 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4))))) -(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) - ((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1253 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1253 *4)) (-4 *4 (-417 *3)) (-4 *3 (-306)) (-4 *3 (-554)) - (-5 *1 (-43 *3 *4)))) + (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4402)) (-4 *1 (-488 *4)) + (-4 *4 (-1207)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) + (-4 *2 (-554)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-554))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) + (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-554)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-766))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) + ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-554)) + (-5 *1 (-964 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1047 *3 *4 *2 *5 *6)) (-4 *2 (-1044)) + (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-554)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) ((*1 *2 *3) - (-12 (-5 *3 (-912)) (-4 *4 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *4)))) - ((*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1253 *1)) (-4 *1 (-328 *3)))) - ((*1 *2) - (-12 (-4 *3 (-171)) (-4 *4 (-1229 *3)) (-5 *2 (-1253 *1)) - (-4 *1 (-409 *3 *4)))) + (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1092)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1030)) (-5 *1 (-743))))) +(((*1 *2 *3) (-12 (-5 *2 (-562)) (-5 *1 (-567 *3)) (-4 *3 (-1033 *2)))) ((*1 *2 *1) - (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) - (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4))))) + (-12 (-4 *1 (-1095 *3 *4 *2 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) ((*1 *2 *1) - (-12 (-4 *3 (-306)) (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-5 *2 (-1253 *6)) - (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-417 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1253 (-1253 *4))) (-5 *1 (-526 *4)) - (-4 *4 (-349))))) -(((*1 *2 *1) - (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-355 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-526 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-912)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-912)) (-5 *1 (-526 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1253 *4)) (-5 *3 (-544)) (-4 *4 (-349)) (-5 *1 (-526 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1110)) (-4 *4 (-349)) (-5 *1 (-526 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1253 *4)) (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-526 *4))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1253 *5)) (-5 *3 (-765)) (-5 *4 (-1110)) (-4 *5 (-349)) - (-5 *1 (-526 *5))))) + (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-787)) + (-4 *5 (-845)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-130)) + (-4 *3 (-787))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-766)) (-5 *3 (-938 *4)) (-4 *1 (-1126 *4)) + (-4 *4 (-1044)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-766)) (-5 *4 (-938 (-224))) (-5 *2 (-1261)) + (-5 *1 (-1258))))) (((*1 *2 *3) - (-12 (-5 *3 (-765)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4)) (-4 *4 (-349))))) + (-12 (-4 *4 (-13 (-554) (-845))) + (-4 *2 (-13 (-429 (-168 *4)) (-997) (-1192))) + (-5 *1 (-596 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-997) (-1192)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171))))) +(((*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) (((*1 *2 *3) - (-12 (-5 *3 (-1253 *4)) (-4 *4 (-349)) (-5 *2 (-1160 *4)) (-5 *1 (-526 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) - (-4 *4 (-349)) (-5 *2 (-1259)) (-5 *1 (-526 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-128)))))) -(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-547)))))) -(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1212)))))) -(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-545)))))) -(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1210)))))) -(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-546)))))) -(((*1 *2 *1) (-12 (-4 *1 (-525)) (-5 *2 (-684 (-1211)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-525)) (-5 *3 (-129)) (-5 *2 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-523))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-523))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1205))) (-5 *1 (-522))))) + (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-416 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-371 *3)) (-4 *5 (-371 *3)) - (-5 *1 (-519 *3 *4 *5 *2)) (-4 *2 (-679 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515))))) -(((*1 *2 *1) (-12 (-5 *2 (-1125)) (-5 *1 (-515))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-326 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-514 *3 *4)) (-14 *4 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-326 *3)) (-4 *3 (-1204)))) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-916)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) + ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) ((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 (-544))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-326 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-544)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1204)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-514 *3 *4)) (-4 *3 (-1204)) (-14 *4 (-544))))) -(((*1 *2 *1) (-12 (-4 *1 (-507 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-844))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) - (-4 *5 (-171)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-544)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-765)) - (-4 *5 (-171)))) + (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) - (-5 *3 (-635 (-858 *4))) (-14 *4 (-635 (-1166))) (-14 *5 (-765)) - (-5 *1 (-503 *4 *5))))) + (-12 (-5 *2 (-1256 *4)) (-5 *3 (-916)) (-4 *4 (-348)) + (-5 *1 (-527 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) + (-4 *5 (-237 *3 *2)) (-4 *2 (-1044))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1606 *3))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-544))))) (((*1 *2 *3) - (-12 (-14 *4 (-635 (-1166))) (-14 *5 (-765)) - (-5 *2 - (-635 - (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544)))))) - (-5 *1 (-503 *4 *5)) - (-5 *3 - (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544)))))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-502 (-406 (-544)) (-238 *4 (-765)) (-858 *3) (-246 *3 (-406 (-544))))) - (-14 *3 (-635 (-1166))) (-14 *4 (-765)) (-5 *1 (-503 *3 *4))))) + (-12 (-5 *3 (-947 *5)) (-4 *5 (-1044)) (-5 *2 (-246 *4 *5)) + (-5 *1 (-939 *4 *5)) (-14 *4 (-639 (-1168)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4402)) (-4 *1 (-488 *4)) + (-4 *4 (-1207)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-179)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-310)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-965)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-989)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1031)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1066))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) + (-4 *4 (-171))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-562)) (-14 *4 (-766))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) - (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) - (-5 *1 (-503 *4 *5))))) + (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)) + (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044))))) (((*1 *2 *3) (-12 (-5 *3 - (-502 (-406 (-544)) (-238 *5 (-765)) (-858 *4) (-246 *4 (-406 (-544))))) - (-14 *4 (-635 (-1166))) (-14 *5 (-765)) (-5 *2 (-112)) - (-5 *1 (-503 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) - (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-301 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1079 (-836 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) - (-5 *1 (-302)))) + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-191))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-959 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-554)) (-4 *3 (-1044)) + (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-847 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1044)) + (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-848 *5 *3)) + (-4 *3 (-847 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-547)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1102))))) +(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-554)) (-4 *2 (-451)) (-5 *1 (-964 *2 *3)) + (-4 *3 (-1232 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) + ((*1 *1 *1 *1) (-5 *1 (-857))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) - (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-112)) - (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1021 *3)) (-4 *3 (-1207))))) (((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) - (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) - (-5 *2 (-112)) (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) - (-4 *2 (-943 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) - (-4 *5 (-943 *2 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) - (-5 *2 - (-2 (|:| |mval| (-682 *4)) (|:| |invmval| (-682 *4)) - (|:| |genIdeal| (-502 *4 *5 *6 *7)))) - (-5 *1 (-502 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-682 *3)) (|:| |invmval| (-682 *3)) - (|:| |genIdeal| (-502 *3 *4 *5 *6)))) - (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6)) - (-4 *6 (-943 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-787)) (-4 *4 (-844)) (-5 *1 (-502 *2 *3 *4 *5)) - (-4 *5 (-943 *2 *3 *4))))) + (-12 (-4 *1 (-1095 *3 *2 *4 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-538 *4 *2 *5 *6)) + (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-766)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-639 (-639 *4)))) (-5 *2 (-639 (-639 *4))) + (-5 *1 (-1178 *4)) (-4 *4 (-845))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) - (-5 *2 (-412 *4 (-406 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *6)) (-4 *6 (-13 (-409 *4 *5) (-1031 *4))) - (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *3 (-306)) - (-5 *1 (-412 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *6))))) + (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) + (-5 *2 (-406 (-562))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-417 *3)) (-4 *3 (-544)) + (-4 *3 (-554)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-544)) (-5 *2 (-406 (-562))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) + (-5 *2 (-406 (-562))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-828 *3)) (-4 *3 (-544)) + (-4 *3 (-1092)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-838 *3)) (-4 *3 (-544)) + (-4 *3 (-1092)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) + (-5 *2 (-406 (-562))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-1003 *3)) + (-4 *3 (-1033 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) +(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4402)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) + (-4 *3 (-1092)) (-5 *2 (-766)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4402)) (-4 *1 (-488 *4)) + (-4 *4 (-1207)) (-5 *2 (-766))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2835 *4))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) - (-5 *1 (-502 *3 *4 *5 *6)) (-4 *6 (-943 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-635 *6)) (-4 *6 (-844)) (-4 *4 (-362)) (-4 *5 (-787)) - (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-943 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-502 *3 *4 *5 *2)) - (-4 *2 (-943 *3 *4 *5))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-639 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4402)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) + (-5 *2 (-639 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *6 (-609 (-1166))) - (-4 *4 (-362)) (-4 *5 (-787)) (-4 *6 (-844)) - (-5 *2 (-1155 (-635 (-939 *4)) (-635 (-292 (-939 *4))))) - (-5 *1 (-502 *4 *5 *6 *7))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1259)) (-5 *1 (-213 *4)) - (-4 *4 - (-13 (-844) - (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $)) - (-15 -2115 (*2 $))))))) + (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) + (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-119 *2)) (-4 *2 (-1207))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -2010 (-639 *3)) (|:| -3712 (-639 *3)))) + (-5 *1 (-1208 *3)) (-4 *3 (-1092))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| -2320 (-1168)) (|:| -2694 *4)))) + (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) ((*1 *2 *1) - (-12 (-5 *2 (-1259)) (-5 *1 (-213 *3)) - (-4 *3 - (-13 (-844) - (-10 -8 (-15 -4206 ((-1148) $ (-1166))) (-15 -4024 (*2 $)) - (-15 -2115 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-500))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *6 (-1229 *5)) - (-5 *2 (-1160 (-1160 *7))) (-5 *1 (-499 *5 *6 *4 *7)) (-4 *4 (-1229 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-682 (-1160 *8))) - (-4 *5 (-1042)) (-4 *8 (-1042)) (-4 *6 (-1229 *5)) (-5 *2 (-682 *6)) - (-5 *1 (-499 *5 *6 *7 *8)) (-4 *7 (-1229 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1160 *7)) - (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *2 (-1229 *5)) - (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2))))) + (-12 (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) + (-4 *7 (-1092)) (-5 *2 (-639 *1)) (-4 *1 (-1095 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *3 (-639 (-262))) + (-5 *1 (-260)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-480 *5 *6))) (-5 *3 (-480 *5 *6)) + (-14 *5 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-1256 *6)) + (-5 *1 (-627 *5 *6))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) + (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3355 *6))) + (-5 *1 (-1011 *5 *6)) (-5 *3 (-406 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) + ((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1148 (-224))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1590 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-557))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) + ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-590 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) + (-4 *3 (-962))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1160 *7)) (-4 *5 (-1042)) (-4 *7 (-1042)) - (-4 *2 (-1229 *5)) (-5 *1 (-499 *5 *2 *6 *7)) (-4 *6 (-1229 *2)))) + (-12 (-5 *3 (-1164 *5)) (-4 *5 (-451)) (-5 *2 (-639 *6)) + (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1042)) (-4 *7 (-1042)) (-4 *4 (-1229 *5)) - (-5 *2 (-1160 *7)) (-5 *1 (-499 *5 *4 *6 *7)) (-4 *6 (-1229 *4))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2162 (-682 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-682 *3)))) - (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *4 (-1229 *3)) - (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) - (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) - (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-682 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) - (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-765)) (-4 *3 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) - (-4 *4 (-1229 *3)) (-5 *1 (-497 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-682 *2)) (-5 *4 (-544)) - (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *5 (-1229 *2)) - (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-682 *2)) (-5 *4 (-765)) - (-4 *2 (-13 (-306) (-10 -8 (-15 -4376 ((-404 $) $))))) (-4 *5 (-1229 *2)) - (-5 *1 (-497 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-765)) (-4 *5 (-349)) (-4 *6 (-1229 *5)) - (-5 *2 - (-635 - (-2 (|:| -2162 (-682 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-682 *6))))) - (-5 *1 (-496 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2162 (-682 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-682 *6)))) - (-4 *7 (-1229 *6))))) + (-12 (-5 *3 (-947 *5)) (-4 *5 (-451)) (-5 *2 (-639 *6)) + (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-859 *5))) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) + (-5 *2 (-639 (-639 (-246 *5 *6)))) (-5 *1 (-470 *5 *6 *7)) + (-5 *3 (-639 (-246 *5 *6))) (-4 *7 (-451))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-635 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-544))))) - (-5 *1 (-404 *3)) (-4 *3 (-554)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-765)) (-4 *3 (-349)) (-4 *5 (-1229 *3)) - (-5 *2 (-635 (-1160 *3))) (-5 *1 (-496 *3 *5 *6)) (-4 *6 (-1229 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-493))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-489))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) - (-4 *4 (-371 *3)) (-4 *5 (-371 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4401)) (-4 *1 (-487 *3)) - (-4 *3 (-1204))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4)) - (-4 *4 (-1204)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4)) - (-4 *4 (-1204)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) (-4 *3 (-1091)) - (-5 *2 (-765)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4400)) (-4 *1 (-487 *4)) - (-4 *4 (-1204)) (-5 *2 (-765))))) + (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-766)) + (-14 *4 (-766)) (-4 *5 (-171))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-938 *5)) (-5 *3 (-766)) (-4 *5 (-1044)) + (-5 *1 (-1156 *4 *5)) (-14 *4 (-916))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) + ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-1090 *3)))) + ((*1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) + (-5 *2 (-1030)) (-5 *1 (-746))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-639 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-429 *4) (-997))) (-4 *4 (-13 (-845) (-554))) + (-5 *1 (-275 *4 *2))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1132 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1092) (-34))) (-4 *6 (-13 (-1092) (-34))) + (-5 *2 (-112)) (-5 *1 (-1133 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1092)) (-4 *2 (-845)) + (-5 *1 (-113 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-224)))) (-5 *1 (-921))))) +(((*1 *2 *3) + (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1164 (-1164 *4)))) + (-5 *1 (-1205 *4)) (-5 *3 (-1164 (-1164 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-4 *1 (-898 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1204)) (-4 *4 (-371 *3)) - (-4 *5 (-371 *3)) (-5 *2 (-635 *3)))) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) + (-5 *2 (-766)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4400)) (-4 *1 (-487 *3)) (-4 *3 (-1204)) - (-5 *2 (-635 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-485))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-544))) (-5 *2 (-544)) (-5 *1 (-484 *4)) - (-4 *4 (-1229 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1229 (-544))) (-5 *1 (-484 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1229 (-544))) (-5 *1 (-484 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 *2)) (-5 *1 (-484 *2)) (-4 *2 (-1229 (-544)))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-482 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-635 (-504))) (-5 *2 (-504)) (-5 *1 (-481))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-504))) (-5 *1 (-481))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-544))) (-5 *1 (-246 *3 *4)) (-14 *3 (-635 (-1166))) - (-4 *4 (-1042)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-544))) (-14 *3 (-635 (-1166))) (-5 *1 (-452 *3 *4 *5)) - (-4 *4 (-1042)) (-4 *5 (-237 (-4364 *3) (-765))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-544))) (-5 *1 (-479 *3 *4)) (-14 *3 (-635 (-1166))) - (-4 *4 (-1042))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-478))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-478))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-858 *5))) (-14 *5 (-635 (-1166))) (-4 *6 (-450)) - (-5 *2 (-2 (|:| |dpolys| (-635 (-246 *5 *6))) (|:| |coords| (-635 (-544))))) - (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450))))) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) + (-5 *2 (-766)))) + ((*1 *2 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-721))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) + (-4 *4 (-13 (-845) (-554)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 (-479 *4 *5))) (-5 *3 (-635 (-858 *4))) - (-14 *4 (-635 (-1166))) (-4 *5 (-450)) (-5 *1 (-469 *4 *5 *6)) - (-4 *6 (-450))))) + (-12 (-4 *3 (-554)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) + (-5 *1 (-1197 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) + (-5 *3 (-639 (-562))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) + (-5 *3 (-639 (-562)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-247))))) +(((*1 *2) + (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-639 *2) *2 *2 *2)) (-4 *2 (-1092)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1092)) (-5 *1 (-103 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-858 *5))) (-14 *5 (-635 (-1166))) (-4 *6 (-450)) - (-5 *2 (-635 (-635 (-246 *5 *6)))) (-5 *1 (-469 *5 *6 *7)) - (-5 *3 (-635 (-246 *5 *6))) (-4 *7 (-450))))) -(((*1 *1) (-5 *1 (-466)))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867))) - (-5 *4 (-635 (-912))) (-5 *5 (-635 (-260))) (-5 *1 (-466)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867))) - (-5 *4 (-635 (-912))) (-5 *1 (-466)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466)))) - ((*1 *1 *1) (-5 *1 (-466)))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *1 (-466))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-466)))) - ((*1 *2 *1) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-466))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-936 (-224))) (-5 *4 (-867)) (-5 *5 (-912)) (-5 *2 (-1259)) - (-5 *1 (-466)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *4 (-867)) (-5 *5 (-912)) - (-5 *2 (-1259)) (-5 *1 (-466))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-936 (-224))) (-5 *2 (-1259)) (-5 *1 (-466))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-635 (-635 (-936 (-224))))) (-5 *3 (-635 (-867))) - (-5 *1 (-466))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-635 (-936 (-224))))) (-5 *2 (-635 (-224))) - (-5 *1 (-466))))) -(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-465))))) -(((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1253 (-1253 (-544)))) (-5 *1 (-464))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1253 (-1253 (-544)))) (-5 *3 (-912)) (-5 *1 (-464))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-844)) (-4 *5 (-787)) (-4 *6 (-554)) - (-4 *7 (-943 *6 *5 *3)) (-5 *1 (-460 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1031 (-406 (-544))) (-362) - (-10 -8 (-15 -4353 ($ *7)) (-15 -3381 (*7 $)) (-15 -3380 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) - (-14 *6 - (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *2)) - (-2 (|:| -2535 *5) (|:| -2536 *2)))) - (-4 *2 (-237 (-4364 *3) (-765))) (-5 *1 (-459 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-844)) (-4 *7 (-943 *4 *2 (-858 *3)))))) -(((*1 *2 *1) - (-12 (-14 *3 (-635 (-1166))) (-4 *4 (-171)) (-4 *5 (-237 (-4364 *3) (-765))) - (-14 *6 - (-1 (-112) (-2 (|:| -2535 *2) (|:| -2536 *5)) - (-2 (|:| -2535 *2) (|:| -2536 *5)))) - (-4 *2 (-844)) (-5 *1 (-459 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-943 *4 *5 (-858 *3)))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-635 (-1166))) (-4 *2 (-171)) (-4 *4 (-237 (-4364 *5) (-765))) - (-14 *6 - (-1 (-112) (-2 (|:| -2535 *3) (|:| -2536 *4)) - (-2 (|:| -2535 *3) (|:| -2536 *4)))) - (-5 *1 (-459 *5 *2 *3 *4 *6 *7)) (-4 *3 (-844)) - (-4 *7 (-943 *2 *4 (-858 *5)))))) + (-12 (-5 *3 (-683 (-406 (-562)))) + (-5 *2 + (-639 + (-2 (|:| |outval| *4) (|:| |outmult| (-562)) + (|:| |outvect| (-639 (-683 *4)))))) + (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-635 (-1166))) (-4 *2 (-171)) (-4 *3 (-237 (-4364 *4) (-765))) + (-12 (-14 *4 (-639 (-1168))) (-4 *2 (-171)) + (-4 *3 (-237 (-3492 *4) (-766))) (-14 *6 - (-1 (-112) (-2 (|:| -2535 *5) (|:| -2536 *3)) - (-2 (|:| -2535 *5) (|:| -2536 *3)))) - (-5 *1 (-459 *4 *2 *5 *3 *6 *7)) (-4 *5 (-844)) - (-4 *7 (-943 *2 *3 (-858 *4)))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-635 *3)) (-5 *5 (-912)) (-4 *3 (-1229 *4)) (-4 *4 (-306)) - (-5 *1 (-458 *4 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-912)) (-4 *5 (-306)) (-4 *3 (-1229 *5)) - (-5 *2 (-2 (|:| |plist| (-635 *3)) (|:| |modulo| *5))) (-5 *1 (-458 *5 *3)) - (-5 *4 (-635 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-635 *5)) (-4 *5 (-1229 *3)) (-4 *3 (-306)) (-5 *2 (-112)) - (-5 *1 (-453 *3 *5))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1253 (-635 *3))) (-4 *4 (-306)) (-5 *2 (-635 *3)) - (-5 *1 (-453 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-765)) (-4 *4 (-306)) (-4 *6 (-1229 *4)) - (-5 *2 (-1253 (-635 *6))) (-5 *1 (-453 *4 *6)) (-5 *5 (-635 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-306)) (-5 *2 (-765)) - (-5 *1 (-453 *5 *3))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2162 (-635 *1)))) (-4 *1 (-366 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-451 *3 *4 *5 *6)) - (|:| -2162 (-635 (-451 *3 *4 *5 *6))))) - (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) - (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3)))))) + (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *3)) + (-2 (|:| -2466 *5) (|:| -1960 *3)))) + (-5 *1 (-460 *4 *2 *5 *3 *6 *7)) (-4 *5 (-845)) + (-4 *7 (-944 *2 *3 (-859 *4)))))) (((*1 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2162 (-635 *1)))) (-4 *1 (-366 *3)))) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3928 (-639 *1)))) + (-4 *1 (-366 *3)))) ((*1 *2) (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-451 *3 *4 *5 *6)) - (|:| -2162 (-635 (-451 *3 *4 *5 *6))))) - (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-912)) - (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1253 (-1166))) (-5 *3 (-1253 (-451 *4 *5 *6 *7))) - (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-912)) - (-14 *6 (-635 (-1166))) (-14 *7 (-1253 (-682 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-1253 (-451 *4 *5 *6 *7))) - (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-912)) (-14 *6 (-635 *2)) - (-14 *7 (-1253 (-682 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-451 *3 *4 *5 *6))) (-5 *1 (-451 *3 *4 *5 *6)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 (-1166))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) - (-14 *4 (-912)) (-14 *5 (-635 (-1166))) (-14 *6 (-1253 (-682 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1166)) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-171)) - (-14 *4 (-912)) (-14 *5 (-635 *2)) (-14 *6 (-1253 (-682 *3))))) - ((*1 *1) - (-12 (-5 *1 (-451 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-912)) - (-14 *4 (-635 (-1166))) (-14 *5 (-1253 (-682 *2)))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-1160 (-939 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-4 *3 (-362)) - (-5 *2 (-1160 (-939 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-1160 (-939 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-4 *3 (-362)) - (-5 *2 (-1160 (-939 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1160 (-406 (-939 *3)))) (-5 *1 (-451 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-406 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-635 (-939 *4))))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-635 (-939 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-635 (-939 *3))))) - ((*1 *2) - (-12 (-5 *2 (-635 (-939 *3))) (-5 *1 (-451 *3 *4 *5 *6)) (-4 *3 (-554)) - (-4 *3 (-171)) (-14 *4 (-912)) (-14 *5 (-635 (-1166))) - (-14 *6 (-1253 (-682 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1253 (-451 *4 *5 *6 *7))) (-5 *2 (-635 (-939 *4))) - (-5 *1 (-451 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *4 (-171)) (-14 *5 (-912)) - (-14 *6 (-635 (-1166))) (-14 *7 (-1253 (-682 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *1)) (-4 *1 (-450)))) - ((*1 *1 *1 *1) (-4 *1 (-450)))) -(((*1 *2 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-765)) - (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-765)) (|:| -2154 *4))) (-5 *5 (-765)) - (-4 *4 (-943 *6 *7 *8)) (-4 *6 (-450)) (-4 *7 (-787)) (-4 *8 (-844)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-448 *6 *7 *8 *4))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-787)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) - (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-544)) (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) - (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *7 (-943 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 *7)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *2 (-1259)) (-5 *1 (-448 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-544)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-787)) (-4 *4 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) - (-5 *1 (-448 *5 *6 *7 *4))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-544)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-765)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-787)) (-4 *4 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *7 (-844)) - (-5 *1 (-448 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-1259)) - (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6))))) + (-5 *2 + (-2 (|:| |particular| (-452 *3 *4 *5 *6)) + (|:| -3928 (-639 (-452 *3 *4 *5 *6))))) + (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1207)) (-4 *1 (-237 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97))))) (((*1 *2 *3) - (-12 (-4 *4 (-450)) (-4 *5 (-787)) (-4 *6 (-844)) (-5 *2 (-544)) - (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-943 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-635 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-787)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) - (-5 *1 (-448 *3 *4 *5 *6))))) + (-12 (-5 *3 (-608 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1033 (-562))) + (-4 *4 (-13 (-845) (-554))) (-5 *2 (-1164 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-608 *1)) (-4 *1 (-1044)) (-4 *1 (-301)) + (-5 *2 (-1164 *1))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-787)) (-4 *2 (-943 *4 *5 *6)) (-5 *1 (-448 *4 *5 *6 *2)) - (-4 *4 (-450)) (-4 *6 (-844))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-635 (-2 (|:| |totdeg| (-765)) (|:| -2154 *3)))) (-5 *4 (-765)) - (-4 *3 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) (-4 *7 (-844)) - (-5 *1 (-448 *5 *6 *7 *3))))) + (|partial| -12 (-5 *3 (-683 (-406 (-947 (-562))))) + (-5 *2 (-683 (-315 (-562)))) (-5 *1 (-1026))))) (((*1 *2 *2) - (-12 (-4 *3 (-450)) (-4 *4 (-787)) (-4 *5 (-844)) (-5 *1 (-448 *3 *4 *5 *2)) - (-4 *2 (-943 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-635 *3)) (-4 *3 (-943 *5 *6 *7)) (-4 *5 (-450)) (-4 *6 (-787)) - (-4 *7 (-844)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-448 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-635 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-765)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-787)) (-4 *6 (-943 *4 *3 *5)) (-4 *4 (-450)) (-4 *5 (-844)) - (-5 *1 (-448 *4 *3 *5 *6))))) + (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) + (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168))))) +(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1092))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) + (-5 *2 (-683 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-315 *4)) + (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4402)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) + (-4 *3 (-1092)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-112)) + (-5 *1 (-899 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-916)) (-5 *2 (-112)) (-5 *1 (-1093 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1001))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) (((*1 *2 *2) (-12 (-5 *2 - (-635 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-765)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-787)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-450)) (-4 *5 (-844)) - (-5 *1 (-448 *3 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-635 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-787)) (-4 *3 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) - (-5 *1 (-448 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) - (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-943 *4 *3 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-450)) (-4 *3 (-787)) (-4 *5 (-844)) (-5 *2 (-112)) - (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-943 *4 *3 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-765)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-787)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *6 (-844)) - (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-635 *7)) (-5 *3 (-544)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-450)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-450)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *1 (-448 *4 *5 *6 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7)) - (-5 *3 (-635 *7)))) + (-503 (-406 (-562)) (-239 *4 (-766)) (-859 *3) + (-246 *3 (-406 (-562))))) + (-14 *3 (-639 (-1168))) (-14 *4 (-766)) (-5 *1 (-504 *3 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-554)) (-4 *3 (-1044)) + (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-847 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) - (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8)) - (-5 *3 (-635 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7)) - (-5 *3 (-635 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) - (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8)) - (-5 *3 (-635 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-787)) (-4 *6 (-844)) - (-4 *7 (-943 *4 *5 *6)) (-5 *2 (-635 (-635 *7))) (-5 *1 (-447 *4 *5 *6 *7)) - (-5 *3 (-635 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-787)) (-4 *7 (-844)) - (-4 *8 (-943 *5 *6 *7)) (-5 *2 (-635 (-635 *8))) (-5 *1 (-447 *5 *6 *7 *8)) - (-5 *3 (-635 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-635 *6)) (-4 *6 (-943 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-787)) - (-4 *5 (-844)) (-5 *1 (-446 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-306)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-635 *7)) (-5 *3 (-1148)) (-4 *7 (-943 *4 *5 *6)) (-4 *4 (-306)) - (-4 *5 (-787)) (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-943 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-787)) - (-4 *6 (-844)) (-5 *1 (-446 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-444)) (-5 *3 (-544))))) -(((*1 *2 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042)))) - ((*1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042))))) -(((*1 *2 *3) - (-12 (-5 *2 (-544)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042))))) -(((*1 *2 *3) - (-12 (-5 *2 (-544)) (-5 *1 (-443 *3)) (-4 *3 (-403)) (-4 *3 (-1042))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-443 *3)) (-4 *3 (-1042))))) -(((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042))))) -(((*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042)))) - ((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-443 *3)) (-4 *3 (-1042))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-765)) (-5 *4 (-544)) (-5 *1 (-443 *2)) (-4 *2 (-1042))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1044)) + (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-848 *5 *3)) + (-4 *3 (-847 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-884 *4 *5)) (-5 *3 (-884 *4 *6)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-660 *5)) (-5 *1 (-880 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1226 *3 *2)) + (-4 *2 (-1232 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-404 *6)) (-4 *6 (-1229 *5)) (-4 *5 (-1042)) - (-5 *2 (-635 *6)) (-5 *1 (-442 *5 *6))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-912)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-912)) (-5 *4 (-765)) (-5 *1 (-440 *2)) - (-4 *2 (-1229 (-544))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *1 (-440 *2)) - (-4 *2 (-1229 (-544))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *5 (-765)) - (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-912)) (-5 *4 (-635 (-765))) (-5 *5 (-765)) - (-5 *6 (-112)) (-5 *1 (-440 *2)) (-4 *2 (-1229 (-544))))) + (-12 (-5 *4 (-112)) (-4 *5 (-348)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -1510 (-639 (-2 (|:| |irr| *3) (|:| -2762 (-562))))))) + (-5 *1 (-215 *5 *3)) (-4 *3 (-1232 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) + (-5 *1 (-503 *4 *5 *6 *2)) (-4 *2 (-944 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-315 *4)) + (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) +(((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-780 *3)) (-4 *3 (-610 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-912)) (-5 *4 (-404 *2)) (-4 *2 (-1229 *5)) (-5 *1 (-442 *5 *2)) - (-4 *5 (-1042))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-2 (|:| -4139 *4) (|:| -4355 (-544))))) - (-4 *4 (-1229 (-544))) (-5 *2 (-730 (-765))) (-5 *1 (-440 *4)))) + (-12 (-5 *4 (-916)) (-5 *2 (-378)) (-5 *1 (-780 *3)) + (-4 *3 (-610 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-404 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1042)) - (-5 *2 (-730 (-765))) (-5 *1 (-442 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1042)) (-5 *1 (-442 *3 *2)) (-4 *2 (-1229 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) - (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) - (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-765)) (-4 *5 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *5 *3 *6)) - (-4 *3 (-1229 *5)) (-4 *6 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))))) + (-12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 *2)) + (-5 *2 (-378)) (-5 *1 (-780 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) + (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5)) - (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5)) - (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *2 (-13 (-403) (-1031 *4) (-362) (-1190) (-283))) - (-5 *1 (-441 *4 *3 *2)) (-4 *3 (-1229 *4)))) + (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 *2)) + (-5 *2 (-378)) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-912)) (-4 *5 (-1042)) - (-4 *2 (-13 (-403) (-1031 *5) (-362) (-1190) (-283))) - (-5 *1 (-441 *5 *3 *2)) (-4 *3 (-1229 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-5 *2 (-544)) (-5 *1 (-441 *4 *3 *5)) - (-4 *3 (-1229 *4)) (-4 *5 (-13 (-403) (-1031 *4) (-362) (-1190) (-283)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1087 (-765))) (-5 *6 (-765)) - (-5 *2 - (-2 (|:| |contp| (-544)) - (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) - (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2957 (-544)) (|:| -2812 (-635 *3)))) (-5 *1 (-440 *3)) - (-4 *3 (-1229 (-544)))))) -(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-404 *3)) (-4 *3 (-554)))) - ((*1 *2 *3) - (-12 (-5 *3 (-635 (-2 (|:| -4139 *4) (|:| -4355 (-544))))) - (-4 *4 (-1229 (-544))) (-5 *2 (-765)) (-5 *1 (-440 *4))))) -(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544))))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-440 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-635 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-544))))) - (-4 *2 (-554)) (-5 *1 (-404 *2)))) + (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) + (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-544)) - (|:| -2812 (-635 (-2 (|:| |irr| *4) (|:| -2530 (-544))))))) - (-4 *4 (-1229 (-544))) (-5 *2 (-404 *4)) (-5 *1 (-440 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-436)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-436))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-436))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-436))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-436))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -4317 "void"))) (-5 *1 (-435))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-435))))) -(((*1 *1) (-5 *1 (-435)))) -(((*1 *1) (-5 *1 (-435)))) -(((*1 *1) (-5 *1 (-435)))) -(((*1 *1) (-5 *1 (-435)))) -(((*1 *1) (-5 *1 (-435)))) -(((*1 *1) (-5 *1 (-435)))) -(((*1 *1) (-5 *1 (-435)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1031 (-48))) - (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) - (-5 *2 (-404 (-1160 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) - (-5 *2 - (-3 (|:| |overq| (-1160 (-406 (-544)))) (|:| |overan| (-1160 (-48))) - (|:| -3019 (-112)))) - (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) - (-5 *2 (-404 (-1160 (-406 (-544))))) (-5 *1 (-434 *4 *5 *3)) - (-4 *3 (-1229 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-844) (-1031 (-544)))) (-4 *5 (-420 *4)) - (-5 *2 (-404 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1229 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-1259)) - (-5 *1 (-432 *3 *4)) (-4 *4 (-420 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-406 (-544))) - (-5 *1 (-432 *4 *3)) (-4 *3 (-420 *4)))) + (-12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) + (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-606 *3)) (-4 *3 (-420 *5)) - (-4 *5 (-13 (-844) (-554) (-1031 (-544)))) (-5 *2 (-1160 (-406 (-544)))) - (-5 *1 (-432 *5 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))) + (-12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) + (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) (-5 *6 (-1164 *3)) + (-4 *3 (-13 (-429 *7) (-27) (-1192))) + (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1092)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) + (-5 *6 (-406 (-1164 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1192))) + (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1092))))) +(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-562))) (-5 *1 (-304))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-420 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-428 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-544))))) - (-4 *2 (-13 (-844) (-21)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-428 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-544))))) - (-4 *2 (-13 (-844) (-21)))))) + (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) + (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) + (-4 *2 + (-13 (-362) (-301) + (-10 -8 (-15 -4065 ((-1117 *3 (-608 $)) $)) + (-15 -4076 ((-1117 *3 (-608 $)) $)) + (-15 -4054 ($ (-1117 *3 (-608 $)))))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) - (-4 *5 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-580 *3)) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1190) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1091)) (-5 *2 (-765))))) -(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1091)) (-4 *2 (-367))))) -(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-367)) (-4 *2 (-1091))))) + (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) + (-4 *4 (-348)) (-5 *2 (-1261)) (-5 *1 (-527 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1190) (-420 *3))) - (-14 *4 (-1166)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-4 *2 (-13 (-27) (-1190) (-420 *3) (-10 -8 (-15 -4353 ($ *4))))) - (-4 *4 (-842)) - (-4 *5 - (-13 (-1232 *2 *4) (-362) (-1190) - (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $))))) - (-5 *1 (-423 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1166))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-4 *3 (-13 (-27) (-1190) (-420 *6) (-10 -8 (-15 -4353 ($ *7))))) - (-4 *7 (-842)) - (-4 *8 - (-13 (-1232 *3 *7) (-362) (-1190) - (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) - (-5 *1 (-423 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) - (-14 *10 (-1166))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-4 *3 (-13 (-27) (-1190) (-420 *6) (-10 -8 (-15 -4353 ($ *7))))) - (-4 *7 (-842)) - (-4 *8 - (-13 (-1232 *3 *7) (-362) (-1190) - (-10 -8 (-15 -4217 ($ $)) (-15 -4219 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) - (-5 *1 (-423 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1148)) (-4 *9 (-976 *8)) - (-14 *10 (-1166))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 - (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1148)) (|:| |prob| (-1148)))))) - (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1190) (-420 *5))) - (-14 *6 (-1166)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-844)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-786)) (-4 *2 (-1042)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-844))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1166)) (-5 *3 (-635 *1)) (-4 *1 (-420 *4)) (-4 *4 (-844)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1166)) (-4 *1 (-420 *3)) (-4 *3 (-844))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-844)) - (-5 *2 (-2 (|:| -4361 (-544)) (|:| |var| (-606 *1)))) (-4 *1 (-420 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-404 *3)) (-4 *3 (-554)) (-5 *1 (-418 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209)) - (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1253 *4)) (-5 *3 (-1253 *1)) (-4 *4 (-171)) - (-4 *1 (-369 *4 *5)) (-4 *5 (-1229 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-409 *3 *4)) - (-4 *4 (-1229 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1253 *3)) (-4 *3 (-171)) (-4 *1 (-417 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) - ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) - ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-171))))) -(((*1 *2 *3) (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) - ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) - ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-171))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-682 *4)) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-682 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-171)) (-5 *2 (-682 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1031 *4)) (-4 *3 (-306)) - (-4 *4 (-984 *3)) (-4 *5 (-1229 *4)) (-4 *6 (-409 *4 *5)) - (-14 *7 (-1253 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-984 *3)) - (-4 *5 (-1229 *4)) (-4 *3 (-306)) (-5 *1 (-414 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *1) - (-12 (-4 *2 (-306)) (-4 *3 (-984 *2)) (-4 *4 (-1229 *3)) - (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1031 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-765)) (-5 *4 (-1253 *2)) (-4 *5 (-306)) (-4 *6 (-984 *5)) - (-4 *2 (-13 (-409 *6 *7) (-1031 *6))) (-5 *1 (-412 *5 *6 *7 *2)) - (-4 *7 (-1229 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)) - (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) - (-5 *2 (-682 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1253 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1229 *4)) (-5 *2 (-682 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1229 *3)) - (-5 *2 (-682 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-404 *3)) (-4 *3 (-554))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-404 *4)) (-4 *4 (-554))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-404 *2)) (-4 *2 (-554))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-544)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-404 *2)) (-4 *2 (-554))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-377))) (-5 *1 (-260)))) - ((*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554))))) -(((*1 *1 *1) (-12 (-5 *1 (-404 *2)) (-4 *2 (-554))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-912)) (|has| *1 (-6 -4391)) (-4 *1 (-403)))) - ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-912))))) -(((*1 *2 *3) - (-12 (-5 *3 (-544)) (|has| *1 (-6 -4391)) (-4 *1 (-403)) (-5 *2 (-912))))) -(((*1 *2 *3) - (-12 (-5 *3 (-544)) (|has| *1 (-6 -4391)) (-4 *1 (-403)) (-5 *2 (-912))))) -(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-765)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-765))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-765)))) - ((*1 *1 *1) (-4 *1 (-401)))) -(((*1 *1 *2) - (-12 (-5 *2 (-406 *4)) (-4 *4 (-1229 *3)) (-4 *3 (-13 (-362) (-146))) - (-5 *1 (-398 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1229 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-362) (-146))) - (-5 *2 (-635 (-2 (|:| -2536 (-765)) (|:| -4179 *4) (|:| |num| *4)))) - (-5 *1 (-398 *3 *4)) (-4 *4 (-1229 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-394))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1166))))) - (-5 *6 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-635 (-635 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-635 (-3 (|:| |array| (-635 *3)) (|:| |scalar| (-1166))))) - (-5 *6 (-635 (-1166))) (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-394)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-635 (-1166))) (-5 *5 (-1169)) (-5 *3 (-1166)) (-5 *2 (-1093)) - (-5 *1 (-394))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-392))))) -(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-390))))) -(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1259)) (-5 *1 (-390)))) - ((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-390))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-390))))) -(((*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390))))) -(((*1 *2) (-12 (-5 *2 (-1137 (-1148))) (-5 *1 (-390))))) -(((*1 *2 *1) - (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) - (-4 *5 (-171))))) -(((*1 *2 *1) - (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-765)) (-14 *4 (-765)) - (-4 *5 (-171))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1148)) (-4 *1 (-388))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1148))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) + (-14 *4 *2)))) (((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-1091)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 (-406 (-939 (-544))))) (-5 *4 (-635 (-1166))) - (-5 *2 (-635 (-635 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-842) (-362))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 (-544)))) (-5 *2 (-635 *4)) (-5 *1 (-379 *4)) - (-4 *4 (-13 (-842) (-362)))))) + (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-750))))) +(((*1 *1) (-5 *1 (-436)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 (-167 (-544))))) (-5 *2 (-635 (-167 *4))) - (-5 *1 (-378 *4)) (-4 *4 (-13 (-362) (-842))))) + (-12 (-5 *3 (-406 (-947 (-168 (-562))))) (-5 *2 (-639 (-168 *4))) + (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-635 (-406 (-939 (-167 (-544)))))) (-5 *4 (-635 (-1166))) - (-5 *2 (-635 (-635 (-167 *5)))) (-5 *1 (-378 *5)) - (-4 *5 (-13 (-362) (-842)))))) + (-12 (-5 *3 (-639 (-406 (-947 (-168 (-562)))))) + (-5 *4 (-639 (-1168))) (-5 *2 (-639 (-639 (-168 *5)))) + (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-843)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) + (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1192) (-954))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *2 *3) + (-12 (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-406 (-939 (-167 (-544)))))) - (-5 *2 (-635 (-635 (-292 (-939 (-167 *4)))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-362) (-842))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-292 (-406 (-939 (-167 (-544))))))) - (-5 *2 (-635 (-635 (-292 (-939 (-167 *4)))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-362) (-842))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-939 (-167 (-544))))) - (-5 *2 (-635 (-292 (-939 (-167 *4))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-362) (-842))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-292 (-406 (-939 (-167 (-544)))))) - (-5 *2 (-635 (-292 (-939 (-167 *4))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-362) (-842)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-544)) (-5 *1 (-377))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-224)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-224)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-377)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-406 (-544))) (-5 *1 (-377))))) -(((*1 *1 *1) (-5 *1 (-224))) ((*1 *1 *1) (-5 *1 (-377))) - ((*1 *1) (-5 *1 (-377)))) -(((*1 *1 *1) (-5 *1 (-224))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-635 (-1166))) (-14 *3 (-635 (-1166))) - (-4 *4 (-386)))) - ((*1 *1 *1) (-5 *1 (-377))) ((*1 *1) (-5 *1 (-377)))) -(((*1 *1) (-5 *1 (-224))) ((*1 *1) (-5 *1 (-377)))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))) - ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))) - ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377)))) - ((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-377))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1259)) (-5 *1 (-377))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2)) - (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2)) - (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1204)) (-5 *1 (-374 *4 *2)) - (-4 *2 (-13 (-371 *4) (-10 -7 (-6 -4401))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-844)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171))))) -(((*1 *2 *1) - (-12 (-4 *1 (-371 *3)) (-4 *3 (-1204)) (-4 *3 (-844)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-371 *4)) (-4 *4 (-1204)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-544)) (|has| *1 (-6 -4401)) (-4 *1 (-371 *3)) (-4 *3 (-1204))))) + (-12 (-5 *3 (-900 (-562))) (-5 *4 (-562)) (-5 *2 (-683 *4)) + (-5 *1 (-1023 *5)) (-4 *5 (-1044)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1023 *4)) + (-4 *4 (-1044)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-900 (-562)))) (-5 *4 (-562)) + (-5 *2 (-639 (-683 *4))) (-5 *1 (-1023 *5)) (-4 *5 (-1044)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-639 (-562)))) (-5 *2 (-639 (-683 (-562)))) + (-5 *1 (-1023 *4)) (-4 *4 (-1044))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4401)) (-4 *1 (-371 *2)) (-4 *2 (-1204)) (-4 *2 (-844)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4401)) (-4 *1 (-371 *3)) - (-4 *3 (-1204))))) -(((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1253 *1)) (-4 *1 (-366 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1160 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1160 *3))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-635 (-1253 *4))) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) - (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) - (-5 *2 (-635 (-1253 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1160 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1160 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))) -(((*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1148)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1091)) (-4 *4 (-1091)))) - ((*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1148)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091))))) -(((*1 *1 *1) (-4 *1 (-172))) - ((*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-1091))))) -(((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) (-5 *2 (-1148))))) -(((*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1091)) (-4 *2 (-1091))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) - (-4 *2 - (-13 (-401) - (-10 -7 (-15 -4353 (*2 *4)) (-15 -2160 ((-912) *2)) - (-15 -2162 ((-1253 *2) (-912))) (-15 -4335 (*2 *2))))) - (-5 *1 (-356 *2 *4))))) + (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) + (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) + ((*1 *1 *1) (-4 *1 (-997))) + ((*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1007)))) + ((*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-4 *1 (-1007)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-916)))) + ((*1 *1 *1) (-4 *1 (-1007)))) +(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-951 (-1160 *4))) (-5 *1 (-355 *4)) - (-5 *3 (-1160 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224)))) + (-5 *2 (-378)) (-5 *1 (-191))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2835 *4))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1160 *3)) (-4 *3 (-349)) (-5 *1 (-355 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349))))) -(((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349))))) -(((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349))))) -(((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349))))) -(((*1 *2 *3) - (-12 (-5 *3 (-912)) (-5 *2 (-1160 *4)) (-5 *1 (-355 *4)) (-4 *4 (-349))))) -(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349))))) -(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349))))) -(((*1 *2 *2) (-12 (-5 *2 (-912)) (-5 *1 (-355 *3)) (-4 *3 (-349))))) -(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-355 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 (-899 *3)) (|:| -2535 (-1110)))))) - (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) - ((*1 *2) - (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110)))))) - (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1160 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110)))))) - (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912))))) -(((*1 *2) - (-12 (-5 *2 (-682 (-899 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) - (-14 *4 (-912)))) - ((*1 *2) - (-12 (-5 *2 (-682 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) - (-14 *4 - (-3 (-1160 *3) (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110))))))))) - ((*1 *2) - (-12 (-5 *2 (-682 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) - (-4 *4 (-349)) (-5 *2 (-765)) (-5 *1 (-346 *4)))) - ((*1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-351 *3 *4)) (-14 *3 (-912)) (-14 *4 (-912)))) - ((*1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) - (-14 *4 - (-3 (-1160 *3) (-1253 (-635 (-2 (|:| -3806 *3) (|:| -2535 (-1110))))))))) - ((*1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-912))))) -(((*1 *2) - (-12 (-4 *1 (-349)) - (-5 *2 (-635 (-2 (|:| -4139 (-544)) (|:| -2536 (-544)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-544)) (-5 *2 (-1177 (-912) (-765)))))) -(((*1 *1) (-4 *1 (-349)))) -(((*1 *2) - (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3) - (-12 (-5 *3 (-912)) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3860 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 - (-3 (-1160 *4) (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110))))))) - (-5 *1 (-346 *4)) (-4 *4 (-349))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-912)) - (-5 *2 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) - (-5 *1 (-346 *4)) (-4 *4 (-349))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) - (-4 *4 (-349)) (-5 *2 (-682 *4)) (-5 *1 (-346 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) - (-5 *2 (-1253 (-635 (-2 (|:| -3806 *4) (|:| -2535 (-1110)))))) - (-5 *1 (-346 *4))))) + (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) + (-2 (|:| -3860 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) + (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1160 *4)) (-4 *4 (-349)) (-5 *2 (-951 (-1110))) - (-5 *1 (-346 *4))))) -(((*1 *2) - (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-343 *3 *4)) (-14 *3 (-912)) - (-14 *4 (-912)))) - ((*1 *2) - (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-1160 *3)))) + (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) + (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) ((*1 *2) - (-12 (-5 *2 (-951 (-1110))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-912))))) -(((*1 *2) - (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) - (-5 *2 (-765)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-765))))) -(((*1 *2) - (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) - (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) + (-12 (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)) + (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1209)) (-4 *5 (-1229 *3)) (-4 *6 (-1229 (-406 *5))) - (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) - (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) + (-5 *2 (-683 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1232 (-48))))) ((*1 *2 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) - (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-48))) (-4 *5 (-845)) (-4 *6 (-788)) + (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-944 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-48))) (-4 *5 (-845)) (-4 *6 (-788)) + (-4 *7 (-944 (-48) *6 *5)) (-5 *2 (-417 (-1164 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1164 *7)))) ((*1 *2 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) - (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) + (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3)) + (-4 *3 (-1232 (-168 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) + (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) + (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) ((*1 *2 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-1209)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) - (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5))))) + (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) + (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) + (-4 *3 (-1232 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) + (-4 *3 (-1232 (-562))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-766))) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) + (-4 *3 (-1232 (-562))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *2 (-417 *3)) + (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) + (-4 *3 (-1232 (-562))))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 (-168 (-562)))) (-5 *1 (-445)) + (-5 *3 (-168 (-562))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-845) + (-10 -8 (-15 -4208 ((-1168) $)) + (-15 -2444 ((-3 $ "failed") (-1168)))))) + (-4 *5 (-788)) (-4 *7 (-554)) (-5 *2 (-417 *3)) + (-5 *1 (-455 *4 *5 *6 *7 *3)) (-4 *6 (-554)) + (-4 *3 (-944 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1164 *4))) (-5 *1 (-457 *4)) + (-5 *3 (-1164 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) + (-4 *7 (-13 (-362) (-146) (-719 *5 *6))) (-5 *2 (-417 *3)) + (-5 *1 (-493 *5 *6 *7 *3)) (-4 *3 (-1232 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-417 (-1164 *7)) (-1164 *7))) + (-4 *7 (-13 (-306) (-146))) (-4 *5 (-845)) (-4 *6 (-788)) + (-5 *2 (-417 *3)) (-5 *1 (-539 *5 *6 *7 *3)) + (-4 *3 (-944 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-417 (-1164 *7)) (-1164 *7))) + (-4 *7 (-13 (-306) (-146))) (-4 *5 (-845)) (-4 *6 (-788)) + (-4 *8 (-944 *7 *6 *5)) (-5 *2 (-417 (-1164 *8))) + (-5 *1 (-539 *5 *6 *7 *8)) (-5 *3 (-1164 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-639 *5) *6)) + (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *6 (-1232 *5)) (-5 *2 (-639 (-647 (-406 *6)))) + (-5 *1 (-651 *5 *6)) (-5 *3 (-647 (-406 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) + (-4 *5 (-1232 *4)) (-5 *2 (-639 (-647 (-406 *5)))) + (-5 *1 (-651 *4 *5)) (-5 *3 (-647 (-406 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-814 *4)) (-4 *4 (-845)) (-5 *2 (-639 (-666 *4))) + (-5 *1 (-666 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-562)) (-5 *2 (-639 *3)) (-5 *1 (-690 *3)) + (-4 *3 (-1232 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-348)) (-5 *2 (-417 *3)) + (-5 *1 (-692 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-348)) + (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-417 (-1164 *7))) + (-5 *1 (-692 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-788)) + (-4 *5 + (-13 (-845) + (-10 -8 (-15 -4208 ((-1168) $)) + (-15 -2444 ((-3 $ "failed") (-1168)))))) + (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-725 *4 *5 *6 *3)) + (-4 *3 (-944 (-947 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-788)) + (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)) + (-5 *2 (-417 *3)) (-5 *1 (-727 *4 *5 *6 *3)) + (-4 *3 (-944 (-406 (-947 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-13 (-306) (-146))) + (-5 *2 (-417 *3)) (-5 *1 (-728 *4 *5 *6 *3)) + (-4 *3 (-944 (-406 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-13 (-306) (-146))) + (-5 *2 (-417 *3)) (-5 *1 (-736 *4 *5 *6 *3)) + (-4 *3 (-944 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-13 (-306) (-146))) + (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-417 (-1164 *7))) + (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1002 *3)) + (-4 *3 (-1232 (-406 (-562)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1036 *3)) + (-4 *3 (-1232 (-406 (-947 (-562))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1232 (-406 (-562)))) + (-4 *5 (-13 (-362) (-146) (-719 (-406 (-562)) *4))) + (-5 *2 (-417 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1232 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1232 (-406 (-947 (-562))))) + (-4 *5 (-13 (-362) (-146) (-719 (-406 (-947 (-562))) *4))) + (-5 *2 (-417 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1232 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-451)) + (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 (-406 *7)))) + (-5 *1 (-1163 *4 *5 *6 *7)) (-5 *3 (-1164 (-406 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1211)))) + ((*1 *2 *3) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) + (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-378)) (-5 *1 (-1056))))) (((*1 *2 *1) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-318 *3 *4 *5)) + (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) + (-4 *3 (-962))))) +(((*1 *2 *3) + (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1171)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1261)) + (-5 *1 (-1171)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1261)) + (-5 *1 (-1171))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-1229 *4)) - (-4 *5 (-1229 (-406 *3))) (-5 *2 (-112)))) + (|partial| -12 (-5 *3 (-1168)) (-4 *4 (-1044)) (-4 *4 (-845)) + (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1960 (-562)))) + (-4 *1 (-429 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112)))) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1044)) (-4 *4 (-845)) + (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1960 (-562)))) + (-4 *1 (-429 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) - (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) - (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))))) + (|partial| -12 (-4 *3 (-1104)) (-4 *3 (-845)) + (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1960 (-562)))) + (-4 *1 (-429 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -1960 (-766)))) + (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-2 (|:| |var| *5) (|:| -1960 (-766)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) + (-4 *7 (-944 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -1960 (-562)))) + (-5 *1 (-945 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) + (-15 -4076 (*7 $)))))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-766)) (-4 *5 (-554)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1086 *3)) (-4 *3 (-944 *7 *6 *4)) (-4 *6 (-788)) + (-4 *4 (-845)) (-4 *7 (-554)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-562)))) + (-5 *1 (-591 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-554)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-562)))) + (-5 *1 (-591 *5 *4 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-1160 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1192))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1084 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1192))) + (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-1160 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) + (-5 *2 (-406 (-947 *5))) (-5 *1 (-1161 *5)) (-5 *3 (-947 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) + (-5 *2 (-3 (-406 (-947 *5)) (-315 *5))) (-5 *1 (-1161 *5)) + (-5 *3 (-406 (-947 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1084 (-947 *5))) (-5 *3 (-947 *5)) + (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-406 *3)) + (-5 *1 (-1161 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1084 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) + (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-3 *3 (-315 *5))) + (-5 *1 (-1161 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-1253 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) - (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-5 *2 (-682 (-406 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) - (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) - (-5 *2 (-2 (|:| |num| (-1253 *4)) (|:| |den| *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1253 *3)) (-4 *3 (-1229 *4)) (-4 *4 (-1209)) - (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1229 (-406 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) - (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) - (-5 *2 (-2 (|:| |num| (-682 *5)) (|:| |den| *5)))))) + (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) + (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1190) (-995))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4)) - (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) - (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3))))) + (-12 (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-406 (-562))) + (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-608 *3)) (-4 *3 (-429 *5)) + (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) + (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-432 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 (-406 *2))) (-4 *2 (-1229 *4)) - (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1209)) - (-4 *4 (-1229 (-406 *2))) (-4 *2 (-1229 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1229 *4)) (-4 *4 (-1209)) - (-4 *6 (-1229 (-406 *5))) - (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-341 *4 *5 *6))))) + (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *5 (-1209)) (-4 *6 (-1229 *5)) - (-4 *7 (-1229 (-406 *6))) (-5 *2 (-635 (-939 *5))) - (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1209)) - (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) (-4 *4 (-362)) - (-5 *2 (-635 (-939 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) (-4 *6 (-1229 (-406 *5))) - (-5 *2 (-635 (-635 *4))) (-5 *1 (-340 *3 *4 *5 *6)) - (-4 *3 (-341 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-635 (-635 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) - (-14 *4 (-635 (-1166))) (-4 *5 (-386)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-635 (-1166))) - (-14 *4 (-635 (-1166))) (-4 *5 (-386))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-362)) (-4 *3 (-1229 *4)) (-4 *5 (-1229 (-406 *3))) - (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-544)) (-4 *2 (-362)) (-4 *4 (-1229 *2)) - (-4 *5 (-1229 (-406 *4))) (-4 *1 (-335 *2 *4 *5 *6)) - (-4 *6 (-341 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-362)) (-4 *3 (-1229 *2)) (-4 *4 (-1229 (-406 *3))) - (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) - (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) - (-4 *1 (-335 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1229 *3)) - (-4 *5 (-1229 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) - (-5 *2 (-1253 *6)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-1229 *3)) (-4 *5 (-1229 (-406 *4))) - (-5 *2 (-1253 *6)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5))))) + (-12 (-5 *3 (-562)) (-5 *2 (-639 (-639 (-224)))) (-5 *1 (-1203))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1166)) (-5 *4 (-939 (-544))) (-5 *2 (-329)) (-5 *1 (-331))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-844))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1082 (-939 (-544)))) (-5 *3 (-939 (-544))) (-5 *1 (-329)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-939 (-544)))) (-5 *1 (-329))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329))))) -(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329))))) -(((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-1148))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-329))))) -(((*1 *1 *2) (-12 (-5 *2 (-313 (-167 (-377)))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-313 (-544))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-313 (-377))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-313 (-687))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-313 (-694))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-313 (-692))) (-5 *1 (-329)))) - ((*1 *1) (-5 *1 (-329)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-329))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-329))) (-5 *1 (-329))))) -(((*1 *1) (-5 *1 (-329)))) -(((*1 *1) (-5 *1 (-329)))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-857))) (-5 *1 (-329))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-635 (-1166))) (-5 *2 (-1166)) (-5 *1 (-329))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") - (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") - (|:| |Goto| "goto") (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-329))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1166)) (|:| |arrayIndex| (-635 (-939 (-544)))) - (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1166)) (|:| |rand| (-857)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1165)) (|:| |thenClause| (-329)) - (|:| |elseClause| (-329)))) - (|:| |returnBranch| - (-2 (|:| -3807 (-112)) - (|:| -3806 (-2 (|:| |ints2Floats?| (-112)) (|:| -3654 (-857)))))) - (|:| |blockBranch| (-635 (-329))) (|:| |commentBranch| (-635 (-1148))) - (|:| |callBranch| (-1148)) - (|:| |forBranch| - (-2 (|:| -1589 (-1082 (-939 (-544)))) (|:| |span| (-939 (-544))) - (|:| -3634 (-329)))) - (|:| |labelBranch| (-1110)) - (|:| |loopBranch| (-2 (|:| |switch| (-1165)) (|:| -3634 (-329)))) - (|:| |commonBranch| - (-2 (|:| -3949 (-1166)) (|:| |contents| (-635 (-1166))))) - (|:| |printBranch| (-635 (-857))))) - (-5 *1 (-329))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-329))))) -(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-329))))) -(((*1 *2 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-329))))) -(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1160 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362))))) -(((*1 *2 *1) - (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) - (-5 *2 (-1160 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1160 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1042)) (-4 *3 (-786))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-765)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1042)) (-4 *4 (-786)) - (-4 *3 (-171))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-544)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1091)) (-4 *2 (-130))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-130))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1091)) (-4 *3 (-130)) (-4 *3 (-786))))) + (-12 (-5 *3 (-1164 *5)) (-4 *5 (-362)) (-5 *2 (-639 *6)) + (-5 *1 (-531 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843)))))) (((*1 *2 *3) - (-12 (-5 *3 (-544)) (-4 *4 (-787)) (-4 *5 (-844)) (-4 *2 (-1042)) - (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-943 *2 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1160 *7)) (-5 *3 (-544)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) - (-4 *5 (-844)) (-4 *6 (-1042)) (-5 *1 (-320 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1160 *6)) (-4 *6 (-1042)) (-4 *4 (-787)) (-4 *5 (-844)) - (-5 *2 (-1160 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-943 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1160 *7)) (-4 *7 (-943 *6 *4 *5)) (-4 *4 (-787)) (-4 *5 (-844)) - (-4 *6 (-1042)) (-5 *2 (-1160 *6)) (-5 *1 (-320 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1160 *9)) (-5 *4 (-635 *7)) (-5 *5 (-635 *8)) (-4 *7 (-844)) - (-4 *8 (-1042)) (-4 *9 (-943 *8 *6 *7)) (-4 *6 (-787)) (-5 *2 (-1160 *8)) - (-5 *1 (-320 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-406 (-544))) (-5 *1 (-318 *3 *4 *5)) - (-4 *3 (-13 (-362) (-844))) (-14 *4 (-1166)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) - (-5 *6 (-544)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) - (-5 *6 (-544)) (-5 *7 (-1148)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) - (-5 *6 (-224)) (-5 *7 (-544)) (-5 *2 (-1200 (-920))) (-5 *1 (-317)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-313 (-544))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1079 (-224))) - (-5 *6 (-224)) (-5 *7 (-544)) (-5 *8 (-1148)) (-5 *2 (-1200 (-920))) - (-5 *1 (-317))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224))))) + (|partial| -12 (-5 *2 (-562)) (-5 *1 (-567 *3)) (-4 *3 (-1033 *2))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-292 *6)) (-5 *4 (-113)) (-4 *6 (-420 *5)) - (-4 *5 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) + (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5)) + (-4 *5 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-292 *7)) (-5 *4 (-113)) (-5 *5 (-635 *7)) (-4 *7 (-420 *6)) - (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) - (-5 *1 (-316 *6 *7)))) + (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-639 *7)) + (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) + (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-635 (-292 *7))) (-5 *4 (-635 (-113))) (-5 *5 (-292 *7)) - (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) - (-5 *1 (-316 *6 *7)))) + (-12 (-5 *3 (-639 (-293 *7))) (-5 *4 (-639 (-114))) (-5 *5 (-293 *7)) + (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) + (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-635 (-292 *8))) (-5 *4 (-635 (-113))) (-5 *5 (-292 *8)) - (-5 *6 (-635 *8)) (-4 *8 (-420 *7)) - (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) + (-12 (-5 *3 (-639 (-293 *8))) (-5 *4 (-639 (-114))) (-5 *5 (-293 *8)) + (-5 *6 (-639 *8)) (-4 *8 (-429 *7)) + (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-635 *7)) (-5 *4 (-635 (-113))) (-5 *5 (-292 *7)) - (-4 *7 (-420 *6)) (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) - (-5 *1 (-316 *6 *7)))) + (-12 (-5 *3 (-639 *7)) (-5 *4 (-639 (-114))) (-5 *5 (-293 *7)) + (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) + (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-635 *8)) (-5 *4 (-635 (-113))) (-5 *6 (-635 (-292 *8))) - (-4 *8 (-420 *7)) (-5 *5 (-292 *8)) - (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-114))) (-5 *6 (-639 (-293 *8))) + (-4 *8 (-429 *7)) (-5 *5 (-293 *8)) + (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-292 *5)) (-5 *4 (-113)) (-4 *5 (-420 *6)) - (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) + (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6)) + (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-4 *3 (-420 *6)) - (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) + (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) + (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-4 *3 (-420 *6)) - (-4 *6 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) + (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) + (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-113)) (-5 *5 (-292 *3)) (-5 *6 (-635 *3)) (-4 *3 (-420 *7)) - (-4 *7 (-13 (-844) (-554) (-609 (-533)))) (-5 *2 (-51)) - (-5 *1 (-316 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-313 *3)) (-4 *3 (-554)) (-4 *3 (-844))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-544)) (-5 *1 (-313 *3)) (-4 *3 (-554)) (-4 *3 (-844))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-765))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-306)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2544 *1))) - (-4 *1 (-306))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-635 *1)) (-4 *1 (-306))))) -(((*1 *2 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-842)) (-5 *1 (-303 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-224))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) - (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-406 (-544))) (-5 *2 (-224)) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-313 (-377))) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-939 (-224))) (-5 *2 (-224)) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-939 (-224))) (-5 *2 (-313 (-377))) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-377)) (|:| |stability| (-377)) - (|:| |expense| (-377)) (|:| |accuracy| (-377)) - (|:| |intermediateResults| (-377)))) - (-5 *2 (-1028)) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1143 (-224))) - (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1589 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1028)) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))))) - (-5 *2 (-1028)) (-5 *1 (-302)))) + (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-639 *3)) + (-4 *3 (-429 *7)) (-4 *7 (-13 (-845) (-554) (-610 (-535)))) + (-5 *2 (-52)) (-5 *1 (-316 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-613)))) +(((*1 *1 *1) (-4 *1 (-1136)))) +(((*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) + (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) + (-4 *1 (-1064 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-843))) + (-5 *2 (-639 (-2 (|:| -1510 (-639 *3)) (|:| -3964 *5)))) + (-5 *1 (-180 *5 *3)) (-4 *3 (-1232 (-168 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-362) (-843))) + (-5 *2 (-639 (-2 (|:| -1510 (-639 *3)) (|:| -3964 *4)))) + (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) + (-14 *3 (-916)) (-4 *4 (-1044)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-3 *3 (-639 *1))) + (-4 *1 (-1064 *4 *5 *6 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-1090 *3)))) + ((*1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-494))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-451)))) + ((*1 *1 *1 *1) (-4 *1 (-451))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-5 *1 (-485 *2)) (-4 *2 (-1232 (-562))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) + (-5 *1 (-911 *3 *4 *5 *2)) (-4 *2 (-944 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *6 *4 *5)) + (-5 *1 (-911 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-306)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *6)))) ((*1 *2 *3) + (-12 (-5 *3 (-639 (-1164 *7))) (-4 *4 (-788)) (-4 *5 (-845)) + (-4 *6 (-306)) (-5 *2 (-1164 *7)) (-5 *1 (-911 *4 *5 *6 *7)) + (-4 *7 (-944 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-916))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-451)) (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) + (-4 *2 (-1232 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-451))))) +(((*1 *2 *1 *1) (-12 - (-5 *3 - (-2 (|:| -3050 (-377)) (|:| -3949 (-1148)) - (|:| |explanations| (-635 (-1148))) (|:| |extra| (-1028)))) - (-5 *2 (-1028)) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1148)) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) - ((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-300)))) - ((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) - ((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-300)))) - ((*1 *2 *3) (-12 (-5 *3 (-1079 (-836 (-224)))) (-5 *2 (-224)) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-191)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-300)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1143 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-191)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-300)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-635 (-1148))) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-1148)) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-191)))) - ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-300)))) - ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1148)) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-1253 (-313 (-377)))) - (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-313 (-377))) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1253 (-692))) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-692)) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-2 (|:| -3523 (-406 (-544))) (|:| -3522 (-406 (-544)))))) - (-5 *2 (-635 (-224))) (-5 *1 (-302))))) -(((*1 *2 *2) (-12 (-5 *2 (-1079 (-836 (-224)))) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 (-5 *3 (-313 (-224))) (-5 *2 (-313 (-406 (-544)))) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 - (-2 (|:| |additions| (-544)) (|:| |multiplications| (-544)) - (|:| |exponentiations| (-544)) (|:| |functionCalls| (-544)))) - (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))) - (-5 *2 (-377)) (-5 *1 (-266)))) - ((*1 *2 *3) (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *2 (-377)) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-224)) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-406 (-544))) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-544))) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1079 (-836 (-377)))) (-5 *2 (-1079 (-836 (-224)))) - (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-836 (-377))) (-5 *2 (-836 (-224))) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-313 (-377))) (-5 *2 (-313 (-224))) (-5 *1 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-377)) (-5 *2 (-224)) (-5 *1 (-302))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-939 (-406 (-544)))) (-5 *4 (-1166)) - (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-635 (-224))) (-5 *1 (-300))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-1143 (-224))) (-5 *1 (-191)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-313 (-224))) (-5 *4 (-635 (-1166))) - (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1253 (-313 (-224)))) (-5 *4 (-635 (-1166))) - (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1160 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-635 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-313 (-224))) (-5 *4 (-635 (-1166))) - (-5 *5 (-1079 (-836 (-224)))) (-5 *2 (-1143 (-224))) (-5 *1 (-300))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-313 (-224))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224)))) - (-5 *2 (-635 (-224))) (-5 *1 (-191)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-313 (-224))) (-5 *4 (-1166)) (-5 *5 (-1079 (-836 (-224)))) - (-5 *2 (-635 (-224))) (-5 *1 (-300))))) -(((*1 *2 *3) + (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) + (-5 *1 (-385 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1 *1) (-12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-112)) (-5 *1 (-300))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-297)) (-4 *2 (-1204)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-635 (-606 *1))) (-5 *3 (-635 *1)) (-4 *1 (-297)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-635 (-292 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-292 *1)) (-4 *1 (-297))))) -(((*1 *1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-4 *1 (-297)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-297))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-606 *1))) (-4 *1 (-297))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-606 *1))) (-4 *1 (-297))))) -(((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-635 (-113)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1166)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 *5)) (-4 *5 (-420 *4)) (-4 *4 (-1031 (-544))) - (-4 *4 (-13 (-844) (-554))) (-5 *2 (-1160 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 *1)) (-4 *1 (-1042)) (-4 *1 (-297)) (-5 *2 (-1160 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-310)) (-5 *1 (-295)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 (-1148))) (-5 *3 (-1148)) (-5 *2 (-310)) (-5 *1 (-295))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1042)) (-4 *4 (-1229 *3)) (-5 *1 (-163 *3 *4 *2)) - (-4 *2 (-1229 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204))))) -(((*1 *1 *1) (-12 (-5 *1 (-292 *2)) (-4 *2 (-21)) (-4 *2 (-1204))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-292 *2)) (-4 *2 (-720)) (-4 *2 (-1204))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-292 *2)) (-4 *2 (-720)) (-4 *2 (-1204))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 (-292 *3))) (-5 *1 (-292 *3)) (-4 *3 (-554)) - (-4 *3 (-1204))))) -(((*1 *2 *3) - (-12 (-4 *4 (-450)) - (-5 *2 - (-635 - (-2 (|:| |eigval| (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4)))) - (|:| |eigmult| (-765)) (|:| |eigvec| (-635 (-682 (-406 (-939 *4)))))))) - (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-939 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-450)) (-5 *2 - (-635 - (-2 (|:| |eigval| (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4)))) - (|:| |geneigvec| (-635 (-682 (-406 (-939 *4)))))))) - (-5 *1 (-291 *4)) (-5 *3 (-682 (-406 (-939 *4))))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-406 (-939 *6)) (-1155 (-1166) (-939 *6)))) (-5 *5 (-765)) - (-4 *6 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *6))))) (-5 *1 (-291 *6)) - (-5 *4 (-682 (-406 (-939 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-406 (-939 *5)) (-1155 (-1166) (-939 *5)))) - (|:| |eigmult| (-765)) (|:| |eigvec| (-635 *4)))) - (-4 *5 (-450)) (-5 *2 (-635 (-682 (-406 (-939 *5))))) (-5 *1 (-291 *5)) - (-5 *4 (-682 (-406 (-939 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-406 (-939 *5)) (-1155 (-1166) (-939 *5)))) (-4 *5 (-450)) - (-5 *2 (-635 (-682 (-406 (-939 *5))))) (-5 *1 (-291 *5)) - (-5 *4 (-682 (-406 (-939 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-682 (-406 (-939 *4)))) (-4 *4 (-450)) - (-5 *2 (-635 (-3 (-406 (-939 *4)) (-1155 (-1166) (-939 *4))))) - (-5 *1 (-291 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1075))) (-5 *1 (-290))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-1093)) (-5 *1 (-290))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-1093)) (-5 *1 (-290))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1166)) (-5 *2 (-635 (-958))) (-5 *1 (-290))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-958))) (-5 *1 (-290))))) -(((*1 *1) (-5 *1 (-290)))) -(((*1 *1) (-5 *1 (-290)))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-544)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1204)) (-4 *4 (-371 *2)) - (-4 *5 (-371 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4401)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1091)) - (-4 *2 (-1204))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-362)) (-5 *2 (-635 (-1143 *4))) (-5 *1 (-284 *4 *5)) - (-5 *3 (-1143 *4)) (-4 *5 (-1246 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1246 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1220 (-544))) (-4 *1 (-281 *3)) (-4 *3 (-1204)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-544)) (-4 *1 (-281 *3)) (-4 *3 (-1204))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4400)) (-4 *1 (-234 *3)) - (-4 *3 (-1091)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-279))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-279))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166)) (-5 *1 (-279))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))) + (-2 (|:| |lm| (-814 *3)) (|:| |mm| (-814 *3)) (|:| |rm| (-814 *3)))) + (-5 *1 (-814 *3)) (-4 *3 (-845))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-406 (-544))) - (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-606 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4))) - (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-276 *4 *2))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-635 (-606 *2))) (-5 *4 (-1166)) - (-4 *2 (-13 (-27) (-1190) (-420 *5))) - (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-276 *5 *2))))) + (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) + (-4 *3 (-1232 (-168 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) + (-4 *3 (-1232 (-168 *2)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-1 (-1164 (-947 *4)) (-947 *4))) + (-5 *1 (-1264 *4)) (-4 *4 (-362))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) + (-4 *3 (-1232 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) + ((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))))) + ((*1 *1 *1) + (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) + (-14 *3 (-639 (-1168))))) + ((*1 *1 *1) + (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1092)))) + ((*1 *1 *1) + (-12 (-14 *2 (-639 (-1168))) (-4 *3 (-171)) + (-4 *5 (-237 (-3492 *2) (-766))) + (-14 *6 + (-1 (-112) (-2 (|:| -2466 *4) (|:| -1960 *5)) + (-2 (|:| -2466 *4) (|:| -1960 *5)))) + (-5 *1 (-460 *2 *3 *4 *5 *6 *7)) (-4 *4 (-845)) + (-4 *7 (-944 *3 *5 (-859 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-845)))) + ((*1 *1 *1) + (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1044)))) + ((*1 *1 *1) + (-12 (-5 *1 (-730 *2 *3)) (-4 *3 (-845)) (-4 *2 (-1044)) + (-4 *3 (-721)))) + ((*1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-608 *1)) (-4 *1 (-429 *4)) (-4 *4 (-845)) + (-4 *4 (-554)) (-5 *2 (-406 (-1164 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) + (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *2 (-1164 (-406 (-1164 *3)))) (-5 *1 (-558 *6 *3 *7)) + (-5 *5 (-1164 *3)) (-4 *7 (-1092)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1252 *5)) (-14 *5 (-1168)) (-4 *6 (-1044)) + (-5 *2 (-1229 *5 (-947 *6))) (-5 *1 (-942 *5 *6)) (-5 *3 (-947 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-1164 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-1164 *1)) + (-4 *1 (-944 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-1044)) + (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-406 (-1164 *3))) + (-5 *1 (-945 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1164 *3)) + (-4 *3 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))) + (-4 *7 (-944 *6 *5 *4)) (-4 *5 (-788)) (-4 *4 (-845)) + (-4 *6 (-1044)) (-5 *1 (-945 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1168)) (-4 *5 (-554)) + (-5 *2 (-406 (-1164 (-406 (-947 *5))))) (-5 *1 (-1038 *5)) + (-5 *3 (-406 (-947 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-947 (-562)))) (-5 *1 (-436)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-683 (-224))) (-5 *2 (-1096)) + (-5 *1 (-754)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-683 (-562))) (-5 *2 (-1096)) + (-5 *1 (-754))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1190) (-420 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1166)) (-4 *5 (-13 (-554) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-635 (-606 *3))) (|:| |vals| (-635 *3)))) - (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1190) (-420 *5)))))) + (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) + ((*1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044))))) +(((*1 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) + ((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-639 *3)) (-5 *5 (-916)) (-4 *3 (-1232 *4)) + (-4 *4 (-306)) (-5 *1 (-459 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-844) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) - (-4 *3 (-13 (-420 *4) (-995)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-635 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-420 *4) (-995))) (-4 *4 (-13 (-844) (-554))) - (-5 *1 (-275 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-420 *3) (-995)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2)) - (-4 *3 (-13 (-844) (-554)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-420 *3) (-995))) (-5 *1 (-275 *3 *2)) - (-4 *3 (-13 (-844) (-554)))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-544))) (-5 *1 (-274))))) -(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-274))))) + (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) + (-5 *2 (-480 *4 *5)) (-5 *1 (-939 *4 *5))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-406 (-562))))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-562)) (-5 *1 (-1189 *3)) (-4 *3 (-1044))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) + ((*1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) (-5 *1 (-857))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) + (-4 *3 (-1232 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) - (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) - (|:| |ub| (-635 (-836 (-224)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-635 (-313 (-224)))) (|:| -3849 (-635 (-224))))))) - (-5 *2 (-635 (-1148))) (-5 *1 (-266))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-266))))) -(((*1 *2 *3) (-12 (-5 *3 (-313 (-224))) (-5 *2 (-112)) (-5 *1 (-266))))) -(((*1 *2 *2) (-12 (-5 *2 (-635 (-313 (-224)))) (-5 *1 (-266))))) -(((*1 *2 *2) (-12 (-5 *2 (-635 (-313 (-224)))) (-5 *1 (-266))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *4 (-765)) (-5 *2 (-682 (-224))) - (-5 *1 (-266))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-313 (-224)))) (-5 *2 (-112)) (-5 *1 (-266))))) -(((*1 *2 *2) (-12 (-5 *2 (-313 (-224))) (-5 *1 (-266))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-313 (-224))) (-5 *1 (-266))))) -(((*1 *2 *2) + (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-944 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1168)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-639 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3860 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1192) (-27) (-429 *8))) + (-4 *8 (-13 (-451) (-845) (-146) (-1033 *3) (-635 *3))) + (-5 *3 (-562)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -1602 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1008 *8 *4))))) +(((*1 *2 *1) + (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) + (-14 *6 + (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *2)) + (-2 (|:| -2466 *5) (|:| -1960 *2)))) + (-4 *2 (-237 (-3492 *3) (-766))) (-5 *1 (-460 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-845)) (-4 *7 (-944 *4 *2 (-859 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-608 *1))) (-4 *1 (-301))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1092))))) +(((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-313 (-224))) (|:| -3849 (-635 (-224))) - (|:| |lb| (-635 (-836 (-224)))) (|:| |cf| (-635 (-313 (-224)))) - (|:| |ub| (-635 (-836 (-224)))))) - (-5 *1 (-266))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-836 (-224)))) (-5 *4 (-224)) (-5 *2 (-635 *4)) - (-5 *1 (-266))))) + (-2 (|:| |mval| (-683 *3)) (|:| |invmval| (-683 *3)) + (|:| |genIdeal| (-503 *3 *4 *5 *6)))) + (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1164 *1)) (-4 *1 (-1007))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) + (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) + (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) + (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) + (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| -2328 *5) (|:| -3680 *5)))) + (-5 *1 (-802 *4 *5 *3 *6)) (-4 *3 (-650 *5)) + (-4 *6 (-650 (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) + (-4 *4 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -2328 *4) (|:| -3680 *4)))) + (-5 *1 (-802 *5 *4 *3 *6)) (-4 *3 (-650 *4)) + (-4 *6 (-650 (-406 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) + (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| -2328 *5) (|:| -3680 *5)))) + (-5 *1 (-802 *4 *5 *6 *3)) (-4 *6 (-650 *5)) + (-4 *3 (-650 (-406 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) + (-4 *4 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -2328 *4) (|:| -3680 *4)))) + (-5 *1 (-802 *5 *4 *6 *3)) (-4 *6 (-650 *4)) + (-4 *3 (-650 (-406 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-766))))) +(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143))) + ((*1 *1 *1) (-4 *1 (-1136)))) (((*1 *2 *1) - (-12 (-4 *3 (-232)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-265 *4)) - (-4 *6 (-787)) (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1042)) (-4 *3 (-844)) (-4 *5 (-265 *3)) (-4 *6 (-787)) - (-5 *2 (-1 *1 (-765))) (-4 *1 (-252 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-765)) (-4 *1 (-265 *2)) (-4 *2 (-844))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) - (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-765)))) + (-12 (-4 *3 (-1092)) + (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) + (-5 *2 (-639 (-1068 *3 *4 *5))) (-5 *1 (-1069 *3 *4 *5)) + (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1044)) (-5 *1 (-50 *2 *3)) (-14 *3 (-639 (-1168))))) ((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) - (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-844)) (-5 *2 (-765))))) + (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) + (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1044)))) + ((*1 *2 *1) + (-12 (-14 *3 (-639 (-1168))) (-4 *5 (-237 (-3492 *3) (-766))) + (-14 *6 + (-1 (-112) (-2 (|:| -2466 *4) (|:| -1960 *5)) + (-2 (|:| -2466 *4) (|:| -1960 *5)))) + (-4 *2 (-171)) (-5 *1 (-460 *3 *2 *4 *5 *6 *7)) (-4 *4 (-845)) + (-4 *7 (-944 *2 *5 (-859 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-508 *2 *3)) (-4 *3 (-845)) (-4 *2 (-1092)))) + ((*1 *2 *1) + (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1044)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1044)) (-5 *1 (-730 *2 *3)) (-4 *3 (-845)) + (-4 *3 (-721)))) + ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) + ((*1 *2 *1) + (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *3 (-787)) (-4 *4 (-845)) + (-4 *2 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1030))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) + ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 *5)) (-4 *5 (-635 *4)) (-4 *4 (-554)) + (-5 *2 (-112)) (-5 *1 (-634 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *2 (-51)) - (-5 *1 (-260)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *1 (-262 *2)) - (-4 *2 (-1204))))) -(((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(((*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(((*1 *1) (-5 *1 (-143))) - ((*1 *1 *2) (-12 (-5 *2 (-1123 (-224))) (-5 *1 (-260)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-261))))) -(((*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(((*1 *1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-260)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-912)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-260)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-635 (-260))) (-5 *1 (-261))))) -(((*1 *2 *3) - (-12 (-5 *3 (-918)) - (-5 *2 - (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) - (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) - (-5 *1 (-152)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-406 (-544))) - (-5 *2 - (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) - (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) - (-5 *1 (-152)))) + (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) + (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (-12 + (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-554)) + (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-765 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-683 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3928 (-639 *6))) + *7 *6)) + (-4 *6 (-362)) (-4 *7 (-650 *6)) (-5 *2 - (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) - (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) - (-5 *1 (-152)) (-5 *3 (-635 (-936 (-224)))))) + (-2 (|:| |particular| (-3 (-1256 *6) "failed")) + (|:| -3928 (-639 (-1256 *6))))) + (-5 *1 (-808 *6 *7)) (-5 *4 (-1256 *6))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) + (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) + (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-5 *1 (-1154 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-916)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1164 *1)) + (-4 *1 (-328 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1164 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) + (-4 *2 (-1232 *3)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) - (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) - (-5 *1 (-152)) (-5 *3 (-635 (-635 (-936 (-224))))))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-260))))) -(((*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260))))) -(((*1 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-260))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-260))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-406 (-544))))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 (-1079 (-377)))) (-5 *1 (-260))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-260))) (-5 *4 (-1166)) (-5 *2 (-112)) (-5 *1 (-260))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1256)) - (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) + (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-1164 *4)) + (-5 *1 (-527 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-451)))) + ((*1 *1 *1 *1) (-4 *1 (-451)))) +(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)))) + ((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) + (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) + (-4 *3 (-642 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) + (-4 *3 (-642 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044)))) + ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044))))) +(((*1 *2 *3) + (-12 (-5 *2 (-168 (-378))) (-5 *1 (-780 *3)) (-4 *3 (-610 (-378))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1256)) (-5 *1 (-254 *3)) - (-4 *3 (-13 (-609 (-533)) (-1091))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-870 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) - (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1256)) (-5 *1 (-254 *6)))) + (-12 (-5 *4 (-916)) (-5 *2 (-168 (-378))) (-5 *1 (-780 *3)) + (-4 *3 (-610 (-378))))) + ((*1 *2 *3) + (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-610 (-378))) + (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-870 *5)) (-5 *4 (-1082 (-377))) - (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1256)) (-5 *1 (-254 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) - (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *6)))) + (-12 (-5 *3 (-168 *5)) (-5 *4 (-916)) (-4 *5 (-171)) + (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-947 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-610 (-378))) + (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-377))) - (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1257)) - (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1257)) (-5 *1 (-254 *3)) - (-4 *3 (-13 (-609 (-533)) (-1091))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) - (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-377))) - (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1257)) (-5 *1 (-254 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *5 (-635 (-260))) - (-5 *2 (-1256)) (-5 *1 (-255)))) + (-12 (-5 *3 (-947 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-171)) + (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 (-378))) + (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1256)) - (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1256)) (-5 *1 (-255)))) + (-12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) + (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) + (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-870 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1256)) - (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) + (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) + (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-406 (-947 (-168 *4)))) (-4 *4 (-554)) + (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) - (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) + (-12 (-5 *3 (-406 (-947 (-168 *5)))) (-5 *4 (-916)) (-4 *5 (-554)) + (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) + (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) - (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) (-5 *2 (-1257)) - (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) - (-5 *2 (-1257)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1257)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) - (-5 *2 (-1257)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-292 *7)) (-5 *4 (-1166)) (-5 *5 (-635 (-260))) - (-4 *7 (-420 *6)) (-4 *6 (-13 (-554) (-844) (-1031 (-544)))) (-5 *2 (-1256)) - (-5 *1 (-256 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1256)) (-5 *1 (-259)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-260))) (-5 *2 (-1256)) - (-5 *1 (-259)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *2 (-1256)) (-5 *1 (-259)))) + (-12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) + (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-554)) (-4 *4 (-845)) + (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-635 (-936 (-224)))) (-5 *4 (-635 (-260))) (-5 *2 (-1256)) - (-5 *1 (-259)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-635 (-224))) (-5 *2 (-1257)) (-5 *1 (-259)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-635 (-224))) (-5 *4 (-635 (-260))) (-5 *2 (-1257)) - (-5 *1 (-259))))) -(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-257))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-257))))) -(((*1 *2 *2) (-12 (-5 *2 (-544)) (-5 *1 (-257))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-167 (-224)) (-167 (-224)))) (-5 *4 (-1079 (-224))) - (-5 *2 (-1257)) (-5 *1 (-257))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-167 (-224)) (-167 (-224)))) (-5 *4 (-1079 (-224))) - (-5 *5 (-112)) (-5 *2 (-1257)) (-5 *1 (-257))))) + (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-554)) + (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) + (-5 *1 (-780 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1092)))) + ((*1 *2 *1) + (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) + (-4 *6 (-237 (-3492 *3) (-766))) + (-14 *7 + (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *6)) + (-2 (|:| -2466 *5) (|:| -1960 *6)))) + (-5 *2 (-708 *5 *6 *7)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-845)) (-4 *8 (-944 *4 *6 (-859 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-721)) (-4 *2 (-845)) (-5 *1 (-730 *3 *2)) + (-4 *3 (-1044)))) + ((*1 *1 *1) + (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-787)) + (-4 *4 (-845))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1044)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1232 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-1232 (-562))) (-5 *1 (-485 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *1) (-5 *1 (-436)))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-562)))) + (-4 *4 (-13 (-1232 *3) (-554) (-10 -8 (-15 -1606 ($ $ $))))) + (-4 *3 (-554)) (-5 *1 (-1235 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-628))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) + (-5 *2 (-2 (|:| -2451 (-417 *3)) (|:| |special| (-417 *3)))) + (-5 *1 (-722 *5 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-378)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262))))) +(((*1 *1) + (-12 (-4 *1 (-403)) (-2236 (|has| *1 (-6 -4393))) + (-2236 (|has| *1 (-6 -4385))))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-845)))) + ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-845)))) + ((*1 *1) (-4 *1 (-839))) ((*1 *1 *1 *1) (-4 *1 (-845)))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) + (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3197)))) + (-5 *2 (-1030)) (-5 *1 (-743))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-936 (-224)) (-224) (-224))) - (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-255))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-872 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) - (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) - (-5 *1 (-254 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-872 *5)) (-5 *4 (-1082 (-377))) - (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) - (-5 *1 (-254 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) - (-5 *1 (-254 *3)) (-4 *3 (-13 (-609 (-533)) (-1091))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1082 (-377))) (-5 *2 (-1123 (-224))) (-5 *1 (-254 *3)) - (-4 *3 (-13 (-609 (-533)) (-1091))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-377))) (-5 *5 (-635 (-260))) - (-4 *6 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) - (-5 *1 (-254 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-377))) - (-4 *5 (-13 (-609 (-533)) (-1091))) (-5 *2 (-1123 (-224))) - (-5 *1 (-254 *5)))) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-362)) + (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-5 *1 (-449 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1079 (-377))) - (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-936 (-224)) (-224))) (-5 *4 (-1079 (-377))) - (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1079 (-377))) - (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-936 (-224)) (-224) (-224))) (-5 *4 (-1079 (-377))) - (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) - (-5 *5 (-635 (-260))) (-5 *2 (-1123 (-224))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-875 (-1 (-224) (-224) (-224)))) (-5 *4 (-1079 (-377))) - (-5 *2 (-1123 (-224))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-221 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-253 *3)))) - ((*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1204))))) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) + (-5 *2 + (-2 (|:| R (-683 *6)) (|:| A (-683 *6)) (|:| |Ainv| (-683 *6)))) + (-5 *1 (-973 *6)) (-5 *3 (-683 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845))))) (((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) - (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-635 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1042)) (-4 *3 (-844)) - (-4 *5 (-265 *3)) (-4 *6 (-787)) (-5 *2 (-635 (-765))))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-429 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) - (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-635 (-765)))))) + (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) + (-4 *3 (-1092)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) + (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *3)) + (-5 *1 (-945 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) + (-15 -4076 (*7 $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-639 (-224))) (-5 *4 (-766)) (-5 *2 (-683 (-224))) + (-5 *1 (-304))))) (((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1042)) (-4 *4 (-844)) - (-4 *5 (-265 *4)) (-4 *6 (-787)) (-5 *2 (-112))))) + (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) + (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224)) + (-5 *2 (-1030)) (-5 *1 (-744))))) (((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1042)) (-4 *4 (-844)) (-4 *5 (-787)) - (-4 *2 (-265 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) - (-4 *4 (-265 *3)) (-4 *5 (-787))))) + (|partial| -12 (-5 *2 (-1 (-535) (-639 (-535)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-535) (-639 (-535)))) (-5 *1 (-114)))) + ((*1 *1) (-5 *1 (-576)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-639 (-639 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-639 (-3 (|:| |array| (-639 *3)) (|:| |scalar| (-1168))))) + (-5 *6 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1096)) + (-5 *1 (-396)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-639 (-639 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-639 (-3 (|:| |array| (-639 *3)) (|:| |scalar| (-1168))))) + (-5 *6 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1096)) + (-5 *1 (-396)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-639 (-1168))) (-5 *5 (-1171)) (-5 *3 (-1168)) + (-5 *2 (-1096)) (-5 *1 (-396))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1207)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-580))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) + (-5 *1 (-761 *3 *4)) (-4 *3 (-703 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-362)) (-4 *3 (-1044)) + (-5 *2 (-2 (|:| -2097 *1) (|:| -2264 *1))) (-4 *1 (-847 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) + (-5 *2 (-2 (|:| -2097 *3) (|:| -2264 *3))) (-5 *1 (-848 *5 *3)) + (-4 *3 (-847 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-845)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1042)) (-4 *3 (-844)) - (-4 *4 (-265 *3)) (-4 *5 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183)))) - ((*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247))))) -(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-247))))) -(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-247))))) -(((*1 *2 *1) (-12 (-5 *2 (-1259)) (-5 *1 (-247))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-765)) - (-4 *3 (-13 (-720) (-367) (-10 -7 (-15 ** (*3 *3 (-544)))))) - (-5 *1 (-245 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-244 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-243 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-544)) (-5 *1 (-240)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-544)) (-5 *1 (-240))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-1259)) (-5 *1 (-240)))) - ((*1 *2 *3) (-12 (-5 *3 (-635 (-1148))) (-5 *2 (-1259)) (-5 *1 (-240))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1148)) (-5 *3 (-544)) (-5 *1 (-240))))) -(((*1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-240))))) -(((*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-4 *4 (-1204)) (-4 *1 (-237 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-292 (-939 (-544)))) - (-5 *2 - (-2 (|:| |varOrder| (-635 (-1166))) - (|:| |inhom| (-3 (-635 (-1253 (-765))) "failed")) - (|:| |hom| (-635 (-1253 (-765)))))) - (-5 *1 (-235))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-4 *1 (-234 *3)))) - ((*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1091))))) -(((*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))) -(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))) -(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))) -(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1190)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))) -(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-224))) (-5 *1 (-225))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-939 *6)) (-5 *4 (-1166)) - (-5 *5 (-836 *7)) (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-4 *7 (-13 (-1190) (-29 *6))) (-5 *1 (-223 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1160 *6)) (-5 *4 (-836 *6)) - (-4 *6 (-13 (-1190) (-29 *5))) - (-4 *5 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-223 *5 *6))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-836 *4)) (-5 *3 (-606 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1190) (-29 *6))) - (-4 *6 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *1 (-223 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148)) (-4 *4 (-13 (-450) (-844) (-1031 (-544)) (-634 (-544)))) - (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1190) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1042)) (-14 *3 (-635 (-1166))))) + (-12 (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) + (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1077))) (-5 *1 (-290))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 (-1229 *5 *4))) + (-5 *1 (-1106 *4 *5)) (-5 *3 (-1229 *5 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 (-406 (-947 *6)))) + (-5 *3 (-406 (-947 *6))) + (-4 *6 (-13 (-554) (-1033 (-562)) (-146))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-568 *6))))) +(((*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259))))) +(((*1 *1 *1) (-4 *1 (-242))) + ((*1 *1 *1) + (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-4037 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1207))) + (-12 (-5 *1 (-293 *2)) (-4 *2 (-472)) (-4 *2 (-1207))))) + ((*1 *1 *1) (-4 *1 (-472))) + ((*1 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) - (-14 *3 (-635 (-1166)))))) + (-12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)) (-4 *2 (-362))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) +(((*1 *1) (-5 *1 (-436)))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1042)) - (-14 *4 (-635 (-1166))))) + (-12 + (-5 *2 + (-639 + (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) + (|:| -1590 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) + (|:| |relerr| (-224))))) + (-5 *1 (-557)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1042) (-844))) - (-14 *4 (-635 (-1166)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-313 *3)) (-4 *3 (-13 (-1042) (-844))) (-5 *1 (-222 *3 *4)) - (-14 *4 (-635 (-1166)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1042) (-844))) - (-14 *3 (-635 (-1166)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1166)) (-5 *6 (-112)) - (-4 *7 (-13 (-306) (-844) (-146) (-1031 (-544)) (-634 (-544)))) - (-4 *3 (-13 (-1190) (-953) (-29 *7))) + (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-5 *2 (-639 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-3 (|:| |f1| (-836 *3)) (|:| |f2| (-635 (-836 *3))) (|:| |fail| "failed") - (|:| |pole| "potentialPole"))) - (-5 *1 (-218 *7 *3)) (-5 *5 (-836 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-406 (-544))) (-5 *1 (-216))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-765)) (-4 *4 (-349)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1229 *4))))) + (-639 + (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) + (|:| |abserr| (-224)) (|:| |relerr| (-224))))) + (-5 *1 (-798))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-683 (-562))) (-5 *3 (-639 (-562))) (-5 *1 (-1102))))) +(((*1 *2 *1) + (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) + (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) + (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-635 (-2 (|:| |deg| (-765)) (|:| -2954 *3)))) - (-5 *1 (-215 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-349)) + (-12 (-4 *4 (-451)) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2812 (-635 (-2 (|:| |irr| *3) (|:| -2530 (-544))))))) - (-5 *1 (-215 *5 *3)) (-4 *3 (-1229 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1229 (-406 *2))) - (-4 *2 (-1229 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-765)) (-5 *1 (-212 *4 *2)) (-14 *4 (-912)) (-4 *2 (-1091))))) + (-639 + (-2 (|:| |eigval| (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4)))) + (|:| |geneigvec| (-639 (-683 (-406 (-947 *4)))))))) + (-5 *1 (-291 *4)) (-5 *3 (-683 (-406 (-947 *4))))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1148 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) + (-5 *2 (-2 (|:| -2320 *3) (|:| -2694 *4)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-639 (-683 *3))) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-639 (-683 *3))) (-4 *3 (-1044)) (-5 *1 (-1023 *3))))) +(((*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-824))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-1005 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170))))) +(((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-562))))) + (-5 *1 (-360 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-766))))) + (-5 *1 (-385 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| -1635 *3) (|:| -1960 (-562))))) + (-5 *1 (-417 *3)) (-4 *3 (-554)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-766))))) + (-5 *1 (-814 *3)) (-4 *3 (-845))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1086 (-224))) + (-5 *5 (-112)) (-5 *2 (-1258)) (-5 *1 (-256))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562))))) +(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) + (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4403)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) + (-4 *2 (-1207))))) +(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1088)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) + ((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) (((*1 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) + (-4 *5 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-406 (-562))) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-562))) + (-4 *3 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-562))) (-5 *4 (-293 *6)) + (-4 *6 (-13 (-27) (-1192) (-429 *5))) + (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-562))) + (-4 *7 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-562))) + (-4 *3 (-13 (-27) (-1192) (-429 *7))) + (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-406 (-562)))) (-5 *4 (-293 *8)) + (-5 *5 (-1223 (-406 (-562)))) (-5 *6 (-406 (-562))) + (-4 *8 (-13 (-27) (-1192) (-429 *7))) + (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-406 (-562)))) + (-5 *7 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *8))) + (-4 *8 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) + (-4 *3 (-1044)) (-5 *1 (-592 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-593 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) + (-4 *3 (-1044)) (-4 *1 (-1216 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-766)) + (-5 *3 (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| *4)))) + (-4 *4 (-1044)) (-4 *1 (-1237 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-4 *1 (-1247 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1148 (-2 (|:| |k| (-766)) (|:| |c| *3)))) + (-4 *3 (-1044)) (-4 *1 (-1247 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-5 *3 (-1168)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-947 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-845) (-554))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-845) (-554))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1164 *2)) (-5 *4 (-1168)) (-4 *2 (-429 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-845) (-554))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1164 *1)) (-5 *3 (-916)) (-4 *1 (-1007)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1164 *1)) (-5 *3 (-916)) (-5 *4 (-857)) + (-4 *1 (-1007)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-916)) (-4 *4 (-13 (-843) (-362))) + (-4 *1 (-1061 *4 *2)) (-4 *2 (-1232 *4))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-562)) + (-5 *6 + (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378)))) + (-5 *7 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) + (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) + (-5 *1 (-783)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-562)) + (-5 *6 + (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4335 (-378)))) + (-5 *7 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) + (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) + (-5 *1 (-783))))) +(((*1 *2) (-12 - (-5 *3 - (-2 (|:| |pde| (-635 (-313 (-224)))) - (|:| |constraints| - (-635 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-765)) - (|:| |boundaryType| (-544)) (|:| |dStart| (-682 (-224))) - (|:| |dFinish| (-682 (-224)))))) - (|:| |f| (-635 (-635 (-313 (-224))))) (|:| |st| (-1148)) - (|:| |tol| (-224)))) - (-5 *2 (-112)) (-5 *1 (-209))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-635 (-313 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) - (-5 *1 (-209))))) -(((*1 *2 *2) (-12 (-5 *2 (-313 (-224))) (-5 *1 (-209))))) + (-5 *2 (-2 (|:| -3712 (-639 (-1168))) (|:| -2010 (-639 (-1168))))) + (-5 *1 (-1209))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-377)) (-5 *1 (-204))))) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) + (-4 *5 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-406 (-562))) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-562))) + (-4 *3 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-406 (-562)))) (-5 *4 (-293 *8)) + (-5 *5 (-1223 (-406 (-562)))) (-5 *6 (-406 (-562))) + (-4 *8 (-13 (-27) (-1192) (-429 *7))) + (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-406 (-562)))) + (-5 *7 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *8))) + (-4 *8 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-406 (-562))) (-4 *4 (-1044)) (-4 *1 (-1239 *4 *3)) + (-4 *3 (-1216 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) + (-4 *2 (-451)))) + ((*1 *1 *1) + (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1211)) (-4 *3 (-1232 *2)) + (-4 *4 (-1232 (-406 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-451)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *2 (-845)) (-4 *3 (-451)))) + ((*1 *1 *1) + (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-451)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-1155 *3 *2)) + (-4 *2 (-1232 *3))))) (((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1092)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-677 *4 *5)) (-4 *4 (-1092)))) + ((*1 *2 *2) + (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1044)) (-5 *1 (-1279 *2 *3)) (-4 *3 (-841))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1164 *2)) (-4 *2 (-944 (-406 (-947 *6)) *5 *4)) + (-5 *1 (-727 *5 *4 *6 *2)) (-4 *5 (-788)) + (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) + (-4 *6 (-554))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-608 *1))) (-4 *1 (-301))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-554)) (-4 *2 (-944 *3 *5 *4)) + (-5 *1 (-727 *5 *4 *6 *2)) (-5 *3 (-406 (-947 *6))) (-4 *5 (-788)) + (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-1216 *4)) (-4 *4 (-1044)) (-4 *4 (-554)) + (-5 *2 (-406 (-947 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-1216 *4)) (-4 *4 (-1044)) (-4 *4 (-554)) + (-5 *2 (-406 (-947 *4)))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1256 *5)) (-5 *3 (-766)) (-5 *4 (-1112)) (-4 *5 (-348)) + (-5 *1 (-527 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-639 (-608 *5))) (-5 *3 (-1168)) (-4 *5 (-429 *4)) + (-4 *4 (-845)) (-5 *1 (-571 *4 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) + (-4 *3 (-1207))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-916)) (-5 *2 (-467)) (-5 *1 (-1257))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-5 *1 (-329))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1179 (-639 *4))) (-4 *4 (-845)) + (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) + (-4 *5 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-562)) (-4 *5 (-13 (-451) (-845) (-1033 *4) (-635 *4))) + (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-451) (-845) (-1033 *5) (-635 *5))) (-5 *5 (-562)) + (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-562))) + (-4 *7 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-562))) + (-4 *3 (-13 (-27) (-1192) (-429 *7))) + (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-562)) (-4 *4 (-1044)) (-4 *1 (-1218 *4 *3)) + (-4 *3 (-1247 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-562)) (-4 *1 (-1085 *3)) (-4 *3 (-1207))))) +(((*1 *1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-377)) (-5 *1 (-204))))) + (-5 *2 + (-2 (|:| -3562 (-639 (-857))) (|:| -3659 (-639 (-857))) + (|:| |presup| (-639 (-857))) (|:| -2074 (-639 (-857))) + (|:| |args| (-639 (-857))))) + (-5 *1 (-1168)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 (-857)))) (-5 *1 (-1168))))) +(((*1 *2) (-12 (-5 *2 (-639 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-131))))) +(((*1 *2 *2) + (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) + (-5 *1 (-175 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-857))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-639 (-857)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-857) (-639 (-857)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1261)) (-5 *1 (-213 *3)) + (-4 *3 + (-13 (-845) + (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) + (-15 -1966 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-393)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-393)))) + ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-501)))) + ((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-705)))) + ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1187)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1187))))) +(((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-526)) (-5 *3 (-128)) (-5 *2 (-766))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1096)) (-5 *1 (-279))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4402)) (-4 *1 (-150 *2)) (-4 *2 (-1207)) + (-4 *2 (-1092)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4402)) (-4 *1 (-150 *3)) + (-4 *3 (-1207)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-562)) (-4 *4 (-1092)) + (-5 *1 (-732 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-5 *1 (-732 *2)) (-4 *2 (-1092)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) + (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))) + (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) +(((*1 *2 *2) + (-12 (-4 *3 (-554)) (-4 *4 (-987 *3)) (-5 *1 (-141 *3 *4 *2)) + (-4 *2 (-372 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-4 *2 (-372 *4)) + (-5 *1 (-502 *4 *5 *2 *3)) (-4 *3 (-372 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-683 *5)) (-4 *5 (-987 *4)) (-4 *4 (-554)) + (-5 *2 (-683 *4)) (-5 *1 (-687 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-554)) (-4 *4 (-987 *3)) (-5 *1 (-1225 *3 *4 *2)) + (-4 *2 (-1232 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-377)) (-5 *1 (-204))))) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) + (-4 *5 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-766)) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) + (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-293 *3)) (-5 *5 (-766)) + (-4 *3 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-562))) (-5 *4 (-293 *6)) + (-4 *6 (-13 (-27) (-1192) (-429 *5))) + (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) + (-4 *3 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-766))) + (-4 *7 (-13 (-27) (-1192) (-429 *6))) + (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-766))) + (-4 *3 (-13 (-27) (-1192) (-429 *7))) + (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-377)) (-5 *1 (-204))))) + (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2534 *4) (|:| -2466 (-1112)))))) + (-4 *4 (-348)) (-5 *2 (-683 *4)) (-5 *1 (-345 *4))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1253 (-313 (-224)))) (|:| |yinit| (-635 (-224))) - (|:| |intvals| (-635 (-224))) (|:| |g| (-313 (-224))) + (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) + (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377)))) - (-5 *1 (-204))))) -(((*1 *2 *3) - (-12 (-5 *3 (-682 (-313 (-224)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-377)) (|:| |stabilityFactor| (-377)))) - (-5 *1 (-204))))) -(((*1 *2 *3) (-12 (-5 *3 (-682 (-313 (-224)))) (-5 *2 (-377)) (-5 *1 (-204))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-204)))) - ((*1 *2 *2 *3) (-12 (-5 *3 (-635 (-377))) (-5 *2 (-377)) (-5 *1 (-204))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-544)) (-5 *1 (-203))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-635 (-224))) (-5 *1 (-203))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-2 (|:| -2881 (-113)) (|:| |w| (-224)))) (-5 *1 (-203))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1028)) (-5 *3 (-1166)) (-5 *1 (-191))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-377)) (-5 *1 (-191))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) + (-5 *2 (-378)) (-5 *1 (-204))))) +(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-52))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) + (-4 *2 (-13 (-429 *3) (-1192)))))) +(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1086 (-224))))) + ((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224)))))) +(((*1 *2 *3) (-12 (-5 *3 (-947 (-224))) (-5 *2 (-224)) (-5 *1 (-304))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-938 (-224))) (-5 *4 (-869)) (-5 *2 (-1261)) + (-5 *1 (-467)))) + ((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1044)) (-4 *1 (-975 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-938 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-938 *3)) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-938 *3)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)) (-5 *3 (-224))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4402)) (-4 *1 (-150 *2)) (-4 *2 (-1207)) + (-4 *2 (-1092))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-766)) (-4 *3 (-1207)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + ((*1 *1) (-5 *1 (-170))) + ((*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1092)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-388)))) + ((*1 *1) (-5 *1 (-393))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) + ((*1 *1) + (-12 (-4 *3 (-1092)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1092)) + (-4 *4 (-660 *3)))) + ((*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1134 *3 *2)) (-14 *3 (-766)) (-4 *2 (-1044)))) + ((*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) + ((*1 *1 *1) (-5 *1 (-1168))) ((*1 *1) (-5 *1 (-1168))) + ((*1 *1) (-5 *1 (-1187)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-4 *3 (-1058 *6 *7 *8)) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| "There is a singularity at the lower end point") - (|:| |upperSingular| "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-191))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1166)) (|:| |fn| (-313 (-224))) - (|:| -1589 (-1079 (-836 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-191))))) -(((*1 *2 *3) (-12 (-5 *2 (-404 (-1160 (-544)))) (-5 *1 (-190)) (-5 *3 (-544))))) -(((*1 *2 *3) (-12 (-5 *2 (-635 (-1160 (-544)))) (-5 *1 (-190)) (-5 *3 (-544))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-635 (-544))) (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 (-544))) (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1168 (-406 (-544)))) (-5 *2 (-406 (-544))) (-5 *1 (-189))))) -(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544))))) -(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544))))) -(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544))))) -(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544))))) -(((*1 *2 *3) (-12 (-5 *2 (-1168 (-406 (-544)))) (-5 *1 (-189)) (-5 *3 (-544))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1253 (-682 *4))) (-4 *4 (-171)) - (-5 *2 (-1253 (-682 (-939 *4)))) (-5 *1 (-188 *4))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-635 (-112)))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-1171))) (-5 *1 (-183))))) -(((*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-684 (-182))) (-5 *1 (-182))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1204)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1204)) (-5 *2 (-765)) (-5 *1 (-181 *4 *3)) (-4 *3 (-667 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1204)) (-5 *1 (-181 *3 *2)) (-4 *2 (-667 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-842))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2812 (-404 *3)))) (-5 *1 (-180 *4 *3)) - (-4 *3 (-1229 (-167 *4)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) - (-4 *3 (-1229 (-167 *2)))))) + (-2 (|:| |done| (-639 *4)) + (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1495 *4)))))) + (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1102))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) + (-4 *5 (-845)) (-5 *2 (-947 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) + (-4 *5 (-845)) (-5 *2 (-947 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-1247 *4)) (-4 *4 (-1044)) + (-5 *2 (-947 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-1247 *4)) (-4 *4 (-1044)) + (-5 *2 (-947 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-167 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-842))) - (-4 *3 (-1229 *2))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) - (-4 *3 (-1229 (-167 *2))))) + (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-451)) (-5 *2 (-112)) + (-5 *1 (-359 *4 *5)) (-14 *5 (-639 (-1168))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-362) (-842))) (-5 *1 (-180 *2 *3)) - (-4 *3 (-1229 (-167 *2)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) - (-4 *2 (-1229 (-167 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-404 *3)) (-5 *1 (-180 *4 *3)) - (-4 *3 (-1229 (-167 *4)))))) + (-12 (-5 *3 (-639 (-775 *4 (-859 *5)))) (-4 *4 (-451)) + (-14 *5 (-639 (-1168))) (-5 *2 (-112)) (-5 *1 (-624 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-842))) (-5 *1 (-180 *3 *2)) - (-4 *2 (-1229 (-167 *3)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-842))) - (-5 *2 (-635 (-2 (|:| -2812 (-635 *3)) (|:| -1684 *5)))) - (-5 *1 (-180 *5 *3)) (-4 *3 (-1229 (-167 *5))))) + (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) + (-5 *1 (-175 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1184 *4 *5)) + (-4 *4 (-1092)) (-4 *5 (-1092))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1257)))) + ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1086 (-224))))) + ((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) + (-4 *4 (-348)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-362) (-842))) - (-5 *2 (-635 (-2 (|:| -2812 (-635 *3)) (|:| -1684 *4)))) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4)))))) + (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) + (-4 *4 (-348)))) + ((*1 *1) (-4 *1 (-367))) + ((*1 *2 *3) + (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) + (-4 *4 (-348)))) + ((*1 *1 *1) (-4 *1 (-544))) ((*1 *1) (-4 *1 (-544))) + ((*1 *1 *1) (-5 *1 (-562))) ((*1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *1) (-12 (-5 *2 (-900 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-562)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) + (-4 *4 (-1092)))) + ((*1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-544)) (-4 *2 (-554))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1092))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-639 (-293 *4))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) + (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3931 *1) (|:| -4389 *1) (|:| |associate| *1))) + (-4 *1 (-554))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516))))) +(((*1 *1 *2) + (-12 (-5 *2 (-639 (-2 (|:| -2320 *3) (|:| -2694 *4)))) + (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *1 (-1183 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) +(((*1 *1) (-5 *1 (-436)))) +(((*1 *2 *1) + (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-766)) + (-14 *4 (-766)) (-4 *5 (-171))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-650 *3)) (-4 *3 (-1044)) (-4 *3 (-362)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-766)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) + (-5 *1 (-653 *5 *2)) (-4 *2 (-650 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) + ((*1 *2 *3) + (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1606 *3))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-635 (-167 *4))) (-5 *1 (-154 *3 *4)) - (-4 *3 (-1229 (-167 (-544)))) (-4 *4 (-13 (-362) (-842))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) + (-4 *7 (-1232 (-406 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -3288 *3))) + (-5 *1 (-560 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) + (-5 *2 + (-2 (|:| |answer| (-406 *6)) (|:| -3288 (-406 *6)) + (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) + (-5 *1 (-561 *5 *6)) (-5 *3 (-406 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1200 *2 *3 *4 *5)) (-4 *2 (-554)) + (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-1058 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-406 *5)) (-4 *4 (-1211)) (-4 *5 (-1232 *4)) + (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1232 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-167 *4))) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4))))) + (-12 (-5 *3 (-1170 (-406 (-562)))) (-5 *2 (-406 (-562))) + (-5 *1 (-189)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-683 (-315 (-224)))) (-5 *3 (-639 (-1168))) + (-5 *4 (-1256 (-315 (-224)))) (-5 *1 (-204)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1092)) + (-4 *3 (-1207)) (-5 *1 (-293 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-308 *2)) (-4 *2 (-1092)) (-4 *2 (-1207)) + (-5 *1 (-293 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-639 *1))) (-4 *1 (-301)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 (-1 *1 (-639 *1)))) + (-4 *1 (-301)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 (-1 *1 *1))) (-4 *1 (-301)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-1 *1 (-639 *1))) (-4 *1 (-301)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-1 *1 (-639 *1)))) + (-4 *1 (-301)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-1 *1 *1))) (-4 *1 (-301)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1092)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1092)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-362) (-842))) (-5 *2 (-635 (-167 *4))) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1229 (-167 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1190) (-995)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1190) (-995)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1190) (-995)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1190) (-995)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1190) (-995)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1190) (-995)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1190) (-995)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) - (-5 *1 (-175 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) - (-5 *1 (-175 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) - (-5 *1 (-175 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) - (-5 *1 (-175 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) - (-5 *1 (-175 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) - (-5 *1 (-175 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-362) (-1190) (-995))) - (-5 *1 (-175 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-109))) (-5 *1 (-174))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170))))) -(((*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) - (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1051)) (-4 *3 (-1190)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-160))) - ((*1 *1 *2) (-12 (-5 *2 (-544)) (-5 *1 (-160))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) + (-12 (-5 *3 (-1 *2 (-562))) (-5 *4 (-1170 (-406 (-562)))) + (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-562)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 *1)) (-4 *1 (-373 *4 *5)) + (-4 *4 (-845)) (-4 *5 (-171)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *4 (-1 *1 (-639 *1))) + (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-766))) + (-5 *4 (-639 (-1 *1 (-639 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-845)) + (-4 *5 (-1044)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-766))) + (-5 *4 (-639 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-845)) + (-4 *5 (-1044)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 *1)) (-5 *4 (-1168)) + (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-610 (-535))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1168)) (-4 *1 (-429 *4)) (-4 *4 (-845)) + (-4 *4 (-610 (-535))))) + ((*1 *1 *1) + (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-610 (-535))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 (-1168))) (-4 *1 (-429 *3)) (-4 *3 (-845)) + (-4 *3 (-610 (-535))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)) + (-4 *3 (-610 (-535))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-513 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1207)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 *5)) (-4 *1 (-513 *4 *5)) + (-4 *4 (-1092)) (-4 *5 (-1207)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-828 *3)) (-4 *3 (-362)) (-5 *1 (-713 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1092)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-406 (-947 *4))) (-5 *3 (-1168)) (-4 *4 (-554)) + (-5 *1 (-1038 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-639 (-1168))) (-5 *4 (-639 (-406 (-947 *5)))) + (-5 *2 (-406 (-947 *5))) (-4 *5 (-554)) (-5 *1 (-1038 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)) - (-4 *2 (-420 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166)))) - ((*1 *1 *1) (-4 *1 (-159)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *1 (-157 *4 *2)) - (-4 *2 (-420 *4)))) + (-12 (-5 *3 (-293 (-406 (-947 *4)))) (-5 *2 (-406 (-947 *4))) + (-4 *4 (-554)) (-5 *1 (-1038 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1082 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554))) - (-5 *1 (-157 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-159)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1166))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))) -(((*1 *1 *1 *1) (-4 *1 (-142))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-635 *2)) (-4 *2 (-543)) (-5 *1 (-158 *2))))) -(((*1 *1 *1) (-4 *1 (-142))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-543))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-844) (-554)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-844) (-554)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-844) (-554)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-844) (-554)))))) + (-12 (-5 *3 (-639 (-293 (-406 (-947 *4))))) (-5 *2 (-406 (-947 *4))) + (-4 *4 (-554)) (-5 *1 (-1038 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1148 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-766)) (-5 *1 (-212 *4 *2)) (-14 *4 (-916)) + (-4 *2 (-1092))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-639 (-1022 *5 *6 *7 *3))) (-5 *1 (-1022 *5 *6 *7 *3)) + (-4 *3 (-1058 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-639 *6)) (-4 *1 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1064 *3 *4 *5 *2)) (-4 *3 (-451)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-5 *2 (-639 (-1138 *5 *6 *7 *3))) (-5 *1 (-1138 *5 *6 *7 *3)) + (-4 *3 (-1058 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *2 (-1058 *4 *5 *6)) (-5 *1 (-771 *4 *5 *6 *2 *3)) + (-4 *3 (-1064 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-844) (-554)))))) + (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) + (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-1092))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-845))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *2)) (-4 *2 (-420 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-844) (-554)))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)) + (-4 *6 (-1092)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-678 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-642 *3)) (-4 *3 (-1044)) + (-5 *1 (-709 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-831 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-600 *3 *2)) (-4 *3 (-1092)) (-4 *3 (-845)) + (-4 *2 (-1207)))) + ((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) + ((*1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1207)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1207)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) + (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) + ((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) + (-4 *5 (-372 *2)) (-4 *2 (-1207)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-766)) (-4 *2 (-1092)) (-5 *1 (-212 *4 *2)) + (-14 *4 (-916)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) + (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1044))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2835 *4))) + (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-420 *3))))) -(((*1 *1) (-5 *1 (-156)))) -(((*1 *2) (-12 (-5 *2 (-912)) (-5 *1 (-156))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-224)) - (-5 *2 - (-2 (|:| |brans| (-635 (-635 (-936 *4)))) (|:| |xValues| (-1079 *4)) - (|:| |yValues| (-1079 *4)))) - (-5 *1 (-152)) (-5 *3 (-635 (-635 (-936 *4))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-918)) - (-5 *2 - (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) - (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) - (-5 *1 (-152)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-918)) (-5 *4 (-406 (-544))) - (-5 *2 - (-2 (|:| |brans| (-635 (-635 (-936 (-224))))) - (|:| |xValues| (-1079 (-224))) (|:| |yValues| (-1079 (-224))))) - (-5 *1 (-152))))) -(((*1 *1 *2) - (-12 (-5 *2 (-912)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362)) - (-14 *5 (-986 *3 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1204))))) + (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) + (-4 *3 (-1092))))) +(((*1 *2 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1092))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-669 (-224))) + (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-745))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-639 *3)) (-4 *3 (-944 *4 *6 *5)) (-4 *4 (-451)) + (-4 *5 (-845)) (-4 *6 (-788)) (-5 *1 (-982 *4 *5 *6 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4400)) (-4 *1 (-150 *2)) (-4 *2 (-1204)) - (-4 *2 (-1091))))) + (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) + (-4 *4 (-845)) (-4 *2 (-451))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) + (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) - (|:| |c2| (-406 *5)) (|:| |deg| (-765)))) - (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5)))))) + (|:| |c2| (-406 *5)) (|:| |deg| (-766)))) + (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1229 *2)) (-4 *2 (-1209)) (-5 *1 (-147 *2 *4 *3)) - (-4 *3 (-1229 (-406 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-406 *6)) (-4 *5 (-1209)) (-4 *6 (-1229 *5)) - (-5 *2 (-2 (|:| -2536 (-765)) (|:| -4361 *3) (|:| |radicand| *6))) - (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-765)) (-4 *7 (-1229 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) - (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-765)))) - (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1229 (-406 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1209)) (-4 *5 (-1229 *4)) - (-5 *2 (-2 (|:| -4361 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3)) - (-4 *3 (-1229 (-406 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-143))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-143)))) - ((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-143))))) -(((*1 *1) (-5 *1 (-143)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 (-143))) (-5 *1 (-140)))) - ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-140))))) -(((*1 *1) (-5 *1 (-140)))) -(((*1 *1) (-5 *1 (-140)))) -(((*1 *1) (-5 *1 (-140)))) -(((*1 *1) (-5 *1 (-140)))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-832))) (-5 *1 (-139))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-183))) (-5 *1 (-139))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-183))) (-5 *1 (-139))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-635 (-544))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) - (-14 *4 (-765)) (-4 *5 (-171))))) -(((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171))))) -(((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-544)) (-14 *3 (-765)) (-4 *4 (-171))))) -(((*1 *2 *1) - (-12 (-5 *2 (-635 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) - (-14 *4 (-765)) (-4 *5 (-171))))) -(((*1 *1 *2) - (-12 (-5 *2 (-635 *5)) (-4 *5 (-171)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-544)) - (-14 *4 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-133))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-765)) (-5 *2 (-1259))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129))))) -(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-129))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-129))))) -(((*1 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-128))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1091)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1091))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-126 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1091))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-844)) (-5 *1 (-121 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-844))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) - ((*1 *2 *2) (-12 (-5 *2 (-765)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1229 (-544)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-119 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4401)) (-4 *1 (-119 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-1031 (-406 *2)))) (-5 *2 (-544)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1229 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1091)) (-4 *2 (-844)) - (-5 *1 (-114 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-844)) (-4 *3 (-1091))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-635 (-1 *4 (-635 *4)))) (-4 *4 (-1091)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1091)) (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-635 (-1 *4 (-635 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-635 (-958))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1148) (-767))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-113))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-767)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1148) (-767))) (-5 *1 (-113))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-635 (-958))) (-5 *1 (-109))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-4 *1 (-107 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1204))))) -(((*1 *2) (-12 (-5 *2 (-635 (-1166))) (-5 *1 (-105))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1166)) - (-5 *2 - (-2 (|:| |zeros| (-1143 (-224))) (|:| |ones| (-1143 (-224))) - (|:| |singularities| (-1143 (-224))))) - (-5 *1 (-105))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4402 "*"))) (-4 *5 (-371 *2)) (-4 *6 (-371 *2)) - (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2)) - (-4 *4 (-679 *2 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4402 "*"))) (-4 *5 (-371 *2)) (-4 *6 (-371 *2)) - (-4 *2 (-1042)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1229 *2)) - (-4 *4 (-679 *2 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1042)) (-4 *2 (-679 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1229 *4)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1042)) (-4 *2 (-679 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1229 *4)) (-4 *5 (-371 *4)) (-4 *6 (-371 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-103 *3)) (-4 *3 (-1091))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-103 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1091)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1091))))) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) + (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-635 *2) *2 *2 *2)) (-4 *2 (-1091)) (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1091)) (-5 *1 (-103 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-450) (-146))) (-5 *2 (-404 *3)) (-5 *1 (-100 *4 *3)) - (-4 *3 (-1229 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-635 *3)) (-4 *3 (-1229 *5)) (-4 *5 (-13 (-450) (-146))) - (-5 *2 (-404 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-544))) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1042)) (-5 *1 (-99 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-377)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-5 *2 (-1259)) (-5 *1 (-97))))) -(((*1 *2 *2) (-12 (-5 *2 (-377)) (-5 *1 (-97))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1148)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-377)) (-5 *3 (-1148)) (-5 *1 (-97))))) -(((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1091)) (-5 *1 (-91 *3))))) + (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-1168)) (-5 *1 (-535)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-639 (-1168))) (-5 *2 (-1168)) (-5 *1 (-699 *3)) + (-4 *3 (-610 (-535)))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-562)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-866 *4)) (-14 *4 *3) + (-5 *3 (-562)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-406 (-562))) (-5 *1 (-867 *4 *5)) + (-5 *3 (-562)) (-4 *5 (-864 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-406 (-562))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1061 *2 *3)) (-4 *2 (-13 (-843) (-362))) + (-4 *3 (-1232 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4054 (*2 (-1168)))) + (-4 *2 (-1044))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *5 (-554)) + (-12 (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) + (-4 *3 (-944 *7 *5 *6)) (-5 *2 - (-2 (|:| |minor| (-635 (-912))) (|:| -3667 *3) - (|:| |minors| (-635 (-635 (-912)))) (|:| |ops| (-635 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-912)) (-4 *3 (-651 *5))))) + (-2 (|:| -1960 (-766)) (|:| -4221 *3) (|:| |radicand| (-639 *3)))) + (-5 *1 (-948 *5 *6 *7 *3 *8)) (-5 *4 (-766)) + (-4 *8 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *3)) (-15 -4065 (*3 $)) (-15 -4076 (*3 $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1168)) (-4 *1 (-27)) + (-5 *2 (-639 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-639 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-224))) (-5 *4 (-639 (-1168))) + (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-766)) (-4 *5 (-1044)) (-4 *2 (-1232 *5)) + (-5 *1 (-1250 *5 *2 *6 *3)) (-4 *6 (-650 *2)) (-4 *3 (-1247 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3729 (-639 (-224))))) + (-5 *2 (-639 (-1168))) (-5 *1 (-266)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1164 *7)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *2 (-639 *5)) + (-5 *1 (-320 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-386)))) + ((*1 *2 *1) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-845)) (-5 *2 (-639 (-1168))))) + ((*1 *2 *1) + (-12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) + (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-5 *2 (-639 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) + (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *5)) + (-5 *1 (-945 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1094 (-1168))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) + ((*1 *2 *1) + (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-787)) + (-4 *5 (-845)) (-5 *2 (-639 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-639 (-1168))) + (-5 *1 (-1038 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-1253 (-682 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-682 *4)) (-4 *5 (-651 *4))))) + (-12 (-5 *3 (-766)) (-5 *2 (-683 (-947 *4))) (-5 *1 (-1023 *4)) + (-4 *4 (-1044))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-554)) - (-5 *2 (-2 (|:| -1728 (-682 *5)) (|:| |vec| (-1253 (-635 (-912)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-912)) (-4 *3 (-651 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *1 (-58 *3)) (-4 *3 (-1204)))) - ((*1 *1 *2) (-12 (-5 *2 (-635 *3)) (-4 *3 (-1204)) (-5 *1 (-58 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-544)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1204)) (-4 *3 (-371 *4)) - (-4 *5 (-371 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-544)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1204)) (-4 *5 (-371 *4)) - (-4 *3 (-371 *4))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-635 (-1166))) (-4 *4 (-1091)) - (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) - (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-635 (-1065 *4 *5 *2))) (-4 *4 (-1091)) - (-4 *5 (-13 (-1042) (-879 *4) (-844) (-609 (-883 *4)))) - (-4 *2 (-13 (-420 *5) (-879 *4) (-609 (-883 *4)))) (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-635 (-1065 *5 *6 *2))) (-5 *4 (-912)) (-4 *5 (-1091)) - (-4 *6 (-13 (-1042) (-879 *5) (-844) (-609 (-883 *5)))) - (-4 *2 (-13 (-420 *6) (-879 *5) (-609 (-883 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1093)) (-5 *3 (-767)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-51))))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1148)) (-5 *1 (-51))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 (-682 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3))))) + (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 *5)) (-4 *5 (-362)) + (-4 *5 (-554)) (-5 *2 (-1256 *5)) (-5 *1 (-634 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 *5)) + (-2236 (-4 *5 (-362))) (-4 *5 (-554)) (-5 *2 (-1256 (-406 *5))) + (-5 *1 (-634 *5 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-845)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-816))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) + (-4 *4 (-171)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) + (-4 *2 (-429 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1084 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) + (-5 *1 (-157 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-159)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-171))))) (((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3))))) + (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) + (-4 *3 (-366 *4)))) + ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) + ((*1 *2 *2) + (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) + (-4 *6 (-1058 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -4014 *1) (|:| |upper| *1))) + (-4 *1 (-971 *4 *5 *3 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3928 (-639 *4)))) + (-5 *1 (-1116 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) + (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1232 *5)) + (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) + (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-112)) + (-5 *1 (-906 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) + (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) + (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-907 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) + ((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1164 (-406 (-1164 *2)))) (-5 *4 (-608 *2)) + (-4 *2 (-13 (-429 *5) (-27) (-1192))) + (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) + (-5 *1 (-558 *5 *2 *6)) (-4 *6 (-1092)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1164 *1)) (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *3 (-845)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1044)) (-4 *1 (-944 *4 *5 *3)) + (-4 *5 (-788)) (-4 *3 (-845)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-1164 *2))) (-4 *5 (-788)) (-4 *4 (-845)) + (-4 *6 (-1044)) + (-4 *2 + (-13 (-362) + (-10 -8 (-15 -4054 ($ *7)) (-15 -4065 (*7 $)) (-15 -4076 (*7 $))))) + (-5 *1 (-945 *5 *4 *6 *7 *2)) (-4 *7 (-944 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-1164 (-406 (-947 *5))))) (-5 *4 (-1168)) + (-5 *2 (-406 (-947 *5))) (-5 *1 (-1038 *5)) (-4 *5 (-554))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-781))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) + (-5 *1 (-592 *3)) (-4 *3 (-1044))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-583 *3) *3 (-1168))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1168))) + (-4 *3 (-283)) (-4 *3 (-625)) (-4 *3 (-1033 *4)) (-4 *3 (-429 *7)) + (-5 *4 (-1168)) (-4 *7 (-610 (-887 (-562)))) (-4 *7 (-451)) + (-4 *7 (-881 (-562))) (-4 *7 (-845)) (-5 *2 (-583 *3)) + (-5 *1 (-571 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1044)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-1044))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-329))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *1 (-1228 *4 *2)) + (-4 *2 (-1232 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-301)))) + ((*1 *1 *1) (-4 *1 (-301))) + ((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) + ((*1 *1 *1) (-5 *1 (-857)))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-766)) + (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)) + (-5 *2 (-766)))) + ((*1 *2) + (-12 (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-327 *3 *4)) + (-4 *3 (-328 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) + ((*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-766)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) + ((*1 *2) + (-12 (-4 *4 (-1092)) (-5 *2 (-766)) (-5 *1 (-423 *3 *4)) + (-4 *3 (-424 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-766)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-766)) + (-5 *1 (-718 *3 *4 *5)) (-4 *3 (-719 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) + ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) + (-4 *3 (-1232 *2))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-639 (-112))) (-5 *7 (-683 (-224))) + (-5 *8 (-683 (-562))) (-5 *3 (-562)) (-5 *4 (-224)) (-5 *5 (-112)) + (-5 *2 (-1030)) (-5 *1 (-749))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-639 (-916))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-916)) + (-4 *2 (-362)) (-14 *5 (-988 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-708 *5 *6 *7)) (-4 *5 (-845)) + (-4 *6 (-237 (-3492 *4) (-766))) + (-14 *7 + (-1 (-112) (-2 (|:| -2466 *5) (|:| -1960 *6)) + (-2 (|:| -2466 *5) (|:| -1960 *6)))) + (-14 *4 (-639 (-1168))) (-4 *2 (-171)) + (-5 *1 (-460 *4 *2 *5 *6 *7 *8)) (-4 *8 (-944 *2 *6 (-859 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-845)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-562)) (-4 *2 (-554)) (-5 *1 (-619 *2 *4)) + (-4 *4 (-1232 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-703 *2)) (-4 *2 (-1044)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-730 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-721)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 *5)) (-5 *3 (-639 (-766))) (-4 *1 (-735 *4 *5)) + (-4 *4 (-1044)) (-4 *5 (-845)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *2)) (-4 *4 (-1044)) + (-4 *2 (-845)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-847 *2)) (-4 *2 (-1044)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 (-766))) (-4 *1 (-944 *4 *5 *6)) + (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-766)) (-4 *1 (-944 *4 *5 *2)) (-4 *4 (-1044)) + (-4 *5 (-788)) (-4 *2 (-845)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 *5)) (-4 *1 (-968 *4 *5 *6)) + (-4 *4 (-1044)) (-4 *5 (-787)) (-4 *6 (-845)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-968 *4 *3 *2)) (-4 *4 (-1044)) (-4 *3 (-787)) + (-4 *2 (-845))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-635 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) + (-12 (-5 *2 (-608 *4)) (-5 *1 (-607 *3 *4)) (-4 *3 (-845)) + (-4 *4 (-845))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-964 *4 *3)) + (-4 *3 (-1232 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-833))) (-5 *1 (-139))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-683 (-224))) (-5 *6 (-112)) (-5 *7 (-683 (-562))) + (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-562)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1148 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) +(((*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1) (-5 *1 (-290)))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) + (-4 *5 (-1232 *4)) (-5 *2 (-639 (-406 *5))) (-5 *1 (-1011 *4 *5)) + (-5 *3 (-406 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) + (-5 *2 (-412 *4 (-406 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1256 *6)) (-4 *6 (-13 (-408 *4 *5) (-1033 *4))) + (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *3 (-306)) + (-5 *1 (-412 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) + (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171))))) (((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-635 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3))))) + (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-416 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) +(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) + ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-683 (-1164 *8))) (-4 *5 (-1044)) (-4 *8 (-1044)) + (-4 *6 (-1232 *5)) (-5 *2 (-683 *6)) (-5 *1 (-500 *5 *6 *7 *8)) + (-4 *7 (-1232 *6))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-642 *5)) (-4 *5 (-1044)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-847 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-683 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1044)) + (-5 *1 (-848 *2 *3)) (-4 *3 (-847 *2))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-639 (-480 *4 *5))) (-5 *3 (-859 *4)) + (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-627 *4 *5))))) +(((*1 *1) (-5 *1 (-1056)))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) + (-12 + (-5 *3 + (-2 (|:| -1545 (-683 (-406 (-947 *4)))) + (|:| |vec| (-639 (-406 (-947 *4)))) (|:| -2173 (-766)) + (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) + (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) + (-4 *6 (-788)) + (-5 *2 + (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) + (|:| -3928 (-639 (-1256 (-406 (-947 *4))))))) + (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-1181 *2)) (-4 *2 (-362))))) +(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-639 (-639 (-224)))) (-5 *4 (-224)) + (-5 *2 (-639 (-938 *4))) (-5 *1 (-1203)) (-5 *3 (-938 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-766)) (-4 *1 (-735 *3 *4)) (-4 *3 (-1044)) + (-4 *4 (-845)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-639 *3)) (-4 *1 (-975 *3)) (-4 *3 (-1044)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) + (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *7 (-1058 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) + (-4 *1 (-1064 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) + (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) + (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) + (-4 *1 (-1064 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) + (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) + (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) + (-5 *1 (-1269 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) + (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1269 *5 *6 *7 *8))))) +(((*1 *1 *1) (-4 *1 (-142))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) + (-4 *2 (-429 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) + (-4 *3 (-1058 *5 *6 *7)) + (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1495 *4)))) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-562)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-306)) + (-4 *9 (-944 *8 *6 *7)) + (-5 *2 (-2 (|:| -4380 (-1164 *9)) (|:| |polval| (-1164 *8)))) + (-5 *1 (-737 *6 *7 *8 *9)) (-5 *3 (-1164 *9)) (-5 *4 (-1164 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) + (-12 (-5 *3 (-639 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-845) (-554))) + (-5 *2 (-857)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) + (-12 (-5 *3 (-683 (-406 (-947 (-562))))) + (-5 *2 + (-639 + (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) + (|:| |radvect| (-639 (-683 (-315 (-562)))))))) + (-5 *1 (-1026))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1092))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-639 (-766))) (-5 *3 (-112)) (-5 *1 (-1156 *4 *5)) + (-14 *4 (-916)) (-4 *5 (-1044))))) +(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-817))))) +(((*1 *1 *1) (-5 *1 (-1056)))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) + (-12 (-5 *3 (-2 (|:| -1588 (-406 (-562))) (|:| -1602 (-406 (-562))))) + (-5 *2 (-406 (-562))) (-5 *1 (-1015 *4)) (-4 *4 (-1232 (-562)))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-362)) (-5 *2 (-639 (-1148 *4))) (-5 *1 (-284 *4 *5)) + (-5 *3 (-1148 *4)) (-4 *5 (-1247 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-765)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-113)) (-5 *4 (-765)) (-4 *5 (-450)) (-4 *5 (-844)) - (-4 *5 (-1031 (-544))) (-4 *5 (-554)) (-5 *1 (-41 *5 *2)) (-4 *2 (-420 *5)) - (-4 *2 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *5 (-606 $)) $)) - (-15 -3380 ((-1115 *5 (-606 $)) $)) - (-15 -4353 ($ (-1115 *5 (-606 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3)) - (-4 *2 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) - (-15 -3380 ((-1115 *3 (-606 $)) $)) - (-15 -4353 ($ (-1115 *3 (-606 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3)) - (-4 *2 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) - (-15 -3380 ((-1115 *3 (-606 $)) $)) - (-15 -4353 ($ (-1115 *3 (-606 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-450)) (-4 *3 (-844)) (-4 *3 (-1031 (-544))) (-4 *3 (-554)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-420 *3)) - (-4 *2 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) - (-15 -3380 ((-1115 *3 (-606 $)) $)) - (-15 -4353 ($ (-1115 *3 (-606 $)))))))))) + (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1184 *4 *5)) + (-4 *4 (-1092)) (-4 *5 (-1092))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2835 *3) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) + (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-1160 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $)) - (-15 -3380 ((-1115 *4 (-606 $)) $)) - (-15 -4353 ($ (-1115 *4 (-606 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) - (-15 -3380 ((-1115 *3 (-606 $)) $)) - (-15 -4353 ($ (-1115 *3 (-606 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) - (-15 -3380 ((-1115 *3 (-606 $)) $)) - (-15 -4353 ($ (-1115 *3 (-606 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-635 *2)) - (-4 *2 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $)) - (-15 -3380 ((-1115 *4 (-606 $)) $)) - (-15 -4353 ($ (-1115 *4 (-606 $))))))) - (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-635 (-606 *2))) - (-4 *2 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *4 (-606 $)) $)) - (-15 -3380 ((-1115 *4 (-606 $)) $)) - (-15 -4353 ($ (-1115 *4 (-606 $))))))) - (-4 *4 (-554)) (-5 *1 (-41 *4 *2))))) + (-12 (-5 *3 (-1168)) (-4 *5 (-1211)) (-4 *6 (-1232 *5)) + (-4 *7 (-1232 (-406 *6))) (-5 *2 (-639 (-947 *5))) + (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1211)) + (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-4 *4 (-362)) + (-5 *2 (-639 (-947 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) + (-4 *5 (-372 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) + (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1232 *9)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-306)) + (-4 *10 (-944 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-639 (-1164 *10))) + (|:| |dterm| + (-639 (-639 (-2 (|:| -2734 (-766)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-639 *6)) (|:| |nlead| (-639 *10)))) + (-5 *1 (-773 *6 *7 *8 *9 *10)) (-5 *3 (-1164 *10)) (-5 *4 (-639 *6)) + (-5 *5 (-639 *10))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-4 *3 (-13 (-27) (-1192) (-429 *6) (-10 -8 (-15 -4054 ($ *7))))) + (-4 *7 (-843)) + (-4 *8 + (-13 (-1234 *3 *7) (-362) (-1192) + (-10 -8 (-15 -4029 ($ $)) (-15 -2667 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) + (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1150)) (-4 *9 (-978 *8)) + (-14 *10 (-1168))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *3 (-433)) (-4 *5 (-845)) + (-5 *1 (-1098 *5 *4)) (-4 *4 (-429 *5))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) + (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) + (-5 *1 (-840 *4 *5)) (-14 *4 (-766))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-362)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) + (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-562)) (-4 *2 (-362)) (-4 *4 (-1232 *2)) + (-4 *5 (-1232 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6)) + (-4 *6 (-341 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-362)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))) + (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) + (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1232 *3)) + (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) + (-4 *1 (-334 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-274))))) +(((*1 *2 *2) (-12 (-5 *2 (-683 (-315 (-562)))) (-5 *1 (-1026))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-887 *6))) + (-5 *5 (-1 (-884 *6 *8) *8 (-887 *6) (-884 *6 *8))) (-4 *6 (-1092)) + (-4 *8 (-13 (-1044) (-610 (-887 *6)) (-1033 *7))) + (-5 *2 (-884 *6 *8)) (-4 *7 (-13 (-1044) (-845))) + (-5 *1 (-936 *6 *7 *8))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-885 *4 *3)) + (-4 *3 (-1207)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) + (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-112)) + (-5 *1 (-356 *4))))) +(((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-362) (-297) - (-10 -8 (-15 -3381 ((-1115 *3 (-606 $)) $)) - (-15 -3380 ((-1115 *3 (-606 $)) $)) - (-15 -4353 ($ (-1115 *3 (-606 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-765)) (-4 *4 (-362)) (-4 *5 (-1229 *4)) (-5 *2 (-1259)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1229 (-406 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1229 (-48)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1091)) (-4 *4 (-1091)) - (-5 *2 (-2 (|:| -4267 *3) (|:| -2226 *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-765)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-544)) (-4 *2 (-420 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1031 *4)) - (-4 *3 (-13 (-844) (-554)))))) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) (((*1 *2 *3) - (-12 (-5 *3 (-635 *5)) (-4 *5 (-420 *4)) (-4 *4 (-13 (-844) (-554))) - (-5 *2 (-857)) (-5 *1 (-32 *4 *5))))) + (-12 (-5 *3 (-1150)) + (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1192) (-29 *4)))))) +(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1192) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-146)) + (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) + (-5 *2 (-315 *5)) (-5 *1 (-586 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-112)) + (-5 *1 (-356 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-112)) + (-5 *1 (-527 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1160 *2)) (-4 *2 (-420 *4)) (-4 *4 (-13 (-844) (-554))) - (-5 *1 (-32 *4 *2))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-939 (-544))) (-5 *3 (-1166)) (-5 *4 (-1079 (-406 (-544)))) - (-5 *1 (-30))))) + (-12 (-5 *2 (-1148 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1044)) + (-5 *3 (-406 (-562))) (-5 *1 (-1152 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1160 *1)) (-5 *4 (-1166)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1160 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-939 *1)) (-4 *1 (-27)) (-5 *2 (-635 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1166)) (-4 *4 (-13 (-844) (-554))) (-5 *2 (-635 *1)) - (-4 *1 (-29 *4)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) + (-5 *2 + (-2 (|:| |ir| (-583 (-406 *6))) (|:| |specpart| (-406 *6)) + (|:| |polypart| *6))) + (-5 *1 (-572 *5 *6)) (-5 *3 (-406 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1150)) (|:| -3254 (-1150)))) + (-5 *1 (-817))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-639 *1)) (-4 *1 (-306))))) +(((*1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-362)) (-4 *7 (-1232 *5)) (-4 *4 (-719 *5 *7)) + (-5 *2 (-2 (|:| -1545 (-683 *6)) (|:| |vec| (-1256 *5)))) + (-5 *1 (-806 *5 *6 *7 *4 *3)) (-4 *6 (-650 *5)) (-4 *3 (-650 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) +(((*1 *1 *1 *1) (-5 *1 (-857)))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) +(((*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) + ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) + ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) + (-4 *4 (-130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-360 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-385 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-643 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1168)) (-5 *6 (-639 (-608 *3))) + (-5 *5 (-608 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *7))) + (-4 *7 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-5 *2 (-2 (|:| -3860 *3) (|:| |coeff| *3))) + (-5 *1 (-555 *7 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1150)) (-5 *1 (-1188))))) +(((*1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-544))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-1056))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) + (-5 *2 (-1030)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-435))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1084 (-947 (-562)))) (-5 *3 (-947 (-562))) + (-5 *1 (-329)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1084 (-947 (-562)))) (-5 *1 (-329))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) + (-4 *2 (-13 (-429 *3) (-997)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1168)) (-5 *3 (-378)) (-5 *1 (-1056))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) + (-4 *2 (-1232 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-544)))) +(((*1 *2 *1) + (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) + (-5 *2 (-406 (-562))))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-844) (-554))) (-5 *2 (-635 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1160 *1)) (-5 *3 (-1166)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1160 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-939 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1166)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-844) (-554))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-844) (-554)))))) -((-1287 . 727023) (-1288 . 726596) (-1289 . 726475) (-1290 . 726360) - (-1291 . 726234) (-1292 . 726104) (-1293 . 726035) (-1294 . 725981) - (-1295 . 725846) (-1296 . 725770) (-1297 . 725614) (-1298 . 725386) - (-1299 . 724422) (-1300 . 724175) (-1301 . 723873) (-1302 . 723571) - (-1303 . 723269) (-1304 . 722931) (-1305 . 722839) (-1306 . 722747) - (-1307 . 722655) (-1308 . 722563) (-1309 . 722471) (-1310 . 722379) - (-1311 . 722284) (-1312 . 722189) (-1313 . 722097) (-1314 . 722005) - (-1315 . 721913) (-1316 . 721821) (-1317 . 721729) (-1318 . 721627) - (-1319 . 721525) (-1320 . 721423) (-1321 . 721331) (-1322 . 721264) - (-1323 . 721213) (-1324 . 721161) (-1325 . 721110) (-1326 . 721059) - (-1327 . 720989) (-1328 . 720551) (-1329 . 720349) (-1330 . 720322) - (-1331 . 720199) (-1332 . 720076) (-1333 . 719932) (-1334 . 719762) - (-1335 . 719638) (-1336 . 719399) (-1337 . 719326) (-1338 . 719185) - (-1339 . 719134) (-1340 . 719085) (-1341 . 719015) (-1342 . 718880) - (-1343 . 718745) (-1344 . 718517) (-1345 . 718269) (-1346 . 718089) - (-1347 . 717918) (-1348 . 717841) (-1349 . 717767) (-1350 . 717612) - (-1351 . 717457) (-1352 . 717271) (-1353 . 717088) (-1354 . 716911) - (-1355 . 716854) (-1356 . 716798) (-1357 . 716742) (-1358 . 716668) - (-1359 . 716590) (-1360 . 716559) (-1361 . 716490) (-1362 . 716416) - (-1363 . 716360) (-1364 . 716289) (-1365 . 716215) (-1366 . 716141) - (-1367 . 716089) (-1368 . 716037) (-1369 . 715985) (-1370 . 715862) - (-1371 . 715540) (-1372 . 715452) (-1373 . 715351) (-1374 . 715230) - (-1375 . 715149) (-1376 . 715068) (-1377 . 714911) (-1378 . 714760) - (-1379 . 714682) (-1380 . 714624) (-1381 . 714551) (-1382 . 714486) - (-1383 . 714421) (-1384 . 714359) (-1385 . 714286) (-1386 . 714170) - (-1387 . 714118) (-1388 . 714063) (-1389 . 714011) (-1390 . 713959) - (-1391 . 713915) (-1392 . 713844) (-1393 . 713792) (-1394 . 713743) - (-1395 . 713691) (-1396 . 713639) (-1397 . 713523) (-1398 . 713407) - (-1399 . 713315) (-1400 . 713223) (-1401 . 713100) (-1402 . 713041) - (-1403 . 712982) (-1404 . 712923) (-1405 . 712895) (-1406 . 712867) - (-1407 . 712839) (-1408 . 712811) (-1409 . 712701) (-1410 . 712649) - (-1411 . 712597) (-1412 . 712545) (-1413 . 712493) (-1414 . 712441) - (-1415 . 712389) (-1416 . 712361) (-1417 . 712258) (-1418 . 712206) - (-1419 . 712040) (-1420 . 711856) (-1421 . 711645) (-1422 . 711530) - (-1423 . 711297) (-1424 . 711198) (-1425 . 711104) (-1426 . 710989) - (-1427 . 710591) (-1428 . 710373) (-1429 . 710324) (-1430 . 710296) - (-1431 . 710205) (-1432 . 710093) (-1433 . 709981) (-1434 . 709869) - (-1435 . 709757) (-1436 . 709645) (-1437 . 709533) (-1438 . 709360) - (-1439 . 709284) (-1440 . 709102) (-1441 . 709044) (-1442 . 708986) - (-1443 . 708648) (-1444 . 708363) (-1445 . 708279) (-1446 . 708146) - (-1447 . 708088) (-1448 . 708036) (-1449 . 707981) (-1450 . 707929) - (-1451 . 707855) (-1452 . 707781) (-1453 . 707700) (-1454 . 707619) - (-1455 . 707564) (-1456 . 707490) (-1457 . 707416) (-1458 . 707342) - (-1459 . 707265) (-1460 . 707210) (-1461 . 707151) (-1462 . 707052) - (-1463 . 706953) (-1464 . 706854) (-1465 . 706755) (-1466 . 706656) - (-1467 . 706557) (-1468 . 706458) (-1469 . 706344) (-1470 . 706230) - (-1471 . 706116) (-1472 . 706002) (-1473 . 705888) (-1474 . 705774) - (-1475 . 705657) (-1476 . 705581) (-1477 . 705505) (-1478 . 705118) - (-1479 . 704772) (-1480 . 704670) (-1481 . 704408) (-1482 . 704306) - (-1483 . 704101) (-1484 . 703988) (-1485 . 703886) (-1486 . 703729) - (-1487 . 703640) (-1488 . 703546) (-1489 . 703466) (-1490 . 703391) - (-1491 . 703331) (-1492 . 703272) (-1493 . 703169) (-7 . 703141) (-8 . 703113) - (-9 . 703085) (-1497 . 702966) (-1498 . 702884) (-1499 . 702802) - (-1500 . 702720) (-1501 . 702638) (-1502 . 702556) (-1503 . 702462) - (-1504 . 702392) (-1505 . 702322) (-1506 . 702231) (-1507 . 702137) - (-1508 . 702055) (-1509 . 701973) (-1510 . 701482) (-1511 . 700929) - (-1512 . 700719) (-1513 . 700644) (-1514 . 700390) (-1515 . 700163) - (-1516 . 699953) (-1517 . 699823) (-1518 . 699742) (-1519 . 699593) - (-1520 . 699238) (-1521 . 698946) (-1522 . 698654) (-1523 . 698362) - (-1524 . 698070) (-1525 . 698011) (-1526 . 697904) (-1527 . 697476) - (-1528 . 697378) (-1529 . 697218) (-1530 . 697019) (-1531 . 696883) - (-1532 . 696783) (-1533 . 696683) (-1534 . 696589) (-1535 . 696530) - (-1536 . 696188) (-1537 . 696087) (-1538 . 695968) (-1539 . 695752) - (-1540 . 695571) (-1541 . 695404) (-1542 . 695189) (-1543 . 694750) - (-1544 . 694641) (-1545 . 694526) (-1546 . 694457) (-1547 . 694388) - (-1548 . 694319) (-1549 . 694253) (-1550 . 694128) (-1551 . 693911) - (-1552 . 693833) (-1553 . 693783) (-1554 . 693712) (-1555 . 693569) - (-1556 . 693428) (-1557 . 693347) (-1558 . 693266) (-1559 . 693210) - (-1560 . 693154) (-1561 . 693081) (-1562 . 692941) (-1563 . 692888) - (-1564 . 692836) (-1565 . 692784) (-1566 . 692632) (-1567 . 692514) - (-1568 . 692396) (-1569 . 692278) (-1570 . 692145) (-1571 . 691864) - (-1572 . 691728) (-1573 . 691672) (-1574 . 691616) (-1575 . 691557) - (-1576 . 691498) (-1577 . 691442) (-1578 . 691386) (-1579 . 691189) - (-1580 . 688847) (-1581 . 688720) (-1582 . 688574) (-1583 . 688446) - (-1584 . 688394) (-1585 . 688342) (-1586 . 688290) (-1587 . 684251) - (-1588 . 684156) (-1589 . 684017) (-1590 . 683808) (-1591 . 683706) - (-1592 . 683604) (-1593 . 682688) (-1594 . 682611) (-1595 . 682482) - (-1596 . 682355) (-1597 . 682278) (-1598 . 682201) (-1599 . 682074) - (-1600 . 681947) (-1601 . 681781) (-1602 . 681654) (-1603 . 681527) - (-1604 . 681310) (-1605 . 680872) (-1606 . 680506) (-1607 . 680399) - (-1608 . 680180) (-1609 . 680111) (-1610 . 680052) (-1611 . 679971) - (-1612 . 679860) (-1613 . 679794) (-1614 . 679728) (-1615 . 679654) - (-1616 . 679582) (-1617 . 679205) (-1618 . 679153) (-1619 . 679094) - (-1620 . 678990) (-1621 . 678886) (-1622 . 678779) (-1623 . 678672) - (-1624 . 678565) (-1625 . 678458) (-1626 . 678351) (-1627 . 678244) - (-1628 . 678137) (-1629 . 678030) (-1630 . 677923) (-1631 . 677816) - (-1632 . 677709) (-1633 . 677602) (-1634 . 677495) (-1635 . 677388) - (-1636 . 677281) (-1637 . 677174) (-1638 . 677067) (-1639 . 676960) - (-1640 . 676853) (-1641 . 676746) (-1642 . 676639) (-1643 . 676532) - (-1644 . 676425) (-1645 . 676318) (-1646 . 676211) (-1647 . 676104) - (-1648 . 675925) (-1649 . 675803) (-1650 . 675552) (-1651 . 675249) - (-1652 . 675043) (-1653 . 674876) (-1654 . 674705) (-1655 . 674653) - (-1656 . 674590) (-1657 . 674527) (-1658 . 674475) (-1659 . 674286) - (-1660 . 674132) (-1661 . 674052) (-1662 . 673972) (-1663 . 673892) - (-1664 . 673762) (-1665 . 673530) (-1666 . 673502) (-1667 . 673474) - (-1668 . 673393) (-1669 . 673303) (-1670 . 673225) (-1671 . 673138) - (-1672 . 673078) (-1673 . 672920) (-1674 . 672727) (-1675 . 672242) - (-1676 . 672000) (-1677 . 671738) (-1678 . 671637) (-1679 . 671556) - (-1680 . 671475) (-1681 . 671405) (-1682 . 671335) (-1683 . 671176) - (-1684 . 670872) (-1685 . 670629) (-1686 . 670505) (-1687 . 670446) - (-1688 . 670384) (-1689 . 670322) (-1690 . 670257) (-1691 . 670195) - (-1692 . 669916) (-1693 . 669706) (-1694 . 669432) (-1695 . 668861) - (-1696 . 668347) (-1697 . 668202) (-1698 . 668135) (-1699 . 668054) - (-1700 . 667973) (-1701 . 667871) (-1702 . 667797) (-1703 . 667716) - (-1704 . 667642) (-1705 . 667433) (-1706 . 667220) (-1707 . 667130) - (-1708 . 667063) (-1709 . 666927) (-1710 . 666860) (-1711 . 666778) - (-1712 . 666697) (-1713 . 666595) (-1714 . 666395) (-1715 . 666327) - (-1716 . 666085) (-1717 . 665834) (-1718 . 665592) (-1719 . 665350) - (-1720 . 665282) (-1721 . 664946) (-1722 . 663945) (-1723 . 663725) - (-1724 . 663644) (-1725 . 663570) (-1726 . 663496) (-1727 . 663422) - (-1728 . 663318) (-1729 . 663245) (-1730 . 663177) (-1731 . 662967) - (-1732 . 662915) (-1733 . 662860) (-1734 . 662770) (-1735 . 662683) - (-1736 . 660832) (-1737 . 660753) (-1738 . 660008) (-1739 . 659878) - (-1740 . 659671) (-1741 . 659509) (-1742 . 659347) (-1743 . 659186) - (-1744 . 659047) (-1745 . 658953) (-1746 . 658855) (-1747 . 658761) - (-1748 . 658646) (-1749 . 658561) (-1750 . 658463) (-1751 . 658267) - (-1752 . 658176) (-1753 . 658082) (-1754 . 658015) (-1755 . 657962) - (-1756 . 657909) (-1757 . 657856) (-1758 . 656718) (-1759 . 656208) - (-1760 . 656129) (-1761 . 656070) (-1762 . 656042) (-1763 . 656014) - (-1764 . 655955) (-1765 . 655842) (-1766 . 655465) (-1767 . 655412) - (-1768 . 655301) (-1769 . 655248) (-1770 . 655195) (-1771 . 655139) - (-1772 . 655083) (-1773 . 654918) (-1774 . 654848) (-1775 . 654753) - (-1776 . 654658) (-1777 . 654563) (-1778 . 654406) (-1779 . 654249) - (-1780 . 654096) (-1781 . 653338) (-1782 . 653085) (-1783 . 652774) - (-1784 . 652422) (-1785 . 652205) (-1786 . 651942) (-1787 . 651567) - (-1788 . 651383) (-1789 . 651249) (-1790 . 651083) (-1791 . 650917) - (-1792 . 650783) (-1793 . 650649) (-1794 . 650515) (-1795 . 650381) - (-1796 . 650250) (-1797 . 650119) (-1798 . 649988) (-1799 . 649605) - (-1800 . 649478) (-1801 . 649350) (-1802 . 649098) (-1803 . 648974) - (-1804 . 648722) (-1805 . 648598) (-1806 . 648346) (-1807 . 648222) - (-1808 . 647937) (-1809 . 647664) (-1810 . 647391) (-1811 . 647093) - (-1812 . 646991) (-1813 . 646846) (-1814 . 646705) (-1815 . 646554) - (-1816 . 646393) (-1817 . 646305) (-1818 . 646277) (-1819 . 646195) - (-1820 . 646098) (-1821 . 645630) (-1822 . 645279) (-1823 . 644846) - (-1824 . 644705) (-1825 . 644635) (-1826 . 644565) (-1827 . 644495) - (-1828 . 644404) (-1829 . 644313) (-1830 . 644222) (-1831 . 644131) - (-1832 . 644040) (-1833 . 643954) (-1834 . 643868) (-1835 . 643782) - (-1836 . 643696) (-1837 . 643610) (-1838 . 643536) (-1839 . 643431) - (-1840 . 643205) (-1841 . 643127) (-1842 . 643052) (-1843 . 642959) - (-1844 . 642855) (-1845 . 642759) (-1846 . 642590) (-1847 . 642513) - (-1848 . 642436) (-1849 . 642345) (-1850 . 642254) (-1851 . 642054) - (-1852 . 641899) (-1853 . 641744) (-1854 . 641589) (-1855 . 641434) - (-1856 . 641279) (-1857 . 641124) (-1858 . 641057) (-1859 . 640902) - (-1860 . 640747) (-1861 . 640592) (-1862 . 640437) (-1863 . 640282) - (-1864 . 640127) (-1865 . 639972) (-1866 . 639817) (-1867 . 639743) - (-1868 . 639669) (-1869 . 639614) (-1870 . 639559) (-1871 . 639504) - (-1872 . 639449) (-1873 . 639378) (-1874 . 639173) (-1875 . 639072) - (-1876 . 638881) (-1877 . 638788) (-1878 . 638651) (-1879 . 638514) - (-1880 . 638377) (-1881 . 638309) (-1882 . 638193) (-1883 . 638077) - (-1884 . 637961) (-1885 . 637908) (-1886 . 637711) (-1887 . 637626) - (-1888 . 637318) (-1889 . 637263) (-1890 . 636611) (-1891 . 636296) - (-1892 . 636012) (-1893 . 635893) (-1894 . 635841) (-1895 . 635789) - (-1896 . 635737) (-1897 . 635684) (-1898 . 635631) (-1899 . 635572) - (-1900 . 635459) (-1901 . 635346) (-1902 . 635288) (-1903 . 635230) - (-1904 . 635180) (-1905 . 635045) (-1906 . 634995) (-1907 . 634932) - (-1908 . 634872) (-1909 . 634275) (-1910 . 634215) (-1911 . 634048) - (-1912 . 633956) (-1913 . 633843) (-1914 . 633759) (-1915 . 633644) - (-1916 . 633553) (-1917 . 633462) (-1918 . 633273) (-1919 . 633218) - (-1920 . 633031) (-1921 . 632908) (-1922 . 632835) (-1923 . 632762) - (-1924 . 632642) (-1925 . 632569) (-1926 . 632496) (-1927 . 632423) - (-1928 . 632203) (-1929 . 631870) (-1930 . 631686) (-1931 . 631542) - (-1932 . 631181) (-1933 . 631013) (-1934 . 630845) (-1935 . 630589) - (-1936 . 630333) (-1937 . 630138) (-1938 . 629943) (-1939 . 629349) - (-1940 . 629273) (-1941 . 629135) (-1942 . 628733) (-1943 . 628606) - (-1944 . 628447) (-1945 . 628121) (-1946 . 627632) (-1947 . 627143) - (-1948 . 626625) (-1949 . 626557) (-1950 . 626486) (-1951 . 626415) - (-1952 . 626232) (-1953 . 626113) (-1954 . 625994) (-1955 . 625903) - (-1956 . 625812) (-1957 . 625520) (-1958 . 625398) (-1959 . 625346) - (-1960 . 625294) (-1961 . 625242) (-1962 . 625190) (-1963 . 625138) - (-1964 . 624989) (-1965 . 624808) (-1966 . 624568) (-1967 . 624373) - (-1968 . 624345) (-1969 . 624317) (-1970 . 624289) (-1971 . 624261) - (-1972 . 624233) (-1973 . 624205) (-1974 . 624177) (-1975 . 624125) - (-1976 . 624035) (-1977 . 623985) (-1978 . 623916) (-1979 . 623847) - (-1980 . 623742) (-1981 . 623371) (-1982 . 623220) (-1983 . 623069) - (-1984 . 622864) (-1985 . 622742) (-1986 . 622667) (-1987 . 622589) - (-1988 . 622514) (-1989 . 622436) (-1990 . 622358) (-1991 . 622283) - (-1992 . 622205) (-1993 . 621971) (-1994 . 621816) (-1995 . 621517) - (-1996 . 621362) (-1997 . 621036) (-1998 . 620896) (-1999 . 620756) - (-2000 . 620675) (-2001 . 620594) (-2002 . 620329) (-2003 . 619596) - (-2004 . 619459) (-2005 . 619368) (-2006 . 619231) (-2007 . 619163) - (-2008 . 619094) (-2009 . 619006) (-2010 . 618918) (-2011 . 618747) - (-2012 . 618673) (-2013 . 618529) (-2014 . 618069) (-2015 . 617689) - (-2016 . 616925) (-2017 . 616781) (-2018 . 616637) (-2019 . 616475) - (-2020 . 616237) (-2021 . 616096) (-2022 . 615949) (-2023 . 615710) - (-2024 . 615474) (-2025 . 615235) (-2026 . 615043) (-2027 . 614920) - (-2028 . 614716) (-2029 . 614493) (-2030 . 614254) (-2031 . 614113) - (-2032 . 613975) (-2033 . 613836) (-2034 . 613583) (-2035 . 613327) - (-2036 . 613170) (-2037 . 613016) (-2038 . 612775) (-2039 . 612490) - (-2040 . 612352) (-2041 . 612265) (-2042 . 611599) (-2043 . 611423) - (-2044 . 611241) (-2045 . 611065) (-2046 . 610883) (-2047 . 610704) - (-2048 . 610525) (-2049 . 610338) (-2050 . 609956) (-2051 . 609777) - (-2052 . 609598) (-2053 . 609411) (-2054 . 609029) (-2055 . 608036) - (-2056 . 607652) (-2057 . 607268) (-2058 . 607150) (-2059 . 606993) - (-2060 . 606851) (-2061 . 606733) (-2062 . 606551) (-2063 . 606427) - (-2064 . 606137) (-2065 . 605847) (-2066 . 605563) (-2067 . 605279) - (-2068 . 605000) (-2069 . 604912) (-2070 . 604827) (-2071 . 604728) - (-2072 . 604629) (-2073 . 604405) (-2074 . 604305) (-2075 . 604202) - (-2076 . 604124) (-2077 . 603799) (-2078 . 603507) (-2079 . 603434) - (-2080 . 603049) (-2081 . 603021) (-2082 . 602822) (-2083 . 602648) - (-2084 . 602407) (-2085 . 602352) (-2086 . 602276) (-2087 . 601905) - (-2088 . 601789) (-2089 . 601712) (-2090 . 601639) (-2091 . 601558) - (-2092 . 601477) (-2093 . 601396) (-2094 . 601295) (-2095 . 601236) - (-2096 . 601017) (-2097 . 600778) (-2098 . 600654) (-2099 . 600530) - (-2100 . 600303) (-2101 . 600250) (-2102 . 600195) (-2103 . 599863) - (-2104 . 599539) (-2105 . 599351) (-2106 . 599160) (-2107 . 598996) - (-2108 . 598661) (-2109 . 598494) (-2110 . 598253) (-2111 . 597925) - (-2112 . 597733) (-2113 . 597516) (-2114 . 597343) (-2115 . 596921) - (-2116 . 596694) (-2117 . 596423) (-2118 . 596285) (-2119 . 596144) - (-2120 . 595666) (-2121 . 595543) (-2122 . 595307) (-2123 . 595053) - (-2124 . 594803) (-2125 . 594508) (-2126 . 594367) (-2127 . 594023) - (-2128 . 593882) (-2129 . 593689) (-2130 . 593496) (-2131 . 593321) - (-2132 . 593047) (-2133 . 592612) (-2134 . 592538) (-2135 . 592377) - (-2136 . 592214) (-2137 . 592053) (-2138 . 591886) (-2139 . 591833) - (-2140 . 591780) (-2141 . 591651) (-2142 . 591591) (-2143 . 591538) - (-2144 . 591485) (-2145 . 591415) (-2146 . 591355) (-2147 . 591296) - (-2148 . 591236) (-2149 . 591177) (-2150 . 591117) (-2151 . 591058) - (-2152 . 590999) (-2153 . 590857) (-2154 . 590762) (-2155 . 590671) - (-2156 . 590555) (-2157 . 590461) (-2158 . 590363) (-2159 . 590269) - (-2160 . 590128) (-2161 . 589863) (-2162 . 589006) (-2163 . 588850) - (-2164 . 588481) (-2165 . 588425) (-2166 . 588373) (-2167 . 588270) - (-2168 . 588185) (-2169 . 588097) (-2170 . 587951) (-2171 . 587802) - (-2172 . 587512) (-2173 . 587434) (-2174 . 587359) (-2175 . 587306) - (-2176 . 587253) (-2177 . 587222) (-2178 . 587159) (-2179 . 587040) - (-2180 . 586951) (-2181 . 586831) (-2182 . 586536) (-2183 . 586342) - (-2184 . 586154) (-2185 . 586009) (-2186 . 585864) (-2187 . 585578) - (-2188 . 585133) (-2189 . 585099) (-2190 . 585062) (-2191 . 585025) - (-2192 . 584988) (-2193 . 584951) (-2194 . 584920) (-2195 . 584889) - (-2196 . 584858) (-2197 . 584824) (-2198 . 584790) (-2199 . 584735) - (-2200 . 584546) (-2201 . 584304) (-2202 . 584062) (-2203 . 583825) - (-2204 . 583773) (-2205 . 583718) (-2206 . 583648) (-2207 . 583559) - (-2208 . 583490) (-2209 . 583418) (-2210 . 583188) (-2211 . 583136) - (-2212 . 583081) (-2213 . 583050) (-2214 . 582944) (-2215 . 582711) - (-2216 . 582393) (-2217 . 582211) (-2218 . 582018) (-2219 . 581739) - (-2220 . 581666) (-2221 . 581601) (-2222 . 581573) (-2223 . 581523) - (-2224 . 580100) (-2225 . 578952) (-2226 . 577814) (-2227 . 577322) - (-2228 . 576744) (-2229 . 576002) (-2230 . 575425) (-2231 . 574781) - (-2232 . 574202) (-2233 . 574128) (-2234 . 574076) (-2235 . 574024) - (-2236 . 573950) (-2237 . 573895) (-2238 . 573843) (-2239 . 573791) - (-2240 . 573739) (-2241 . 573669) (-2242 . 573221) (-2243 . 573007) - (-2244 . 572750) (-2245 . 572408) (-2246 . 572146) (-2247 . 571836) - (-2248 . 571625) (-2249 . 571325) (-2250 . 570755) (-2251 . 570617) - (-2252 . 570414) (-2253 . 570133) (-2254 . 570047) (-2255 . 569702) - (-2256 . 569560) (-2257 . 569268) (-2258 . 569047) (-2259 . 568922) - (-2260 . 568798) (-2261 . 568652) (-2262 . 568509) (-2263 . 568394) - (-2264 . 568264) (-2265 . 567892) (-2266 . 567632) (-2267 . 567357) - (-2268 . 567117) (-2269 . 566787) (-2270 . 566442) (-2271 . 566034) - (-2272 . 565611) (-2273 . 565414) (-2274 . 565139) (-2275 . 564971) - (-2276 . 564770) (-2277 . 564548) (-2278 . 564393) (-2279 . 564200) - (-2280 . 564097) (-2281 . 564069) (-2282 . 563890) (-2283 . 563816) - (-2284 . 563755) (-2285 . 563702) (-2286 . 563633) (-2287 . 563563) - (-2288 . 563444) (-2289 . 563266) (-2290 . 563211) (-2291 . 562965) - (-2292 . 562875) (-2293 . 562685) (-2294 . 562612) (-2295 . 562542) - (-2296 . 562477) (-2297 . 562422) (-2298 . 562331) (-2299 . 562024) - (-2300 . 561679) (-2301 . 561605) (-2302 . 561283) (-2303 . 561076) - (-2304 . 560990) (-2305 . 560904) (-2306 . 560818) (-2307 . 560732) - (-2308 . 560646) (-2309 . 560560) (-2310 . 560474) (-2311 . 560388) - (-2312 . 560302) (-2313 . 560216) (-2314 . 560130) (-2315 . 560044) - (-2316 . 559958) (-2317 . 559872) (-2318 . 559786) (-2319 . 559700) - (-2320 . 559614) (-2321 . 559528) (-2322 . 559442) (-2323 . 559356) - (-2324 . 559270) (-2325 . 559184) (-2326 . 559098) (-2327 . 559012) - (-2328 . 558926) (-2329 . 558840) (-2330 . 558737) (-2331 . 558648) - (-2332 . 558438) (-2333 . 558379) (-2334 . 558323) (-2335 . 558234) - (-2336 . 558122) (-2337 . 558034) (-2338 . 557886) (-2339 . 557701) - (-2340 . 557537) (-2341 . 557370) (-2342 . 557185) (-2343 . 556964) - (-2344 . 556840) (-2345 . 556632) (-2346 . 556540) (-2347 . 556448) - (-2348 . 556312) (-2349 . 556217) (-2350 . 556122) (-2351 . 554606) - (-2352 . 554546) (-2353 . 554456) (-2354 . 554361) (-2355 . 554280) - (-2356 . 553973) (-2357 . 553778) (-2358 . 553685) (-2359 . 553579) - (-2360 . 553161) (-2361 . 553108) (-2362 . 553080) (-2363 . 553027) - (-2364 . 552852) (-2365 . 552775) (-2366 . 552586) (-2367 . 552406) - (-2368 . 551982) (-2369 . 551830) (-2370 . 551650) (-2371 . 551477) - (-2372 . 551215) (-2373 . 550963) (-2374 . 550152) (-2375 . 549983) - (-2376 . 549764) (-2377 . 548860) (-2378 . 548716) (-2379 . 548572) - (-2380 . 548428) (-2381 . 548284) (-2382 . 548140) (-2383 . 547996) - (-2384 . 547801) (-2385 . 547607) (-2386 . 547464) (-2387 . 547149) - (-2388 . 547034) (-2389 . 546694) (-2390 . 546534) (-2391 . 546395) - (-2392 . 546256) (-2393 . 546127) (-2394 . 546042) (-2395 . 545990) - (-2396 . 545502) (-2397 . 544224) (-2398 . 544109) (-2399 . 543980) - (-2400 . 543673) (-2401 . 543422) (-2402 . 543347) (-2403 . 543272) - (-2404 . 543197) (-2405 . 543138) (-2406 . 543067) (-2407 . 543014) - (-2408 . 542952) (-2409 . 542881) (-2410 . 542518) (-2411 . 542231) - (-2412 . 542120) (-2413 . 542027) (-2414 . 541934) (-2415 . 541847) - (-2416 . 541627) (-2417 . 541407) (-2418 . 541264) (-2419 . 541171) - (-2420 . 541028) (-2421 . 540876) (-2422 . 540722) (-2423 . 540651) - (-2424 . 540442) (-2425 . 540264) (-2426 . 540054) (-2427 . 539876) - (-2428 . 539842) (-2429 . 539808) (-2430 . 539777) (-2431 . 539659) - (-2432 . 539344) (-2433 . 539066) (-2434 . 538945) (-2435 . 538818) - (-2436 . 538733) (-2437 . 538660) (-2438 . 538570) (-2439 . 538499) - (-2440 . 538443) (-2441 . 538387) (-2442 . 538331) (-2443 . 538260) - (-2444 . 538189) (-2445 . 538118) (-2446 . 538039) (-2447 . 537961) - (-2448 . 537876) (-2449 . 537616) (-2450 . 537527) (-2451 . 537229) - (-2452 . 537131) (-2453 . 537053) (-2454 . 536975) (-2455 . 536832) - (-2456 . 536753) (-2457 . 536681) (-2458 . 536478) (-2459 . 536422) - (-2460 . 536234) (-2461 . 536135) (-2462 . 536017) (-2463 . 535896) - (-2464 . 535753) (-2465 . 535610) (-2466 . 535470) (-2467 . 535330) - (-2468 . 535187) (-2469 . 535060) (-2470 . 534930) (-2471 . 534806) - (-2472 . 534682) (-2473 . 534576) (-2474 . 534470) (-2475 . 534367) - (-2476 . 534217) (-2477 . 534064) (-2478 . 533911) (-2479 . 533767) - (-2480 . 533613) (-2481 . 533536) (-2482 . 533456) (-2483 . 533301) - (-2484 . 533221) (-2485 . 533141) (-2486 . 533061) (-2487 . 532958) - (-2488 . 532899) (-2489 . 532837) (-2490 . 532662) (-2491 . 532509) - (-2492 . 532356) (-2493 . 532182) (-2494 . 531990) (-2495 . 531691) - (-2496 . 531496) (-2497 . 531381) (-2498 . 531255) (-2499 . 531178) - (-2500 . 531046) (-2501 . 530740) (-2502 . 530557) (-2503 . 530012) - (-2504 . 529792) (-2505 . 529618) (-2506 . 529448) (-2507 . 529349) - (-2508 . 529250) (-2509 . 529032) (-2510 . 528930) (-2511 . 528857) - (-2512 . 528781) (-2513 . 528702) (-2514 . 528405) (-2515 . 528306) - (-2516 . 528144) (-2517 . 527910) (-2518 . 527468) (-2519 . 527338) - (-2520 . 527198) (-2521 . 526889) (-2522 . 526587) (-2523 . 526271) - (-2524 . 525865) (-2525 . 525797) (-2526 . 525729) (-2527 . 525661) - (-2528 . 525566) (-2529 . 525458) (-2530 . 525350) (-2531 . 525248) - (-2532 . 525146) (-2533 . 525044) (-2534 . 524966) (-2535 . 524642) - (-2536 . 524161) (-2537 . 523534) (-2538 . 523470) (-2539 . 523351) - (-2540 . 523232) (-2541 . 523124) (-2542 . 523016) (-2543 . 522860) - (-2544 . 522258) (-2545 . 522020) (-2546 . 521852) (-2547 . 521730) - (-2548 . 521332) (-2549 . 521096) (-2550 . 520895) (-2551 . 520687) - (-2552 . 520494) (-2553 . 520224) (-2554 . 520051) (-2555 . 519872) - (-2556 . 519803) (-2557 . 519727) (-2558 . 519586) (-2559 . 519383) - (-2560 . 519239) (-2561 . 518989) (-2562 . 518681) (-2563 . 518325) - (-2564 . 518166) (-2565 . 517960) (-2566 . 517800) (-2567 . 517727) - (-2568 . 517608) (-2569 . 517489) (-2570 . 517329) (-2571 . 517149) - (-2572 . 516966) (-2573 . 516868) (-2574 . 516770) (-2575 . 516669) - (-2576 . 516565) (-2577 . 516439) (-2578 . 516313) (-2579 . 516184) - (-2580 . 516052) (-2581 . 515954) (-2582 . 515856) (-2583 . 515755) - (-2584 . 515654) (-2585 . 515488) (-2586 . 515322) (-2587 . 515128) - (-2588 . 514962) (-2589 . 514794) (-2590 . 514623) (-2591 . 514458) - (-2592 . 514293) (-2593 . 514193) (-2594 . 514001) (-2595 . 513900) - (-2596 . 513705) (-2597 . 513455) (-2598 . 513210) (-2599 . 512888) - (-2600 . 512500) (-2601 . 512299) (-2602 . 512035) (-2603 . 511492) - (-2604 . 511198) (-2605 . 511061) (-2606 . 510815) (-2607 . 510611) - (-2608 . 510504) (-2609 . 510403) (-2610 . 510293) (-2611 . 510183) - (-2612 . 510055) (-2613 . 509948) (-2614 . 509844) (-2615 . 509688) - (-2616 . 509554) (-2617 . 509420) (-2618 . 509310) (-2619 . 509191) - (-2620 . 509014) (-2621 . 508880) (-2622 . 508743) (-2623 . 508612) - (-2624 . 508502) (-2625 . 508380) (-2626 . 508255) (-2627 . 508154) - (-2628 . 507970) (-2629 . 507796) (-2630 . 507597) (-2631 . 507423) - (-2632 . 507307) (-2633 . 507182) (-2634 . 507054) (-2635 . 506935) - (-2636 . 506710) (-2637 . 506539) (-2638 . 506368) (-2639 . 506191) - (-2640 . 506039) (-2641 . 505762) (-2642 . 505370) (-2643 . 505239) - (-2644 . 505034) (-2645 . 504851) (-2646 . 504667) (-2647 . 504538) - (-2648 . 504434) (-2649 . 504293) (-2650 . 504161) (-2651 . 504047) - (-2652 . 503899) (-2653 . 503760) (-2654 . 503659) (-2655 . 503555) - (-2656 . 503448) (-2657 . 503338) (-2658 . 503237) (-2659 . 503130) - (-2660 . 503023) (-2661 . 502910) (-2662 . 502803) (-2663 . 502690) - (-2664 . 502559) (-2665 . 502410) (-2666 . 501872) (-2667 . 501729) - (-2668 . 501579) (-2669 . 501456) (-2670 . 501352) (-2671 . 501248) - (-2672 . 501141) (-2673 . 501003) (-2674 . 500896) (-2675 . 500765) - (-2676 . 500609) (-2677 . 500336) (-2678 . 500189) (-2679 . 499986) - (-2680 . 499885) (-2681 . 499731) (-2682 . 499611) (-2683 . 499482) - (-2684 . 499387) (-2685 . 499299) (-2686 . 499211) (-2687 . 499123) - (-2688 . 499035) (-2689 . 498947) (-2690 . 498853) (-2691 . 498765) - (-2692 . 498677) (-2693 . 498589) (-2694 . 498501) (-2695 . 498413) - (-2696 . 498325) (-2697 . 498237) (-2698 . 498149) (-2699 . 498061) - (-2700 . 497973) (-2701 . 497835) (-2702 . 497697) (-2703 . 497577) - (-2704 . 497457) (-2705 . 497316) (-2706 . 497228) (-2707 . 497140) - (-2708 . 497052) (-2709 . 496964) (-2710 . 496826) (-2711 . 496688) - (-2712 . 496600) (-2713 . 496512) (-2714 . 496424) (-2715 . 496336) - (-2716 . 496248) (-2717 . 496160) (-2718 . 496069) (-2719 . 495975) - (-2720 . 495881) (-2721 . 495784) (-2722 . 495734) (-2723 . 495684) - (-2724 . 495631) (-2725 . 495377) (-2726 . 495328) (-2727 . 495278) - (-2728 . 495244) (-2729 . 495179) (-2730 . 495142) (-2731 . 495005) - (-2732 . 494767) (-2733 . 494696) (-2734 . 494510) (-2735 . 494261) - (-2736 . 494103) (-2737 . 493562) (-2738 . 493363) (-2739 . 493148) - (-2740 . 492986) (-2741 . 492587) (-2742 . 492420) (-2743 . 491345) - (-2744 . 491222) (-2745 . 491005) (-2746 . 490874) (-2747 . 490743) - (-2748 . 490585) (-2749 . 490481) (-2750 . 490422) (-2751 . 490363) - (-2752 . 490257) (-2753 . 490151) (-2754 . 489233) (-2755 . 487104) - (-2756 . 486288) (-2757 . 484483) (-2758 . 484415) (-2759 . 484347) - (-2760 . 484279) (-2761 . 484211) (-2762 . 484143) (-2763 . 484065) - (-2764 . 483663) (-2765 . 483307) (-2766 . 483125) (-2767 . 482596) - (-2768 . 482420) (-2769 . 482198) (-2770 . 481976) (-2771 . 481754) - (-2772 . 481535) (-2773 . 481316) (-2774 . 481097) (-2775 . 480878) - (-2776 . 480659) (-2777 . 480440) (-2778 . 480339) (-2779 . 479606) - (-2780 . 479551) (-2781 . 479496) (-2782 . 479441) (-2783 . 479386) - (-2784 . 479236) (-2785 . 478943) (-2786 . 478684) (-2787 . 478656) - (-2788 . 478606) (-2789 . 478014) (-2790 . 477480) (-2791 . 477031) - (-2792 . 476859) (-2793 . 476668) (-2794 . 476379) (-2795 . 475991) - (-2796 . 475115) (-2797 . 474773) (-2798 . 474604) (-2799 . 474381) - (-2800 . 474130) (-2801 . 473780) (-2802 . 472762) (-2803 . 472447) - (-2804 . 472235) (-2805 . 471668) (-2806 . 471152) (-2807 . 469374) - (-2808 . 468902) (-2809 . 468303) (-2810 . 468053) (-2811 . 467919) - (-2812 . 467467) (-2813 . 466978) (-2814 . 466618) (-2815 . 466335) - (-2816 . 466220) (-2817 . 466105) (-2818 . 465890) (-2819 . 465837) - (-2820 . 465784) (-2821 . 465732) (-2822 . 465680) (-2823 . 465588) - (-2824 . 465517) (-2825 . 465443) (-2826 . 465372) (-2827 . 465319) - (-2828 . 465248) (-2829 . 465195) (-2830 . 465142) (-2831 . 465089) - (-2832 . 465036) (-2833 . 464983) (-2834 . 464930) (-2835 . 464877) - (-2836 . 464824) (-2837 . 464771) (-2838 . 464718) (-2839 . 464665) - (-2840 . 464612) (-2841 . 464559) (-2842 . 464506) (-2843 . 464435) - (-2844 . 464364) (-2845 . 464292) (-2846 . 464220) (-2847 . 464145) - (-2848 . 464092) (-2849 . 464039) (-2850 . 463986) (-2851 . 463933) - (-2852 . 463880) (-2853 . 463827) (-2854 . 463774) (-2855 . 463721) - (-2856 . 463668) (-2857 . 463615) (-2858 . 463562) (-2859 . 463509) - (-2860 . 463456) (-2861 . 463403) (-2862 . 463351) (-2863 . 463299) - (-2864 . 463246) (-2865 . 463193) (-2866 . 463102) (-2867 . 463049) - (-2868 . 463021) (-2869 . 462993) (-2870 . 462965) (-2871 . 462937) - (-2872 . 462859) (-2873 . 462799) (-2874 . 462747) (-2875 . 462695) - (-2876 . 462643) (-2877 . 462591) (-2878 . 462539) (-2879 . 461735) - (-2880 . 461658) (-2881 . 461581) (-2882 . 461515) (-2883 . 461448) - (-2884 . 461381) (-2885 . 461324) (-2886 . 461248) (-2887 . 461180) - (-2888 . 461109) (-2889 . 461038) (-2890 . 460972) (-2891 . 460885) - (-2892 . 460813) (-2893 . 460706) (-2894 . 460520) (-2895 . 460351) - (-2896 . 460171) (-2897 . 459580) (-2898 . 459417) (-2899 . 458839) - (-2900 . 458709) (-2901 . 458634) (-2902 . 458268) (-2903 . 457589) - (-2904 . 457411) (-2905 . 457339) (-2906 . 457199) (-2907 . 457009) - (-2908 . 456902) (-2909 . 456795) (-2910 . 456679) (-2911 . 456563) - (-2912 . 456447) (-2913 . 456169) (-2914 . 456018) (-2915 . 455874) - (-2916 . 455800) (-2917 . 455714) (-2918 . 455640) (-2919 . 455566) - (-2920 . 455492) (-2921 . 455348) (-2922 . 455197) (-2923 . 455022) - (-2924 . 454871) (-2925 . 454720) (-2926 . 454593) (-2927 . 454204) - (-2928 . 453918) (-2929 . 453632) (-2930 . 453221) (-2931 . 452935) - (-2932 . 452862) (-2933 . 452715) (-2934 . 452609) (-2935 . 452535) - (-2936 . 452465) (-2937 . 452386) (-2938 . 452309) (-2939 . 452232) - (-2940 . 452080) (-2941 . 451977) (-2942 . 451880) (-2943 . 451783) - (-2944 . 451623) (-2945 . 451536) (-2946 . 451449) (-2947 . 451362) - (-2948 . 451303) (-2949 . 451244) (-2950 . 451111) (-2951 . 451052) - (-2952 . 450882) (-2953 . 450794) (-2954 . 450697) (-2955 . 450663) - (-2956 . 450632) (-2957 . 450548) (-2958 . 450492) (-2959 . 450430) - (-2960 . 450396) (-2961 . 450362) (-2962 . 450328) (-2963 . 450294) - (-2964 . 450260) (-2965 . 447507) (-2966 . 447473) (-2967 . 447439) - (-2968 . 447405) (-2969 . 447293) (-2970 . 447259) (-2971 . 447207) - (-2972 . 447173) (-2973 . 447076) (-2974 . 447014) (-2975 . 446923) - (-2976 . 446832) (-2977 . 446777) (-2978 . 446725) (-2979 . 446673) - (-2980 . 446621) (-2981 . 446569) (-2982 . 446145) (-2983 . 445979) - (-2984 . 445926) (-2985 . 445857) (-2986 . 445804) (-2987 . 445648) - (-2988 . 445127) (-2989 . 444986) (-2990 . 444952) (-2991 . 444897) - (-2992 . 444186) (-2993 . 443871) (-2994 . 443366) (-2995 . 443288) - (-2996 . 443236) (-2997 . 443184) (-2998 . 443000) (-2999 . 442948) - (-3000 . 442896) (-3001 . 442820) (-3002 . 442758) (-3003 . 442540) - (-3004 . 442285) (-3005 . 442218) (-3006 . 442124) (-3007 . 442030) - (-3008 . 441847) (-3009 . 441765) (-3010 . 441643) (-3011 . 441521) - (-3012 . 441375) (-3013 . 440720) (-3014 . 440013) (-3015 . 439909) - (-3016 . 439808) (-3017 . 439707) (-3018 . 439596) (-3019 . 439428) - (-3020 . 439222) (-3021 . 439129) (-3022 . 439052) (-3023 . 438996) - (-3024 . 438925) (-3025 . 438805) (-3026 . 438704) (-3027 . 438606) - (-3028 . 438526) (-3029 . 438446) (-3030 . 438369) (-3031 . 438298) - (-3032 . 438227) (-3033 . 438156) (-3034 . 438085) (-3035 . 438014) - (-3036 . 437943) (-3037 . 437850) (-3038 . 437655) (-3039 . 437411) - (-3040 . 437241) (-3041 . 436869) (-3042 . 436700) (-3043 . 436584) - (-3044 . 436080) (-3045 . 435698) (-3046 . 435452) (-3047 . 435023) - (-3048 . 434931) (-3049 . 434834) (-3050 . 431544) (-3051 . 430724) - (-3052 . 430611) (-3053 . 430537) (-3054 . 430445) (-3055 . 430251) - (-3056 . 430057) (-3057 . 429986) (-3058 . 429915) (-3059 . 429834) - (-3060 . 429753) (-3061 . 429628) (-3062 . 429494) (-3063 . 429413) - (-3064 . 429339) (-3065 . 429174) (-3066 . 429015) (-3067 . 428784) - (-3068 . 428636) (-3069 . 428532) (-3070 . 428428) (-3071 . 428343) - (-3072 . 427975) (-3073 . 427894) (-3074 . 427807) (-3075 . 427726) - (-3076 . 427480) (-3077 . 427260) (-3078 . 427073) (-3079 . 426751) - (-3080 . 426458) (-3081 . 426165) (-3082 . 425855) (-3083 . 425538) - (-3084 . 425409) (-3085 . 425221) (-3086 . 424748) (-3087 . 424666) - (-3088 . 424451) (-3089 . 424236) (-3090 . 423977) (-3091 . 423546) - (-3092 . 423025) (-3093 . 422895) (-3094 . 422621) (-3095 . 422442) - (-3096 . 422327) (-3097 . 422223) (-3098 . 422168) (-3099 . 422091) - (-3100 . 422021) (-3101 . 421948) (-3102 . 421893) (-3103 . 421820) - (-3104 . 421765) (-3105 . 421410) (-3106 . 421002) (-3107 . 420849) - (-3108 . 420696) (-3109 . 420615) (-3110 . 420462) (-3111 . 420309) - (-3112 . 420174) (-3113 . 420039) (-3114 . 419904) (-3115 . 419769) - (-3116 . 419634) (-3117 . 419499) (-3118 . 419443) (-3119 . 419290) - (-3120 . 419179) (-3121 . 419068) (-3122 . 419000) (-3123 . 418890) - (-3124 . 418787) (-3125 . 414636) (-3126 . 414188) (-3127 . 413761) - (-3128 . 413144) (-3129 . 412543) (-3130 . 412325) (-3131 . 412147) - (-3132 . 411887) (-3133 . 411476) (-3134 . 411182) (-3135 . 410739) - (-3136 . 410561) (-3137 . 410168) (-3138 . 409775) (-3139 . 409590) - (-3140 . 409383) (-3141 . 409162) (-3142 . 408856) (-3143 . 408657) - (-3144 . 408028) (-3145 . 407871) (-3146 . 407480) (-3147 . 407428) - (-3148 . 407379) (-3149 . 407327) (-3150 . 407278) (-3151 . 407226) - (-3152 . 407080) (-3153 . 407028) (-3154 . 406882) (-3155 . 406830) - (-3156 . 406684) (-3157 . 406632) (-3158 . 406257) (-3159 . 406205) - (-3160 . 406156) (-3161 . 406104) (-3162 . 406055) (-3163 . 406003) - (-3164 . 405954) (-3165 . 405902) (-3166 . 405853) (-3167 . 405801) - (-3168 . 405752) (-3169 . 405686) (-3170 . 405568) (-3171 . 404406) - (-3172 . 403989) (-3173 . 403881) (-3174 . 403636) (-3175 . 403487) - (-3176 . 403338) (-3177 . 403171) (-3178 . 400920) (-3179 . 400643) - (-3180 . 400489) (-3181 . 400343) (-3182 . 400197) (-3183 . 399978) - (-3184 . 399846) (-3185 . 399771) (-3186 . 399696) (-3187 . 399561) - (-3188 . 399431) (-3189 . 399301) (-3190 . 399174) (-3191 . 399047) - (-3192 . 398920) (-3193 . 398793) (-3194 . 398690) (-3195 . 398590) - (-3196 . 398496) (-3197 . 398366) (-3198 . 398215) (-3199 . 397836) - (-3200 . 397721) (-3201 . 397478) (-3202 . 397015) (-3203 . 396702) - (-3204 . 396134) (-3205 . 395564) (-3206 . 394552) (-3207 . 394009) - (-3208 . 393696) (-3209 . 393358) (-3210 . 393027) (-3211 . 392707) - (-3212 . 392654) (-3213 . 392527) (-3214 . 391998) (-3215 . 390841) - (-3216 . 390786) (-3217 . 390731) (-3218 . 390655) (-3219 . 390536) - (-3220 . 390461) (-3221 . 390386) (-3222 . 390308) (-3223 . 390157) - (-3224 . 390065) (-3225 . 389995) (-3226 . 389903) (-3227 . 389833) - (-3228 . 389741) (-3229 . 389671) (-3230 . 389579) (-3231 . 389509) - (-3232 . 389454) (-3233 . 389384) (-3234 . 389264) (-3235 . 389209) - (-3236 . 389139) (-3237 . 389105) (-3238 . 389071) (-3239 . 388974) - (-3240 . 388877) (-3241 . 388659) (-3242 . 388381) (-3243 . 388231) - (-3244 . 388101) (-3245 . 387971) (-3246 . 387871) (-3247 . 387694) - (-3248 . 387534) (-3249 . 387434) (-3250 . 387257) (-3251 . 387097) - (-3252 . 386938) (-3253 . 386799) (-3254 . 386649) (-3255 . 386519) - (-3256 . 386389) (-3257 . 386242) (-3258 . 386115) (-3259 . 386012) - (-3260 . 385905) (-3261 . 385808) (-3262 . 385643) (-3263 . 385495) - (-3264 . 385066) (-3265 . 384966) (-3266 . 384863) (-3267 . 384775) - (-3268 . 384695) (-3269 . 384545) (-3270 . 384415) (-3271 . 384363) - (-3272 . 384273) (-3273 . 384161) (-3274 . 383848) (-3275 . 383667) - (-3276 . 382056) (-3277 . 381423) (-3278 . 381363) (-3279 . 381245) - (-3280 . 381127) (-3281 . 380983) (-3282 . 380828) (-3283 . 380667) - (-3284 . 380506) (-3285 . 380298) (-3286 . 380109) (-3287 . 379954) - (-3288 . 379796) (-3289 . 379638) (-3290 . 379483) (-3291 . 379343) - (-3292 . 378917) (-3293 . 378789) (-3294 . 378661) (-3295 . 378533) - (-3296 . 378390) (-3297 . 378247) (-3298 . 378105) (-3299 . 377960) - (-3300 . 377207) (-3301 . 377047) (-3302 . 376859) (-3303 . 376702) - (-3304 . 376462) (-3305 . 376215) (-3306 . 375968) (-3307 . 375757) - (-3308 . 375618) (-3309 . 375407) (-3310 . 375117) (-3311 . 374906) - (-3312 . 374767) (-3313 . 374556) (-3314 . 374250) (-3315 . 374105) - (-3316 . 373963) (-3317 . 373739) (-3318 . 373597) (-3319 . 373372) - (-3320 . 373173) (-3321 . 373016) (-3322 . 372686) (-3323 . 372526) - (-3324 . 372366) (-3325 . 372206) (-3326 . 372034) (-3327 . 371862) - (-3328 . 371687) (-3329 . 371335) (-3330 . 371141) (-3331 . 370979) - (-3332 . 370905) (-3333 . 370831) (-3334 . 370757) (-3335 . 370683) - (-3336 . 370609) (-3337 . 370535) (-3338 . 370411) (-3339 . 370237) - (-3340 . 370113) (-3341 . 370027) (-3342 . 369961) (-3343 . 369895) - (-3344 . 369829) (-3345 . 369763) (-3346 . 369697) (-3347 . 369631) - (-3348 . 369565) (-3349 . 369499) (-3350 . 369433) (-3351 . 369367) - (-3352 . 369301) (-3353 . 369235) (-3354 . 369169) (-3355 . 369103) - (-3356 . 369037) (-3357 . 368971) (-3358 . 368905) (-3359 . 368839) - (-3360 . 368773) (-3361 . 368707) (-3362 . 368641) (-3363 . 368575) - (-3364 . 368509) (-3365 . 368443) (-3366 . 368377) (-3367 . 368311) - (-3368 . 367662) (-3369 . 367013) (-3370 . 366885) (-3371 . 366762) - (-3372 . 366639) (-3373 . 366498) (-3374 . 366343) (-3375 . 366199) - (-3376 . 366024) (-3377 . 365386) (-3378 . 365263) (-3379 . 365139) - (-3380 . 364461) (-3381 . 363763) (-3382 . 363662) (-3383 . 363606) - (-3384 . 363550) (-3385 . 363494) (-3386 . 363438) (-3387 . 363379) - (-3388 . 363315) (-3389 . 363207) (-3390 . 363099) (-3391 . 362991) - (-3392 . 362712) (-3393 . 362638) (-3394 . 362412) (-3395 . 362331) - (-3396 . 362253) (-3397 . 362175) (-3398 . 362097) (-3399 . 362018) - (-3400 . 361940) (-3401 . 361847) (-3402 . 361748) (-3403 . 361680) - (-3404 . 361631) (-3405 . 360938) (-3406 . 360288) (-3407 . 359495) - (-3408 . 359413) (-3409 . 359308) (-3410 . 359215) (-3411 . 359122) - (-3412 . 359047) (-3413 . 358972) (-3414 . 358897) (-3415 . 358841) - (-3416 . 358785) (-3417 . 358718) (-3418 . 358651) (-3419 . 358588) - (-3420 . 358197) (-3421 . 357695) (-3422 . 357228) (-3423 . 356973) - (-3424 . 356782) (-3425 . 356438) (-3426 . 356140) (-3427 . 355970) - (-3428 . 355838) (-3429 . 355697) (-3430 . 354612) (-3431 . 354456) - (-3432 . 354286) (-3433 . 352892) (-3434 . 352754) (-3435 . 352608) - (-3436 . 352377) (-3437 . 352107) (-3438 . 352047) (-3439 . 351990) - (-3440 . 351933) (-3441 . 351720) (-3442 . 351580) (-3443 . 351472) - (-3444 . 351354) (-3445 . 351287) (-3446 . 351213) (-3447 . 351098) - (-3448 . 350841) (-3449 . 350739) (-3450 . 350541) (-3451 . 350225) - (-3452 . 349751) (-3453 . 349644) (-3454 . 349536) (-3455 . 349385) - (-3456 . 349243) (-3457 . 348824) (-3458 . 348574) (-3459 . 347897) - (-3460 . 347742) (-3461 . 347627) (-3462 . 347516) (-3463 . 346686) - (-3464 . 346633) (-3465 . 346580) (-3466 . 346384) (-3467 . 345029) - (-3468 . 344578) (-3469 . 343176) (-3470 . 342313) (-3471 . 342263) - (-3472 . 342213) (-3473 . 342163) (-3474 . 342095) (-3475 . 342019) - (-3476 . 341815) (-3477 . 341742) (-3478 . 341666) (-3479 . 341593) - (-3480 . 341475) (-3481 . 341423) (-3482 . 341343) (-3483 . 341263) - (-3484 . 341183) (-3485 . 341131) (-3486 . 340884) (-3487 . 340566) - (-3488 . 340481) (-3489 . 340396) (-3490 . 340334) (-3491 . 339944) - (-3492 . 339069) (-3493 . 338493) (-3494 . 337255) (-3495 . 336445) - (-3496 . 336193) (-3497 . 335941) (-3498 . 335514) (-3499 . 335268) - (-3500 . 335022) (-3501 . 334776) (-3502 . 334530) (-3503 . 334284) - (-3504 . 334038) (-3505 . 333791) (-3506 . 333544) (-3507 . 333297) - (-3508 . 333050) (-3509 . 332620) (-3510 . 332502) (-3511 . 331656) - (-3512 . 331624) (-3513 . 331277) (-3514 . 331050) (-3515 . 330950) - (-3516 . 330850) (-3517 . 329080) (-3518 . 328966) (-3519 . 327911) - (-3520 . 327818) (-3521 . 326827) (-3522 . 326492) (-3523 . 326157) - (-3524 . 326052) (-3525 . 325965) (-3526 . 325936) (-3527 . 325879) - (-3528 . 325799) (-3529 . 325727) (-3530 . 325652) (-3531 . 325577) - (-3532 . 325545) (-3533 . 325513) (-3534 . 325481) (-3535 . 325449) - (-3536 . 325417) (-3537 . 325385) (-3538 . 325353) (-3539 . 325321) - (-3540 . 325292) (-3541 . 325179) (-3542 . 325066) (-3543 . 324953) - (-3544 . 324840) (-3545 . 323751) (-3546 . 323629) (-3547 . 323492) - (-3548 . 323358) (-3549 . 323224) (-3550 . 322927) (-3551 . 322630) - (-3552 . 322282) (-3553 . 322052) (-3554 . 321822) (-3555 . 321709) - (-3556 . 321596) (-3557 . 316315) (-3558 . 311942) (-3559 . 311630) - (-3560 . 311475) (-3561 . 310947) (-3562 . 310614) (-3563 . 310417) - (-3564 . 310220) (-3565 . 310023) (-3566 . 309826) (-3567 . 309710) - (-3568 . 309584) (-3569 . 309468) (-3570 . 309352) (-3571 . 309257) - (-3572 . 309162) (-3573 . 309049) (-3574 . 308843) (-3575 . 307686) - (-3576 . 307591) (-3577 . 307475) (-3578 . 307380) (-3579 . 307131) - (-3580 . 307018) (-3581 . 306800) (-3582 . 306681) (-3583 . 306380) - (-3584 . 305608) (-3585 . 305025) (-3586 . 304531) (-3587 . 304283) - (-3588 . 304035) (-3589 . 303736) (-3590 . 303122) (-3591 . 302674) - (-3592 . 302517) (-3593 . 302371) (-3594 . 302045) (-3595 . 301887) - (-3596 . 301744) (-3597 . 301601) (-3598 . 301458) (-3599 . 301177) - (-3600 . 300955) (-3601 . 300428) (-3602 . 300213) (-3603 . 299998) - (-3604 . 299610) (-3605 . 299430) (-3606 . 299218) (-3607 . 298908) - (-3608 . 298707) (-3609 . 298525) (-3610 . 297371) (-3611 . 296982) - (-3612 . 296772) (-3613 . 296559) (-3614 . 295716) (-3615 . 295687) - (-3616 . 295618) (-3617 . 295547) (-3618 . 295380) (-3619 . 295351) - (-3620 . 295322) (-3621 . 295266) (-3622 . 295105) (-3623 . 295045) - (-3624 . 294349) (-3625 . 293171) (-3626 . 293110) (-3627 . 292886) - (-3628 . 292814) (-3629 . 292757) (-3630 . 292700) (-3631 . 292643) - (-3632 . 292586) (-3633 . 292511) (-3634 . 291919) (-3635 . 291560) - (-3636 . 291485) (-3637 . 291425) (-3638 . 291307) (-3639 . 290356) - (-3640 . 290229) (-3641 . 290016) (-3642 . 289941) (-3643 . 289887) - (-3644 . 289768) (-3645 . 289659) (-3646 . 289346) (-3647 . 289238) - (-3648 . 289135) (-3649 . 288974) (-3650 . 288873) (-3651 . 288775) - (-3652 . 288637) (-3653 . 288499) (-3654 . 288361) (-3655 . 288099) - (-3656 . 287889) (-3657 . 287751) (-3658 . 287462) (-3659 . 287309) - (-3660 . 287030) (-3661 . 286808) (-3662 . 286655) (-3663 . 286502) - (-3664 . 286349) (-3665 . 286196) (-3666 . 286043) (-3667 . 285887) - (-3668 . 285768) (-3669 . 285377) (-3670 . 285042) (-3671 . 284697) - (-3672 . 284346) (-3673 . 284001) (-3674 . 283656) (-3675 . 283269) - (-3676 . 282882) (-3677 . 282495) (-3678 . 282124) (-3679 . 281394) - (-3680 . 281043) (-3681 . 280589) (-3682 . 280160) (-3683 . 279543) - (-3684 . 278942) (-3685 . 278550) (-3686 . 278214) (-3687 . 277822) - (-3688 . 277486) (-3689 . 277264) (-3690 . 276737) (-3691 . 276522) - (-3692 . 276307) (-3693 . 276091) (-3694 . 275911) (-3695 . 275695) - (-3696 . 275515) (-3697 . 275127) (-3698 . 274947) (-3699 . 274735) - (-3700 . 274645) (-3701 . 274555) (-3702 . 274464) (-3703 . 274377) - (-3704 . 274287) (-3705 . 274206) (-3706 . 274017) (-3707 . 273961) - (-3708 . 273880) (-3709 . 273799) (-3710 . 273718) (-3711 . 273583) - (-3712 . 273448) (-3713 . 273324) (-3714 . 273203) (-3715 . 273085) - (-3716 . 272949) (-3717 . 272816) (-3718 . 272697) (-3719 . 272438) - (-3720 . 272204) (-3721 . 272132) (-3722 . 272040) (-3723 . 271948) - (-3724 . 271862) (-3725 . 271764) (-3726 . 271647) (-3727 . 271506) - (-3728 . 271449) (-3729 . 271392) (-3730 . 271332) (-3731 . 270935) - (-3732 . 270411) (-3733 . 270133) (-3734 . 269712) (-3735 . 269599) - (-3736 . 269157) (-3737 . 268925) (-3738 . 268722) (-3739 . 268540) - (-3740 . 268410) (-3741 . 268204) (-3742 . 267997) (-3743 . 267806) - (-3744 . 267241) (-3745 . 266985) (-3746 . 266694) (-3747 . 266400) - (-3748 . 266103) (-3749 . 265803) (-3750 . 265673) (-3751 . 265540) - (-3752 . 265404) (-3753 . 265265) (-3754 . 263986) (-3755 . 263661) - (-3756 . 263280) (-3757 . 263167) (-3758 . 262913) (-3759 . 262617) - (-3760 . 262321) (-3761 . 262060) (-3762 . 261885) (-3763 . 261806) - (-3764 . 261718) (-3765 . 261617) (-3766 . 261522) (-3767 . 261440) - (-3768 . 261368) (-3769 . 260567) (-3770 . 260495) (-3771 . 260163) - (-3772 . 260091) (-3773 . 259759) (-3774 . 259687) (-3775 . 259238) - (-3776 . 259166) (-3777 . 259061) (-3778 . 258986) (-3779 . 258911) - (-3780 . 258839) (-3781 . 258496) (-3782 . 258366) (-3783 . 258289) - (-3784 . 257740) (-3785 . 257597) (-3786 . 257454) (-3787 . 256956) - (-3788 . 256610) (-3789 . 256382) (-3790 . 256112) (-3791 . 255732) - (-3792 . 255492) (-3793 . 255252) (-3794 . 255012) (-3795 . 254772) - (-3796 . 254544) (-3797 . 254316) (-3798 . 254164) (-3799 . 253980) - (-3800 . 253875) (-3801 . 253752) (-3802 . 253644) (-3803 . 253536) - (-3804 . 253209) (-3805 . 252943) (-3806 . 252631) (-3807 . 252326) - (-3808 . 252016) (-3809 . 251281) (-3810 . 250686) (-3811 . 250509) - (-3812 . 250364) (-3813 . 250209) (-3814 . 250086) (-3815 . 249981) - (-3816 . 249866) (-3817 . 249767) (-3818 . 249283) (-3819 . 249173) - (-3820 . 249063) (-3821 . 248953) (-3822 . 247849) (-3823 . 247334) - (-3824 . 247267) (-3825 . 247193) (-3826 . 246320) (-3827 . 246246) - (-3828 . 246190) (-3829 . 246134) (-3830 . 246102) (-3831 . 246016) - (-3832 . 245984) (-3833 . 245898) (-3834 . 245474) (-3835 . 245050) - (-3836 . 244493) (-3837 . 243381) (-3838 . 241657) (-3839 . 240095) - (-3840 . 239299) (-3841 . 238795) (-3842 . 238303) (-3843 . 237895) - (-3844 . 237235) (-3845 . 237160) (-3846 . 237088) (-3847 . 237016) - (-3848 . 236974) (-3849 . 236852) (-3850 . 236412) (-3851 . 235972) - (-3852 . 235532) (-3853 . 235010) (-3854 . 234845) (-3855 . 234680) - (-3856 . 234369) (-3857 . 234282) (-3858 . 234192) (-3859 . 233834) - (-3860 . 233717) (-3861 . 233636) (-3862 . 233477) (-3863 . 233363) - (-3864 . 233288) (-3865 . 232436) (-3866 . 231250) (-3867 . 231150) - (-3868 . 231050) (-3869 . 230709) (-3870 . 230630) (-3871 . 230554) - (-3872 . 230447) (-3873 . 230289) (-3874 . 230181) (-3875 . 230045) - (-3876 . 229909) (-3877 . 229786) (-3878 . 229690) (-3879 . 229541) - (-3880 . 229445) (-3881 . 229290) (-3882 . 229135) (-3883 . 228455) - (-3884 . 227775) (-3885 . 227032) (-3886 . 226464) (-3887 . 225896) - (-3888 . 225328) (-3889 . 224647) (-3890 . 223966) (-3891 . 223285) - (-3892 . 222716) (-3893 . 222147) (-3894 . 221578) (-3895 . 221010) - (-3896 . 220442) (-3897 . 219874) (-3898 . 219306) (-3899 . 218738) - (-3900 . 218170) (-3901 . 218066) (-3902 . 217477) (-3903 . 217371) - (-3904 . 217295) (-3905 . 217152) (-3906 . 217059) (-3907 . 216966) - (-3908 . 216873) (-3909 . 216774) (-3910 . 216668) (-3911 . 216544) - (-3912 . 216420) (-3913 . 216053) (-3914 . 215930) (-3915 . 215828) - (-3916 . 215464) (-3917 . 214930) (-3918 . 214854) (-3919 . 214778) - (-3920 . 214685) (-3921 . 214502) (-3922 . 214406) (-3923 . 214330) - (-3924 . 214237) (-3925 . 214144) (-3926 . 213981) (-3927 . 213420) - (-3928 . 212859) (-3929 . 210062) (-3930 . 209889) (-3931 . 208425) - (-3932 . 207863) (-3933 . 207664) (-12 . 207492) (-3935 . 207320) - (-3936 . 207148) (-3937 . 206976) (-3938 . 206804) (-3939 . 206632) - (-3940 . 206460) (-3941 . 206345) (-3942 . 206075) (-3943 . 206012) - (-3944 . 205949) (-3945 . 205886) (-3946 . 205608) (-3947 . 205341) - (-3948 . 205288) (-3949 . 204573) (-3950 . 204522) (-3951 . 204329) - (-3952 . 204256) (-3953 . 204176) (-3954 . 204063) (-3955 . 203873) - (-3956 . 203509) (-3957 . 203237) (-3958 . 203186) (-3959 . 203135) - (-3960 . 203065) (-3961 . 202946) (-3962 . 202917) (-3963 . 202815) - (-3964 . 202693) (-3965 . 202639) (-3966 . 202462) (-3967 . 202401) - (-3968 . 202220) (-3969 . 202159) (-3970 . 202087) (-3971 . 201612) - (-3972 . 201237) (-3973 . 197953) (-3974 . 197900) (-3975 . 197772) - (-3976 . 197620) (-3977 . 197567) (-3978 . 197425) (-3979 . 195567) - (-3980 . 186210) (-3981 . 186059) (-3982 . 186008) (-3983 . 185957) - (-3984 . 185906) (-3985 . 185836) (-3986 . 185638) (-3987 . 185495) - (-3988 . 185381) (-3989 . 185260) (-3990 . 185142) (-3991 . 185030) - (-3992 . 184912) (-3993 . 184807) (-3994 . 184726) (-3995 . 184622) - (-3996 . 183685) (-3997 . 183465) (-3998 . 183228) (-3999 . 183146) - (-4000 . 182799) (-4001 . 182725) (-4002 . 182630) (-4003 . 182556) - (-4004 . 182354) (-4005 . 182263) (-4006 . 182147) (-4007 . 182034) - (-4008 . 181943) (-4009 . 181852) (-4010 . 181762) (-4011 . 181672) - (-4012 . 181582) (-4013 . 181494) (-4014 . 179132) (-4015 . 179064) - (-4016 . 179010) (-4017 . 178885) (-4018 . 178821) (-4019 . 178696) - (-4020 . 178577) (-4021 . 177809) (-4022 . 177748) (-4023 . 177629) - (-4024 . 176877) (-4025 . 176824) (-4026 . 176696) (-4027 . 176632) - (-4028 . 176578) (-4029 . 176469) (-4030 . 175146) (-4031 . 175064) - (-4032 . 174974) (-4033 . 174916) (-4034 . 174651) (-4035 . 174566) - (-4036 . 174491) (-4037 . 174406) (-4038 . 174349) (-4039 . 174133) - (-4040 . 173991) (-4041 . 173256) (-4042 . 172686) (-4043 . 172116) - (-4044 . 171546) (-4045 . 170811) (-4046 . 170129) (-4047 . 169537) - (-4048 . 168945) (-4049 . 168667) (-4050 . 168212) (-4051 . 167863) - (-4052 . 167505) (-4053 . 167181) (-4054 . 167048) (-4055 . 166915) - (-4056 . 166583) (-4057 . 166474) (-4058 . 166365) (-4059 . 166256) - (-4060 . 166147) (-4061 . 166038) (-4062 . 165929) (-4063 . 165820) - (-4064 . 165711) (-4065 . 165602) (-4066 . 165493) (-4067 . 165384) - (-4068 . 165275) (-4069 . 165166) (-4070 . 165057) (-4071 . 164948) - (-4072 . 164839) (-4073 . 164730) (-4074 . 164621) (-4075 . 164512) - (-4076 . 164403) (-4077 . 164294) (-4078 . 164185) (-4079 . 164076) - (-4080 . 163967) (-4081 . 163858) (-4082 . 163660) (-4083 . 163345) - (-4084 . 161774) (-4085 . 161619) (-4086 . 161481) (-4087 . 161338) - (-4088 . 161135) (-4089 . 159180) (-4090 . 159052) (-4091 . 158927) - (-4092 . 158799) (-4093 . 158575) (-4094 . 158351) (-4095 . 158223) - (-4096 . 158020) (-4097 . 157841) (-4098 . 157314) (-4099 . 156787) - (-4100 . 156506) (-4101 . 156088) (-4102 . 155561) (-4103 . 155376) - (-4104 . 155233) (-4105 . 154733) (-4106 . 154091) (-4107 . 154035) - (-4108 . 153941) (-4109 . 153820) (-4110 . 153749) (-4111 . 153675) - (-4112 . 153444) (-4113 . 152819) (-4114 . 152387) (-4115 . 152305) - (-4116 . 152163) (-4117 . 151685) (-4118 . 151563) (-4119 . 151441) - (-4120 . 151301) (-4121 . 151114) (-4122 . 150998) (-4123 . 150737) - (-4124 . 150668) (-4125 . 150469) (-4126 . 150310) (-4127 . 150155) - (-4128 . 150048) (-4129 . 149997) (-4130 . 149613) (-4131 . 149264) - (-4132 . 149074) (-4133 . 148884) (-4134 . 148643) (-4135 . 148552) - (-4136 . 146737) (-4137 . 146148) (-4138 . 146069) (-4139 . 140600) - (-4140 . 139809) (-4141 . 139430) (-4142 . 139358) (-4143 . 139169) - (-4144 . 138994) (-4145 . 138504) (-4146 . 138082) (-4147 . 137642) - (-4148 . 136778) (-4149 . 136654) (-4150 . 136527) (-4151 . 136418) - (-4152 . 136266) (-4153 . 136152) (-4154 . 136013) (-4155 . 135931) - (-4156 . 135849) (-4157 . 135741) (-4158 . 135321) (-4159 . 134897) - (-4160 . 134822) (-4161 . 134556) (-4162 . 134289) (-4163 . 133906) - (-4164 . 133205) (-4165 . 133145) (-4166 . 133070) (-4167 . 132995) - (-4168 . 132872) (-4169 . 132620) (-4170 . 132533) (-4171 . 132457) - (-4172 . 132381) (-4173 . 132285) (-4174 . 128321) (-4175 . 127139) - (-4176 . 126475) (-4177 . 126288) (-4178 . 124065) (-4179 . 123739) - (-4180 . 123358) (-4181 . 122914) (-4182 . 122679) (-4183 . 122431) - (-4184 . 122340) (-4185 . 120844) (-4186 . 120765) (-4187 . 120659) - (-4188 . 119123) (-4189 . 118710) (-4190 . 118293) (-4191 . 118191) - (-4192 . 118109) (-4193 . 117951) (-4194 . 116652) (-4195 . 116570) - (-4196 . 116491) (-4197 . 116136) (-4198 . 116079) (-4199 . 116007) - (-4200 . 115950) (-4201 . 115893) (-4202 . 115763) (-4203 . 115559) - (-4204 . 115190) (-4205 . 114768) (-4206 . 109695) (-4207 . 109092) - (-4208 . 108464) (-4209 . 108249) (-4210 . 108034) (-4211 . 107866) - (-4212 . 107651) (-4213 . 107483) (-4214 . 107315) (-4215 . 107147) - (-4216 . 106979) (-4217 . 104836) (-4218 . 104564) (-4219 . 97627) - (** . 94564) (-4221 . 94144) (-4222 . 93896) (-4223 . 93839) (-4224 . 93341) - (-4225 . 90436) (-4226 . 90286) (-4227 . 90122) (-4228 . 89958) - (-4229 . 89862) (-4230 . 89744) (-4231 . 89620) (-4232 . 89477) - (-4233 . 89306) (-4234 . 89179) (-4235 . 89034) (-4236 . 88881) - (-4237 . 88721) (-4238 . 88235) (-4239 . 88145) (-4240 . 87477) - (-4241 . 87283) (-4242 . 87187) (-4243 . 86877) (-4244 . 85701) - (-4245 . 85494) (-4246 . 84317) (-4247 . 84242) (-4248 . 83061) - (-4249 . 79456) (-4250 . 79092) (-4251 . 78815) (-4252 . 78723) - (-4253 . 78630) (-4254 . 78353) (-4255 . 78260) (-4256 . 78167) - (-4257 . 78074) (-4258 . 77690) (-4259 . 77619) (-4260 . 77527) - (-4261 . 77369) (-4262 . 77015) (-4263 . 76857) (-4264 . 76749) - (-4265 . 76720) (-4266 . 76653) (-4267 . 76499) (-4268 . 76340) - (-4269 . 75946) (-4270 . 75871) (-4271 . 75765) (-4272 . 75693) - (-4273 . 75615) (-4274 . 75542) (-4275 . 75469) (-4276 . 75396) - (-4277 . 75324) (-4278 . 75252) (-4279 . 75179) (-4280 . 74938) - (-4281 . 74598) (-4282 . 74450) (-4283 . 74377) (-4284 . 74304) - (-4285 . 74231) (-4286 . 73977) (-4287 . 73833) (-4288 . 72497) - (-4289 . 72303) (-4290 . 72032) (-4291 . 71884) (-4292 . 71736) - (-4293 . 71496) (-4294 . 71301) (-4295 . 71031) (-4296 . 70835) - (-4297 . 70806) (-4298 . 70705) (-4299 . 70604) (-4300 . 70503) - (-4301 . 70402) (-4302 . 70301) (-4303 . 70200) (-4304 . 70099) - (-4305 . 69998) (-4306 . 69897) (-4307 . 69796) (-4308 . 69681) - (-4309 . 69566) (-4310 . 69515) (-4311 . 69398) (-4312 . 69340) - (-4313 . 69239) (-4314 . 69138) (-4315 . 69037) (-4316 . 68921) - (-4317 . 68892) (-4318 . 68160) (-4319 . 68035) (-4320 . 67910) - (-4321 . 67770) (-4322 . 67652) (-4323 . 67527) (-4324 . 67372) - (-4325 . 66389) (-4326 . 65530) (-4327 . 65476) (-4328 . 65422) - (-4329 . 65214) (-4330 . 64840) (-4331 . 64426) (-4332 . 64065) - (-4333 . 63704) (-4334 . 63551) (-4335 . 63249) (-4336 . 63093) - (-4337 . 62767) (-4338 . 62696) (-4339 . 62625) (-4340 . 62413) - (-4341 . 61606) (-4342 . 61400) (-4343 . 61026) (-4344 . 60506) - (-4345 . 60238) (-4346 . 59688) (-4347 . 59138) (-4348 . 59012) - (-4349 . 57783) (-4350 . 56577) (-4351 . 55975) (-4352 . 55757) - (-4353 . 37198) (-4354 . 37012) (-4355 . 34912) (-4356 . 32737) - (-4357 . 32589) (-4358 . 32407) (-4359 . 31999) (-4360 . 31698) - (-4361 . 31347) (-4362 . 31179) (-4363 . 31011) (-4364 . 30647) - (-4365 . 16686) (-4366 . 15566) (* . 11070) (-4368 . 10814) (-4369 . 10628) - (-4370 . 9623) (-4371 . 9354) (-4372 . 8719) (-4373 . 7437) (-4374 . 6178) - (-4375 . 5298) (-4376 . 4032) (-4377 . 382) (-4378 . 280) (-4379 . 160) - (-4380 . 30))
\ No newline at end of file + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-417 *3)) (-4 *3 (-544)) + (-4 *3 (-554)))) + ((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-406 (-562))))) + ((*1 *2 *1) + (-12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) + (-5 *2 (-406 (-562))))) + ((*1 *2 *1) + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-828 *3)) (-4 *3 (-544)) + (-4 *3 (-1092)))) + ((*1 *2 *1) + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-838 *3)) (-4 *3 (-544)) + (-4 *3 (-1092)))) + ((*1 *2 *1) + (-12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) + (-5 *2 (-406 (-562))))) + ((*1 *2 *3) + (-12 (-5 *2 (-406 (-562))) (-5 *1 (-1003 *3)) (-4 *3 (-1033 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1172))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-683 *1)) (-4 *1 (-348)) (-5 *2 (-1256 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-683 *1)) (-4 *1 (-144)) (-4 *1 (-904)) + (-5 *2 (-1256 *1))))) +((-1289 . 735379) (-1290 . 735318) (-1291 . 734605) (-1292 . 734571) + (-1293 . 734385) (-1294 . 734308) (-1295 . 734222) (-1296 . 734115) + (-1297 . 733947) (-1298 . 733878) (-1299 . 733747) (-1300 . 733660) + (-1301 . 733605) (-1302 . 733541) (-1303 . 733247) (-1304 . 732877) + (-1305 . 732682) (-1306 . 732599) (-1307 . 732565) (-1308 . 732494) + (-1309 . 732282) (-1310 . 732213) (-1311 . 732161) (-1312 . 732093) + (-1313 . 731999) (-1314 . 731777) (-1315 . 731654) (-1316 . 731383) + (-1317 . 731038) (-1318 . 730969) (-1319 . 730799) (-1320 . 730692) + (-1321 . 730625) (-1322 . 730481) (-1323 . 730353) (-1324 . 730181) + (-1325 . 730116) (-1326 . 729836) (-1327 . 729769) (-1328 . 729710) + (-1329 . 728952) (-1330 . 728836) (-1331 . 728698) (-1332 . 728579) + (-1333 . 728087) (-1334 . 727678) (-1335 . 727431) (-1336 . 727079) + (-1337 . 726917) (-1338 . 726804) (-1339 . 726674) (-1340 . 726597) + (-1341 . 726441) (-1342 . 726409) (-1343 . 726357) (-1344 . 726233) + (-1345 . 726093) (-1346 . 725880) (-1347 . 725754) (-1348 . 725504) + (-1349 . 725427) (-1350 . 725033) (-1351 . 724857) (-1352 . 724481) + (-1353 . 723283) (-1354 . 723141) (-1355 . 723088) (-1356 . 723014) + (-1357 . 722566) (-1358 . 722537) (-1359 . 722398) (-1360 . 722007) + (-1361 . 721778) (-1362 . 721677) (-1363 . 721625) (-1364 . 721530) + (-1365 . 721475) (-1366 . 720997) (-1367 . 720818) (-1368 . 720790) + (-1369 . 720679) (-1370 . 720626) (-1371 . 720574) (-1372 . 720491) + (-1373 . 720211) (-1374 . 720137) (-1375 . 720078) (-1376 . 719975) + (-1377 . 719879) (-1378 . 718250) (-1379 . 718142) (-1380 . 717937) + (-1381 . 717878) (-1382 . 716874) (-1383 . 716704) (-1384 . 716596) + (-1385 . 716543) (-1386 . 716347) (-1387 . 715970) (-1388 . 715858) + (-1389 . 715790) (-1390 . 714924) (-1391 . 714833) (-1392 . 714399) + (-1393 . 714188) (-1394 . 714154) (-1395 . 713723) (-1396 . 713565) + (-1397 . 712955) (-1398 . 712902) (-1399 . 712711) (-1400 . 712392) + (-1401 . 712290) (-1402 . 710916) (-1403 . 710771) (-1404 . 710197) + (-1405 . 709870) (-1406 . 709194) (-1407 . 708748) (-1408 . 708106) + (-1409 . 707873) (-1410 . 707760) (-1411 . 707674) (-1412 . 707530) + (-1413 . 707386) (-1414 . 707179) (-1415 . 707021) (-1416 . 706965) + (-1417 . 706866) (-1418 . 706808) (-1419 . 706658) (-1420 . 706226) + (-1421 . 705613) (-1422 . 705431) (-1423 . 705358) (-1424 . 705215) + (-1425 . 705157) (-1426 . 705064) (-1427 . 704773) (-1428 . 704721) + (-1429 . 704560) (-1430 . 703900) (-1431 . 703799) (-1432 . 703721) + (-1433 . 699723) (-1434 . 699296) (-1435 . 698845) (-1436 . 698715) + (-1437 . 698570) (-1438 . 698488) (-1439 . 698278) (-1440 . 698165) + (-1441 . 698137) (-1442 . 698071) (-1443 . 697869) (-1444 . 697816) + (-1445 . 697710) (-1446 . 697558) (-1447 . 697496) (-1448 . 696846) + (-1449 . 696728) (-1450 . 696569) (-1451 . 696453) (-1452 . 696354) + (-1453 . 696092) (-1454 . 695666) (-1455 . 695576) (-1456 . 695016) + (-1457 . 694928) (-1458 . 694158) (-1459 . 694059) (-1460 . 693421) + (-1461 . 693347) (-1462 . 693229) (-1463 . 693120) (-1464 . 693027) + (-1465 . 692976) (-1466 . 692684) (-1467 . 692543) (-1468 . 692424) + (-1469 . 690586) (-1470 . 690477) (-1471 . 690037) (-1472 . 689947) + (-1473 . 689722) (-1474 . 689652) (-1475 . 689053) (-1476 . 688990) + (-1477 . 688920) (-1478 . 688860) (-1479 . 688106) (-1480 . 688007) + (-1481 . 687936) (-1482 . 687658) (-1483 . 687581) (-1484 . 687528) + (-1485 . 686018) (-1486 . 685966) (-1487 . 685854) (-1488 . 685795) + (-1489 . 685724) (-1490 . 685497) (-1491 . 685372) (-1492 . 685256) + (-1493 . 685015) (-1494 . 684822) (-1495 . 684760) (-1496 . 684556) + (-1497 . 684140) (-1498 . 683545) (-1499 . 681997) (-1500 . 681887) + (-1501 . 681344) (-1502 . 680566) (-1503 . 677639) (-1504 . 677265) + (-1505 . 677033) (-1506 . 676973) (-1507 . 676924) (-1508 . 676841) + (-1509 . 676695) (-1510 . 676243) (-1511 . 676188) (-1512 . 676104) + (-1513 . 676047) (-1514 . 675725) (-1515 . 675587) (-1516 . 675508) + (-1517 . 675266) (-1518 . 675087) (-1519 . 674997) (-1520 . 674402) + (-1521 . 674314) (-1522 . 674253) (-1523 . 674225) (-1524 . 674143) + (-1525 . 673407) (-1526 . 673290) (-1527 . 672964) (-1528 . 672829) + (-1529 . 672769) (-1530 . 672682) (-1531 . 672602) (-1532 . 672375) + (-1533 . 672252) (-1534 . 672090) (-1535 . 671679) (-1536 . 671571) + (-1537 . 671229) (-1538 . 671160) (-1539 . 670707) (-1540 . 670104) + (-1541 . 669923) (-1542 . 669678) (-1543 . 669612) (-1544 . 669365) + (-1545 . 669261) (-1546 . 668654) (-1547 . 668527) (-1548 . 668168) + (-1549 . 668072) (-1550 . 667906) (-1551 . 667628) (-1552 . 667499) + (-1553 . 667331) (-1554 . 667279) (-1555 . 667044) (-1556 . 667016) + (-1557 . 666909) (-1558 . 666826) (-1559 . 666742) (-1560 . 666098) + (-1561 . 665747) (-1562 . 663615) (-1563 . 663031) (-1564 . 662944) + (-1565 . 662569) (-1566 . 661995) (-1567 . 661391) (-1568 . 661263) + (-1569 . 661148) (-1570 . 661050) (-1571 . 660951) (-1572 . 660898) + (-1573 . 659726) (-1574 . 659553) (-1575 . 659340) (-1576 . 659254) + (-1577 . 659202) (-1578 . 658314) (-1579 . 657934) (-1580 . 657867) + (-1581 . 657631) (-1582 . 657458) (-1583 . 657396) (-1584 . 657112) + (-1585 . 656591) (-1586 . 656476) (-1587 . 656392) (-1588 . 656054) + (-1589 . 655970) (-1590 . 655831) (-1591 . 655745) (-1592 . 655686) + (-1593 . 655556) (-1594 . 655426) (-1595 . 655302) (-1596 . 655165) + (-1597 . 654994) (-1598 . 654734) (-1599 . 653326) (-1600 . 653292) + (-1601 . 652155) (-1602 . 651817) (-1603 . 651699) (-1604 . 651494) + (-1605 . 651203) (-1606 . 650101) (-1607 . 650046) (-1608 . 649917) + (-1609 . 649757) (-1610 . 649219) (-1611 . 648873) (-1612 . 648250) + (-1613 . 648148) (-1614 . 648116) (-1615 . 648063) (-1616 . 648004) + (-1617 . 646153) (-1618 . 646067) (-1619 . 645918) (-1620 . 645834) + (-1621 . 645739) (-1622 . 645447) (-1623 . 645326) (-1624 . 645195) + (-1625 . 643725) (-1626 . 643565) (-1627 . 643474) (-1628 . 642399) + (-1629 . 642119) (-1630 . 642024) (-1631 . 641894) (-1632 . 641822) + (-1633 . 641750) (-1634 . 641536) (-1635 . 636022) (-1636 . 635689) + (-1637 . 635359) (-1638 . 635186) (-1639 . 635033) (-1640 . 634903) + (-1641 . 634693) (-1642 . 634634) (-1643 . 634242) (-1644 . 633768) + (-1645 . 633425) (-1646 . 633110) (-1647 . 633082) (-1648 . 632966) + (-1649 . 632887) (-1650 . 632714) (-1651 . 632572) (-1652 . 632270) + (-1653 . 632196) (-1654 . 631392) (-1655 . 630471) (-1656 . 630397) + (-1657 . 629942) (-1658 . 629671) (-1659 . 629472) (-1660 . 629360) + (-1661 . 629207) (-1662 . 629061) (-1663 . 628977) (-1664 . 628691) + (-1665 . 628512) (-1666 . 628332) (-1667 . 628246) (-1668 . 628177) + (-1669 . 627861) (-1670 . 627512) (-1671 . 627341) (-1672 . 627228) + (-1673 . 627169) (-1674 . 627106) (-1675 . 626828) (-1676 . 626707) + (-1677 . 626461) (-1678 . 626326) (-1679 . 626246) (-1680 . 626191) + (-1681 . 625783) (-1682 . 625490) (-1683 . 625273) (-1684 . 625220) + (-1685 . 625186) (-1686 . 625003) (-1687 . 624909) (-1688 . 624856) + (-1689 . 624667) (-1690 . 624532) (-1691 . 624399) (-1692 . 624336) + (-1693 . 624224) (-1694 . 623945) (-1695 . 623862) (-1696 . 623740) + (-1697 . 623674) (-1698 . 623570) (-1699 . 623504) (-1700 . 623327) + (-1701 . 623136) (-1702 . 623002) (-1703 . 622787) (-1704 . 622664) + (-1705 . 622551) (-1706 . 622352) (-1707 . 622057) (-1708 . 621962) + (-1709 . 621843) (-1710 . 621706) (-1711 . 620410) (-1712 . 620337) + (-1713 . 620246) (-1714 . 619933) (-1715 . 619588) (-1716 . 619299) + (-1717 . 619183) (-1718 . 619100) (-1719 . 618848) (-1720 . 618629) + (-1721 . 618479) (-1722 . 618386) (-1723 . 618147) (-1724 . 618046) + (-1725 . 617994) (-1726 . 617177) (-1727 . 617059) (-1728 . 616914) + (-1729 . 616861) (-1730 . 616723) (-1731 . 616451) (-1732 . 616351) + (-1733 . 616277) (-1734 . 616221) (-1735 . 616162) (-1736 . 615876) + (-1737 . 615796) (-1738 . 615741) (-1739 . 615168) (-1740 . 615032) + (-1741 . 614916) (-1742 . 614821) (-1743 . 614511) (-1744 . 614387) + (-1745 . 614260) (-1746 . 614190) (-1747 . 614060) (-1748 . 613634) + (-1749 . 613525) (-1750 . 613430) (-1751 . 613373) (-1752 . 613303) + (-1753 . 613136) (-1754 . 612935) (-1755 . 612838) (-1756 . 612657) + (-1757 . 612447) (-1758 . 612252) (-1759 . 612021) (-1760 . 611955) + (-1761 . 611818) (-1762 . 610957) (-1763 . 610833) (-1764 . 610739) + (-1765 . 610689) (-1766 . 610617) (-1767 . 610549) (-1768 . 610483) + (-1769 . 610347) (-1770 . 610184) (-1771 . 609997) (-1772 . 609910) + (-1773 . 609747) (-1774 . 609638) (-1775 . 609448) (-1776 . 608793) + (-1777 . 608684) (-1778 . 608575) (-1779 . 608200) (-1780 . 607985) + (-1781 . 607878) (-1782 . 607815) (-1783 . 607587) (-1784 . 607278) + (-1785 . 607119) (-1786 . 606947) (-1787 . 606850) (-1788 . 606762) + (-1789 . 606508) (-1790 . 606376) (-1791 . 606348) (-1792 . 606222) + (-1793 . 606044) (-1794 . 605913) (-1795 . 605850) (-1796 . 605399) + (-1797 . 605087) (-1798 . 605000) (-1799 . 604966) (-1800 . 604612) + (-1801 . 604560) (-1802 . 604423) (-1803 . 604293) (-1804 . 604222) + (-1805 . 604145) (-1806 . 604088) (-1807 . 603986) (-1808 . 603818) + (-1809 . 603784) (-1810 . 603735) (-1811 . 603638) (-1812 . 603510) + (-1813 . 603440) (-1814 . 603291) (-1815 . 603217) (-1816 . 603006) + (-1817 . 602252) (-1818 . 602143) (-1819 . 601998) (-1820 . 601825) + (-1821 . 601495) (-1822 . 601461) (-1823 . 601278) (-1824 . 601250) + (-1825 . 601179) (-1826 . 601124) (-1827 . 601025) (-1828 . 600931) + (-1829 . 600692) (-1830 . 600398) (-1831 . 600297) (-1832 . 600202) + (-1833 . 600023) (-1834 . 599868) (-1835 . 598682) (-1836 . 598633) + (-1837 . 598510) (-1838 . 598459) (-1839 . 598280) (-1840 . 598183) + (-1841 . 598024) (-1842 . 597892) (-1843 . 597532) (-1844 . 597409) + (-1845 . 597315) (-1846 . 597156) (-1847 . 597024) (-1848 . 595842) + (-1849 . 595615) (-1850 . 595556) (-1851 . 595103) (-1852 . 594999) + (-1853 . 594895) (-1854 . 594837) (-1855 . 592056) (-1856 . 591956) + (-1857 . 591857) (-1858 . 591789) (-1859 . 589583) (-1860 . 589395) + (-1861 . 589267) (-1862 . 589196) (-1863 . 589087) (-1864 . 589007) + (-1865 . 588837) (-1866 . 588488) (-1867 . 588278) (-1868 . 588035) + (-1869 . 587934) (-1870 . 587574) (-1871 . 587522) (-1872 . 587050) + (-1873 . 586828) (-1874 . 586773) (-1875 . 586382) (-1876 . 586230) + (-1877 . 585945) (-1878 . 585838) (-1879 . 585764) (-1880 . 585483) + (-1881 . 585291) (-1882 . 585125) (-1883 . 585026) (-1884 . 584967) + (-1885 . 584501) (-1886 . 584360) (-1887 . 584307) (-1888 . 584150) + (-1889 . 583834) (-1890 . 583775) (-1891 . 583545) (-1892 . 583489) + (-1893 . 583308) (-1894 . 583235) (-1895 . 583012) (-1896 . 582938) + (-1897 . 582815) (-1898 . 582749) (-1899 . 582625) (-1900 . 580356) + (-1901 . 580249) (-1902 . 579548) (-1903 . 579197) (-1904 . 579141) + (-1905 . 578814) (-1906 . 578735) (-1907 . 578633) (-1908 . 578536) + (-1909 . 578450) (-1910 . 578397) (-1911 . 578332) (-1912 . 578102) + (-1913 . 577986) (-1914 . 577714) (-1915 . 577457) (-1916 . 577332) + (-1917 . 576910) (-1918 . 576851) (-1919 . 576747) (-1920 . 576586) + (-1921 . 576043) (-1922 . 575946) (-1923 . 575699) (-1924 . 575643) + (-1925 . 575505) (-1926 . 575450) (-1927 . 575163) (-1928 . 575040) + (-1929 . 574602) (-1930 . 574194) (-1931 . 574001) (-1932 . 573927) + (-1933 . 573875) (-1934 . 573788) (-1935 . 573754) (-1936 . 573651) + (-1937 . 573550) (-1938 . 573169) (-1939 . 572841) (-1940 . 572753) + (-1941 . 572565) (-1942 . 572477) (-1943 . 571628) (-1944 . 571561) + (-1945 . 571511) (-1946 . 571387) (-1947 . 571313) (-1948 . 571264) + (-1949 . 571109) (-1950 . 570948) (-1951 . 570868) (-1952 . 570569) + (-1953 . 570488) (-1954 . 570349) (-1955 . 566728) (-1956 . 566629) + (-1957 . 566391) (-1958 . 566171) (-1959 . 566091) (-1960 . 565610) + (-1961 . 565542) (-1962 . 565155) (-1963 . 565039) (-1964 . 564945) + (-1965 . 564863) (-1966 . 564441) (-1967 . 564367) (-1968 . 564257) + (-1969 . 563719) (-1970 . 563578) (-1971 . 563505) (-1972 . 563397) + (-1973 . 563339) (-1974 . 563146) (-1975 . 563051) (-1976 . 562968) + (-1977 . 562459) (-1978 . 562385) (-1979 . 562254) (-1980 . 562144) + (-1981 . 561986) (-1982 . 561454) (-1983 . 561348) (-1984 . 560753) + (-1985 . 560043) (-1986 . 559800) (-1987 . 559661) (-1988 . 559438) + (-1989 . 559323) (-1990 . 559177) (-1991 . 559118) (-1992 . 558977) + (-1993 . 558870) (-1994 . 558757) (-1995 . 558193) (-1996 . 558042) + (-1997 . 557922) (-1998 . 557794) (-1999 . 557650) (-2000 . 557546) + (-2001 . 557460) (-2002 . 557371) (-2003 . 557285) (-2004 . 557013) + (-2005 . 556720) (-2006 . 556524) (-2007 . 556387) (-2008 . 556265) + (-2009 . 556092) (-2010 . 556035) (-2011 . 555872) (-2012 . 555775) + (-2013 . 555648) (-2014 . 555547) (-2015 . 555453) (-2016 . 555166) + (-2017 . 555094) (-2018 . 553517) (-2019 . 553488) (-2020 . 553438) + (-2021 . 553109) (-2022 . 552961) (-2023 . 552859) (-2024 . 552788) + (-2025 . 552514) (-2026 . 552420) (-2027 . 552313) (-2028 . 552204) + (-2029 . 552176) (-2030 . 552090) (-2031 . 551972) (-2032 . 551817) + (-2033 . 551673) (-2034 . 551557) (-2035 . 551463) (-2036 . 551308) + (-2037 . 551171) (-2038 . 550991) (-2039 . 550896) (-2040 . 550522) + (-2041 . 550469) (-2042 . 549860) (-2043 . 549753) (-2044 . 549571) + (-2045 . 549468) (-2046 . 549409) (-2047 . 549220) (-2048 . 549167) + (-2049 . 549086) (-2050 . 548607) (-2051 . 548503) (-2052 . 548299) + (-2053 . 548246) (-2054 . 547873) (-2055 . 547737) (-2056 . 547600) + (-2057 . 547493) (-2058 . 547422) (-2059 . 547308) (-2060 . 547236) + (-2061 . 546934) (-2062 . 546634) (-2063 . 546524) (-2064 . 546440) + (-2065 . 546303) (-2066 . 546202) (-2067 . 546086) (-2068 . 546001) + (-2069 . 545919) (-2070 . 545870) (-2071 . 545727) (-2072 . 545644) + (-2073 . 545467) (-2074 . 545433) (-2075 . 545258) (-2076 . 544795) + (-2077 . 544679) (-2078 . 544505) (-2079 . 544178) (-2080 . 543743) + (-2081 . 543636) (-2082 . 543566) (-2083 . 543442) (-2084 . 543132) + (-2085 . 542882) (-2086 . 542644) (-2087 . 542473) (-2088 . 542122) + (-2089 . 542065) (-2090 . 541907) (-2091 . 541747) (-2092 . 541641) + (-2093 . 541543) (-2094 . 541313) (-2095 . 541199) (-2096 . 540702) + (-2097 . 540452) (-2098 . 540379) (-2099 . 540250) (-2100 . 540157) + (-2101 . 539952) (-2102 . 539864) (-2103 . 539207) (-2104 . 538878) + (-2105 . 538547) (-2106 . 537964) (-2107 . 537851) (-2108 . 537333) + (-2109 . 537228) (-2110 . 537164) (-2111 . 537093) (-2112 . 537041) + (-2113 . 536580) (-2114 . 536512) (-2115 . 536444) (-2116 . 536171) + (-2117 . 536092) (-2118 . 536018) (-2119 . 535722) (-2120 . 535515) + (-2121 . 535451) (-2122 . 535295) (-2123 . 535139) (-2124 . 535067) + (-2125 . 534954) (-2126 . 534774) (-2127 . 534637) (-2128 . 534563) + (-2129 . 534503) (-2130 . 534413) (-2131 . 534314) (-2132 . 534124) + (-2133 . 534023) (-2134 . 533958) (-2135 . 533780) (-2136 . 533703) + (-2137 . 533583) (-2138 . 533510) (-2139 . 533082) (-2140 . 532804) + (-2141 . 532700) (-2142 . 532569) (-2143 . 532102) (-2144 . 531944) + (-2145 . 531867) (-2146 . 531784) (-2147 . 531567) (-2148 . 531460) + (-2149 . 531348) (-2150 . 531203) (-2151 . 531150) (-2152 . 530925) + (-2153 . 530894) (-2154 . 530839) (-2155 . 530768) (-2156 . 530675) + (-2157 . 530566) (-2158 . 530435) (-2159 . 530383) (-2160 . 530206) + (-2161 . 529808) (-2162 . 529714) (-2163 . 529321) (-2164 . 529217) + (-2165 . 528788) (-2166 . 527476) (-2167 . 527161) (-2168 . 526932) + (-2169 . 526876) (-2170 . 526449) (-2171 . 525847) (-2172 . 522548) + (-2173 . 521298) (-2174 . 521133) (-2175 . 520928) (-2176 . 519819) + (-2177 . 519758) (-2178 . 519696) (-2179 . 519664) (-2180 . 519484) + (-2181 . 519371) (-2182 . 519272) (-2183 . 519171) (-2184 . 519091) + (-2185 . 518785) (-2186 . 518632) (-2187 . 518462) (-2188 . 518338) + (-2189 . 518194) (-2190 . 517963) (-2191 . 517892) (-2192 . 517825) + (-2193 . 517684) (-2194 . 517589) (-2195 . 517520) (-2196 . 517167) + (-2197 . 517060) (-2198 . 516883) (-2199 . 516704) (-2200 . 516258) + (-2201 . 515193) (-2202 . 515165) (-2203 . 515066) (-2204 . 515039) + (-2205 . 514941) (-2206 . 514596) (-2207 . 514438) (-2208 . 514337) + (-2209 . 514254) (-2210 . 514151) (-2211 . 513899) (-2212 . 513826) + (-2213 . 513728) (-2214 . 513509) (-2215 . 513344) (-2216 . 513263) + (-2217 . 512961) (-2218 . 512859) (-2219 . 512807) (-2220 . 512736) + (-2221 . 512179) (-2222 . 512079) (-2223 . 511991) (-2224 . 511939) + (-2225 . 511887) (-2226 . 511780) (-2227 . 511494) (-2228 . 511276) + (-2229 . 511037) (-2230 . 510984) (-2231 . 510689) (-2232 . 510399) + (-2233 . 510284) (-2234 . 510218) (-2235 . 509918) (-2236 . 509801) + (-2237 . 509695) (-2238 . 509643) (-2239 . 509585) (-2240 . 509533) + (-2241 . 509481) (-2242 . 509422) (-2243 . 509370) (-2244 . 509320) + (-2245 . 508928) (-2246 . 508831) (-2247 . 507048) (-2248 . 506940) + (-2249 . 506806) (-2250 . 506712) (-2251 . 506630) (-2252 . 506522) + (-2253 . 506367) (-2254 . 506265) (-2255 . 506168) (-2256 . 505850) + (-2257 . 505687) (-2258 . 505589) (-2259 . 505538) (-2260 . 504861) + (-2261 . 504652) (-2262 . 504515) (-2263 . 504427) (-2264 . 504219) + (-2265 . 504121) (-2266 . 504047) (-2267 . 503862) (-2268 . 503624) + (-2269 . 503571) (-2270 . 503458) (-2271 . 503364) (-2272 . 503263) + (-2273 . 503160) (-2274 . 503053) (-2275 . 502999) (-2276 . 499663) + (-2277 . 498287) (-2278 . 498166) (-2279 . 498025) (-2280 . 497628) + (-2281 . 497575) (-2282 . 497507) (-2283 . 497479) (-2284 . 497393) + (-2285 . 497163) (-2286 . 496992) (-2287 . 496895) (-2288 . 496839) + (-2289 . 495537) (-2290 . 495407) (-2291 . 495248) (-2292 . 495090) + (-2293 . 494986) (-2294 . 494739) (-2295 . 494628) (-2296 . 494556) + (-2297 . 494378) (-2298 . 494344) (-2299 . 494295) (-2300 . 494047) + (-2301 . 493967) (-2302 . 493307) (-2303 . 493234) (-2304 . 491266) + (-2305 . 491009) (-2306 . 490958) (-2307 . 490581) (-2308 . 490547) + (-2309 . 490441) (-2310 . 490238) (-2311 . 490029) (-2312 . 489698) + (-2313 . 489552) (-2314 . 489486) (-2315 . 489345) (-2316 . 489249) + (-2317 . 489142) (-2318 . 488255) (-2319 . 488146) (-2320 . 487992) + (-2321 . 486136) (-2322 . 486053) (-2323 . 485932) (-2324 . 485880) + (-2325 . 485851) (-2326 . 485763) (-2327 . 485685) (-2328 . 485354) + (-2329 . 485271) (-2330 . 485194) (-2331 . 485166) (-2332 . 484713) + (-2333 . 484639) (-2334 . 484568) (-2335 . 484486) (-2336 . 484427) + (-2337 . 484323) (-2338 . 483987) (-2339 . 483860) (-2340 . 483753) + (-2341 . 483701) (-2342 . 483621) (-2343 . 478508) (-2344 . 478474) + (-2345 . 478159) (-2346 . 478091) (-2347 . 478063) (-2348 . 477977) + (-2349 . 477907) (-2350 . 477775) (-2351 . 477648) (-2352 . 476468) + (-2353 . 476361) (-2354 . 475967) (-2355 . 475912) (-2356 . 475745) + (-2357 . 475627) (-2358 . 475548) (-2359 . 475491) (-2360 . 475393) + (-2361 . 475283) (-2362 . 475150) (-2363 . 474990) (-2364 . 474881) + (-2365 . 474853) (-2366 . 474679) (-2367 . 474651) (-2368 . 474447) + (-2369 . 474319) (-2370 . 474228) (-2371 . 474075) (-2372 . 474044) + (-2373 . 473962) (-2374 . 473896) (-2375 . 473819) (-2376 . 473747) + (-2377 . 473677) (-2378 . 472870) (-2379 . 472733) (-2380 . 472575) + (-2381 . 472329) (-2382 . 472181) (-2383 . 472078) (-2384 . 471977) + (-2385 . 471898) (-2386 . 471625) (-2387 . 471497) (-2388 . 471396) + (-2389 . 471298) (-2390 . 471232) (-2391 . 471173) (-2392 . 471120) + (-2393 . 471023) (-2394 . 470874) (-2395 . 470845) (-2396 . 470674) + (-2397 . 470554) (-2398 . 470108) (-2399 . 469959) (-2400 . 469621) + (-2401 . 469526) (-2402 . 468920) (-2403 . 468772) (-2404 . 468634) + (-2405 . 468512) (-2406 . 468255) (-2407 . 467913) (-2408 . 467840) + (-2409 . 467779) (-2410 . 467576) (-2411 . 466034) (-2412 . 465888) + (-2413 . 465789) (-2414 . 465638) (-2415 . 465081) (-2416 . 464957) + (-2417 . 464838) (-2418 . 464502) (-2419 . 464474) (-2420 . 464405) + (-2421 . 464302) (-2422 . 464247) (-2423 . 464116) (-2424 . 463974) + (-2425 . 463922) (-2426 . 463474) (-2427 . 463396) (-2428 . 463255) + (-2429 . 463050) (-2430 . 462802) (-2431 . 462723) (-2432 . 462637) + (-2433 . 462585) (-2434 . 462443) (-2435 . 462312) (-2436 . 462275) + (-2437 . 462201) (-2438 . 461322) (-2439 . 461212) (-2440 . 461135) + (-2441 . 461052) (-2442 . 460923) (-2443 . 460705) (-2444 . 460216) + (-2445 . 460117) (-2446 . 459978) (-2447 . 459753) (-2448 . 459670) + (-2449 . 459599) (-2450 . 459547) (-2451 . 459469) (-2452 . 459335) + (-2453 . 459089) (-2454 . 458970) (-2455 . 458267) (-2456 . 458077) + (-2457 . 458045) (-2458 . 457863) (-2459 . 457806) (-2460 . 457755) + (-2461 . 457644) (-2462 . 457464) (-2463 . 457391) (-2464 . 457011) + (-2465 . 456808) (-2466 . 456481) (-2467 . 456357) (-2468 . 456205) + (-2469 . 456123) (-2470 . 456016) (-2471 . 455920) (-2472 . 455537) + (-2473 . 455442) (-2474 . 455332) (-2475 . 455251) (-2476 . 455150) + (-2477 . 454992) (-2478 . 454921) (-2479 . 454868) (-2480 . 454771) + (-2481 . 454720) (-2482 . 454480) (-2483 . 454337) (-2484 . 454025) + (-2485 . 453907) (-2486 . 453824) (-2487 . 453754) (-2488 . 453680) + (-2489 . 453573) (-2490 . 453420) (-2491 . 453353) (-2492 . 453200) + (-2493 . 453148) (-2494 . 452787) (-2495 . 452582) (-2496 . 452278) + (-2497 . 452198) (-2498 . 451807) (-2499 . 451649) (-2500 . 451575) + (-2501 . 451390) (-2502 . 451189) (-2503 . 450935) (-2504 . 450898) + (-2505 . 450827) (-2506 . 450297) (-2507 . 450203) (-2508 . 450109) + (-2509 . 449994) (-2510 . 449855) (-2511 . 449513) (-2512 . 449427) + (-2513 . 449353) (-2514 . 448874) (-2515 . 448786) (-2516 . 448402) + (-2517 . 448330) (-2518 . 448277) (-2519 . 448117) (-2520 . 447825) + (-2521 . 447610) (-2522 . 446792) (-2523 . 446704) (-2524 . 446560) + (-2525 . 446508) (-2526 . 446456) (-2527 . 446346) (-2528 . 446196) + (-2529 . 445707) (-2530 . 445619) (-2531 . 445504) (-2532 . 445183) + (-2533 . 442920) (-2534 . 442608) (-2535 . 442558) (-2536 . 442289) + (-2537 . 442145) (-2538 . 441493) (-2539 . 441335) (-2540 . 441171) + (-2541 . 441020) (-2542 . 440802) (-2543 . 440451) (-2544 . 440372) + (-2545 . 440251) (-2546 . 440217) (-2547 . 440144) (-2548 . 439777) + (-2549 . 439721) (-2550 . 439606) (-2551 . 439166) (-2552 . 438963) + (-2553 . 438782) (-2554 . 438550) (-2555 . 438436) (-2556 . 438291) + (-2557 . 438100) (-2558 . 438016) (-2559 . 437958) (-2560 . 437752) + (-2561 . 437260) (-2562 . 436724) (-2563 . 436530) (-2564 . 436421) + (-2565 . 435777) (-2566 . 435678) (-2567 . 435515) (-2568 . 435438) + (-2569 . 435383) (-2570 . 435309) (-2571 . 435223) (-2572 . 435138) + (-2573 . 434611) (-2574 . 434559) (-2575 . 434311) (-2576 . 434259) + (-2577 . 434138) (-2578 . 432957) (-2579 . 432096) (-2580 . 431938) + (-2581 . 431765) (-2582 . 431711) (-2583 . 431602) (-2584 . 431384) + (-2585 . 430880) (-2586 . 430547) (-2587 . 430155) (-2588 . 429894) + (-2589 . 429634) (-2590 . 429434) (-2591 . 429325) (-2592 . 429251) + (-2593 . 429112) (-2594 . 428967) (-2595 . 428807) (-2596 . 428688) + (-2597 . 428575) (-2598 . 428432) (-2599 . 428344) (-2600 . 428230) + (-2601 . 428007) (-2602 . 427521) (-2603 . 427455) (-2604 . 427355) + (-2605 . 427063) (-2606 . 426945) (-2607 . 426555) (-2608 . 426423) + (-2609 . 426350) (-2610 . 426032) (-2611 . 425979) (-2612 . 425929) + (-2613 . 425872) (-2614 . 425767) (-2615 . 425552) (-2616 . 425480) + (-2617 . 425378) (-2618 . 425189) (-2619 . 425048) (-2620 . 424947) + (-2621 . 424764) (-2622 . 424337) (-2623 . 424085) (-2624 . 424018) + (-2625 . 423877) (-2626 . 423641) (-2627 . 423588) (-2628 . 423486) + (-2629 . 423433) (-2630 . 423366) (-2631 . 421934) (-2632 . 421828) + (-2633 . 421589) (-2634 . 421391) (-2635 . 420551) (-2636 . 420499) + (-2637 . 420209) (-2638 . 419915) (-2639 . 419737) (-2640 . 419545) + (-2641 . 419461) (-2642 . 419322) (-2643 . 419209) (-2644 . 419090) + (-2645 . 419035) (-2646 . 419007) (-2647 . 418955) (-2648 . 418736) + (-2649 . 418592) (-2650 . 418563) (-2651 . 418457) (-2652 . 417939) + (-2653 . 417887) (-2654 . 417781) (-2655 . 417701) (-2656 . 417641) + (-2657 . 417555) (-2658 . 417412) (-2659 . 417334) (-2660 . 417222) + (-2661 . 416968) (-2662 . 416650) (-2663 . 416546) (-2664 . 416473) + (-2665 . 416423) (-2666 . 416300) (-2667 . 409301) (-2668 . 409224) + (-2669 . 409033) (-2670 . 408959) (-2671 . 408844) (-2672 . 408450) + (-2673 . 408232) (-2674 . 408146) (-2675 . 407984) (-2676 . 407709) + (-2677 . 407484) (-2678 . 407396) (-2679 . 407262) (-2680 . 407115) + (-2681 . 407013) (-2682 . 406780) (-2683 . 406752) (-2684 . 406699) + (-2685 . 406647) (-2686 . 406532) (-2687 . 406448) (-2688 . 406329) + (-2689 . 406187) (-2690 . 406101) (-2691 . 405958) (-2692 . 405498) + (-2693 . 405367) (-2694 . 404165) (-2695 . 404096) (-2696 . 403962) + (-2697 . 403575) (-2698 . 403462) (-2699 . 403216) (-2700 . 403130) + (-2701 . 402965) (-2702 . 402888) (-2703 . 402744) (-2704 . 402577) + (-2705 . 402494) (-2706 . 402254) (-2707 . 401390) (-2708 . 401277) + (-2709 . 401031) (-2710 . 400862) (-2711 . 400699) (-2712 . 400601) + (-2713 . 400521) (-2714 . 400492) (-2715 . 400439) (-2716 . 400231) + (-2717 . 399842) (-2718 . 399731) (-2719 . 399644) (-2720 . 399567) + (-2721 . 399508) (-2722 . 399459) (-2723 . 399250) (-2724 . 398654) + (-2725 . 398605) (-2726 . 398372) (-2727 . 398076) (-2728 . 398024) + (-2729 . 397578) (-2730 . 397434) (-2731 . 397378) (-2732 . 397308) + (-2733 . 396998) (-2734 . 396887) (-2735 . 396813) (-2736 . 396464) + (-2737 . 396404) (-2738 . 396345) (-2739 . 396221) (-2740 . 396168) + (-2741 . 395909) (-2742 . 395837) (-2743 . 395455) (-2744 . 395423) + (-2745 . 395270) (-2746 . 395158) (-2747 . 395055) (-2748 . 394954) + (-2749 . 394900) (-2750 . 394788) (-2751 . 394733) (-2752 . 394625) + (-2753 . 394314) (-2754 . 394217) (-2755 . 394186) (-2756 . 394053) + (-2757 . 393942) (-2758 . 393578) (-2759 . 393550) (-2760 . 393458) + (-2761 . 393300) (-2762 . 393192) (-2763 . 392804) (-2764 . 392523) + (-2765 . 392340) (-2766 . 391813) (-2767 . 391183) (-2768 . 390796) + (-2769 . 389979) (-2770 . 389824) (-2771 . 389606) (-2772 . 389234) + (-2773 . 389107) (-2774 . 389075) (-2775 . 389018) (-2776 . 388615) + (-2777 . 388549) (-2778 . 388496) (-2779 . 388441) (-2780 . 388376) + (-2781 . 388323) (-2782 . 388251) (-2783 . 388005) (-2784 . 387910) + (-2785 . 387781) (-2786 . 387682) (-2787 . 387464) (-2788 . 387257) + (-2789 . 387095) (-2790 . 387009) (-2791 . 386778) (-2792 . 386526) + (-2793 . 386102) (-2794 . 385917) (-2795 . 385808) (-2796 . 385777) + (-2797 . 385724) (-2798 . 385277) (-2799 . 384860) (-2800 . 384662) + (-2801 . 384170) (-2802 . 383963) (-2803 . 383059) (-2804 . 382957) + (-2805 . 382828) (-2806 . 382775) (-2807 . 382678) (-2808 . 382590) + (-2809 . 382432) (-2810 . 382339) (-2811 . 382286) (-2812 . 382233) + (-2813 . 382039) (-2814 . 381886) (-2815 . 381800) (-2816 . 381693) + (-2817 . 381640) (-2818 . 381512) (-2819 . 381317) (-2820 . 381145) + (-2821 . 381035) (-2822 . 380964) (-2823 . 380842) (-2824 . 380493) + (-2825 . 380341) (-2826 . 380261) (-2827 . 380156) (-2828 . 379961) + (-2829 . 379910) (-2830 . 379840) (-2831 . 379785) (-2832 . 379406) + (-2833 . 378593) (-2834 . 378536) (-2835 . 378149) (-2836 . 378048) + (-2837 . 377829) (-2838 . 377663) (-2839 . 377460) (-2840 . 377404) + (-2841 . 377305) (-2842 . 377231) (-2843 . 377142) (-2844 . 377043) + (-2845 . 376756) (-2846 . 376615) (-2847 . 376517) (-2848 . 376344) + (-2849 . 376191) (-2850 . 376033) (-2851 . 375863) (-2852 . 375047) + (-2853 . 374968) (-2854 . 374722) (-2855 . 374603) (-2856 . 374466) + (-2857 . 374326) (-2858 . 374083) (-2859 . 374031) (-2860 . 373915) + (-2861 . 373796) (-2862 . 373744) (-2863 . 373526) (-2864 . 373382) + (-2865 . 373289) (-2866 . 373002) (-2867 . 372939) (-2868 . 372874) + (-2869 . 372734) (-2870 . 372682) (-2871 . 372553) (-2872 . 372501) + (-2873 . 372374) (-2874 . 371966) (-2875 . 371813) (-2876 . 370725) + (-2877 . 370635) (-2878 . 370479) (-2879 . 370294) (-2880 . 370138) + (-2881 . 370041) (-2882 . 369971) (-2883 . 369866) (-2884 . 369632) + (-2885 . 369199) (-2886 . 369092) (-2887 . 368968) (-2888 . 368718) + (-2889 . 368605) (-2890 . 368078) (-2891 . 367966) (-2892 . 367892) + (-2893 . 367721) (-2894 . 367619) (-2895 . 367542) (-2896 . 367459) + (-2897 . 367382) (-2898 . 367089) (-2899 . 367036) (-2900 . 366977) + (-2901 . 366685) (-2902 . 366616) (-2903 . 366192) (-2904 . 366048) + (-2905 . 365960) (-2906 . 365775) (-2907 . 365096) (-2908 . 364885) + (-2909 . 364829) (-2910 . 364076) (-2911 . 363869) (-2912 . 363753) + (-2913 . 363699) (-2914 . 363607) (-2915 . 363501) (-2916 . 363449) + (-2917 . 363344) (-2918 . 363261) (-2919 . 363173) (-2920 . 363087) + (-2921 . 361814) (-2922 . 361759) (-2923 . 361643) (-2924 . 361097) + (-2925 . 360807) (-2926 . 360715) (-2927 . 360654) (-2928 . 360539) + (-2929 . 360484) (-2930 . 360418) (-2931 . 360365) (-2932 . 360114) + (-2933 . 359951) (-2934 . 359878) (-2935 . 359637) (-2936 . 359063) + (-2937 . 358971) (-2938 . 358905) (-2939 . 358715) (-2940 . 358653) + (-2941 . 358601) (-2942 . 358408) (-2943 . 358295) (-2944 . 358073) + (-2945 . 357987) (-2946 . 357910) (-2947 . 357827) (-2948 . 357733) + (-2949 . 357534) (-2950 . 357451) (-2951 . 357291) (-2952 . 357044) + (-2953 . 356863) (-2954 . 356747) (-2955 . 356494) (-2956 . 356406) + (-2957 . 356205) (-2958 . 356152) (-2959 . 356020) (-2960 . 355752) + (-2961 . 355696) (-2962 . 355611) (-2963 . 355526) (-2964 . 355452) + (-2965 . 355327) (-2966 . 355156) (-2967 . 354775) (-2968 . 354697) + (-2969 . 354449) (-2970 . 354276) (-2971 . 354129) (-2972 . 354097) + (-2973 . 353980) (-2974 . 353675) (-2975 . 353587) (-2976 . 353510) + (-2977 . 353476) (-2978 . 352789) (-2979 . 352605) (-2980 . 352477) + (-2981 . 352399) (-2982 . 352175) (-2983 . 351978) (-2984 . 351567) + (-2985 . 351454) (-2986 . 351301) (-2987 . 351149) (-2988 . 350462) + (-2989 . 350304) (-2990 . 350218) (-2991 . 350110) (-2992 . 350050) + (-2993 . 349772) (-2994 . 349663) (-2995 . 349613) (-2996 . 349544) + (-2997 . 349458) (-2998 . 349268) (-2999 . 349172) (-3000 . 349062) + (-3001 . 348487) (-3002 . 348360) (-3003 . 348237) (-3004 . 348160) + (-3005 . 347756) (-3006 . 347659) (-3007 . 347455) (-3008 . 347245) + (-3009 . 346878) (-3010 . 346688) (-3011 . 346494) (-3012 . 346332) + (-3013 . 346149) (-3014 . 345574) (-3015 . 345083) (-3016 . 344954) + (-3017 . 344877) (-3018 . 344501) (-3019 . 344406) (-3020 . 343852) + (-3021 . 343546) (-3022 . 343469) (-3023 . 342894) (-3024 . 342770) + (-3025 . 342511) (-3026 . 342294) (-3027 . 342217) (-3028 . 342140) + (-3029 . 342006) (-3030 . 341899) (-3031 . 341805) (-3032 . 341696) + (-3033 . 341122) (-3034 . 341026) (-3035 . 340376) (-3036 . 340214) + (-3037 . 340027) (-3038 . 339971) (-3039 . 339901) (-3040 . 339702) + (-3041 . 339616) (-3042 . 339563) (-3043 . 339379) (-3044 . 338805) + (-3045 . 338529) (-3046 . 338227) (-3047 . 338172) (-3048 . 337570) + (-3049 . 337442) (-3050 . 337183) (-3051 . 337056) (-3052 . 336932) + (-3053 . 336881) (-3054 . 336683) (-3055 . 336109) (-3056 . 336057) + (-3057 . 335894) (-3058 . 335787) (-3059 . 335465) (-3060 . 335038) + (-3061 . 334923) (-3062 . 334823) (-3063 . 334571) (-3064 . 334514) + (-3065 . 334256) (-3066 . 333682) (-3067 . 333602) (-3068 . 333450) + (-3069 . 332686) (-3070 . 332506) (-3071 . 332424) (-3072 . 332136) + (-3073 . 332084) (-3074 . 331935) (-3075 . 331854) (-3076 . 331761) + (-3077 . 331443) (-3078 . 330869) (-3079 . 330800) (-3080 . 330734) + (-3081 . 330484) (-3082 . 330391) (-3083 . 330175) (-3084 . 330141) + (-3085 . 330033) (-3086 . 329815) (-3087 . 329685) (-3088 . 329578) + (-3089 . 329355) (-3090 . 329181) (-3091 . 329128) (-3092 . 329031) + (-3093 . 328948) (-3094 . 328896) (-3095 . 328819) (-3096 . 328666) + (-3097 . 328279) (-3098 . 327938) (-3099 . 327846) (-3100 . 327733) + (-3101 . 327594) (-3102 . 327473) (-3103 . 327421) (-3104 . 327114) + (-3105 . 326705) (-3106 . 326408) (-3107 . 326292) (-3108 . 326173) + (-3109 . 326117) (-3110 . 325845) (-3111 . 325654) (-3112 . 325313) + (-3113 . 325242) (-3114 . 324410) (-3115 . 324327) (-3116 . 324173) + (-3117 . 324145) (-3118 . 324071) (-3119 . 323903) (-3120 . 323715) + (-3121 . 323508) (-3122 . 323423) (-3123 . 323353) (-3124 . 323143) + (-3125 . 323072) (-3126 . 322580) (-3127 . 322442) (-3128 . 322272) + (-3129 . 322093) (-3130 . 321897) (-3131 . 321860) (-3132 . 321753) + (-3133 . 321569) (-3134 . 321345) (-3135 . 321243) (-3136 . 321148) + (-3137 . 321044) (-3138 . 320942) (-3139 . 320729) (-3140 . 320594) + (-3141 . 320508) (-3142 . 320411) (-3143 . 320155) (-3144 . 320082) + (-3145 . 320016) (-3146 . 319909) (-3147 . 319800) (-3148 . 319189) + (-3149 . 319071) (-3150 . 318754) (-3151 . 318680) (-3152 . 318505) + (-3153 . 318449) (-3154 . 318368) (-3155 . 318215) (-3156 . 318137) + (-3157 . 318057) (-3158 . 317956) (-3159 . 317853) (-3160 . 317697) + (-3161 . 317616) (-3162 . 317397) (-3163 . 317183) (-3164 . 317120) + (-3165 . 316841) (-3166 . 316746) (-3167 . 316690) (-3168 . 316563) + (-3169 . 316376) (-3170 . 316310) (-3171 . 315153) (-3172 . 314884) + (-3173 . 314706) (-3174 . 314610) (-3175 . 314485) (-3176 . 314418) + (-3177 . 314283) (-3178 . 314078) (-3179 . 314008) (-3180 . 313949) + (-3181 . 313894) (-3182 . 313372) (-3183 . 313268) (-3184 . 313174) + (-3185 . 312963) (-3186 . 312833) (-3187 . 312674) (-3188 . 312591) + (-3189 . 312427) (-3190 . 312245) (-3191 . 311715) (-3192 . 311655) + (-3193 . 311311) (-3194 . 311131) (-3195 . 311030) (-3196 . 310980) + (-3197 . 310902) (-3198 . 310711) (-3199 . 310553) (-3200 . 310487) + (-3201 . 309571) (-3202 . 309492) (-3203 . 309411) (-3204 . 309244) + (-3205 . 309064) (-3206 . 308713) (-3207 . 308594) (-3208 . 308374) + (-3209 . 308251) (-3210 . 308129) (-3211 . 308046) (-3212 . 307987) + (-3213 . 307920) (-3214 . 307876) (-3215 . 307700) (-3216 . 307648) + (-3217 . 307574) (-3218 . 306989) (-3219 . 306438) (-3220 . 306191) + (-3221 . 306078) (-3222 . 305946) (-3223 . 304828) (-3224 . 304596) + (-3225 . 304513) (-3226 . 304461) (-3227 . 304324) (-3228 . 304267) + (-3229 . 303999) (-3230 . 303889) (-3231 . 303714) (-3232 . 303608) + (-3233 . 303511) (-3234 . 303389) (-3235 . 303260) (-3236 . 303181) + (-3237 . 303129) (-3238 . 303011) (-3239 . 302873) (-3240 . 302839) + (-3241 . 302593) (-3242 . 302435) (-3243 . 302384) (-3244 . 302311) + (-3245 . 302163) (-3246 . 301524) (-3247 . 301443) (-3248 . 301391) + (-3249 . 301076) (-3250 . 301012) (-3251 . 300912) (-3252 . 300029) + (-3253 . 299864) (-3254 . 299096) (-3255 . 299012) (-3256 . 298849) + (-3257 . 298704) (-3258 . 298433) (-3259 . 298355) (-3260 . 298295) + (-3261 . 297974) (-3262 . 297918) (-3263 . 297557) (-3264 . 297484) + (-3265 . 296892) (-3266 . 296820) (-3267 . 296674) (-3268 . 296595) + (-3269 . 296500) (-3270 . 295953) (-3271 . 295831) (-3272 . 295722) + (-3273 . 295591) (-3274 . 295463) (-3275 . 295285) (-3276 . 295135) + (-3277 . 295010) (-3278 . 294707) (-3279 . 294574) (-3280 . 294259) + (-3281 . 294123) (-3282 . 294049) (-3283 . 293909) (** . 290820) + (-3285 . 290661) (-3286 . 290588) (-3287 . 290511) (-3288 . 290333) + (-3289 . 290072) (-3290 . 290044) (-3291 . 289914) (-3292 . 289752) + (-3293 . 289558) (-3294 . 289144) (-3295 . 289113) (-3296 . 288772) + (-3297 . 288616) (-3298 . 288512) (-3299 . 288403) (-3300 . 288129) + (-3301 . 288004) (-3302 . 287897) (-3303 . 287655) (-3304 . 287585) + (-3305 . 287371) (-3306 . 287301) (-3307 . 287158) (-3308 . 287039) + (-3309 . 286894) (-3310 . 286753) (-3311 . 286581) (-3312 . 286507) + (-3313 . 286419) (-3314 . 286333) (-3315 . 286281) (-3316 . 286107) + (-3317 . 285899) (-3318 . 285310) (-3319 . 285236) (-3320 . 284629) + (-3321 . 284546) (-3322 . 284358) (-3323 . 284258) (-3324 . 284184) + (-3325 . 284074) (-3326 . 283712) (-3327 . 283494) (-3328 . 283348) + (-3329 . 283295) (-3330 . 283158) (-3331 . 283087) (-3332 . 282979) + (-3333 . 282772) (-3334 . 282546) (-3335 . 282476) (-3336 . 282422) + (-3337 . 282267) (-3338 . 281917) (-3339 . 281787) (-3340 . 281714) + (-3341 . 281642) (-3342 . 281486) (-3343 . 281267) (-3344 . 281166) + (-3345 . 281094) (-3346 . 280855) (-3347 . 280504) (-3348 . 280007) + (-3349 . 279874) (-3350 . 279631) (-3351 . 279579) (-3352 . 279522) + (-3353 . 279442) (-3354 . 279341) (-3355 . 279268) (-3356 . 279164) + (-3357 . 277386) (-3358 . 277137) (-3359 . 277056) (-3360 . 276962) + (-3361 . 276907) (-3362 . 276792) (-3363 . 276041) (-3364 . 275985) + (-3365 . 275832) (-3366 . 275643) (-3367 . 275499) (-3368 . 275427) + (-3369 . 275273) (-3370 . 275165) (-3371 . 275077) (-3372 . 274599) + (-3373 . 274380) (-3374 . 274125) (-3375 . 273967) (-3376 . 272882) + (-3377 . 272601) (-3378 . 272487) (-3379 . 272372) (-3380 . 272294) + (-3381 . 272086) (-3382 . 271972) (-3383 . 271462) (-9 . 271434) + (-3385 . 271330) (-3386 . 271068) (-3387 . 271002) (-3388 . 270880) + (-3389 . 270705) (-3390 . 270499) (-3391 . 270411) (-3392 . 270163) + (-3393 . 270110) (-3394 . 269957) (-8 . 269929) (-3396 . 269799) + (-3397 . 269746) (-3398 . 269636) (-3399 . 269414) (-3400 . 269294) + (-3401 . 269060) (-3402 . 268829) (-3403 . 268776) (-3404 . 268681) + (-7 . 268653) (-3406 . 268565) (-3407 . 268183) (-3408 . 268095) + (-3409 . 267992) (-3410 . 267818) (-3411 . 267749) (-3412 . 267693) + (-3413 . 267351) (-3414 . 267016) (-3415 . 266922) (-3416 . 266804) + (-3417 . 266697) (-3418 . 266645) (-3419 . 266395) (-3420 . 266185) + (-3421 . 266096) (-3422 . 266043) (-3423 . 265928) (-3424 . 265757) + (-3425 . 265633) (-3426 . 265249) (-3427 . 265016) (-3428 . 264881) + (-3429 . 264762) (-3430 . 263550) (-3431 . 263479) (-3432 . 263332) + (-3433 . 263272) (-3434 . 263189) (-3435 . 263103) (-3436 . 262825) + (-3437 . 262725) (-3438 . 262180) (-3439 . 262118) (-3440 . 262041) + (-3441 . 261654) (-3442 . 261583) (-3443 . 261418) (-3444 . 261312) + (-3445 . 261102) (-3446 . 261005) (-3447 . 260927) (-3448 . 260483) + (-3449 . 260317) (-3450 . 260203) (-3451 . 260051) (-3452 . 259974) + (-3453 . 259903) (-3454 . 259482) (-3455 . 259146) (-3456 . 258969) + (-3457 . 258844) (-3458 . 258778) (-3459 . 258694) (-3460 . 258549) + (-3461 . 258471) (-3462 . 258332) (-3463 . 257974) (-3464 . 257894) + (-3465 . 257841) (-3466 . 257771) (-3467 . 256041) (-3468 . 255855) + (-3469 . 255697) (-3470 . 255471) (-3471 . 255342) (-3472 . 255128) + (-3473 . 253947) (-3474 . 253853) (-3475 . 253768) (-3476 . 253646) + (-3477 . 253505) (-3478 . 253120) (-3479 . 252843) (-3480 . 252626) + (-3481 . 252527) (-3482 . 252455) (-3483 . 252355) (-3484 . 252019) + (-3485 . 251915) (-3486 . 251810) (-3487 . 251215) (-3488 . 250669) + (-3489 . 250562) (-3490 . 250203) (-3491 . 250078) (-3492 . 249711) + (-3493 . 249660) (-3494 . 248694) (-3495 . 248642) (-3496 . 248427) + (-3497 . 248367) (-3498 . 248339) (-3499 . 248221) (-3500 . 247962) + (-3501 . 247854) (-3502 . 247717) (-3503 . 247591) (-3504 . 247532) + (-3505 . 247449) (-3506 . 247383) (-3507 . 247218) (-3508 . 246848) + (-3509 . 246796) (-3510 . 246717) (-3511 . 246668) (-3512 . 246580) + (-3513 . 246437) (-3514 . 246213) (-3515 . 246094) (-3516 . 246038) + (-3517 . 245784) (-3518 . 245071) (-3519 . 244823) (-3520 . 244659) + (-3521 . 244523) (-3522 . 244424) (-3523 . 244328) (-3524 . 244206) + (-3525 . 243196) (-3526 . 242695) (-3527 . 242576) (-3528 . 241506) + (-3529 . 240341) (-3530 . 240150) (-3531 . 240088) (-3532 . 239981) + (-3533 . 239865) (-3534 . 239782) (-3535 . 239615) (-3536 . 239080) + (-3537 . 238908) (-3538 . 238644) (-3539 . 238273) (-3540 . 238171) + (-3541 . 238119) (-3542 . 237872) (-3543 . 237675) (-3544 . 237581) + (-3545 . 237286) (-3546 . 237119) (-3547 . 236975) (-3548 . 236860) + (-3549 . 236778) (-3550 . 236590) (-3551 . 236504) (-3552 . 236381) + (-3553 . 236181) (-3554 . 236126) (-3555 . 236074) (-3556 . 235587) + (-3557 . 235420) (-3558 . 235300) (-3559 . 235154) (-3560 . 234989) + (-3561 . 234582) (-3562 . 234548) (-3563 . 234275) (-3564 . 234150) + (-3565 . 233998) (-3566 . 233830) (-3567 . 233590) (-3568 . 233296) + (-3569 . 233193) (-3570 . 233055) (-3571 . 233000) (-3572 . 232896) + (-3573 . 232650) (-3574 . 232562) (-3575 . 232459) (-3576 . 232316) + (-3577 . 232250) (-3578 . 232129) (-3579 . 231969) (-3580 . 230707) + (-3581 . 230192) (-3582 . 230110) (-3583 . 230055) (-3584 . 229398) + (-3585 . 229235) (-3586 . 228964) (-3587 . 228611) (-3588 . 228502) + (-3589 . 228418) (-3590 . 228153) (-3591 . 228038) (-3592 . 227920) + (-3593 . 226728) (-3594 . 226605) (-3595 . 226477) (-3596 . 226207) + (-3597 . 226102) (-3598 . 223988) (-3599 . 223935) (-3600 . 223459) + (-3601 . 223115) (-3602 . 222993) (-3603 . 222627) (-3604 . 222520) + (-3605 . 222330) (-3606 . 221911) (-3607 . 221837) (-3608 . 221742) + (-3609 . 220778) (-3610 . 220616) (-3611 . 220502) (-3612 . 219700) + (-3613 . 219593) (-3614 . 219475) (-3615 . 219319) (-3616 . 219212) + (-3617 . 219082) (-3618 . 218890) (-3619 . 218799) (-3620 . 218653) + (-3621 . 218621) (-3622 . 218483) (-3623 . 218281) (-3624 . 218228) + (-3625 . 218177) (-3626 . 218143) (-3627 . 217408) (-3628 . 217356) + (-3629 . 217271) (-3630 . 217157) (-3631 . 217073) (-3632 . 216989) + (-3633 . 216885) (-3634 . 216778) (-3635 . 216514) (-3636 . 216444) + (-3637 . 216334) (-3638 . 216249) (-3639 . 216139) (-3640 . 216005) + (-3641 . 215331) (-3642 . 214958) (-3643 . 214857) (-3644 . 214691) + (-3645 . 214536) (-3646 . 214106) (-3647 . 214035) (-3648 . 213905) + (-3649 . 213713) (-3650 . 213640) (-3651 . 213121) (-3652 . 212854) + (-3653 . 212799) (-3654 . 212703) (-3655 . 212632) (-3656 . 212467) + (-3657 . 212360) (-3658 . 212237) (-3659 . 212136) (-3660 . 212068) + (-3661 . 212008) (-3662 . 211388) (-3663 . 211317) (-3664 . 211216) + (-3665 . 210937) (-3666 . 210621) (-3667 . 210439) (-3668 . 209223) + (-3669 . 209143) (-3670 . 209044) (-3671 . 208891) (-3672 . 208839) + (-3673 . 208683) (-3674 . 208050) (-3675 . 207699) (-3676 . 207626) + (-3677 . 207508) (-3678 . 207480) (-3679 . 207285) (-3680 . 207058) + (-3681 . 207006) (-3682 . 206822) (-3683 . 206749) (-3684 . 206406) + (-3685 . 206257) (-3686 . 206201) (-3687 . 206142) (-3688 . 206068) + (-3689 . 205737) (-3690 . 205494) (-3691 . 205434) (-3692 . 205346) + (-3693 . 205233) (-3694 . 205021) (-3695 . 204938) (-3696 . 204140) + (-3697 . 203974) (-3698 . 203905) (-3699 . 203863) (-3700 . 203784) + (-3701 . 203686) (-3702 . 203627) (-3703 . 203509) (-3704 . 203407) + (-3705 . 203320) (-3706 . 203236) (-3707 . 203159) (-3708 . 203081) + (-3709 . 203002) (-3710 . 202835) (-3711 . 202617) (-3712 . 202560) + (-3713 . 202477) (-3714 . 202322) (-3715 . 202169) (-3716 . 202054) + (-3717 . 201716) (-3718 . 201645) (-3719 . 201427) (-3720 . 201353) + (-3721 . 201285) (-3722 . 201197) (-3723 . 201079) (-3724 . 201000) + (-3725 . 200811) (-3726 . 200726) (-3727 . 200652) (-3728 . 200514) + (-3729 . 200389) (-3730 . 200231) (-3731 . 200148) (-3732 . 200096) + (-3733 . 200008) (-3734 . 199904) (-3735 . 199849) (-3736 . 199731) + (-3737 . 199624) (-3738 . 199405) (-3739 . 199063) (-3740 . 198925) + (-3741 . 198826) (-3742 . 198703) (-3743 . 198623) (-3744 . 198533) + (-3745 . 198481) (-3746 . 198430) (-3747 . 198137) (-3748 . 198004) + (-3749 . 197756) (-3750 . 197679) (-3751 . 197591) (-3752 . 197449) + (-3753 . 197365) (-3754 . 197222) (-3755 . 197142) (-3756 . 197033) + (-3757 . 196447) (-3758 . 196388) (-3759 . 196335) (-3760 . 196213) + (-3761 . 196114) (-3762 . 195789) (-3763 . 195659) (-3764 . 195444) + (-3765 . 195394) (-3766 . 195342) (-3767 . 195199) (-3768 . 195053) + (-3769 . 194888) (-3770 . 194364) (-3771 . 194266) (-3772 . 194234) + (-3773 . 194146) (-3774 . 194037) (-3775 . 193916) (-3776 . 193819) + (-3777 . 193696) (-3778 . 193543) (-3779 . 193384) (-3780 . 193313) + (-3781 . 193212) (-3782 . 193139) (-3783 . 193071) (-3784 . 192955) + (-3785 . 192903) (-3786 . 192847) (-3787 . 192777) (-3788 . 192710) + (-3789 . 191837) (-3790 . 191775) (-3791 . 191335) (-3792 . 191262) + (-3793 . 191059) (-3794 . 190901) (-3795 . 190679) (-3796 . 190427) + (-3797 . 190175) (-3798 . 190062) (-3799 . 189871) (-3800 . 189757) + (-3801 . 189683) (-3802 . 189609) (-3803 . 189413) (-3804 . 189345) + (-3805 . 189252) (-3806 . 189129) (-3807 . 188495) (-3808 . 188276) + (-3809 . 188248) (-3810 . 188182) (-3811 . 188022) (-3812 . 187536) + (-3813 . 187378) (-3814 . 187275) (-3815 . 187203) (-3816 . 187075) + (-3817 . 186830) (-3818 . 186454) (-3819 . 186067) (-3820 . 185960) + (-3821 . 185704) (-3822 . 185528) (-3823 . 185457) (-3824 . 185401) + (-3825 . 185292) (-3826 . 184294) (-3827 . 184242) (-3828 . 184171) + (-3829 . 184047) (-3830 . 183921) (-3831 . 183809) (-3832 . 183756) + (-3833 . 183700) (-3834 . 183544) (-3835 . 183481) (-3836 . 183397) + (-3837 . 183157) (-3838 . 182975) (-3839 . 182816) (-3840 . 182744) + (-3841 . 182646) (-3842 . 182419) (-3843 . 182171) (-3844 . 182094) + (-3845 . 182045) (-3846 . 181964) (-3847 . 181908) (-3848 . 181515) + (-3849 . 181407) (-3850 . 181048) (-3851 . 180893) (-3852 . 180732) + (-3853 . 180585) (-3854 . 180548) (-3855 . 180476) (-3856 . 180380) + (-3857 . 180055) (-3858 . 179984) (-3859 . 179915) (-3860 . 179860) + (-3861 . 179753) (-3862 . 179675) (-3863 . 179538) (-3864 . 179363) + (-3865 . 179273) (-3866 . 179170) (-3867 . 178939) (-3868 . 178885) + (-3869 . 178790) (-3870 . 178722) (-3871 . 178672) (-3872 . 178616) + (-3873 . 178318) (-3874 . 178223) (-3875 . 178122) (-3876 . 177918) + (-3877 . 177790) (-3878 . 177511) (-3879 . 177008) (-3880 . 176856) + (-3881 . 176755) (-3882 . 176659) (-3883 . 176606) (-3884 . 176442) + (-3885 . 176281) (-3886 . 176178) (-3887 . 175862) (-3888 . 175637) + (-3889 . 175308) (-3890 . 175231) (-3891 . 173891) (-3892 . 173797) + (-3893 . 173715) (-3894 . 173527) (-3895 . 173475) (-3896 . 173362) + (-3897 . 173106) (-3898 . 172997) (-3899 . 172924) (-3900 . 172542) + (-3901 . 172104) (-3902 . 171884) (-3903 . 171770) (-3904 . 171470) + (-3905 . 171283) (-3906 . 169695) (-3907 . 169525) (-3908 . 169377) + (-3909 . 169284) (-3910 . 169198) (-3911 . 169111) (-3912 . 169058) + (-3913 . 169001) (-3914 . 168918) (-3915 . 168865) (-3916 . 168735) + (-3917 . 168636) (-3918 . 168584) (-3919 . 168278) (-3920 . 168249) + (-3921 . 168221) (-3922 . 167639) (-3923 . 167519) (-3924 . 167399) + (-3925 . 166914) (-3926 . 166815) (-3927 . 166758) (-3928 . 165892) + (-3929 . 165691) (-3930 . 165660) (-3931 . 165471) (-3932 . 161311) + (-3933 . 161177) (-3934 . 160441) (-3935 . 160347) (-3936 . 160288) + (-3937 . 160121) (-3938 . 160035) (-3939 . 159872) (-3940 . 159806) + (-3941 . 159711) (-3942 . 159638) (-3943 . 159576) (-3944 . 159509) + (-3945 . 159334) (-3946 . 159232) (-3947 . 159158) (-3948 . 159052) + (-3949 . 158935) (-3950 . 158851) (-3951 . 158633) (-3952 . 158527) + (-3953 . 158351) (-3954 . 158208) (-3955 . 157999) (-3956 . 157796) + (-3957 . 157743) (-3958 . 157572) (-3959 . 157520) (-3960 . 157383) + (-3961 . 152045) (-3962 . 151992) (-3963 . 151563) (-3964 . 151254) + (-3965 . 151166) (-3966 . 151087) (-3967 . 149641) (-3968 . 149494) + (-3969 . 149319) (-3970 . 149288) (-3971 . 149122) (-3972 . 148979) + (-3973 . 148825) (-3974 . 148603) (-3975 . 148532) (-3976 . 148435) + (-3977 . 148184) (-3978 . 148131) (-3979 . 148051) (-3980 . 147967) + (-3981 . 147692) (-3982 . 146664) (-3983 . 146478) (-3984 . 146394) + (-3985 . 146251) (-3986 . 146167) (-3987 . 145969) (-3988 . 145910) + (-3989 . 145603) (-3990 . 145505) (-3991 . 145439) (-3992 . 145352) + (-3993 . 145115) (-3994 . 145081) (-3995 . 144747) (-3996 . 144523) + (-3997 . 144468) (-3998 . 144338) (-3999 . 144120) (-4000 . 143377) + (-4001 . 143311) (-4002 . 143173) (-4003 . 143083) (-4004 . 143006) + (-4005 . 142908) (-4006 . 142838) (-4007 . 142761) (-4008 . 142689) + (-4009 . 142592) (-4010 . 142446) (-4011 . 142390) (-4012 . 141998) + (-4013 . 141918) (-4014 . 141818) (-4015 . 141688) (-4016 . 141630) + (-4017 . 141231) (-4018 . 140634) (-4019 . 140491) (-4020 . 140372) + (-4021 . 140228) (-4022 . 140151) (-4023 . 139952) (-4024 . 139738) + (-4025 . 139685) (-4026 . 139571) (-4027 . 139505) (-4028 . 139360) + (-4029 . 137198) (-4030 . 137083) (-4031 . 136987) (-4032 . 136829) + (-4033 . 136573) (-4034 . 136207) (-4035 . 136155) (-4036 . 136095) + (-4037 . 135923) (-4038 . 135780) (-4039 . 135682) (-4040 . 135608) + (-4041 . 135521) (-4042 . 135436) (-4043 . 135350) (-4044 . 135231) + (-4045 . 135091) (-4046 . 135063) (-4047 . 134788) (-4048 . 130246) + (-4049 . 130197) (-12 . 130025) (-4051 . 129902) (-4052 . 129768) + (-4053 . 129588) (-4054 . 110874) (-4055 . 110778) (-4056 . 110634) + (-4057 . 110542) (-4058 . 110489) (-4059 . 110423) (-4060 . 110270) + (-4061 . 110089) (-4062 . 110018) (-4063 . 109925) (-4064 . 109817) + (-4065 . 109116) (-4066 . 106295) (-4067 . 106140) (-4068 . 105985) + (-4069 . 104700) (-4070 . 104633) (-4071 . 104492) (-4072 . 104267) + (-4073 . 104143) (-4074 . 103402) (-4075 . 103261) (-4076 . 102583) + (-4077 . 102404) (-4078 . 102311) (-4079 . 102168) (-4080 . 102136) + (-4081 . 101856) (-4082 . 101670) (-4083 . 101526) (-4084 . 101267) + (-4085 . 100958) (-4086 . 100880) (-4087 . 100139) (-4088 . 99893) + (-4089 . 99750) (-4090 . 99637) (-4091 . 99216) (-4092 . 99143) + (-4093 . 98940) (-4094 . 98862) (-4095 . 98608) (-4096 . 97738) + (-4097 . 97050) (-4098 . 96969) (-4099 . 96774) (-4100 . 96509) + (-4101 . 96455) (-4102 . 96242) (-4103 . 96210) (-4104 . 95925) + (-4105 . 95829) (-4106 . 95741) (-4107 . 95445) (-4108 . 94869) + (-4109 . 94816) (-4110 . 94728) (-4111 . 94676) (-4112 . 94604) + (-4113 . 94497) (-4114 . 94339) (-4115 . 94148) (-4116 . 94041) + (-4117 . 93932) (-4118 . 93853) (-4119 . 93277) (-4120 . 92945) + (-4121 . 92614) (-4122 . 92448) (-4123 . 92268) (-4124 . 92198) + (-4125 . 92005) (-4126 . 91952) (-4127 . 91897) (-4128 . 91817) + (-4129 . 91599) (-4130 . 91023) (-4131 . 90970) (-4132 . 90817) + (-4133 . 90500) (-4134 . 90358) (-4135 . 90270) (-4136 . 89602) + (-4137 . 89571) (-4138 . 88885) (-4139 . 88816) (-4140 . 88746) + (-4141 . 88439) (-4142 . 88078) (-4143 . 87925) (-4144 . 87857) + (-4145 . 87440) (-4146 . 87336) (-4147 . 87227) (-4148 . 87111) + (-4149 . 86954) (-4150 . 86466) (-4151 . 85780) (-4152 . 71666) + (-4153 . 71611) (* . 67065) (-4155 . 63002) (-4156 . 62833) + (-4157 . 62410) (-4158 . 62163) (-4159 . 62003) (-4160 . 61902) + (-4161 . 61744) (-4162 . 61583) (-4163 . 61069) (-4164 . 60668) + (-4165 . 59919) (-4166 . 59265) (-4167 . 59237) (-4168 . 59151) + (-4169 . 59080) (-4170 . 58940) (-4171 . 58773) (-4172 . 58701) + (-4173 . 58604) (-4174 . 58030) (-4175 . 57962) (-4176 . 57710) + (-4177 . 57394) (-4178 . 57342) (-4179 . 57290) (-4180 . 57222) + (-4181 . 57119) (-4182 . 56545) (-4183 . 56452) (-4184 . 56349) + (-4185 . 56282) (-4186 . 56175) (-4187 . 55792) (-4188 . 55740) + (-4189 . 55617) (-4190 . 55473) (-4191 . 55375) (-4192 . 54871) + (-4193 . 54645) (-4194 . 54577) (-4195 . 54003) (-4196 . 53887) + (-4197 . 53792) (-4198 . 53519) (-4199 . 51174) (-4200 . 49870) + (-4201 . 49784) (-4202 . 49598) (-4203 . 49396) (-4204 . 49343) + (-4205 . 49269) (-4206 . 49121) (-4207 . 48434) (-4208 . 44768) + (-4209 . 44664) (-4210 . 44612) (-4211 . 44469) (-4212 . 44342) + (-4213 . 44062) (-4214 . 43919) (-4215 . 43841) (-4216 . 43749) + (-4217 . 43503) (-4218 . 43387) (-4219 . 43314) (-4220 . 42987) + (-4221 . 42629) (-4222 . 42379) (-4223 . 42247) (-4224 . 42174) + (-4225 . 41717) (-4226 . 41636) (-4227 . 41584) (-4228 . 41429) + (-4229 . 41288) (-4230 . 41013) (-4231 . 40884) (-4232 . 40799) + (-4233 . 40355) (-4234 . 40284) (-4235 . 40022) (-4236 . 39917) + (-4237 . 39831) (-4238 . 39710) (-4239 . 39573) (-4240 . 39449) + (-4241 . 39276) (-4242 . 38280) (-4243 . 38176) (-4244 . 38047) + (-4245 . 37913) (-4246 . 37686) (-4247 . 35828) (-4248 . 35512) + (-4249 . 35332) (-4250 . 35168) (-4251 . 35066) (-4252 . 34887) + (-4253 . 34719) (-4254 . 34598) (-4255 . 34438) (-4256 . 34272) + (-4257 . 34157) (-4258 . 33999) (-4259 . 33946) (-4260 . 33860) + (-4261 . 33683) (-4262 . 33581) (-4263 . 33507) (-4264 . 32986) + (-4265 . 32888) (-4266 . 32645) (-4267 . 32585) (-4268 . 32535) + (-4269 . 32416) (-4270 . 32250) (-4271 . 32011) (-4272 . 31953) + (-4273 . 31893) (-4274 . 31735) (-4275 . 31606) (-4276 . 31556) + (-4277 . 31500) (-4278 . 31428) (-4279 . 30828) (-4280 . 30614) + (-4281 . 30361) (-4282 . 30287) (-4283 . 30205) (-4284 . 29992) + (-4285 . 29911) (-4286 . 29478) (-4287 . 29366) (-4288 . 29224) + (-4289 . 28927) (-4290 . 28770) (-4291 . 28690) (-4292 . 28530) + (-4293 . 28474) (-4294 . 28395) (-4295 . 28333) (-4296 . 28209) + (-4297 . 28024) (-4298 . 27946) (-4299 . 27917) (-4300 . 25502) + (-4301 . 25350) (-4302 . 25284) (-4303 . 24903) (-4304 . 24819) + (-4305 . 24729) (-4306 . 24596) (-4307 . 24220) (-4308 . 24077) + (-4309 . 23716) (-4310 . 23573) (-4311 . 23374) (-4312 . 23308) + (-4313 . 23136) (-4314 . 23035) (-4315 . 22910) (-4316 . 22344) + (-4317 . 22250) (-4318 . 22022) (-4319 . 21939) (-4320 . 21720) + (-4321 . 21522) (-4322 . 21165) (-4323 . 21007) (-4324 . 20835) + (-4325 . 20617) (-4326 . 20318) (-4327 . 20237) (-4328 . 19671) + (-4329 . 19146) (-4330 . 18955) (-4331 . 18623) (-4332 . 18538) + (-4333 . 18402) (-4334 . 18259) (-4335 . 18203) (-4336 . 18134) + (-4337 . 17962) (-4338 . 17764) (-4339 . 17543) (-4340 . 17344) + (-4341 . 17288) (-4342 . 17154) (-4343 . 17056) (-4344 . 16929) + (-4345 . 16633) (-4346 . 16506) (-4347 . 16334) (-4348 . 16024) + (-4349 . 15995) (-4350 . 15850) (-4351 . 6288) (-4352 . 6148) + (-4353 . 6082) (-4354 . 5956) (-4355 . 5847) (-4356 . 5588) + (-4357 . 5346) (-4358 . 4835) (-4359 . 4783) (-4360 . 4713) + (-4361 . 4569) (-4362 . 4486) (-4363 . 4341) (-4364 . 4286) + (-4365 . 3048) (-4366 . 2852) (-4367 . 2787) (-4368 . 2735) + (-4369 . 2657) (-4370 . 2605) (-4371 . 2552) (-4372 . 2364) + (-4373 . 2226) (-4374 . 1924) (-4375 . 1887) (-4376 . 927) + (-4377 . 646) (-4378 . 618) (-4379 . 522) (-4380 . 424) (-4381 . 322) + (-4382 . 30))
\ No newline at end of file |